WorldWideScience

Sample records for even-even nucleus shape

  1. The first observation of EO transitions from negative parity states in even-even nucleus 160Dy

    International Nuclear Information System (INIS)

    Grigoriev, E.P.

    1988-01-01

    In even-even deformed nuclei up to now EO-transitions were found only between the states of the same spin belonging to Κ π = O + rotational bands. There is no forbidenness for EO-transitions between states belonging to bands with any other quantum number Κ provided both initial and final states have the same J π Κ values. EO-transitions may depopulate odd-parity states. In odd nuclei β-vibrational states are identified by transition with EO-components. Here transitions also proceed between states with the same J π K numbers. Even-even nuclide 160 Dy is the first nucleus where the EO-transitions between odd-parity states have been found

  2. Triaxial shapes in the ground states of even-even neutron-rich Ru isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Lister, C.J.; Morss, L.R. [and others

    1995-08-01

    Partial level schemes for {sup 108,110,112}Ru, and {sup 114}Ru about which nothing was previously known, were determined from the measurement of prompt, triple-gamma coincidences in {sup 248}Cm fission fragments. A 5-mg {sup 249}Cm source, mixed with 65-mg KCl and pressed in the form of a 7-mm diameter pellet, was used for the experiment. Prompt {gamma} rays emitted from the fission fragments were detected with the Eurogam array at Daresbury, which at that time consisted of 45 Compton suppressed Ge detectors and 5 LEPS spectrometers. Transitions in Ru were identified by gating on {gamma} rays in the complementary Te fragments. Figure I-25 shows the technique used to identify the previously unknown transitions in {sup 114}Ru and its partial level scheme. High spin states up to spin 10 h were observed and the {gamma}-ray branching ratios were determined. The ratios of electric quadrupole transition probabilities deduced from the experimental branching ratios were found to be in good agreement with the predictions of a simple model of rigid triaxial rotor. Our analysis shows that gamma deformation in Ru isotopes is increasing with the neutron number and the gamma value for {sup 112}Ru and {sup 114}Ru is {approximately} 25 degrees. This is one of the highest gamma values encountered in nuclei, suggesting soft triaxial shapes for {sup 112}Ru and {sup 114}Ru. The results of this investigation were published.

  3. Decay out of the yrast and excited highly-deformed bands in the even-even nucleus {sup 134}Nd

    Energy Technology Data Exchange (ETDEWEB)

    Petrache, C.M.; Bazzacco, D.; Lunardi, S. [Sezione di Padova (Italy)] [and others

    1996-12-31

    The resolving power achieved by the new generation of {gamma}-ray detector arrays allows now to observe transitions with intensities of the order of {approximately}10{sup {minus}3} of the population of the final residual nucleus, making therefore feasible the study of the very weakly populated excited bands built on the superdeformed (SD) minimum or of the decay out of the SD bands. As a matter of fact, numerous excited SD bands have been observed in the different regions of superdeformation, which led to a deeper understanding of the single-particle excitation in the second minimum. The first experimental breakthrough in the study of the decay out process has been achieved in the odd-even {sup 133,135}Nd nuclei of the A=130 mass region. There, the observation of the discrete linking transitions has been favored by the relatively higher intensity of the highly-deformed (HD) bands ({approximately}10%), as well as by the small excitation energy with respect to the yrast line in the decay-out region ({approximately}1 MeV). No discrete linking transitions have been so far observed in the A=80, 150 mass regions. The present results suggest that the decay out of the HD bands in {sup 134}Nd is triggered by the crossing with the N=4 [402]5/2{sup +} Nilsson orbital, that has a smaller deformation than the corresponding N=6 intruder configuration. The crossing favours the mixing with the ND rotational bands strongly enhancing the decay-out process and weakening the in-band transition strength. The HD band becomes fragmented and looses part of its character. The intensity of the decay-out transitions increases when the spin of the HD state decreases, indicating enhanced ND amplitude in the wavefunction when going down the band. Lifetime measurements of the HD bands are crucial to further elucidate the decay-out process.

  4. Shape coexistence in the neutron-deficient even-even (182-188)Hg isotopes studied via coulomb excitation.

    Science.gov (United States)

    Bree, N; Wrzosek-Lipska, K; Petts, A; Andreyev, A; Bastin, B; Bender, M; Blazhev, A; Bruyneel, B; Butler, P A; Butterworth, J; Carpenter, M P; Cederkäll, J; Clément, E; Cocolios, T E; Deacon, A; Diriken, J; Ekström, A; Fitzpatrick, C; Fraile, L M; Fransen, Ch; Freeman, S J; Gaffney, L P; García-Ramos, J E; Geibel, K; Gernhäuser, R; Grahn, T; Guttormsen, M; Hadinia, B; Hadyńska-Kle K, K; Hass, M; Heenen, P-H; Herzberg, R-D; Hess, H; Heyde, K; Huyse, M; Ivanov, O; Jenkins, D G; Julin, R; Kesteloot, N; Kröll, Th; Krücken, R; Larsen, A C; Lutter, R; Marley, P; Napiorkowski, P J; Orlandi, R; Page, R D; Pakarinen, J; Patronis, N; Peura, P J; Piselli, E; Rahkila, P; Rapisarda, E; Reiter, P; Robinson, A P; Scheck, M; Siem, S; Singh Chakkal, K; Smith, J F; Srebrny, J; Stefanescu, I; Tveten, G M; Van Duppen, P; Van de Walle, J; Voulot, D; Warr, N; Wenander, F; Wiens, A; Wood, J L; Zielińska, M

    2014-04-25

    Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85  MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established.

  5. Shape coexistence measurements in even-even neutron-deficient polonium isotopes by Coulomb excitation, using REX-ISOLDE and the Ge MINIBALL array

    CERN Multimedia

    Butler, P; Bastin, B; Kruecken, R; Voulot, D; Rahkila, P J; Orr, N A; Srebrny, J; Grahn, T; Clement, E; Paul, E S; Gernhaeuser, R A; Dorsival, A; Diriken, J V J; Huyse, M L; Iwanicki, J S

    The neutron-deficient polonium isotopes with two protons outside the closed Z=82 shell represent a set of nuclei with a rich spectrum of nucleus structure phenomena. While the onset of the deformation in the light Po isotopes is well established experimentally, questions remain concerning the sign of deformation and the magnitude of the mixing between different configurations. Furthermore, controversy is present with respect to the transition from the vibrational-like character of the heavier Po isotopes to the shape coexistence mode observed in the lighter Po isotopes. We propose to study this transition in the even-mass neutron-deficient $^{198,200,202}$Po isotopes by using post-accelerated beams from REX-ISOLDE and "safe"-energy Coulomb excitation. $\\gamma$- rays will be detected by the MINIBALL array. The measurements of the Coulomb excitation differential cross section will allow us to deduce both the transition and diagonal matrix elements for these nuclei and, combined with lifetime measurements, the s...

  6. Anisotropy of favoured alpha transitions producing even-even deformed nuclei

    International Nuclear Information System (INIS)

    Tavares, O.A.P.

    1997-05-01

    The anisotropy in favoured alpha transitions which produce even-even deformed nuclei is discussed. A simple, Gamow's-like model which takes into account the quadrupole deformation of the product nucleus has been formulated to calculate the alpha decay half-life. It is assumed that before tunneling into a purely Coulomb potential barrier the two-body system oscillated isotropically, thus giving rise to an equivalent, average preferential polar direction θ 0 (referred to the symmetry axis of the ellipsoidal shape of the product nucleus) for alpha emission in favoured alpha transitions of even-even nuclei. (author)

  7. Alpha decay and nuclear deformation: the case for favoured alpha transitions of even-even emitters

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, F. [Universidade Estadual de Santa Cruz, Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologicas; Rodriguez, O.; Guzman, F. [Instituto Superior de Ciencias y Tecnologia Nucleares (ISCTN), La Habana (Cuba); Goncalves, M. [Instituto de Radioprotecao e Dosimetria IRD/CNEN, Rio de Janeiro, RJ (Brazil); Duarte, S.B.; Tavares, O.A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: sbd@cbpf.br

    2000-02-01

    Alpha-decay half-life for ground-state transitions of 174 even-even alpha emitters has been calculated from a simple, Gamow-like model in which the quadrupole deformation of the product nucleus (assumed to have an ellipsoidal shape) is taken into account. The assumption made is that before tunneling through a purely Coulomb potential barrier the two-body system oscillates isotropically, thus giving rise to an equivalent, average polar direction {theta} (referred to the symmetry axis of the ellipsoid) for alpha emission. It is shown that the experimental half-life data are much better reproduced by the present description than in the spherical-shaped approximation for the daughter nucleus. (author)

  8. Alpha decay and nuclear deformation: the case for favoured alpha transitions of even-even emitters

    International Nuclear Information System (INIS)

    Garcia, F.; Goncalves, M.; Duarte, S.B.; Tavares, O.A.P.

    2000-02-01

    Alpha-decay half-life for ground-state transitions of 174 even-even alpha emitters has been calculated from a simple, Gamow-like model in which the quadrupole deformation of the product nucleus (assumed to have an ellipsoidal shape) is taken into account. The assumption made is that before tunneling through a purely Coulomb potential barrier the two-body system oscillates isotropically, thus giving rise to an equivalent, average polar direction θ (referred to the symmetry axis of the ellipsoid) for alpha emission. It is shown that the experimental half-life data are much better reproduced by the present description than in the spherical-shaped approximation for the daughter nucleus. (author)

  9. Collective description of magnetic properties of even-even nuclei

    International Nuclear Information System (INIS)

    Maruhn, V.

    1975-01-01

    The generalized collective model is modified by introducing a number of quadrupole deformations for protons and neutrons. The coupling potential is described by physical approaches, and the overall model is applied to even-even nuclei. (WL) [de

  10. Vibrational collective model for spheric even-even nuclei

    International Nuclear Information System (INIS)

    Cruz, M.T.F. da.

    1985-01-01

    A review is made on the evidences of collective motions in spherical even-even nuclei. The several multipole transitions occuring in such a nuclei are discussed. Some hypothesis which are necessary in order to build-up the model are presented. (L.C.) [pt

  11. Excited bands in even-even rare-earth nuclei

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Hirsch, Jorge G.

    2004-01-01

    The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands

  12. Alpha Decay of Even-Even Superheavy Nuclei

    International Nuclear Information System (INIS)

    Oudih, M.R.; Hamza, Y.; Fellah, M.; Allal, N.H.; Fellah, M.; Allal, N.H.

    2011-01-01

    Alpha decay properties of even-even superheavy nuclei with 112.Z.120 have been investigated using the Hartree-Fock-Bogoliubov approach. The method is based on the SkP Skyrme interaction and the Lipkin-Nogami prescription for treating the pairing correlations. The alpha decay energies are extracted from the binding energies and then used for the calculation of the decay half-lives using a formula similar to that of Viola-Seaborg. The parameters of the formula were obtained through a least square fit to even-even heavy nuclei taken from the tables of Audi- Wapstra and some more recent references. The results are compared with other theoretical evaluations.

  13. Collective states of nonspherical deformable even--even nuclei

    International Nuclear Information System (INIS)

    Tartakovskii, V.K.

    1989-01-01

    A more correct method, as compared with some earlier studies, of finding the wave functions and corresponding energies of longitudinal quadrupole vibrations of nonspherical even--even nuclei is proposed. The wave functions and energies of collective motions in nuclei have been obtained in explicit form for a number of dependences of the potential energy of longitudinal vibrations V(β), including the dependence V(β), not previously used, of the most general form. Explicit dependences of the potential energy of transverse vibrations and the corresponding wave functions and eigenvalues for nuclear states with zero spins are proposed

  14. Collective motions and band structures in A = 60 to 80, even--even nuclei

    International Nuclear Information System (INIS)

    Hamilton, J.H.; Robinson, R.L.; Ramayya, A.V.

    1978-01-01

    Evidence for and the theoretical understanding of the richness of the collective band structures as illustrated by at least seven bands seen in levels of 68 Ge, 74 Se are reviewed. The experimental data on even-even nuclei in the A = 60 to 80 region have now revealed a wide variety of collective bands with different structures. The even parity yrast cascades alone are seen to involve multiple collective structures. In addition to the ground-state bands, strong evidence is presented for both neutron and proton rotation-aligned bands built on the same orbital, (g 9 / 2 ) 2 , in one nucleus. Several other nuclei also show the crossing of RAL bands around the 8 + level in this region. Evidence continues to be strong experimentally and supported theoretically that there is some type of shape transition and shape coexistence occurring now both in the Ge and Se isotopes around N = 40. Negative parity bands with odd and even spins with very collective nature are seen in several nuclei to high spin. These bands seem best understood in the RAL model. Very collective bands with ΔI = 1, extending from 2 + to 9 + are seen with no rotation-alignment. The purity of these bands and their persistence to such high spin establish them as an independent collective mode which is best described as a gamma-type vibration band in a deformed nucleus. In addition to all of the above bands, new bands are seen in 76 Kr and 74 Se. The nature of these bands is not presently known. 56 references

  15. Rotational-vibrational states of nonaxial deformable even-even nuclei

    International Nuclear Information System (INIS)

    Porodzinskii, Yu.V.; Sukhovitskii, E.Sh.

    1991-01-01

    The rotational-vibrational excitations of nonaxial even-even nuclei are studied on the basis of a Hamiltonian operator with five dynamical variables. Explicit forms of the wave functions and energies of the rotational-vibrational excitations of such nuclei are obtained. The experimental energies of excited positive-parity states of the 238 U nucleus and those calculated in terms of the model discussed in the article are compared

  16. Study of Triaxial deformation variable γ in even - even nuclei

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Sharma, Aparna; Varshney, A.K.; Singh, M.; Gupta, D.K.; Varshney, Mani; Dhiman, S.K.

    2011-01-01

    The deformation parameters β and γ of the collective model are basic description of the nuclear equilibrium shape and structure, while values for these variables have been discussed for many nuclei. A systematic study in mass region A = 120-140 and A = 150 -180 can never be less revealing, such study has been presented, in A = 90 -120 for Mo, Ru and Pd nuclei where β and γ both vary strongly

  17. Isotopic shift in even-even barium isotopes

    International Nuclear Information System (INIS)

    Karim, Afaque; Naz, Tabassum; Ahmad, Shakeb

    2017-01-01

    We have discussed the correlation between a nuclear shape and its matter distribution. Here, we present the root-mean-square radii (r rms ) and rms charge radius (r ch ). We have also discussed the isotopic shift in terms of the observable ‹Δr 2 c › N,82 and its differential ‹Δr 2 c › N-2,N . We present nuclear radii evaluated using different interactions. Neutron radii and charge radii for all the isotopic chains are shown. Neutron radii for Ba isotopes show an increasing trend with the neutron number for all isotopic chains. One can observe a clear kink about magic number N=82

  18. A united phenomenological description of quadrupole excitations in even-even nuclei

    International Nuclear Information System (INIS)

    Lipas, P.O.; Haapakoski, P.; Honkaranta, T.

    1975-05-01

    A phenomenological model is developed for the collective quadrupole properties of all even-even nuclei. Rotational, vibrational, and transitional nuclei are included in the model on an equal footing. A Bohr-type intrinsic Hamiltonian for harmonic quadrupole vibrations about an axially deformed shape is solved exactly. States of good angular momentum are projected out of the intrinsic states, and they are made orthogonal by a Schmidt scheme. The angular-momentum and phonon-number composition of the states is analyzed at various stages; states with K=1 are found spurious. Excitation energies for the ground, β and γ bands are calculated as expectation values of a radically simplified nuclear Hamiltonian in our projected and orthogonalized states. With increasing deformation the calculated energies evolve smoothly from the evenly spaced phonon spectrum to the Bohr-Mottelson rotational-vibrational spectrum according to the scheme of Sheline and Sakai. The basic model contains only two parameters (deformation d and energy scale) to fix the entire quadrupole spectrum of a nucleus. The results are given in the form of graphs suitable for immediate application; numerical results are readily produced by our computer code. The ground bands are fitted comparably to the VMI model, while the β and γ bands are reproduced qualitatively. The nuclei 152 Sm, 152 Gd, and 114 Cd are used as test cases. Quadrupole moments and E2 transition rates are also calculated. Intra-ground-band transition ratios and branching ratios from the β and γ bands are given in terms of the single parameter d. The results are applied to 152 Sm, with fair success. Finally the model to include two more parameters (anisotropy) is extended. The improvement over the basic model is modest in view of added parameters and computational effort. (author)

  19. Low-spin identical bands in neighboring odd-A and even-even nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare-earth nuclei indicates that a large number of seniority-one configurations (21% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority

  20. Low-spin identical bands in neighboring odd-A and even-even nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1993-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare-earth nuclei indicates that a large number of seniority-one configurations (21 % for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority. (orig.)

  1. Search for α + core states in even-even Cr isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.A. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo, Departamento de Mecanica, Sao Paulo, SP (Brazil); Miyake, H. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil)

    2017-07-15

    The α + core structure is investigated in even-even Cr isotopes from the viewpoint of the local potential model. The comparison of Q{sub α}/A values for even-even Cr isotopes and even-even A = 46, 54, 56, 58 isobars indicates that {sup 46}Cr and {sup 54}Cr are the most favorable even-even Cr isotopes for the α + core configuration. The ground state bands of the two Cr isotopes are calculated through a local α + core potential containing a nuclear term with (1 + Gaussian) x (W.S. + W.S.{sup 3}) shape. The calculated spectra give a very good description of most experimental {sup 46}Cr and {sup 54}Cr levels, including the 0{sup +} bandheads. The reduced α-widths, rms intercluster separations and B(E2) transition rates are determined for the ground state bands. The calculations reproduce the order of magnitude of the available experimental B(E2) values without using effective charges, indicate that the low-spin members of the ground state bands present a stronger α-cluster character, and point out that the {sup 46}Cr ground state band has a significant degree of α-clustering in comparison with {sup 44}Ti. The volume integral per nucleon pair and rms radius obtained for the α + {sup 50}Ti potential are consistent with those reported previously in the analysis of α elastic scattering on {sup 50}Ti. (orig.)

  2. Validity of single term energy expression for ground state rotational band of even-even nuclei

    International Nuclear Information System (INIS)

    Sharma, S.; Kumar, R.; Gupta, J.B.

    2005-01-01

    Full text: There are large numbers of empirical studies of gs band of even-even nuclei in various mass regions. The Bohr-Mottelson's energy expression is E(I) = AX + BX 2 +CX 3 +... where X = I(I+1). The anharmonic vibrator energy expression is: E(I) = al + bl 2 + cl 3 SF model with energy expression: E(I)= pX + qI + rXI... where the terms represents the rotational, vibrational and R-V interaction energy, respectively. The validity f the various energy expressions with two terms had been tested by Sharma for light, medium and heavy mass regions using R I s. R 4 plots (where, spin I=6, 8, 10, 12), which are parameter independent. It was also noted, that of the goodness of energy expression can be judged with the minimum input of energies (i.e. only 2 parameters) and predictability's of the model p to high spins. Recently, Gupta et. al proposed a single term energy expression (SSTE) which was applied for rare earth region. This proposed power law reflected the unity of rotation - vibration in a different way and was successful in explaining the structure of gs-band. It will be useful for test the single term energy expression for light and heavy mass region. The single term expression for energy of ground state band can be written as: E I =axI b , where the index b and the coefficient a are the constant for the band. The values of b+1 and a 1 are as follows: b 1 =log(R 1 )/log(I/2) and a 1 =E I /I b ... The following results were gained: 1) The sharp variation in the value of index b at given spin will be an indication of the change in the shape of the nucleus; 2) The value of E I /I b is fairly constant with spin below back-bending, which reflects the stability of shape with spin; 3) This proposed power law is successful in explaining the structure of gs-band of nuclei

  3. Spin-dependent γ softness or triaxiality in even-even 132-138Nd nuclei

    Science.gov (United States)

    Chai, Qing-Zhen; Wang, Hua-Lei; Yang, Qiong; Liu, Min-Liang

    2015-02-01

    The properties of γ instability in rapidly rotating even-even 132-138Nd isotopes have been investigated using the pairing-deformation self-consistent total-Routhian-surface calculations in a deformation space of (β2, γ, β4). It is found that even-even 134-138Nd nuclei exhibit triaxiality in both ground and excited states, even up to high-spin states. The lightest isotope possesses a well-deformed prolate shape without a γ deformation component. The current numerical results are compared with previous calculations and available observables such as quadrupole deformation β2 and the feature of γ-band levels, showing basically a general agreement with the observed trend of γ correlations (e.g. the pattern of the odd-even energy staggering of the γ band). The existing differences between theory and experiment are analyzed and discussed briefly. Supported by National Natural Science Foundation of China (10805040,11175217), Foundation and Advanced Technology Research Program of Henan Province(132300410125) and S & T Research Key Program of Henan Province Education Department (13A140667)

  4. Low-lying collective quadrupole and octupole strengths in even-even nuclei

    International Nuclear Information System (INIS)

    Raman, S.; Nestor, C.W. Jr.; Kahane, S.; Bhatt, K.H.

    1991-01-01

    The B(E2)↑ values for the first 2 + state of even-even nuclei in the Z≥50 region are compared with the predictions of several theoretical models. Comparative estimates of the overall agreement with the data are provided. Gaps and discrepancies in the data and examples that show interesting features such as shape changes are discussed. The B(E2)↑ values are examined critically to search for the dynamical Pauli effects predicted by the fermion dynamic symmetry model. The empirical B(E2)↑ and B(E3)↑ systematics are employed to obtain a measure of the harmonicity of the quadrupole and octupole vibrations. The fraction of the energy-weighted sum-rule strength exhausted by the sum of all known low-lying 2 + states below 2.3 MeV is found to be surprisingly constant in the 60< A<250 region except near closed shells

  5. Predicting the optical observables for nucleon scattering on even-even actinides

    Science.gov (United States)

    Martyanov, D. S.; Soukhovitskiĩ, E. Sh.; Capote, R.; Quesada, J. M.; Chiba, S.

    2017-09-01

    The previously derived Lane consistent dispersive coupled-channel optical model for nucleon scattering on 232Th and 238U nuclei is extended to describe scattering on even-even actinides with Z = 90-98. A soft-rotator-model (SRM) description of the low-lying nuclear structure is used, where the SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate the coupling matrix elements of the generalized optical model. The “effective” deformations that define inter-band couplings are derived from the SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a dynamic monopolar term to the deformed potential, leading to additional couplings between rotational bands. The fitted static deformation parameters are in very good agreement with those derived by Wang and collaborators using the Weizsäcker-Skyrme global mass model (WS4), allowing use of the latter to predict cross sections for nuclei without experimental data. A good description of the scarce “optical” experimental database is achieved. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus formation cross sections, which is significantly different from that calculated with rigid-rotor potentials coupling the ground-state rotational band. The derived parameters can be used to describe both neutron- and proton-induced reactions. Supported by International Atomic Energy Agency, through the IAEA Research Contract 19263, by the Spanish Ministry of Economy and Competitivity under Contracts FPA2014-53290-C2-2-P and FPA2016-77689-C2-1-R.

  6. Isotopic yield in cold binary fission of even-even 230-244U isotopes

    International Nuclear Information System (INIS)

    Cyriac, Annu; Krishnan, Sreejith; Santhosh, K.P.

    2017-01-01

    The binary fission of even-even 230-244 U isotopes has been studied using the concept of cold reaction valley which was introduced in relation to the structure of minima in the so called driving potential

  7. Systematic study of even-even nuclei with Hartree-Fock+BCS method using Skyrme SIII force

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Naoki; Takahara, Satoshi; Onishi, Naoki [Tokyo Univ. (Japan). Coll. of Arts and Sciences

    1997-03-01

    We have applied the Hartree-Fock+BCS method with Skyrme SIII force formulated in a three-dimensional Cartesian-mesh representation to even-even nuclei with 2 {<=} Z {<=} 114. We discuss the results concerning the atomic masses, the quadrupole (m=0, 2) and hexadecapole (m=0, 2, 4) deformations, the skin thicknesses, and the halo radii. We also discuss the energy difference between oblate and prolate solutions and the shape difference between protons and neutrons. (author)

  8. Present state and prospect of systematics for the properties of even-even nuclei

    International Nuclear Information System (INIS)

    Zhao Yumin; Gu Jinnan

    1993-01-01

    The study of systematics for the properties of even-even nuclei, which is a new research field in nuclei structure, is reviewed. The primary results, including systematic analysis of energy spectra and electromagnetic transition, and the empirical law extracted from experimental data, are presented. It is expected that there will be new developments in the next few years in this fields

  9. Quartetting in even-even and odd-odd N=Z nuclei

    Science.gov (United States)

    Sambataro, M.; Sandulescu, N.

    2018-02-01

    We report on a microscopic description of even-even N = Z nuclei in a formalism of quartets. Quartets are four-body correlated structures characterized by isospin T and angular momentum J. We show that the ground state correlations induced by a realistic shell model interaction can be well accounted for in terms of a restricted set of T = 0 low-J quartets, the J = 0 one playing by far a leading role among them. A conceptually similar description of odd-odd self-conjugate nuclei is given in terms of two distinct families of building blocks, one formed by the same T = 0 quartets employed for the even-even systems and the other by collective pairs with either T = 0 or T = 1. Some applications of this formalism are discussed for nuclei in the sd shell.

  10. Microscopic description of average level spacing in even-even nuclei

    International Nuclear Information System (INIS)

    Huong, Le Thi Quynh; Hung, Nguyen Quang; Phuc, Le Tan

    2017-01-01

    A microscopic theoretical approach to the average level spacing at the neutron binding energy in even-even nuclei is proposed. The approach is derived based on the Bardeen-Cooper-Schrieffer (BCS) theory at finite temperature and projection M of the total angular momentum J , which is often used to describe the superfluid properties of hot rotating nuclei. The exact relation of the J -dependent total level density to the M -dependent state densities, based on which the average level spacing is calculated, was employed. The numerical calculations carried out for several even-even nuclei have shown that in order to reproduce the experimental average level spacing, the M -dependent pairing gaps as well as the exact relation of the J -dependent total level density formula should be simultaneously used. (paper)

  11. Multiphonon states in even-even spherical nuclei. Pt.1. Calculation of the overlap matrix

    International Nuclear Information System (INIS)

    Piepenbring, R.; Protasov, K.V.; Silvestre-Brac, B.

    1995-01-01

    The multiphonon method, previously developed for deformed nuclei is extended to the case of even-even spherical nuclei. Recursion formulae, well suited for numerical calculations are given for the overlap matrix elements. The method is illustrated for a single j-shell, where S-, D-, G-, .. phonons are introduced. In such an approach, the Pauli principle is fully and properly taken into account. ((orig.))

  12. Global set of quadrupole deformation parameters for even-even nuclei

    International Nuclear Information System (INIS)

    Raman, S.; Nestor, C.W. Jr.

    1986-01-01

    A compilation of experimental results has been completed for the reduced electric quadrupole transition probability [B(E2)up arrow] between the 0 + ground state and the first 2 + state in even-even nuclei. This compilation together with certain simple relationships noted by other authors can be used to make reasonable predictions of unmeasured B(E2)up arrow values. The quadrupole deformation parameter β 2 immediately follows, because β 2 is proportional to [B(E2)up arrow]/sup 1/2/. 8 refs., 7 figs

  13. Damping of isovector giant dipole resonances in hot even-even spherical nuclei

    International Nuclear Information System (INIS)

    Dang, N.D.

    1989-01-01

    An approach based on the finite temperature quasiparticle phonon nuclear model (FT-QPNM) with the couplings to (2p2h) states at finite temperature taken into account is suggested for calculations of the damping of giant multipole resonances in hot even-even spherical nuclei. The strength functions for the isovector giant dipole resonance (IV-GDR) are calculated in 58 Ni and 90 Zr for a range of temperatures up to 3 MeV. The results show that the contribution of the interactions with (2p2h) configurations to the IV-GDR spreading width changes weakly with varying temperature. The IV-GDR centroid energy decreases slightly with increasing temperature. The nonvanishing superfluid pairing gap due to thermal fluctuations is included. (orig.)

  14. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2001-01-01

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of 20,22 Ne, 24 Mg and 28 Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed

  15. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, C.E. E-mail: cvargas@fis.cinvestav.mx; Hirsch, J.G. E-mail: hirsch@nuclecu.unam.mx; Draayer, J.P. E-mail: draayer@lsu.edu

    2001-07-30

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of {sup 20,22}Ne, {sup 24}Mg and {sup 28}Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed.

  16. Comparison of the Porter-Thomas distribution with neutron resonance data of even-even nuclei

    International Nuclear Information System (INIS)

    Camarda, H.S.

    1994-01-01

    The low-energy neutron resonance data of the even-even nuclei 152 Sm, 158 Gd, 162 Dy, 166,168 Er, 182 W, 232 Th, and 236,238 U have been examined in order to test the validity of the Porter-Thomas distribution of the reduced neutron widths---a chi-squared distribution with one degree of freedom (v=1). In an attempt to circumvent the ever-present problems of missed or spurious s wave levels as well as extra p wave levels, a maximum likelihood statistic was employed which used only measured widths greater than some minimum value. A Bayes-theory test applied to the data helped to ensure that p wave contamination of the s wave level population was not significant. The error-weighted value of the number of degrees of freedom for the nine nuclei studied, left-angle v right-angle=0.98±0.10, is consistent with the theoretical expectation of v=1

  17. Systematics of B(E2;01+→21+) values for even-even nuclei

    International Nuclear Information System (INIS)

    Raman, S.; Nestor, C.W. Jr.; Bhatt, K.H.

    1988-01-01

    We have completed a compilation of experimental results for the electric quadrupole transition probability B(E2)up-arrow between the 0 + ground state and the first 2 + state in even-even nuclei. The adopted B(E2)up-arrow values have been employed to test the various systematic, empirical, and theoretical relationships proposed by several authors (Grodzins, Bohr and Mottelson, Wang et al., Ross and Bhaduri, Patnaik et al., Hamamoto, Casten, Moeller and Nix, and Kumar) on a global, local, or regional basis. These systematics offer methods for making reasonable predictions of unmeasured B(E2) values. For nuclei away from closed shells, the SU(3) limit of the intermediate boson approximation implies that the B(E2)up-arrow values are proportional to (e/sub p/N/sub p/+e/sub n/N/sub n/) 2 , where e/sub p /(e/sub n/) is the proton (neutron) effective charge and N/sub p/ (N/sub n/) refers to the number of valence protons (neutrons). This proportionality is consistent with the observed behavior of B(E2)up-arrow vs N/sub p/N/sub n/. For deformed nuclei and the actinides, the B(E2)up-arrow values calculated in a schematic single-particle ''SU(3)'' simulation or large single-j simulation of major shells successfully reproduce not only the empirical variation of the B(E2)up-arrow values but also the observed saturation of these values when plotted against N/sub p/N/sub n/. .AE

  18. Coexistence in even-even nuclei with emphasis on the germanium isotopes

    International Nuclear Information System (INIS)

    Carchidi, M.A.V.

    1985-01-01

    No simple model to date can explain in a self-consistent way the results of direct transfer data and BE2 electromagnetic rates in the germanium isotopes. The simplest models use a two-state interaction for describing the ground state and first excited O + state. In all cases, these models can account for some of the data, but they are in drastic conflict with other experimental measurements. In this thesis, it is shown that a two-state model can consistently account for two-neutron and alpha transfer O + 2 /g.s. cross-section ratio data in the germanium region (ie. zinc, germanium, and selenium), proton occupation number data in the ground states of the even stable zinc, germanium, and selenium isotopes, and BE2 transition rates in isotopes of germanium and zinc. In addition the author can account for most of the one-neutron and two-neutron transfer O + 2 /g.s. and (9/2 + 2 )/(9/2 + 1 ) cross-section ratio data in the odd-mass germanium isotopes. In this generalized two-state model (called Rerg1), the author makes as few assumptions as possible about the nature of the basis states; rather the author allows the experimental data to dictate the properties of the basis-state overlaps. In this sense, the author has learned much about the basis states and has a useful tool for constructing them. The author also shows that the Rerg1 model can quantitatively account for all two-neutron O + 2 /g.s. cross-section ratio data in all even-even nuclei from calcium to uranium

  19. Control of cell nucleus shapes via micropillar patterns.

    Science.gov (United States)

    Pan, Zhen; Yan, Ce; Peng, Rong; Zhao, Yingchun; He, Yao; Ding, Jiandong

    2012-02-01

    We herein report a material technique to control the shapes of cell nuclei by the design of the microtopography of substrates to which the cells adhere. Poly(D,L-lactide-co-glycolide) (PLGA) micropillars or micropits of a series of height or depth were fabricated, and some surprising self deformation of the nuclei of bone marrow stromal cells (BMSCs) was found in the case of micropillars with a sufficient height. Despite severe nucleus deformation, BMSCs kept the ability of proliferation and differentiation. We further demonstrated that the shapes of cell nuclei could be regulated by the appropriate micropillar patterns. Besides circular and elliptoid shapes, some unusual nucleus shapes of BMSCs have been achieved, such as square, cross, dumbbell, and asymmetric sphere-protrusion. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  20. Structure of Even-Even 218-230 Ra Isotopes within the Interacting Boson Approximation Model

    Directory of Open Access Journals (Sweden)

    Diab S. M.

    2008-01-01

    Full Text Available A good description of the excited positive and negative parity states of radium nuclei (Z=88, N=130-142 is achieved using the interacting boson approximation model (IBA-1. The potential energy surfaces, energy levels, parity shift, electromagnetic transition rates B(E1, B(E2 and electric monopole strength X(E0/E2 are calculated for each nucleus. The analysis of the eigenvalues of the model Hamiltonian reveals the presence of an interaction between the positive and negative parity bands. Due to this interaction the $Delta I = 1$ staggering effect, between the energies of the ground state band and the negative parity state band, is produced including beat patterns.

  1. Immobility, inheritance and plasticity of shape of the yeast nucleus

    Directory of Open Access Journals (Sweden)

    Andrulis Erik D

    2007-11-01

    Full Text Available Abstract Background Since S. cerevisiae undergoes closed mitosis, the nuclear envelope of the daughter nucleus is continuous with that of the maternal nucleus at anaphase. Nevertheless, several constitutents of the maternal nucleus are not present in the daughter nucleus. The present study aims to identify proteins which impact the shape of the yeast nucleus and to learn whether modifications of shape are passed on to the next mitotic generation. The Esc1p protein of S. cerevisiae localizes to the periphery of the nucleoplasm, can anchor chromatin, and has been implicated in targeted silencing both at telomeres and at HMR. Results Upon increased Esc1p expression, cell division continues and dramatic elaborations of the nuclear envelope extend into the cytoplasm. These "escapades" include nuclear pores and associate with the nucleolus, but exclude chromatin. Escapades are not inherited by daughter nuclei. This exclusion reflects their relative immobility, which we document in studies of prezygotes. Moreover, excess Esc1p affects the levels of multiple transcripts, not all of which originate at telomere-proximal loci. Unlike Esc1p and the colocalizing protein, Mlp1p, overexpression of selected proteins of the inner nuclear membrane is toxic. Conclusion Esc1p is the first non-membrane protein of the nuclear periphery which – like proteins of the nuclear lamina of higher eukaryotes – can modify the shape of the yeast nucleus. The elaborations of the nuclear envelope ("escapades" which appear upon induction of excess Esc1p are not inherited during mitotic growth. The lack of inheritance of such components could help sustain cell growth when parental nuclei have acquired potentially deleterious characteristics.

  2. Symmetries of Quadrupole-Collective Vibrational Motion in Transitional Even-Even 124−134Xenon Nuclei

    CERN Document Server

    Pietralla, N; Rainovski, G; Ahn, T; Bauer, C; Leske, J; Möller, O; Möller, T

    2010-01-01

    Projectile-Coulomb excitation of Xe isotopes has been performed at ANL using the Gammasphere array for the detection of γ-rays. The one-quadrupole phonon 2+ 1,ms mixed-symmetry state (MSS) has been traced in the stable N=80 isotones down to 134Xe. First, the data on absolute E2 andM1 transition rates quantify the amount of F-spin symmetry in these nuclei and provide a new local measure for the pn-QQ interaction. Second, the evolution of the 2+ 1,ms state has been studied along the sequence of stable even-even 124−134Xe isotopes that are considered to form a shape transition path from vibrational nuclei with vibrational U(5) symmetry near N=82 to γ-softly deformed shapes with almost O(6) symmetry. Third, our data on more than 50 absolute E2 transition rates between off-yrast low-spin states of 124,126Xe enable us to quantitatively test O(6) symmetry in these nuclei. As a result we find that O(6) symmetry is more strongly broken in the A=130 mass region than previously thought. The data will be discussed.

  3. Prediction of energies of yrast band in some even-even nuclei

    International Nuclear Information System (INIS)

    Varshney, A.K.; Singh, Yuvraj; Gupta, D.K.; Singh, M.; Gupta, K.K.; Bihari, Chhail; Dhiman, S.K.

    2012-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. The researchers found that the values of γ obtained from energies (= γ e ) are nearly equal to the value of γ derived from transition rate (= γ b ) in even Xe, Ba and Ce nuclei (A∼120-140) and Hf, W, Os, Pt and Hg nuclei (A∼160-200) using rigid triaxial rotor model of Davydov-Filippov. In the present study, the relatively light mass nuclei (Mo, Ru and Pd) have been taken. As far as γ is concerned, it is known that the Ru chains of nuclei is intermediate between the two having opposite trends for parameter γ, decreasing for Mo and increasing for Pd, and has an irregular behaviour in itself with the increase of neutron number

  4. Calculation of ground state deformation of even-even rare-earth nuclei in sdg interacting boson model

    International Nuclear Information System (INIS)

    Wang Baolin

    1995-01-01

    The analytical calculation of the nuclear ground state deformation of the even-even isotopes in the rare-earth region is given by utilizing the intrinsic states of the sdg interacting boson model. It is compared systematically with the reported theoretical and experimental results. It is shown that the sdg interacting boson model is a reasonable scheme for the description of even-even nuclei deformation

  5. Coexisting shape- and high-K isomers in the shape transitional nucleus {sup 188}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S., E-mail: somm@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Biswas, D.C. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Tandel, S.K. [UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098 (India); Danu, L.S.; Joshi, B.N.; Prajapati, G.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Nag, Somnath [Dept. of Physics, IIT Kharagpur, Kharagpur 721302 (India); Trivedi, T.; Saha, S.; Sethi, J.; Palit, R. [Dept. of Nuclear and Atomic Physics, TIFR, Mumbai 400005 (India); Joshi, P.K. [Homi Bhabha Centre for Science Education, TIFR, Mumbai 400088 (India)

    2014-12-12

    A high-spin study of the shape transitional nucleus {sup 188}Pt reveals the unusual coexistence of both shape- and K-isomeric states. Reduced B(E2) transition probabilities for decays from these states inferred from the data clearly establish their hindered character. In addition to other excited structures, a rotational band built upon the K isomer is identified, and its configuration has been assigned through an analysis of alignments and branching ratios. The shape evolution with spin in this nucleus has been inferred from both experimental observables and cranking calculations. The yrast positive parity structure appears to evolve from a near-prolate deformed shape through triaxial at intermediate excitation, and eventually to oblate at the highest spins.

  6. Coexisting shape- and high-K isomers in the shape transitional nucleus 188Pt

    Science.gov (United States)

    Mukhopadhyay, S.; Biswas, D. C.; Tandel, S. K.; Danu, L. S.; Joshi, B. N.; Prajapati, G. K.; Nag, Somnath; Trivedi, T.; Saha, S.; Sethi, J.; Palit, R.; Joshi, P. K.

    2014-12-01

    A high-spin study of the shape transitional nucleus 188Pt reveals the unusual coexistence of both shape- and K-isomeric states. Reduced B (E2) transition probabilities for decays from these states inferred from the data clearly establish their hindered character. In addition to other excited structures, a rotational band built upon the K isomer is identified, and its configuration has been assigned through an analysis of alignments and branching ratios. The shape evolution with spin in this nucleus has been inferred from both experimental observables and cranking calculations. The yrast positive parity structure appears to evolve from a near-prolate deformed shape through triaxial at intermediate excitation, and eventually to oblate at the highest spins.

  7. Volume regulation and shape bifurcation in the cell nucleus.

    Science.gov (United States)

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M; Wirtz, Denis; Sun, Sean X

    2015-09-15

    Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. © 2015. Published by The Company of Biologists Ltd.

  8. On the origin of shape fluctuations of the cell nucleus.

    Science.gov (United States)

    Chu, Fang-Yi; Haley, Shannon C; Zidovska, Alexandra

    2017-09-26

    The nuclear envelope (NE) presents a physical boundary between the cytoplasm and the nucleoplasm, sandwiched in between two highly active systems inside the cell: cytoskeleton and chromatin. NE defines the shape and size of the cell nucleus, which increases during the cell cycle, accommodating for chromosome decondensation followed by genome duplication. In this work, we study nuclear shape fluctuations at short time scales of seconds in human cells. Using spinning disk confocal microscopy, we observe fast fluctuations of the NE, visualized by fluorescently labeled lamin A, and of the chromatin globule surface (CGS) underneath the NE, visualized by fluorescently labeled histone H2B. Our findings reveal that fluctuation amplitudes of both CGS and NE monotonously decrease during the cell cycle, serving as a reliable cell cycle stage indicator. Remarkably, we find that, while CGS and NE typically fluctuate in phase, they do exhibit localized regions of out-of-phase motion, which lead to separation of NE and CGS. To explore the mechanism behind these shape fluctuations, we use biochemical perturbations. We find the shape fluctuations of CGS and NE to be both thermally and actively driven, the latter caused by forces from chromatin and cytoskeleton. Such undulations might affect gene regulation as well as contribute to the anomalously high rates of nuclear transport by, e.g., stirring of molecules next to NE, or increasing flux of molecules through the nuclear pores.

  9. Adaptive local thresholding for robust nucleus segmentation utilizing shape priors

    Science.gov (United States)

    Wang, Xiuzhong; Srinivas, Chukka

    2016-03-01

    This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.

  10. Lifetime measurements in shape transition nucleus 188Pt

    Science.gov (United States)

    Rohilla, Aman; Gupta, C. K.; Singh, R. P.; Muralithar, S.; Chakraborty, S.; Sharma, H. P.; Kumar, A.; Govil, I. M.; Biswas, D. C.; Chamoli, S. K.

    2017-04-01

    Nuclear level lifetimes of high spin states in yrast and non-yrast bands of 188Pt nucleus have been measured using recoil distance plunger setup present at IUAC, Delhi. In the experiment nuclear states of interest were populated via 174Yb(18O,4 n)188Pt reaction at a beam energy of 79MeV provided by 15 UD Pelletron accelerator. The extracted B(E2\\downarrow) values show an initial rise up to 4+ state and then a nearly constant behavior with spin along yrast band, indicating change of nuclear structure in 188Pt at low spins. The good agreement between experimental and TPSM model B(E2\\downarrow) values up to 4^+ state suggests an increase in axial deformation of the nucleus. The average absolute β2 = 0.20 (3) obtained from measured B(E2\\downarrow) values matches well the values predicted by CHFB and IBM calculations for oblate ( β2 ˜ -0.19) and prolate (β2 ˜ 0.22) shapes. As the lifetime measurements do not yield the sign of β2, no definite conclusion can be drawn on the prolate or oblate collectivity of 188Pt on the basis of present measurements.

  11. Lifetime measurements in shape transition nucleus {sup 188}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Rohilla, Aman; Gupta, C.K.; Chamoli, S.K. [University of Delhi, Department of Physics and Astrophysics, New Delhi (India); Singh, R.P.; Muralithar, S. [Inter University Accelerator Centre, New Delhi (India); Chakraborty, S.; Sharma, H.P. [Banaras Hindu University, Department of Physics, Varanasi (India); Kumar, A.; Govil, I.M. [Panjab University, Department of Physics, Chandigarh (India); Biswas, D.C. [Bhabha Atomic Research Center, Nuclear Physics Division, Trombay, Mumbai (India)

    2017-04-15

    Nuclear level lifetimes of high spin states in yrast and non-yrast bands of {sup 188}Pt nucleus have been measured using recoil distance plunger setup present at IUAC, Delhi. In the experiment nuclear states of interest were populated via {sup 174}Yb({sup 18}O,4n){sup 188}Pt reaction at a beam energy of 79MeV provided by 15 UD Pelletron accelerator. The extracted B(E2 ↓) values show an initial rise up to 4{sup +} state and then a nearly constant behavior with spin along yrast band, indicating change of nuclear structure in {sup 188}Pt at low spins. The good agreement between experimental and TPSM model B(E2 ↓) values up to 4{sup +} state suggests an increase in axial deformation of the nucleus. The average absolute β{sub 2} = 0.20 (3) obtained from measured B(E2 ↓) values matches well the values predicted by CHFB and IBM calculations for oblate (β{sub 2} ∝ -0.19) and prolate (β{sub 2} ∝ 0.22) shapes. As the lifetime measurements do not yield the sign of β{sub 2}, no definite conclusion can be drawn on the prolate or oblate collectivity of {sup 188}Pt on the basis of present measurements. (orig.)

  12. The neutron-proton pairing and the moments of inertia of the rare earth even-even nuclei

    International Nuclear Information System (INIS)

    Calik, A. E.; Deniz, C.; Gerceklioglu, M.

    2009-01-01

    In this study, the possible effect of the neutron-proton pairing interaction in the heavy nuclei has been investigated in the framework of the BCS model by making a simple approximation. This effect has been searched realistically by calculating the moments of inertia of deformed even-even nuclei. Calculations show that the moments of inertia of rare earth nuclei changed dramatically and approached the experimental values.

  13. Pushing the pseudo-SU(3) model towards its limits: Excited bands in even-even Dy isotopes

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Hirsch, Jorge G.

    2004-01-01

    The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands. A realistic Hamiltonian is employed. Both the success of model and its limitations are discussed

  14. A comparative analysis of alpha-decay half-lives for even-even 178Pb to 234U isotopes

    Science.gov (United States)

    Hosseini, S. S.; Hassanabadi, H.; Zarrinkamar, S.

    2018-02-01

    The feasibility for the alpha decay from the even-even transitions of 178Pb to 234U isotopes has been studied within the Coulomb and proximity potential model (CPPM). The alpha decay half-lives are considered from different theoretical approaches using Semi-empirical formula of Poenaru et al. (SemFIS), the Universal Decay law (UDL) of Qi et al., Akrawy-Dorin formula of Akrawy and Poenaru (ADF), the Scaling law of Brown (SLB) and the Scaling Law of Horoi et al. (SLH). The numerical results obtained by the CPPM and compared with other method as well the experimental data.

  15. A systematic fast-timing study of even-even nuclei in the well deformed A 170-180 region

    Energy Technology Data Exchange (ETDEWEB)

    Jolie, J.; Regis, J.M.; Dannhoff, M.; Gerst, R.B.; Karayonchev, V.; Mueller-Gatermann, C.; Saed-Samii, N.; Stegemann, S.; Blazhev, A. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Rudigier, M. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Department of Physics, University of Surrey (United Kingdom)

    2016-07-01

    At the Cologne Tandem accelerator we are performing a systematic study of lifetimes in the ground state bands of well deformed even-even nuclei in order to increase the precision of the ns-ps lifetimes and to solve inconsistencies in the literature. The measurements are done using Orange spectrometers, LaBr{sub 3}(Ce) scintillators and Ge detectors. The data are analyzed using the slope and the generalized centroid difference method. The latter allows the measurement of lifetimes down to 5 ps. First results on Yb, Hf and W isotopes are presented.

  16. E2,M1 multipole mixing ratios in even-even nuclei, 58< or =A< or =150

    International Nuclear Information System (INIS)

    Krane, K.S.

    1977-01-01

    A survey is presented of E2,M1 multipole mixing ratios of gamma-ray transitions in even-even nuclei in the mass range 58< or =A< or =150. Angular distribution and correlation data from the literature are analyzed in terms of a consistent choice of the phase relationship between the E2 and M1 matrix elements. A set of recommended values of the mixing ratios is included based on averages of results from various studies. The survey includes data available in the literature up to December 1976

  17. E2,M1 multipole mixing ratios in even--even nuclei, A greater than or equal to 152

    International Nuclear Information System (INIS)

    Krane, K.S.

    1975-01-01

    A survey is presented of E2,M1 mixing ratios of gamma-ray transitions in even-even nuclei with mass numbers A greater than or equal to 152. Angular distribution and correlation data from the literature are analyzed in terms of a consistent choice of the phase relationship between the E2 and M1 matrix elements. The cutoff date for the literature was June 1975. Based on an average of the experimental results from the literature, a recommended value of the E2,M1 mixing ratio for each transition is included

  18. Two quasi-particle excitations with particle-hole core polarization in even-even single closed shell nuclei

    International Nuclear Information System (INIS)

    Gillet, V.; Giraud, B.; Rho, M.

    1976-01-01

    The energy levels and transition properties of the even-even N=28, 50 isotones and Z=28, 50, 82 isotopes are calculated in the framework of the Tamm-Dancoff and Random Phase Approximation, with an effective central interaction in an extended space consisting of two quasi-particle configurations for the open shell and particle-hole configurations for the closed core. Using the results of the Inverse Gap Equation Method, practically all the necessary input data (single quasi-particle energies, force strength) are extracted from the odd-mass nuclei. The ratios of the force components are kept at fixed values for all studied nuclei and no effective charge is used. An overall excellent agreement is obtained for the energies of the vibrational states. On the other hand, while the transition properties of the 3 - states are always well reproduced, those of the 2 + and 4 + states are often too small by about one order of magnitude [fr

  19. A systematic study of even-even nuclei up to the drip lines within the relativistic mean field framework

    International Nuclear Information System (INIS)

    Hirata, D.; Sumiyoshi, K.; Tanihata, I.; Sugahara, Y.; Tachibana, T.; Toki, H.

    1997-01-01

    We apply the relativistic mean field theory to study the ground state properties of about 2000 even-even nuclei from Z=8 to Z=120 up to the proton and neutron drip lines. The calculations have been done under the axial symmetry assumption and a quadratic constraint method in order to obtain all possible ground state configurations. We do not take into account the pairing correlation in the present study. The calculations are performed with the TMA parameter set. We explore the generaI trend of masses, radii and deformations in the whole region of the nuclear chart. Using the masses obtained from RMF theory, we calculate the r-process abundances and the r-process path. (orig.)

  20. Characteristic 7- and 5- states observed in the (p,t) reactions on even-even rare earth nuclei

    International Nuclear Information System (INIS)

    Ishizaki, Y.; Kubono, S.; Iwasaki, Y.

    1984-01-01

    The (p,t) reactions have been studied for the even-even rare earth nuclei with 40 MeV proton beam from the INS SF cyclotron. A pair of 7 - and 5 - states was observed with large cross sections in each of the nuclei with the neutron number (N) ranging from 86 to 100. For sup(140,142)Nd of N = 80 and 82 the data were obtained at KVI in Groningen, and the data for 152 Sm of N = 90 at MSU. Q value systematics of (p,t) reactions to these states seem to suggest that these are excited by the two neutron pick-up from the neutron core of N = 82. The (p,t) cross sections leading to these states of N from 82 to 96 are nearly constant. (author)

  1. The B(E2;4^+1->2^+1) / B(E2;2^+1->0^+1) Ratio in Even-Even Nuclei

    Science.gov (United States)

    Loelius, C.; Sharon, Y. Y.; Zamick, L.; G"Urdal, G.

    2009-10-01

    We considered 207 even-even nuclei throughout the chart of nuclides for which the NNDC Tables had data on the energies and lifetimes of the 2^+1 and 4^+1 states. Using these data we calculated for each nucleus the electric quadrupole transition strengths B(E2;4^+1->2^+1) and B(E2;2^+1->0^+1), as well as their ratio. The internal conversion coefficients were obtained by using the NNDC HSICC calculator. For each nucleus we plotted the B(E2) ratio against A, N, and Z. We found that for close to 90% of the nuclei considered the ratio had values between 0.5 and 2.5. Most of the outliers had magic numbers of protons or neutrons. Our ratio results were compared with the theoretical predictions for this ratio by different models--10/7 in the rotational model and 2 in the simplest vibrational model. In the rotational regions (for 150 220) the ratios were indeed close to 10/7. For the few nuclei thought to be vibrational the ratios were usually less than 2. Otherwise, we got a wide scatter of ratio values. Hence other models, including the NpNn scheme, must be considered in interpreting these results.

  2. A systematic study of even-even nuclei in the nuclear chart by the relativistic mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, K.; Hirata, D.; Tanihata, I.; Sugahara, Y.; Toki, H. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    We study systematically the properties of nuclei in the whole mass range up to the drip lines by the relativistic mean field (RMF) theory with deformations as a microscopic framework to provide the data of nuclear structure in the nuclear chart. The RMF theory is a phenomenological many-body framework, in which the self-consistent equations for nucleons and mesons are solved with arbitrary deformation, and has a potential ability to provide all the essential information of nuclear structure such as masses, radii and deformations together with single particle states and wave functions from the effective lagrangian containing nuclear interaction. As a first step toward the whole project, we study the ground state properties of even-even nuclei ranging from Z=8 to Z=120 up to the proton and neutron drip lines in the RMF theory. We adopt the parameter set TMA, which has been determined by the experimental masses and charge radii in a wide mass range, for the effective lagrangian of the RMF theory. We take into account the axially symmetric deformation using the constrained method on the quadrupole moment. We provide the properties of all even-even nuclei with all the possible ground state deformations extracted from the deformation energy curves by the constrained calculations. By studying the calculated ground state properties systematically, we aim to explore the general trend of masses, radii and deformations in the whole region of the nuclear chart. We discuss the agreement with experimental data and the predictions such as magicness and triaxial deformations beyond the experimental frontier. (author)

  3. High-spin states in 214Rn, 216Ra and a study of even-even N = 128 systematics

    International Nuclear Information System (INIS)

    Loennroth, T.; Horn, D.; Baktash, C.; Lister, C.J.; Young, G.R.

    1983-01-01

    High-spin states in 214 Rn and 216 Ra have been studied by means of the reaction 208 Pb( 13 C, α 3n #betta#) 214 Rn and 208 Pb( 13 C, 5n #betta#) 216 Ra at beam energies in the range 75--95 MeV. In-beam spectroscopy techniques, including #betta#-decay excitation functions, α-#betta# coincidences, #betta#-#betta# coincidences, #betta#-ray angular distributions, and pulsed-beam-#betta# timing, were utilized to establish level energies, #betta#-ray multipolarities, J/sup π/ assignments, and isomeric lifetimes. Excited states with spins up to 23h in 214 Rn and roughly-equal30h in 216 Ra were observed. Isomers were found in 214 Rn at 1625 keV (T/sub 1/2/ = 9 ns, J/sup π/ = 8 + ), 1787 keV (22 ns, 10 + ), 3485 keV (95 ns, 16), 4509 keV (230 ns, 20), and 4738 keV (8 ns, 22), and in 216 Ra at 1708 keV (8 ns, 8 + ) and 5868 keV (10 ns, approx.24). B(EL) values were deduced and compared to previously known lead-region electric transition rates. Shell-model calculations were performed and used to make configurational assignments. The absence of major α-decay branching in the isomers is explained and the systematic behavior of N = 128 even-even nuclei is discussed

  4. High-spin states in 214Rn, 216Ra and a study of even-even N = 128 systematics

    International Nuclear Information System (INIS)

    Loennroth, T.; Horn, D.; Baktash, C.; Lister, C.J.; Young, G.R.

    1981-09-01

    High-spin states in 214 Rn and 216 Ra have been studied by means of the reaction 208 Pb( 13 C,α3nγ) 214 Rn and 208 Pb( 13 C,5nγ) 216 Ra at beam energies in the range 75-95 MeV. In-beam spectroscopy techniques, including γ-decay excitation functions, α-γ coincidences, γ-γ coincidences, γ-ray angular distributions and pulsed-beam-γ timing, were utilized to establish level energies, γ-ray multipolarities, JHπ assignments and isomeric lifetimes. Excited states with spins up to 23 h/2π in 214 Rn and 30 h/2π in 216 Ra were established. Isomers are found in 214 Rn at 1625 keV (9 ns, 8 + ), 1787 keV (22 ns, 10 + ), 3485 keV (95 ns, 16 + ), 4509 keV (230 ns, 20 + ) and 4735 keV (8.0 ns, 22 + ) and in 216 Ra at 1710 keV (8 ns, 8 + ) and 5868 keV (10 ns, 24 - ). B(EL) values are derived and compared to previously known lead-region electric transition rates. Shell-model calculations are performed on the basis of which configuration assignment is made. The absence of α-decay branching in the isomers is explained. The systematical behaviour of N = 128 even-even nuclei is discussed. Effective moments of inertia are derived. (author)

  5. Consistent evaluations of (n,2n) and (n,np) reaction excitation functions for some even-even isotopes using empirical systematics

    Energy Technology Data Exchange (ETDEWEB)

    Manokhin, Vassily N. [Russian Nuclear Data Center, Institute of Physics and Power Engineering, Obninsk (Russian Federation); Odano, Naoteru; Hasegawa, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    An approach for consistent evaluation of (n,2n) and (n,np) reaction excitation functions for some even-even isotopes with the (n,np) reaction thresholds lower than (n,2n) reaction ones is described. For determination of cross sections in the maximum of the (n,2n) and (n,np) reaction excitation functions some empirical systematics developed by Manokhin were used together with trends in dependence of gaps between the (n,2n) and (n,np) thresholds on atomic mass number A. The shapes of the (n,2n) and (n,np) reaction excitation functions were calculated using the normalized functions from the Manokhin's systematics. Excitation functions of (n,2n) and (n,np) reactions were evaluated for several nuclei by using the systematics and it was found that the approach used for the present study gives reasonable results. (author)

  6. High-spin states in 214Rn, 216Ra and a study of even-even N=128 systematics

    Science.gov (United States)

    Lönnroth, T.; Horn, D.; Baktash, C.; Lister, C. J.; Young, G. R.

    1983-01-01

    High-spin states in 214Rn and 216Ra have been studied by means of the reaction 208Pb(13C, α 3n γ)214Rn and 208Pb(13C, 5n γ)216Ra at beam energies in the range 75-95 MeV. In-beam spectroscopy techniques, including γ-decay excitation functions, α-γ coincidences, γ-γ coincidences, γ-ray angular distributions, and pulsed-beam-γ timing, were utilized to establish level energies, γ-ray multipolarities, Jπ assignments, and isomeric lifetimes. Excited states with spins up to 23ℏ in 214Rn and ~30ℏ in 216Ra were observed. Isomers were found in 214Rn at 1625 keV (T12=9 ns, Jπ=8+), 1787 keV (22 ns, 10+), 3485 keV (95 ns, 16), 4509 keV (230 ns, 20), and 4738 keV (8 ns, 22), and in 216Ra at 1708 keV (8 ns, 8+) and 5868 keV (10 ns, ~24). B(EL) values were deduced and compared to previously known lead-region electric transition rates. Shell-model calculations were performed and used to make configurational assignments. The absence of major α-decay branching in the isomers is explained and the systematic behavior of N=128 even-even nuclei is discussed. NUCLEAR STRUCTURE 208Pb(13C, α 3n γ)214Rn, 208Pb(13C, 5n γ) 216Ra, Elab=75-95 MeV. Measured α-γ coin, γ-γ(t) coin, I(θ), pulsed-beam-γ timing. Deduced level schemes, Jπ, T12, B(EL), multipolarities. Shell model calculations, Ge(Li) and Si detectors, enriched target.

  7. Shape study of the N=Z waiting-point nucleus 72Kr via beta decay

    CERN Document Server

    Briz Monago, Jose Antonio; Nácher González, Enrique

    The Ph.D. thesis entitled “Shape study of the N=Z waiting-point nucleus 72Kr via beta decay” is devoted to the study of the shape of the ground state of the 72Kr nucleus. It is an N=Z nucleus in the mass region A~70-80 where shape transitions and the shape coexistence phenomena have been identified. Furthermore, this nucleus participates in the rp-process as a waiting point due to the slowdown of the process taking place at the arrival to this nucleus. The study of the properties of this nucleus is interesting from the Nuclear Structure point of view, for the phenomena occurring in its mass region and have been predicted for it, and from the Nuclear Astrophysics for the accurate performance of astrophysical calculations. The β+/EC decay of the 72Kr nucleus has been studied through two complementary experiments at the ISOLDE facility at CERN in Geneva (Switzerland). In one of them, the low-spin structure of the daughter nucleus, 72Br, has been revised via conversion electron spectroscopy where the convers...

  8. The salient features of charge density distributions of medium and heavy even-even nuclei determined from a systematic analysis of elastic electron scattering from factors

    International Nuclear Information System (INIS)

    Friedrich, J.; Voegler, N.

    1982-01-01

    All available information on charge distributions of even-even nuclei is analysed systematically. For medium and heavy nuclei five general features of p(r) are investigated: (i) The extension for which we discuss several different definitions. The measured extension together with experimental binding energies allows a determination of nuclear compressibility within the framework of the droplet model, the resulting value being K = 165 +- 10 MeV. (ii) The surface thickness. Here too, several definitions are discussed. A close relationship between the surface thickness and binding energies is demonstrated. (iii) The average slope in the inner part of the nucleus. A method is formulated to separate this slope from the oscillations observed. All nuclei show a positive slope of comparable size. (iv) The oscillations on p(r). They are related to an abrupt breakdown in the form factor around q = 2.25 fm -1 . This effect seems to be closely related to the fact that p(r) is built up out of single particles, details however being unimportant. (v) The high-q components of the form factor are indicative for a scattering mechanism involving pairs of nucleons. (orig.)

  9. Theoretical estimates of supernova-neutrino cross sections for the stable even-even lead isotopes: Charged-current reactions

    Science.gov (United States)

    Almosly, W.; Carlsson, B. G.; Suhonen, J.; Toivanen, J.; Ydrefors, E.

    2016-10-01

    A detailed study of the charged-current supernova electron neutrino and electron antineutrino scattering off the stable even-mass lead isotopes A =204 , 206, and 208 is reported in this work. The proton-neutron quasiparticle random-phase approximation (pnQRPA) is adopted to construct the nuclear final and initial states. Three different Skyrme interactions are tested for their isospin and spin-isospin properties and then applied to produce (anti)neutrino-nucleus scattering cross sections for (anti)neutrino energies below 80 MeV. Realistic estimates of the nuclear responses to supernova (anti)neutrinos are computed by folding the computed cross sections with a two-parameter Fermi-Dirac distribution of the electron (anti)neutrino energies. The computed cross sections are compared with earlier calculations and the analyses are extended to take into account the effects coming from the neutrino oscillations.

  10. Hydrodynamic model wavefunctions in intrinsic coordinates and their application to the structure of even-even nuclei

    International Nuclear Information System (INIS)

    Margetan, F.J.

    1979-01-01

    A closed expression is presented for intrinsic-coordinate (β, γ, theta/sub i/) eigenfunctions of the hydrodynamic, quadrupole-vibration Hamiltonian of A. Bohr. These functions are used as an expansion basis for the treatment of more general collective Hamiltonians. Two classes of such Hamiltonians are considered. In each the potential energy term of the Bohr Hamiltonian, 1/2 Cβ 2 , was replaced with a more general function of the shape coordinates, V(β, γ). The potential of Gneuss and Greiner (1) is used to demonstrate the soundness of the calculational techniques, and to illustrate convergence properties of calculated energies. Potentials possessing a single minimum on 0 less than or equal to γ less than or equal to 60 0 are considered through the study of a quadratic-potential [QP] Hamiltonian. The smooth development from spherical to asymmetrically deformed nuclear shapes is investigated by systematically varying the parameters β 0 and C/sub γ/. Model energies and E2 transition rates are traced during this process. The QP model is then applied to 106 Pd, 166 Er, 182 W, 122 Te, and 186 188 190 192 Os. Low-energy γ vibrations appear to play a prominent role in the latter five nuclei, and the QP model offers a better accounting of experimental spectra than does the model of Davydov and Chaban (2). 74 references

  11. Isospin degree of freedom in even-even 68-76Ge and 62-70Zn isotopes

    International Nuclear Information System (INIS)

    Jalili Majarshin, A.

    2018-01-01

    The introduction of isotopic spin is significant in light nuclei as Ge and Zn isotopes in order to take into account isospin effects on energy spectra. Dynamical symmetries in spherical, γ-soft limits and transition in the interacting boson model IBM-3 are analyzed. Analytic expressions and exact eigenenergies, electromagnetic transitions probabilities are obtained for the transition between spherical and γ-soft shapes by using the Bethe ansatz within an infinite-dimensional Lie algebra in light mass nuclei. The corresponding algebraic structure and reduction chain are studied in IBM-3. For examples, the nuclear structure of the 68-76 Ge and 62-70 Zn isotopes is calculated in IBM-3 and compared with experimental results. (orig.)

  12. Isospin degree of freedom in even-even 68-76Ge and 62-70Zn isotopes

    Science.gov (United States)

    Jalili Majarshin, A.

    2018-01-01

    The introduction of isotopic spin is significant in light nuclei as Ge and Zn isotopes in order to take into account isospin effects on energy spectra. Dynamical symmetries in spherical, γ-soft limits and transition in the interacting boson model IBM-3 are analyzed. Analytic expressions and exact eigenenergies, electromagnetic transitions probabilities are obtained for the transition between spherical and γ-soft shapes by using the Bethe ansatz within an infinite-dimensional Lie algebra in light mass nuclei. The corresponding algebraic structure and reduction chain are studied in IBM-3. For examples, the nuclear structure of the 68-76Ge and 62-70Zn isotopes is calculated in IBM-3 and compared with experimental results.

  13. Isospin degree of freedom in even-even {sup 68-76}Ge and {sup 62-70}Zn isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Jalili Majarshin, A. [University of Tabriz, Department of Physics, Tabriz (Iran, Islamic Republic of)

    2018-01-15

    The introduction of isotopic spin is significant in light nuclei as Ge and Zn isotopes in order to take into account isospin effects on energy spectra. Dynamical symmetries in spherical, γ-soft limits and transition in the interacting boson model IBM-3 are analyzed. Analytic expressions and exact eigenenergies, electromagnetic transitions probabilities are obtained for the transition between spherical and γ-soft shapes by using the Bethe ansatz within an infinite-dimensional Lie algebra in light mass nuclei. The corresponding algebraic structure and reduction chain are studied in IBM-3. For examples, the nuclear structure of the {sup 68-76}Ge and {sup 62-70}Zn isotopes is calculated in IBM-3 and compared with experimental results. (orig.)

  14. Calculation of multidimensional potential energy surfaces for even-even transuranium nuclei: systematic investigation of the triaxiality effect on the fission barrier

    Science.gov (United States)

    Chai, Qing-Zhen; Zhao, Wei-Juan; Liu, Min-Liang; Wang, Hua-Lei

    2018-05-01

    Static fission barriers for 95 even-even transuranium nuclei with charge number Z = 94–118 have been systematically investigated by means of pairing self-consistent Woods-Saxon-Strutinsky calculations using the potential energy surface approach in multidimensional (β 2, γ, β 4) deformation space. Taking the heavier 252Cf nucleus (with the available fission barrier from experiment) as an example, the formation of the fission barrier and the influence of macroscopic, shell and pairing correction energies on it are analyzed. The results of the present calculated β 2 values and barrier heights are compared with previous calculations and available experiments. The role of triaxiality in the region of the first saddle is discussed. It is found that the second fission barrier is also considerably affected by the triaxial deformation degree of freedom in some nuclei (e.g., the Z=112–118 isotopes). Based on the potential energy curves, general trends of the evolution of the fission barrier heights and widths as a function of the nucleon numbers are investigated. In addition, the effects of Woods-Saxon potential parameter modifications (e.g., the strength of the spin-orbit coupling and the nuclear surface diffuseness) on the fission barrier are briefly discussed. Supported by National Natural Science Foundation of China (11675148, 11505157), the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province (2017GGJS008), the Foundation and Advanced Technology Research Program of Henan Province (162300410222), the Outstanding Young Talent Research Fund of Zhengzhou University (1521317002) and the Physics Research and Development Program of Zhengzhou University (32410017)

  15. Particle-number fluctuations and neutron-proton pairing effects on proton and neutron radii of even-even N Almost-Equal-To Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Douici, M.; Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R. [Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria) and Institut des Sciences et Technologie, Centre Universitaire de Khemis Miliana, Route de Theniet-El-Had, 44225 Khemis-Milia (Algeria); Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria) and Centre de Recherche Nucleaire d' Alger, COMENA, BP399 Alger-Gare, Alger (Algeria); Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria)

    2012-10-20

    The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.

  16. The nucleus is irreversibly shaped by motion of cell boundaries in cancer and non-cancer cells.

    Science.gov (United States)

    Tocco, Vincent J; Li, Yuan; Christopher, Keith G; Matthews, James H; Aggarwal, Varun; Paschall, Lauren; Luesch, Hendrik; Licht, Jonathan D; Dickinson, Richard B; Lele, Tanmay P

    2018-02-01

    Actomyosin stress fibers impinge on the nucleus and can exert compressive forces on it. These compressive forces have been proposed to elongate nuclei in fibroblasts, and lead to abnormally shaped nuclei in cancer cells. In these models, the elongated or flattened nuclear shape is proposed to store elastic energy. However, we found that deformed shapes of nuclei are unchanged even after removal of the cell with micro-dissection, both for smooth, elongated nuclei in fibroblasts and abnormally shaped nuclei in breast cancer cells. The lack of shape relaxation implies that the nuclear shape in spread cells does not store any elastic energy, and the cellular stresses that deform the nucleus are dissipative, not static. During cell spreading, the deviation of the nucleus from a convex shape increased in MDA-MB-231 cancer cells, but decreased in MCF-10A cells. Tracking changes of nuclear and cellular shape on micropatterned substrata revealed that fibroblast nuclei deform only during deformations in cell shape and only in the direction of nearby moving cell boundaries. We propose that motion of cell boundaries exert a stress on the nucleus, which allows the nucleus to mimic cell shape. The lack of elastic energy in the nuclear shape suggests that nuclear shape changes in cells occur at constant surface area and volume. © 2017 Wiley Periodicals, Inc.

  17. Systematics of triaxial moment of inertia and deformation parameters (β, γ) in even-even nuclei of mass region A = 90-120

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, D.K.; Singh, M.; Gupta, K.K.; Bihari, Chhail; Varshney, A.K.; Dhiman, S.K.

    2012-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. In recent past the sets of deformation parameters ((β, γ) have been extracted from both level energies and E2 transition rates in even Xe, Ba and Ce nuclei (A∼120-140) and Hf, W, Os, Pt and Hg nuclei (A∼160-200) using rigid triaxial rotor model of Davydov-Filippov (DF). Researcher have found that the values of β obtained separately from energy and transition rate (β e and β b respectively), though, are found almost equal in heavy mass region (A ∼160-200) but, not so in medium mass (A∼120-140) nuclei. This observation puts a question mark whether the ββ dependence of moment of inertia in hydrodynamic model is reliable. The purpose of the present work is to study a relatively lighter mass region (A∼90-120) where the gap between values of two sets of β may further increase. To improve the calculations for extracting β e , the use of Grodzins rule will be made along with uncertainties, since only through this rule the E2 1 + is related with β G (value of β for symmetric nucleus and evaluated using Grodzins rule)

  18. Deformation properties of even-even Os, Pt, Hg nuclei and spectroscopic properties of odd Re, Os, Ir, Pt, Au, Hg nuclei from self-consistent calculations

    CERN Document Server

    Desthuilliers-Porquet, M G; Quentin, P; Sauvage-Letessier, J

    1981-01-01

    Static properties of even-even Os, Pt, Hg nuclei have been obtained from HF+BCS calculations. Single-particle wave functions which come from these self-consistent calculations have been used to calculate some spectroscopic properties of odd Re, Os, Ir, Pt, Au, and Hg nuclei, within the rotor-quasiparticle coupling model. The authors' calculations are able to give a good description of most of available experimental data. (12 refs).

  19. AN INVESTIGATION OF THE ENERGY L.EVELS AND MUL TIPOLE MIXING RATIO OF ELECTROMAGNETIC TRANSITIONSIN THE EVEN-EVEN ISOTOPES

    Directory of Open Access Journals (Sweden)

    R. KARAKAYA

    1998-12-01

    Full Text Available In this work some of the electromagnetic interactions of even-even Haf nium isotopes in the 150lt;k:;l90 defoıınation region were studied in a detailed manner. l n this region� us ing the experimental 8(E2/lv11 ınultipole ınixing ratios the deformation parameters �o and the quadrupole moments q0 and q'2 were calculated. The obtained results are in a good agreement ·with the ge neral systematic of the defoıınation region under consideration.

  20. Reduced electric-octupole transition probabilities, B(E3;O1+ → 31-), for even-even nuclides throughout the periodic table

    International Nuclear Information System (INIS)

    Spear, R.H.

    1988-11-01

    Adopted values for the excitation energy, E x( 3 1 - ), of the first 3 - state of the even-even nuclei are tabulated. Values of the reduced electric-octupole transition probability, B(E3;O 1 + → 3 1 - ), from the ground state to this state, as determined from Coulomb excitation, lifetime measurements, inelastic electron scattering, deformation parameters β 3 obtained from angular distributions of inelastically scattered nucleons and light ions, and other miscellaneous procedures are listed in separate Tables. Adopted values for B(E3; O 1 + → 3 1 - ) are presented in Table VII, together with the E3 transition strengths, in Weisskopf units, and the product E x( 3 1 - ) x B(E3; O 1 + → 3 1 - - ) expressed as a percentage of the energy-weighted E3 sum-rule strength. An evaluation is made of the reliability of B(E3; O 1 + → 3 1 - ) values deduced from deformation parameters β 3 . The literature has been covered to March 1988

  1. Study of the deexcitation by monopole pair emission from the first J=0+ states in some even-even nuclei of the 2s-1d shell

    International Nuclear Information System (INIS)

    Souw, Kenghok.

    1975-01-01

    A new high efficiency plastic scintillation pair spectrometer was used to measure the E0 branching ratio GAMMAsub(π)/GAMMA(tot) (GAMMAsub(π)=pair emission partial width, GAMMA(tot)=total width) of the transition from the first excited Jsup(π)=0 + state to the Jsup(π)=0 + ground state in some even-even nuclei of the 2s-1d shell. Experiments were performed on 18 O, 26 Mg, 30 Si, 32 S, 34 S and 38 Ar nuclei. The method consisted in detecting the electron and positron of the pair in coincidence in two telescopes. A surface barrier counter placed downstream the target, working in coincidence with the spectrometer, allowed the relevant pair-decays to be selected and the feeding yield to be determined from direct spectra. The branching ratios were such directly determined. These ratios combined with the values available for the lifetimes of these states give the monopole matrix elements Msub(π). The single particle strength of these decays passes through a minimum in the middle of the shell ( 30 Si) and reaches a maximum around the closed shells ( 18 O, and 48 Ca) [fr

  2. The Determination of Neutron-Induced Reaction Cross Section Data on Even-Even, Magic- Number Nuclide Chromium 52 Using EXIFON Code

    International Nuclear Information System (INIS)

    Jonah, S.A.

    2013-01-01

    The EXIFON code version 2.0 is a calculational tool, which is based on both many-body theory and random matrix physics. In this work, it has been used to calculate neutron induced reaction cross section data from 0 to 20 MeV on an even-even, magic number nuclide 52 Cr with neutron number, N=28. Specifically, the (n,p), (n,α) and (n,2n) reaction cross section data were calculated as functions of incident energy of neutrons. Data obtained from the experimental data in the IAEA, EXFOR data Library and recommended data libraries around the globe, JENDL, ENDF and JEFF were used to validate the calculated data. The data indicate that the calculated data without shell corrections are in good agreement with experimental data as well as the recommended data from the evaluated data libraries. The calculated results could provide useful insight into the choice of some input parameters near closed shells using the EXIFON code.

  3. Fermionic symmetries: Extension of the two to one relationship between the spectra of even-even and neighboring odd mass nuclei

    International Nuclear Information System (INIS)

    Zamick, L.; Devi, Y.D.

    1999-01-01

    In the single j shell there is a two to one relationship between the spectra of certain even-even and neighboring odd mass nuclei; e.g., the calculated energy levels of J=0 + states in 44 Ti are at twice the energies of corresponding levels in 43 Ti( 43 Sc) with J=j=7/2. Here an approximate extension of the relationship is made by adopting a truncated seniority scheme; i.e., for 46 Ti and 45 Sc we get the relationship if we do not allow the seniority v=4 states to mix with the v=0 and v=2 states. Better than that, we get very close to the two to one relationship if seniority v=4 states are admixed perturbatively. In addition, it is shown that for the J=0 T=3 state in 46 Ti and for the J=j T=5/2 state in 45 Sc (i.e., the states of higher isospin) there are no admixtures in which the neutrons have seniority 4. copyright 1999 The American Physical Society

  4. Survival of alpha particle irradiated cells as a function of the shape and size of the sensitive volume (nucleus)

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Roeske, J.C.

    1995-01-01

    Microdosimetry is the study of the stochastic variation of energy deposited within sub-cellular targets. As such, the size and shape of the critical target (i.e. cell nucleus) are essential when considering microdosimetric quantities. In this work, a microdosimetric analysis examines the expected cell survival as a function of the size and shape of the cell nucleus under conditions of irradiation emitting alpha particles. The results indicate that, in general, cell survival is relatively insensitive to changes in the shape of the cell nucleus when the volume is held constant. However, cell survival is a strong function of the variation in the size of the target. These results are useful when analysing the results of cell survival experiments for alpha particle emitters. (Author)

  5. Systematics of gamma decay through low-lying vibrational levels of even--even nuclei excited by (p,p') and (n,n') reactions

    International Nuclear Information System (INIS)

    Koopman, R.P.

    1977-01-01

    A series of experiments was performed in which gamma-ray spectra were measured, using a Ge(Li) detector, for incident 7 to 26-MeV protons on the even-even vibrational nuclei 56 Fe, 62 Ni, 64 Zn, 108 Pd, 110 Cd, 114 Cd, 116 Cd, 116 Sn, 120 Sn, and 206 Pb, and for incident 14-MeV neutrons on natural Fe, Ni, Zn, Cd, Sn, and Pb. These measurements yielded gamma-ray cross sections from which it was inferred that almost all of the gamma cascades from (p,p') and (n,n') reactions passed down through the first 2 + levels. Consequently, the strength of the 2 + → 0 + gamma transitions were found to be an indirect measure of the (p,p') or (n,n') cross sections. Several types of nuclear model calculations were performed and compared with experimental results. These calculations included coupled-channel calculations to reproduce the direct, collective excitation of the low-lying levels, and statistical plus pre-equilibrium model calculations to reproduce the (p,p') and the (n,n') cross sections for comparison with the 2 + → 0 + gamma measurements. The agreement between calculation and experiment was generally good except at high energies, where pre-equilibrium processes dominate (i.e. around 26-MeV). Here discrepancies between calculations from the two different pre-equilibrium models and between the data and the calculations were found. Significant isospin mixing of T/sub greater than/ into T/sub less than/ states was necessary in order to have the calculations match the data for the (p,p') reactions, up to about 18-MeV

  6. Clustering effects in fusion evaporation reactions with light even-even N = Z nuclei. The {sup 24}Mg and {sup 28}Si cases

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, L., E-mail: luca.morelli@bo.infn.it; D’Agostino, M.; Bruno, M. [Dipartimento di Fisica e Astronomia dell’Università and INFN, Bologna (Italy); Baiocco, G. [Dipartimento di Fisica dell’Università and INFN, Pavia (Italy); Gulminelli, F. [CNRS, LPC, Caen, France and ENSICAEN, Caen (France); Cinausero, M.; Gramegna, F.; Marchi, T. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy); Degerlier, M. [University of Nevsehir, Physics Department, Nevsehir (Turkey); Fabris, D. [INFN, Sezione di Padova, Padova (Italy); Barlini, S.; Bini, M.; Casini, G.; Gelli, N.; Olmi, A.; Pasquali, G.; Piantelli, S. [Dipartimento di Fisica e Astronomia dell’Università and INFN, Firenze (Italy)

    2015-10-15

    In the recent years, cluster structures have been evidenced in many ground and excited states of light nuclei [1, 2]. Within the currently ongoing experimental campaign by the NUCL-EX collaboration we have measured the {sup 12}C+{sup 12}C and {sup 14}N+{sup 10}B reactions at 95 MeV and 80 MeV respectively, and compared experimental data corresponding to complete fusion of target and projectile into an excited {sup 24}Mg nucleus to the results of a pure statistical model[3, 4]. We found clear deviations from the statstical model in the decay pattern: emission channels involving multiple α particles are more probable than expected from a purely statistical behavior. To continue the investigation on light systems, we have recentely measured the {sup 16}O+{sup 12}C reaction at three different beam energies, namely E{sub beam} = 90, 110 and 130 MeV.

  7. Shape isomerism and shape coexistence effects on the Coulomb energy differences in the N=Z nucleus 66As and neighboring T=1 multiplets

    Science.gov (United States)

    de Angelis, G.; Wiedemann, K. T.; Martinez, T.; Orlandi, R.; Petrovici, A.; Sahin, E.; Valiente-Dobón, J. J.; Tonev, D.; Lunardi, S.; Nara Singh, B. S.; Wadsworth, R.; Gadea, A.; Kaneko, K.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; Blank, B.; Bracco, A.; Carpenter, M. P.; Chiara, C. J.; Farnea, E.; Gottardo, A.; Greene, J. P.; Lenzi, S. M.; Leoni, S.; Lister, C. J.; Mengoni, D.; Napoli, D. R.; Pechenaya, O. L.; Recchia, F.; Reviol, W.; Sarantites, D. G.; Seweryniak, D.; Ur, C. A.; Zhu, S.

    2012-03-01

    Excited states of the N=Z=33 nucleus 66As have been populated in a fusion-evaporation reaction and studied using γ-ray spectroscopic techniques. Special emphasis was put into the search for candidates for the T=1 states. A new 3+ isomer has been observed with a lifetime of 1.1(3) ns. This is believed to be the predicted oblate shape isomer. The excited levels are discussed in terms of the shell model and of the complex excited Vampir approaches. Coulomb energy differences are determined from the comparison of the T=1 states with their analog partners. The unusual behavior of the Coulomb energy differences in the A=70 mass region is explained through different shape components (oblate and prolate) within the members of the same isospin multiplets. This breaking of the isospin symmetry is attributed to the correlations induced by the Coulomb interaction.

  8. The Nucleus 59Cu. Complex Structure, Shape Evolution, Exotic Decay Modes

    International Nuclear Information System (INIS)

    Andreoiu, Corina

    2002-08-01

    High-spin states in the mass A∼60 region were populated using the state-of-art γ-ray spectrometers Gammasphere, Euroball, and GASP in conjunction with dedicated ancillary detectors. In particular, the 59 Cu nucleus was studied in several experiments, and a very extensive level scheme was determined. It comprises more than 320 transitions connecting about 150 excited states. Relative to mass, it is the most extensive level scheme known to date. Next to the spherical states at low excitation energy eight regular sequences of high-energy γ-ray transitions have been observed. They form rotational bands with various degree of deformation, which are interpreted in the light of the shell model and the configuration-dependent Cranked Nilsson-Strutinsky approach. One of the experiments was dedicated to the study of prompt particle decays. It revealed five prompt proton decays connecting five deformed states in three of the rotational bands in 59 Cu with three spherical states in the daughter nucleus 58 Ni. It is the first observation of the fine structure of the newly discovered prompt proton decay mode. The proton decays compete with the γ decay-out from the second minimum of the nuclear potential into the low-spin spherical states in the first minimum of the potential. The discrete γ decay-out mechanism of the yrast superdeformed band is investigated in detail. The nucleus 59 Zn, the mirror partner of 59 Cu, was identified for the first time, and the mirror symmetry of the T=1/2 A=59 pair is discussed

  9. Shape Abnormalities of the Caudate Nucleus Correlate with Poorer Gait and Balance

    DEFF Research Database (Denmark)

    Macfarlane, Matthew D; Looi, Jeffrey C L; Walterfang, Mark

    2015-01-01

    published method and volumes calculated. The relationships between volume and physical performance on the SPPB were investigated with shape analysis using the spherical harmonic shape description toolkit. RESULTS: There was no correlation between the severity of WMHs and striatal volumes. Caudate nuclei...... volume correlated with performance on the SPPB at baseline but not at follow-up, with subsequent shape analysis showing left caudate changes occurred in areas corresponding to inputs of the dorsolateral prefrontal, premotor, and motor cortex. There was no correlation between putamen volumes...

  10. Classical studies of the ellipsoidal shapes for dynamical deformation theories of the nucleus

    International Nuclear Information System (INIS)

    Remaud, B.

    1978-01-01

    The shape-dependent functions of the Liquid Drop and the Droplet Models are analytically calculated for an ellipsoid. Using the ellipsoidal symmetries, these functions (including the curvature function) are written in terms of three basic expressions. The nuclear deformation energy can be calculated in a simple way for axially symmetric and asymmetric ellipsoidal nuclei whatever the magnitude of the deformation is

  11. The Nucleus of Comet 9P-Tempel 1: Shape and Geology from Two Flybys

    Science.gov (United States)

    Thomas, P.; A'Hearn, M.; Belton, M. J. S.; Brownlee, D.; Carcich, B.; Hermalyn, B.; Klaasen, K.; Sackett, S.; Schultz, P. H.; Veverka, J.; hide

    2012-01-01

    The nucleus of comet Tempel 1 has been investigated at close range during two spacecraft missions separated by one comet orbit of the Sun, 5 1/2 years. The combined imaging covers 70% of the surface of this object which has a mean radius of 2.83 +/- 0.1 km. The surface can be divided into two terrain types: rough, pitted terrain and smoother regions of varying local topography. The rough surface has round depressions from resolution limits (10 m/pixel) up to 1 km across, spanning forms from crisp steep-walled pits, to subtle albedo rings, to topographic rings, with all ranges of morphologic gradation. Three gravitationally low regions of the comet have smoother terrain, parts of which appear to be deposits from minimally modified flows, with other parts likely to be heavily eroded portions of multiple layer piles. Changes observed between the two missions are primarily due to backwasting of scarps bounding one of these probable flow deposits. This style of erosion is also suggested by remnant mesa forms in other areas of smoother terrain. The two distinct terrains suggest either an evolutionary change in processes, topographically- controlled processes, or a continuing interaction of erosion and deposition.

  12. Shape, Density, and Geology of the Nucleus of Comet 103P/Hartley 2

    Science.gov (United States)

    Thomas, P.C.; A'hearn, Michael F.; Veverka, Joseph; Belton, Michael J. S.; Kissel, Jochen; Belton, Michael J. S.; Klaasen, Kenneth P.; McFadden, Lucy A.; Melosh, H. Jay; Schultz, Peter H.; hide

    2013-01-01

    Data from the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) mission show Comet 103P/Hartley 2 is a bi-lobed, elongated, nearly axially symmetric comet 2.33 km in length. Surface features are primarily small mounds 1%. The shape may be the evolutionary product of insolation, sublimation, and temporary deposition of materials controlled by the object’s complex rotation.

  13. Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei

    Science.gov (United States)

    Benbouzid, Y.; Allal, N. H.; Fellah, M.; Oudih, M. R.

    2018-04-01

    Isovector neutron-proton (np) pairing and particle-number fluctuation effects on the spectroscopic factors (SF) corresponding to one-pair like-particle transfer reactions in proton-rich even-even nuclei are studied. With this aim, expressions of the SF corresponding to two-neutron stripping and two-proton pick-up reactions, which take into account the isovector np pairing effect, are established within the generalized BCS approach, using a schematic definition proposed by Chasman. Expressions of the same SF which strictly conserve the particle number are also established within the Sharp-BCS (SBCS) discrete projection method. In both cases, it is shown that these expressions generalize those obtained when only the pairing between like particles is considered. First, the formalism is tested within the Richardson schematic model. Second, it is applied to study even-even proton-rich nuclei using the single-particle energies of a Woods-Saxon mean-field. In both cases, it is shown that the np pairing effect and the particle-number projection effect on the SF values are important, particularly in N = Z nuclei, and must then be taken into account.

  14. Study of the first collective levels of the even-even nuclei between masses 182 and 206; Etude des premiers niveaux collectifs des noyaux pairs-pairs entre les masses 182 et 206

    Energy Technology Data Exchange (ETDEWEB)

    Barloutaud, R; Leveque, A; Lehmann, P; Quidort, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The reduced probabilities of deexcitation of the first two 2 + levels of {sup 184}W, {sup 186}W, {sup 188}Os, {sup 190}Os, {sup 192}Os and {sup 194}Pt have been deduced from coulombic excitation experiments on these nuclei.The results are included in a chart of the properties of the first two 2 + levels of even-even nuclei situated between masses 182 and 206. The variation of these properties as a function of nuclear distortion is compared with the various theoretical predictions concerning vibration levels. (author) [French] Les probabilites reduites de desexcitation des deux premiers niveaux 2 + de {sup 184}W, {sup 186}W, {sup 188}Os, {sup 190}Os, {sup 192}Os and {sup 194}Pt ont ete deduites des experiences d'excitation coulombienne de ces noyaux. Les resultats sont inseres dans une systematique des proprietes des deux premiers niveaux 2 + des noyaux pairs-pairs situes entre les masses 182 et 206. La variation de ces proprietes en fonction de la deformation nucleaire est comparee aux diverses predictions theoriques concernant les niveaux de vibration. (auteur)

  15. Determination of the shapes and sizes of the regions in which in hadron-nucleus collisions reactions leading to the nucleon emission, particle production, and fragment evaporation occur

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1985-01-01

    Shapes and sizes of the regions in target-nuclei in which reactions leading to the nucleon emission, particle production and fragment evaporation occur are determined. The region of nucleon emission is of cylindrical shape, with the diameter as large as two nucleon diameters, centered on the incident hadron course. The reactions leading to the particle production happen predominantly along the incident hadron course in nuclear matter. The fragment evaporation goes from the surface layer of the part of the target-nucleus damaged in nucleon emission process

  16. E0 and E2 decay of low-lying 0+ states in the even-even nuclei 206Pb, 208Po, 112-120 Sn and 112114Cd

    International Nuclear Information System (INIS)

    Julin, Rauno.

    1979-04-01

    Several new methods of in-beam conversion-electron and γ-ray spectrometry, applicable in the determination of E0 and E2 decay properties of low-lying 0 + states in even-mass nuclei, have been developed. The main attention has been paid to direct lifetime-measurement and coincidence methods based on the use of the natural pulsing of a cyclotron beam. With the aid of these methods, the similarity of the absolute decay rates of the two-neutron-hole 0 + 2 states in the N = 124 nuclei 206 Pb and 208 Po has been shown. A systematic investigation of the de-excitation of the 0 + 2 and 0 + 3 states in 112 , 11 4 , 116 , 118 , 120 Sn has been carried out. Twelve E0 transitions connecting the 0 + states have been observed, including very strong low-energy E0 transitions between the excited 0 + states, and several absolute transition probabilities have been determined. Furthermore, the new techniques have been applied successfully in determining the absolute E0 and E2 transition rates from the 0 + 2 and 0 + 3 states in 112 Cd and 114 Cd. The use of isotope-shift data in the calculation of the monopole strengths in 206 Pb and 208 Po is discussed. The results on even Sn and Cd nuclei are discussed within the framework of the coexistence of different shapes and of configuration mixing. (author)

  17. The nucleus

    International Nuclear Information System (INIS)

    Marano, S.

    1998-01-01

    In 1911 E.Rutherford discovered the nucleus. Since then the nucleus has been investigated with more and more powerful tools but it remains the main field of study of nuclear physics. As it is impossible to take into account the interaction of all the nucleons, a theory based on the hypothesis that each nucleon undergoes an average interaction force has been set up. 2 representations have emerged: the Skyrme force and the Gogny force. Both representations match experimental results but are unable to describe fission yields or the multi-fragmentation of very hot nuclei. The mean-field theory can predict the shape of the nuclei according to its energy level. An experimental program involving the Vivitron accelerator and the Euroball detector is due to begin to validate it. By bombarding targets with exotic nuclei nuclear physicists detect new structures and test their collision models. About ten years ago nuclear halos were observed with lithium 11 nuclei. In this nucleus 2 neutrons move in a space larger than the nucleus itself. This discovery has triggered the elaboration of new theories based on nuclear clusters. At very high temperatures the mean-field theory predicts that nuclear matter acts as a fluid. Following the nuclei temperature different ways of decay appear: first evaporation then multi-fragmentation and vaporization. This ultimate stage occurs around 100 milliard celsius degree temperature when the nuclei decays in a multitude of light particles. Isomeric states are studied and could be seen as a way of storing energy. In a very pedagogical way this article gives information to understand the challenges that face nuclear physics today and highlights the contributions of Cea in this field. (A.C.)

  18. Nuclear shape transitions and some properties of aligned-particle configurations at very high spin in some rare-earth nuclei

    International Nuclear Information System (INIS)

    Mansour, N.; Bayomy, T.; Awwad, Z.

    1990-01-01

    We will present results on an collective ΔI = 2 ground band level sequence in the spherical six-valence-particle nucleus 152 Dy and the variation of shapes for nuclei in the N = 88 to 92 transitional region. Finally, we will present results for some even-even nuclei without any backbending behaviour, showed a clear backbending in the diagram of 2Φ/(h/2π) 2 versus (hw/2π) 2 . (author)

  19. Shape evolution in neutron-rich A ~ 140 nuclei beyond the doubly-magic nucleus 132Sn

    Science.gov (United States)

    Odahara, Atsuko; Eurica Collaboration

    2014-09-01

    Study for the shape evolution enables us to disentangle competition between spherical (single-particle like) shape and deformed (collective-like) shape as a function of neutron number. Neutron-rich nuclei in the northeast region of the doubly-magic 132Sn locates in one of the best mass region where a variety of collective modes, not only prolate deformation but also octupole collectivity, are expected to appear. These neutron-rich A ~140 nuclei were produced by using in-flight fission reaction of the 345 MeV/u 238U86+ beam at RIKEN RI Beam Factory. This experiment was performed in the framework of the EURICA (EUroball RIken Cluster Array) project based on the highly-efficient β- and isomer-decay spectroscopy methods. Around 20 extremely neutron-rich nuclei with Z=51--55 have been studied in this work. New isomers with half lives of longer than hundreds ns were found in some nuclei, such as the neutron-rich Cs isotopes. Also, preliminary results for the β decay of neutron-rich I and Xe isotopes have been obtained. Systematic change of the shape evolution for these neutron-rich isotopes will be discussed.

  20. Model of coupled bands in even-even nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nadzhakov, E G; Nozharov, R M; Myankova, G Z; Antonova, V A [Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1979-01-01

    The model is derived in a natural way from the theory of coupled modes. It is based on an expansion of the Hamiltonian in terms of elementary transition operators, including direct rotation-vibration coupling with phonons. The treatment is limited to three types of phonons: ( I = K = 0), S (I = K = 1) and (I = K = 2). The basis of the operators, acting on the ground state is truncated by an inclusion of a reasonable number of phonon states. In the framework of this approximation one may evaluate the matrix elements of the model Hamiltonian and diagonalize it by standard numerical methods to fit the experimental spectrum. The well known picture of band hybridization is obtained as a special case of the model under consideration.

  1. Systematic studies for medium-heavy even-even nuclei

    International Nuclear Information System (INIS)

    Chen, Y.; Zhao, Y.M.; Chen, J.Q.

    1995-01-01

    The systematics for the excitation energies of the ground, β, and γ bands are presented using the empirical total np interaction V NP . Some regularities found in the previous studies are tested by the systematics in the V NP schemes. The systematics of the β and γ bands are presented in detail. Elegant regularities are observed for the excitation energies. The correlation phenomenon of the general behavior among different bands within each major shell is pointed out

  2. Nucleus--nucleus potential

    International Nuclear Information System (INIS)

    Jaqaman, H.R.

    1977-01-01

    The nucleus--nucleus interaction is studied within the framework of the generator coordinate method that permits an easy incorporation of the full effects of antisymmetrization. It is found that the interaction, as far as the elastic scattering problem is concerned, can be described by a simple effective potential that is equivalent to the original many-body (and hence non-local) problem. The potential is obtained by dividing the wavefunction into a long-range part and a short-range part and requiring the former to satisfy a Schroedinger equation. This enables avoiding dealing with the troublesome short-range part of the wavefunction and provides a direct link with the optical model so that the potential obtained here is equivalent to the real part of the optical potential (the imaginary part is not investigated). The effective potential is found to consist of three parts: an interaction term between the nucleons belonging to different nuclei, a kinetic energy term due to the change in the intrinsic kinetic energy of the system as a result of the antisymmetrization, and finally an l-dependent part. The kinetic energy term is found to be very repulsive and effectively gives a hard core, and is calculated for the α--α and 16 O-- 16 O cases. The full potential is calculated for the α--α case for the S, D, and G partial waves and then used to calculate the corresponding phase shifts that are then compared with experimental results and other microscopic calculations. Finally, some recent results and analyses of fusion and deep inelastic reactions are reviewed that seem to indicate the presence of a hard core in the nucleus--nucleus potential. Such a hard core is present in the potential obtained in the sudden approximation

  3. Low-lying level structure of the neutron-rich nucleus {sup 109}Nb: A possible oblate-shape isomer

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H., E-mail: hiroshi@ribf.riken.j [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Sumikama, T. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Nishimura, S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yoshinaga, K. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Li, Z. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Miyashita, Y. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Yamaguchi, K. [Department of Physics, Osaka University, Machikaneyama-machi 1-1, Osaka 560-0043 Toyonaka (Japan); Baba, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Berryman, J.S. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Blasi, N. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Bracco, A.; Camera, F. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Dipartimento di Fisica, Universita di Milano, via Celoria 16, I-20133 Milano (Italy); Chiba, J. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Doornenbal, P. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Go, S.; Hashimoto, T.; Hayakawa, S. [Center for Nuclear Study, University of Tokyo, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Hinke, C. [Physik Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Ideguchi, E. [Center for Nuclear Study, University of Tokyo, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Isobe, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2011-01-31

    The neutron-rich nuclei {sup 109}Nb and {sup 109}Zr have been populated using in-flight fission of a {sup 238}U beam at 345 MeV/nucleon at the RIBF facility. A T{sub 1/2}=150(30) ns isomer at 313 keV has been identified in {sup 109}Nb for the first time. The low-lying levels in {sup 109}Nb have been also populated following the {beta}-decay of {sup 109}Zr. Based on the difference in feeding pattern between the isomeric and {beta} decays, the decay scheme from the isomeric state in {sup 109}Nb was established. The observed hindrances of the electromagnetic transitions deexciting the isomeric state are discussed in terms of possible shape coexistence. Potential energy surface calculations for single-proton configurations predict the presence of low-lying oblate-deformed states in {sup 109}Nb.

  4. Reflection asymmetric shapes in nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.; Carpenter, M.P.; Emling, H.

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N∼134, Z∼88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin ∼8ℎ. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin ∼7ℎ. The nuclei which exhibit octupole deformation in this mass region are 144 Ba, 146 Ba and 146 Ce; 142 Ba, 148 Ce, 150 Ce and 142 Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab

  5. Study of shape transition in the neutron-rich Os isotopes

    Directory of Open Access Journals (Sweden)

    John P.R.

    2014-03-01

    Full Text Available The neutron-rich isotopes of tungsten, osmium and platinum have different shapes in their ground states and present also shape transitions phenomena. Spectroscopic information for these nuclei is scarce and often limited to the gamma rays from the decay of isomeric states. For the neutron-rich even-even osmium isotopes 194Os and 198Os, a shape transition between a slightly prolate deformed to an oblate deformed ground state was deduced from the observed level schemes. For the even-even nucleus lying in between, 196Os, no gamma ray transition is known. In order to elucidate the shape transition and to test the nuclear models describing it, this region was investigated through gamma-ray spectroscopy using the AGATA demonstrator and the large acceptance heavy-ion spectrometer PRISMA at LNL, Italy. A two-nucleon transfer from a 198Pt target to a stable 82Se beam was utilized to populate medium-high spin states of 196Os. The analysis method and preliminary results, including the first life-time measurement of isomeric states with AGATA, are presented.

  6. Shape coexistence in 16O, 72Se, and 240Pu: a comprehensive view based on the dynamic deformation model

    International Nuclear Information System (INIS)

    Kumar, K.

    1979-01-01

    It has been shown that the gross features of the collective spectra of even-even nuclei ranging from 12 C to 240 Pu are reproduced by the dynamic deformation model without any fitting parameters. We apply another test to be same model in the present study. Can this single model explain three seemingly different types of shape co-existence proposed previously: spherical op-oh and deformed 2p-2h shapes in 16 O, spherical and prolate-deformed minima in the potential energy surface of 72 Se, ground state shape and fission isomer shape of 240 Pu. Of these three nuclei, only the nucleus 72 Se is off the line of beta-stability. The calculated potential energy surfaces and collective spectra of 16 O, 72 Se, and 240 Pu are discussed and compared with experiments. The three different kinds of shape coexistence proposed previously for 16 O, 72 Se, and 240 Pu are all reproduced by the present version of the dynamic deformation model within the same model and without any fitting parameters. We conclude that the combination of the dynamics of the nine-dimensional quadrupole and pairing motions with a large space microscopic calculation provides a rather powerful tool for studying practically all even-even nuclei

  7. Shape coexistence in the N=19 neutron-rich nucleus 31Mg explored by β–γ spectroscopy of spin-polarized 31Na

    Directory of Open Access Journals (Sweden)

    H. Nishibata

    2017-04-01

    Full Text Available The structure of excited states in the neutron-rich nucleus 31Mg, which is in the region of the “island of inversion” associated with the neutron magic number N=20, is studied by β–γ spectroscopy of spin-polarized 31Na. Among the 31Mg levels below the one neutron separation energy of 2.3 MeV, the spin values of all five positive-parity levels are unambiguously determined by observing the anisotropic β decay. Two rotational bands with Kπ=1/2+ and 1/2− are proposed based on the spins and energies of the levels. Comparison on a level-by-level basis is performed between the experimental results and theoretical calculations by the antisymmetrized molecular dynamics (AMD plus generator coordinate method (GCM. It is found that various nuclear structures coexist in the low excitation energy region in 31Mg.

  8. Nucleus-nucleus total reaction cross sections

    International Nuclear Information System (INIS)

    DeVries, R.M.; Peng, J.C.

    1980-01-01

    We compare sigma/sub R/(E) for nucleus-nucleus systems (obtained from existing direct measurements and derived from elastic scattering data) with nucleon-nucleon and nucleon-nucleus data. The energy dependence of sigma/sub R/(E) for nucleus-nucleus systems is found to be quite rapid; there appears to be no evidence for an energy independent, geometric sigma/sub R/. Simple parameter free microscopic calculations are able to quantitatively reproduce the data and thus, emphasize the dominance of nucleon-nucleon interactions in medium energy nucleus-nucleus collisions

  9. Perspective of ultrarelativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Specht, H.J.

    1985-01-01

    The paper concerns the lectures given at the International School of nuclear physics, Erice, 1985, which survey the expectations for the field of ultrarelativistic nucleus-nucleus collisions. The primary motivation for the field, the organization of the lectures, and a description of the NA 34 experiment, are all briefly given. (U.K.)

  10. High energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Bhalla, K.B.

    1980-01-01

    An attempt is made to explain nucleus-nucleus collisions based on nuclear emulsion experiments. Peripheral and central collisions are described in detail. Assuming the fireball model, the concepts of geometry, kinematics and thermodynamics in this model are discussed. Projectile and target fragmentations are studied. The advantages of using nuclear emulsions as detectors, are mentioned. Proton-nucleus collisions and nucleus-nucleus collisions are compared. Interactions, of projectiles such as Ca, B and C on targets such as Pb, Ag, Br etc. at very high energies (approximately 300 to 1700 Gev) are listed. A comparison of the near multiplicities in these interactions is given. A generalized explanation is given on the processes involved in these interactions. (A.K.)

  11. Onuf's nucleus X

    DEFF Research Database (Denmark)

    Schrøder, H D

    1981-01-01

    in the length of the nucleus was observed. Based on the cytoarchitecture the nucleus could be divided in three parts, a cranial, a dorsomedial and a ventrolateral. All parts of the nucleus consisted of chromatin-rich medium-sized neurons, and apparent direct appositions between different cells bodies as well...

  12. Band termination in the N=Z nucleus 44Ti

    International Nuclear Information System (INIS)

    Ur, C.A.; Lenzi, S.M.; Martinez-Pinedo, G.

    1998-01-01

    Nuclei in the vicinity of the middle of the 1f 7/2 shell show strong prolate deformation at low spins resulting in rotational-like band structures. With increasing angular momentum the structure of these nuclei evolves through triaxial and spherical shapes. Recently, band terminating states corresponding to fully aligned configurations of valence nucleons in the f 7/2 shell have been reported. Further increase of the angular momentum can be achieved by particle excitations on the higher shell. This will result in high energy γ-ray transitions as it was observed in 50 Cr. We have investigated the structure of 44 Ti up to the band termination. Excited states in 44 Ti have been populated via the 28 Si + 24 Mg at 110 MeV beam energy. The target consisted of ∼0.5 mg/cm 2 of 24 Mg deposited on a gold backing. Gamma-rays were detected with the GASP multidetector array composed by 40 HPGe Compton-suppressed detectors and the inner ball built of 80 BGO detectors. The preliminary level scheme of 44 Ti, as determined in our work, is presented. This nucleus has 2 valence protons and 2 valence neutrons filling the f 7/2 shell. The band terminating state corresponding to their total alignment is the 12 + state. Several γ-rays transitions above this state have been identified. Also, we have identified two negative parity bands strongly connected to the yrast positive parity structure. Such structures have also been observed in other two even-even N=Z nuclei in the f 7/2 shell, namely, 44 Cr and 52 Fe, but they were less populated. The structure of 44 Ti is also interesting from the point of view of the cross-conjugate symmetry. Comparing the level structure of 44 Ti and the one of its cross-conjugate nucleus at the other end of the shell, 52 Fe, it can be noticed that up to spin 10ℎ their structure is very similar, but in 44 Ti the band terminating state 12 + is not below the 10 + state as in the case of 52 Fe. This was related to a reminiscent degree of collectivity in the

  13. Pion production in nucleus--nucleus collisions

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1975-06-01

    Current work on pion production in high-energy nucleus-nucleus collisions is reviewed. The majority of existing data are of the inclusive variety in which a single final state pion is detected. Experimental data are compared and their possible contributions to obtaining new information on nuclear structure is discussed. Various models which attempt to explain the observed single-inclusive-pion spectra either on the basis of a nucleon-nucleus interaction in which Fermi motion is included or on some type of cooperative model are examined. Other areas of interest involving pion production include tests of charge symmetry and pion multiplicities. (9 figures, 1 table) (U.S.)

  14. Transverse Energy in nucleus-nucleus collisions: A review

    International Nuclear Information System (INIS)

    Tincknell, M.

    1988-01-01

    The status of Transverse Energy (E/sub T/) in relativistic nucleus-nucleus collisions at the Brookhaven AGS and the CERN SPS is reviewed. The definition of E/sub T/ and its physical significance are discussed. The basic techniques and limitations of the experimental measurements are presented. The acceptances of the major experiments to be discussed are shown, along with remarks about their idiosyncrasies. The data demonstrate that the nuclear geometry of colliding spheres primarily determines the shapes of the observed spectra. Careful account of the acceptances is crucial to comparing and interpreting results. It is concluded that nuclear stopping power is high, and that the amount of energy deposited into the interaction volume is increasing with beam energy even at SPS energies. The energy densities believed to be obtained at the SPS are close to the critical values predicted for the onset of a quark-gluon plasma. 25 refs., 8 figs

  15. Reduced widths of alpha -decay of near-magic even-even nuclei

    CERN Document Server

    Kar Yan, N

    1972-01-01

    Precision on-line investigations on the linear heavy-ion Berkeley accelerator, and on the CERN synchrophasotron were carried out recently on new alpha -emitters. The results obtained are analysed with a view to finding the degree of correspondence, or disagreement, with the authors' own ideas about alpha -decay processes. The discussion is confined to examining even isotopes of polonium, radon, radium and thorium Several theoretical and experimental plots are given of reduced widths of alpha -disintegration for different regions of shell filling and a comparison is made between barrier penetration coefficients, obtained by rigorous methods and with the aid of WKB- approximation, for /sup 212/Po, /sup 208/Po and /sup 212/Po isotopes. (24 refs).

  16. Fragmentation of two-quasiparticle states in 92Zr and even-even Sn isotopes

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Stoyanova, O.; Voronov, V.V.

    1981-01-01

    The fragmentation of two-quasiparticle states in doubly even spherical nuclei is calculated within the quasiparticle-phonon nuclear model. The fragmentation is due to the interactions leading to the formation of phonons and to the quasiparticle-phonon interaction. The spectroscopic factors for the ''particle-valence particle'' states in 92 Zr are calculated. The agreement with the experimental data of the reaction 91 Zr(d, p) 92 Zr is obtained. The centroid energy Esub(jjsub(0)) and width GITAsub(jjsub(0)) are calculated for the configurations excited in the (p, d) reactions on odd-A isotopes of Cd, Sn and Te. It is shown that the valence particle-hole lgsub(9/2) configuration is localized at the excitation energies of 7-9 MeV. The corresponding experimental data are well described

  17. The decay from the two-quasiparticle regime in even-even deformed rare earth nuclei

    International Nuclear Information System (INIS)

    Henriques, A.; Thorstensen, T.F.; Hammaren, E.

    1983-06-01

    A bump at 1 MeV has been identified in coincidence gamma-ray spectra from the ( 3 He, 4 He) reaction in deformed rare earth nuclei. Particle/gamma-ray angular correlation indicates a dipole character. It is suggested that this bump corresponds to transitions from two-quasiparticle states to the ground state band

  18. Real and complex boson expansions in even-even deformed nuclei

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Piepenbring, R.

    1977-01-01

    Analysis of real and complex boson expansions of the Kishimoto-Tamura type is performed in a deformed basis in order to allow a further study of the anharmonicities of vibrations in deformed nuclei. It is shown that complex solutions cannot be found in the cases where no real one exists. (Auth.)

  19. Low energy structure of even-even Ni isotopes close to 78Ni

    International Nuclear Information System (INIS)

    Rykaczewski, Krzysztof Piotr; Mazzocchi, C.; Grzywacz, Robert Kazimierz; Batchelder, J.C.; Bingham, Carrol R.; Fong, D.; Hamilton, J.H.; Hwang, J.K.; Karny, M.; Krolas, W.; Liddick, S.N.; Lisetskiy, A. F.; Morton, N.H.; Mantica, P.F.; Mueller, W.F.; Steiner, M.; Stolz, A.; Winger, J.A.

    2005-01-01

    The structure of magic neutron-rich nickel isotopes produced in the fragmentation of a 140 A MeV 86 Kr beam was investigated. For the first time four gamma transitions were assigned to the decay of the I π =8 + , T 1/2 = 590 +180 -110 isomer, thus establishing the 0 + -2 + -4 + -6 + -8 + ground-state band in 76 Ni. The previously unknown 2 + and 4 + levels belonging to the ground-state band in 74 Ni were identified in the β decay of 74 Co (T 1/2 =30(3) ms). The decay properties of 72 Co → 72 Ni were verified and confirmed on the basis of γ-γ coincidence data. The relevance of the measured level properties for the magicity of 78 Ni is analyzed with the help of advanced shell-model predictions

  20. Band structure of even-even selenium isotopes in the proton-neutron interacting boson model

    International Nuclear Information System (INIS)

    Kaup, U.; Moenkemeyer, C.; Brentano, P. von

    1983-01-01

    Available systematic IBM calculations [1-6] for Krypton and Strontium isotopes have been extended to Selenium. The analysis in terms of the IBM is complicated by the interplay of collective and noncollective degrees of freedom. However, satisfactory agreement has been obtained for N>=42. (orig.)

  1. The influence of the shell closure on the microscopic structure of even-even Hg isotopes

    International Nuclear Information System (INIS)

    Burghardt, A.J.C.

    1989-01-01

    Muonic X-ray data were obtained for 198 200 202 204 Hg at high-intensity muon-beam facility of SIN and an electron-scattering study was performed on 204 Hg with the 500 MeV, high-resolution electron-scattering facility of NIKHEF-K in a q-range from 0.4 to 2.9 fm -1 . The combined analysis of the elastic electron-scattering and muonic X-ray data has yielded the ground-state charge distribution of 204 Hg. Hartree-Fock calculations with four different interactions, with and without the inclusion of pairing correlations, are compared to this experimental result. The charge-density difference between 206 Pb (determined elsewhere) and 204 Hg is then used ot investigate the filling of the last proton orbit before the Z=82 shell closure, the 3s 1/2 orbit. The interpretation of this difference, also in terms of Hartree-Fock calculations, is discussed in conjunction with the earlier study of Frois et al. concerning 206 Pb and 205 Tl. Many excited states have been observed in the spectra of 204 Hg. The experimental excitation energies and the spins and parities assigned to a number of states are presented. From the cross-section data for these states transition charge distributions have been extracted. Shell-model predictions are compared with the observed level scheme and the shell-model calculation performed by Poppelier is used to interpret transition charge distributions of six states. 101 refs.; 32 figs.; 41 figs

  2. Regional regularities for the even-even nuclei in intermediate mass region

    International Nuclear Information System (INIS)

    Varshney, Mani; Singh, M.; Gupta, D.K.; Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Sharma, Aparna; Varshney, A.K.

    2011-01-01

    With the development of experimental techniques more and more nuclear data are accumulated and compiled for over five decades. The proton neutron interaction has been considered the key ingredient in the development of collectivity and ultimately the deformation in atomic nuclei. The purpose of the present study is to analyze the growth of R4/2 in different mass regions. The rate of growth regions in regions having proton number Z = 38, 54, 60 and 76 with changing neutron number where the interaction between particle - particle, particle - hole and hole - hole

  3. Hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1981-01-01

    Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei

  4. Comet Halley: nucleus and jets

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Avanesov, G.A.; Barinov, I.V.

    1986-06-01

    The VEGA-1 and VEGA-2 spacecrafts made their closest approach to Comet Halley on 6 and 9 March, respectively. In this paper results of the onboard imaging experiment are discussed. The nucleus of the comet was clearly identifyable as an irregularly shaped object with overall dimensions of (16+-1)x(8+-1)x(8+-1) km. The nucleus rotates around its axis which is nearly perpendicular to the orbital plane, with a period of 53+-2 hours. Its albedo is only 0.04+-002. Most of the jet features observed during the second fly-by were spatially reconstructed. These sources form a quasi-linear structure on the surface. The dust above the surface is shown to be optically thin except certain specific dust jets. Brightness features on the surface are clearly seen. Correlating the data with other measurements it is concluded that the dirty snow-ball model probably has to be revised. (author)

  5. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 1. Nucleus-nucleus interaction potential

    International Nuclear Information System (INIS)

    Davidovs'ka, O.Yi.; Denisov, V.Yu.; Nesterov, V.O.

    2010-01-01

    Various approaches for nucleus-nucleus interaction potential evaluation are discussed in details. It is shown that the antisymmetrization of nucleons belonging to different nuclei and the Pauli principle give the essential contribution into the nucleus-nucleus potential at distances, when nuclei are strongly overlapping, and lead to appearance of the repulsive core of nucleus nucleus interaction at small distances between nuclei.

  6. Antiproton production in nucleon-nucleus and nucleus-nucleus collisions at the CERN-SPS

    International Nuclear Information System (INIS)

    Kadija, K.; Schmitz, N.; Seyboth, P.

    1996-01-01

    A model for antiproton production in nucleon-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon, based on the wounded nucleon model is developed. The predictions are compared to published nucleon-nucleus and sulphur-nucleus data. The results suggest the presence of similar antiproton production processes in nucleon-nucleus and nucleus-nucleus collisions near midrapidity. (orig.)

  7. The gross theory model for neutrino-nucleus cross-section

    International Nuclear Information System (INIS)

    Samana, A R; Barbero, C A; Krmpotic, F; Duarte, S B; Dimarco, A J

    2008-01-01

    The nuclear gross theory, originally formulated by Takahashi and Yamada (1969 Prog. Theor. Phys. 41 1470) for the β-decay, is applied to the electronic-neutrino nucleus reactions, employing a more realistic description of the energetics of the Gamow-Teller resonances. The model parameters are gauged from the most recent experimental data, both for β - -decay and electron capture, separately for even-even, even-odd, odd-odd and odd-even nuclei. The numerical estimates for neutrino-nucleus cross-sections agree fairly well with previous evaluations done within the framework of microscopic models. The formalism presented here can be extended to the heavy nuclei mass region, where weak processes are quite relevant, which is of astrophysical interest because of its applications in supernova explosive nucleosynthesis

  8. Shape nuclei and nuclear reactions

    International Nuclear Information System (INIS)

    Yushkov, A.V.

    1975-01-01

    Experimental methods for obtaining the nucleus shape parameters are reviewed throughout the period of 1955-1975. Spatial properties of a nucleus, which can be directly or indirectly measured, are determined. They include: parameters of nucleus localization in space; parameters characterizing the nucleus nonsphericity; parameters of the nucleus nonaxiality. Dimensional parameters of a nucleus, namely, radius R and surface ΔR are derived from electron scattering. The deformation sign is indirectly obtained in the experiments. Parameters of the nucleus shape, namely, the sign and magnitude of nuclear deformation are derived from the mean energy proton scattering by a coupled channels method. The only direct way of deriving the nucleus surface deformation signs is the method of the Blaire phase shift. Results on scattering of electrons, protons, and α-particles on light and medium nuclei are reported. Data on the nucleus shape can be also obtained from reactions with heavy ions. A difference between strong absorptions of incident particles of high and average energy by a nucleus is noted. Numerous diagrams illustrate experimental and theoretical results

  9. Charged-Current Neutrino-Nucleus Scattering off the Even Molybdenum Isotopes

    Directory of Open Access Journals (Sweden)

    E. Ydrefors

    2012-01-01

    Full Text Available Neutrinos from supernovae constitute important probes of both the currently unknown supernova mechanisms and of neutrino properties. Reliable information about the nuclear responses to supernova neutrinos is therefore crucial. In this work, we compute the cross sections for the charged-current neutrino-nucleus scattering off the even-even molybdenum isotopes. The nuclear responses to supernova neutrinos are subsequently calculated by folding the cross sections with a Fermi-Dirac distribution.

  10. K+-nucleus interaction

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1984-01-01

    The K + -nucleus system is reviewed and comparison with data is made. The principal conclusions are that the theoretical uncertainties in relating the K + -nucleus interaction to the K + -nucleon interaction are very small and hence the positive kaon makes an excellent probe of the nucleus. It is suggested that this particle may be more sensitive to non-nucleonic degrees of freedom (especially quarks) than classical probes

  11. Microscopic model of nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Harvey, B.G.

    1986-04-01

    The collision of two nuclei is treated as a collection of collisions between the nucleons of the projectile and those of the target nucleus. The primary projectile fragments contain only those nucleons that did not undergo a collision. The inclusive and coincidence cross sections result from the decay of the excited primary fragments. 15 refs., 5 figs

  12. Nucleus Ruber of Actinopterygians.

    Science.gov (United States)

    Nakayama, Tomoya; Miyajima, Satoshi; Nishino, Hirotaka; Narita, Junya; Abe, Hideki; Yamamoto, Naoyuki

    2016-01-01

    Nucleus ruber is known as an important supraspinal center that controls forelimb movements in tetrapods, and the rubral homologue may serve similar functions in fishes (motor control of pectoral fin). However, two apparently different structures have been identified as 'nucleus ruber' in actinopterygians. One is nucleus ruber of Goldstein (1905) (NRg), and the other nucleus ruber of Nieuwenhuys and Pouwels (1983) (NRnp). It remains unclear whether one of these nuclei (or perhaps both) is homologous to tetrapod nucleus ruber. To resolve this issue from a phylogenetic point of view, we have investigated the distribution of tegmental neurons retrogradely labeled from the spinal cord in eight actinopterygian species. We also investigated the presence/absence of the two nuclei with Nissl- or Bodian-stained brain section series of an additional 28 actinopterygian species by comparing the morphological features of candidate rubral neurons with those of neurons revealed by the tracer studies. Based on these analyses, the NRg was identified in all actinopterygians investigated in the present study, while the NRnp appears to be absent in basal actinopterygians. The phylogenetic distribution pattern indicates that the NRg is the more likely homologue of nucleus ruber, and the NRnp may be a derived nucleus that emerged during the course of actinopterygian evolution. © 2016 S. Karger AG, Basel.

  13. Description of nuclear structure and cross sections for nucleon-nucleus scattering on the basis of effective Skyrme forces

    International Nuclear Information System (INIS)

    Kuprikov, V. I.; Pilipenko, V. V.; Soznik, A. P.; Tarasov, V. N.; Shlyakhov, N. A.

    2009-01-01

    The possibility of constructing such new versions of effective nucleon-nucleon forces that would make it possible to describe simultaneously the cross sections for nucleon-nucleus scattering and quantities characterizing nuclear matter and the structure of finite even-even nuclei is investigated on the basis of a microscopic nucleon-nucleus optical potential that is calculated by using effective Skyrme interaction. A procedure for optimizing the parameters of Skyrme forces by employing fits to specific angular distributions for neutron-nucleus scattering and by simultaneously testing the features of nuclear matter, the binding energy of the target nucleus, and its proton root-mean-square radius is proposed. A number of versions of modified Skyrme forces that ensure a reasonable description of both nucleon-nucleus scattering and the properties of nuclear structure are found on the basis of this procedure.

  14. Deconfinement of quarks and gluons in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    2011-01-01

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals the anomalies. They were predicted as the signals of the deconfinement phase transition and observed by NA49 collaboration in Pb+Pb collisions at the CERN SPS. This indicates the onset of the deconfinement in central nucleus-nucleus collisions at about 30 AGeV.

  15. Diffractive ''semioptical'' model for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Musulmanbekov, Zh.Zh.

    1979-01-01

    Diffraction Glauber theory for nucleus-nucleus collisions is considered in approximation when the initial nucleus interacts as a whole with nucleons of the target nucleus. Such an approach, being intermediate between precise Glauber theory and its optical limit, essentially simplifies numerical calculations and gives a good agreement with experiments as well. (author)

  16. The atomic nucleus as a target

    International Nuclear Information System (INIS)

    Strugalski, Z.; Pawlak, T.

    1981-01-01

    The purpose of this article is to characterize the atomic nucleus used as a target in hadron-nucleus collision experiments. The atomic nucleus can be treated as a lens-shaped ''slab'' of nuclear matter. Such ''slab'' should be characterized by the nuclear matter layer thickness at any impact parameter, by its average thickness, and by its maximal thickness. Parameters characterizing atomic nuclei as targets are given for the elements: 6 12 C, 7 14 N, 8 16 O, 9 19 F, 10 20 Ne, 13 27 Al, 14 28 Si, 16 32 S, 18 40 Ar, 24 52 Cr, 26 54 Fe, 27 59 Co, 29 64 Cu, 30 65 Zn, 32 73 Ge, 35 80 Br, 47 100 Ag, 53 127 I, 54 131 Xe, 73 181 Ta, 74 184 W, 79 197 Au, 82 207 Pb, 92 -- 238 U [ru

  17. Deformation and shape coexistence in medium mass nuclei

    International Nuclear Information System (INIS)

    Meyer, R.A.

    1985-01-01

    Emerging evidence for deformed structures in medium mass nuclei is reviewed. Included in this review are both nuclei that are ground state symmetric rotors and vibrational nuclei where there are deformed structures at excited energies (shape coexistence). For the first time, Nilsson configurations in odd-odd nuclei within the region of deformation are identified. Shape coexistence in nuclei that abut the medium mass region of deformation is also examined. Recent establishment of a four-particle, four-hole intruder band in the double subshell closure nucleus 96 Zr 56 is presented and its relation to the nuclear vibron model is discussed. Special attention is given to the N=59 nuclei where new data have led to the reanalysis of 97 Sr and 99 Zr and the presence of the [404 9/2] hole intruder state as isomers in these nuclei. The low energy levels of the N=59 nuclei from Z=38 to 50 are compared with recent quadrupole-phonon model calculations that can describe their transition from near-rotational to single closed shell nuclei. The odd-odd N=59 nuclei are discussed in the context of coexisting shape isomers based on the (p[303 5/2]n[404 9/2])2 - configuration. Ongoing in-beam (t,p conversion-electron) multiparameter measurements that have led to the determination of monopole matrix elements for even-even 42 Mo nuclei are presented, and these are compared with initial estimates using IBA-2 calculations that allow mixing of normal and cross subshell excitations. Lastly, evidence for the neutron-proton 3 S 1 force's influence on the level structure of these nuclei is discussed within the context of recent quadrupole-phonon model calculations. (Auth.)

  18. Structural dynamics of the cell nucleus

    Science.gov (United States)

    Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832

  19. Dissipation in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Santanu Pal

    1984-01-01

    This paper deals with the mechanism of one- and two-body dissipations in nucleus-nucleus collisions. The average energy transferred to nuclear excitations is calculated using a time-dependent density matrix approach with lowest-order approximations. Considering the nuclei as Fermi gases, and using a gaussian-type NN interaction as the basic perturbation, simplified expressions are obtained for energy dissipations. These expressions are quite instructive to follow a number of interesting aspects of one- and two-body dissipations. It is theoretically observed that the memory time for the two-body dissipation is significantly smaller than that of one-body dissipation. A threshold-type dependence of the transferred energy on the relative velocity between the two nuclei is also observed. This threshold velocity is found to be related with the intrinsic nucleon kinetic energy for two-body dissipation and with the nuclear size for the one-body case. This observation further suggests that the total dissipated energy is shared between the two nuclei approximately in the ratio of their masses. The physical origin of these observations is also explained. Numerical calculations further illustrate some characteristic features of one- and two-body dissipations. (orig.)

  20. High energy nucleus-nucleus scattering and matter radius of unstable nucleus

    International Nuclear Information System (INIS)

    Sato, H.; Okuhara, Y.

    1985-07-01

    The interaction cross sections of high energy nucleus-nucleus scattering have been studied with the Glauber Model and Hartree-Fock like variational calculation for the nuclear structure. It is found that the experimental interaction cross sections of the light unstable nucleus-stable nucleus scatterings measured by INS-LBL collaboration are well reproduceable. (author)

  1. Particle correlations in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Nagamiya, Sh.

    1981-01-01

    Particle correlations in proton-nucleus and nucleus-nucleus collisions at energies of 1-2 GeV/nucleon are investigated. The problems of measurement of the mean free path lambda of protons inside the nucleus and the interaction radius of nucleus-nucleus collisions is considered. The value of lambda has been determined in two-proton coincidence experiment in proton-nucleus interaction at 800 MeV. The observed value of lambda is slightly longer than the expected from free nucleon-nucleon collisions. Some preliminary results on proton emission beyond free nucleon-nucleon kinemaics are given

  2. Some experimental results of the investigation of hadron-nucleus and nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Azimov, S.A.; Gulamov, K.G.; Chernov, G.M.

    1978-01-01

    Recent experimental data on the hadron-nucleus and nucleus-nucleus inelastic interactions are analyzed. A particular attention is paid to the description of the leading hadron spectra and of the spectra of nucleon recoils in hadron-nucleus interactions. Some of the results of the experimental studies of correlations between secondary particles are discussed. This discussion demonstrates that an analysis of the multiparticle phenomena is very promising regarding the discrimination between the different models for the hadron-nucleus and nucleus-nucleus interactions. It is pointed out that the actual mechanism of the hadron-nucleus and nucleus-nucleus interactions is a rather complex one and can be described comprehensively by none of the existing models

  3. Multifragmentation in peripheral nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Trautmann, W.; Adloff, J.C.; Bouissou, P.; Hubele, J.; Imme, G.; Iori, I.; Kreutz, P.; Leray, S.; Lindenstruth, V.; Liu, Z.; Lynen, U.; Meijer, R.J.; Milkau, U.; Moroni, A.; Mueller, W.F.J.; Ngo, C.; Ogilvie, C.A.; Pochodzalla, J.; Raciti, G.; Rudolf, G.; Schuettauf, A.; Stuttge, L.

    1993-10-01

    The complete fragmentation of highly excited nuclear systems into fragments of intermediate mass is observed in heavy-ion reactions at relativistic bombarding energies in the range of several hundreds of MeV per nucleon. Similar features are found for peripheral collisions between heavy nuclei and for more central collisions between a heavy and a light nucleus. The partition space explored in multifragment decays is well described by the statistical multifragmentation models. The expansion before breakup is confirmed by the analysis of the measured fragment energies of ternary events in their own rest frame. Collective radial flow is confined to rather small values in these peripheral-type reactions. Many conceptually different models seem to be capable of reproducing the charge correlations measured for the multifragment decays. (orig.)

  4. Antiproton-nucleus interaction

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1984-01-01

    Several facets of antinucleon-nucleus interactions are explored. The topics treated are: coherent interactions, production of unusual states and particles in the nuclear medium, and the creation of extreme states of matter by antimatter annihilation. It is found that temperatures of the magnitude necessary to achieve the predicted quark-gluon phase transition are obtained. 20 references

  5. Nucleus accumbens and impulsivity

    NARCIS (Netherlands)

    Basar, K.; Sesia, T.; Groenewegen, H.J.; Steinbusch, H.W.; Visser-vandewalle, V.; Temel, Y.

    2010-01-01

    The multifaceted concept of impulsivity implies that different impulsivity aspects, mediated by different neural processes, influence behavior at different levels. The nucleus accumbens (NAc) is a key component of the neural processes regulating impulsivity. In this review, we discuss the findings

  6. Quasi-elastic shadowing in nucleus-nucleus elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dymarz, R; Malecki, A [Institute of Nuclear Physics, Krakow (Poland); Gluski, K [Institute of Nuclear Research, Warsaw (Poland); Picchi, P [Turin Univ. (Italy). Ist. di Fisica; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica)

    1979-01-06

    The complete evaluation of the Glauber multiple-scattering series for nucleus-nucleus collisions is a very difficult task and that is why various approximate formulae were proposed. In this work some of these approximations are discussed.

  7. Mechanisms of High Energy Hadron-Nucleus and Nucleus-Nucleus Collision Processes

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1994-01-01

    Mechanisms of high energy hadron-nucleus and nucleus-nucleus collision processes are depicted qualitatively, as prompted experimentally. In hadron-nucleus collisions the interaction of the incident hadron in intranuclear matter is localized in small cylindrical volume, with the radius as large as the strong interaction range is, centered on the hadron course in the nucleus. The nucleon emission is induced by the hadron in its passing through the nucleus; particles are produced via intermediate objects produced in 2 → 2 endoergic reactions of the hadron and its successors with downstream nucleons. In nucleus-nucleus collisions, the outcome of the reaction appears as the composition of statistically independent hadron-nucleus collision outcomes at various impact parameters. Observable effects supporting such mechanisms are discussed. 51 refs

  8. Laser spectroscopy probes the nucleus

    International Nuclear Information System (INIS)

    Griffith, J.; Billowes, J.

    1998-01-01

    Extremely sensitive optical measurements are shedding new light on the shape and size of nuclei, and the properties of nuclear matter far from stability. Of the 7000 or so isotopes known to nuclear physicists, less than 270 are stable. In general isotopes become more and more unstable as we move away from the so-called valley of stability, and therefore become more difficult to study in experiments. The tests of the theory also become more demanding. Laser spectroscopy is one of the techniques that is helping to explore the properties of these isotopes and improve our understanding of the forces inside the nucleus. High-resolution laser spectroscopy of short-lived radioactive atoms now makes it possible to measure the nuclear charge radius of many elements, including many isotopes far from stability. The method can reveal fine details of the sizes, shapes and structures of nuclei. In addition, laser spectroscopy is making significant contributions to our understanding of the nuclear force in unstable nuclei with unusual, or extreme, proton-neutron ratios. In this article the authors discuss the latest advances in studying heavy nuclei. (author)

  9. Theoretical interpretation of medium energy nucleon nucleus inelastic scattering

    International Nuclear Information System (INIS)

    Lagrange, Christian

    1970-06-01

    A theoretical study is made of the medium energy nucleon-nucleus inelastic scattering (direct interaction), by applying the distorted wave Born approximation such as can be deduced from the paired equation method. It is applied to the interpretation of the inelastic scattering of 12 MeV protons by 63 Cu; this leads us to make use of different sets of wave functions to describe the various states of the target nucleus. We analyze the nature of these states and the shape of the nucleon-nucleus interaction potential, and we compare the results with those obtained from other theoretical and experimental work. (author) [fr

  10. Study of Relativistic Nucleus - Nucleus Collisions

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to survey the reaction mechanisms involved in the collision of 60~GeV/nucleon and 200~GeV/nucleon light ions ($^{16}$0 and $^{32}$S provided by a new GSI-LBL injector) with different nuclei, to determine the stopping power of nuclear matter and to search for evidence of the formation of quark matter by comparison to hadron-nucleus reactions at the same incident energies. \\\\ The experimental set-up consists of a 2 m Streamer Chamber in the Vertex Magnet used to detect all the charged particles emerging from the interaction as well as the neutral strange particles that decay inside the chamber. The high energy of the forward-going particles are detected by four sets of calorimeters. A highly segmented Photon Position Detector (PPD) backed up by a 240 segment Ring Calorimeter will cover one unit of rapidity around mid-rapidity. An Intermediate Calorimeter will cover the rest of the forward phase space except for the region around beam rapidity, where a Veto Calorimeter will detect be...

  11. Photofission of Even-Even Nuclei Near the Threshold; Photofission des Noyaux Pair-Pair au Voisinage du Seuil; 0424 041e 0422 041e 0414 0415 041b 0415 041d 0418 0415 0427 0415 0422 041d 041e - 0427 0415 0422 041d 042b 0425 042f 0414 0415 0420 0412 0411 041b 0418 0417 0418 041f 041e 0420 041e 0413 0410 ; Fotofision de los Nucleos Par-Par Cerca del Umbral

    Energy Technology Data Exchange (ETDEWEB)

    Rabotnov, N. S.; Smirenkin, G. N.; Soldatov, A. C.; Usachev, L. N. [Fiziko-Energeticheskij Institut, Obninsk, SSSR (Russian Federation); Kapica, S. P.; Cipenjuk, I. Ju.M. [Institut Fizicheskih Problem, Moskva, SSSR (Russian Federation)

    1965-07-15

    exceed 3 to 3.5%. Of the even-even fissionable nuclei investigated, Pu{sup 240} shows the effect of ''quadrupole'' fission most clearly and Th{sup 232} least. The results of the measurements may be used to assess the relationship of the partial cross-sections of photoabsorption in heavy nuclei. The question of the parity of the ground state of Pu{sup 239} is discussed in the context of the results of measurements of the angular distributions of Pu{sup 239} photofission fragments exhibiting a change in the anisotropy sign in accordance with the predictions of the theory for channels with K = 1/2 and 3/2. (author) [French] Les auteurs indiquent les resultats qu'ils ont obtenus en mesurant la distribution angulaire des fragments formes dans la photofission de {sup 238}U, {sup 232}Th, {sup 240}Pu et {sup 239}Pu; les mesures ont ete faites a l'aide d'un faisceau gamma de rayonnement de freinage. Comme source de rayons gamma ils ont utilise le microtron de 12 MeV de l'Institut de physique de l'Academie des sciences de l'URSS. Grace a l'intensite du rayonnement emis, il a ete possible de mesurer les distributions angulaires dans la region des energies gamma a E{sub max} < 6 MeV, qui revet un interet particulier et n'a pas encore ete etudiee. Les recherches ont porte sur les gammes d'energies ci-apres: 5,2 a 9,2 MeV pour {sup 238}U; 5,4 a 6,9 MeV pour {sup 2}'3{sup 2}Th; 5,4 a 7,9 MeV pour {sup 240}Pu; 5,4 a 7,9 MeV pour {sup 239}Pu, Le memoire indique les resultats de la mesure des distributions angulaires dans la photofission de {sup 238}U et {sup 232}Th par rayons gamma provenant de la reaction {sup 19}F(p, {alpha}{gamma}){sup 16}O. Comme source de rayons gamma on a employe une cible epaisse en CaF{sub 2} exposee a des protons de 1,45 MeV. Ces mesures ont permis d'etablir, conformement a la plupart des experiences anterieures, mais contrairement aux donnees obtenues par Lazareva et al. ainsi que par Forknian et Johansson, que dans le domaine d'energie E Less

  12. Interacting gluon model for hadron-nucleus and nucleus-nucleus collisions in the central rapidity region

    International Nuclear Information System (INIS)

    Fowler, G.N.; Navarra, F.S.; Plumer, M.; Lawrence Berkeley Laboratory, Nuclear Science Division, Berkeley, California 94720); Vourdas, A.; Weiner, R.M.

    1989-01-01

    The interacting gluon model developed to describe the inelasticity distribution in hadron-nucleon collisions has been generalized and applied to hadron-nucleus and nucleus-nucleus interactions. Leading particle spectra and energy distributions in hadron-nucleus and nucleus-nucleus collisions are calculated

  13. Nucleus-nucleus collision as superposition of nucleon-nucleus collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus. (orig.)

  14. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Badyal, S.K.; Basova, E.S.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bradnova, V.; Bubnov, V.I.; Cai, X.; Chasnikov, I.Y.; Chen, G.M.; Chernova, L.P.; Chernyavsky, M.M.; Dhamija, S.; Chenawi, K.El; Felea, D.; Feng, S.Q.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Gheata, A.; Gheata, M.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.K.; Henjes, U.; Jakobsson, B.; Kanygina, E.K.; Karabova, M.; Kharlamov, S.P.; Kovalenko, A.D.; Krasnov, S.A.; Kumar, V.; Larionova, V.G.; Li, Y.X.; Liu, L.S.; Lokanathan, S.; Lord, J.J.; Lukicheva, N.S.; Lu, Y.; Luo, S.B.; Mangotra, L.K.; Manhas, I.; Mittra, I.S.; Musaeva, A.K.; Nasyrov, S.Z.; Navotny, V.S.; Nystrand, J.; Otterlund, I.; Peresadko, N.G.; Qian, W.Y.; Qin, Y.M.; Raniwala, R.; Rao, N.K.; Roeper, M.; Rusakova, V.V.; Saidkhanov, N.; Salmanova, N.A.; Seitimbetov, A.M.; Sethi, R.; Singh, B.; Skelding, D.; Soderstrem, K.; Stenlund, E.; Svechnikova, L.N.; Svensson, T.; Tawfik, A.M.; Tothova, M.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.I.; Vashisht, Vani; Vokal, S.; Vrlakova, J.; Wang, H.Q.; Wang, X.R.; Weng, Z.Q.; Wilkes, R.J.; Yang, C.B.; Yin, Z.B.; Yu, L.Z.; Zhang, D.H.; Zheng, P.Y.; Zhokhova, S.I.; Zhou, D.C.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus

  15. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, G I; Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Badyal, S K; Basova, E S; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Y; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; Chenawi, K El; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Roeper, M; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Sethi, R; Singh, B; Skelding, D; Soderstrem, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, Vani; Vokal, S; Vrlakova, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-03-01

    Angular distributions of charged particles produced in {sup 16}O and {sup 32}S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b{sub NA}, that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus.

  16. The imaginary part of the nucleus - nucleus optical potential

    International Nuclear Information System (INIS)

    Phatak, S.C.; Sinha, B.

    1978-01-01

    The contribution to the imaginary nucleus - nucleus optical potential has been estimated by evaluating the energy - conserving seocond-order term in the perturbation series. The incoming nuclear field is supposed to excite nucleons in a nucleus in this calculation and the nuclear excitations are approximated by particle-hole excitations in a Fermi gas. The resulting imaginary potential compares favourably with phenomenological potentials. (author)

  17. Global features of nucleus-nucleus collisions in ultrarelativistic domain

    International Nuclear Information System (INIS)

    Savina, M.V.; Shmatov, S.V.; Slavin, N.V.; Zarubin, P.I.

    1998-01-01

    HIJING generator simulation of nucleus-nucleus collisions at ultrarelativistic energies is presented. It is shown that the global characteristics of nucleus-nucleus collisions, such as distribution of a charged multiplicity, total and electromagnetic transverse energy over pseudorapidity are rather sensitive to some predictions of models of high-exited nuclear medium formation, namely parton energy losses in dense nuclear matter. These losses result in appearance of a broad maximum in global variable distributions over pseudorapidity. The most profound of this effect occurs at central heavy ion collisions at LHC energy

  18. Higgs-boson production in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider

  19. Higgs-Boson Production in Nucleus-Nucleus Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  20. Gross and Fine Structure of Pion Production Excitation Functions in {bold {ital p}}-Nucleus and Nucleus-Nucleus Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsson, B.; Berg, M.; Carlen, L.; Elmer, R.; Fokin, A.; Ghetti, R.; Martensson, J.; Noren, B.; Oskarsson, A.; Whitlow, H.J. [Department of Physics, University of Lund, Lund (Sweden); Ekstroem, C.; Ericsson, G.; Romanski, J.; van Veldhuizen, E.J.; Westerberg, L. [The Svedberg Laboratory and Department of Neutron Physics, University of Uppsala, Uppsala (Sweden); Julien, J. [Centre d`Etudes Nucleaires, Saclay (France); Skeppstedt, O. [Department of Physics, Chalmers Institute of Technology, Gothenburg (Sweden); Nyboe, K.; Thorsteinsen, T.F.; Amirelmi, S. [Department of Physics, University of Bergen, Bergen (Norway); Guttormsen, M.; Lo/vho/iden, G. [Department of Physics, University of Oslo, Oslo (Norway); Bellini, V.; Palazzolo, F.; Sperduto, M.L. [Istituto Nazionale di Fisica Nucleare/Laboratorio Nazionale del Sud, University of Catania, Catania (Italy); Bondorf, J.P.; Mishustin, I. [Niels Bohr Institute, Copenhagen (Denmark); Avdeichikov, V. [Joint Institute for Nuclear Research, Dubna (Russia); Lozhkin, O.V.; Murin, Y. [V.G. Khlopin Radium Institute, St.Petersburg (Russia)

    1997-05-01

    Slow ramping of the CELSIUS storage ring has been utilized to measure the yield of charged pions in proton and heavy ion induced collisions with continuously varying beam energy. Boltzmann-Uehling-Uhlenbeck predictions, including Fermi momenta of nucleons in nuclei, follow the general shape of the p-nucleus excitation functions quite well except for a general overestimation of the backward emission. For heavy ion reactions the calculated yield also falls off faster with decreasing beam energy than the data. No statistically significant narrow resonances are observed. {copyright} {ital 1997} {ital The American Physical Society}

  1. A plausible picture of high-energy proton-nucleus collisions

    International Nuclear Information System (INIS)

    Kim, C.O.

    1976-01-01

    Results experimentally obtained from jets of E(p)=10-10 3 GeV in nuclear emulsion show that the target nucleus in proton-nucleus collisions seems to present ''limiting fragmentation''. In the same energy range, proton-nucleus collisions resemble closely proton-proton collisions and asymmetric shape of rapidities is only caused by the break-up products of heavy targets [fr

  2. Direct and resonance processes of nucleus disintegration by hadrons at intermediate energies (Doppler effect)

    International Nuclear Information System (INIS)

    Balashov, V.V.; Dolinov, V.K.; Korotkikh, V.L.; Lanskoj, D.E.

    1986-01-01

    The possibilities to use coincidence method of scattered particle and daughter nucleus γ-quantum in A+a → a'+b+B[Jπ) B[Jπ) → B(J'π')+γ reaction with doppler line shape measurement to study nucleus disintegration mechanism are investigated. The main idea of the method resides in the fact that if B* state lifetime is small as compared to nucleus slowing-down time in target substance, all changes in emitted particle distributions are directly manifested in respective changes of Doppler line shape corresponding to γ-transition B[Jπ) → γ+B(J'π') in a daughter nucleus. It is concluded that investigation into Doppler line shape may become sensitive method of studying angular distribution of nucleus disintegration products and in solving problem on correlation between direct and resonance processes of nuclei disinegration

  3. Formation of proton-fragments in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Bazarov, E.Kh.; Olimov, K.; Petrov, V.I.; Lutpullaev, S.L.

    2006-01-01

    resonances by the highly bound few nucleon systems. This phenomenon, showing up stronger at relatively small nuclei, is interpreted by the presence of the short time correlations of intranuclear nucleons. The more detailed analysis of 16 Op interactions at 3.25 A GeV/s showed that the structure observed at energy spectrum of protons in the range T ≅ 70-90 MeV in the oxygen rest frame is due to the decay of two-nucleon (deuteron-like) system as a result of its absorption of the slow pion. The universal singularity was found out in the momentum spectrum of protons flying forward in the rest frame of fragmenting nucleus, expressed by an independence of mechanism of formation of these protons (excluding the 'evaporated' protons) from the initial energy and the type of target-nucleus. The shape of the momentum spectrum of protons flying to the forward hemi-sphere in the rest frame of fragmenting nucleus does not depend on degree of nucleus excitation, which characterizes the extent of the intranuclear cascade. The existence of strong correlation between the shape of the momentum spectrum of proton-fragments, especially the slow ones, and the degree of excitation of the fragmenting nucleus was shown. (author)

  4. Scaling phenomenon in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Wong, C.Y.; Blankenbecler, R.

    1980-01-01

    New scaling variables for proton and pion production in relativistic nucleus-nucleus collisions are introduced which are the generalizations of the Feynmann scaling variable. They allow a simple description of the cross sections at forward and backward angles. 2 figures

  5. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Khan, F.; Townsend, L.W.

    1993-12-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies

  6. Model for nucleus-nucleus, hadron-nucleus and hadron-proton multiplicity distributions

    International Nuclear Information System (INIS)

    Singh, C.P.; Shyam, M.; Tuli, S.K.

    1986-07-01

    A model relating hadron-proton, hadron-nucleus and nucleus-nucleus multiplicity distributions is proposed and some interesting consequences are derived. The values of the parameters are the same for all the processes and are given by the QCD hypothesis of ''universal'' hadronic multiplicities which are found to be asymptotically independent of target and beam in hadronic and current induced reactions in particle physics. (author)

  7. Electric and magnetic dipole transitions from broad s-wave neutron resonance in even-even sd-shell nuclei

    International Nuclear Information System (INIS)

    Kitazawa, H.; Igashira, M.; Shimizu, M.; Muto, K.; Oda, T.; Achiha, Y.; Lee, Y.; Mukai, N.

    1992-01-01

    Observations have been performed for electromagnetic transitions from the broad s-wave neutron resonances at 658 keV in 24 Mg, at 180 keV in 28 Si, and at 103 keV in 32 S. Capture gamma rays were measured with an anti-Compton NaI(Tl) detector, using a neutron time-of-flight technique. E1 and M1 transitions from those resonances to low-lying states with a strong single-particle character were found. The deduced partial radiative widths for E1 transition are in excellent agreement with the Lane-Mughabghab valence-capture model calculations taking the neutron effective charge, -Ze/A. Moreover, it is shown that essential features of the observed E1 and M1 transitions can be well explained by assuming a configuration-mixing wave function, Ψ i (1/2 + )=a(0 + direct-product 1/2 + )+b(1 + direct-product 1/2 + )+c(1 + direct-product 3/2 + ), for each resonance. The M1 transition strengths are compared also with more detailed shell model calculations in the model space of full (sd) n configurations, using the Wildenthal effective interaction

  8. The Hartree-Fock approximation for s-d shell even-even nuclei with N different of Z

    International Nuclear Information System (INIS)

    Oliveira, P.C. de.

    1981-02-01

    Using the Hartree-Fock approximation method for 22 Ne, 26 Mg and 30 Si nuclei with different kinds of two-body interactions, the electric quadrupole moments and projected energy levels, of angular momentum J=0,2,4,6..., are determined. The Peierls-Yoccoz projection m ethod is used to determine the wave function with well-defined angular momentum. A comparison is made, with the experimental results and the ones obtained by other authors. (Author) [pt

  9. Study of neutron shell structure of even-even 40-56Ca isotopes by the dispersive optical model

    International Nuclear Information System (INIS)

    Bespalova, O.V.; Boboshin, I.N.; Varlamov, V.V.; Ermakova, T.A.; Ishkhanov, B.S.; Romanovskij, E.A.; Spasskaya, T.I.; Timokhina, T.P.

    2005-01-01

    The single-particle energies and occupation probabilities of the bound neutron states in 40,42,44,46,48 Ca isotopes were obtained by the joint evaluation of the stripping and pick-up reaction data. The results were analyzed by the dispersive optical model and a good agreement was achieved. The dispersive optical potential was extrapolated to unstable 50,52,54,56 Ca nuclei. The calculated single-particle energies of the bound neutron states in unstable Ca isotopes were compared with the nuclear shell-model calculations, which predicted new magic number N = 34 for nuclei with Z = 20 [ru

  10. The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ghumman, S. S. [Department of Physics, Sant Longowal Institute of Engineering and Technology (Deemed University), Longowal, Sangrur-148106, Punjab, India s-ghumman@yahoo.com (India)

    2015-08-28

    The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.

  11. Low-lying magnetic dipole strength distribution in the γ-soft even-even 130-136Ba

    International Nuclear Information System (INIS)

    Guliyev, E.; Ertugral, F.; Kuliev, A.A.

    2006-01-01

    In this study the scissors mode 1 + states are systematically investigated within the rotational invariant Quasiparticle Random Phase Approximation (QRPA) for 130-136 Ba isotopes. We consider the 1 + vibrations generated by the isovector spin-spin interactions and the isoscalar and isovector quadrupole-type separable forces restoring the broken symmetry by a deformed mean field according to A.A. Kuliev et al. (Int. J. Mod. Phys. E 9, 249 (2000)). It has been shown that the restoration of the broken rotational symmetry of the Hamiltonian essentially decreases the B(M1) value of the low-lying 1 + states and increases the collectivization of the scissors mode excitations in the spectroscopic energy region. The agreement between the calculated mean excitation energies as well as the summed B(M1) value of the scissors mode excitations and the available experimental data of 134 Ba and 136 Ba is rather good. A destructive interference between the orbit and spin part of the M1 strength has been found for barium isotopes near the shell closer. For all the nuclei under investigation, the low-lying M1 transitions have ΔK=1 character as it is the case for the well-deformed nuclei. (orig.)

  12. Calculations of the Low-Lying Structures in the Even-Even Nd/Sm/Gd/Dy Isotopes

    Science.gov (United States)

    Lee, Su Youn; Lee, J. H.; Lee, Young Jun

    2018-05-01

    The nuclear structure of deformed nuclei has been studied using the interacting boson model (IBM). In this study, energy levels and E2 transition probabilities were determined for even nuclei in the Nd/Sm/Gd/Dy chains which have a transition characteristic between the rotational, SU(3) and vibrational, U(5) limits. The structure of the nuclei exhibits a slight breaking of the SU(3) symmetry in the direction of U(5), and therefore, we add the d-boson number operator n d , which is the main term of the U(5) symmetric Hamiltonian, to the SU(3) Hamiltonian of the IBM. The calculated results for low-lying energy levels and E2 transition rates in Nd/Sm/Gd/Dy isotopes are in reasonably good agreement with known experimental results.

  13. Neutron densities and the single particle structure of several even-even nuclei from 40Ca to 208Pb

    International Nuclear Information System (INIS)

    Ray, L.; Hodgson, P.E.

    1979-01-01

    Previously developed techniques which sum the squares of proton single particle wave functions to obtain nuclear charge densities are applied to the study of neutron distributions in /sup 40,48/Ca, /sup 58,64/Ni, /sup 116,124/Sn, and 208 Pb by comparing to those neutron densities deduced from 800 MeV proton elastic scattering data. The proton and neutron single particle wave functions are derived from a one-body, nonlocal Woods-Saxon binding potential whose parameters are adjusted to give the experimental single particle energies. Empirical spectroscopic factors determine the appropriate occupation probabilities for the single particle levels near the Fermi surface. Proper attention is given to nonorthogonality problems and to the removal of the spurious center-of-mass motion. These semiphenomenological neutron densities are compared to the predictions of the density matrix expansion variant of Hartree-Fock theory and to densities which are empirically deduced from recent 800 MeV polarized proton elastic scattering data. These ''experimental'' neutron distributions are obtained from approximate second order Kerman, McManus, and Thaler optical potential analyses using essentially ''model independent'' neutron densities. Qualitatively good agreement is obtained between the semiphenomenological neutron densities computed here, the density matrix expansion predictions, and the empirical results

  14. Microscopic study of low-lying yrast spectra and deformation systematics of even-even barium isotopes

    International Nuclear Information System (INIS)

    Sarswat, S.P.; Bharti, Arun; Khosa, S.K.

    1996-01-01

    The yrast spectra has been obtained in the variation-after-projection framework using pairing-plus-quadrupole- quadrupole model for the two body interaction. Besides the low-lying yrast spectra, the calculated values of intrinsic quadrupole moments of some of the barium isotopes i.e. 124-134 Ba are presented

  15. Shape changes in 101Pd

    International Nuclear Information System (INIS)

    Dinesh, S.; Carmel Vigila Bai, G.M.; Santhosh Kumar, S.; Anusha, B.

    2001-01-01

    In heavy ion collision compound nuclei can be formed with high excitation energies and with very high angular momenta. Most of these emphasize and discuss the structure effects, yrast traps etc. The spin degree of freedom inherently involves deformation and structural or shape changes. The shape of a nucleus should be very sensitive to the increase of its temperature. The increasing temperature affects the occupations of the single particle levels near the Fermi energy are investigated

  16. The intercalatus nucleus of Staderini.

    Science.gov (United States)

    Cascella, Marco

    2016-01-01

    Rutilio Staderini was one of the leading Italian anatomists of the twentieth century, together with some scientists, such as Giulio Chiarugi, Giovanni Vitali, and others. He was also a member of a new generation of anatomists. They had continued the tradition of the most famous Italian scientists, which started from the Renaissance up until the nineteenth century. Although he carried out important studies of neuroanatomy and comparative anatomy, as well as embryology, his name is rarely remembered by most medical historians. His name is linked to the nucleus he discovered: the Staderini nucleus or intercalated nucleus, a collection of nerve cells in the medulla oblongata located lateral to the hypoglossal nucleus. This article focuses on the biography of the neuroanatomist as well as the nucleus that carries his name and his other research, especially on comparative anatomy and embryology.

  17. Qualitative analysis neurons in the adult human dentate nucleus

    Directory of Open Access Journals (Sweden)

    Marić Dušica

    2012-01-01

    Full Text Available Although many relevant findings regarding to the morphology and cytoarchitectural development of the dentate nucleus have been presented so far, very little qualitative information has been collected on neuronal morphology in the adult human dentate nucleus. The neurons were labelled by Golgi staining from thirty human cerebella, obtained from medico-legal forensic autopsies of adult human bodies and free of significant brain pathology. The human dentate neurons were qualitatively analyzed and these cells were classified into two main classes: the small and the large multipolar neurons. Considering the shape of the cell body, number of the primary dendrites, shape of the dendritic tree and their position within the dentate nucleus, three subclasses of the large multipolar neurons have been recognized. The classification of neurons from the human dentate nucleus has been qualitatively confirmed in fetuses and premature infants. This study represents the first qualitative analysis and classification of the large multipolar neurons in the dentate nucleus of the adult human.

  18. Formation of light particles in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Penionzhkevich, Yu.

    1993-01-01

    The principal experimental results on the yield of the light charged particles in nucleus-nucleus collisions at the low and intermediate energies are reviewed. Inclusive spectra of light particles and their coincidences with the characteristic KX-rays, γ-rays, neutrons, projectile-like fragments, other light particles, fission fragments, and evaporation residues are analyzed. The main theoretical models used for the description of the light particle formation are briefly outlined together with their merits and shortcomings. The unsolved problems of fast light particle formation, in particular, and of nucleus-nucleus interaction dynamics, on the whole, are discussed with the outlooks of new experiments able to clear up some of these problems. (author) 144 refs., 40 figs., 2 tabs

  19. Nucleus-nucleus interactions in the transition energy regime

    International Nuclear Information System (INIS)

    Volant, C.

    1985-02-01

    There are at least two ways for studying large interactions in nucleus-nucleus collisions. One way is to use the method of angular correlations between fission fragments. The aim of the experiments presented here was to make a survey on the role of the various experimental parameters. In that respect three targets have been studied and different projectiles and bombarding energies have been used. Results are presented and discussed

  20. Diabatic interaction potential for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Lukasiak, A.

    1984-01-01

    Within a refined method for the construction of diabatic states allowing for the treatment of the full spin-orbit coupling, characteristic features of the diabatic potential for nucleus-nucleus collisions are investigated. Approximately 90% of the strong repulsion results from diabatic particle-hole excitations, while only 10% is due to compression. The diabatic interaction potential describes a physical situation intermediate between adiabatic and sudden approximations. (orig.)

  1. K+ nucleus total cross sections

    International Nuclear Information System (INIS)

    Sawafta, R.

    1990-01-01

    The scattering of K + mesons from nuclei has attracted considerable interest in the last few years. The K + holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K + is capable of probing the entire volume of the nucleus. Single scattering of the K + with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K + is used to compare the nucleon in the nucleus with a free nucleon

  2. Nucleus of Comet IRAS-Araki-Alcock (1983 VII)

    International Nuclear Information System (INIS)

    Sekanina, Z.

    1988-01-01

    Optical, radar, infrared, UV, and microwave-continuum observations of Comet IRAS-Araki-Alcok were obtained in May 1983, the week of the comet's close approach to earth. The comet has a nucleus dimension and a rotation period which are similar to those of Comet Halley, but a different morphological signature (a persisting sunward fan-shaped coma). Time variations are noted in the projected nucleus cross section. Results suggest significant limb-darkening effects in the relevant domains of radio waves, and that the comet's interior must be extremely cold. It is found that the thermal-infrared fluxes from the inner coma of the comet are dominated by the nucleus. 63 references

  3. Nucleus-size pinning for determination of nucleation free-energy barriers and nucleus geometry

    Science.gov (United States)

    Sharma, Abhishek K.; Escobedo, Fernando A.

    2018-05-01

    Classical Nucleation Theory (CNT) has recently been used in conjunction with a seeding approach to simulate nucleation phenomena at small-to-moderate supersaturation conditions when large free-energy barriers ensue. In this study, the conventional seeding approach [J. R. Espinosa et al., J. Chem. Phys. 144, 034501 (2016)] is improved by a novel, more robust method to estimate nucleation barriers. Inspired by the interfacial pinning approach [U. R. Pedersen, J. Chem. Phys. 139, 104102 (2013)] used before to determine conditions where two phases coexist, the seed of the incipient phase is pinned to a preselected size to iteratively drive the system toward the conditions where the seed becomes a critical nucleus. The proposed technique is first validated by estimating the critical nucleation conditions for the disorder-to-order transition in hard spheres and then applied to simulate and characterize the highly non-trivial (prolate) morphology of the critical crystal nucleus in hard gyrobifastigia. A generalization of CNT is used to account for nucleus asphericity and predict nucleation free-energy barriers for gyrobifastigia. These predictions of nuclei shape and barriers are validated by independent umbrella sampling calculations.

  4. Mechanical stability of the cell nucleus: roles played by the cytoskeleton in nuclear deformation and strain recovery.

    Science.gov (United States)

    Wang, Xian; Liu, Haijiao; Zhu, Min; Cao, Changhong; Xu, Zhensong; Tsatskis, Yonit; Lau, Kimberly; Kuok, Chikin; Filleter, Tobin; McNeill, Helen; Simmons, Craig A; Hopyan, Sevan; Sun, Yu

    2018-05-18

    Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformation increases the risk of disrupting the nuclear envelope's integrity and causing DNA damage. Mechanical stability of the nucleus defines its capability of maintaining nuclear shape by minimizing nuclear deformation and recovering strain when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin. © 2018. Published by The Company of Biologists Ltd.

  5. Alteration of Paramecium candatum germinal nucleus morphology after UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, S.I. (Leningradskij Gosudarstvennyj Univ. (USSR). Biologicheskij Nauchno-Issledovatel' skij Inst.)

    1982-09-01

    A study was made on morphologic changes of micronucleus (Mi) after whole-body ultraviolet (UV) irradiation of paramecia as well as after local irradiation of this nucleus or the area of macronucleus (Ma). The whole-body irradiation of its Ma part leads to generative nucleus growth in sizes and chromatin structure change, which is expressed in occurence of large chromatin bodies. Aftereffects of local action on Mi for viable descendants are expressed in nucleus size transformation (usually in reduction), gaining ''comet-shaped'' form and probably in reduction of dna amount. Irradiation of Ma and total effect on cell cause Mi changes of reversible character. All morphologic changes of Mi after local ultraviolet irradiation are conserved in descendants and are not photoreactivated. Possible reasons for this phenomenon are discussed. The results obtained make it possible to speak about different mechanisms of action on Mi in the case of local and whole-body UV irradiation of cell. The effect of irradiated Ma on generative nucleus, but not direct damage of this nucleus is the reason for Mi morphologic reconstruction after whole-body action on paramecium.

  6. Dimuon enhancement in nucleus-nucleus ultrarelativistic interactions

    International Nuclear Information System (INIS)

    Bordalo, Paula; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Bohrani, A.; Boldea, V.; Bussiere, A.; Capelli, L.; Caponi, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constans, N.; Constantinescu, S.; Contardo, D.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Ducroux, L.; Espagnon, B.; Fargeix, J.; Ferreira, R.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Gorodetzky, P.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkanyan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kossakowski, R.; Kurepin, A.B.; Landau, G.; Le Bornec, Y.; Lourenco, C.; Luquin, L.; Macciotta, P.; Mac Cormick, M.; Mandry, R.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Monteno, M.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Ropotar, I.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Sitta, M.; Soave, C.; Sonderegger, P.; Tarrago, X.; Topilskaya, N.S.; Usai, G.L.; Varela, J.; Vercellin, E.; Villatte, L.

    1999-01-01

    The study of muon pairs in the mass region 1.5 μμ 2 in 450 GeV/c p-A, 200 GeV/nucleon S-U and 158 GeV/nucleon Pb-Pb collisions is presented. In p-A interactions, the dimuon signal mass spectra are well described by a superposition of Drell-Yan and charmed meson semi-leptonic decay contributions, in agreement with previous experiments when considering a linear A dependence. In nucleus-nucleus reactions, taking only into account these two physical ingredients, a dimuon enhancement both with increasing A·B and centrality is observed

  7. The momentum distribution inside nucleus

    International Nuclear Information System (INIS)

    Fujita, T.

    1985-01-01

    Discussions are made on several reactions which can determine the momentum distribution inside nucleus. The first reaction discussed is the high energy heavy ion collision. This reaction involves many nucleons which interact strongly. Therefore, one must be careful for any possible final state interactions. The expression for the single particle momentum distribution is given. And it can be said that the expression is consistent with the description of the energetic neutrons from muon capture by heavy nucleus. The best way to determine the momentum distribution would be the lepton-nucleus scattering since it does not involve the strong interaction in the initial channel. Another reaction discussed is the backward proton production, which is governed by quite complicated reaction processes. Therefore, the determination of the momentum distribution is only indirect. Noverthless, it is found that this reaction presents a very interesting and important information on the momentum distribution. (Aoki, K.)

  8. Nucleus management with irrigating vectis

    Directory of Open Access Journals (Sweden)

    Srinivasan Aravind

    2009-01-01

    Full Text Available The main objective in modern cataract surgery is to achieve a better unaided visual acuity with rapid post-surgical recovery and minimal surgery-related complications. Early visual rehabilitation and better unaided vision can be achieved only by reducing the incision size. In manual small incision cataract surgery (MSICS, incision is between 5.5 to 7 mm. Once the nucleus is prolapsed into the anterior chamber, it can be extracted through the tunnel. Nucleus extraction with an irrigating vectis is a very simple technique, which combines mechanical and hydrostatic forces to express out the nucleus. This technique is time-tested with good results and more than 95% of nuclei in MSICS are extracted in this way offering all the merits of phacoemulsification with the added benefits of having wider applicability, better safety, shorter learning curve and lower cost.

  9. Formin' actin in the nucleus.

    Science.gov (United States)

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  10. Anti p-nucleus interaction

    International Nuclear Information System (INIS)

    Peng, J.C.

    1986-05-01

    Status and future prospects of antiproton-nucleus scattering experiments are presented. These scattering experiments were conducted at antiproton beam momentums of 300 and 600 MeV/c on target nuclei of 6 Li, 12 C, 16 O, 18 O, 40 Ca, 48 Ca, and 208 Pb. Antiproton-proton reactions investigated antiproton-nucleus bound or resonant states in antiproton reactions with d, 6 Li, 12 C, 63 Cu, and 209 Bi. Inelastic scattering experiments investigated the spin-isospin dependence of the NN interactions. 19 refs., 1 fig., 1 tab

  11. Functionalized active-nucleus complex sensor

    Science.gov (United States)

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  12. Energy density functional analysis of shape coexistence in 44S

    International Nuclear Information System (INIS)

    Li, Z. P.; Yao, J. M.; Vretenar, D.; Nikšić, T.; Meng, J.

    2012-01-01

    The structure of low-energy collective states in the neutron-rich nucleus 44 S is analyzed using a microscopic collective Hamiltonian model based on energy density functionals (EDFs). The calculated triaxial energy map, low-energy spectrum and corresponding probability distributions indicate a coexistence of prolate and oblate shapes in this nucleus.

  13. Shape coexistence in 153Ho

    Science.gov (United States)

    Pramanik, Dibyadyuti; Sarkar, S.; Saha Sarkar, M.; Bisoi, Abhijit; Ray, Sudatta; Dasgupta, Shinjinee; Chakraborty, A.; Krishichayan, Kshetri, Ritesh; Ray, Indrani; Ganguly, S.; Pradhan, M. K.; Ray Basu, M.; Raut, R.; Ganguly, G.; Ghugre, S. S.; Sinha, A. K.; Basu, S. K.; Bhattacharya, S.; Mukherjee, A.; Banerjee, P.; Goswami, A.

    2016-08-01

    The high-spin states in 153Ho have been studied by the La57(20Ne139,6 n ) reaction at a projectile energy of 139 MeV at the Variable Energy Cyclotron Centre (VECC), Kolkata, India, utilizing an earlier campaign of the Indian National Gamma Array (INGA) setup. Data from γ -γ coincidence, directional correlation, and polarization measurements have been analyzed to assign and confirm the spins and parities of the levels. We have suggested a few additions and revisions of the reported level scheme of 153Ho. The RF-γ time difference spectra have been useful to confirm the half-life of an isomer in this nucleus. From the comparison of experimental and theoretical results, it is found that there are definite indications of shape coexistence in this nucleus. The experimental and calculated lifetimes of several isomers have been compared to follow the coexistence and evolution of shape with increasing spin.

  14. The nucleus as a laboratory

    International Nuclear Information System (INIS)

    Blin-Stoyle, R.J.

    1979-01-01

    The nucleus is a complicated many-body structure whose properties when carefully studied can frequently give important information about the underlying elementary particle interactions. This article reviews progress in research of this kind over the last twenty-five years. (author)

  15. The pion-nucleus interaction

    International Nuclear Information System (INIS)

    Afnan, I.R.

    1977-04-01

    The latest developments in the construction of pion-nucleus optical potential are presented and a comparison with the latest data on π+ 12 C is made. The suggested mechanisms for the (p,π) reaction are discussed with a comparison of the theoretical results with experiment. (Author)

  16. Single nucleon emission in relativistic nucleus-nucleus reactions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors

  17. Kaonic nuclei and kaon-nucleus interactions

    CERN Document Server

    Ikuta, K; Masutani, K

    2002-01-01

    Although kaonic atoms provide valuable information concerning the K sup - -nucleus interaction at low energies, they cannot fully determine the K sup - - nucleus optical potential. We demonstrate that K sup - nuclear bound states, if they exist, can be useful in investigating the K sup - -nucleus interaction, especially in the interior of the nucleus. In order to show this possibility, we calculate the double differential cross sections for (K sup - , P) using the Green function method. (author)

  18. Color oscillations of nucleons in a nucleus

    International Nuclear Information System (INIS)

    Petrov, V.A.; Smirnov, A.Yu.

    1987-01-01

    Possibility of nucleus description as an object consisting of quarks and gluons is considered. A model of two-nucleon interaction in a nucleus is presented and analytical expressions for the nucleus nucleon ground state wave functions and also for nuclear nucleon structure functions are obtained. The carried out analysis shows that the suggested model permits to express the nucleus structure functions at quark level only by means of nucleon and Δ-isobaric degrees of freedom

  19. Altered morphology of the nucleus accumbens in persistent developmental stuttering.

    Science.gov (United States)

    Neef, Nicole E; Bütfering, Christoph; Auer, Tibor; Metzger, F Luise; Euler, Harald A; Frahm, Jens; Paulus, Walter; Sommer, Martin

    2018-03-01

    Neuroimaging studies in persistent developmental stuttering repeatedly report altered basal ganglia functions. Together with thalamus and cerebellum, these structures mediate sensorimotor functions and thus represent a plausible link between stuttering and neuroanatomy. However, stuttering is a complex, multifactorial disorder. Besides sensorimotor functions, emotional and social-motivational factors constitute major aspects of the disorder. Here, we investigated cortical and subcortical gray matter regions to study whether persistent developmental stuttering is also linked to alterations of limbic structures. The study included 33 right-handed participants who stutter and 34 right-handed control participants matched for sex, age, and education. Structural images were acquired using magnetic resonance imaging to estimate volumetric characteristics of the nucleus accumbens, hippocampus, amygdala, pallidum, putamen, caudate nucleus, and thalamus. Volumetric comparisons and vertex-based shape comparisons revealed structural differences. The right nucleus accumbens was larger in participants who stutter compared to controls. Recent theories of basal ganglia functions suggest that the nucleus accumbens is a motivation-to-movement interface. A speaker intends to reach communicative goals, but stuttering can derail these efforts. It is therefore highly plausible to find alterations in the motivation-to-movement interface in stuttering. While behavioral studies of stuttering sought to find links between the limbic and sensorimotor system, we provide the first neuroimaging evidence of alterations in the limbic system. Thus, our findings might initialize a unified neurobiological framework of persistent developmental stuttering that integrates sensorimotor and social-motivational neuroanatomical circuitries. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. MRI findings and diagnostic value of intervertebral disc free pulpiform nucleus in lumbar intraspinal

    International Nuclear Information System (INIS)

    Cai Jinhua; Fang Huasheng; Li Dongyuan

    2011-01-01

    Objective: To determine the MRI findings and diagnostic value of intervertebral disc free pulpiform nucleus in lumbar intraspinal. Methods: MRI findings of 46 cases with free pulpiform nucleus proved by surgery and pathology were retrospectively analyzed, and compared with pathological results. Results: Of all cases, the free pulpiform nucleus located at extradural foreside. 9 cases of the free pulpiform nucleus dissociated upon in spinal, 32 cases moved down and 5 cases removed backwards. Of 46 patients, 22 cases of the free pulpiform nucleus inhabited right, 17 cases left and 7 cases in midline. The lesion was single in all case with round, oval or anormaly shape. The free pulpiform nucleus had the same equal or low signal with provided intervertebral disc. The calcification, if any, presented as low -signal area. Among these 11 cases which were injected with GD-DTPA had no enhancement in the center, mild and high enhancement at periphery. Among all cases, MRI diagnosis were agreed with the pathology results with diagnosis accuracy of 100%. Conclusion: MRI can clearly demonstrate the intervertebral disc free pulpiform nucleus in lumbar intraspinal and make a correct diagnosis. Therefore, MRI is the best choice for diagnosis of intervertebral disc free pulpiform nucleus in lumbar intraspinal. (authors)

  1. Hummingbird Comet Nucleus Analysis Mission

    Science.gov (United States)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  2. Lasers probe the atomic nucleus

    International Nuclear Information System (INIS)

    Eastham, D.

    1986-01-01

    The article is contained in a booklet on the Revised Nuffield Advanced Physics Course, and concentrates on two techniques to illustrate how lasers probe the atomic nucleus. Both techniques employ resonance fluorescence spectroscopy for obtaining atomic transition energies. The first uses lasers to determine the change in the nuclear charge radius with isotope, the second concerns the use of lasers for ultrasensitive detection of isotopes and elements. The application of lasers in resonance ionization spectroscopy and proton decay is also described. (UK)

  3. What is a cometary nucleus

    International Nuclear Information System (INIS)

    Lyttleton, R.A.

    1977-01-01

    Descriptions of actual observed comets associate a range of ill-defined meanings with the term nucleus. In recent years use of the word has been even further extended (or contracted) to mean a postulated solid core constituting the permanent element of a comet and necessarily of size far below resolution and measurability. It is maintained by the postulants that this core, acted upon by solar radiation and the solar wind, is the fount and origin of practically the whole great variety of observed cometary physical phenomena. In order that this micro-nucleus shall 'explain' observed properties, it is endowed with a large number of entirely ad-hoc qualities specially devised to produce the very effects it is wished to explain, but the processes so proffered rely almost entirely on purely verbal asseverations that they will work in the way required. No source or mechanism of origin for the imaginary micro-nucleus, of which there would need to be myriads, is in sight, nor can the assumption explain the dynamical properties of long-period comets and their association with the galactic plane and the solar apex. The postulate is in any event ruled out by Occam's principle as having no basis in fact or theory and is not required to explain the observed properties of comets. The large number of additional special assumptions introduced mean that the structure as a whole does not constitute a proper scientific theory. (author)

  4. Angular momentum and incident-energy dependence of nucleus-nucleus interaction

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1991-01-01

    The purpose of this paper is to understand intuitively the origin of the angular momentum and incident-energy dependence of the nucleus-nucleus interaction on the basis of the totally- antisymmetrized many-body theory. With the aim of understanding the structure of the nucleus-nucleus interaction, we show first that the nucleus-nucleus interaction can be written by the use of the density-distribution function and the phase-space distribution function instead of using the many-body wave function itself. And we show that the structure change of the density-distribution function with the increase of the angular momentum causes the angular momentum dependence of the nucleus-nucleus interaction and that the incident-energy dependence of the nucleus-nucleus interaction originates from the structure change of the phase-space distribution function

  5. Nuclear shapes: from earliest ideas to multiple shape coexisting structures

    International Nuclear Information System (INIS)

    Heyde, K; Wood, J L

    2016-01-01

    The concept of the atomic nucleus being characterized by an intrinsic property such as shape came as a result of high precision hyperfine studies in the field of atomic physics, which indicated a non-spherical nuclear charge distribution. Herein, we describe the various steps taken through ingenious experimentation and bold theoretical suggestions that mapped the way for later work in the early 50s by Aage Bohr, Ben Mottelson and James Rainwater. We lay out a long and winding road that marked, in the period of 50s to 70s, the way shell-model and collective-model concepts were reconciled. A rapid increase in both accelerator and detection methods (70s towards the early 2000s) opened new vistas into nuclear shapes, and their coexistence, in various regions of the nuclear mass table. Next, we outline a possible unified view of nuclear shapes: emphasizing decisive steps taken as well as questions remaining, next to the theoretical efforts that could result in an emerging understanding of nuclear shapes, building on the nucleus considered as a strongly interacting system of nucleons as the microscopic starting point. (invited comment)

  6. Classifiers for centrality determination in proton-nucleus and nucleus-nucleus collisions

    Directory of Open Access Journals (Sweden)

    Altsybeev Igor

    2017-01-01

    Full Text Available Centrality, as a geometrical property of the collision, is crucial for the physical interpretation of nucleus-nucleus and proton-nucleus experimental data. However, it cannot be directly accessed in event-by-event data analysis. Common methods for centrality estimation in A-A and p-A collisions usually rely on a single detector (either on the signal in zero-degree calorimeters or on the multiplicity in some semi-central rapidity range. In the present work, we made an attempt to develop an approach for centrality determination that is based on machine-learning techniques and utilizes information from several detector subsystems simultaneously. Different event classifiers are suggested and evaluated for their selectivity power in terms of the number of nucleons-participants and the impact parameter of the collision. Finer centrality resolution may allow to reduce impact from so-called volume fluctuations on physical observables being studied in heavy-ion experiments like ALICE at the LHC and fixed target experiment NA61/SHINE on SPS.

  7. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica (Brazil)

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  8. Strangeness production in nucleus-nucleus collisions: An experimental review

    International Nuclear Information System (INIS)

    Odyniec, G.

    1990-12-01

    In experiments with oxygen (60 and 200 GeV/N) and sulphur (200 GeV/N) ions at CERNSPS, large energy densities of the order of 2--3 GeV/fm 3 have been observed, which according to QCD calculations, satisfy necessary conditions for the formation of a quark gluon plasma (QGP) phase. Under such conditions, colour would no longer be confined to hadronic dimensions, and quarks and gluons will propagate freely throughout an extended volume. Somehow lower energy densities, of the order of 0.7--1 GeV/fm 3 , were observed in AGS experiments with 15 GeV/N silicon beams and heavy targets. These energy densities might be adequate for investigations of the pre-equilibrium stage, during which the momentum space distribution has been degradated from its initial value but is not yet thermal. First experimental results, available now, show promise of seeing signs of a new phase of matter. In this review the current status of the selective experimental results on strange-particle production, which are relevant to equilibration and QGP formation in nucleus-nucleus collisions, is presented

  9. Applying the elastic model for various nucleus-nucleus fusion

    International Nuclear Information System (INIS)

    HASSAN, G.S.; RAGAB, H.S.; SEDDEEK, M.K.

    2000-01-01

    The Elastic Model of two free parameters m,d given by Scalia has been used for wider energy regions to fit the available experimental data for potential barriers and cross sections. In order to generalize Scalia's formula in both sub- and above-barrier regions, we calculated m, d for pairs rather than those given by Scalia and compared the calculated cross sections with the experimental data. This makes a generalization of the Elastic Model in describing fusion process. On the other hand, Scalia's range of interacting systems was 24 ≤ A ≤194 where A is the compound nucleus mass number. Our extension of that model includes an example of the pairs of A larger than his final limit aiming to make it as a general formula for any type of reactants: light, intermediate or heavy systems. A significant point is the comparison of Elastic Model calculations with the well known methods studying complete fusion and compound nucleus formation, namely with the resultants of using Proximity potential with either Sharp or Smooth cut-off approximations

  10. Quarkonia Photoproduction at Nucleus Colliders

    International Nuclear Information System (INIS)

    D'Enterria, David

    2008-01-01

    Exclusive photoproduction of heavy quarkonia in high-energy ultraperipheral ion-ion interactions (γ A →V A, where V = J/ψ, Y and the nucleus A remains intact) offers a useful means to constrain the small-x nuclear gluon density. We discuss preliminary results on J/ψ photoproduction in Au-Au collisions at RHIC [D. d'Enterria [PHENIX Collaboration], Proceeds. Quark Matter'05, (arXiv:nucl-ex/0601001)], as well as full simulation-reconstruction studies of photo-produced Y in Pb-Pb interactions at the LHC [D. d'Enterria (ed.) et al. [CMS Collaboration], J. Phys. G. 34 2307 (2007)

  11. Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users.

    Science.gov (United States)

    Gilman, Jodi M; Kuster, John K; Lee, Sang; Lee, Myung Joo; Kim, Byoung Woo; Makris, Nikos; van der Kouwe, Andre; Blood, Anne J; Breiter, Hans C

    2014-04-16

    Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.

  12. New results on nuclear multifragmentation in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies

    International Nuclear Information System (INIS)

    Besliu, Calin; Jipa, Alexandru; Iliescu, Bogdan; Felea, Daniel

    2002-01-01

    Some new aspects on the multifragmentation processes in nucleus-nucleus and nucleon-nucleus collisions at high energies are discussed in this work. Experimental data obtained in international collaborations (for example, MULTI Collaboration with KEK Tsukuba (Japan) and SKM 200 Collaboration with JINR Dubna (Russia)) are used to discuss new mechanisms in the target nucleus fragmentation. Correlations with stopping power, participant region size and energy density are included. Comparisons of the experimental results with the predictions of a phenomenological geometric model of intermediate mass fragment multiplicity, caloric curves and angular distributions are also presented. These results are used for global description of the multifragmentation processes in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies. The size of the participant region and the average intermediate mass fragments multiplicity are taken into consideration using the free space probability. A few correlations between the deposited energy in the participant region and stability state of the intermediate mass fragments are presented in this work. The importance of the collision geometry in the multifragmentation processes is stressed. The results suggest different time moments for the incident nucleus fragmentation and for the target nucleus fragmentation. The associated entropies are distinct. (authors)

  13. Notochord to Nucleus Pulposus Transition.

    Science.gov (United States)

    Lawson, Lisa; Harfe, Brian D

    2015-10-01

    A tissue that commonly deteriorates in older vertebrates is the intervertebral disc, which is located between the vertebrae. Age-related changes in the intervertebral discs are thought to cause most cases of back pain. Back pain affects more than half of people over the age of 65, and the treatment of back pain costs 50-100 billion dollars per year in the USA. The normal intervertebral disc is composed of three distinct regions: a thick outer ring of fibrous cartilage called the annulus fibrosus, a gel-like material that is surrounded by the annulus fibrosus called the nucleus pulposus, and superior and inferior cartilaginous end plates. The nucleus pulposus has been shown to be critical for disc health and function. Damage to this structure often leads to disc disease. Recent reports have demonstrated that the embryonic notochord, a rod-like structure present in the midline of vertebrate embryos, gives rise to all cell types found in adult nuclei pulposi. The mechanism responsible for the transformation of the notochord into nuclei pulposi is unknown. In this review, we discuss potential molecular and physical mechanisms that may be responsible for the notochord to nuclei pulposi transition.

  14. Development of axial asymmetry in the neutron-rich nucleus {sup 110}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H., E-mail: hiroshi@ribf.riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamaguchi, K.; Odahara, A. [Department of Physics, Osaka University, Machikaneyama-machi 1-1, Osaka 560-0043 Toyonaka (Japan); Sumikama, T. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Nishimura, S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yoshinaga, K. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Li, Z. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Miyashita, Y. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Sato, K. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Prochniak, L. [Institute of Physics, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 1, 20-031 Lublin (Poland); Baba, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Berryman, J.S. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Blasi, N. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Bracco, A.; Camera, F. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Dipartimento di Fisica, Universita di Milano, via Celoria 16, I-20133 Milano (Italy); Chiba, J. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Doornenbal, P. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Go, S.; Hashimoto, T.; Hayakawa, S. [Center for Nuclear Study, University of Tokyo, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan)

    2011-10-19

    The neutron-rich nucleus {sup 110}Mo has been investigated by means of {gamma}-ray spectroscopy following the {beta}-decay of {sup 110}Nb, produced using in-flight fission of a {sup 238}U beam at 345 MeV/nucleon at the RIBF facility. In addition to the ground-band members reported previously, spectroscopic information on the low-lying levels of the quasi-{gamma} band built on the second 2{sup +} state at 494 keV has been obtained for the first time. The experimental finding of the second 2{sup +} state being lower than the yrast 4{sup +} level suggests that axially-asymmetric {gamma} softness is substantially enhanced in this nucleus. The experimental results are compared with model calculations based on the general Bohr Hamiltonian method. The systematics of the low-lying levels in even-even A{approx}110 nuclei is discussed in comparison with that in the neutron-rich A{approx}190 region, by introducing the quantity E{sub S}/E(2{sub 1}{sup +}), E{sub S}=E(2{sub 2}{sup +})-E(4{sub 1}{sup +}), as a global signature of the structural evolution involving axial asymmetry.

  15. Molecular orbitals of nucleons in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von.

    1986-05-01

    A formalism for the dynamical treatment of the molecular orbitals of valence nucleons in nucleus-nucleus collisions at low bombarding energy is developed with the use of the coupled-reaction-channel (CRC) method. The Coriolis coupling effects as well as the finite mass effects of the nucleon are taken into account in this model, of rotating molecular orbitals, RMO. First, the validity of the concept is examined from the view point of the multi-step processes in a standard CRC calculation for systems containing two identical [core] nuclei. The calculations show strong CRC effects particularly in the case where the mixing of different l-parity orbitals - called hybridization in atomic physics - occurs. Then, the RMO representation for active nucleons is applied to the same systems and compared to the CRC results. Its validity is investigated with respect to the radial motion (adiabaticity) and the rotation of the molecular axis (radial and rotational coupling). Characteristic molecular orbitals of covalent molecules appear as rotationally stable states (K = 1/2) with good adiabaticity. Using the RMO's we obtain a new interpretation of various scattering phenomena. Dynamically induced changes in the effective Q-values (or scaling of energies), dynamically induced moments of inertia and an dynamically induced effective (L · S) interaction are obtained as a result of the molecular orbital formation. Various experimental data on transfer and subbarrier fusion reactions are understood in terms of the RMO's and their adiabatic potentials. Landau-Zener transitions, which strongly depend on the total angular momentum of the system, definitely predict the observation of characteristic changes in the cross sections for the inelastic scattering 13 C( 12 C, 12 C) 13 C* (3.086 MeV, 1/2 + ) with the change of the bombarding energy. (author)

  16. Double folding model of nucleus-nucleus potential: formulae, iteration method and computer code

    International Nuclear Information System (INIS)

    Luk'yanov, K.V.

    2008-01-01

    Method of construction of the nucleus-nucleus double folding potential is described. Iteration procedure for the corresponding integral equation is presented. Computer code and numerical results are presented

  17. Study of various models of nuclear interaction potentials: nucleon-nucleus and nucleus-nucleus systems

    International Nuclear Information System (INIS)

    Ngo, H.

    1984-01-01

    Several models, performed within a mean field theory, are developed for the calculation of nucleon-nucleus interaction potentials. The first part of the thesis deals with the nucleon-nucleus average interaction. It is mainly devoted to the calculation of dynamical corrections to the Hartree-Fock approximation. Two approaches are used: a microscopic model performed in the framework of the nuclear structure approach and a semi-phenomenological one, based on the application of the dispersion relations to the empirical imaginary potential. Both models take into account finite size effects like collectivity or threshold effects which are important at low energy. The Green's function properties are used for both models. The second part of this work is devoted to the interaction potential between two heavy ions. This calculation, which is performed in the framework of the sudden approximation, uses the energy density formalism (Thomas-Fermi approximation). It has been extended to finite temperature. At T=0 the experimental fusion barriers of heavy systems are reproduced within 4%. Their temperature dependence is studied. The proximity scaling is checked and a universal function is obtained at T=0 and at finite temperature. It is found that the proximity theorem is well satisfied on the average. The dispersion around the mean behaviour increases with increasing temperature. At last, P+A* and α+A* interaction potentials are calculated within a double folding model using a schematic effective interaction [fr

  18. Physical meaning of the yields from hadron-nucleon, hadron-nucleus, and nucleus-nucleus collisions observed in experiments

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1995-01-01

    A physical meaning of the outcomes from hadronic and nuclear collision processes at high energies is presented, as prompted experimentally. The fast and slow stages in hadron-nucleus collisions are distinguished. Hadrons are produced via intermediate objects observed in hadron-nucleus collisions. The intermediate objects may be treated as the groups of quarks or the quark bags. 37 refs

  19. WIMP-nucleus scattering in chiral effective theory

    Science.gov (United States)

    Cirigliano, Vincenzo; Graesser, Michael L.; Ovanesyan, Grigory

    2012-10-01

    We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.

  20. Description of inelastic nucleus-nucleus interactions at medium energy using dual parton model

    International Nuclear Information System (INIS)

    Polanski, A.; Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    It is shown that the dual parton model taking into account the processes of diffraction dissociation to the low mass states and finite energy corrections to the asymptotic Abramovski-Gribov-Kancheli cutting rules allows satisfactory description of existing experimental data on hadron-nucleus and nucleus-nucleus interactions at medium energy. (orig.)

  1. Do migrating cells need a nucleus?

    Science.gov (United States)

    Hawkins, Rhoda J

    2018-03-05

    How the nucleus affects cell polarity and migration is unclear. In this issue, Graham et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201706097) show that enucleated cells polarize and migrate in two but not three dimensions and propose that the nucleus is a necessary component of the molecular clutch regulating normal mechanical responses. © 2018 Hawkins.

  2. Prolate non-collective shape- a rare shape phase around Z = 50

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2009-01-01

    The search for rare shape-phase transition in hot and rotating nuclei is one of the very active field in nuclear physics research. According to universally known features of the evolution of equilibrium shapes with temperature and spin, heating a deformed nonrotating nucleus leads to a shape transition from deformed to spherical at a certain temperature. At high temperatures T≅ 2 MeV, the shell effects melt and the nucleus resembles a classical liquid drop. Rotation of the hot nucleus generates an oblate shape rotating noncollectively. But it has been shown by A. Goodman that nuclei with two critical temperatures can rotate with a rare non-collective prolate shape phase which has been caused directly by rotation at angular momentum values around (5-30h) which creates a residual quantum shell effect as shown by A. L. Goodman. Search for such exotic shape-phase around Z = 50 region is the aim of present work. We consider N = 60 isotones 108 Cd, 109 In, 110 Sn

  3. Serotonin projection patterns to the cochlear nucleus.

    Science.gov (United States)

    Thompson, A M; Thompson, G C

    2001-07-13

    The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the

  4. Actomyosin contractility rotates the cell nucleus.

    Science.gov (United States)

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  5. On the formfactor of the imaginary part and its coupling to the real optical potential for the α-nucleus scattering

    International Nuclear Information System (INIS)

    Freindl, L.; Dabrowski, H.; Grotowski, K.; Planeta, R.; Uniwersytet Jagiellonski, Krakow

    1980-01-01

    The model-independent formfactor of the absorptive α-nucleus potential was calculated and compared with model dependent ones. The coupling between the shapes of the real and imaginary potential is discussed. (author)

  6. On the formfactor of the imaginary parts and its coupling to the real optical potential for the α-nucleus scattering

    International Nuclear Information System (INIS)

    Freindl, L.; Dabrowski, H.; Grotowski, K.; Planeta, R.; Uniwersytet Jagiellonski, Krakow

    1979-01-01

    The model independent formfactor of the absorptive α-nucleus potential is calculated and compared with model dependent ones. The coupling between the shapes of the real and the imaginary potential is discussed. (Author)

  7. Shape coexistence in 72Kr at finite angular momentum

    International Nuclear Information System (INIS)

    Almehed, Daniel; Walet, Niels R.

    2004-01-01

    We investigate shape coexistence in a rotating nucleus. We concentrate on the case of 72 Kr which exhibits an interesting interplay between prolate and oblate shaped states as a function of angular momentum. The calculation uses the local harmonic version of the method of self-consistent adiabatic large-amplitude collective motion. We analyse how the collective behaviour of the system changes with angular momentum and we focus on the role of non-axial shapes

  8. Classical gluon production amplitude for nucleus-nucleus collisions:First saturation correction in the projectile

    International Nuclear Information System (INIS)

    Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.

    2015-01-01

    We calculate the classical single-gluon production amplitude in nucleus-nucleus collisions including the first saturation correction in one of the nuclei (the projectile) while keeping multiple-rescattering (saturation) corrections to all orders in the other nucleus (the target). In our approximation only two nucleons interact in the projectile nucleus: the single-gluon production amplitude we calculate is order-g"3 and is leading-order in the atomic number of the projectile, while resumming all order-one saturation corrections in the target nucleus. Our result is the first step towards obtaining an analytic expression for the first projectile saturation correction to the gluon production cross section in nucleus-nucleus collisions.

  9. Strangeness production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions in the dual parton model

    International Nuclear Information System (INIS)

    Moehring, H.; Ranft, J.; Capella, A.; Tran Thanh Van, J.

    1993-01-01

    Λ, bar Λ, and K S 0 production is studied in a Monte Carlo dual parton model for hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions with an SU(3) symmetric sea for chain formation (chain ends) but strangeness suppression in the chain fragmentation process. Additionally, (qq)-(bar q bar q) production from the sea was introduced into the chain formation process with the same probability as for the q→qq branching within the chain decay process. With these assumptions, multiplicity ratios and Feynman-x distributions for strange particles in h-h and multiplicity ratios in heavy ion collisions are reasonably well reproduced

  10. Music and the nucleus accumbens.

    Science.gov (United States)

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  11. Partial inelasticity coefficients of negative pions produced in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    OLIMOV, K.; LUTPULLAEV, S.L.; PETROV, V.I.; OLIMOV, A.K.

    2015-01-01

    New experimental data on the partial inelasticity coefficients of negative pions produced in "1"6Op-collisions at 3.25 A GeV/s, pC-interactions at 4.2 and 9.9 GeV/s, and d,α,C(C)-collisions at 4.2 A GeV/s are presented. It is established that the behavior of partial inelasticity coefficients of pions at intermediate energies (<10 GeV) in hadron-nucleus collisions has a transitional character, reaching the limiting value at ultrahigh energies. It is shown that the mean values of partial inelasticity coefficients of pions produced in nucleus-nucleus collisions decrease with an increase in mass number of the projectile nucleus. (authors)

  12. Neutrino-nucleus collision at intermediate energy

    International Nuclear Information System (INIS)

    Kosmas, T.S.; Oset, E.

    1999-01-01

    Neutrino-nucleus reactions at low and intermediate energy up to E ν = 500 MeV are studied for the most interesting nuclei from an experimental point of view. We focus on neutrino-nucleus cross-sections of semi-inclusive processes, for which recent measurements from radiochemical experiments at LAMPF and KARMEN laboratories are available. The method employed uses the modified Lindhard function for the description of the particle-hole excitations of the final nucleus via a local density approximation. (authors)

  13. The application of a phenomenological model to inelastic nucleus-nucleus interactions for laboratory momenta below 5 GeV/c per nucleon of the incident nucleus

    International Nuclear Information System (INIS)

    Grishin, V.G.; Kladnitskaya, E.N.

    1985-01-01

    A phenomenological model for inelastic nucleus-nucleus interactions at momenta below 5 GeV/c per nucleon is described. Particle interactions inside the interacting nuclei are described by phenomenological models of hadron-nucleus and hadron-nucleon interactions. The Monte-Carlo model provides the kinematic variables for a set of events under study. The comparison of the model inclusive distri-- butions for different particles and nucleus-nucleus interactions agrees well with the experimental data

  14. Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS

    CERN Multimedia

    Klochkov, V; Herve, A E; Kowalski, S; Kaptur, E A; Kowalik, K L; Dominik, W M; Matulewicz, T N; Krasnoperov, A; Feofilov, G; Vinogradov, L; Kovalenko, V; Johnson, S R; Planeta, R J; Rubbia, A; Marton, K; Messerly, B A; Puzovic, J; Bogomilov, M V; Bravar, A; Renfordt, R A E; Deveaux, M; Engel, R R; Grzeszczuk, A; Davis, N; Kuich, M; Lyubushkin, V; Kondratev, V; Kadija, K; Diakonos, F; Slodkowski, M A; Rauch, W H; Pistillo, C; Laszlo, A; Nakadaira, T; Hasegawa, T; Sadovskiy, A; Morozov, S; Petukhov, O; Mathes, H; Roehrich, D; Marcinek, A J; Marino, A D; Grebieszkow, K; Di luise, S; Wlodarczyk, Z; Rybczynski, M A; Wojtaszek-szwarc, A; Nirkko, M C; Sakashita, K; Golubeva, M; Kurepin, A; Manic, D; Kolev, D I; Kisiel, J E; Koziel, M E; Rondio, E; Larsen, D T; Czopowicz, T R; Seyboth, P; Turko, L; Guber, F; Marin, V; Busygina, O; Strikhanov, M; Taranenko, A; Cirkovic, M; Roth, M A; Pulawski, S M; Aduszkiewicz, A M; Bunyatov, S; Vechernin, V; Nagai, Y; Anticic, T; Dynowski, K M; Mackowiak-pawlowska, M K; Stefanek, G; Pavin, M; Fodor, Z P; Nishikawa, K; Tada, M; Blondel, A P P; Stroebele, H W; Posiadala, M Z; Kolesnikov, V; Andronov, E; Zimmerman, E D; Antoniou, N; Majka, Z; Dumarchez, J; Naskret, M; Ivashkin, A; Tsenov, R V; Koziel, M G; Schmidt, K J; Melkumov, G; Popov, B; Panagiotou, A; Richter-was, E M; Morgala, S J; Paolone, V; Damyanova, A; Gazdzicki, M; Unger, M T; Wilczek, A G; Stepaniak, J M; Seryakov, A; Susa, T; Staszel, P P; Brzychczyk, J; Maksiak, B; Tefelski, D B

    2007-01-01

    The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment is a large acceptance hadron spectrometer at the CERN SPS for the study of the hadronic final states produced in interactions of various beam particles (pions, protons, C, S and In) with a variety of fixed targets at the SPS energies. The main components of the current detector were constructed and used by the NA49 experiment. The physics program of NA61/SHINE consists of three main subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2011) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in nucleus-nucleus collisions as well as in p+p a...

  15. K sup + nucleus total cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sawafta, R.

    1990-01-01

    The scattering of K{sup +} mesons from nuclei has attracted considerable interest in the last few years. The K{sup +} holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K{sup +} is capable of probing the entire volume of the nucleus. Single scattering of the K{sup +} with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K{sup +} is used to compare the nucleon in the nucleus with a free nucleon.

  16. The nucleus in Finland - The second report

    International Nuclear Information System (INIS)

    Aurela, Jorma; Korteniemi, Virpi; Halme-Tapanainen, Kristina

    1993-01-01

    The Finnish Nuclear Society (FNS) started the distribution of the Nucleus bulletin at the beginning of 1988. The volume of distribution has been extended since, including today nearly 1,000 persons. Both the English and the Finnish version of the bulletin is sent to various opinion leaders of society, i.e. the members of the parliament, ministries, the media, representatives of industry and other decision-makers of the energy field. After the five-year history of the Nucleus in Finland, it is time to look back and sum up the present status of the Nucleus. This report gives a short summary concerning the present distribution and its efficiency, the experiences gained and the influence of the bulletin in Finland. The first questionnaire was sent in November 1988, and the survey was repeated among the Finnish readers of the Nucleus in autumn 1992. The results of the latter survey are given in this report

  17. Microtubules move the nucleus to quiescence.

    Science.gov (United States)

    Laporte, Damien; Sagot, Isabelle

    2014-01-01

    The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.

  18. Transport of glutathione into the nucleus.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine

    2014-10-01

    The tripeptide thiol glutathione (GSH) is present in the nucleus of plant and animal cells. However, the functions of GSH in the nucleus remain poorly characterised. GSH appears to become sequestered in the nucleus at the early stages of the cell cycle. As part of our search for proteins that may be involved in GSH transport into the nucleus, we studied the functions of the nucleoporin called Alacrima Achalasia aDrenal Insufficiency Neurologic disorder (ALADIN). ALADIN is encoded by the Achalasia-Addisonianism-Alacrimia (AAAS) gene in mammalian cells. Defects in ALADIN promote adrenal disorders and lead to the triple A syndrome in humans. The ALADIN protein localizes to the nuclear envelope in Arabidopsis thaliana and interacts with other components of the nuclear pore complex (NPC). We characterised the functions of the ALADIN protein in an Arabidopsis thaliana T-DNA insertion knockout mutant, which shows slow growth compared to the wild type. Copyright © 2014. Published by Elsevier Inc.

  19. Nuclear physics: Unexpected doubly-magic nucleus

    International Nuclear Information System (INIS)

    Janssens, R.V.F.

    2009-01-01

    Nuclei with a 'magic' number of both protons and neutrons, dubbed doubly magic, are particularly stable. The oxygen isotope 24 O has been found to be one such nucleus - yet it lies just at the limit of stability

  20. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  1. Kaon-nucleus reactions and hypernuclei

    International Nuclear Information System (INIS)

    Dover, C.B.

    1987-01-01

    Recent advances in hypernuclear physics and kaon-nucleus scattering are discussed, with emphasis on the spectroscopy of Λ single particle states in heavy systems, as revealed by the (π + ,K + ) reaction. 26 refs., 8 figs

  2. Consistent evaluations of (n,2n) and (n,np) reaction excitation functions for some even-even isotopes using empirical systematics

    OpenAIRE

    Manokhin, V. N.; 小田野 直光; 長谷川 明

    2001-01-01

    (n,np)反応断面積のしきいエネルギーが(n,2n)反応断面積のしきいエネルギーよりも低い偶々核について、(n,1p)反応と(n,np)反応の両者の断面積の励起関数を矛盾なく評価するアプローチについて論じた。(n,2n)及び(n,np)反応断面積の励起関数の最大値の決定においては、Manokhinの系統式を用いるとともに、(n,2n)及び(n,np)反応のしきいエネルギーの差の質量依存性も考慮した。(n,2n)及び(n,np)反応の励起関数の計算には、Manokhinの系統式によって与えられる規格化された励起関数を用いた。いくつかの核種に対する(n,2n)及び(n,np)反応断面積の評価を行い、本研究における手法が妥当であることを明らかにした。...

  3. Multiphonon K/sup π/+ states in even-even deformed nuclei. II. Calculation of matrix elements of a general Hamiltonian

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Piepenbring, R.

    1978-01-01

    Matrix elements of a general Hamiltonian H in a subspace spanned by collective K/sup π/+ deformed phonons are derived with the help of recursion formulas. Various approximations are discussed both in the fermion space and in the boson space. Careful comparisons are made in the framework of a simple solvable model

  4. Multiphonon states in even-even spherical nuclei. Pt. 2. Calculation of the matrix elements of one and two body operators

    International Nuclear Information System (INIS)

    Piepenbring, R.; Protasov, K.V.; Silvestre-Brac, B.

    1995-01-01

    Matrix elements of one and two body operators, which appear in a general hamiltonian and in electromagnetic transitions are derived in a subspace spanned by multiphonon states. The method is illustrated for a single j-shell, where phonons built with one type of particles are introduced. The eigenvalues obtained within the space spanned by the phonons of lowest angular momentum are compared to those of the full space. In such a method, the Pauli principle is fully and properly taken into account. ((orig.))

  5. Clustering effects in fusion evaporation reactions with light even-even N=Z nuclei. The 24Mg and 28Si cases

    Directory of Open Access Journals (Sweden)

    Morelli L.

    2016-01-01

    Inclusive variables are in general well reproduced by the model. We found clear deviations from the statistical model if we select emission channels involving multiple α particles which are more probable than expected from a purely statistical behavior. Data from 12C+12C reaction have been analyzed in order to study the decay of the Hoyle state of 12C* with two different selections: peripheral binary collisions and 6α decay channel in central events. To continue the investigation on light systems, we have recently measured the 16O+12C reaction at three different beam energies, namely Ebeam = 90, 110 and 130 MeV. Preliminary results are presented.

  6. A special type of neutron-proton pairing interaction and the moments of inertia of some deformed even-even nuclei in the rare earth region

    International Nuclear Information System (INIS)

    Meftunoglu, E.; Gerceklioglu, M.; Erbil, H.H.; Kuliev, A.A.

    1998-01-01

    In this work, the effect of a special type of neutron-proton pairing interaction on the moments of inertia of some deformed nuclei in the rare earth region is investigated. First, making a perturbative approximation, we assume that the form of the equations of the BCS theory and usual Bogolyubov transformations are unchanged. Second, we use a phenomenological method for the strength of this neutron-proton pairing interaction introducing a parameter. Calculations show that this interaction is important for the ground-state moments of inertia and that it could be effectual in other nuclear phenomena. (author)

  7. The correlation between the transverse polarization and transverse momentum of lambda produced in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ye Yunxiu; Zhou Xin; Ji Gang; Su Shufang; Zhu Guohuai

    1996-01-01

    The transverse polarization of lambda produced in relativistic nucleus-nucleus collisions is determined. The effect from the interaction between spin moment and magnetic field is corrected. The near zero transverse polarization and non-correlation between transverse polarization and transverse momentum are obtained and compared to ones obtained from the nucleus-nucleus interactions at lower energies. This comparison shows that the production mechanism of lambdas in the relativistic nucleus-nucleus collisions is different from one in the nucleus-nucleus reactions at lower energies

  8. Polarization and alignment of nucleus fission fragments

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1987-01-01

    Correlation of fragment orientation with orientation axis of fissile nucleus and with n-vector f vector of fragment divergence is considered. Estimations of polarization and alignment of fission fragments of preliminarily oriented nuclei in correlation (with n-vector f recording) and integral (with n-vector f averaging) experiments were conducted. It is shown that high sensitivity of polarization and fragment alignment to the character of nucleus movement at the stage of descent from barrier to rupture point exists

  9. New aspects of the atomic nucleus

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1987-01-01

    We are at last just beginning to identify convincing evidence for what we have long believed, namely that the nucleus is more than the sum of its neutron-proton parts taken pairwise because, for example, a cluster of three nucleons interacts differently from the sum of the interactions of its three pairs; there is an important collectivism in the life of a nucleus even before we ask what its nucleons are doing. (orig./WL)

  10. Testing string dynamics in lepton nucleus reactions

    International Nuclear Information System (INIS)

    Gyulassy, M.; Pluemer, M.

    1989-10-01

    The sensitivity of nuclear attenuation of 10-100 GeV lepton nucleus (ell A) reactions to space-time aspects of hadronization is investigated within the context of the Lund string model. We consider two mechanisms for attenuation in a nucleus: final state cascading and string flip excitations. Implications for the evolution of the energy density in nuclear collisions are discussed. 16 refs., 10 figs

  11. Numerical Simulation of the Kinetic Critical Nucleus

    OpenAIRE

    Sanada, Masaaki; Nishioka, Kazumi; Okada, Masahumi; Maksimov, Igor, L.

    1997-01-01

    Our main interest is to see whether the number density indicates a peak at the kinetically stable critical nucleus due to its kinetical stability. We have numerically calculated the time evolution of the number densities of clusters in the case of water vapor nucleation. We employ the condition in which the difference between the size of the thermodynamic crtitical nucleus and that of the kinetic one is appreciable. The results show that the peak does not appear in the number densities of clu...

  12. Advances in hard nucleus cataract surgery

    Directory of Open Access Journals (Sweden)

    Wei Cui

    2013-11-01

    Full Text Available Security and perfect vision and fewer complications are our goals in cataract surgery, and hard-nucleus cataract surgery is always a difficulty one. Many new studies indicate that micro-incision phacoemulsification in treating hard nucleus cataract is obviously effective. This article reviews the evolution process of hard nuclear cataract surgery, the new progress in the research of artificial intraocular lens for microincision, and analyse advantages and disadvantages of various surgical methods.

  13. Positive parity states in 153Ho and the question of shape coexistence

    International Nuclear Information System (INIS)

    Chakraborty, A.; Ray, Sudatta; Ray, I.; Pradhan, M.K.; Raut, R.; Goswami, A.; Banerjee, P.; Mukherjee, A.; Bhattacharya, S.; Saha Sarkar, M.; Dey, Gautam; Krishichayan; Kshetri, Ritesh; Ganguly, S.; Ray Basu, M.; Ganguly, G.; Ghugre, S.S.; Sinha, A.K.; Basu, S.K.; Sarkar, S.

    2008-01-01

    In the present work the existing level scheme have been extended from the experimental data and studied specifically the positive parity states in 153 Ho theoretically to understand the issue of shape coexistence in this nucleus

  14. Improved Cloud Condensation Nucleus Spectrometer

    Science.gov (United States)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  15. Quark matter formation in high energy nucleus-nucleus collisions - predictions and observations

    International Nuclear Information System (INIS)

    Otterlund, I.

    1983-01-01

    In this talk I give a short summary of the recent discussion around predictions and possible observations of quark-gluon plasma and fireballs in ultrarelativistic nucleus-nucleus collisions. In particular this talk is focused on heavy ion reactions at 200 A GeV. (orig./HSI)

  16. Effective number of inelastically interacting nucleons in rare nucleus-nucleus production processes

    International Nuclear Information System (INIS)

    Korotkikh, V.L.; Lokhtin, I.P.

    1992-01-01

    A model of nucleus-nucleus interaction using one inelastic NN-interaction is suggested for the exclusive production processes with small cross-section. A-dependence nuclear coherent and incoherent production cross-section are predicted. 20 refs.; 4 figs

  17. High density QCD and nucleus-nucleus scattering deeply in the saturation region

    International Nuclear Information System (INIS)

    Kormilitzin, Andrey; Levin, Eugene; Miller, Jeremy S.

    2011-01-01

    In this paper we solve the equations that describe nucleus-nucleus scattering, in high density QCD, in the framework of the BFKL Pomeron Calculus. We found that (i) the contribution of short distances to the opacity for nucleus-nucleus scattering dies at high energies, (ii) the opacity tends to unity at high energy, and (iii) the main contribution that survives comes from soft (long distance) processes for large values of the impact parameter. The corrections to the opacity Ω(Y,b)=1 were calculated and it turns out that they have a completely different form, namely (1-Ω→exp(-Const√(Y))) than the opacity that stems from the Balitsky-Kovchegov equation, which is (1-Ω→exp(-ConstY 2 )). We reproduce the formula for the nucleus-nucleus cross section that is commonly used in the description of nucleus-nucleus scattering, and there is no reason why it should be correct in the Glauber-Gribov approach.

  18. Production of strange and multistrange hadrons in nucleus-nucleus collisions at the SPS

    Czech Academy of Sciences Publication Activity Database

    Antinori, F.; Bakke, H.; Beusch, W.; Staroba, Pavel; Závada, Petr

    1999-01-01

    Roč. 661, - (1999), 130c-139c ISSN 0375-9474 Institutional research plan: CEZ:AV0Z1010920 Keywords : production * nucleus-nucleus collisions * hadrons * strangeness * model predictions Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.088, year: 1999

  19. The mechanism of nuclear energy release in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1998-01-01

    The mechanism of intranuclear energy release in reactions induced by nucleus-nucleus collisions at energies higher than ∼ 0.5 GeV/nucl. is presented - as prompted experimentally. The intranuclear energy release goes through local damages of the colliding nuclei

  20. Study of η-nucleus interaction through the formation of η-nucleus ...

    Indian Academy of Sciences (India)

    Answer to this question will deeply enrich our understanding of -nucleus interaction which is not so well-understood. We review the experimental efforts for the search of -mesic nuclei and describe the physics motivation behind it. We present the description of an experiment for the search of -nucleus bound state using ...

  1. The alteration of Paramecium candatum germinal nucleus morphology after UV irradiation

    International Nuclear Information System (INIS)

    Fokin, S.I.

    1982-01-01

    A study was made on morphologic changes of micronucleus (Mi) after whole-body ultraviolet (UV) irradiation of paramecia as well as after local irradiation of this nucleus or the area of macronucleus (Ma). The whole-body irradiation of its Ma part leads to generative nucleus growth in sizes and chromatin structure change, which is expressed in occurence of large chromatin bodies. Aftereffects of local action on Mi for viaable descendants are expressed in nucleus size transformation (usually in reduction), gaining ''comet-shaped'' form and probably in reduction of dna amount. Irradiation of Ma and total effect on cell cause Mi changes of reversible character. All morphologic changes of Mi after local ultraviolet irradiation are conserved in descendants and are not photoreactivated. Possible reasons for this phenomenon are discussed. The results obtained make it possible to speak about different mechanisms of action on Mi in the case of local and whole-body UV irradiation of cell. The effect of irradiated Ma on generative nucleus, but not direct damage of this nucleus is the reason for Mi morphologic reconstruction after whole-body action on paramecium

  2. Numerical images applied to the spatial technics: the discovery of the Halley's comet nucleus

    International Nuclear Information System (INIS)

    Abergel, A.

    1988-01-01

    For the first time, the solide nucleus of a comet was observed by the 2 soviet spacecraft VEGA on 6 and 9 March 1986. They were followed by the european spacecraft GIOTTO on 14 march. The numerical images transmitted by the 3 spacecraft have been corrected from instrumental degradations and allowed a unique description of the shape and the movement of Halley's comet nucleus. Thus the contours become clearly apparent. Its volume can be described by an ellipsoid which principal axis are equal to 16, 8.2 and 7.5 km: it has an oblate rugby balloon shape. Its rational movement is complicated, but we are able to analyse it with the identification of details seen on the surface at three different moments. The nucleus is greater than expected in the past. It is made of a mixture of water ice and dust, and is covered by a dust dark mantle: it is one of the darkest objects in the solar system. This mantle is not uniform, as shown by the images sent by the 3 spacecraft. They display a spectacular distribution of dust jets emitted by very active regions on the nucleus surface [fr

  3. The nuclear response and the imaginary potential for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Phatak, S.C.; Sinha, B.

    1983-01-01

    The Fermi-gas model is used in this paper to study the nucleus-nucleus collision. The field produced by one of the nuclei is considered to act on nucleons in the other nucleus, which is treated as a Fermi gas of radius R. The imaginary part of the (non-local) nucleus-nucleus potential is then computed by evaluating the energy-conserving second-order term in which the intermediate states are particle-hole excitations produced in the Fermi gas. The equivalent local potential, obtained by using the Perey-Saxon method, is compared with phenomenological imaginary potentials. Later it is shown that, in the limit of small range of non-locality, the imaginary potential can be related to the nuclear response function. With this, one can write the nuclear friction coefficient that is used in phenomenological analyses of heavy-ion collisions in terms of the imaginary potential. (orig.)

  4. The dynamic landscape of the cell nucleus.

    Science.gov (United States)

    Austin, Christopher M; Bellini, Michel

    2010-01-01

    While the cell nucleus was described for the first time almost two centuries ago, our modern view of the nuclear architecture is primarily based on studies from the last two decades. This surprising late start coincides with the development of new, powerful strategies to probe for the spatial organization of nuclear activities in both fixed and live cells. As a result, three major principles have emerged: first, the nucleus is not just a bag filled with nucleic acids and proteins. Rather, many distinct functional domains, including the chromosomes, resides within the confines of the nuclear envelope. Second, all these nuclear domains are highly dynamic, with molecules exchanging rapidly between them and the surrounding nucleoplasm. Finally, the motion of molecules within the nucleoplasm appears to be mostly driven by random diffusion. Here, the emerging roles of several subnuclear domains are discussed in the context of the dynamic functions of the cell nucleus.

  5. Dynamics of hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1981-07-01

    Recent progress in diffraction theory shows that proton-nucleus scattering at nonforward angles is dominated by the interference of waves from two or more bright spots. Analytic formulas based on asymptotic theories of diffraction yield valuable new insights into the scattering and these formulas can be readily extended to illuminate the role of dynamical ingredients, i.e., the nucleon-nucleon amplitudes. The governing parameters of the diffraction and some direct connections between the observed cross sections and the input dynamics are reviewed. New information regarding the nucleon-nucleon parameters based on recent phase shift analyses show some systematic differences from the effective NN amplitudes which produce fits to proton-nucleus diffraction data. Recent progress in understanding the role of Δ-isobars in proton-nucleus dynamics is reviewed. 126 references

  6. Shape coexistence and evolution in 98Sr

    Science.gov (United States)

    Park, J.; Garnsworthy, A. B.; Krücken, R.; Andreoiu, C.; Ball, G. C.; Bender, P. C.; Chester, A.; Close, A.; Finlay, P.; Garrett, P. E.; Glister, J.; Hackman, G.; Hadinia, B.; Leach, K. G.; Rand, E. T.; Sjue, S.; Starosta, K.; Svensson, C. E.; Tardiff, E.

    2016-01-01

    Shape coexistence between the strongly deformed ground state and the weakly deformed 02+ state in 98Sr has been a major topic of interest due to the energy difference of 215 keV, which is the smallest in all even-even nuclei. The electric monopole transition strength ρ2(E 0 ) is an important quantity that can relate the deformation difference and the shape mixing between the two 0+ states, which are admixtures of the vibrational (S) and the rotational (D) states in a simple mixing model. In a β -decay spectroscopy experiment, the experimental ρ2(E 0 ) was measured. A value of 0.053(5) is consistent with the previous measurement and was combined with known electric quadrupole transition strengths B (E 2 ) in calculations of a two-state mixing model. Based on a systematic study on neighboring Kr, Zr, and Mo isotopes, the mixing of the 0+ and 2+ states in 98Sr was determined to be 8.6% and 1.3%, respectively, corresponding to deformation parameters βD=0.38 (1 ) and βS=-0.23 (2 ) . These parameters reproduce experimental transition strengths well except for the 41+→21+ transition, which suggests a smaller D-band deformation for J ≥4 .

  7. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  8. Massive target nuclei as disc-shaped slabs and spherical objects of intranuclear matter in high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Zewislawski, Z.; Strugalski, Z.; Mausa, M.

    1990-01-01

    It has been found experimentally that a definite number of emitted nucleons corresponds to a definite impact parameter in hadron-nucleus collisions. This finding allows one: to treat the massive target nucleus as a piece of intranuclear matter of a definite thickness; to treat a numerous sample of collisions of monoenergetic identical hadrons with the nucleus as collection of interactions of a homogeneous beam of hadrons with disc-shaped slabs of intranuclear matter of definite thicknesses. 17 refs.; 1 fig

  9. Evolution of nuclear shapes at high spins

    International Nuclear Information System (INIS)

    Johnson, N.R.

    1985-01-01

    The dynamic electric quadrupole (E2) moments are a direct reflection of the collective aspects of the nuclear wave functions. For this, Doppler-shift lifetime measurements have been done utilizing primarily the recoil-distance technique. The nuclei with neutron number N approx. 90 possess many interesting properties. These nuclei have very shallow minima in their potential energy surfaces, and thus, are very susceptible to deformation driving influences. It is the evolution of nuclear shapes as a function of spin or rotational frequency for these nuclei that has commanded much interest in the lifetime measurements discussed here. There is growing evidence that many deformed nuclei which have prolate shapes in their ground states conform to triaxial or oblate shapes at higher spins. Since the E2 matrix elements along the yrast line are sensitive indicators of deformation changes, measurements of lifetimes of these states to provide the matrix elements has become the major avenue for tracing the evolving shape of a nucleus at high spin. Of the several nuclei we have studied with N approx. 90, those to be discussed here are /sup 160,161/Yb and 158 Er. In addition, the preliminary, but interesting and surprising results from our recent investigation of the N = 98 nucleus, 172 W are briefly discussed. 14 refs., 5 figs

  10. Shape abnormalities of the striatum in Alzheimer's disease.

    Science.gov (United States)

    de Jong, Laura W; Ferrarini, Luca; van der Grond, Jeroen; Milles, Julien R; Reiber, Johan H C; Westendorp, Rudi G J; Bollen, Edward L E M; Middelkoop, Huub A M; van Buchem, Mark A

    2011-01-01

    Postmortem studies show pathological changes in the striatum in Alzheimer's disease (AD). Here, we examine the surface of the striatum in AD and assess whether changes of the surface are associated with impaired cognitive functioning. The shape of the striatum (n. accumbens, caudate nucleus, and putamen) was compared between 35 AD patients and 35 individuals without cognitive impairment. The striatum was automatically segmented from 3D T1 magnetic resonance images and automatic shape modeling tools (Growing Adaptive Meshes) were applied for morphometrical analysis. Repeated permutation tests were used to identify locations of consistent shape deformities of the striatal surface in AD. Linear regression models, corrected for age, gender, educational level, head size, and total brain parenchymal volume were used to assess the relation between cognitive performance and local surface deformities. In AD patients, differences of shape were observed on the medial head of the caudate nucleus and on the ventral lateral putamen, but not on the accumbens. The head of the caudate nucleus and ventral lateral putamen are characterized by extensive connections with the orbitofrontal and medial temporal cortices. Severity of cognitive impairment was associated with the degree of deformity of the surfaces of the accumbens, rostral medial caudate nucleus, and ventral lateral putamen. These findings provide evidence for the hypothesis that in AD primarily associative and limbic cerebral networks are affected.

  11. Search for shape coexistence in odd - Z rare earth proton emitters

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2015-01-01

    Nuclear shapes are very sensitive to the structural effects and can change with isospin and from one nucleus to its neighbour and in some cases configurations corresponding to different shapes may coexist at similar energies which may arise from intruder excitations. Search for such interesting phenomena of shape coexistence and rapidly changing shapes in the less explored region of rare earth odd Z nuclei from Z = 51 to 75 are the focus of present work

  12. Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated...

    DEFF Research Database (Denmark)

    Vrang, N.; Larsen, P.J.; Mikkelsen, J.D.

    1995-01-01

    Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry......Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry...

  13. Experimental search for compression phenomena in fast nucleus--nucleus collisions

    International Nuclear Information System (INIS)

    Schopper, E.; Baumgardt, H.G.; Obst, E.

    1977-01-01

    The occurrence of compression phenomena and shock waves, connected with the increase of the density of the nuclear matter during the interpenetration of two fast nuclei, are discussed. Current experiments dealing with this problem are reviewed. Before considering the mechanism of the interpenetration of two fast nuclei it may be useful to look at more simple situations, i.e., proton-proton interactions, then to envelop them with nuclear matter, considering proton-nucleus interactions. Only very general features are described, which may give suggestions for the understanding of the nucleus-nucleus impact

  14. TWO-PHOTON PHYSICS IN NUCLEUS-NUCLEUS COLLISIONS AT RHIC

    International Nuclear Information System (INIS)

    Nystrand, J.; Klein, S.

    1998-01-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z 2 up to an energy of ∼ 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented

  15. Two-photon physics in nucleus-nucleus collisions at RHIC

    International Nuclear Information System (INIS)

    Nystrand, J.; Klein, S.

    1998-01-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z 2 up to an energy of ∼ 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented

  16. Future prospects in N-nucleus interactions

    International Nuclear Information System (INIS)

    Moss, J.M.

    1983-01-01

    A detailed examination of two research areas, polarization observables and antiproton-nucleus reactions, which should have near-term future impact on the understanding of the interaction of medium-energy nucleons in nuclei is made. More speculative future experiments employing cooled beams, double spectrometer systems, and large Q-value, low momentum-transfer reactions are also discussed. 25 references, 4 figures

  17. Consequences of hadron-nucleus multiplicity parametrization

    International Nuclear Information System (INIS)

    Singh, C.P.; Shyam, M.

    1986-01-01

    Some interesting consequences are analyzed of a new parametrization for the hadron-nucleus multiplicity distributions and they are compared with the experimental data. Further, it is illustrated how the scaling property for the average multiplicity will be modified and it is found that the experimental data support this behaviour. (orig.)

  18. High energy hadron-nucleus scattering

    International Nuclear Information System (INIS)

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  19. Large philipsite crystal as ferromanganese nodule nucleus

    Digital Repository Service at National Institute of Oceanography (India)

    Ghosh, A.K.; Mukhopadhyay, R.

    nodule accretion as approximately 2 mm/Ma and that of phillipsite growth as approximately 0.65 mm/Ka, the nucleus material appears to have been growing for approximately 4.5-5 Ma. Originally surfaced as a rock fragment from late Miocene volcanism...

  20. Correlations in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Wosiek, B.

    1976-09-01

    The correlations between the particles produced in interactions of hadrons with emulsion nuclei were investigated. The data are in qualitative agreement with the models which describe the interactions with nuclei as subsequent collisions of the fast part of excited hadronic matter inside the nucleus. (author)

  1. Inside a plant nucleus: discovering the proteins

    Czech Academy of Sciences Publication Activity Database

    Petrovská, Beáta; Šebela, M.; Doležel, Jaroslav

    2015-01-01

    Roč. 66, č. 6 (2015), s. 1627-1640 ISSN 0022-0957 R&D Projects: GA ČR(CZ) GA14-28443S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Cell nucleus * chromatin * genome function Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.677, year: 2015

  2. Iliacus Abscess with Radiculopathy Mimicking Herniated Nucleus ...

    African Journals Online (AJOL)

    2016-05-02

    May 2, 2016 ... radiculopathy mimicking herniated nucleus pulposus: Aadditional diagnostic value of magnetic resonance imaging. Niger J Clin Pract. 2017;20:392-3. This is an open access article distributed under the terms of the Creative Commons. Attribution-Non Commercial-Share Alike 3.0 License, which allows ...

  3. Resonances in η-light nucleus systems

    Indian Academy of Sciences (India)

    We locate resonances in -light nucleus elastic scattering using the time delay method. We solve few-body equations within the finite rank approximation in order to calculate the -matrices and hence the time delay for the - 3He and - 4He systems. We find a resonance very close to the threshold in - 3 He elastic ...

  4. Compound nucleus studies withy reverse kinematics

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1985-06-01

    Reverse kinematics reactions are used to demonstrate the compound nucleus origin of intermediate mass particles at low energies and the extension of the same mechanism at higher energies. No evidence has appeared in our energy range for liquid-vapor equilibrium or cold fragmentation mechanisms. 11 refs., 12 figs

  5. The effects of osmotic stress on the structure and function of the cell nucleus.

    Science.gov (United States)

    Finan, John D; Guilak, Farshid

    2010-02-15

    Osmotic stress is a potent regulator of the normal function of cells that are exposed to osmotically active environments under physiologic or pathologic conditions. The ability of cells to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism for a diverse array of tissues and organs in the human body. In addition to the activation of various osmotically- or volume-activated ion channels, osmotic stress may also act on the genome via a direct biophysical pathway. Changes in extracellular osmolality alter cell volume, and therefore, the concentration of intracellular macromolecules. In turn, intracellular macromolecule concentration is a key physical parameter affecting the spatial organization and pressurization of the nucleus. Hyper-osmotic stress shrinks the nucleus and causes it to assume a convoluted shape, whereas hypo-osmotic stress swells the nucleus to a size that is limited by stretch of the nuclear lamina and induces a smooth, round shape of the nucleus. These behaviors are consistent with a model of the nucleus as a charged core/shell structure pressurized by uneven partition of macromolecules between the nucleoplasm and the cytoplasm. These osmotically-induced alterations in the internal structure and arrangement of chromatin, as well as potential changes in the nuclear membrane and pores are hypothesized to influence gene transcription and/or nucleocytoplasmic transport. A further understanding of the biophysical and biochemical mechanisms involved in these processes would have important ramifications for a range of fields including differentiation, migration, mechanotransduction, DNA repair, and tumorigenesis. (c) 2009 Wiley-Liss, Inc.

  6. Critical temperature for shape transition in hot nuclei within covariant density functional theory

    Science.gov (United States)

    Zhang, W.; Niu, Y. F.

    2018-05-01

    Prompted by the simple proportional relation between critical temperature for pairing transition and pairing gap at zero temperature, we investigate the relation between critical temperature for shape transition and ground-state deformation by taking even-even Cm-304286 isotopes as examples. The finite-temperature axially deformed covariant density functional theory with BCS pairing correlation is used. Since the Cm isotopes are the newly proposed nuclei with octupole correlations, we studied in detail the free energy surface, the Nilsson single-particle (s.p.) levels, and the components of s.p. levels near the Fermi level in 292Cm. Through this study, the formation of octupole equilibrium is understood by the contribution coming from the octupole driving pairs with Ω [N ,nz,ml] and Ω [N +1 ,nz±3 ,ml] for single-particle levels near the Fermi surfaces as it provides a good manifestation of the octupole correlation. Furthermore, the systematics of deformations, pairing gaps, and the specific heat as functions of temperature for even-even Cm-304286 isotopes are discussed. Similar to the relation between the critical pairing transition temperature and the pairing gap at zero temperature Tc=0.6 Δ (0 ) , a proportional relation between the critical shape transition temperature and the deformation at zero temperature Tc=6.6 β (0 ) is found for both octupole shape transition and quadrupole shape transition for the isotopes considered.

  7. Suprachiasmatic Nucleus Interaction with the Arcuate Nucleus; Essential for Organizing Physiological Rhythms

    NARCIS (Netherlands)

    Buijs, Frederik N.; Guzmán-Ruiz, Mara; León-Mercado, Luis; Basualdo, Mari Carmen; Escobar, Carolina; Kalsbeek, Andries; Buijs, Ruud M.

    2017-01-01

    The suprachiasmatic nucleus (SCN) is generally considered the master clock, independently driving all circadian rhythms. We recently demonstrated the SCN receives metabolic and cardiovascular feedback adeptly altering its neuronal activity. In the present study, we show that microcuts effectively

  8. The suprachiasmatic nucleus-paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system

    NARCIS (Netherlands)

    Buijs, R. M.; Hermes, M. H.; Kalsbeek, A.

    1998-01-01

    Vasopressin (VP) is one of the principal neurotransmitters of the suprachiasmatic nucleus (SCN). By means of anatomical, physiological and electrophysiological techniques we have demonstrated that VP containing pathways from the SCN serve to affect neuroendocrine and 'autonomic' neurons in the

  9. Effective nucleus-nucleus potentials derived from the generator coordinate method

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, H; Canto, L F [Oxford Univ. (UK). Dept. of Theoretical Physics

    1977-11-07

    The equivalence of the generator coordinate method (GCM) and the resonating group method (RGM) and the formal equivalence of the RGM and the orthogonality condition model (OCM) lead to a relation connecting the effective nucleus-nucleus potentials of the OCM with matrix elements of the GCM. This relation may be used to derive effective nucleus-nucleus potentials directly from GCM matrix elements without explicit reference to the potentials of the RGM. In a first application local and l-independent effective potentials are derived from diagonal GCM matrix elements which represent the energy surfaces of a two-centre shell model. Using these potentials the OCM can reproduce the results of a full RGM calculation very well for the elastic scattering of two ..cap alpha..-particles and fairly well for elastic /sup 16/O-/sup 16/O scattering.

  10. Fast detector for triggering on charged particle multiplicity for relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Agakishiev, G.; Man'yakov, P.K.; Drees, A.

    1997-01-01

    The simple and fast detector of charged particle multiplicity for relativistic nucleus-nucleus collision studies is performed. The multiplicity detector has been designed for the first level trigger of the CERES/NA45 experiment to study Pb-Au collisions at CERN SPS energies. The detector has allowed a realization of the 40 ns trigger for selection of events with definite impact parameter. The construction, operation characteristics, method of calibration, and testing results are described in detail

  11. Random matrix theory and analysis of nucleus-nucleus collision at high energies

    International Nuclear Information System (INIS)

    Shahaliev, E.I.; Inst. of Radiation Problems, Baku; ); Kuznetsov, A.A.; Suleymanov, M.K.; ); Teryaev, O.V.; )

    2006-01-01

    A novel method for analysis of experimental data obtained at relativistic nucleus-nucleus collisions is proposed. The method, based on the ideas of Random Matrix Theory, is applied to detect systematic errors that occur at measurements of momentum distributions of emitted particles. The unfolded momentum distribution is well described by the Gaussian orthogonal ensemble of random matrices, when the uncertainty in the momentum distribution is maximal. The method is free from unwanted background contributions [ru

  12. Theory of and effects from elastoplasticity in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Technische Hochschule Darmstadt

    1985-02-01

    Elastoplasticity of finite Fermi systems results from a coherent coupling between collective and intrinsic degrees of freedom and subsequent equilibration essentially due to two-body collisions. Within a non-markovian transport-theoretical approach referred to as dissipative diabatic dynamics (DDD), elastoplastical forms the link between giant vibrations and overdamped motion of nuclear. Obersvable effects resulting from this non-markovian behaviour in nucleus-nucleus collisions are discussed. (orig.)

  13. Strangeness and charm production in nucleus-nucleus collisions at beam energies near the thresholds

    International Nuclear Information System (INIS)

    Senger, P.

    2001-01-01

    The creation of strangeness and charm in nucleus-nucleus collisions at threshold beam energies is discussed as a probe for compressed baryonic matter. Experimental data on strangeness production at SIS energies indicate that the properties of kaons and antikaons are modified in the dense nuclear medium. An experiment is proposed to explore the QCD phase diagram in the region of highest baryon densities. An important observable will be charm production close to threshold. (orig.)

  14. Nucleon molecular orbitals and the transition mechanism between molecular orbitals in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Imanishi, B.; Misono, S.; von Oertzen, W.; Voit, H.

    1988-08-01

    The molecular orbitals of the nucleon(s) in nucleus-nucleus collisions are dynamically defined as a linear combination of nucleon single-particle orbits (LCNO) in a rotating frame by using the coupled-reaction-channel (CRC) theory. Nucleon molecular orbitals and the promotions of nucleon, - especially due to the Landau-Zener radial coupling are discussed with the method above mentioned. (author)

  15. Multi-quark effects in high energy nucleon-nucleon and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Besliu, C.; Caraciuc, I.; Jipa, A.; Olariu, A.; Topor-Pop, R.; Cotorobai, F.; Pantea, D.; Popa, L.; Popa, V.; Topor-Pop, V.

    1988-02-01

    Recent data obtained in two experiments performed in the framework of the Bucharest-Dubna collaboration are presented, i.e.: the observation of narrow dibaryonic resonances is neutron-proton interactions in 1mHBC at different momenta of incident neutrons in the range 1-5 GeV/c, and the cumulative production of negative pions in nucleus-nucleus interactions in SKM-200 streamer chamber at 4.5 GeV/c. (authors)

  16. Toroidal high-spin isomers in the nucleus 304120

    Science.gov (United States)

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-01

    Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from

  17. ψ' and J/ψ suppression in high-energy nucleon-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Wong, Cheuk-Yin.

    1995-01-01

    The observed features of ψ' to J/ψ suppression in pA and nucleus-nucleus collisions can be explained in terms of a two-component absorption model. For the hard component of the absorption due to the interaction of the produced c bar c systems with baryons at high relative energies, the absorption cross sections are insensitive to the radii of the c bar c systems, as described by the Additive Quark Model. For the soft component due to the low energy c bar c interactions with soft particles produced by other baryon-baryon collisions, the absorption cross sections are greater for ψ' than for J/ψ, because the breakup threshold for ψ' is much smaller than for ψ

  18. The Baryon Production and Baryon Number Transfer in Hadron-Hadron, Hadron-Nucleus and Nucleus-Nucleus Collisions

    International Nuclear Information System (INIS)

    Szymanski, P.

    2006-09-01

    This work concerns soft hadronic interactions which in the Standard Model carry most of the observable cross-section but are not amenable to quantitative predictions due to the very nature of the QCD (Theory of Strong Interactions). In the low momentum transfer region the evolving coupling constant caused perturbation theory to break down. In this situation better experimental understanding of the physics phenomena is needed. One aspect of the soft hadronic interactions will be discussed in this work: transfer of the baryon number from the initial to the final state of the interaction. The past experimental knowledge on this process is presented, reasons for its unsatisfactory status are discussed and condition necessary for improvement are outlined: that is experimental apparatus with superior performance over the full range of available interactions: hadron-hadron collision, hadron-nucleus and nucleus-nucleus interactions. A consistent model-independent picture of the baryon number transfer process emerging from the data on the full range of interactions is shown. It offers serious challenge to theory to provide quantitative and detailed explanation of the measurements. (author)

  19. Microscopic theory for nucleon-nucleus optical potential in intermediate energies

    International Nuclear Information System (INIS)

    He Guozhu; Cai Chonghai

    1984-01-01

    Based on the scattering theory of KMT and FGH we calculate the nucleon-nucleus optical potentials of 4 He, 16 O and 40 Ca from the Paris N-N potential given by M. Lacombe et al. The real part Vsub(R)(r) of our optential has the form of Woods-Saxon when the kinetic energy E of the incident nucleon is low. The depth of Vsub(R)(r) will decrease as E increases, and it turns into positive in the interior of nucleus when E approx.= 300 MeV. The repulsive effect in the interior of nucleus increases rapidly as E increases even more, butthere always exists some attractive effect at the surface of nucleus. Therefore, Vsub(R)(r) has generally the wine-bottle bottom shape. We also calculate the quatity Jv/N = (4π/N)∫sub(0)sub(infinity)Vsub(R)(r)r 2 dr. Our results are basically in acordance with those of M.Jaminon et al's relativistic Hatree calculation as well as the experimental results. In this work we also calculate the imaginary part of optical potential and its variation with the kinetic energy of the incident nucleon

  20. Cell Nucleus-Targeting Zwitterionic Carbon Dots.

    Science.gov (United States)

    Jung, Yun Kyung; Shin, Eeseul; Kim, Byeong-Su

    2015-12-22

    An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using β-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation.

  1. Nucleus spectroscopy: extreme masses and deformations

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2009-12-01

    The author proposes a synthesis of research activities performed since 1995 in the field of experimental nuclear physics, and more particularly in the investigation of two nucleus extreme states: deformation on the one hand, heavy and very heavy nuclei on the other hand. After a presentation of the context of investigations on deformation, rotation, and heavy nuclei, he gives an overview of developments regarding instruments (gamma spectrometers, detection of fission fragments, and detection at the focal plane of spectrometers or separators) and analysis techniques. Experiments and results are then reported and discussed, concerning super-deformed states with a high angular moment, spectroscopy of neutron-rich nuclei, very heavy nuclei close to nucleus map borders. He finally draws perspectives for middle and long term studies on the heaviest nuclei

  2. η production in proton-nucleus reactions

    International Nuclear Information System (INIS)

    Cassing, W.; Batko, G.; Vetter, T.; Wolf, G.

    1991-01-01

    The production of η-mesons in proton-nucleus reactions is analysed with respect to primary nucleon-nucleon (NN→NN η ) and secondary pion-nucleon (πN→ηN) production processes on the basis of Hartree-Fock groundstate momentum distributions and free on-shell production processes. The folding model adopted compares well for meson production with more involved simulations based on VUU transport equations. Similar to K + production in proton-nucleus reactions the η-mesons are primarily produced by the πN→ηN channel. However, η-mesons are absorbed in nuclei via excitation of the N * (1535) resonance which leads to strong distortions of the primordial spectra. On the other hand, the experimental mass dependence of the differential cross sections might yield information about the in-medium properties of this resonance. (orig.)

  3. Protein quality control in the nucleus

    DEFF Research Database (Denmark)

    Nielsen, Sofie V.; Poulsen, Esben Guldahl; Rebula, Caio A.

    2014-01-01

    to aggregate, cells have evolved several elaborate quality control systems to deal with these potentially toxic proteins. First, various molecular chaperones will seize the misfolded protein and either attempt to refold the protein or target it for degradation via the ubiquitin-proteasome system...... to be particularly active in protein quality control. Thus, specific ubiquitin-protein ligases located in the nucleus, target not only misfolded nuclear proteins, but also various misfolded cytosolic proteins which are transported to the nucleus prior to their degradation. In comparison, much less is known about...... these mechanisms in mammalian cells. Here we highlight recent advances in our understanding of nuclear protein quality control, in particular regarding substrate recognition and proteasomal degradation....

  4. Is atomic energy different from a nucleus?

    International Nuclear Information System (INIS)

    Lee, Sun Young

    1995-07-01

    This book describes of two faces of nuclear energy : the secret of a nuclear, the history of nuclear energy : the scientists with a nuclear, the nuclear energy generation : the third disapprobation, a nuclear weapon : Choice of fear, the Korean peninsula and a nuclear and nuclear energy and utilization in peace. It consists of 31 questions and the answers of the questions about nuclear energy and nucleus.

  5. Nuclear alignment following compound nucleus reactions

    International Nuclear Information System (INIS)

    Butler, P.A.; Nolan, P.J.

    1981-01-01

    A procedure for calculating the alignment of a nuclear state populated by a compound nucleus reaction is given and used to investigate how alignment varies for different types of population mechanisms. The calculations are compared to both predictions of Gaussian models for the state population distribution and to experimental data, for a variety of types of nuclear reactions. The treatment of alignment in the analysis of γ-ray angular distribution is discussed. (orig.)

  6. Momentum distribution in the nucleus. II

    International Nuclear Information System (INIS)

    Amado, R.D.; Woloshyn, R.M.

    1977-01-01

    We calculate the single particle momentum distribution n(q) for a one-dimensional model with delta forces. There is a domain of q for which n(q) has an exponential falloff; but, after allowance is made for the nonsaturation in the model, that domain does not grow significantly with particle number. The relation of this result to large momentum scattering from the nucleus and to the Hartree approximation is briefly discussed

  7. Development of a Mobile Ice Nucleus Counter

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Gregory [Droplet Measurement Technologies, Boulder, CO (United States); Kulkarni, Gourihar [Droplet Measurement Technologies, Boulder, CO (United States)

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70°C, and a single stage system can operate the warm wall at -45C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  8. Parity violation in the compound nucleus

    International Nuclear Information System (INIS)

    Mitchell, G. E.; Crawford, B. E.; Grossmann, C. A.; Lowie, L. Y.; Bowman, J. D.; Knudson, J.; Penttilae, S.; Seestrom, S. J.; Smith, D. A.; Yen, Yi-Fen; Yuan, V. W.; Delheij, P. P. J.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Postma, H.; Roberson, N. R.; Sharapov, E. I.; Stephenson, S. L.

    1999-01-01

    Measurements have been performed on the helicity dependence of the neutron resonance cross section for many nuclei by our TRIPLE Collaboration. A large number of parity violations are observed. Generic enhancements amplify the signal for symmetry breaking and the stochastic properties of the compound nucleus permit the strength of the symmetry-breaking interaction to be determined without knowledge of the wave functions of individual states. A total of 15 nuclei have been analyzed with this statistical approach. The results are summarized

  9. Study of fragmentation reactions of light nucleus

    International Nuclear Information System (INIS)

    Toneli, David Arruda; Carlson, Brett Vern

    2011-01-01

    Full text: The decay of the compound nucleus is traditionally calculated using a sequential emission model, such as the Weisskopf-Ewing or Hauser-Feshbach ones, in which the compound nucleus decays through a series of residual nuclei by emitting one particle at a time until there is no longer sufficient energy for further emission. In light compound nucleus, however, the excitation energy necessary to fully disintegrate the system is relatively easy to attain. In such cases, decay by simultaneous emission of two or more particles becomes important. A model which takes into account all these decay is the Fermi fragmentation model. Recently, the equivalence between the Fermi fragmentation model and statistical multifragmentation model used to describe the decay for highly excited fragments for reactions of heavy ions was demonstrated. Due the simplicity of the thermodynamic treatment used in the multifragmentation model, we have adapted it to the calculation of Fermi breakup of light nuclei. The ultimate goal of this study is to calculate the distribution of isotopes produced in proton-induced reactions on light nuclei of biological interest, such as C, O e Ca. Although most of these residual nuclei possess extremely short half-lives and thus represent little long-term danger, they tend to be deficient in neutrons and to decay by positron emission, which allows the monitoring of proton radiotherapy by PET (Positron Emission Tomography). (author)

  10. Antinucleon-nucleus elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Dover, C.B.; Millener, D.J.

    1985-01-01

    A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ΔT = 0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 40 refs., 13 figs

  11. Shell model calculations at superdeformed shapes

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Dobaczewski, J.; Van Isacker, P.

    1991-01-01

    Spectroscopy of superdeformed nuclear states opens up an exciting possibility to probe new properties of the nuclear mean field. In particular, the unusually deformed atomic nucleus can serve as a microscopic laboratory of quantum-mechanical symmetries of a three dimensional harmonic oscillator. The classifications and coupling schemes characteristic of weakly deformed systems are expected to be modified in the superdeformed world. The ''superdeformed'' symmetries lead to new quantum numbers and new effective interactions that can be employed in microscopic calculations. New classification schemes can be directly related to certain geometrical properties of the nuclear shape. 63 refs., 7 figs

  12. Formation, structure, and evolution of boiling nucleus and interfacial tension between bulk liquid phase and nucleus

    Science.gov (United States)

    Wang, Xiao-Dong; Peng, Xiao-Feng; Tian, Yong; Wang, Bu-Xuan

    2005-05-01

    In this paper, the concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. A concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of a nucleus during vapor-liquid phase transition. All active molecules exist as monomers when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with aggregation number, N, smaller than five can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without any outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state. Meanwhile, a model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent of the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provides solid theoretical evidences to clarify the definition of nucleation rate and understand nucleation phenomenon with the insight into the physical nature.

  13. Shape transitions in neutron rich 110-112Ru nuclei and empirical relations

    International Nuclear Information System (INIS)

    Bihari, Chhail; Singh, Yuvraj; Gupta, K.K.; Varshney, A.K.; Singh, M.; Gupta, D.K.

    2010-01-01

    In the study of even even neutron rich Ru isotopes, the electromagnetic properties of the γ-vibrational bands are well described by a rigid triaxial rotor for lower spin state and by the rotation vibration collective model for the higher spin states. Thus interpretation in further suggested by the observation of nearly identical moment of inertia, the rotational frequency below the first band crossing, between the ground state and the γ-structural bands for both 110 Ru and 112 Ru which conclude a weak pairing, a more likely suitable explanation of observations. In the present work, the soft rotor energy formula is undertaken suggested by Brentano et al. for yrast band, may be employed to calculate the perturbed energies of the anomalous rotational band (γ-band) generated by rotation of the rigid asymmetric atomic nucleus and the two parameter formula (TPF) of Gupta et al.

  14. Reinforced Airfoil Shaped Body

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to an airfoil shaped body with a leading edge and a trailing edge extending along the longitudinal extension of the body and defining a profile chord, the airfoil shaped body comprising an airfoil shaped facing that forms the outer surface of the airfoil shaped body...

  15. J/$\\psi$ production in proton-nucleus and nucleus-nucleus interactions at the CERN SPS

    CERN Document Server

    Abreu, M C; Alexa, C; Arnaldi, R; Ataian, M R; Baglin, C; Baldit, A; Bedjidian, Marc; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Bussière, A; Capelli, L; Castanier, C; Castor, J I; Chaurand, B; Chevrot, I; Cheynis, B; Chiavassa, E; Cicalò, C; Claudino, T; Comets, M P; Constans, N; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Ducroux, L; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hakobyan, R S; Haroutunian, R; Idzik, M; Jouan, D; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Macciotta, P; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Silva, S; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, Ermanno; Villatte, L; Willis, N

    2002-01-01

    The NA38 and NA50 experiments at the CERN SPS have measured charmonium production in different colliding systems with the aim of observing a phase transition from ordinary hadronic matter towards a state in which quarks and gluons are deconfined (quark-gluon plasma, QGP). This experimental research is based on the prediction that the J/ psi yield should be suppressed in deconfined matter. The analysis of the data collected by the NA50 experiment with Pb-Pb collisions at 158 GeV/c per nucleon shows that the J/ psi is anomalously suppressed with respect to the pattern observed in proton-nucleus and light ion reactions. (9 refs).

  16. Analysis of shape isomer yields of Pu in the framework of dynamical ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Vol. 78, No. 2 ... Abstract. Data on shape isomer yield for α+235U reaction at Elab α. = 20–29 MeV are ... a fissionable nucleus via different channels can be calculated using a standard Monte ... the liquid drop potential energy Vld(r, J) of a rotating nucleus with an angular momentum. J and the ...

  17. Shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  18. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  19. Meson-nucleus potentials and the search for meson-nucleus bound states

    Science.gov (United States)

    Metag, V.; Nanova, M.; Paryev, E. Ya.

    2017-11-01

    Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.

  20. Aspects of Coulomb dissociation and interference in peripheral nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Nystrand, Joakim; Baltz, Anthony; Klein, Spencer R.

    2001-01-01

    Coherent vector meson production in peripheral nucleus-nucleus collisions is discussed. These interactions may occur for impact parameters much larger than the sum of the nuclear radii. Since the vector meson production is always localized to one of the nuclei, the system acts as a two-source interferometer in the transverse plane. By tagging the outgoing nuclei for Coulomb dissociation it is possible to obtain a measure of the impact parameter and thus the source separation in the interferometer. This is of particular interest since the life-time of the vector mesons are generally much shorter than the impact parameters of the collisions

  1. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  2. High energy nucleus-nucleus collisions at CERN: Signatures, physical observables and experimental results

    International Nuclear Information System (INIS)

    Harris, J.W.

    1988-02-01

    Experimental results on high energy nucleus-nucleus collisions have become available with the recent experiments at CERN utilizing 200 GeV/n oxygen and sulfur beams. Physics motivations for these experiments are presented: a description of predicted signatures for possible formation of a quark-gluon plasma and physical observables that are expected to provide important information for understanding the dynamics of these collisions. A presentation will be made of some of the first experimental results to emerge from this new field. 28 refs., 9 figs

  3. Diabatic emission of neutrons: A probe for the energy dissipation mechanism in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Cassing, W.

    1984-05-01

    The precompound emission of neutrons in central nucleus-nucleus collisions is investigated within the framework of dissipative diabatic dynamics. For 92 Mo + 92 Mo at bombarding energies between 7.5 and 20 MeV/u the differential neutron multiplicities dMsub(n)/dEsub(n) are estimated from the decay of highly excited diabatic single-particle states. The energy spectra have an almost exponential high-energy tail with effective temperatures up to 10 MeV for 20 MeV/u bombarding energy. (orig.)

  4. Dynamics of hadronization in ultra-relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Friman, B.L.

    1986-01-01

    One of the main problems in the search for quark-gluon plasma in ultra-relativistic nucleus-nucleus collisions is finding a reliable signature for deconfinement. Several signatures have been suggested, e.g., dileptons with a spectrum characteristic of the plasma, an increase in the number of strange particles and effects due to the hadronization of the plasma. In this talk I will describe some recent work on the effects of the hadronization transition in the central rapidity region within the hydrodynamic model of Bjorken, Kajantie and McLerran. (orig.)

  5. Model of homogeneous nucleus. Total and inelastic cross sections of nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1985-01-01

    It is shown that the nucleon-nuckleus scattering amplitude at high energy can be easily calculated by generalization of the nucleon-nucleon scattering amplitude and satisfies a simple factorization relation. As distinct from the Glauber model, the suggested approach makes no use of the nucleonic structure of the nucleus and the hadron-nucleus scattering amplitude is not expressed in terms of hadron-nucleon scattering amplitudes. The energy dependence of total and inelastic cross sections is successfully described for a number of nuclei

  6. Percolation Model of Nuclear Multifragmentation in High Energy Nucleus-Nucleus Interactions

    International Nuclear Information System (INIS)

    Abdel-Waged, Kh.

    1994-01-01

    A hybrid model based on Reggeon theory inspired model of nuclear distribution, which was successful in explaining the cascading of particles in high energy nucleus-nucleus interactions, and percolation model is proposed. In the framework of this model the yield of the fragment in p + Ag, Au at 350 GeV and C + Ag, Au at 3.6 GeV/nucleon as well as the charge distribution of fragments in Kr, Xe and U interactions with emulsion at ∼ 1 GeV/nucleon is correctly described. 32 refs., 3 figs

  7. Proton rapidity distribution in nucleus-nucleus collisions at high energy

    International Nuclear Information System (INIS)

    Liu, F.H.

    2002-01-01

    The proton rapidity distributions in nucleus-nucleus collisions at the Alternating Gradient Synchrotron (AGS) and the Super Proton Synchrotron (SPS) energies are analysed by the revised thermalized cylinder model. The calculated results are compared and found to he in agreement with the experimental data of Si-AI and Si-Pb collisions at 14.6 A GeV/c, Pb-Pb collisions at 158 A GeV/c, and S-S collisions at 200 A GeV/c. (Author)

  8. The isospin dependence of the nucleus-nucleus inelastic cross-section at high energy

    International Nuclear Information System (INIS)

    Rashdan, M.; Farhan, A.M.; Hassib, E.; Kareem, W. Abdel

    2006-01-01

    The isospin dependence of the nucleus-nucleus inelastic cross-section at high energy is investigated within the multiple scattering theory. The multiple integrals are evaluated by Monte Carlo method as well as by the optical limit approximation of the Glauber model. Calculations are performed for 14-23 N, 16-24 O and 18-26 F isotopes colliding with carbon target around 1 GeV. It is found that rms radii and the density distributions show a halo structure of 22 N, 23 O and 24 F

  9. Particle production in high energy nucleus--nucleus experiments at Berkeley

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1976-09-01

    A review of high energy nucleus-nucleus experiments performed at the Berkeley Bevalac is presented. Earlier results on projectile and target fragmentation and pion production are briefly summarized. More recent results on Coulomb effects in projectile fragmentation, heavy ion total cross-sections, γ-ray production, and charged particle multiplicities are presented. Also, recent experiments which may shed light on phenomena arising from the central collision of two energetic nuclei, including recent evidence for and against the observation of nuclear shock waves, are reviewed

  10. Recent results on (anti)nucleus and (anti)hyperon production in nucleus-nucleus collisions at CERN SPS energies

    CERN Document Server

    Melkumov, G L; Anticic, T; Baatar, B; Barna, D; Bartke, J; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chung, P; Chvala, O; Cramer, J G; Csató, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gál, J; Gazdzicki, M; Genchev, V; Georgopoulos, G; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kikola, D; Gladysz-Dziadus, E; Kliemant, M; Kniege, S; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Lacey, R; Van Leeuwen, M; Lvai, P; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Nicolic, V; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Peryt, W; Pikna, M; Pluta, J; Prindle, D; Pühlhofer, F; Renfordt, R; Roland, C; Roland5, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Siklér, F; Sitár, B; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Seyboth, P; Strabel, C; Ströbele, H; Susa, T; Szentpetery, I; Sziklai, J; Szuba, M; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranic, D; Wlodarczyk, Z; Wojtaszek11, A; Yoo, I K; Zimnyi, J; Wetzler, A

    2007-01-01

    The NA49 experiment has collected comprehensive data on particle production in nucleus-nucleus collisions over the whole SPS beam energies range, the critical energy domain where the expected phase transition to a deconfined phase is expected to occur. The latest results from Pb+Pb collisions between 20$A$ GeV and 158$A$ GeV on baryon stopping and light nuclei production as well as those for strange hyperons are presented. The measured data on $p$, $\\bar{p}$, $\\Lambda$, $\\bar{\\Lambda}$, $\\Xi^-$ and $\\bar{\\Xi}^+$ production were used to evaluate the rapidity distributions of net-baryons at SPS energies and to compare with the results from the AGS and the RHIC for central Pb+Pb (Au+Au) collisions. The dependence of the yield ratios and the inverse slope parameter of the $m_t$ spectra on the collision energy and centrality, and the mass number of the produced nuclei $^3He$, $t$, $d$ and $\\bar{d}$ are discussed within coalescence and statistical approaches. Analysis of the total multiplicity exhibits remarkable a...

  11. Nuclear structure and neutrino-nucleus interaction

    International Nuclear Information System (INIS)

    Krmpotic, Francisco

    2011-01-01

    Recent years have witnessed an intense experimental and theoretical activity oriented towards a better comprehension of neutrino nucleus interaction. While the main motivation for this task is the demand coming from oscillation experiments in their search for a precise determination of neutrino properties, the relevance of neutrino interaction with matter is more wide-ranging. It is imperative for astrophysics, hadronic and nuclear physics, and physics beyond the standard model. The experimental information on neutrino induced reactions is rapidly growing, and the corresponding theoretical description is a challenging proposition, since the energy scales of interest span a vast region, going from few MeV for solar neutrinos, to tens of MeV for the interpretation of experiments with the muon and pion decay at rest and the detection of neutrinos coming from the core collapse of supernova, and to hundreds of MeV or few GeV for the detection of atmospheric neutrinos, and for the neutrino oscillation program of the MiniBooNE experiment. The presence of neutrinos, being chargeless particles, can only be inferred by detecting the secondary particles created in colliding and interacting with the matter. Nuclei are often used as neutrino detectors, and in particular 12 C which is a component of many scintillator detectors. Thus, the interpretation of neutrino data heavily relies on detailed and quantitative knowledge of the features of the neutrino-nucleus interaction. The nuclear structure methods used in the evaluation of the neutrino-nucleus cross section are reviewed. Detailed comparison between the experimental and theoretical results establishes benchmarks needed for verification and/or parameter adjustment of the nuclear models. Having a reliable tool for such calculation is of great importance in a variety of applications, such as the description of the r-process nucleosynthesis. (author)

  12. [The perichromatin compartment of the cell nucleus].

    Science.gov (United States)

    Bogoliubov, D S

    2014-01-01

    In this review, the data on the structure and composition of the perichromatin compartment, a special border area between the condensed chromatin and the interchromatin space of the cell nucleus, are discussed in the light of the concept of nuclear functions in complex nuclear architectonics. Morphological features, molecular composition and functions of main extrachromosomal structures of the perichromatin compartment, perichromatin fibrils (PFs) and perichromatin granules (PGs) including nuclear stress-bodies (nSBs) that are derivates of the PGs under heat shock, are presented. A special attention was paid to the features of the molecular compositions of PFs and PGs in different cell types and at different physiological conditions.

  13. The basic elementary particles as martensitic nucleus

    International Nuclear Information System (INIS)

    Aguinaco-Bravo, V. J.; Onoro, J.

    1999-01-01

    The martensitic transformation is a diffusional structural change that produces an important modification of the microstructure and properties of materials. In this paper we propose how the martensitic phase is nucleated from a basic elementary particle (bep). The bep is formed in several stages. Vacancies, divacancies, etc. are formed at high temperature, which collapse into prismatic dislocation loops during the cooling process. We define a bep as a dislocation loop reaching a critical radius and fulfilling certain elastic energy conditions. A martensitic nucleus is a bep that coincides crystallographically with the habit plane of the matrix. (Author) 16 refs

  14. Contemporary models of the atomic nucleus

    CERN Document Server

    Nemirovskii, P E

    2013-01-01

    Contemporary Models of the Atomic Nucleus discusses nuclear structure and properties, expounding contemporary theoretical concepts of the low-energy nuclear processes underlying in nuclear models. This book focuses on subjects such as the optical nuclear model, unified or collective model, and deuteron stripping reaction. Other topics discussed include the basic nuclear properties; shell model; theoretical analysis of the shell model; and radiative transitions and alpha-decay. The deuteron theory and the liquid drop nuclear model with its application to fission theory are also mentioned, but o

  15. From the nucleus discovery to DWBA

    International Nuclear Information System (INIS)

    Fernandez, B.

    2007-01-01

    The author presents a brief review of the main events in the field of nuclear reactions that are acknowledged as milestones because of their importance due to either experimental setting or physical interpretation. It is shown that the pace of discoveries has been strongly dependent on the technical progress in detection means at the beginning of nuclear physics and now is linked to the development of simulation means. The discovery of the neutron, the development of the Geiger counter, the theory of the compound nucleus or the first direct reactions are among these milestones

  16. Nuclear shapes: From the mundane to the exotic

    International Nuclear Information System (INIS)

    Yates, S.W.

    1994-01-01

    The collection of protons and neutrons that forms an atomic nucleus can be characterized as having a shape. Surprisingly, the nuclei of most atoms are not spherical but exhibit shapes that are football-like, pear-like, etc. Following a brief review of the characteristics of these open-quotes mundaneclose quotes nuclear shapes, recent observations of nuclei that are superdeformed or even hyperdeformed are presented. In addition, the evidence for more exotic nuclei that can be described as exhibiting halos, forming a nuclear sausage, or undergoing a scissors-like motion are examined. The discussion concludes with some speculation about additional exotic shapes, such as the nuclear banana. Since nuclear shapes cannot be observed directly, one must rely on knowledge from indirect sources. Some of the details about these sources of information, including excitation spectra and nuclear lifetimes, are presented

  17. Comparative histological study of the mammalian facial nucleus.

    Science.gov (United States)

    Furutani, Rui; Sugita, Shoei

    2008-04-01

    We performed comparative Nissl, Klüver-Barrera and Golgi staining studies of the mammalian facial nucleus to classify the morphologically distinct subdivisions and the neuronal types in the rat, rabbit, ferret, Japanese monkey (Macaca fuscata), pig, horse, Risso's dolphin (Grampus griseus), and bottlenose dolphin (Tursiops truncatus). The medial subnucleus was observed in all examined species; however, that of the Risso's and bottlenose dolphins was a poorly-developed structure comprised of scattered neurons. The medial subnuclei of terrestrial mammals were well-developed cytoarchitectonic structures, usually a rounded column comprised of densely clustered neurons. Intermediate and lateral subnuclei were found in all studied mammals, with differences in columnar shape and neuronal types from species to species. The dorsolateral subnucleus was detected in all mammals but the Japanese monkey, whose facial neurons converged into the intermediate subnucleus. The dorsolateral subnuclei of the two dolphin species studied were expanded subdivisions comprised of densely clustered cells. The ventromedial subnuclei of the ferret, pig, and horse were richly-developed columns comprised of large multipolar neurons. Pig and horse facial nuclei contained another ventral cluster, the ventrolateral subnucleus. The facial nuclei of the Japanese monkey and the bottlenose dolphin were similar in their ventral subnuclear organization. Our findings show species-specific subnuclear organization and distribution patterns of distinct types of neurons within morphological discrete subdivisions, reflecting functional differences.

  18. Morphological differences in the lateral geniculate nucleus associated with dyslexia

    Directory of Open Access Journals (Sweden)

    Mónica Giraldo-Chica

    2015-01-01

    Full Text Available Developmental dyslexia is a common learning disability characterized by normal intelligence but difficulty in skills associated with reading, writing and spelling. One of the most prominent, albeit controversial, theories of dyslexia is the magnocellular theory, which suggests that malfunction of the magnocellular system in the brain is responsible for the behavioral deficits. We sought to test the basis of this theory by directly measuring the lateral geniculate nucleus (LGN, the only location in the brain where the magnocellular and parvocellular streams are spatially disjoint. Using high-resolution proton-density weighted MRI scans, we precisely measured the anatomical boundaries of the LGN in 13 subjects with dyslexia (five female and 13 controls (three female, all 22–26 years old. The left LGN was significantly smaller in volume in subjects with dyslexia and also differed in shape; no differences were observed in the right LGN. The functional significance of this asymmetry is unknown, but these results are consistent with the magnocellular theory and support theories of dyslexia that involve differences in the early visual system.

  19. Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior

    NARCIS (Netherlands)

    Acosta-Galvan, Guadalupe; Yi, Chun-Xia; van der Vliet, Jan; Jhamandas, Jack H.; Panula, Pertti; Angeles-Castellanos, Manuel; del Carmen Basualdo, María; Escobar, Carolina; Buijs, Ruud M.

    2011-01-01

    Food anticipatory behavior (FAA) is induced by limiting access to food for a few hours daily. Animals anticipate this scheduled meal event even without the suprachiasmatic nucleus (SCN), the biological clock. Consequently, a food-entrained oscillator has been proposed to be responsible for meal time

  20. Mechanism of energy release from nucleus-target in hadron-nucleus collision

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    2000-01-01

    The collisions of hadrons (protons, mesons) with 131 Xe nucleus and arising light nuclear fragments as nuclear refraction products have been observed in bubble chamber. Mechanism of energy release during these collisions has been discussed. The quantitative calculations has proved that this phenomena can be treated as potential energy source with use of many different target materials

  1. Study of η-nucleus interaction through the formation of η-nucleus ...

    Indian Academy of Sciences (India)

    Abstract. The question of possible existence of η-mesic nuclei is quite intriguing. An- swer to this question will deeply enrich our understanding of η-nucleus interaction which is not so well-understood. We review the experimental efforts for the search of η-mesic nuclei and describe the physics motivation behind it.

  2. High energy cosmic ray events of ultra-relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Burnett, T.H.; Dake, S.; Derricson, J.H.; Fountain, W.; Fuki, M.; Gregory, J.C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W.V.; Jurak, A.; Lord, J.J.; Meegan, C.A.; Miyamura, O.; Oda, H.; Ogata, T.; Parnell, T.A.; Roberts, E.; Saito, T.; Strauss, S.; Tabuki, T.; Takahashi, Y.; Tominaga, T.; Watts, J.W.; Wilczynska, B.; Wilkes, R.J.; Wolter, W.; Bosiek, B.

    1985-01-01

    Japanese American Cooperative Emulsion Experiment (JACEE) has been measuring ultrarelativistic comic ray nucleus and sampling the events in the energy regions both 10 to 100 GeV/A and above TeV/A by balloon emulsion chamber since 1979. In this report main results obtained up to now will be described. (orig./HSI)

  3. Thermal Bremsstrahlung probing nuclear multifragmentation in nucleus-nucleus collisions around the Fermi energy

    International Nuclear Information System (INIS)

    D'Enterria, D.G.

    2000-05-01

    The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (E γ > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar 36 + Au 197 , Ag 107 , Ni 58 , C 12 at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4π. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pnγ) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)

  4. Hadron-nucleus interactions with a small target-nucleus excitation

    International Nuclear Information System (INIS)

    Anzon, Z.V.; Chasnikov, I.Ya.; Shakhova, Ts.I.

    1981-01-01

    Hadron inelastic interactions in nuclear emulsion with a small target-nucleus excitation in the energy range 7.5-200 GeV have been studied. Possible reasons for the differences in production cross-section for events with even and odd number of S-particles are analysed

  5. Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription.

    Science.gov (United States)

    Queisser, Gillian; Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.

  6. Prestress mediates force propagation into the nucleus

    International Nuclear Information System (INIS)

    Hu Shaohua; Chen Jianxin; Butler, James P.; Wang Ning

    2005-01-01

    Several reports show that the nucleus is 10 times stiffer than the cytoplasm. Hence, it is not clear if intra-nuclear structures can be directly deformed by a load of physiologic magnitudes. If a physiologic load could not directly deform intra-nuclear structures, then signaling inside the nucleus would occur only via the mechanisms of diffusion or translocation. Using a synchronous detection approach, we quantified displacements of nucleolar structures in cultured airway smooth muscle cells in response to a localized physiologic load (∼0.4 μm surface deformation) via integrin receptors. The nucleolus exhibited significant displacements. Nucleolar structures also exhibited significant deformation, with the dominant strain being the bulk strain. Increasing the pre-existing tensile stress (prestress) in the cytoskeleton significantly increased the stress propagation efficiency to the nucleolus (defined as nucleolus displacement per surface deformation) whereas decreasing the prestress significantly lowered the stress propagation efficiency to the nucleolus. Abolishing the stress fibers/actin bundles by plating the cells on poly-L-lysine-coated dishes dramatically inhibited stress propagation to the nucleolus. These results demonstrate that the prestress in the cytoskeleton is crucial in mediating stress propagation to the nucleolus, with implications for direct mechanical regulation of nuclear activities and functions

  7. The decay of 61Cu nucleus

    International Nuclear Information System (INIS)

    Zheng Wanhui; Gu Jiahui; Zhu Jiabi; Wang Gongqing

    1988-01-01

    The decay of 61 Cu nucleus has been investigated with Ge(Li) and H p Ge detector, semiconductor electron spectrometer and Ge(Li)-NaI γ-γ coincidence spectrometer. 35 γrays from 12 excited levels have been found. The single and coincidence spectra show that 545 keV, 1019keV γ fays and 1019keV energy level are wrong which appear in the 61 Cu decay scheme carried in > (the 7th edition 1978). the halflife time of 61 Cu nucleus and the internal conversion coefficient for 67 keV γ-transition are found to be T 1/2 =207.7±1.6min and α=0.12±0.01 respectively and then a decay scheme is proposed. In this paper more attention ia paid to discussing the energy levels of 1014, 1019, and 1997 keV as well as some weak γ rays

  8. Charged particle production in proton-, deuteron-, oxygen- and sulphur-nucleus collisions at 200 GeV per nucleon

    CERN Document Server

    Alber, T.; Bachler, J.; Bartke, J.; Bialkowska, H.; Bloomer, M.A.; Bock, R.; Braithwaite, W.J.; Brinkmann, D.; Brockmann, R.; Buncic, P.; Chan, P.; Cramer, J.G.; Cramer, P.B.; Derado, I.; Eckardt, V.; Eschke, J.; Favuzzi, C.; Ferenc, D.; Fleischmann, B.; Foka, P.; Freund, P.; Fuchs, M.; Gazdzicki, M.; Gladysz, E.; Grebieszkow, J.; Gunther, J.; Harris, J.W.; Hoffmann, M.; Jacobs, P.; Kabana, S.; Kadija, K.; Keidel, R.; Kowalski, M.; Kuhmichel, A.; Lee, J.Y.; Ljubicic, A, Jr.; Margetis, S.; Mitchell, J.T.; Morse, R.; Nappi, E.; Odyniec, G.; Paic, G.; Panagiotou, A.D.; Petridis, A.; Piper, A.; Posa, F.; Poskanzer, Arthur M.; Puhlhofer, F.; Rauch, W.; Renfordt, R.; Retyk, W.; Rohrich, D.; Roland, G.; Rothard, H.; Runge, K.; Sandoval, A.; Schmitz, N.; Schmoetten, E.; Sendelbach, R.; Seyboth, P.; Seyerlein, J.; Skrzypczak, E.; Spinelli, P.; Stock, R.; Strobele, H.; Teitelbaum, L.; Tonse, S.; Trainor, T.A.; Vasileiadis, G.; Vassiliou, M.; Vesztergombi, G.; Vranic, D.; Wenig, S.; Wosiek, B.; Zhu, X.

    1998-01-01

    The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse mom...

  9. Impaired somatosensory discrimination of shape in Parkinson's disease : Association with caudate nucleus dopaminergic function

    NARCIS (Netherlands)

    Weder, BJ; Leenders, KL; Vontobel, P; Nienhusmeier, M; Keel, A; Zaunbauer, W; Vonesch, T; Ludin, HP

    1999-01-01

    Tactile discrimination of macrogeometric objects in a two-alternative forced-choice procedure represents a demanding task involving somatosensory pathways and higher cognitive processing. The objects for somatosensory discrimination, i.e., rectangular parallelepipeds differing only in oblongness,

  10. Similarity of multi-fragmentation of residual nucleus created in nucleus-nucleus interactions at high energies

    International Nuclear Information System (INIS)

    Abdel-Hafiez, A.; Chernyavski, M.M.; Orlova, G.I.; Gulamov, K.G.; Navotny, V.SH.; Uzhinskii, V.V.

    2000-01-01

    Experimental data on multi-fragmentation of residual krypton nuclei created in the interactions of the krypton nuclei with photoemulsion nuclei ut energy of 0.9 GeV per nucleon are presented in a comparison with the analogous data on fragmentation of gold residual nuclei at the energy of 10.7 GeV/nucleon. It is shown for the first time that there are two regimes of nuclear multifragmentation: the former is when less than one-half of nucleons of projectile nucleus are knocked out, the later is when more than one-half of nucleons are knocked out. Residual nuclei with closed masses created at different reactions are fragmenting practically simultaneously when more than one-half of nucleons of original nuclei are knocked out. The evidence of existence of a radial flow of the spectator fragment at the decay of residual krypton nuclei is found

  11. Shape-changing interfaces:

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegård; Pedersen, Esben Warming; Petersen, Marianne Graves

    2015-01-01

    Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address these shortc......Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address...... these shortcomings. We identify eight types of shape that are transformed in various ways to serve both functional and hedonic design purposes. Interaction with shape-changing interfaces is simple and rarely merges input and output. Three questions are discussed based on the review: (a) which design purposes may...

  12. Self-erecting shapes

    Science.gov (United States)

    Reading, Matthew W.

    2017-07-04

    Technologies for making self-erecting structures are described herein. An exemplary self-erecting structure comprises a plurality of shape-memory members that connect two or more hub components. When forces are applied to the self-erecting structure, the shape-memory members can deform, and when the forces are removed the shape-memory members can return to their original pre-deformation shape, allowing the self-erecting structure to return to its own original shape under its own power. A shape of the self-erecting structure depends on a spatial orientation of the hub components, and a relative orientation of the shape-memory members, which in turn depends on an orientation of joining of the shape-memory members with the hub components.

  13. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  14. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    International Nuclear Information System (INIS)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei

    2014-01-01

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  15. On the criterion for the optimum choice of a compound nucleus reaction for producing superheavy elements

    International Nuclear Information System (INIS)

    Aroumougame, R.; Gupta, R.K.

    1979-01-01

    The possible reaction partners of a cool compound nucleus reaction for the synthesis of the elements Z = 104, 106 and 108 are studied in terms of the potential energy surfaces, interaction barriers and the nuclear shapes calculated within the frame work of the Fragmentation theory based on two centre shell model. An estimate of the total reaction cross-section suggests that for larger fusion probabilities, the mass and charge asymmetries are the only essential criterion for the optimum choice of a cooler compound nuclear reaction. Larger the mass and charge asymmetries, larger is the fusion cross-section. (auth.)

  16. Nuclear energy release in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1998-01-01

    Energy release process in nuclear reactions induced by fast hadrons in hadron-nucleus collisions is discussed. Some portion of the internal nuclear energy is released when the locally damaged in a collision, and instable therefore, residual target nucleus transits itself into light nuclear fragments (nucleons, D, T) and a stable lighter final nucleus or some number of stable lighter nuclei. It is not excluded that in some of the collisions the induced intranuclear nuclear reactions may be energy overcompensating. Corresponding reconnaissance should be made - in analysing the nuclear reactions induced in hadron-nucleus collisions

  17. The Hue of Shapes

    Science.gov (United States)

    Albertazzi, Liliana; Da Pos, Osvaldo; Canal, Luisa; Micciolo, Rocco; Malfatti, Michela; Vescovi, Massimo

    2013-01-01

    This article presents an experimental study on the naturally biased association between shape and color. For each basic geometric shape studied, participants were asked to indicate the color perceived as most closely related to it, choosing from the Natural Color System Hue Circle. Results show that the choices of color for each shape were not…

  18. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com; Song, Guanbin, E-mail: song@cqu.edu.cn

    2016-10-15

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at

  19. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    International Nuclear Information System (INIS)

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Song, Guanbin

    2016-01-01

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at

  20. Spectroscopic Studies of the Nucleus GOLD-195

    Science.gov (United States)

    Fischer, Susan Marie

    The nucleus ^{195}Au has been studied via in-beam gamma -ray and electron spectroscopy with the reactions ^{196}Pt(p,2n)^ {195}Au at beam energies of 12 and 16 MeV, and the reaction ^{rm nat }Ir(alpha,2n) ^{195}Au at a beam energy of 26 MeV. All experiments were performed at the University of Notre Dame tandem accelerator facility and utilized elements of the University of Pittsburgh multi-detector gamma-array and ICEBall mini-orange electron spectrometer. Fifty-five new transitions and thirty-six new energy levels have been observed. The U(6/4) supersymmetric algebra has been proposed to provide a simultaneous description for the positive parity states of the pair of nuclei ^{194 }Pt and ^{195}Au. The observed energy spectra for these nuclei show satisfactory agreement with the U(6/4) predicted spectra. The collective properties including relative B(E2) values for the Pt and Au nuclei in this mass region are also consistent with theoretical predictions. However, the measured E2/M1 mixing ratios for transitions in ^{195} Au indicate that the single particle description for the odd-A nucleus is incomplete. The new data for ^{195}Au is further combined with the existing data for ^{194} Pt and ^{195}Pt within the context of the larger U_{ nu}(6/12) otimes U_{pi}(6/4) supersymmetry. A consistent fit to the energy eigenvalue equation is obtained and a modified prediction for the negative parity states in the odd-odd nucleus ^{196} Au is made. Thus, the proposal of an underlying supersymmetry for the quartet of nuclei ^ {194}Pt-^{195} Pt-^{195}Au- ^{196}Au also appears valid. New transitions and levels involved in the negative parity h_{11/2} decoupled band in ^{195}Au have also been observed. The band appears to be much more fragmented at high spins than the analogous structures in the lighter odd-A Au nuclei, but it is unclear what the source of this difference is. It is, however, proposed that a consistent description for both the positive and negative parity

  1. Dirac phenomenology and hyperon-nucleus interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mares, J; Jennings, B K [TRIUMF, Vancouver, British Columbia (Canada); Cooper, E D [Fraser Valley Univ. College, Chilliwack, British Columbia (Canada). Dept. of Physics

    1993-05-01

    We discuss various aspects of hyperon-nucleus interactions in the relativistic mean field theory. First, characteristics of {Lambda}, {Sigma} and {identical_to} hypernuclei, as well as multi strange baryonic objects, are investigated. The spin-orbit splittings and magnetic moments are shown to be very sensitive to the value of the tensor coupling f{omega}y. Second, optical potentials for {Lambda} and {Sigma} scattering off nuclei are developed based on a global nucleon-nucleon Dirac optical potential and SU(3) symmetry. The tensor coupling has a large effect on the predictions for the analyzing power. Third, the Dirac approach is used in the calculations of the non-mesonic decay of {Lambda} hypernuclei. The large discrepancy between the decay rates and data suggests the need for additional meson exchanges. (authors). 62 refs.,7 figs., 6 tabs.

  2. Delta-nucleus dynamics: proceedings of symposium

    International Nuclear Information System (INIS)

    Lee, T.S.H.; Geesaman, D.F.; Schiffer, J.P.

    1983-10-01

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta Δ(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe Δ-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented

  3. Muonic atom-light nucleus interaction

    International Nuclear Information System (INIS)

    Kuz'michev, V.E.; Peresypkin, V.V.; Efetov, A.V.

    1991-01-01

    The effective potential of the interaction between light nucleus and two-particle atom at distances greater than its Bohr radius is obtained in the analytic form on the basis of a correct account of three Coulomb particle problem. Features of the interaction between p, t, 4 He, 7 Be nuclei and mesonic atoms μp, μt, μ 4 He and μ 7 Be, that arising from the differences in masses and charges of interacting particles, are studied. The corresponding potentials in the pre-threshold energy range are given. The coefficients of the symptotic formula for the effective are calculated in adiabatic approximation and with regard for the main off-shell corrections. 16 refs.; 4 figs

  4. High energy hadron-nucleus collision

    International Nuclear Information System (INIS)

    Takagi, Fujio

    1983-02-01

    This is a lecture note concerning high energy hadron-nucleus collision. The lecture gives the inelastic total cross section and the Glanber approximate multiple scattering formula at first. The mechanism of nuclear spallation is described in a cylindrical image. The multiplicity, the one particle distribution and the time-space structure of particle production are discussed. Various models are presented. The attenuation of forward particles and the structure of hadrons are discussed for each model. The atomic number (A) dependence of the production of large transverse momentum particles and jet, and the A dependence of charged multiplicity are presented. The backward production of particles and many body correlation are discussed. Lepton pair production and the initial interaction of constituents, collective interaction, multi quark state and phase transition are described. (Kato, T.)

  5. Parity violation in the compound nucleus

    International Nuclear Information System (INIS)

    Bowman, J.D.; Frankle, C.M.; Green, A.A.

    1994-01-01

    The status of parity violation in the compound nucleus is reviewed. The results of previous experimental results obtained by scattering polarized epithermal neutrons from heavy nuclei in the 3-p and 4-p p-wave strength function peaks are presented. Experimental techniques are presented. The extraction of the mean squared matrix element of the parity-violating interaction, M 2 , between compound-nuclear levels and the relationship of M 2 to the coupling strengths in the meson exchange weak nucleon-nucleon potential are discussed. The tendency of measured asymmetries to have a common sign and theoretical implications are discussed. New experimental results are presented that show that the common sign phenomenon is not universal, as theoretical models developed up to now would predict

  6. An enlarged superfluid model of atomic nucleus

    International Nuclear Information System (INIS)

    Dumitrescu, O.; Horoi, M.

    1989-01-01

    The well known superfluid model (or quasiparticle phonon nuclear model (QPNM)) of atomic nucleus is enlarged by including an adequate four-nucleon effective interaction in addition to the pairing and long-range effective residual interactions. New experimental data can be explained without affecting those observables already described by the QPNM and in addition new features can be enumerated: 1) superfluidities of the neutron and proton systems may be generated by one another; 2) the phase structure is enriched by a new superfluid phase dominated by alpha-type correlations (ATC) and 3) superfluid isomers and their bands of elementary excitations are predicted. Unusual large two-nucleon and alpha transfer reactions cross sections as well as some unusual large alpha decay widths can be explained. (author). 46 refs, 3 figs, 2 tabs

  7. Delta-nucleus dynamics: proceedings of symposium

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.S.H.; Geesaman, D.F.; Schiffer, J.P. (eds.)

    1983-10-01

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta ..delta..(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe ..delta..-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented. (WHK)

  8. Heavy nucleus resonant absorption calculation benchmarks

    International Nuclear Information System (INIS)

    Tellier, H.; Coste, H.; Raepsaet, C.; Van der Gucht, C.

    1993-01-01

    The calculation of the space and energy dependence of the heavy nucleus resonant absorption in a heterogeneous lattice is one of the hardest tasks in reactor physics. Because of the computer time and memory needed, it is impossible to represent finely the cross-section behavior in the resonance energy range for everyday computations. Consequently, reactor physicists use a simplified formalism, the self-shielding formalism. As no clean and detailed experimental results are available to validate the self-shielding calculations, Monte Carlo computations are used as a reference. These results, which were obtained with the TRIPOLI continuous-energy Monte Carlo code, constitute a set of numerical benchmarks than can be used to evaluate the accuracy of the techniques or formalisms that are included in any reactor physics codes. Examples of such evaluations, for the new assembly code APOLLO2 and the slowing-down code SECOL, are given for cases of 238 U and 232 Th fuel elements

  9. The nucleus accumbens and learning and memory.

    Science.gov (United States)

    Setlow, B

    1997-09-01

    Recent research on the nucleus accumbens (NA) indicates that this brain region is involved in learning and memory processes in a way that is separable from its other well-known roles in behavior, such as motivation, reward, and locomotor activity. These findings have suggested that 1) the NA may be involved in declarative, or hippocampal formation-dependent learning and memory, and not in several other non-declarative forms of learning and memory, and 2) the NA may be selectively involved in certain stages of learning and memory. These characteristics suggest that the NA may be part of a larger striatal system which subserves acquisition and consolidation, but is not a site of long-term storage, of different forms of learning and memory.

  10. Observation of the antimatter helium-4 nucleus.

    Science.gov (United States)

    2011-05-19

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4He), also known as the anti-α (α), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B antimatter nuclei and a benchmark for possible future observations of 4He in cosmic radiation.

  11. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  12. Model for fusion and cool compound nucleus formation based on the fragmentation theory

    International Nuclear Information System (INIS)

    Malhotra, N.; Aroumougame, R.; Saroha, D.R.; Gupta, R.K.

    1986-01-01

    Collective potential energy surfaces are calculated in both the adiabatic and sudden approximations by using the asymmetric two-center shell model in the Strutinsky method. It is shown that fusion of two colliding heavy ions occurs by their crossing over of the adiabatic interaction barrier. The adiabatic scattering potentials present two barriers, whereas no barrier is shown to occur in sudden scattering potentials. The first barrier is obtained just past the saddle shape but is too low, such that a deep inelastic process is expected. The other, inner, barrier is high enough to let the system fall into the fusion well, whose excitation energy then determines whether a cool compound nucleus is produced or the fusion-fission process occurs. For a given compound nucleus, the excitation energy is found to be small for only a few target-projectile combinations, which increase as their mass asymmetry increases. Such target-projectile combinations which refer to a cool compound nucleus can be identified by a simple calculation of the fragmentation potential based on the ground state binding energies with Coulomb and proximity effects calculated at a constant relative separation of the two nuclei. Our calculations are made for the composite systems with 102 < or =Z < or =114

  13. Model for fusion and cool compound nucleus formation based on the fragmentation theory

    International Nuclear Information System (INIS)

    Malhotra, N.; Aroumougame, R.; Saroha, D.R.; Gupta, R.K.

    1985-07-01

    The collective potential energy surfaces are calculated in both the adiabatic and sudden approximations by using the asymmetric two centre shell model in Strutinsky method. It is shown that fusion of two colliding heavy ions occur by their crossing over of the adiabatic interaction barrier. The adiabatic scattering potentials present two barriers whereas no barrier is shown to occur in sudden scattering potentials. The first barrier is obtained just past the saddle shape but is too low, such that a deep inelastic process is expected. The other, inner, barrier is high enough to let the system fall into the fusion well, whose excitation energy then determine whether a cool compound nucleus is produced or the fusion-fission process occurs. For a given compound nucleus, the excitation energy is found to be small for only a few target-projectile combinations, which increase as their mass asymmetry increases. Such target-projectile combinations which refer to a cool compound nucleus, can be identified by a simple calculation of the fragmentation potential based on the ground state binding energies with Couloumb and proximity effects calculated at a constant relative separation of the two nuclei. Our calculations are made for the composite systems with 102<=Z<=114. (author)

  14. Nanoneedle insertion into the cell nucleus does not induce double-strand breaks in chromosomal DNA.

    Science.gov (United States)

    Ryu, Seunghwan; Kawamura, Ryuzo; Naka, Ryohei; Silberberg, Yaron R; Nakamura, Noriyuki; Nakamura, Chikashi

    2013-09-01

    An atomic force microscope probe can be formed into an ultra-sharp cylindrical shape (a nanoneedle) using micro-fabrication techniques such as focused ion beam etching. This nanoneedle can be effectively inserted through the plasma membrane of a living cell to not only access the cytosol, but also to penetrate through the nuclear membrane. This technique shows great potential as a tool for performing intranuclear measurements and manipulations. Repeated insertions of a nanoneedle into a live cell were previously shown not to affect cell viability. However, the effect of nanoneedle insertion on the nucleus and nuclear components is still unknown. DNA is the most crucial component of the nucleus for proper cell function and may be physically damaged by a nanoneedle. To investigate the integrity of DNA following nanoneedle insertion, the occurrence of DNA double-strand breaks (DSBs) was assessed. The results showed that there was no chromosomal DNA damage due to nanoneedle insertion into the nucleus, as indicated by the expression level of γ-H2AX, a molecular marker of DSBs. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Bilateral lesions of nucleus subpretectalis/interstitio-pretecto-subpretectalis (SP/IPS) selectively impair figure-ground discrimination in pigeons.

    Science.gov (United States)

    Scully, Erin N; Acerbo, Martin J; Lazareva, Olga F

    2014-01-01

    Earlier, we reported that nucleus rotundus (Rt) together with its inhibitory complex, nucleus subpretectalis/interstitio-pretecto-subpretectalis (SP/IPS), had significantly higher activity in pigeons performing figure-ground discrimination than in the control group that did not perform any visual discriminations. In contrast, color discrimination produced significantly higher activity than control in the Rt but not in the SP/IPS. Finally, shape discrimination produced significantly lower activity than control in both the Rt and the SP/IPS. In this study, we trained pigeons to simultaneously perform three visual discriminations (figure-ground, color, and shape) using the same stimulus displays. When birds learned to perform all three tasks concurrently at high levels of accuracy, we conducted bilateral chemical lesions of the SP/IPS. After a period of recovery, the birds were retrained on the same tasks to evaluate the effect of lesions on maintenance of these discriminations. We found that the lesions of the SP/IPS had no effect on color or shape discrimination and that they significantly impaired figure-ground discrimination. Together with our earlier data, these results suggest that the nucleus Rt and the SP/IPS are the key structures involved in figure-ground discrimination. These results also imply that thalamic processing is critical for figure-ground segregation in avian brain.

  16. Quantum shape phase transitions from spherical to deformed for Bose-Fermi systems: the effect of the odd particle around the critical point

    Directory of Open Access Journals (Sweden)

    Böyükata M.

    2014-03-01

    Full Text Available Quantum phase transitions in odd-nuclei are investigated within the framework of the interacting boson-fermion model with a description based on the concept of intrinsic states. We consider the case of a single j=9/2 odd-particle coupled to an even-even boson core that performs a transition from spherical to deformed prolate and to deformed gamma-unstable shapes varying a control parameter in the boson Hamiltonian. The effect of the coupling of the odd particle to this core is discussed along the shape transition and, in particular, at the critical point.

  17. Dynamical and statistical aspects in nucleus-nucleus collisions around the Fermi energy

    Energy Technology Data Exchange (ETDEWEB)

    Tamain, B.; Bocage, F.; Bougault, R.; Brou, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Assenard, M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Auger, G.; Benlliure, J. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Bacri, C.O.; Borderie, B. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Bisquer, E. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire] [and others

    1997-12-31

    Nucleus-nucleus collisions at low incident energy are mainly governed by statistical dissipative processes, fusion and deep inelastic reactions being the most important ones. Conversely, in the relativistic energy regime, dynamical effects play a dominant role and one should apply a participant-spectator picture in order to understand the data. In between, the intermediate energy region is a transition one in which it is necessary to disentangle dynamics from statistical effects. Moreover, the Fermi energy region corresponds to available energies comparable with nuclear binding energies and one may except to observe phase transition effects. Experiments performed recently with 4{pi} devices have given quite new data and a much better insight into involved mechanisms and hot nuclear matter properties. INDRA data related to reaction mechanisms and multifragmentation are presented. (author) 53 refs.

  18. Dynamical and statistical aspects in nucleus-nucleus collisions around the Fermi energy

    International Nuclear Information System (INIS)

    Tamain, B.; Bocage, F.; Bougault, R.; Brou, R.; Bacri, C.O.; Borderie, B.; Bisquer, E.

    1997-01-01

    Nucleus-nucleus collisions at low incident energy are mainly governed by statistical dissipative processes, fusion and deep inelastic reactions being the most important ones. Conversely, in the relativistic energy regime, dynamical effects play a dominant role and one should apply a participant-spectator picture in order to understand the data. In between, the intermediate energy region is a transition one in which it is necessary to disentangle dynamics from statistical effects. Moreover, the Fermi energy region corresponds to available energies comparable with nuclear binding energies and one may except to observe phase transition effects. Experiments performed recently with 4π devices have given quite new data and a much better insight into involved mechanisms and hot nuclear matter properties. INDRA data related to reaction mechanisms and multifragmentation are presented. (author)

  19. The calculation of nucleus-nucleus interaction cross sections at high energy in the Glauber approach

    International Nuclear Information System (INIS)

    Gal'perin, A.G.; Uzhinskij, V.V.

    1994-01-01

    Total, inelastic and elastic cross sections of nucleus-nucleus (AA)-interactions at high energy (HE) are calculated on the base of Glauber approach. The calculation scheme is realized as a set of routines. The statistical average method is used in calculations. Program runs in an interactive regime. User is prompted about charge and mass numbers of nuclei and NN-interaction characters at the energy he is interested in: total cross section, the slope parameter of differential cross section of elastic scattering and ratio of real part to imaginary part of elastic scattering amplitude at zero momentum transfer. These data can be extracted from proper compilations. Results of calculations are displayed and are written on user defined output file. The program runs on PC. 21 refs., 1 tab

  20. Nucleus-Nucleus Scattering in the High-Energy Approximation and the Optical Folding Potential

    CERN Document Server

    Lukyanov, V K; Lukyanov, K V

    2004-01-01

    For the nucleus-nucleus scattering, the complex potential is obtained which corresponds to the eikonal phase of an optical limit of the Glauber-Sitenko high-energy approximation. The potential does not include free parameters, its real and imaginary parts depend on energy and are determined by the reported data on the nuclear density distributions and nucleon-nucleon scattering amplitude. Alternatively, for the real part, the folding potential can be utilized which includes the effective NN-forces and the exchange term, as well. As a result, the microscopic optical potential is constructed where contributions of the calculated real and imaginary parts are formed by fitting the two respective factors. An efficient of the approach is confirmed by agreements of calculations with the experimental data on elastic scattering cross-sections.

  1. Transport theory applied to hadron and light fragment production in high energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Schuermann, B.; Malfliet, R.; Mies, S.; Zwermann, W.

    1984-01-01

    Foundations of the transport theory for studying K + , K - , π - and light fragment production in nucleus-nucleus interactions at high energies are given. Inclusive production of protons, K + and π - in the Ne+NaF reaction at 400 MeV and 21 GeV/nucleon is consdered, their differential cross sections are caculated. Differential cross sections of K - and π - production in Si+Si → K + +X and Ne+NaF → π - +X reactions at the energy of 2.1 GeV/nucleon, their energy dependence are estimated. Comparison of the calculated and experimental data is graphically presented. The model of the transport theory is shown to successfully reproduce inclusive spectra of different particles (p, d, π, K + , K - ) in a wide energy range of incident particles (from 400 MeV to 2 GeV/nucleon). This approach can be generalized for lower energies by generating a mean nuclear potentiasl field

  2. On the geometric nature of high energy nucleus-nucleus reaction cross sections

    International Nuclear Information System (INIS)

    Townsend, L.W.; Wilson, J.W.; Bidasaria, H.B.

    1982-01-01

    Within the context of a high energy double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to investigate the validity of geometric reaction cross sections in relativistic heavy ion collisions. The potential used includes a finite range interaction and nuclear single-particle densities extracted from nuclear charge distributions by unfolding the proton charge distribution. Pauli correlation effects are also included in an approximate way. The sensitivity of the predictions to be assumed interaction, Pauli correlation approximation, and nuclear density distributions is investigated. These results are in agreement with early predictions concerning the geometric nature of relativistic heavy ion collisions and in disagreement with a recent analysis, utilizing the zero range approximation, which suggested otherwise. Reasons for the lack of agreement between the analyses are also presented. Finally, approximate applicability for geometric reaction cross sections are determined

  3. Experimental and phenomenological investigations of QCD matter in high-energy nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Andronic, Anton

    2014-07-15

    This thesis is heterogeneous, comprising experimental papers at low energies (SIS-18 at GSI) and at the LHC, papers on phenomenology of high-energy nucleus-nucleus collisions, and papers on detectors. The overview covers the experimental papers and those on phenomenology. I have chosen to write it in a general manner, intended to be accessible to non-experts. It emphasizes recent measurements and their understanding at the LHC. The detector papers, which address many principle aspects of gaseous detectors, are summarized and placed in context in the review I co-wrote and which closes the stack. The detector papers included here are the outcome of an R and D program for the Transition Radiation Detector of ALICE.

  4. Study of Strange and Multistrange Particles in Ultrarelativistic Nucleus-Nucleus Collisions

    CERN Multimedia

    Vande vyvre, P; Feofilov, G; Snoeys, W; Hetland, K F; Campbell, M; Klempt, W

    2002-01-01

    % NA57\\\\ \\\\ The goal of the experiment is to study the production of strange and multi-strange particles in nucleus-nucleus collisions. This study was initiated at the OMEGA spectrometer, where three ion experiments have been performed: WA85 (S-W and p-W collisions at 200 A GeV/c), WA94 (S-S and p-S collisions at 200 A GeV/c) and WA97 (Pb-Pb, p-Pb and p-Be collisions at 160 A GeV/c).\\\\ \\\\ The experiment aims at extending the scope of WA97 by:\\\\ \\\\ - investigating the beam energy dependence of the enhancements of multi-strange particle production reported by the previous experiments, and by\\\\ \\\\\\\\ \\\\- measuring the yields of strange and multi-strange particles over an extended centrality range compared with the previous experiments.\\\\ \\\\ The apparatus consists mainly of silicon pixel detector planes.

  5. Dissipation and fluctuation of the relative momentum in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Feldmeier, H.; Spangenberger, H.

    1984-07-01

    The dissipation of the relative momentum in nucleus-nucleus collisions is treated in terms of a Langevin equation with a fluctuating force. Equations of motion for first and second moments of the macroscopic variables are derived directly from the Langevin equation. The properties of the fluctuating force which results from random particle exchange are investigated in detail. Drift and diffusion coefficients are calculated microscopically and analytical expressions are given which can be used in any trajectory calculation. An important feature of the model is that the Einstein relation between dissipation and fluctuation turns out to be only a limiting case of a more general expression which included nonthermal fluctuations. By treating the two nuclei as intrinsically equilibrated but not in thermal equilibrium with respect to each other several important aspects of the dissipative behaviour, seen in heavy ion collisions with final energies above the Coloumb barrier, can be understood. (orig.)

  6. Transverse and radial flow in intermediate energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Vestfall, D. Gary

    1997-01-01

    We have studied transverse and radial flow in nucleus-nucleus collisions ranging in energy from 15 to 155 MeV/nucleon. We have measured the impact parameter dependence of the balance energy for Ar + Sc and compared the results with Quantum Molecular Dynamics calculations with and without momentum dependence. We have shown that transverse flow and the balance energy dependence on the isospin of the system using the systems 58 Fe + 58 Fe, 58 Ni + 58 Ni, and 58 Mn + 58 Fe. These results are compared with Boltzmann-Uehling-Uehlenbeck calculations incorporating isospin-dependence. We have measured radial flow for Ar + Sc and find that about 50% of the observed energy is related to radial flow. (author)

  7. Experimental and phenomenological investigations of QCD matter in high-energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Andronic, Anton

    2014-07-01

    This thesis is heterogeneous, comprising experimental papers at low energies (SIS-18 at GSI) and at the LHC, papers on phenomenology of high-energy nucleus-nucleus collisions, and papers on detectors. The overview covers the experimental papers and those on phenomenology. I have chosen to write it in a general manner, intended to be accessible to non-experts. It emphasizes recent measurements and their understanding at the LHC. The detector papers, which address many principle aspects of gaseous detectors, are summarized and placed in context in the review I co-wrote and which closes the stack. The detector papers included here are the outcome of an R and D program for the Transition Radiation Detector of ALICE.

  8. Calculations of nucleus-nucleus microscopic optical potentials at intermediate energies

    International Nuclear Information System (INIS)

    Hanna, K.M.; Kuhtina, I.N.; Lukyanov, K.V.; Lukyanov, V.K.; Zemlyanaya, E.V.; Slowinski, B.

    2006-01-01

    Three types of microscopic nucleus-nucleus optical potentials are constructed using three patterns for their real and imaginary parts. Two of these patterns are the real V H and imaginary W H parts of the potential which reproduces the high-energy amplitude of scattering in the microscopic Glauber-Sitenko theory. Another template VDF is calculated within the standard double-folding model with the exchange term included. For either of the three tested potentials, the contribution of real and imaginary patterns is adjusted by introducing two fitted factors. Correspondingly, using numerical code ECIS, the elastic differential cross-sections were fitted to the experimental data on scattering of the 16,17 O heavy-ions at about hundred Mev/nucleon on various target-nuclei. The relativization effect is also included. The tables of the obtained factors which renormalize the strengths of the real and (or) imaginary parts of the calculated microscopic potentials are given

  9. Method of a fast selection of inelastic nucleus-nucleus collisions for the CMS experiment

    International Nuclear Information System (INIS)

    Krasnov, V.A.; Malakhov, A.I.; Savina, M.V.; Shmatov, S.V.; Zarubin, P.I.

    1998-01-01

    On the basis of the HIJING generator simulation of heavy ion collisions at ultrarelativistic energy scale, a method of a fast selection of inelastic nucleus-nucleus interactions is proposed for the CMS experiment at LHC. The basic idea is to use the time coincidence of signals with resolution better than 1 ns from the two very forward calorimeter arms covering the acceptance 3<|η|<5. The method efficiency is investigated by variation of energy thresholds in the calorimeters for different colliding ion species, namely, PbPb, NbNb, CaCa, OO, pPb, pCa, pp. It is shown that a stable efficiency of event selection (∼98%) is provided in an energy threshold range up to 100 GeV for nuclear collisions at 5 TeV/nucleon in the centre of mass system. In the pp collision case the relevant efficiency drops from 93% down to 80%

  10. New quasibound states of the compound nucleus in α -particle capture by the nucleus

    Science.gov (United States)

    Maydanyuk, Sergei P.; Zhang, Peng-Ming; Zou, Li-Ping

    2017-07-01

    We generalize the theory of nuclear decay and capture of Gamow that is based on tunneling through the barrier and internal oscillations inside the nucleus. In our formalism an additional factor is obtained, which describes distribution of the wave function of the the α particle inside the nuclear region. We discover new most stable states (called quasibound states) of the compound nucleus (CN) formed during the capture of α particle by the nucleus. With a simple example, we explain why these states cannot appear in traditional calculations of the α capture cross sections based on monotonic penetrabilities of a barrier, but they appear in a complete description of the evolution of the CN. Our result is obtained by a complete description of the CN evolution, which has the advantages of (1) a clear picture of the formation of the CN and its disintegration, (2) a detailed quantum description of the CN, (3) tests of the calculated amplitudes based on quantum mechanics (not realized in other approaches), and (4) high accuracy of calculations (not achieved in other approaches). These peculiarities are shown with the capture reaction of α +44Ca . We predict quasibound energy levels and determine fusion probabilities for this reaction. The difference between our approach and theory of quasistationary states with complex energies applied for the α capture is also discussed. We show (1) that theory does not provide calculations for the cross section of α capture (according to modern models of the α capture), in contrast with our formalism, and (2) these two approaches describe different states of the α capture (for the same α -nucleus potential).

  11. HIJET: a Monte Carlo event generator for P-nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ludlam, T.; Pfoh, A.; Shor, A.

    1985-01-01

    Comparisons are shown for the HIJET generated data and measured data for average multiplicities, rapidity distributions, and leading proton spectra in proton-nucleus and heavy ion reactions. The algorithm for the generator is one of an incident particle on a target of uniformly distributed nucleons. The dynamics of the interaction limit secondary interactions in that only the leading baryon may re-interact with the nuclear volume. Energy and four momentum are globally conserved in each event. 6 refs., 6 figs

  12. Study of proton-nucleus collisions at high energies based on the hydrodynamical model

    International Nuclear Information System (INIS)

    Masuda, N.; Weiner, R.M.

    1978-01-01

    We study proton-nucleus collisions at high energies using the one-dimensional hydrodynamical model of Landau with special emphasis on the effect of the size of the target nucleus and of the magnitude of velocity of sound of excited hadronic matter. We convert a collision problem of a proton and a nucleus with a spherical shape into that of a proton and a one-dimensional nuclear tunnel whose length is determined from the average impact parameter. By extending the methods developed by Milekhin and Emelyanov, we obtain the solutions of the hydrodynamical equations of proton-nucleus collisions for arbitrary target tunnel length and arbitrary velocity of sound. The connection between these solutions and observable physical quantities is established as in the work of Cooper, Frye, and Schonberg. Extensive numerical analyses are made at E/sub lab/ = 200 GeV and for the velocity of sound u = 1/√3 of a relativistic ideal Bose gas and u = 1/(7.5)/sup 1/2/ of an interacting Bose gas. In order to compare proton-nucleus collisions with proton-proton collisions, all the analyses are made in the equal-velocity frame. We find the following results. (1) In comparing the number of secondary particles produced in p-A collisions N/sub p/A with those in p-p collisions N/sub p/p, while most of the excess of N/sub p/A over N/sub p/p is concentrated in the backward rapidity region, there exists also an increase of N/sub p/A with A in the forward rapidity region. This result is at variance with the predictions of the energy-flux-cascade model and of the coherent-production model. (2) The excess energies are contained exclusively in the backward region. We also find evidence for new phenomena in proton-nucleus collisions. (3) The existence of an asymmetry of average energies of secondary particles between forward and backward regions, in particular, >> for larger nuclear targets. Thus, energetic particles are predominantly produced in the backward region

  13. The Confined Hydrogen Atom with a Moving Nucleus

    Science.gov (United States)

    Fernandez, Francisco M.

    2010-01-01

    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…

  14. On studies of the hadron-nucleus collision processes

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1992-01-01

    A new way of hadron-nucleus collision process investigations in experiments is described. It is based on the properties of the hadron passage through layers of the intranuclear matter. The picture of the hadron-nucleus collision mechanism, as prompted experimentally, is presented. 37 refs.; 1 tab

  15. Nucleus retroambiguus projections to the periaqueductal gray in the cat

    NARCIS (Netherlands)

    Klop, EM; Mouton, LJ; Holstege, G

    2002-01-01

    The nucleus retroambiguus (NRA) of the caudal medulla is a relay nucleus by which neurons of the mesencephalic periaqueductal gray (PAG) reach motoneurons of pharynx, larynx, soft palate, intercostal and abdominal muscles, and several muscles of the hindlimbs. These PAG-NRA-motoneuronal projections

  16. Transverse-momentum distribution of produced particles in ultrarelativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ban-Hao, S.; Wong, C.

    1985-01-01

    In order to discern coherent or collective processes from incoherent processes in nucleus-nucleus reactions at high energies, we study the transverse-momentum distribution of the produced particles with an incoherent-multiple-collision model. In this model, the projectile nucleon makes successive inelastic collisions with nucleons in the target nucleus, the probability of such collisions being given by the thickness function and the nucleon-nucleon inelastic cross section. It is assumed that each baryon-baryon collision produces particles and degrades momenta just as a baryon-baryon collision in free space, and that there are no secondary collisions between the produced particles and the nucleons. We found that the average transverse momentum and the charged-multiplicity data at Fermilab and CERN ISR energies can be well explained by such a model. However, the average transverse momentum for some events observed by the Japanese-American cooperative emulsion experiment (JACEE) associated with large energy density in the central rapidity region differ markedly from the model results. Such a deviation indicates the presence of coherent or collective effects for these collisions and may indicate the possibility of a formation of quark-gluon plasma

  17. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  18. The importance of triaxial shapes in spin aligned configurations in the A = 170-180 mass region

    International Nuclear Information System (INIS)

    Bengtsson, R.

    1990-01-01

    Deformations determined from total routhian surfaces (TRS) for the yrast states of even-even isotopes of W, Os, and Pt are presented. The calculated deformations imply a number of specific features for the yrast line, resulting from deformation changes and the alignment of specific pairs of quasiparticles. The triaxial shapes predicted from the TRS are important for determining the character of the aligning particles as well as for making a correct interpretation of the strength of the interaction between crossing bands and the bandcrossing frequencies. 19 refs., 9 figs

  19. Afferent projections to the deep mesencephalic nucleus in the rat

    International Nuclear Information System (INIS)

    Veazey, R.B.; Severin, C.M.

    1982-01-01

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist

  20. Nuclear quantum shape-phase transitions in odd-mass systems

    Science.gov (United States)

    Quan, S.; Li, Z. P.; Vretenar, D.; Meng, J.

    2018-03-01

    Microscopic signatures of nuclear ground-state shape-phase transitions in odd-mass Eu isotopes are explored starting from excitation spectra and collective wave functions obtained by diagonalization of a core-quasiparticle coupling Hamiltonian based on energy density functionals. As functions of the physical control parameter—the number of nucleons—theoretical low-energy spectra, two-neutron separation energies, charge isotope shifts, spectroscopic quadrupole moments, and E 2 reduced transition matrix elements accurately reproduce available data and exhibit more-pronounced discontinuities at neutron number N =90 compared with the adjacent even-even Sm and Gd isotopes. The enhancement of the first-order quantum phase transition in odd-mass systems can be attributed to a shape polarization effect of the unpaired proton which, at the critical neutron number, starts predominantly coupling to Gd core nuclei that are characterized by larger quadrupole deformation and weaker proton pairing correlations compared with the corresponding Sm isotopes.

  1. The shape of nuclei

    International Nuclear Information System (INIS)

    Mackintosh, R.S.

    1977-01-01

    For the class of nuclei which are 'strongly deformed' it is possible to introduce the idea of an empirically measurable static nuclear shape. The limitations of this concept as applied to nuclei (fundamentally quantum-mechanical objects) are discussed. These are basically the limitations of the rotational model which must be introduced in order to define and measure nuclear shape. A unified discussion of the ways in which the shape has been parametrized is given with emphasis on the fact that different parametrizations correspond to different nuclear structures. Accounts of the various theoretical procedures for calculating nuclear shapes and of the interaction between nuclear shapes and nuclear spectroscopy are given. A coherent account of a large subset of nuclei (strongly deformed nuclei) can be given by means of a model in which the concept of nuclear shape plays a central role. (author)

  2. Research in Shape Analysis

    CERN Document Server

    Leonard, Kathryn; Tari, Sibel; Hubert, Evelyne; Morin, Geraldine; El-Zehiry, Noha; Chambers, Erin

    2018-01-01

    Based on the second Women in Shape (WiSH) workshop held in Sirince, Turkey in June 2016, these proceedings offer the latest research on shape modeling and analysis and their applications. The 10 peer-reviewed articles in this volume cover a broad range of topics, including shape representation, shape complexity, and characterization in solving image-processing problems. While the first six chapters establish understanding in the theoretical topics, the remaining chapters discuss important applications such as image segmentation, registration, image deblurring, and shape patterns in digital fabrication. The authors in this volume are members of the WiSH network and their colleagues, and most were involved in the research groups formed at the workshop. This volume sheds light on a variety of shape analysis methods and their applications, and researchers and graduate students will find it to be an invaluable resource for further research in the area.

  3. Perspectives in shape analysis

    CERN Document Server

    Bruckstein, Alfred; Maragos, Petros; Wuhrer, Stefanie

    2016-01-01

    This book presents recent advances in the field of shape analysis. Written by experts in the fields of continuous-scale shape analysis, discrete shape analysis and sparsity, and numerical computing who hail from different communities, it provides a unique view of the topic from a broad range of perspectives. Over the last decade, it has become increasingly affordable to digitize shape information at high resolution. Yet analyzing and processing this data remains challenging because of the large amount of data involved, and because modern applications such as human-computer interaction require real-time processing. Meeting these challenges requires interdisciplinary approaches that combine concepts from a variety of research areas, including numerical computing, differential geometry, deformable shape modeling, sparse data representation, and machine learning. On the algorithmic side, many shape analysis tasks are modeled using partial differential equations, which can be solved using tools from the field of n...

  4. On the possible detection of quantum-mechanical interferences between gravitational forces and nucleus-nucleus Coulomb forces

    International Nuclear Information System (INIS)

    Silveira, R. da

    1996-07-01

    Possible effects of quantum-mechanical interferences between gravitational forces and the nucleus-nucleus Coulomb interaction are discussed. It is shown that, although very small, these effects could be measured using low energy scattering between identical heavy nuclei, e.g. for the system 208 Pb + 208 Pb (E L = 5 MeV). (author)

  5. Figure-ground discrimination in the avian brain: the nucleus rotundus and its inhibitory complex.

    Science.gov (United States)

    Acerbo, Martin J; Lazareva, Olga F; McInnerney, John; Leiker, Emily; Wasserman, Edward A; Poremba, Amy

    2012-10-01

    In primates, neurons sensitive to figure-ground status are located in striate cortex (area V1) and extrastriate cortex (area V2). Although much is known about the anatomical structure and connectivity of the avian visual pathway, the functional organization of the avian brain remains largely unexplored. To pinpoint the areas associated with figure-ground segregation in the avian brain, we used a radioactively labeled glucose analog to compare differences in glucose uptake after figure-ground, color, and shape discriminations. We also included a control group that received food on a variable-interval schedule, but was not required to learn a visual discrimination. Although the discrimination task depended on group assignment, the stimulus displays were identical for all three experimental groups, ensuring that all animals were exposed to the same visual input. Our analysis concentrated on the primary thalamic nucleus associated with visual processing, the nucleus rotundus (Rt), and two nuclei providing regulatory feedback, the pretectum (PT) and the nucleus subpretectalis/interstitio-pretecto-subpretectalis complex (SP/IPS). We found that figure-ground discrimination was associated with strong and nonlateralized activity of Rt and SP/IPS, whereas color discrimination produced strong and lateralized activation in Rt alone. Shape discrimination was associated with lower activity of Rt than in the control group. Taken together, our results suggest that figure-ground discrimination is associated with Rt and that SP/IPS may be a main source of inhibitory control. Thus, figure-ground segregation in the avian brain may occur earlier than in the primate brain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Cytological organization of the alpha component of the anterior olfactory nucleus and olfactory limbus

    Directory of Open Access Journals (Sweden)

    Jorge A Larriva-Sahd

    2012-06-01

    Full Text Available This study describes the microscopic organization of a wedge-shaped area at the intersection of the main and accessory olfactory bulbs, or olfactory limbus , and an additional component of the anterior olfactory nucleus or alpha accessory olfactory bulb that lies underneath of the accessory olfactory bulb. The olfactory limbus consists of a modified bulbar cortex bounded anteriorly by the main olfactory bulb and posteriorly by the accessory olfactory bulb. In Nissl-stained specimens the olfactory limbus differs from the main olfactory bulb by a progressive, antero-posterior decrease in thickness or absence of the external plexiform, mitral/tufted cell, and granule cell layers. On cytoarchitectual grounds the olfactory limbus is divided from rostral to caudal into three distinct components: a stripe of glomerular-free cortex or preolfactory area, a second or necklace glomerular area, and a wedge-shaped or interstitial area crowned by the so-called modified glomeruli that appear to belong to the anterior accessory olfactory bulb. The strategic location and interactions with the main and accessory olfactory bulbs, together with the previously noted functional and connectional evidence, suggest that the olfactory limbus may be related to both sensory modalities. The alpha component of the anterior olfactory nucleus, a slender cellular cluster (i.e., 650 x 150 µm paralleling the base of the accessory olfactory bulb, contains two neuron types: a pyramidal-like neuron and an interneuron. Dendrites of pyramidal-like cells organize into a single bundle that ascends avoiding the accessory olfactory bulb to resolve in a trigone bounded by the edge of the olfactory limbus, the accessory olfactory bulb and the dorsal part of the anterior olfactory nucleus. Utrastructurally, the neuropil of the alpha component contains three types of synaptic terminals; one of them immunoreactive to the enzyme glutamate decarboxylase, isoform 67.

  7. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  8. Convergence of cranial visceral afferents within the solitary tract nucleus.

    Science.gov (United States)

    McDougall, Stuart J; Peters, James H; Andresen, Michael C

    2009-10-14

    Primary afferent axons within the solitary tract (ST) relay homeostatic information via glutamatergic synapses directly to second-order neurons within the nucleus of the solitary tract (NTS). These primary afferents arise from multiple organ systems and relay multiple sensory modalities. How this compact network organizes the flow of primary afferent information will shape central homeostatic control. To assess afferent convergence and divergence, we recorded ST-evoked synaptic responses in pairs of medial NTS neurons in horizontal brainstem slices. ST shocks activated EPSCs along monosynaptic or polysynaptic pathways. Gradations in shock intensity discriminated multiple inputs and stimulus recruitment profiles indicated that each EPSC was unitary. In 24 pairs, 75% were second-order neurons with 64% receiving one direct ST input with the remainder receiving additional convergent ST afferent inputs (22% two; 14% three monosynaptic ST-EPSCs). Some (34%) second-order neurons received polysynaptic EPSCs. Neurons receiving only higher-order inputs were uncommon (13%). Most ST-EPSCs were completely independent, but 4 EPSCs of a total of 81 had equal thresholds, highly correlated latencies, and synchronized synaptic failures consistent with divergence from a single source ST axon or from a common interneuron producing a pair of polysynaptic EPSCs. We conclude that ST afferent inputs are remarkably independent with little evidence of substantial shared information. Individual cells receive highly focused information from the viscera. Thus, afferent excitation of second-order NTS neurons is generally dominated by single visceral afferents and therefore focused on a single afferent modality and/or organ region.

  9. Hard breakup of two nucleons from the 3He nucleus

    International Nuclear Information System (INIS)

    Sargsian, Misak M.; Granados, Carlos

    2009-01-01

    We investigate a large angle photodisintegration of two nucleons from the 3 He nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-nucleon scattering, the HRM allows the expression of the amplitude of a two-nucleon breakup reaction through the convolution of photon-quark scattering, NN hard scattering amplitude, and nuclear spectral function, which can be calculated using a nonrelativistic 3 He wave function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for NN scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as s -11 . Second, the s 11 weighted cross section will have the shape of energy dependence similar to that of s 10 weighted NN elastic scattering cross section. Also one predicts an enhancement of the pp breakup relative to the pn breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn breakup cross sections. This is due to the fact that the same-helicity pp-component is strongly suppressed in the ground state wave function of 3 He. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer NN breakup reactions for circularly polarized photons. For the pp breakup this asymmetry is predicted to be zero while for the pn it is close to (2/3).

  10. A new potential of π-nucleus scattering and its application to nuclear structure study using elastic scattering and charge exchange reactions

    International Nuclear Information System (INIS)

    Durand, Gerard.

    1974-01-01

    First the different theories used for studying pion-nucleus scattering and especially Glauber microscopic model and Kisslinger optical model are summarized. From the comparison of these two theories it was concluded that Kisslinger's was better for studying pion-nucleus scattering near the (3/2-3/2) resonance. The potential was developed, with a local corrective term, proposed by this author. This new term arises from taking into account correctly the Lorentz transformation from the pion-nucleon center of mass to the pion nucleus center of mass system. A coupled-channel formalism was developed allowing the study of pion-nucleus elastic scattering and also the study of single and double charge exchange reactions on nucleus with N>Z. The influence of the new term and the shape of nucleon densities on π- 12 C scattering was studied near 200MeV. It was found that at the nucleus surface the neutron density was larger than the proton density. On the other hand, a maximum of sensibility to the different nuclear parameters was found near 180MeV and for elastic scattering angles greater than 100 deg. The calculations of the total cross section for simple and double charge exchange for 13 C and 63 Cu yielded results simular to those of previous theories and showed the same discrepancy between theory and experiment in the resonance region [fr

  11. Evolution of a protein folding nucleus.

    Science.gov (United States)

    Xia, Xue; Longo, Liam M; Sutherland, Mason A; Blaber, Michael

    2016-07-01

    The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome. © 2015 The Protein Society.

  12. Comparing Realistic Subthalamic Nucleus Neuron Models

    Science.gov (United States)

    Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.

    2011-06-01

    The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.

  13. Subthalamic nucleus detects unnatural android movement.

    Science.gov (United States)

    Ikeda, Takashi; Hirata, Masayuki; Kasaki, Masashi; Alimardani, Maryam; Matsushita, Kojiro; Yamamoto, Tomoyuki; Nishio, Shuichi; Ishiguro, Hiroshi

    2017-12-19

    An android, i.e., a realistic humanoid robot with human-like capabilities, may induce an uncanny feeling in human observers. The uncanny feeling about an android has two main causes: its appearance and movement. The uncanny feeling about an android increases when its appearance is almost human-like but its movement is not fully natural or comparable to human movement. Even if an android has human-like flexible joints, its slightly jerky movements cause a human observer to detect subtle unnaturalness in them. However, the neural mechanism underlying the detection of unnatural movements remains unclear. We conducted an fMRI experiment to compare the observation of an android and the observation of a human on which the android is modelled, and we found differences in the activation pattern of the brain regions that are responsible for the production of smooth and natural movement. More specifically, we found that the visual observation of the android, compared with that of the human model, caused greater activation in the subthalamic nucleus (STN). When the android's slightly jerky movements are visually observed, the STN detects their subtle unnaturalness. This finding suggests that the detection of unnatural movements is attributed to an error signal resulting from a mismatch between a visual input and an internal model for smooth movement.

  14. Backward emission in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Stelte, N.; Weiner, R.

    1981-01-01

    Backward emission of hadrons in reactions of the type: P + T → a + anything, where the projectile P is a hadron, T a nuclear target and a a hadron or a light nucleus has been the subject of experimental investigation in the last decade in an energy range E starting in the hundred MeV region and extending up to 400 GeV projectile energy. The main interest in these reactions lies in the fact that they provide information about collective behavior of nucleons in nuclei (cumulative effect, i.e., the presence of secondary particles in a region of momentum space which cannot be populated by nucleon-nucleon interactions) although some authors have recently patronized this effect. In particular the consequences of nuclear limiting fragementation together with the cumulative effect can be used to obtain important information on transport properties and the equation of state of nuclear matter. Limiting fragmentation is a phenomenon discovered in the GeV region and applied to the reaction implies that in the high E limit two separate rapidity regions exist, one for the projectile and another for the target so that in each of the regions the inclusive cross section dsigma/dEd Ω becomes independent of the incoming energy. Here E and Ω refer to the kinetic energy and solid angle of the emitted particle

  15. Heavy nucleus resonance absorption in heterogeneous lattices

    International Nuclear Information System (INIS)

    Coste, M.; Tellier, H.; Brienne-Raepsaet, C.; Van Der Gucht, C.

    1992-01-01

    To compute easily the neutron reaction rates in the resonance energy range, the reactor physicists use the self-shielding formalism and the effective cross-section concept. Usually, for these calculations, and equivalence process is used, in such a way that the absorption rate is correctly computed for the whole fuel pin. This procedure does not allow to preserve the spatial absorption rate distribution inside the pin. It is an important handicap if we want to reproduce the plutonium distribution in a spent fuel. To avoid this inconvenience, new improvements of the self-shielding formalism have been recently introduced in the new assembly calculation code of the French Atomic Energy Commission, APOLLO 2. With this improved formalism, it is now possible to represent the spatial and energetic dependence of the heavy nucleus absorption inside the fuel pin and to use a fine energy dependent equivalence process. As it does not exist clean experimental results for the spatial and energetic dependence of the absorption, the authors used reference calculations to qualify the self-shielding formalism. For the strongly self-shielded nuclei of interest in reactor physics, U238, Pu240 and Th232, the agreement between the self-shielding calculation and the reference ones is fairly good for the spatial and energetic dependence of the absorption rate

  16. Control of nucleus accumbens activity with neurofeedback.

    Science.gov (United States)

    Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian

    2014-08-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Nucleon pairs as the building blocks of a nucleus

    International Nuclear Information System (INIS)

    Trajdos, M.; Zajac, K.

    1989-01-01

    The effects induced by the interplay isovesctor and isoscalar components of the residual nucleon interactions were studied in the model based on six bosons: s μ + with J=0, T=1, μ=O,±1 and p μ + with J=1, μ=0, ±1, T=0. Low-lying energy levels, E2-transitions, p-boson structure of eigenstates, percentage of α clusters, (p,t) reactions and α elastic scattering were searched in even-even 156-166 Dy and N=92, Z=56-58 nuclei. 18 refs.; 8 figs.; 1 tab

  18. Shape from touch

    NARCIS (Netherlands)

    Kappers, A.M.L.; Bergmann Tiest, W.M.

    2014-01-01

    The shape of objects cannot only be recognized by vision, but also by touch. Vision has the advantage that shapes can be seen at a distance, but touch has the advantage that during exploration many additional object properties become available, such as temperature (Jones, 2009), texture (Bensmaia,

  19. Odd Shape Out

    Science.gov (United States)

    Cady, Jo Ann; Wells, Pamela

    2016-01-01

    The Odd Shape Out task was an open-ended problem that engaged students in comparing shapes based on their properties. Four teachers submitted the work of 116 students from across the country. This article compares various student's responses to the task. The problem allowed for differentiation, as shown by the many different ways that students…

  20. Discriminative Shape Alignment

    DEFF Research Database (Denmark)

    Loog, M.; de Bruijne, M.

    2009-01-01

    , not taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two...

  1. Analysis of the thematic content of review Nucleus

    International Nuclear Information System (INIS)

    Guerra Valdes, Ramiro

    2007-01-01

    A computer programme for performing standardized analysis of research areas and key concepts of nuclear science and technology under development at Cubaenergia is presented. Main components of the information processing system, as well as computational methods and modules for thematic content analysis of INIS Database record files are described. Results of thematic content analysis of review Nucleus from 1986 to 2005 are shown. Furthermore, results of demonstrative study Nucleus, Science, Technology and Society are also shown. The results provide new elements to asses the significance of the thematic content of review Nucleus in the context of innovation in interrelated multidisciplinary research areas

  2. On angular distribution of nucleus fission fragments by fast neutrons

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1987-01-01

    Evaluation of amplitudes of quadrupole and hexadecapole components of angular distribution of nucleus fission fragments by neutrons with the energies E n < or approx. 6 MeV is conducted. Stability of this amplitude to permeability optical coefficient variations for neutrons is revealed. It is shown, that the ratio of these amplitudes as well as the character of their dependence on the target nucleus orientation degree are sensitive to the type of fission probability distribution along K projection if fissile nucleus J spin to the fragment scattering axis. This sensitivity may be used for fragment angular distribution anisotropy formation statistical model verification

  3. Semi classical model of the neutron resonance compound nucleus

    International Nuclear Information System (INIS)

    Ohkubo, Makio

    1995-01-01

    A Semi-classical model of compound nucleus is developed, where time evolution and recurrence for many degrees of freedom (oscillators) excited simultaneously are explicitly considered. The effective number of oscillators plays the role in the compound nucleus, and the nuclear temperatures are derived, which are in good agreement with the traditional values. Time structures of the compound nucleus at resonance are considered, from which equidistant level series with an envelope of strength function of giant resonance nature is obtained. S-matrix formulation for fine structure resonance is derived. (author)

  4. The Mathematical Model High Energy Collisions Process Hadron-Nucleus

    International Nuclear Information System (INIS)

    Wojciechowski, A.; Strugalska-Gola, E.; Strugalski, Z.

    2002-01-01

    During the passage high energy hadron by the heavy nucleus emitted are nucleons and many other particles from which most more group are nucleons and mesons π + π - π 0 . in this work we will present the mathematical model which is a simplified description of basic processes in the interior of the nucleus during passing of the hadron by the nucleus. Result of calculations we will compare with experimental results. Experimental data are based on photographs of 180 litre xenon bubble chambers (180 1 KKP) of Institute of Theoretical and Experimental Physics in Moscow (ITEF, Moscow) irradiated with the beam of mesons π - with momentum 3.5 GeV/c. (author)

  5. On slow particle production in hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Stenlund, E.; Otterlund, I.

    1982-01-01

    A model for slow particle production in hadron-nucleus interactions is presented. The model succesfully predicts correlations between the number of knock-on particles and the number of particles associated with the evaporation process as well as correlations with the number of collisions, ν, between the incident hadron and the nucleons inside the target nucleus. The model provides two independent possibilities to determine the number of primary intranuclear collisions, ν, i.e. by its correlation to the number of knock-on particles or to the number of evaporated particles. The good agreement indicates that the model gives an impact-parameter sensitive description of hardron nucleus reactions. (orig.)

  6. Study on isotopic distribution produced by nucleus-nucleus collisions with modified SAA model

    International Nuclear Information System (INIS)

    Zhong Chen; Fang Deqing; Cai Xiangzhou; Shen Wenqing; Zhang Huyong; Wei Yibin; Ma Yugang

    2003-01-01

    Base on Brohm's Statistic-Ablation-Abrasion (SAA) model, the modified SAA model was developed via introducing the isospin dependence of nucleon distribution in nucleus and parameterized formulas for nucleon-nucleon cross section in nuclear matter. It can simulate well the isotopic distribution at both high and intermediate energies. By the improvement of computational method, the range of calculation of isotopic distribution can be increased from three order magnitude to eight order magnitude (even higher). It can reproduce experimental data and predict the isotopic distribution for very far from stability line which is very important from experimental viewpoint

  7. The Hg region: Superdeformation and other shapes

    International Nuclear Information System (INIS)

    Janssens, R.V.F.; Carpenter, M.P.; Fernandez, P.B.; Moore, E.F.; Ahmad, I.; Khoo, T.L.; Wolfs, F.L.H.; Drigert, M.W.; Ye, D.; Beard, K.B.; Reviol, W.; Bearden, I.; Benet, P.; Daly, P.J.; Grabowski, Z.W.

    1990-01-01

    We shall first summarize the present experimental situation concerning 192 Hg, the nucleus regarded as the analog of 152 Dy 8 for this SD region in that shell gaps are calculated 5 to occur at large deformation for Z=80 and N=112. Proton and neutron excitations out of te 192 Hg core will then be reviewed with particular emphasis on 191 Hg and 193 Tl. The implications of the results for pairing at large deformations and the need to consider other degrees of freedom (such as octupole correlations) will be addressed. The presentation will conclude with a brief discussion on other shapes seen in this region, with a particular emphasis on 191 Hg

  8. 2D model of the Nucleus

    Science.gov (United States)

    Lach, Theodore M.

    2003-10-01

    The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an "up" quark of mass 237.31 MeV/c2 and a "dn" quark of mass 42.392 MeV/c2. These two new predicted quarks helped to determine that the masses of the quarks and leptons are all related by a geometric progression relationship. The mass of each quark or lepton is just the "geometric mean" of two related elementary particles, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.74 (predicted), 117.3, 1778.4 (tau), 26950.1 MeV. The geometric ratio of this progression is 15.154 (e to the power e). The mass of the tau in this theory agrees very well with accepted values. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237.31 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these new quarks, and lepton. Ref. Masses of the Sub-Nuclear Particles, nucl-th/ 0008026, @ http://xxx.lanl.gov. Infinite Energy, Vol 5, issue 30.

  9. Search for and study of linking transitions between super- and normal deformed wells in the 151Tb nucleus

    International Nuclear Information System (INIS)

    Robin, J.

    2003-12-01

    While the superdeformation phenomenon has been observed many times in different mass regions, the excitation energy and angular momentum are not known for most of the superdeformed bands, mainly in the A ∼ 150 mass region. We have thus undertaken the search for and study of linking transitions between super and normal deformed potential wells in the Tb 151 nucleus with the EUROBALL-IV spectrometer based at the subatomic research institute of Strasbourg. This nucleus presents the peculiarity of having an excited superdeformed band identical to the yrast one of Dy 152 , which has recently been linked to normal deformed states. As the Dy 152 nucleus exhibits a shape coexistence in the first potential well, we have also searched for collective rotational bands with prolate but moderate shape, coexisting with the oblate structure of Tb 151 . The discovery of new superdeformed bands in the Tb 151,152 isotopes, the extension to lower and higher spins of the previously known bands, and mean field calculations with a deformed Woods-Saxon potential have contributed to improve our knowledge as well as raise new questions on the orbitals configuration assignments of these bands. (author)

  10. The exchangeability of shape

    Directory of Open Access Journals (Sweden)

    Kaba Dramane

    2010-10-01

    Full Text Available Abstract Background Landmark based geometric morphometrics (GM allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species. Results We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species. Conclusions To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes.

  11. Shape memory materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Compared with piezoelectric ceramics and magnetostrictive materials, the shape memory materials possess larger recoverable strain and recovery stress but slower response to external field. It is expected that the magneto-shape memory materials may develop considerable strain as well as rapid and precise shape control. Pseudoelasticity and shape memory effect (SME) resulted from martensitic transformation and its reverse transformation in shape memory materials were generally described. The requirements of appearing the shape memory effect in materials and the criteria for thermoelastic martensitic transformation were given. Some aspects concerning characteristics of martensitic transformation, and factors affecting SME in Ni-Ti, Cu-Zn-Al and Fe-Mn-Si based alloys as well as ZrO2 containing ceramics were briefly reviewed. Thermodynamic calculation of Ms temperature as function of grain size and parent ordering in Cu-Zn-Al was presented. The works on prediction of Ms in Fe-Mn-Si based alloys and in ZrO2-CeO2 were mentioned. Magnetic shape memory materials were briefly introduced.

  12. Semiclassical model for single-particle transitions in nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Milek, B.; Joint Inst. for Nuclear Research, Dubna; Technische Univ., Dresden; Reif, R.; Pham Khan Van; Revai, J.

    1990-04-01

    A previously elaborated semiclassical one-body model for the dynamics of a single particle, moving in two potentials, in heavy-ion reactions or in fissioning systems has been extended with respect to the inclusion of angular momenta and more realistic separable potentials. The collective relative motion is assumed to proceed along a trajectory which is calculated from classical equations of motion including conservative and phenomenological friction forces. The formalism has been derived involving three-dimensional trajectories for symmetric as well as for asymmetric nucleus-nucleus systems. The model allows for the calculation of correct quantum mechanical transition amplitudes to final bound and continuum states. It has been applied for the investigation of the excitation of a neutron during a fission process, covering also non-statistical differential emission probabilities. From the numerical calculations, using parameters adapted to 252 Cf(sf), one can conclude that in the underlying model without 'sudden' processes the energy spectrum consists of two parts. The low lying component is created in the neck region while a high lying part seems to be governed mainly by the dynamics of the underlying collective motion rather than by the specific initial conditions. (orig.)

  13. Collision dynamics and particle production in relativistic nucleus- nucleus collisions at CERN

    International Nuclear Information System (INIS)

    Harris, J.W.

    1990-03-01

    The possibility of forming a quark-gluon plasma is the primary motivation for studying nucleus-nucleus collisions at very high energies. Various ''signatures'' for the existence of a quark-gluon plasma in these collisions have been proposed. These include an enhancement in the production of strange particles, suppression of J/Ψ production, observation of direct photons from the plasma, event-by-event fluctuations in the rapidity distributions of produced particles, and various other observables. However, the system will evolve dynamically from a pure plasma or mixed phase through expansion, cooling, hadronization and freezeout into the final state particles. Therefore, to be able to determine that a new, transient state of matter has been formed it will be necessary to understand the space-time evolution of the collision process and the microscopic structure of hadronic interactions, at the level of quarks and gluons, at high temperatures and densities. In this talk I will review briefly the present state of our understanding of the dynamics of these collisions and, in addition, present a few recent results on particle production from the NA35 experiment at CERN. 21 refs., 5 figs

  14. Estimation of nuclear destruction in high energy nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Uzhinskij, V.V.

    1995-01-01

    It is assumed that: 1) a projectile particle invokes into target nucleus a cascade of quark-gluon exchanges; 2) the nucleons involved in the cascade are ejected from the nucleus which leads to the nuclear destruction. On these bases a simple model to estimate the nuclear destruction at the fast stage of the interaction is proposed. The allowed region of the model parameters is determined at the proton-emulsion high-energy interaction data analysis: an analysis of gold interactions with nuclei at an energy of 600 MeV/nucleon fixes the parameter values. The distributions on the energy in zero degree calorimeter (T ZDC ) in the interactions of Si+Al, Cu, Pb (14 GeV/nucleon) and Au+Au (10 GeV/nucleon) calculated in the framework of the model and in the cascade-evaporation model (CEM) are presented. The proposed model describes the nuclear destruction at intermediate and high energies better than CEM does. The estimation of the average values of impact parameter and the number of intra-nuclear collisions for Au+Au interactions in the events with different T ZDC is given. 34 refs., 11 figs

  15. Quantitative analysis of the fusion cross sections using different microscopic nucleus-nucleus interactions

    Energy Technology Data Exchange (ETDEWEB)

    Adel, A. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Majmaah University, Physics Department, College of Science, Al-Zulfi (Saudi Arabia); Alharbi, T. [Majmaah University, Physics Department, College of Science, Al-Zulfi (Saudi Arabia)

    2017-01-15

    The fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems are investigated near and above the Coulomb barrier using the one-dimensional barrier penetration model. The microscopic nuclear interaction potential is computed by four methods, namely: the double-folding model based on a realistic density-dependent M3Y NN interaction with a finite-range exchange part, the Skyrme energy density functional in the semiclassical extended Thomas-Fermi approximation, the generalized Proximity potential, and the Akyuez-Winther interaction. The comparison between the calculated and the measured values of the fusion excitation functions indicates that the calculations of the DFM give quite satisfactory agreement with the experimental data, being much better than the other methods. New parameterized forms for the fusion barrier heights and positions are presented. Furthermore, the effects of deformation and orientation degrees of freedom on the distribution of the Coulomb barrier characteristics as well as the fusion cross sections are studied for the reactions {sup 16}O + {sup 70}Ge and {sup 28}Si + {sup 100}Mo. The calculated values of the total fusion cross sections are compared with coupled channel calculations using the code CCFULL and compared with the experimental data. Our results reveal that the inclusion of deformations and orientation degrees of freedom improves the comparison with the experimental data. (orig.)

  16. Multiparticle excitations in the 149 Gd superdeformed nucleus. Signature of new C4 nucleus symmetry

    International Nuclear Information System (INIS)

    Theisen, C.

    1995-01-01

    The use of 8 π and EUROGAM phase I multi-detectors for the study of high spin states of 149 Gd nucleus has revealed unexpected new phenomenons about the superdeformation in this nucleus. The new excited bands confirm the omnipresence of twin bands phenomenon. A new multi-particle excitation (two protons and one neutron) has been discovered. Thanks to the second generation EUROGAM detector, unexpected discoveries such as C 4 symmetry, level interactions, complete backbending were obtained for the second potential well. The knowledge of interacting levels gives informations about the nucleon-nucleon residual interaction and could allow the determination of SD bands excitation energy. The complex processing and analysis of high multiplicity events has led to the development of new computing tools. An automatic band research program has been written for the discovery of new excited bands, and an exact method for the elimination of uncorrected events has been developed. The improvements of multi-detector performances should allow the discovery of more exceptional phenomenons and new anomalies in the SD bands. (J.S.). 222 refs., 86 figs., 38 tabs

  17. Experimental problems of search for quark-gluon plasma in nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Okonov, Eh.O.

    1987-01-01

    Experimental problems for searching for quark-gluon (quagma) plasma in nucleus-nucleus interactions (NbNb,CaCa, ArPb, CnE, ONe) in the energy range E=0.4-1 GeV/A and 3.67 GeV/A and 200 GeV/A energies are discussed. Peculiarities of performing experiments on Dubna synchrophasotron and SPS Bevalac are discussed. The first results prove hadron matter thermalization sufficient for quagma manifestation. It is found that such characteristics of studied interactions as relative λ-hyperon yield, spectral (temperature) characteristics of λ k -hyperons (with higher values of transferred transverse momenta) and associatively produced peons are of greatest interest. The necessity of precise establishment of λ-hyperon group as excessive and differing in its origin from the other particles of the hadron phase is noted. It is shown that experimental approach used in Dubna research proved efficient and requires further development. It includes : selection of rare events (fluctuations) in central interactions of nuclei with high local excitation; search and research of peculiarities in the production of strange particles and in associative pion production; use of streamer spectrometer with a trigger system of rigid selection of central interactions

  18. The hidden sides of the nucleus

    CERN Document Server

    Demarthon, F

    2003-01-01

    This dossier treats in a digest way of the recent advances in the study of nuclei: the study of exotic nuclei and its stakes in the understanding of matter and of the Universe; the historical changes of nuclei models through a retrospective of the main scientists who contributed to their elaboration; the questioning of the nuclei stability valley by recent discoveries; the high-technology facilities for the production of exotic nuclei; a new kind of radioactivity: the two-proton decay; the strange shapes of nuclei: pear, banana, saucer; the halo and cluster nuclei and their associated theories. (J.S.)

  19. 3D Protein Dynamics in the Cell Nucleus.

    Science.gov (United States)

    Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E

    2017-01-10

    The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Nucleus geometry and mechanical properties of resistance spot ...

    Indian Academy of Sciences (India)

    Keywords. Automotive steels; resistance spot welding; mechanical properties; nucleus geometry. 1. .... High va- lues of hardness can be explained with martensitic forma- ... interface of DP450–DP600 steels may have stainless steel properties.

  1. Thermalization in high energy proton-nucleus collisions

    International Nuclear Information System (INIS)

    Wedemann, R.S.

    1988-03-01

    A relativistic proton-nucleus collision using the intranuclear cascade model is studied. The purpose is to verify the equilibration hypothesis at fragmentation time made by many nuclear fragmentation models. (author)

  2. Optical observations of the nucleus of NGC 4151

    Energy Technology Data Exchange (ETDEWEB)

    Romano, G; Minello, S [Padua Univ. (Italy). Istituto di Astronomia

    1977-08-01

    Photographic observations of the nucleus of the Seyfert galaxy NGC 4151, carried out during the last seven years, are reported. The object shows irregular variations between photographic magnitudes 11.2 and 13.0.

  3. Deconvolving the Nucleus of Centaurus A Using Chandra PSF Library

    Science.gov (United States)

    Karovska, Margarita

    2000-01-01

    Centaurus A (NGC 5128) is a giant early-type galaxy containing the nearest (at 3.5 Mpc) radio-bright Active Galactic Nucleus (AGN). Cen A was observed with the High Resolution Camera (HRC) on the Chandra X-ray Observatory on several occasions since the launch in July 1999. The high-angular resolution (less than 0.5 arcsecond) Chandra/HRC images reveal X ray multi-scale structures in this object with unprecedented detail and clarity, including the bright nucleus believed to be associated with a supermassive black hole. We explored the spatial extent of the Cen A nucleus using deconvolution techniques on the full resolution Chandra images. Model point spread functions (PSFs) were derived from the standard Chandra raytrace PSF library as well as unresolved point sources observed with Chandra. The deconvolved images show that the Cen A nucleus is resolved and asymmetric. We discuss several possible causes of this extended emission and of the asymmetries.

  4. Radiological study of the calcanean ossification secondary nucleus development

    International Nuclear Information System (INIS)

    Carvalho Filho, Guaracy.

    1994-01-01

    This work describes the normal aspects of the calcanean ossification secondary nucleus radiological development, the appearing time, his form, localization, fragmentation and evolution of area, from a sample of normal individuals. (author). 14 refs., 16 figs., 8 tabs

  5. The picture of the nuclei disintegration mechanism - from hadron-nucleus and nucleus-nucleus collisions experimental investigations at high energies

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.; Chmielowski, W.

    1997-01-01

    The mechanism of the nuclei disintegration process in collisions of high-energy hadrons with nuclei is revealed experimentally. The disintegration appears as a complicated nuclear process developing in time and space in intranuclear matter, consisting at least of three stages which last together about 10 -24 - 10 -17 s after the impact. At the first stage, which lasts about 10 -24 - 10 -22 s, fast nucleons are densely emitted and the target-nucleus is locally damaged. At the second stage, lasting about 10 -22 - 10 -1 7 s, the damaged and unstable residual target nucleus uses to evaporate light fragments - mainly nucleons, deuterons, tritons, α-particles. At the final stage, the residual target-nucleus uses to split sometimes into two or more nuclear fragments

  6. Colour, albedo and nucleus size of Halley's comet

    Science.gov (United States)

    Cruikshank, D. P.; Tholen, D. J.; Hartmann, W. K.

    1985-01-01

    Photometry of Halley's comet in the B, J, V, and K broadband filters during a time when the coma was very weak and presumed to contribute negligibly to the broadband photometry is reported. The V-J and J-K colors suggest that the color of the nucleus of Halley's comet is similar to that of the D-type asteroids, which in turn suggests that the surface of the nucleus has an albedo less than 0.1.

  7. Ion-beam spectroscopic studies of the 69As nucleus

    International Nuclear Information System (INIS)

    Badica, T.; Cojocaru, V.; Olariu, A.; Petre, M.; Popescu, I. V.; Gheboianu, A.

    2009-01-01

    Excited state of the neutron deficient 69 As nucleus were investigated in the 58 Ni( 14 N,2pn) reaction by ion-beam γ spectroscopic methods (excitation functions, γγ-coincidences, angular distributions and linear polarization gated with neutrons). A new more complete level scheme of 69 As has been proposed with spin-parity values. The structure of the nucleus is discussed in the framework of the interaction boson-fermion model (IBFM). (authors)

  8. Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.

    OpenAIRE

    Caminero, A A; Machín, C; Sanchez-Toscano, F

    1992-01-01

    A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connecti...

  9. Rapidity distributions of secondary particles in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Alaverdyan, G.B.; Pak, A.S.; Tarasov, A.V.; Tseren, Ch.; Uzhinsky, V.V.

    1979-01-01

    In the framework of the cascade model of a leading particle the rapidity distributions of secondary particles in the hadron-nucleus interactions are considered. The energy loss fluctuations of leading particles in the successive collisions have been taken into account. It is shown that the centre of rapidity distribution is displaced towards small rapidity with target nucleus atomic number A growth. The model well reproduces the energy and A dependences of the rapidity distributions

  10. New computational methods for determining antikaon-nucleus bound states

    International Nuclear Information System (INIS)

    Fink, P.J. Jr.

    1989-01-01

    Optical potential for antikaon-nucleus strong interactions are constructed using elementary antikaon-nucleus potentials determined previously. The optical potentials are used to determine the existence of a kaon hypernucleus. Modern three dimensional visualization techniques are used to study model dependences, new methods for speeding the calculation of the optical potential are developed, and previous approximation to avoid full Fermi averaging are eliminated. 19 refs., 21 figs., 3 tabs

  11. International Halley Watch: Discipline specialists for near-nucleus studies

    Science.gov (United States)

    Larson, S.; Sekanina, Z.; Rahe, J.

    1986-01-01

    The purpose of the Near-Nucleus Studies Net is to study the processes taking place in the near-nucleus environment as they relate to the nature of nucleus. This is accomplisghed by measuring the spatial and temporal distribution of dust, gases and ions in the coma on high resolution images taken from many observatories around the world. By modeling the motions of discrete dust features in Comet Halley, it is often possible to determine the locations of the emission sources on the surface and learn about the nucleus structure. In addition to the general goals shared by all IHW nets, the scientific goals of the net has been to determine (1)the gross surface structure of the nucleus, (2)the nucleus spin vector, (3)the distribution and evolution of jet sources and (4)the interrelationships between the gas, dust and ion components of the coma. An additional Comet Giacobini-Zinner watch was carried out by the NNSN in support of the NASA International Cometary Explorer flyby.

  12. Effect of cochlear nerve electrocautery on the adult cochlear nucleus.

    Science.gov (United States)

    Iseli, Claire E; Merwin, William H; Klatt-Cromwell, Cristine; Hutson, Kendall A; Ewend, Matthew G; Adunka, Oliver F; Fitzpatrick, Douglas C; Buchman, Craig A

    2015-04-01

    Electrocauterization and subsequent transection of the cochlear nerve induce greater injury to the cochlear nucleus than sharp transection alone. Some studies show that neurofibromatosis Type 2 (NF2) patients fit with auditory brainstem implants (ABIs) fail to achieve speech perception abilities similar to ABI recipients without NF2. Reasons for these differences remain speculative. One hypothesis posits poorer performance to surgically induced trauma to the cochlear nucleus from electrocautery. Sustained electrosurgical depolarization of the cochlear nerve may cause excitotoxic-induced postsynaptic nuclear injury. Equally plausible is that cautery in the vicinity of the cochlear nucleus induces necrosis. The cochlear nerve was transected in anesthetized adult gerbils sharply with or without bipolar electrocautery at varying intensities. Gerbils were perfused at 1, 3, 5, and 7 days postoperatively; their brainstem and cochleas were embedded in paraffin and sectioned at 10 μm. Alternate sections were stained with flourescent markers for neuronal injury or Nissl substance. In additional experiments, anterograde tracers were applied directly to a sectioned eighth nerve to verify that fluorescent-labeled profiles seen were terminating auditory nerve fibers. Cochlear nerve injury was observed from 72 hours postoperatively and was identical across cases regardless of surgical technique. Postsynaptic cochlear nucleus injury was not seen after distal transection of the nerve. By contrast, proximal transection was associated with trauma to the cochlear nucleus. Distal application of bipolar electrocautery seems safe for the cochlear nucleus. Application near the root entry zone must be used cautiously because this may compromise nuclear viability needed to support ABI stimulation.

  13. On channel selection and shape co-existence

    International Nuclear Information System (INIS)

    Dracoulis, G.D.

    1993-08-01

    Ambivalence with respect to a favoured shape is emerging as a ubiquitous phenomenon in nuclei. Multiple minima in the nuclear potential well occur because of the delicate balance in nuclei between the long and short-range properties of the nuclear force and the contribution specific particle orbitals make in forcing the nucleus to a decision. Exploration of the dependence of the resulting shape co-existence on particle number and orbital is a prominent area of research. Experimental aspects of spectroscopy studies using heavy ion fusion, evaporation reactions and channel selection are discussed, with focus on shape co-existence in the light Os-Pt-Hg-Pb region. 42 refs., 8 figs

  14. The radial shapes of intermediate energy microscopic optical potentials

    International Nuclear Information System (INIS)

    Shen Qingbiao; Wang Chang; Tian Ye; Zhuo Yizhong

    1984-01-01

    The radial shapes of intermediate energy proton microscopic optical potentials of 40 Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  15. Magnetic shape memory behaviour

    International Nuclear Information System (INIS)

    Brown, P.J.; Gandy, A.P.; Ishida, K.; Kainuma, R.; Kanomata, T.; Matsumoto, M.; Morito, H.; Neumann, K.-U.; Oikawa, K.; Ouladdiaf, B.; Ziebeck, K.R.A.

    2007-01-01

    Materials that can be transformed at one temperature T F , then cooled to a lower temperature T M and plastically deformed and on heating to T F regain their original shape are currently receiving considerable attention. In recovering their shape the alloys can produce a displacement or a force, or a combination of the two. Such behaviour is known as the shape memory effect and usually takes place by change of temperature or applied stress. For many applications the transformation is not sufficiently rapid or a change in temperature/pressure not appropriate. As a result, considerable effort is being made to find a ferromagnetic system in which the effect can be controlled by an applied magnetic field. The results of recent experiments on ferromagnetic shape memory compounds aimed at understanding the underlying mechanism will be reviewed

  16. Shaping the ROTC Cohort

    National Research Council Canada - National Science Library

    Rittenhouse, Wiley P; Kwinn, Jr, Michael J

    2005-01-01

    ...) - to meet the future needs of the Army for commissioned officers. It is designed to shape each cohort to meet the Army's specific needs in terms of component, academic disciplines, race/ethnic makeup goals, gender, and targeted missions...

  17. Email shape analysis

    OpenAIRE

    Sroufe, Paul; Phithakkitnukoon, Santi; Dantu, Ram; Cangussu, João

    2010-01-01

    Email has become an integral part of everyday life. Without a second thought we receive bills, bank statements, and sales promotions all to our inbox. Each email has hidden features that can be extracted. In this paper, we present a new mechanism to characterize an email without using content or context called Email Shape Analysis. We explore the applications of the email shape by carrying out a case study; botnet detection and two possible applications: spam filtering, and social-context bas...

  18. STEREOLOGICAL ANALYSIS OF SHAPE

    Directory of Open Access Journals (Sweden)

    Asger Hobolth

    2011-05-01

    Full Text Available This paper concerns the problem of making stereological inference about the shape variability in a population of spatial particles. Under rotational invariance the shape variability can be estimated from central planar sections through the particles. A simple, but flexible, parametric model for rotation invariant spatial particles is suggested. It is shown how the parameters of the model can be estimated from observations on central sections. The corresponding model for planar particles is also discussed in some detail.

  19. Interesting correlations among various parameters of charged secondaries in nucleus - nucleus interactions at 4.5 A GeV

    International Nuclear Information System (INIS)

    Khan, M. Saleem; Shukla, Praveen Prakash; Khushnood, H.

    2015-01-01

    The study of the characteristic of charged secondaries was the aim of most of the experiments on high energy nucleon-nucleon and nucleus-nucleus collisions. Investigation are carried out on the produced secondary charged particles with a common belief that these particles are more informative about the collisional dynamics and thus, could be effective in revealing the underlying physics of high energy relativistic interactions. So for understanding the mechanism of multiparticle production in high energy hadron-nucleus collisions, the correlations amongst the secondary charged particles are studied. Several workers have attempted to study the multiplicity correlations over widely different incident energies with different projectiles. The AALMT collaboration have also studied the multiplicity correlations in 200 GeV proton-nucleus collisions

  20. Universality of fragment shapes.

    Science.gov (United States)

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-03-16

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.

  1. The picture of the nuclei disintegration mechanism - from nucleus-nucleus collision experimental data at high energies

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1997-01-01

    Experimental data on nuclear collisions at high energies, mainly obtained from photographic emulsions, are considered from the point of view of the picture of the nuclear collision processes mechanisms prompted experimentally. In fact, the disintegration products of each nucleus involved in a nuclear collision, in its own rest-frame, are similar to that produced by the impact of a number of nucleons of velocity equal to that of the moving primary nucleus

  2. Study of high energy densities over extended nuclear volumes via nucleus-nucleus collisions at the SPS

    CERN Multimedia

    2002-01-01

    This experiment examines in detail the characteristics of ultra-relativistic nucleus-nucleus interactions using $^{16}$O beams of 200 GeV/A from the SPS. The experiment combines 4$\\pi$ calorimeter coverage with measurements of inclusive particle spectra, two-particle correlations, low and high-mass lepton pairs and photons. A multiwire active target allows maximum interaction rates with a minimum of secondary interactions. Additional data are taken with an emulsion target.

  3. Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability.

    Science.gov (United States)

    Dubińska-Magiera, Magda; Chmielewska, Magdalena; Kozioł, Katarzyna; Machowska, Magdalena; Hutchison, Christopher J; Goldberg, Martin W; Rzepecki, Ryszard

    2016-05-01

    Xenopus LAP2β protein is the single isoform expressed in XTC cells. The protein localizes on heterochromatin clusters both at the nuclear envelope and inside a cell nucleus. The majority of XLAP2β fraction neither colocalizes with TPX2 protein during interphase nor can be immunoprecipitated with XLAP2β antibody. Knockdown of the XLAP2β protein expression in XTC cells by synthetic siRNA and plasmid encoded siRNA resulted in nuclear abnormalities including changes in shape of nuclei, abnormal chromatin structure, loss of nuclear envelope, mislocalization of integral membrane proteins of INM such as lamin B2, mislocalization of nucleoporins, and cell death. Based on timing of cell death, we suggest mechanism associated with nucleus reassembly or with entry into mitosis. This confirms that Xenopus LAP2 protein is essential for the maintenance of cell nucleus integrity and the process of its reassembly after mitosis.

  4. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence.

    Science.gov (United States)

    Bull, Cecilia; Freitas, Kelen C C; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-11-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with

  5. Shapes of interacting RNA complexes

    DEFF Research Database (Denmark)

    Fu, Benjamin Mingming; Reidys, Christian

    2014-01-01

    Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops.This shape-projection preserves the topological core of the RNA complex and for fixed topological...... genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows to compute the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform...... sampling algorithm for shapes of RNA complexes of fixed topological genus....

  6. Fine structural survey of the intermediate subnucleus of the nucleus tractus solitarii and its glossopharyngeal afferent terminals.

    Science.gov (United States)

    Hayakawa, Tetsu; Maeda, Seishi; Tanaka, Koichi; Seki, Makoto

    2005-10-01

    The intermediate subnucleus of the nucleus tractus solitarii (imNTS) receives somatosensory inputs from the soft palate and pharynx, and projects onto the nucleus ambiguus, thus serving as a relay nucleus for swallowing. The ultrastructure and synaptology of the rat imNTS, and its glossopharyngeal afferent terminals, have been examined with cholera toxin-conjugated horseradish peroxidase (CT-HRP) as an anterograde tracer. The imNTS contained oval or ellipsoid-shaped, small to medium-sized neurons (18.2 x 11.4 microm) with little cytoplasm, few cell organelles and an irregularly shaped nucleus. The cytoplasm often contained one or two nucleolus-like stigmoid bodies. The average number of axosomatic terminals was 1.8 per profile. About 83% of them contained round vesicles and formed asymmetric synaptic contacts (Gray's type I), while about 17% contained pleomorphic vesicles and formed symmetric synaptic contacts (Gray's type II). The neuropil contained small or large axodendritic terminals, and about 92% of them were Gray's type I. When CT-HRP was injected into the nodose ganglion, many labeled terminals were found in the imNTS. All anterogradely labeled terminals contacted dendrites but not somata. The labeled terminals were usually large (2.69+/-0.09 mum) and exclusively of Gray's type I. They often contacted more than two dendrites, were covered with glial processes, and formed synaptic glomeruli. A small unlabeled terminal occasionally made an asymmetric synaptic contact with a large labeled terminal. The large glossopharyngeal afferent terminals and the neurons containing stigmoid bodies characterized the imNTS neurons that received pharyngeal afferents.

  7. Ultrastructure of the central subnucleus of the nucleus tractus solitarii and the esophageal afferent terminals in the rat.

    Science.gov (United States)

    Hayakawa, Tetsu; Takanaga, Akinori; Tanaka, Koichi; Maeda, Seishi; Seki, Makoto

    2003-03-01

    The central subnucleus of the nucleus tractus solitarii (ceNTS) receives afferent projections from the esophageal wall and projects to the nucleus ambiguus, thus serving as a relay nucleus for peristalsis of the esophagus. Here we examine the synaptic organization of the ceNTS, and its esophageal afferents by using transganglionic anterograde transport of cholera toxin-conjugated horseradish peroxidase (CT-HRP). When CT-HRP was injected into the subdiaphragmatic esophagus, many anterogradely labeled terminals were found only in the ceNTS. The ceNTS was composed of round or oval-shaped, small neurons (14.7x8.7 micro m) containing sparse organelles and an irregularly shaped nucleus. The average number of axosomatic terminals was only 1.3 per section cut through the nucleolus. Most of them (92%) contained round vesicles and formed asymmetric synaptic contacts (Gray's type I), and a few (8%) contained pleomorphic vesicles and formed symmetric synaptic contacts (Gray's type II). All anterogradely labeled terminals contacted dendrites but not the neuronal somata. The labeled terminals were large (2.55+/-0.07 micro m) and exclusively Gray's type I. More than half of them (60%) contacted small dendrites (less than 1 micro m in diameter), and contained dense-cored vesicles. More than 40% of the labeled terminals contacted two to four dendrites, thus forming a synaptic glomerulus. Sometimes a labeled terminal that contacted an unlabeled terminal by an adherent junction was found within the glomerulus. The large terminals and these complex synaptic relations appeared to characterize the esophageal afferent projections in the ceNTS.

  8. Fluctuations and correlations in nucleus-nucleus collisions within transport approaches

    International Nuclear Information System (INIS)

    Konchakovski, Volodymyr P.

    2009-01-01

    The current thesis is devoted to a systematic study of fluctuations and correlations in heavy-ion collisions, which might be considered as probes for the phase transition and the critical point in the phase diagram, within the Hadron-String- Dynamics (HSD) microscopic transport approach. This is a powerful tool to study nucleus-nucleus collisions and allows to completely simulate experimental collisions on an event-by-event basis. Thus, the transport model has been used to study fluctuations and correlations including the influence of experimental acceptance as well as centrality, system size and collision energy. The comparison to experimental data can separate the effects induced by a phase transition since there is no phase transition in the HSD version used here. Firstly the centrality dependence of multiplicity fluctuations has been studied. Different centrality selections have been performed in the analysis in correspondence to the experimental situation. For the fixed target experiment NA49 events with fixed numbers of the projectile participants have been studied while in the collider experiment PHENIX centrality classes of events have been defined by the multiplicity in certain phase space region. A decrease of participant number fluctuations (and thus volume fluctuations) in more central collisions for both experiments has been obtained. Another area of this work addresses to transport model calculations of multiplicity fluctuations in nucleus-nucleus collisions as a function of colliding energy and system size. This study is in full correspondence to the experimental program of the NA61 Collaboration at the SPS. Central C+C, S+S, In+In, and Pb+Pb nuclear collisions at Elab = 10, 20, 30, 40, 80, 158 AGeV have been investigated. The expected enhanced fluctuations - attributed to the critical point and phase transition - can be observed experimentally on top of a monotonic and smooth 'hadronic background'. These findings should be helpful for the optimal

  9. Fluctuations and correlations in nucleus-nucleus collisions within transport approaches

    Energy Technology Data Exchange (ETDEWEB)

    Konchakovski, Volodymyr P.

    2009-10-01

    The current thesis is devoted to a systematic study of fluctuations and correlations in heavy-ion collisions, which might be considered as probes for the phase transition and the critical point in the phase diagram, within the Hadron-String- Dynamics (HSD) microscopic transport approach. This is a powerful tool to study nucleus-nucleus collisions and allows to completely simulate experimental collisions on an event-by-event basis. Thus, the transport model has been used to study fluctuations and correlations including the influence of experimental acceptance as well as centrality, system size and collision energy. The comparison to experimental data can separate the effects induced by a phase transition since there is no phase transition in the HSD version used here. Firstly the centrality dependence of multiplicity fluctuations has been studied. Different centrality selections have been performed in the analysis in correspondence to the experimental situation. For the fixed target experiment NA49 events with fixed numbers of the projectile participants have been studied while in the collider experiment PHENIX centrality classes of events have been defined by the multiplicity in certain phase space region. A decrease of participant number fluctuations (and thus volume fluctuations) in more central collisions for both experiments has been obtained. Another area of this work addresses to transport model calculations of multiplicity fluctuations in nucleus-nucleus collisions as a function of colliding energy and system size. This study is in full correspondence to the experimental program of the NA61 Collaboration at the SPS. Central C+C, S+S, In+In, and Pb+Pb nuclear collisions at Elab = 10, 20, 30, 40, 80, 158 AGeV have been investigated. The expected enhanced fluctuations - attributed to the critical point and phase transition - can be observed experimentally on top of a monotonic and smooth 'hadronic background'. These findings should be helpful for the

  10. Particle spectra and correlations in sulfur-nucleus reactions at 200 GeV per nucleon

    International Nuclear Information System (INIS)

    Alber, T.

    1995-08-01

    In this work the production of negatively charged particles and two-particle correlations in nucleus-nucleus reactions at high energies are studied. The range of the acceptance of experiment NA35 at the CERN-SPS was increased in 1990 by adding a large volume Time Projection Chamber downstream of the streamer chamber. The analysis of the data taken during the run period 1991 shows that such a detector faces no basic problems when operated in a high multiplicity experiment. The scenario of particle production in sulfur-nucleus reactions is studied via the measurement of rapidity and transverse momentum distributions which show good agreement with the results from other data-sets of the same experiment. The width of the rapidity distribution is only a little narrower than observed in nucleon-nucleon collisions and is in contradiction to the assumption of a static source with isotropic particle emission. The shape of the transverse momentum distribution indicates an effective temperature at freeze-out of about 150 MeV. The analysis of the two-particle correlation benefits particularly from the high statistics collected for different reactions in different phase-space regions. This allows a differential analysis of the correlation function for the different components of the momentum difference in various regions of rapidity and transverse momentum. It is recalled that for an expanding source the experimentally obtained radius parameters are not a direct measure of the geometrical size of the source but measure a so-called region of homogeneity. This expectation is also confirmed by a microscopic simulation of the reaction. The experimental results for the radius parameters support such a description of the particle production mechanism in terms of an expanding source. (orig.)

  11. Structure and spectroscopy of the oxygen-24 drip-line nucleus from elastic and inelastic proton scattering using MUST2 detectors at Riken

    International Nuclear Information System (INIS)

    Boissinot, S.

    2013-01-01

    The studies of structure and spectroscopy performed on radioactive nuclei during the last three decades have shown that the nuclear shell structure changes towards the drip-line and local magic numbers may appear. Doubly-magic nuclei are very rare but represent stringent tests for theories and their modelling of the nuclear interaction. In this context, we have investigated the structure and spectroscopy of the drip-line doubly-magic nucleus 24 O via proton elastic and inelastic scattering (p,p'). The experiment was performed at Riken in the BigRIPS line, using the 24 O beam produced at 263 MeV/n with RIBF with a high intensity (1780/s), and the state-of-the-art MUST2 charged particle detector. The analysis of the data gives the reconstruction of: the 24 O excitation energy spectrum up to 35 MeV with the scattered proton kinematics using the missing mass method, and the angular distribution of exclusive (p,p) elastic cross section between 4 and 30 degrees c.m. via a triple coincidence nucleus-proton-nucleus. Below the two-neutron separation threshold (S2n) the statistics is too low to obtain the two excited states measured by previous experiments done at lower incident energies. Above the S 2n structures are observed for the first time due to the large excitation energy range of the excitation spectra. The measurement of the excited states located at these energies would allow to test theoretical studies of low-energy dipole excitation in light neutron-rich nuclei. The statistics obtained for proton elastic scattering is sufficient to extract the exclusive (p,p) angular distributions of the 24 , 23 , 22 , 21 O isotopes. These results constitute a new benchmark to explore proton-nucleus interaction potential features around 260 MeV/n. The comparison of elastic data set to the reaction calculations done with the microscopic reaction approach based on the G-matrix density-dependent potential indicates that this potential is suitable. However, it remains to include

  12. Energy loss, range and fluence distributions, total reaction and projectile fragment production cross sections for proton-nucleus and nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Sihver, L.; Kanai, T.

    1992-07-01

    We have developed a computer code for calculations of energy loss (dE/dx) and range distributions for heavy ions in any media. The results from our calculations are in very good agreement with previous calculations. We have developed semiempirical total reaction cross section formulae for proton-nucleus (with Z p ≤26) and nucleus-nucleus (with Z p and Z t ≤26) reactions. These formulae apply for incident energies above 15 MeV and 100 MeV/nucleon respectively. From the total reaction cross sections, we can calculate the mean free paths and the fluence distributions of protons and heavy ions in any media. We have compared all the calculated reaction cross sections and the mean free paths with experimental data, and the agreement is good. We have also constructed a procedure for calculating projectile fragment production cross sections, by scaling semiempirical proton-nucleus partial cross section systematics. The scaling is performed using a scaling parameter deduced from our reaction cross sections formulae, and additional enhancements factors. All products with atomic number ranging from that of the projectile (Z p ) down to Z=2 can be calculated. The agreement between the calculated cross sections and the experimental data is better than earlier published results. (author)

  13. PREFACE: 11th International Conference on Nucleus-Nucleus Collisions (NN2012)

    Science.gov (United States)

    Li, Bao-An; Natowitz, Joseph B.

    2013-03-01

    The 11th International Conference on Nucleus-Nucleus Collisions (NN2012) was held from 27 May to 1 June 2012, in San Antonio, Texas, USA. It was jointly organized and hosted by The Cyclotron Institute at Texas A&M University, College Station and The Department of Physics and Astronomy at Texas A&M University-Commerce. Among the approximately 300 participants were a large number of graduate students and post-doctoral fellows. The Keynote Talk of the conference, 'The State of Affairs of Present and Future Nucleus-Nucleus Collision Science', was given by Dr Robert Tribble, University Distinguished Professor and Director of the TAMU Cyclotron Institute. During the conference a very well-received public lecture on neutrino astronomy, 'The ICEcube project', was given by Dr Francis Halzen, Hilldale and Gregory Breit Distinguished Professor at the University of Wisconsin, Madison. The Scientific program continued in the general spirit and intention of this conference series. As is typical of this conference a broad range of topics including fundamental areas of nuclear dynamics, structure, and applications were addressed in 42 plenary session talks, 150 parallel session talks, and 21 posters. The high quality of the work presented emphasized the vitality and relevance of the subject matter of this conference. Following the tradition, the NN2012 International Advisory Committee selected the host and site of the next conference in this series. The 12th International Conference on Nucleus-Nucleus Collisions (NN2015) will be held 21-26 June 2015 in Catania, Italy. It will be hosted by The INFN, Laboratori Nazionali del Sud, INFN, Catania and the Dipartimento di Fisica e Astronomia of the University of Catania. The NN2012 Proceedings contains the conference program and 165 articles organized into the following 10 sections 1. Heavy and Superheavy Elements 2. QCD and Hadron Physics 3. Relativistic Heavy-Ion Collisions 4. Nuclear Structure 5. Nuclear Energy and Applications of

  14. Recent developments in the measurements of nuclear shapes

    International Nuclear Information System (INIS)

    Somayajulu, D.R.S.

    1975-01-01

    The electric quadrupole moment of the excited state of a nucleus plays a significant role in giving information on the shape of the nucleus and hence most of the investigations on nuclear shapes require the correct knowledge about and the accurate measurement of the quadrupole moments of the excited states of the nuclei. In this paper, general considerations in the measurement of a quadrupole moment are given. The quadrupole moment is defined as positive for oblate and negative for prolate nuclear shapes. Two approaches are given for measurement of the external field gradient. The first approach is by Mossbauer effect and time differential and integral perturbed angular correlation method. These methods are useful in determining the quadrupole moments of both excited and ground states of nuclei. The second approach is by the coulomb excitation reorientation method. This method is found suitable for states of life time -9 sec; still recent is the reorientation precession effect method which has also been found to be successful for some polarized nuclei. A typical example of the coulomb excitation of the first 2 states of Sm 150 by 56 MeV O 16 projectiles is shown. The limitations of these methods are also mentioned. It is concluded that the reorientation precession technique and the transient electric field gradient precession will be of practical use for states through out the periodic table. Future plans and new experiments proposed are indicated. (A.K.)

  15. SHAPE selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data

    DEFF Research Database (Denmark)

    Poulsen, Line Dahl; Kielpinski, Lukasz Jan; Salama, Sofie R

    2015-01-01

    transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule. We demonstrate that SHAPES...

  16. Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs

    Science.gov (United States)

    Attree, N.; Groussin, O.; Jorda, L.; Nébouy, D.; Thomas, N.; Brouet, Y.; Kührt, E.; Preusker, F.; Scholten, F.; Knollenberg, J.; Hartogh, P.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; A'Hearn, M. F.; Auger, A.-T.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Gutiérrez, P. J.; Güttler, C.; Hviid, S.; Ip, W.-H.; Kovacs, G.; Kramm, J. R.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Lowry, S.; Marchi, S.; Marzari, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Toth, I.; Tubiana, C.; Vincent, J.-B.; Shi, X.

    2018-03-01

    We directly measured twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimated the minimum tensile strengths needed to support them against collapse under the comet's gravity. We find extremely low strengths of around 1 Pa or less (1 to 5 Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features andthe implied previous collapse of another, suggests that they are prone to failure and that the true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of the 67P nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties either with size over the 10-100 m range studied here or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small body (tens of km).

  17. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus.

    Science.gov (United States)

    Scheler, Björn; Schnepf, Vera; Galgenmüller, Carolina; Ranf, Stefanie; Hückelhoven, Ralph

    2016-05-01

    RHO GTPases are regulators of cell polarity and immunity in eukaryotes. In plants, RHO-like RAC/ROP GTPases are regulators of cell shaping, hormone responses, and responses to microbial pathogens. The barley (Hordeum vulgare L.) RAC/ROP protein RACB is required for full susceptibility to penetration by Blumeria graminis f.sp. hordei (Bgh), the barley powdery mildew fungus. Disease susceptibility factors often control host immune responses. Here we show that RACB does not interfere with early microbe-associated molecular pattern-triggered immune responses such as the oxidative burst or activation of mitogen-activated protein kinases. RACB also supports rather than restricts expression of defence-related genes in barley. Instead, silencing of RACB expression by RNAi leads to defects in cell polarity. In particular, initiation and maintenance of root hair growth and development of stomatal subsidiary cells by asymmetric cell division is affected by silencing expression of RACB. Nucleus migration is a common factor of developmental cell polarity and cell-autonomous interaction with Bgh RACB is required for positioning of the nucleus near the site of attack from Bgh We therefore suggest that Bgh profits from RACB's function in cell polarity rather than from immunity-regulating functions of RACB. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Study of the structure of light neutron rich nucleus with the Tonnerre array

    International Nuclear Information System (INIS)

    Pietri, St.

    2003-06-01

    This work concern the technical development made on the multidetector TONNERRE and the study of the 34 Si nucleus by a complete beta-neutron-gamma spectroscopy. In the first part various tests performed on modules of the detector in the 'Centre d'Etude de Bruyere le Chatel' are presented. A modification of the embassies of the photomultipliers tubes allows to gain more than 50% in the neutron efficiency and to obtain a threshold lower than 300 keV for the neutron energy. A complete C++ simulation of the neutron propagation in the array was carried out. It explains that the slow component of the light output of the scintillator may be responsible of the shape of the time-of-flight spectrum. The second part of these report presents the experiment devoted to the study of the structure of the 34 Si from the beta decay of the 34 Al. It was performed at the GANIL facility using the TONNERRE array and germanium of ENOGAM. The 34 Al was produced by projectile fragmentation of a 36 S beam of 50 MeV/A in a target of 9 Be. A complete beta scheme of the 34 Al is proposed. Eight neutron lines following the 34 Al decay were observed for the first time. Finally we suggest that a monopolar transition could occur in the 34 Si nucleus signing a O + 2 state at 2133 keV. (author)

  19. Proton radioactivity at non-collective prolate shape in high spin state of 94Ag

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2010-01-01

    We predict proton radioactivity and structural transitions in high spin state of an excited exotic nucleus near proton drip line in a theoretical framework and investigate the nature and the consequences of the structural transitions on separation energy as a function of temperature and spin. It reveals that the rotation of the excited exotic nucleus 94 Ag at excitation energies around 6.7 MeV and angular momentum near 21h generates a rarely seen prolate non-collective shape and proton separation energy becomes negative which indicates proton radioactivity in agreement with the experimental results of Mukha et al. for 94 Ag.

  20. Proton radioactivity at non-collective prolate shape in high spin state of {sup 94}Ag

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta, E-mail: mamta.a4@gmail.co [UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai 400 098 (India)

    2010-10-11

    We predict proton radioactivity and structural transitions in high spin state of an excited exotic nucleus near proton drip line in a theoretical framework and investigate the nature and the consequences of the structural transitions on separation energy as a function of temperature and spin. It reveals that the rotation of the excited exotic nucleus {sup 94}Ag at excitation energies around 6.7 MeV and angular momentum near 21h generates a rarely seen prolate non-collective shape and proton separation energy becomes negative which indicates proton radioactivity in agreement with the experimental results of Mukha et al. for {sup 94}Ag.

  1. Shape memory polymer medical device

    Science.gov (United States)

    Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  2. Preparation of shaped bodies

    International Nuclear Information System (INIS)

    Sutcliffe, P.W.; Isaacs, J.W.; Lyon, C.E.

    1979-01-01

    A method for the preparation of a shaped body includes pressing a powder to give a 'green' shaped body, the powder having been made by comminuting a material prepared by means of a gelation process, the material prior to comminuting being of a selected physical configuration (e.g. spherical). Thus, a material prepared by means of a gelation process can be transported and handled in an environmentally desirable, substantially dust-free form (e.g. spherical particles) and then comminuted to produce a powder for pressing into e.g. a shaped nuclear fuel body (e.g. pellets of (70%U/30%Pu)O 2 ), which can be sintered. (author)

  3. Social Shaping of Innovation

    DEFF Research Database (Denmark)

    Buur, Jacob; Mack, Alexandra

    - in particular in a large corporation? This workshop explores how innovation is socially shaped in organizations. Based on our experiences with practices around innovation and collaboration, we start from three proposition about the social shaping of innovation: • Ideas don't thrive as text (i.e. we need...... to consider other media) • Ideas need socialization (ideas are linked to people, we need to be careful about how we support the social innovation context) • Ideas are local (ideas spring out of a local contingency, we need to take care in how we like them to travel)....

  4. Covering folded shapes

    Directory of Open Access Journals (Sweden)

    Oswin Aichholzer

    2014-05-01

    Full Text Available Can folding a piece of paper flat make it larger? We explore whether a shape S must be scaled to cover a flat-folded copy of itself. We consider both single folds and arbitrary folds (continuous piecewise isometries \\(S\\to\\mathbb{R}^2\\. The underlying problem is motivated by computational origami, and is related to other covering and fixturing problems, such as Lebesgue's universal cover problem and force closure grasps. In addition to considering special shapes (squares, equilateral triangles, polygons and disks, we give upper and lower bounds on scale factors for single folds of convex objects and arbitrary folds of simply connected objects.

  5. Shape memory effect alloys

    International Nuclear Information System (INIS)

    Koshimizu, S.

    1992-01-01

    Although the pseudo- or super-elasticity phenomena and the shape memory effect were known since the 1940's, the enormous curiosity and the great interest to their practical applications emerged with the development of the NITINOL alloy (Nickel-Titanium Naval Ordance Laboratory) by the NASA during the 1960's. This fact marked the appearance of a new class of materials, popularly known as shape memory effect alloys (SMEA). The objective of this work is to present a state-of-the-art of the development and applications for the SMEA. (E.O.)

  6. Low-energy nuclear fission and our understanding of the nucleus

    International Nuclear Information System (INIS)

    Hall, H.L.; Hoffman, D.C.

    1990-01-01

    The interactions between experimental discoveries in low-energy nuclear fission and the theoretical understanding of the structure of the nucleus are reviewed. The history of this synergistic relationship begins with the discovery of fission, the development of the liquid-drop model and the experimental evidence for magic numbers, continues through the development of the shell model, the experimental discovery of shape isomerism, the double-humped fission barrier the spontaneous fission half-life disaster, the discovery of symmetric mass division in spontaneous fission and theoretical treatments based on different paths to scission. It concludes with a brief review of current experimental and theoretical understanding of low-energy fission and the prospects for future developments. (author) 150 refs.; 5 figs.; 1 tab

  7. Is there a medial nucleus of the trapezoid body in humans?

    DEFF Research Database (Denmark)

    Richter, Erik; Norris, B E; Fullerton, B C

    1983-01-01

    The medial nucleus of the trapezoid body (MNTB) appears to be a prominent auditory structure in many mammals. However, the presence of an MNTB in the human brain has not been clearly established. One of the most characteristic features of the cat MNTB is the presence of large somatic endings...... with multiple synaptic sites, the calyces of Held. We examined adult human brains at both light and electron microscopic levels and found neurons with unusually large endings in a location that is similar to that for the MNTB in other animals. Moreover, the sizes and shapes of some cells in this area...... are similar to the principal cells of the cat MNTB. These observations support the idea that humans have cells that resemble MNTB neurons in other species. It has been suggested that the cat MNTB may be involved in the generation of wave 3 of its brainstem auditory evoked potentials, so the presence...

  8. Nuclear export of RNA: Different sizes, shapes and functions.

    Science.gov (United States)

    Williams, Tobias; Ngo, Linh H; Wickramasinghe, Vihandha O

    2018-03-01

    Export of protein-coding and non-coding RNA molecules from the nucleus to the cytoplasm is critical for gene expression. This necessitates the continuous transport of RNA species of different size, shape and function through nuclear pore complexes via export receptors and adaptor proteins. Here, we provide an overview of the major RNA export pathways in humans, highlighting the similarities and differences between each. Its importance is underscored by the growing appreciation that deregulation of RNA export pathways is associated with human diseases like cancer. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with radioactive At beams

    CERN Multimedia

    We propose to study the $\\beta$-delayed fission, laser spectroscopy and radioactive decay of the newly available pure beams of neutron-deficient and neutron-rich astatine (Z=85) isotopes. The fission probability and the fission fragment distribution of the even-even isotopes $^{194,196}$Po following the $\\beta$-decay of the isotopes $^{194,196}$At will be studied with the Windmill setup. In-source laser spectroscopy will be performed on the entire astatine isotopic chain, using a combination of the Windmill setup, ISOLTRAP MR-ToF and ISOLDE Faraday. Radioactive decay data will be acquired at the Windmill setup throughout those studies and contribute to the global understanding of the phenomenon of shape coexistence in the neutron-deficient lead region.

  10. Statistical emission of complex fragments from highly excited compound nucleus

    International Nuclear Information System (INIS)

    Matsuse, T.

    1991-01-01

    A full statistical analysis has been given in terms of the Extended Hauser-Feshbach method. The charge and kinetic energy distributions of 35 Cl+ 12 C reaction at E lab = 180, 200 MeV and 23 Na+ 24 Mg reaction at E lab = 89 MeV which form the 47 V compound nucleus are investigated as a prototype of the light mass system. The measured kinetic energy distributions of the complex fragments are shown to be well reproduced by the Extended Hauser-Feshbach method, so the observed complex fragment production is understood as the statistical binary decay from the compound nucleus induced by heavy-ion reaction. Next, this method is applied to the study of the complex production from the 111 In compound nucleus which is formed by the 84 Kr+ 27 Al reaction at E lab = 890 MeV. (K.A.) 18 refs., 10 figs

  11. Mechano-adaptation of the stem cell nucleus.

    Science.gov (United States)

    Heo, Su-Jin; Cosgrove, Brian D; Dai, Eric N; Mauck, Robert L

    2018-01-01

    Exogenous mechanical forces are transmitted through the cell and to the nucleus, initiating mechanotransductive signaling cascades with profound effects on cellular function and stem cell fate. A growing body of evidence has shown that the force sensing and force-responsive elements of the nucleus adapt to these mechanotransductive events, tuning their response to future mechanical input. The mechanisms underlying this "mechano-adaptation" are only just beginning to be elucidated, and it remains poorly understood how these components act and adapt in tandem to drive stem cell differentiation. Here, we review the evidence on how the stem cell nucleus responds and adapts to physical forces, and provide a perspective on how this mechano-adaptation may function to drive and enforce stem cell differentiation.

  12. Analysis of a deep nucleus of Tehuantepec Gulf

    International Nuclear Information System (INIS)

    Ordonez R, E.; Lopez M, J.; Ramirez T, J. J.; Machain C, M. L.

    2009-10-01

    A nucleus of sediments obtained in the deep of Tehuantepec Gulf is analyzed; this nucleus has the particularity of to be a sampling of longitude of 18.3 m that include the total of last period glacial, few times obtained in our country. The physical chemistry composition of 10 selected fractions are analyzed with the purpose of to understand the formation processes of deep ocean along the period of 120 000 years, that includes the extracted fraction. Crystallography analysis, morphology, physical chemistry characterization and activity gamma were made. Finding that the content of organic matter falls as the superficial area increases, also was found the presence of natural uranium in similar concentration and balance with its radiogenic descendants along the nucleus profile what suggests the uranium migration to interior of mineral grains. (Author)

  13. Near-nucleus optical observations of P/Halley

    International Nuclear Information System (INIS)

    Larson, S.M.

    1987-01-01

    The Near-Nucleus Studies Net of the International Halley Watch has obtained an extensive series of high resolution optical images of P/Halley during its most active phases in 1985-86 which may be useful in interpreting radio observations of Comet Halley. They often show coma structure resulting from anisotropic emission of dust and gas from the inhomogeneous nucleus. Images were obtained in broadband spectral regions to study dust coma morphology, and in medium to narrow spectral bands to isolate the principal emissions of CN, C 3 , C 2 , CO + and H 2 O + . The goals and methods of near-nucleus studies are discussed and recent studies of 1910 images are briefly reviewed. The role of dust jets and cometary activity in P/Halley is discussed and several examples of anisotropic emission of dust during the current apparition are shown. 12 references

  14. Proton decay in a nucleus: Nonrelativistic treatment of nuclear effects

    International Nuclear Information System (INIS)

    Fernandez, L.A.; Alvarez-Estrada, R.F.; Sanchez-Gomez, J.L.

    1983-01-01

    In this paper, proton decay in a large nucleus is studied in the framework of SU(5) grand unification theory (GUT). By using a method based upon the Green's-function technique of many-body physics, nuclear effects on spectator and pole terms are computed. The decay width in the nucleus is found to be practically the same as in free space. However, nuclear effects are of considerable importance concerning the positron spectrum. A density-correlation expansion is introduced which is useful for carrying out a systematic study of nuclear effects in proton decay in a large nucleus. The method presented here can be easily extended to other GUT's or supersymmetric GUT's

  15. Models of the atomic nucleus. With interactive software

    International Nuclear Information System (INIS)

    Cook, N.D.

    2006-01-01

    This book-and-CD-software package supplies users with an interactive experience for nuclear visualization via a computer-graphical interface, similar in principle to the molecular visualizations already available in chemistry. Models of the Atomic Nucleus, a largely non-technical introduction to nuclear theory, explains the nucleus in a way that makes nuclear physics as comprehensible as chemistry or cell biology. The book/software supplements virtually any of the current textbooks in nuclear physics by providing a means for 3D visual display of the diverse models of nuclear structure. For the first time, an easy-to-master software for scientific visualization of the nucleus makes this notoriously ''non-visual'' field become immediately 'visible.' After a review of the basics, the book explores and compares the competing models, and addresses how the lattice model best resolves remaining controversies. The appendix explains how to obtain the most from the software provided on the accompanying CD. (orig.)

  16. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  17. Tornado-Shaped Curves

    Science.gov (United States)

    Martínez, Sol Sáez; de la Rosa, Félix Martínez; Rojas, Sergio

    2017-01-01

    In Advanced Calculus, our students wonder if it is possible to graphically represent a tornado by means of a three-dimensional curve. In this paper, we show it is possible by providing the parametric equations of such tornado-shaped curves.

  18. Sounds Exaggerate Visual Shape

    Science.gov (United States)

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  19. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  20. Bend me, shape me

    CERN Multimedia

    2002-01-01

    A Japanese team has found a way to bend and shape silicon substrates by growing a thin layer of diamond on top. The technique has been proposed as an alternative to mechanical bending, which is currently used to make reflective lenses for X-ray systems and particle physics systems (2 paragraphs).