WorldWideScience

Sample records for evading temperature quantum

  1. Quantum Backaction Evading Measurement of Collective Mechanical Modes.

    Science.gov (United States)

    Ockeloen-Korppi, C F; Damskägg, E; Pirkkalainen, J-M; Clerk, A A; Woolley, M J; Sillanpää, M A

    2016-09-30

    The standard quantum limit constrains the precision of an oscillator position measurement. It arises from a balance between the imprecision and the quantum backaction of the measurement. However, a measurement of only a single quadrature of the oscillator can evade the backaction and be made with arbitrary precision. Here we demonstrate quantum backaction evading measurements of a collective quadrature of two mechanical oscillators, both coupled to a common microwave cavity. The work allows for quantum state tomography of two mechanical oscillators, and provides a foundation for macroscopic mechanical entanglement and force sensing beyond conventional quantum limits.

  2. Quantum back-action-evading measurement of motion in a negative mass reference frame

    Science.gov (United States)

    Møller, Christoffer B.; Thomas, Rodrigo A.; Vasilakis, Georgios; Zeuthen, Emil; Tsaturyan, Yeghishe; Balabas, Mikhail; Jensen, Kasper; Schliesser, Albert; Hammerer, Klemens; Polzik, Eugene S.

    2017-07-01

    Quantum mechanics dictates that a continuous measurement of the position of an object imposes a random quantum back-action (QBA) perturbation on its momentum. This randomness translates with time into position uncertainty, thus leading to the well known uncertainty on the measurement of motion. As a consequence of this randomness, and in accordance with the Heisenberg uncertainty principle, the QBA puts a limitation—the so-called standard quantum limit—on the precision of sensing of position, velocity and acceleration. Here we show that QBA on a macroscopic mechanical oscillator can be evaded if the measurement of motion is conducted in the reference frame of an atomic spin oscillator. The collective quantum measurement on this hybrid system of two distant and disparate oscillators is performed with light. The mechanical oscillator is a vibrational ‘drum’ mode of a millimetre-sized dielectric membrane, and the spin oscillator is an atomic ensemble in a magnetic field. The spin oriented along the field corresponds to an energetically inverted spin population and realizes a negative-effective-mass oscillator, while the opposite orientation corresponds to an oscillator with positive effective mass. The QBA is suppressed by -1.8 decibels in the negative-mass setting and enhanced by 2.4 decibels in the positive-mass case. This hybrid quantum system paves the way to entanglement generation and distant quantum communication between mechanical and spin systems and to sensing of force, motion and gravity beyond the standard quantum limit.

  3. Quantum back-action-evading measurement of motion in a negative mass reference frame.

    Science.gov (United States)

    Møller, Christoffer B; Thomas, Rodrigo A; Vasilakis, Georgios; Zeuthen, Emil; Tsaturyan, Yeghishe; Balabas, Mikhail; Jensen, Kasper; Schliesser, Albert; Hammerer, Klemens; Polzik, Eugene S

    2017-07-12

    Quantum mechanics dictates that a continuous measurement of the position of an object imposes a random quantum back-action (QBA) perturbation on its momentum. This randomness translates with time into position uncertainty, thus leading to the well known uncertainty on the measurement of motion. As a consequence of this randomness, and in accordance with the Heisenberg uncertainty principle, the QBA puts a limitation-the so-called standard quantum limit-on the precision of sensing of position, velocity and acceleration. Here we show that QBA on a macroscopic mechanical oscillator can be evaded if the measurement of motion is conducted in the reference frame of an atomic spin oscillator. The collective quantum measurement on this hybrid system of two distant and disparate oscillators is performed with light. The mechanical oscillator is a vibrational 'drum' mode of a millimetre-sized dielectric membrane, and the spin oscillator is an atomic ensemble in a magnetic field. The spin oriented along the field corresponds to an energetically inverted spin population and realizes a negative-effective-mass oscillator, while the opposite orientation corresponds to an oscillator with positive effective mass. The QBA is suppressed by -1.8 decibels in the negative-mass setting and enhanced by 2.4 decibels in the positive-mass case. This hybrid quantum system paves the way to entanglement generation and distant quantum communication between mechanical and spin systems and to sensing of force, motion and gravity beyond the standard quantum limit.

  4. Quantum gravity and quantum nondemolition measurements

    International Nuclear Information System (INIS)

    Borzeszkowski, H.H. von; Treder, H.J.

    1984-01-01

    It is shown that in Quantum Gravity, and more general: in Grand Unified Theory incorporating General Relativity on a basic level, there arise necessarily absolute limitations on measurement which one cannot evade by any 'quantum nondemolition measurements'. This fact is demonstrated not to oppose the existence of certain approximations to the full theory where these limitations do not arise. (author)

  5. Scalable effective-temperature reduction for quantum annealers via nested quantum annealing correction

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel A.

    2018-02-01

    Nested quantum annealing correction (NQAC) is an error-correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. The encoding replaces each logical qubit by a complete graph of degree C . The nesting level C represents the distance of the error-correcting code and controls the amount of protection against thermal and control errors. Theoretical mean-field analyses and empirical data obtained with a D-Wave Two quantum annealer (supporting up to 512 qubits) showed that NQAC has the potential to achieve a scalable effective-temperature reduction, Teff˜C-η , with 0 temperature of a quantum annealer. Such effective-temperature reduction is relevant for machine-learning applications. Since we demonstrate that NQAC achieves error correction via a reduction of the effective-temperature of the quantum annealing device, our results address the problem of the "temperature scaling law for quantum annealers," which requires the temperature of quantum annealers to be reduced as problems of larger sizes are attempted to be solved.

  6. Local temperature in quantum thermal states

    International Nuclear Information System (INIS)

    Garcia-Saez, Artur; Ferraro, Alessandro; Acin, Antonio

    2009-01-01

    We consider blocks of quantum spins in a chain at thermal equilibrium, focusing on their properties from a thermodynamical perspective. In a classical system the temperature behaves as an intensive magnitude, above a certain block size, regardless of the actual value of the temperature itself. However, a deviation from this behavior is expected in quantum systems. In particular, we see that under some conditions the description of the blocks as thermal states with the same global temperature as the whole chain fails. We analyze this issue by employing the quantum fidelity as a figure of merit, singling out in detail the departure from the classical behavior. As it may be expected, we see that quantum features are more prominent at low temperatures and are affected by the presence of zero-temperature quantum phase transitions. Interestingly, we show that the blocks can be considered indeed as thermal states with a high fidelity, provided an effective local temperature is properly identified. Such a result may originate from typical properties of reduced subsystems of energy-constrained Hilbert spaces. Finally, the relation between local and global temperatures is analyzed as a function of the size of the blocks and the system parameters.

  7. Spotlighting quantum critical points via quantum correlations at finite temperatures

    International Nuclear Information System (INIS)

    Werlang, T.; Ribeiro, G. A. P.; Rigolin, Gustavo

    2011-01-01

    We extend the program initiated by T. Werlang et al. [Phys. Rev. Lett. 105, 095702 (2010)] in several directions. Firstly, we investigate how useful quantum correlations, such as entanglement and quantum discord, are in the detection of critical points of quantum phase transitions when the system is at finite temperatures. For that purpose we study several thermalized spin models in the thermodynamic limit, namely, the XXZ model, the XY model, and the Ising model, all of which with an external magnetic field. We compare the ability of quantum discord, entanglement, and some thermodynamic quantities to spotlight the quantum critical points for several different temperatures. Secondly, for some models we go beyond nearest neighbors and also study the behavior of entanglement and quantum discord for second nearest neighbors around the critical point at finite temperature. Finally, we furnish a more quantitative description of how good all these quantities are in spotlighting critical points of quantum phase transitions at finite T, bridging the gap between experimental data and those theoretical descriptions solely based on the unattainable absolute zero assumption.

  8. Quantum mechanics. Mechanically detecting and avoiding the quantum fluctuations of a microwave field.

    Science.gov (United States)

    Suh, J; Weinstein, A J; Lei, C U; Wollman, E E; Steinke, S K; Meystre, P; Clerk, A A; Schwab, K C

    2014-06-13

    Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion. Copyright © 2014, American Association for the Advancement of Science.

  9. Evader Interdiction and Collateral Damage

    Energy Technology Data Exchange (ETDEWEB)

    Gutfraind, Alexander [Los Alamos National Laboratory

    2011-01-01

    In network interdiction problems, evaders (hostile agents or data packets) are moving through a network towards their targets and we wish to choose sensor placement locations in order to intercept them before they reach their destinations. Sensor locations should be chosen economically, balancing security gains with cost, including the inconvenience sensors inflict upon innocent travelers. We give optimal sensor allocation algorithms for several classes of special graphs and hardness and optimal approximation results for general graphs, including for deterministic or Markov chain-based and oblivious or reactive evaders. In a similar-sounding but much different problem setting posed by [10] where the innocent travelers can also be reactive, we again give optimal algorithms for special cases and hardness and (essentially) optimal approximation results on general graphs.

  10. Temperature Scaling Law for Quantum Annealing Optimizers.

    Science.gov (United States)

    Albash, Tameem; Martin-Mayor, Victor; Hen, Itay

    2017-09-15

    Physical implementations of quantum annealing unavoidably operate at finite temperatures. We point to a fundamental limitation of fixed finite temperature quantum annealers that prevents them from functioning as competitive scalable optimizers and show that to serve as optimizers annealer temperatures must be appropriately scaled down with problem size. We derive a temperature scaling law dictating that temperature must drop at the very least in a logarithmic manner but also possibly as a power law with problem size. We corroborate our results by experiment and simulations and discuss the implications of these to practical annealers.

  11. Some connections between classical and quantum anholonomy

    International Nuclear Information System (INIS)

    Giavarini, G.; Rohrlich, D.; Thacker, W.D.

    1988-08-01

    In this paper we study the interplay between the classical and quantum anholonomy effects (Hannay's angle and Berry's phase). When a finite-dimensional quantum system has a Berry phase, it has a nonzero Hannay angle. We show how infinite-dimensional systems can evade this correspondence, and find some necessary conditions for a system with a Berry phase to have no Hannay angle. (orig.)

  12. Linear Pursuit Differential Game under Phase Constraint on the State of Evader

    Directory of Open Access Journals (Sweden)

    Askar Rakhmanov

    2016-01-01

    Full Text Available We consider a linear pursuit differential game of one pursuer and one evader. Controls of the pursuer and evader are subjected to integral and geometric constraints, respectively. In addition, phase constraint is imposed on the state of evader, whereas pursuer moves throughout the space. We say that pursuit is completed, if inclusion y(t1-x(t1∈M is satisfied at some t1>0, where x(t and y(t are states of pursuer and evader, respectively, and M is terminal set. Conditions of completion of pursuit in the game from all initial points of players are obtained. Strategy of the pursuer is constructed so that the phase vector of the pursuer first is brought to a given set, and then pursuit is completed.

  13. Unconditional polarization qubit quantum memory at room temperature

    Science.gov (United States)

    Namazi, Mehdi; Kupchak, Connor; Jordaan, Bertus; Shahrokhshahi, Reihaneh; Figueroa, Eden

    2016-05-01

    The creation of global quantum key distribution and quantum communication networks requires multiple operational quantum memories. Achieving a considerable reduction in experimental and cost overhead in these implementations is thus a major challenge. Here we present a polarization qubit quantum memory fully-operational at 330K, an unheard frontier in the development of useful qubit quantum technology. This result is achieved through extensive study of how optical response of cold atomic medium is transformed by the motion of atoms at room temperature leading to an optimal characterization of room temperature quantum light-matter interfaces. Our quantum memory shows an average fidelity of 86.6 +/- 0.6% for optical pulses containing on average 1 photon per pulse, thereby defeating any classical strategy exploiting the non-unitary character of the memory efficiency. Our system significantly decreases the technological overhead required to achieve quantum memory operation and will serve as a building block for scalable and technologically simpler many-memory quantum machines. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180. B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  14. Towards room temperature solid state quantum devices at the edge of quantum chaos for long-living quantum states

    International Nuclear Information System (INIS)

    Prati, Enrico

    2015-01-01

    Long living coherent quantum states have been observed in biological systems up to room temperature. Light harvesting in chromophoresis realized by excitonic systems living at the edge of quantum chaos, where energy level distribution becomes semi-Poissonian. On the other hand, artificial materials suffer the loss of coherence of quantum states in quantum information processing, but semiconductor materials are known to exhibit quantum chaotic conditions, so the exploitation of similar conditions are to be considered. The advancements of nanofabrication, together with the control of implantation of individual atoms at nanometric precision, may open the experimental study of such special regime at the edge of the phase transitions for the electronic systems obtained by implanting impurity atoms in a silicon transistor. Here I review the recent advancements made in the field of theoretical description of the light harvesting in biological system in its connection with phase transitions at the few atoms scale and how it would be possible to achieve transition point to quantum chaotic regime. Such mechanism may thus preserve quantum coherent states at room temperature in solid state devices, to be exploited for quantum information processing as well as dissipation-free quantum electronics. (paper)

  15. Identifying the quantum correlations in light-harvesting complexes

    International Nuclear Information System (INIS)

    Bradler, Kamil; Wilde, Mark M.; Vinjanampathy, Sai; Uskov, Dmitry B.

    2010-01-01

    One of the major efforts in the quantum biological program is to subject biological systems to standard tests or measures of quantumness. These tests and measures should elucidate whether nontrivial quantum effects may be present in biological systems. Two such measures of quantum correlations are the quantum discord and the relative entropy of entanglement. Here, we show that the relative entropy of entanglement admits a simple analytic form when dynamics and accessible degrees of freedom are restricted to a zero- and single-excitation subspace. We also simulate and calculate the amount of quantum discord that is present in the Fenna-Matthews-Olson protein complex during the transfer of an excitation from a chlorosome antenna to a reaction center. We find that the single-excitation quantum discord and single-excitation relative entropy of entanglement are equal for all of our numerical simulations, but a proof of their general equality for this setting evades us for now. Also, some of our simulations demonstrate that the relative entropy of entanglement without the single-excitation restriction is much lower than the quantum discord. The first picosecond of dynamics is the relevant time scale for the transfer of the excitation, according to some sources in the literature. Our simulation results indicate that quantum correlations contribute a significant fraction of the total correlation during this first picosecond in many cases, at both cryogenic and physiological temperatures.

  16. Effect of temperature on quantum dots

    Indian Academy of Sciences (India)

    MAHDI AHMADI BORJI

    2017-07-12

    Jul 12, 2017 ... Effect of temperature on InxGa1−xAs/GaAs quantum dots. MAHDI AHMADI BORJI1, ALI ... Attention should be given to the effects of temperature, ... tion 2 explains the model and method of the numerical simulation. Our results ...

  17. Quantum-gravity fluctuations and the black-hole temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-05-15

    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)

  18. Quantum-gravity fluctuations and the black-hole temperature

    International Nuclear Information System (INIS)

    Hod, Shahar

    2015-01-01

    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)

  19. Quantum Field Theory at non zero temperature

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.

    1989-01-01

    The formulations of the Φ 4 Quantum Field Theory and of Quantum Electrodynamics in I+d dimensions (d spatial dimensions) at non-zero temperature are reviewed. The behaviours of all those theories in the regime of large distances and high temperatures are surveyed. Only results are reported, all technicalities being omitted. The leading high-temperature contributions to correlation functions, to all perturbative orders, in those theories turn out to be also given by simpler theories, having much milder (superrenormalizable) ultraviolet behaviour and special mass renormalizations. In particular, the triviality/non-triviality issue for the Φ 4 theory in 1+3 dimensions is discussed briefly. (Author)

  20. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    International Nuclear Information System (INIS)

    Liu Tiancai; Huang Zhenli; Wang Haiqiao; Wang Jianhao; Li Xiuqing; Zhao Yuandi; Luo Qingming

    2006-01-01

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of ∼0.11 nm K -1 . And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science

  1. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tiancai [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Huang Zhenli [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Haiqiao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Jianhao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Xiuqing [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhao Yuandi [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)]. E-mail: zydi@mail.hust.edu.cn; Luo Qingming [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2006-02-10

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of {approx}0.11 nm K{sup -1}. And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science.

  2. Ooperipäevad Saaremaal (II) / Tiiu Levald

    Index Scriptorium Estoniae

    Levald, Tiiu, 1940-

    2008-01-01

    21.-27. VII Saaremaa ooperipäevade raames toimunud üritustest - Carmen Tabori lavastatud Aino Kallase ja Tauno Pylkkäneni "Patseba Saaremaal" (esimene osa draama- ja teine ooperilavastus), Gershwini ooperist "Porgy ja Bess" ning 25. VII toimunud galakontserdist

  3. Growth and temperature dependent photoluminescence of InGaAs quantum dot chains

    International Nuclear Information System (INIS)

    Yang, Haeyeon; Kim, Dong-Jun; Colton, John S.; Park, Tyler; Meyer, David; Jones, Aaron M.; Thalman, Scott; Smith, Dallas; Clark, Ken; Brown, Steve

    2014-01-01

    Highlights: • We examine the optical properties of novel quantum dot chains. • Study shows that platelets evolve into quantum dots during heating of the InGaAs platelets encapsulated with GaAs. • Single stack of quantum dots emits light at room temperature. • Quantum dots are of high quality, confirmed by cross-section TEM images and photoluminescence. • Light emission at room temperature weakens beyond the detection limit when the quantum dots form above the critical annealing temperature. - Abstract: We report a study of growth and photoluminescence from a single stack of MBE-grown In 0.4 Ga 0.6 As quantum dot chains. The InGaAs epilayers were grown at a low temperature so that the resulting surfaces remain flat with platelets even though their thicknesses exceed the critical thickness of the conventional Stranski–Krastanov growth mode. The flat InGaAs layers were then annealed at elevated temperatures to induce the formation of quantum dot chains. A reflection high energy electron diffraction study suggests that, when the annealing temperature is at or below 480 °C, the surface of growth front remains flat during the periods of annealing and growth of a 10 nm thick GaAs capping layer. Surprisingly, transmission electron microscopy images do indicate the formation of quantum dot chains, however, so the dot-chains in those samples may form from precursory platelets during the period of temperature ramping and subsequent capping with GaAs due to intermixing of group III elements. The optical emission from the quantum dot layer demonstrates that there is a critical annealing temperature of 480–500 °C above which the properties of the low temperature growth approach are lost, as the optical properties begin to resemble those of quantum dots produced by the conventional Stranski–Krastanov technique

  4. Quantum network theory

    International Nuclear Information System (INIS)

    Yurke, B.; Denker, J.S.

    1984-01-01

    A general approach, within the framework of canonical quantization, is described for analyzing the quantum behavior of complicated electronic circuits. This approach is capable of dealing with electrical networks having nonlinear or dissipative elements. The techniques are used to analyze a degenerate parametric amplifier, a device capable of generating squeezed coherent state signals. A circuit capable of performing back-action-evading electrical measurements is also discussed. (author)

  5. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    International Nuclear Information System (INIS)

    Du, Rui-Rui

    2015-01-01

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under

  6. Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg

    2016-08-15

    In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.

  7. Single-temperature quantum engine without feedback control.

    Science.gov (United States)

    Yi, Juyeon; Talkner, Peter; Kim, Yong Woon

    2017-08-01

    A cyclically working quantum-mechanical engine that operates at a single temperature is proposed. Its energy input is delivered by a quantum measurement. The functioning of the engine does not require any feedback control. We analyze work, heat, and the efficiency of the engine for the case of a working substance that is governed by the laws of quantum mechanics and that can be adiabatically compressed and expanded. The obtained general expressions are exemplified for a spin in an adiabatically changing magnetic field and a particle moving in a potential with slowly changing shape.

  8. Täna algavad Eesti Muusika Päevad

    Index Scriptorium Estoniae

    2004-01-01

    Eesti Muusika Päevade raames toimunud üritustest 21. aprillini: ERSO sümfooniakontserdist Estonia kontserdisaalis, Jüri Reinvere radiofoonilise ooperi "Vastaskallas" esiettekandest Tallinna Linnateatri Hobuveski saalis, kontserdist Kunstihoone Vabaduse väljakul (esitusel Urmas Sisaski uus "Tähistaeva tsükkel" - "Eesti rahvataevas"), lastekontserdist "Kodumaine viis" Estonia kontserdisaalis

  9. Quantum Chromodynamic at finite temperature

    International Nuclear Information System (INIS)

    Magalhaes, N.S.

    1987-01-01

    A formal expression to the Gibbs free energy of topological defects of quantum chromodynamics (QCD)by using the semiclassical approach in the context of field theory at finite temperature and in the high temperature limit is determined. This expression is used to calculate the free energy of magnetic monopoles. Applying the obtained results to a method in which the free energy of topological defects of a theory may indicate its different phases, its searched for informations about phases of QCD. (author) [pt

  10. Muusika : Jeremija nutulaulud palmipuudepühal. Jätkub "Musica Grande". Lihavõttetervitus Barcelonast. Rannap "Selges eesti helikeeles". Juba XIII trompetipäevad. III klavessiinipäevad / Jaan-Eik Tulve

    Index Scriptorium Estoniae

    Tulve, Jaan-Eik, 1967-

    2002-01-01

    Vox Clamantise kontsertidest Tartus ja Tallinnas. Jätkub sari "Musica Grande" kontsertidega Tartus ja Tallinnas pealkirjaga "Kontsertlik". Eestisse sõidab esinema üks Hispaania tippkoore Coral Cantiga Barcelonast. Rein Rannapi tänavusest suurprojektist, klaveriõhtust "Selges eesti helikeeles". 1. - 7. aprillini toimuvad EMA rahvusvahelised trompetipäevad. 4. - 7. aprillini korraldab Eesti Klavessiinisõprade Tsunft III klavessiinipäevad

  11. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    Science.gov (United States)

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  12. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    International Nuclear Information System (INIS)

    Nagpal, Swati

    2002-01-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature

  13. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    Science.gov (United States)

    Nagpal, Swati

    2002-12-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.

  14. Quantum Metropolis sampling.

    Science.gov (United States)

    Temme, K; Osborne, T J; Vollbrecht, K G; Poulin, D; Verstraete, F

    2011-03-03

    The original motivation to build a quantum computer came from Feynman, who imagined a machine capable of simulating generic quantum mechanical systems--a task that is believed to be intractable for classical computers. Such a machine could have far-reaching applications in the simulation of many-body quantum physics in condensed-matter, chemical and high-energy systems. Part of Feynman's challenge was met by Lloyd, who showed how to approximately decompose the time evolution operator of interacting quantum particles into a short sequence of elementary gates, suitable for operation on a quantum computer. However, this left open the problem of how to simulate the equilibrium and static properties of quantum systems. This requires the preparation of ground and Gibbs states on a quantum computer. For classical systems, this problem is solved by the ubiquitous Metropolis algorithm, a method that has basically acquired a monopoly on the simulation of interacting particles. Here we demonstrate how to implement a quantum version of the Metropolis algorithm. This algorithm permits sampling directly from the eigenstates of the Hamiltonian, and thus evades the sign problem present in classical simulations. A small-scale implementation of this algorithm should be achievable with today's technology.

  15. Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature.

    Science.gov (United States)

    Norte, R A; Moura, J P; Gröblacher, S

    2016-04-08

    All quantum optomechanics experiments to date operate at cryogenic temperatures, imposing severe technical challenges and fundamental constraints. Here, we present a novel design of on-chip mechanical resonators which exhibit fundamental modes with frequencies f and mechanical quality factors Q_{m} sufficient to enter the optomechanical quantum regime at room temperature. We overcome previous limitations by designing ultrathin, high-stress silicon nitride (Si_{3}N_{4}) membranes, with tensile stress in the resonators' clamps close to the ultimate yield strength of the material. By patterning a photonic crystal on the SiN membranes, we observe reflectivities greater than 99%. These on-chip resonators have remarkably low mechanical dissipation, with Q_{m}∼10^{8}, while at the same time exhibiting large reflectivities. This makes them a unique platform for experiments towards the observation of massive quantum behavior at room temperature.

  16. XX rahvusvahelised trompetipäevad / Valdo Rüütelmaa

    Index Scriptorium Estoniae

    Rüütelmaa, Valdo

    2009-01-01

    17. märtsist kuni 5. aprillini Eesti Muusika- ja Teatriakadeemias toimunud rahvusvahelistest 20. trompetipäevadest, mille raames toimus 5. aprillil konkurss "Trompetitalendid 2009" . Trompetipäevade korraldaja Aavo Otsaga

  17. Quantum gases finite temperature and non-equilibrium dynamics

    CERN Document Server

    Szymanska, Marzena; Davis, Matthew; Gardiner, Simon

    2013-01-01

    The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems. This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of ed...

  18. Topological order, entanglement, and quantum memory at finite temperature

    International Nuclear Information System (INIS)

    Mazáč, Dalimil; Hamma, Alioscia

    2012-01-01

    We compute the topological entropy of the toric code models in arbitrary dimension at finite temperature. We find that the critical temperatures for the existence of full quantum (classical) topological entropy correspond to the confinement–deconfinement transitions in the corresponding Z 2 gauge theories. This implies that the thermal stability of topological entropy corresponds to the stability of quantum (classical) memory. The implications for the understanding of ergodicity breaking in topological phases are discussed. - Highlights: ► We calculate the topological entropy of a general toric code in any dimension. ► We find phase transitions in the topological entropy. ► The phase transitions coincide with the appearance of quantum/classical memory.

  19. Deterministic constant-temperature dynamics for dissipative quantum systems

    International Nuclear Information System (INIS)

    Sergi, Alessandro

    2007-01-01

    A novel method is introduced in order to treat the dissipative dynamics of quantum systems interacting with a bath of classical degrees of freedom. The method is based upon an extension of the Nose-Hoover chain (constant temperature) dynamics to quantum-classical systems. Both adiabatic and nonadiabatic numerical calculations on the relaxation dynamics of the spin-boson model show that the quantum-classical Nose-Hoover chain dynamics represents the thermal noise of the bath in an accurate and simple way. Numerical comparisons, both with the constant-energy calculation and with the quantum-classical Brownian motion treatment of the bath, show that the quantum-classical Nose-Hoover chain dynamics can be used to introduce dissipation in the evolution of a quantum subsystem even with just one degree of freedom for the bath. The algorithm can be computationally advantageous in modelling, within computer simulation, the dynamics of a quantum subsystem interacting with complex molecular environments. (fast track communication)

  20. Temperature effects on quantum interference in molecular junctions

    DEFF Research Database (Denmark)

    Markussen, Troels; Thygesen, Kristian Sommer

    2014-01-01

    A number of experiments have demonstrated that destructive quantum interference (QI) effects in molecular junctions lead to very low conductances even at room temperature. On the other hand, another recent experiment showed increasing conductance with temperature which was attributed to decoheren...

  1. Room-temperature dephasing in InAs/GaAs quantum dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    Summary form only given. Semiconductor quantum dots (QDs) are receiving increasing attention for fundamental studies on zero-dimensional confinement and for device applications. Quantum-dot lasers are expected to show superior performances, like high material gain, low and temperature...... stacked layers of InAs-InGaAs-GaAs quantum dots....

  2. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.

    Science.gov (United States)

    Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C

    2015-08-28

    According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion. Copyright © 2015, American Association for the Advancement of Science.

  3. Nonlinear quantum fluid equations for a finite temperature Fermi plasma

    International Nuclear Information System (INIS)

    Eliasson, Bengt; Shukla, Padma K

    2008-01-01

    Nonlinear quantum electron fluid equations are derived, taking into account the moments of the Wigner equation and by using the Fermi-Dirac equilibrium distribution for electrons with an arbitrary temperature. A simplified formalism with the assumptions of incompressibility of the distribution function is used to close the moments in velocity space. The nonlinear quantum diffraction effects into the fluid equations are incorporated. In the high-temperature limit, we retain the nonlinear fluid equations for a dense hot plasma and in the low-temperature limit, we retain the correct fluid equations for a fully degenerate plasma

  4. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    Science.gov (United States)

    Qamar, Anisa; Ata-ur-Rahman, Mirza, Arshad M.

    2012-05-01

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  5. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, Anisa; Ata-ur-Rahman [Institute of Physics and Electronics, University of Peshawar, Khyber Pakhtoon Khwa 25000 (Pakistan); National Center for Physics Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2012-05-15

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  6. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    International Nuclear Information System (INIS)

    Qamar, Anisa; Ata-ur-Rahman; Mirza, Arshad M.

    2012-01-01

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  7. Temperature-Dependent Coercive Field Measured by a Quantum Dot Strain Gauge.

    Science.gov (United States)

    Chen, Yan; Zhang, Yang; Keil, Robert; Zopf, Michael; Ding, Fei; Schmidt, Oliver G

    2017-12-13

    Coercive fields of piezoelectric materials can be strongly influenced by environmental temperature. We investigate this influence using a heterostructure consisting of a single crystal piezoelectric film and a quantum dots containing membrane. Applying electric field leads to a physical deformation of the piezoelectric film, thereby inducing strain in the quantum dots and thus modifying their optical properties. The wavelength of the quantum dot emission shows butterfly-like loops, from which the coercive fields are directly derived. The results suggest that coercive fields at cryogenic temperatures are strongly increased, yielding values several tens of times larger than those at room temperature. We adapt a theoretical model to fit the measured data with very high agreement. Our work provides an efficient framework for predicting the properties of ferroelectric materials and advocating their practical applications, especially at low temperatures.

  8. Pärnus algavad homme Ungari kultuuripäevad / Teet Roossaar

    Index Scriptorium Estoniae

    Roossaar, Teet

    2005-01-01

    Ungari organist Miklos Teleki orelikontsertidest 3. sept. Eliisabeti kirikus ja 4. sept. Pärnu-Jaagupi kirikus ning Pärnu Linnaorkestri hooaja avakontserdist 4. sept. Pärnu kontserdimajas Ungari kultuuripäevade raames

  9. Scalable architecture for a room temperature solid-state quantum information processor.

    Science.gov (United States)

    Yao, N Y; Jiang, L; Gorshkov, A V; Maurer, P C; Giedke, G; Cirac, J I; Lukin, M D

    2012-04-24

    The realization of a scalable quantum information processor has emerged over the past decade as one of the central challenges at the interface of fundamental science and engineering. Here we propose and analyse an architecture for a scalable, solid-state quantum information processor capable of operating at room temperature. Our approach is based on recent experimental advances involving nitrogen-vacancy colour centres in diamond. In particular, we demonstrate that the multiple challenges associated with operation at ambient temperature, individual addressing at the nanoscale, strong qubit coupling, robustness against disorder and low decoherence rates can be simultaneously achieved under realistic, experimentally relevant conditions. The architecture uses a novel approach to quantum information transfer and includes a hierarchy of control at successive length scales. Moreover, it alleviates the stringent constraints currently limiting the realization of scalable quantum processors and will provide fundamental insights into the physics of non-equilibrium many-body quantum systems.

  10. Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state

    International Nuclear Information System (INIS)

    Hsiang, Jen-Tsung; Hu, B.L.

    2015-01-01

    This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T_1>T_2. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting http://arxiv.org/abs/1405.7642. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T_c, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T_1, T_2, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T_c is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, ‘hot entanglement’ is largely a fiction.

  11. Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature.

    Science.gov (United States)

    Huang, He; Susha, Andrei S; Kershaw, Stephen V; Hung, Tak Fu; Rogach, Andrey L

    2015-09-01

    Emission color controlled, high quantum yield CH 3 NH 3 PbBr 3 perovskite quantum dots are obtained by changing the temperature of a bad solvent during synthesis. The products for temperatures between 0 and 60 °C have good spectral purity with narrow emission line widths of 28-36 nm, high absolute emission quantum yields of 74% to 93%, and short radiative lifetimes of 13-27 ns.

  12. Quantum Zeno subspaces induced by temperature

    Energy Technology Data Exchange (ETDEWEB)

    Militello, B.; Scala, M.; Messina, A. [Dipartimento di Fisica dell' Universita di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2011-08-15

    We discuss the partitioning of the Hilbert space of a quantum system induced by the interaction with another system at thermal equilibrium, showing that the higher the temperature the more effective is the formation of Zeno subspaces. We show that our analysis keeps its validity even in the case of interaction with a bosonic reservoir, provided appropriate limitations of the relevant bandwidth.

  13. Room temperature excitation spectroscopy of single quantum dots

    Directory of Open Access Journals (Sweden)

    Christian Blum

    2011-08-01

    Full Text Available We report a single molecule detection scheme to investigate excitation spectra of single emitters at room temperature. We demonstrate the potential of single emitter photoluminescence excitation spectroscopy by recording excitation spectra of single CdSe nanocrystals over a wide spectral range of 100 nm. The spectra exhibit emission intermittency, characteristic of single emitters. We observe large variations in the spectra close to the band edge, which represent the individual heterogeneity of the observed quantum dots. We also find specific excitation wavelengths for which the single quantum dots analyzed show an increased propensity for a transition to a long-lived dark state. We expect that the additional capability of recording excitation spectra at room temperature from single emitters will enable insights into the photophysics of emitters that so far have remained inaccessible.

  14. Finite-temperature effects in helical quantum turbulence

    Science.gov (United States)

    Clark Di Leoni, Patricio; Mininni, Pablo D.; Brachet, Marc E.

    2018-04-01

    We perform a study of the evolution of helical quantum turbulence at different temperatures by solving numerically the Gross-Pitaevskii and the stochastic Ginzburg-Landau equations, using up to 40963 grid points with a pseudospectral method. We show that for temperatures close to the critical one, the fluid described by these equations can act as a classical viscous flow, with the decay of the incompressible kinetic energy and the helicity becoming exponential. The transition from this behavior to the one observed at zero temperature is smooth as a function of temperature. Moreover, the presence of strong thermal effects can inhibit the development of a proper turbulent cascade. We provide Ansätze for the effective viscosity and friction as a function of the temperature.

  15. Quantum Simulations of Low Temperature High Energy Density Matter

    National Research Council Canada - National Science Library

    Voth, Gregory

    2004-01-01

    .... Using classical molecular dynamics simulations to evaluate these equilibrium properties would predict qualitatively incorrect results for low temperature solid hydrogen, because of the highly quantum...

  16. Estimation of effective temperatures in a quantum annealer: Towards deep learning applications

    Science.gov (United States)

    Realpe-Gómez, John; Benedetti, Marcello; Perdomo-Ortiz, Alejandro

    Sampling is at the core of deep learning and more general machine learning applications; an increase in its efficiency would have a significant impact across several domains. Recently, quantum annealers have been proposed as a potential candidate to speed up these tasks, but several limitations still bar them from being used effectively. One of the main limitations, and the focus of this work, is that using the device's experimentally accessible temperature as a reference for sampling purposes leads to very poor correlation with the Boltzmann distribution it is programmed to sample from. Based on quantum dynamical arguments, one can expect that if the device indeed happens to be sampling from a Boltzmann-like distribution, it will correspond to one with an instance-dependent effective temperature. Unless this unknown temperature can be unveiled, it might not be possible to effectively use a quantum annealer for Boltzmann sampling processes. In this work, we propose a strategy to overcome this challenge with a simple effective-temperature estimation algorithm. We provide a systematic study assessing the impact of the effective temperatures in the quantum-assisted training of Boltzmann machines, which can serve as a building block for deep learning architectures. This work was supported by NASA Ames Research Center.

  17. Perturbative algebraic quantum field theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Falk

    2013-08-15

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  18. Perturbative algebraic quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Lindner, Falk

    2013-08-01

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  19. Quantum Correlations of Light from a Room-Temperature Mechanical Oscillator

    Science.gov (United States)

    Sudhir, V.; Schilling, R.; Fedorov, S. A.; Schütz, H.; Wilson, D. J.; Kippenberg, T. J.

    2017-07-01

    When an optical field is reflected from a compliant mirror, its intensity and phase become quantum-correlated due to radiation pressure. These correlations form a valuable resource: the mirror may be viewed as an effective Kerr medium generating squeezed states of light, or the correlations may be used to erase backaction from an interferometric measurement of the mirror's position. To date, optomechanical quantum correlations have been observed in only a handful of cryogenic experiments, owing to the challenge of distilling them from thermomechanical noise. Accessing them at room temperature, however, would significantly extend their practical impact, with applications ranging from gravitational wave detection to chip-scale accelerometry. Here, we observe broadband quantum correlations developed in an optical field due to its interaction with a room-temperature nanomechanical oscillator, taking advantage of its high-cooperativity near-field coupling to an optical microcavity. The correlations manifest as a reduction in the fluctuations of a rotated quadrature of the field, in a frequency window spanning more than an octave below mechanical resonance. This is due to coherent cancellation of the two sources of quantum noise contaminating the measured quadrature—backaction and imprecision. Supplanting the backaction force with an off-resonant test force, we demonstrate the working principle behind a quantum-enhanced "variational" force measurement.

  20. Classical and quantum temperature fluctuations via holography

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, Alexander V. [KTH Royal Inst. of Technology, Stockholm (Sweden); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gudnason, Sven Bjarke [KTH Royal Inst. of Technology, Stockholm (Sweden); Thorlacius, Larus [KTH Royal Inst. of Technology, Stockholm (Sweden); University of Iceland, Reykjavik (Iceland); Zarembo, Konstantin [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Uppsala Univ. (Sweden); Krikun, Alexander [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Kedem, Yaron [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2014-05-27

    We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS space-time. The fluctuation spectrum is governed by the lowest-lying hydrodynamic sound modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at large temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordstrom black hole in global AdS.

  1. Quantum theory from questions

    Energy Technology Data Exchange (ETDEWEB)

    Hoehn, Philipp [Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Vienna (Austria); Wever, Christopher [Institute for Theoretical Particle Physics, Karlsruhe (Germany)

    2016-07-01

    In contrast to relativity, quantum theory has evaded a commonly accepted apprehension, in part because of the lack of physical statements that fully characterize it. In an attempt to remedy the situation, we summarize a novel reconstruction of the explicit formalism of quantum theory (for arbitrarily many qubits) from elementary rules on an observer's information acquisition. Our approach is purely operational: we consider an observer O interrogating a system S with binary questions and define S's state as O's ''catalogue of knowledge'' about S; no ontic assumptions are necessary. From the rules, one can derive, among other things, the state spaces, the unitary group, the von Neumann evolution and show that the binary questions correspond to Pauli operators. The reconstruction also offers new structural insights in the form of novel informational charges and informational complementarity relations which define the state spaces and the unitary group. This reconstruction permits a new perspective on quantum theory.

  2. Optimal interdiction of unreactive Markovian evaders

    Energy Technology Data Exchange (ETDEWEB)

    Gutfraind, Alexander [Los Alamos National Laboratory; Hagberg, Aric [Los Alamos National Laboratory; Pan, Feng [Los Alamos National Laboratory

    2008-01-01

    The network interdiction problem arises in a wide variety of areas including military logistics, infectious disease control and counter-terrorism. In the classical formulation one is given a weighted network G(N, E) and the task is to find b nodes (or edges) whose removal would maximally increase the least-cost path from a source node s to a target node r. In practical applications. G represenLs a transportation or activity network; node/edge removal is done by an agent, the 'interdictor' against another agent the 'evader' who wants to traverse G from s to t along the least-cost route. Our work is motivated by cases in which both agents have bounded rationality: e.g. when the authorities set up road blocks to catch bank robbers, neither party can plot its actions with full information about the other. We introduce a novel model of network interdiction in which the motion of (possibly) several evaders i. described by a Markov pr cess on G.We further suppose that the evaden; do not respond to interdiction decisions because of time, knowledge or computational constraint . We prove that this interdiction problem is NP-hard, like the classical formulation, but unlike the classical problem the objective function is submodular. This implies that the solution could be approximated within 1-lie using a greedy algorithm. Exploiting submodularity again. we demonstrate that a 'priority' (or 'lazy') evaluation algorithm can improve performance by orders of magnitude. Taken together, the results bring closer realistic solutions to the interdiction problem on global-scale networks.

  3. Room temperature solid-state quantum bit with second-long memory

    Science.gov (United States)

    Kucsko, Georg; Maurer, Peter; Latta, Christian; Hunger, David; Jiang, Liang; Pastawski, Fernando; Yao, Norman; Bennet, Steven; Twitchen, Daniel; Cirac, Ignacio; Lukin, Mikhail

    2012-02-01

    Realization of stable quantum bits (qubits) that can be prepared and measured with high fidelity and that are capable of storing quantum information for long times exceeding seconds is an outstanding challenge in quantum science and engineering. Here we report on the realization of such a stable quantum bit using an individual ^13C nuclear spin within an isotopically purified diamond crystal at room temperature. Using an electronic spin associated with a nearby Nitrogen Vacancy color center, we demonstrate high fidelity initialization and readout of a single ^13C qubit. Quantum memory lifetime exceeding one second is obtained by using dissipative optical decoupling from the electronic degree of freedom and applying a sequence of radio-frequency pulses to suppress effects from the dipole-dipole interactions of the ^13C spin-bath. Techniques to further extend the quantum memory lifetime as well as the potential applications are also discussed.

  4. Modeling quantum fluid dynamics at nonzero temperatures

    Science.gov (United States)

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-01-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874

  5. Quantum fields at finite temperature and density

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1991-01-01

    These lectures are an elementary introduction to standard many-body techniques applied to the study of quantum fields at finite temperature and density: perturbative expansion, linear response theory, quasiparticles and their interactions, etc... We emphasize the usefulness of the imaginary time formalism in a wide class of problems, as opposed to many recent approaches based on real time. Properties of elementary excitations in an ultrarelativistic plasma at high temperature or chemical potential are discussed, and recent progresses in the study of the quark-gluon plasma are briefly reviewed

  6. Phenomenon of quantum low temperature limit of chemical reaction rates

    International Nuclear Information System (INIS)

    Gol'danskij, V.I.

    1975-01-01

    The influence of quantum-mechanical effects on one of the fundamental laws of chemical kinetics - the Arrhenius law - is considered. Criteria characterising the limits of the low-temperature region where the extent of quantum-mechanical tunnelling transitions exceeds exponentially the transitions over the barrier are quoted. Studies of the low-temperature tunnelling of electrons and hydrogen atoms are briefly mentioned and the history of research on low-temperature radiation-induced solid-phase polymerisation, the development of which led to the discovery of the phenomenon of the low-temperature quantum-mechanical limit for the rates of chemical reactions in relation to the formaldehyde polymerisation reaction, is briefly considered. The results of experiments using low-inertia calorimeters, whereby it is possible to determine directly the average time (tau 0 ) required to add one new link to the polymer chain of formaldehyde during its polymerisation by radiation and during postpolymerisation and to establish that below 80K the increase of tau 0 slows down and that at T approximately equal to 10-4K the time tau 0 reaches a plateau (tau 0 approximately equals 0.01s), are described. Possible explanations of the observed low-temperature limit for the rate of a chemical reaction are critically examined and a semiquantitative explanation is given for this phenomenon, which may be particularly common in combined electronic-confirmational transitions in complex biological molecules and may play a definite role in chemical and biological evolution (cold prehistory of life)

  7. Phenomenon of quantum low temperature limit of chemical reaction rates

    Energy Technology Data Exchange (ETDEWEB)

    Gol' danskii, V I [AN SSSR, Moscow. Inst. Khimicheskoj Fiziki

    1975-12-01

    The influence of quantum-mechanical effects on one of the fundamental laws of chemical kinetics - the Arrhenius Law - is considered. Criteria characterising the limits of the low-temperature region where the extent of quantum-mechanical tunnelling transitions exceeds exponentially the transitions over the barrier are quoted. Studies of the low-temperature tunnelling of electrons and hydrogen atoms are briefly mentioned and the history of research on low-temperature radiation-induced solid-phase polymerization, the development of which led to the discovery of the phenomenon of the low-temperature quantum-mechanical limit for the rates of chemical reactions in relation to the formaldehyde polymerization reaction, is briefly considered. The results of experiments using low-inertia calorimeters, whereby it is possible to determine directly the average time (tau/sub 0/) required to add one new link to the polymer chain of formaldehyde during its polymerization by radiation and during postpolymerization and to establish that below 80K the increase of tau/sub 0/ slows down and that at T approximately equal to 10-4K the time tau/sub 0/ reaches a plateau (tau/sub 0/ approximately equals 0.01s), are described. Possible explanations of the observed low-temperature limit for the rate of a chemical reaction are critically examined and a semiquantitative explanation is given for this phenomenon, which may be particularly common in combined electronic-confirmational transitions in complex biological molecules and may play a definite role in chemical and biological evolution (cold prehistory of life).

  8. Temperature dependence of magnetopolarons in a parabolic quantum dot in arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Zhu Kadi; Gu Shiwei

    1993-10-01

    The temperature and the size dependence of a magnetopolaron in a harmonic quantum dot with an external magnetic field normal to the plane of the quantum dot are investigated theoretically. For a weak magnetic field (ω c LO ), both the cyclotron mass m * c+ and the cyclotron mass m * c- are the increasing functions of temperature, whereas for strong magnetic fields (ω c > ω LO ), the cyclotron mass m * c+ is the decreasing function of temperature, while the cyclotron mass m * c- is the increasing function of temperature. (author). 27 refs, 2 figs

  9. Precursor concentration and temperature controlled formation of polyvinyl alcohol-capped CdSe-quantum dots

    Directory of Open Access Journals (Sweden)

    Chetan P. Shah

    2010-12-01

    Full Text Available Polyvinyl alcohol-capped CdSe quantum dots, with a size within their quantum confinement limit, were prepared in aqueous solution at room temperature, by a simple and environmentally friendly chemical method. The size of the CdSe quantum dots was found to be dependent on the concentrations of the precursors of cadmium and selenium ions, as well as on the aging time and the reaction temperature; all of which could be used conveniently for tuning the size of the particles, as well as their optical properties. The synthesized quantum dots were characterized by optical absorption spectroscopy, fluorescence spectroscopy, X-ray diffraction, atomic force microscopy and transmission electron microscopy. The samples were fluorescent at room temperature; the green fluorescence was assigned to band edge emission, and the near-infrared fluorescence peaks at about 665 and 865 nm were assigned to shallow and deep trap states emissions, respectively. The quantum dots were fairly stable up to several days.

  10. Characteristic functions of quantum heat with baths at different temperatures

    Science.gov (United States)

    Aurell, Erik

    2018-06-01

    This paper is about quantum heat defined as the change in energy of a bath during a process. The presentation takes into account recent developments in classical strong-coupling thermodynamics and addresses a version of quantum heat that satisfies quantum-classical correspondence. The characteristic function and the full counting statistics of quantum heat are shown to be formally similar. The paper further shows that the method can be extended to more than one bath, e.g., two baths at different temperatures, which opens up the prospect of studying correlations and heat flow. The paper extends earlier results on the expected quantum heat in the setting of one bath [E. Aurell and R. Eichhorn, New J. Phys. 17, 065007 (2015), 10.1088/1367-2630/17/6/065007; E. Aurell, Entropy 19, 595 (2017), 10.3390/e19110595].

  11. On the zero temperature limit of the Kubo-transformed quantum time correlation function

    Science.gov (United States)

    Hernández de la Peña, Lisandro

    2014-04-01

    The zero temperature limit of several quantum time correlation functions is analysed. It is shown that while the canonical quantum time correlation function retains the full dynamical information as temperature approaches zero, the Kubo-transformed and the thermally symmetrised quantum time correlation functions lose all dynamical information at this limit. This is shown to be a consequence of the projection onto the ground state, via the limiting process of the quantities ? and ?, either together as a product, or separately. Although these findings would seem to suggest that finite-temperature methods commonly used to estimate Kubo correlation functions would be incapable of retaining any ground state dynamics, we propose a route for recovering in principle all dynamical information at the ground state. It is first shown that the usual frequency space relation between canonical and Kubo correlation functions also holds for microcanonical time correlation functions. Since the Kubo-transformed microcanonical correlation function can be obtained from the usual finite-temperature function by including a projection onto the corresponding microcanonical ensemble, finite-temperature methods, properly modified to incorporate such a constraint, can be used to capture full quantum dynamics at any arbitrary energy state, including the ground state. This approach is illustrated with the application of centroid dynamics to the ground state dynamics of the harmonic oscillator.

  12. Tartu Kevadpäevad 2008 : Nädalajagu muusikat igale maitsele / Signe Tamberg

    Index Scriptorium Estoniae

    Tamberg, Signe

    2008-01-01

    Tartu Kevadpäevad 2008 muusikaprogrammis: 34. tudengilaulu võistlusest 29. apr. Tartu Sadamateatris, öölaulupeost 28. apr. Kassitoome orus, kontsertidest "Rokime!" 2. mail ja "Folgime" 3. mail Raekoja platsil

  13. Performance of an irreversible quantum Ericsson cooler at low temperature limit

    International Nuclear Information System (INIS)

    Wu Feng; Chen Lingen; Wu Shuang; Sun Fengrui

    2006-01-01

    The purpose of this paper is to investigate the effect of quantum properties of the working medium on the performance of an irreversible quantum Ericsson cooler with spin-1/2. The cooler is studied with the losses of heat resistance, heat leakage and internal irreversibility. The optimal relationship between the dimensionless cooling load R * versus the coefficient of performance ε for the irreversible quantum Ericsson cooler is derived. In particular, the performance characteristics of the cooler at the low temperature limit are discussed

  14. The origins of macroscopic quantum coherence in high temperature superconductivity

    International Nuclear Information System (INIS)

    Turner, Philip; Nottale, Laurent

    2015-01-01

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  15. On the effect of ballistic overflow on the temperature dependence of the quantum efficiency of InGaN/GaN multiple quantum well light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Prudaev, I. A., E-mail: funcelab@gmail.com; Kopyev, V. V.; Romanov, I. S.; Oleynik, V. L. [National Research Tomsk State University (Russian Federation)

    2017-02-15

    The dependences of the quantum efficiency of InGaN/GaN multiple quantum well light-emitting diodes on the temperature and excitation level are studied. The experiment is performed for two luminescence excitation modes. A comparison of the results obtained during photo- and electroluminescence shows an additional (to the loss associated with Auger recombination) low-temperature loss in the high-density current region. This causes inversion of the temperature dependence of the quantum efficiency at temperatures lower than 220–300 K. Analysis shows that the loss is associated with electron leakage from the light-emitting-diode active region. The experimental data are explained using the ballistic-overflow model. The simulation results are in qualitative agreement with the experimental dependences of the quantum efficiency on temperature and current density.

  16. Temperature-dependent fine structure splitting in InGaN quantum dots

    Science.gov (United States)

    Wang, Tong; Puchtler, Tim J.; Zhu, Tongtong; Jarman, John C.; Kocher, Claudius C.; Oliver, Rachel A.; Taylor, Robert A.

    2017-07-01

    We report the experimental observation of temperature-dependent fine structure splitting in semiconductor quantum dots using a non-polar (11-20) a-plane InGaN system, up to the on-chip Peltier cooling threshold of 200 K. At 5 K, a statistical average splitting of 443 ± 132 μeV has been found based on 81 quantum dots. The degree of fine structure splitting stays relatively constant for temperatures less than 100 K and only increases above that temperature. At 200 K, we find that the fine structure splitting ranges between 2 and 12 meV, which is an order of magnitude higher than that at low temperatures. Our investigations also show that phonon interactions at high temperatures might have a correlation with the degree of exchange interactions. The large fine structure splitting at 200 K makes it easier to isolate the individual components of the polarized emission spectrally, increasing the effective degree of polarization for potential on-chip applications of polarized single-photon sources.

  17. Towards the Fundamental Quantum Limit of Linear Measurements of Classical Signals.

    Science.gov (United States)

    Miao, Haixing; Adhikari, Rana X; Ma, Yiqiu; Pang, Belinda; Chen, Yanbei

    2017-08-04

    The quantum Cramér-Rao bound (QCRB) sets a fundamental limit for the measurement of classical signals with detectors operating in the quantum regime. Using linear-response theory and the Heisenberg uncertainty relation, we derive a general condition for achieving such a fundamental limit. When applied to classical displacement measurements with a test mass, this condition leads to an explicit connection between the QCRB and the standard quantum limit that arises from a tradeoff between the measurement imprecision and quantum backaction; the QCRB can be viewed as an outcome of a quantum nondemolition measurement with the backaction evaded. Additionally, we show that the test mass is more a resource for improving measurement sensitivity than a victim of the quantum backaction, which suggests a new approach to enhancing the sensitivity of a broad class of sensors. We illustrate these points with laser interferometric gravitational-wave detectors.

  18. Temperature dependence of the fundamental excitonic resonance in lead-salt quantum dots

    International Nuclear Information System (INIS)

    Yue, Fangyu; Tomm, Jens W.; Kruschke, Detlef; Ullrich, Bruno; Chu, Junhao

    2015-01-01

    The temperature dependences of the fundamental excitonic resonance in PbS and PbSe quantum dots fabricated by various technologies are experimentally determined. Above ∼150 K, sub-linearities of the temperature shifts and halfwidths are observed. This behavior is analyzed within the existing standard models. Concordant modeling, however, becomes possible only within the frame of a three-level system that takes into account both bright and dark excitonic states as well as phonon-assisted carrier redistribution between these states. Our results show that luminescence characterization of lead-salt quantum dots necessarily requires both low temperatures and excitation densities in order to provide reliable ensemble parameters

  19. Temperature dependence of active photonic band gap in bragg-spaced quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Hu Zhiqiang; Wang Tao; Yu Chunchao; Xu Wei, E-mail: huzhiqianghzq@163.com [Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China)

    2011-02-01

    A novel all-optical polarization switch of active photonic band gap structure based on non-resonant optical Stark effect bragg-spaced quantum wells was investigated and it could be compatible with the optical communication system. The theory is based on InGaAsP/InP Bragg-spaced quantum wells (BSQWs). Mainly through the design of the InGaAsP well layer component and InP barrier thickness to make the quantum-period cycle meet the bragg condition and the bragg frequency is equal to re-hole exciton resonance frequency. When a spectrally narrow control pulse is tuned within the forbidden gap, such BSQWs have been shown to exhibit large optical nonlinearities and ps recovery times, which can form T hz switch. However, the exciton binding energy of InGaAsP will be automatically separate at room temperature, so the effect of all-optical polarization switching of active photonic band gap bragg structure quantum wells can only be studied at low temperature. By a large number of experiments, we tested part of the material parameters of BSQWs in the temperature range 10-300K. On this basis, the InGaAsP and InP refractive index changes with wavelength, InP thermal expansion coefficient are studied and a relationship equation is established. Experimental results show that the bragg reflection spectra with temperature mainly is effected by InP refractive index changes with temperature. Our theoretical study and experiment are an instruction as a reference in the designs and experiments of future practical optical switches.

  20. Temperature dependence of active photonic band gap in bragg-spaced quantum wells

    International Nuclear Information System (INIS)

    Hu Zhiqiang; Wang Tao; Yu Chunchao; Xu Wei

    2011-01-01

    A novel all-optical polarization switch of active photonic band gap structure based on non-resonant optical Stark effect bragg-spaced quantum wells was investigated and it could be compatible with the optical communication system. The theory is based on InGaAsP/InP Bragg-spaced quantum wells (BSQWs). Mainly through the design of the InGaAsP well layer component and InP barrier thickness to make the quantum-period cycle meet the bragg condition and the bragg frequency is equal to re-hole exciton resonance frequency. When a spectrally narrow control pulse is tuned within the forbidden gap, such BSQWs have been shown to exhibit large optical nonlinearities and ps recovery times, which can form T hz switch. However, the exciton binding energy of InGaAsP will be automatically separate at room temperature, so the effect of all-optical polarization switching of active photonic band gap bragg structure quantum wells can only be studied at low temperature. By a large number of experiments, we tested part of the material parameters of BSQWs in the temperature range 10-300K. On this basis, the InGaAsP and InP refractive index changes with wavelength, InP thermal expansion coefficient are studied and a relationship equation is established. Experimental results show that the bragg reflection spectra with temperature mainly is effected by InP refractive index changes with temperature. Our theoretical study and experiment are an instruction as a reference in the designs and experiments of future practical optical switches.

  1. Temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers

    Science.gov (United States)

    Duan, J.; Huang, H.; Schires, K.; Poole, P. J.; Wang, C.; Grillot, F.

    2018-02-01

    In this paper, we investigate the temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers. In comparison with their quantum well counterparts, results show that quantum dot lasers have spectral linewidths rather insensitive to the temperature with minimum values below 200 kHz in the range of 283K to 303K. The experimental results are also well confirmed by numerical simulations. Overall, this work shows that quantum dot lasers are excellent candidates for various applications such as coherent communication systems, high-resolution spectroscopy, high purity photonic microwave generation and on-chip atomic clocks.

  2. Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots

    International Nuclear Information System (INIS)

    Norris, T B; Kim, K; Urayama, J; Wu, Z K; Singh, J; Bhattacharya, P K

    2005-01-01

    We have used two- and three-pulse femtosecond differential transmission spectroscopy to study the dependence of quantum dot carrier dynamics on temperature. At low temperatures and densities, the rates for relaxation between the quantum dot confined states and for capture from the barrier region into the various dot levels could be directly determined. For electron-hole pairs generated directly in the quantum dot excited state, relaxation is dominated by electron-hole scattering, and occurs on a 5 ps time scale. Capture times from the barrier into the quantum dot are of the order of 2 ps (into the excited state) and 10 ps (into the ground state). The phonon bottleneck was clearly observed in low-density capture experiments, and the conditions for its observation (namely, the suppression of electron-hole scattering for nongeminately captured electrons) were determined. As temperature increases beyond about 100 K, the dynamics become dominated by the re-emission of carriers from the lower dot levels, due to the large density of states in the wetting layer and barrier region. Measurements of the gain dynamics show fast (130 fs) gain recovery due to intradot carrier-carrier scattering, and picosecond-scale capture. Direct measurement of the transparency density versus temperature shows the dramatic effect of carrier re-emission for the quantum dots on thermally activated scattering. The carrier dynamics at elevated temperature are thus strongly dominated by the high density of the high energy continuum states relative to the dot confined levels. Deleterious hot carrier effects can be suppressed in quantum dot lasers by resonant tunnelling injection

  3. Eesti Suusapäevad Jay Peak´is / Peeter Teedla ; fotod: Peeter Teedla

    Index Scriptorium Estoniae

    Teedla, Peeter

    2006-01-01

    märtsikuu esimesel nädalalõpul idaranniku eestlaste suusapäevad, osavõtjaid 156, paljud perekondade ja väikeste lastega, organiseerijaks Kristin Raamot. Peeti murdmaasuusatamise - ja slaalomivõistlused

  4. Märtsipäevade valupisaraid peab lastele näitama / Anu Bollverk

    Index Scriptorium Estoniae

    Bollverk, Anu

    2009-01-01

    1949. aasta märtsiküüditamisele pühendatud mälestuspäevast Koeru kultuurimajas ning sealse huviteatri poolt ette kantud Herbert Lasti näidendist "Valupisarais märtsipäevad" (lavastajad Herbert Last ja Uno Aav)

  5. Temperature-dependent photoluminescence study of InP/ZnS quantum dots

    Science.gov (United States)

    Thuy Pham, Thi; Tran, Thi Kim Chi; Liem Nguyen, Quang

    2011-06-01

    This paper reports on the temperature-dependent photoluminescence of InP/ZnS quantum dots under 532 nm excitation, which is above the InP transition energy but well below that of ZnS. The overall photoluminescence spectra show two spectral components. The higher-energy one (named X) is assigned to originate from the excitonic transition; while the low-energy spectral component (named I) is normally interpreted as resulting from lattice imperfections in the crystalline structure of InP/ZnS quantum dots (QDs). Peak positions of both the X and I emissions vary similarly with increasing temperature and the same as the InP bandgap narrowing with temperature. In the temperature range from 15 to 80 K, the ratio of the integrated intensity from the X and the I emissions decreases gradually and then this ratio increases fast at temperatures higher than 80 K. This could result from a population of charge carriers in the lattice imperfection states at a temperature below 80 K to increase the I emission but then with these charge carriers being released to contribute to the X emission.

  6. Causal quantum theory and the collapse locality loophole

    International Nuclear Information System (INIS)

    Kent, Adrian

    2005-01-01

    Causal quantum theory is an umbrella term for ordinary quantum theory modified by two hypotheses: state vector reduction is a well-defined process, and strict local causality applies. The first of these holds in some versions of Copenhagen quantum theory and need not necessarily imply practically testable deviations from ordinary quantum theory. The second implies that measurement events which are spacelike separated have no nonlocal correlations. To test this prediction, which sharply differs from standard quantum theory, requires a precise definition of state vector reduction. Formally speaking, any precise version of causal quantum theory defines a local hidden variable theory. However, causal quantum theory is most naturally seen as a variant of standard quantum theory. For that reason it seems a more serious rival to standard quantum theory than local hidden variable models relying on the locality or detector efficiency loopholes. Some plausible versions of causal quantum theory are not refuted by any Bell experiments to date, nor is it evident that they are inconsistent with other experiments. They evade refutation via a neglected loophole in Bell experiments--the collapse locality loophole--which exists because of the possible time lag between a particle entering a measurement device and a collapse taking place. Fairly definitive tests of causal versus standard quantum theory could be made by observing entangled particles separated by ≅0.1 light seconds

  7. The quantum open system theory for quarkonium during finite temperature medium

    International Nuclear Information System (INIS)

    Akamatsu, Yukinao

    2015-01-01

    This paper explains theoretical studies on the dynamics of heavy quarkonium in a finite temperature medium. As a first step of understanding the dynamics of heavy quarkonium in a medium, it explains firstly the definition of potential acting between heavy quarks in a finite temperature medium, and next the stochastic potential and decoherence. While the conventional definition based on thermodynamics lacks theoretical validity, theoretically reasonable definition can be obtained by the spectral decomposition of Wilson loop in the medium. When calculating the potential with this definition, the imaginary part appears, leading to the lacking of theoretical integrity when used in the potential terms of Schroedinger equation, but it is eliminated by the concept of stochastic potential. Decoherence given by thermal fluctuation to wave function is an important physical process of the dynamics of heavy quarkonium in a finite temperature medium. There is a limit of stochastic potential that cannot describe the irreversible process, and this limitation can be overcome by a more comprehensive system based on the theory of quantum open system. By dealing with the heavy quarkonium as quantum open system, phenomena such as color shielding, thermal fluctuation, and dissipation in the quark-gluon plasma, become describable in the way of quantum theory. (A.O.)

  8. Towards a Room-Temperature Spin Quantum Bus in Diamond via Electron Photoionization, Transport, and Capture

    Directory of Open Access Journals (Sweden)

    M. W. Doherty

    2016-11-01

    Full Text Available Diamond is a proven solid-state platform for spin-based quantum technology. The nitrogen-vacancy center in diamond has been used to realize small-scale quantum information processing and quantum sensing under ambient conditions. A major barrier in the development of large-scale quantum information processing in diamond is the connection of nitrogen-vacancy spin registers by a quantum bus at room temperature. Given that diamond is expected to be an ideal spin transport material, the coherent transport of spin directly between the spin registers offers a potential solution. Yet, there has been no demonstration of spin transport in diamond due to difficulties in achieving spin injection and detection via conventional methods. Here, we exploit detailed knowledge of the paramagnetic defects in diamond to identify novel mechanisms to photoionize, transport, and capture spin-polarized electrons in diamond at room temperature. Having identified these mechanisms, we explore how they may be combined to realize an on-chip spin quantum bus.

  9. Enhanced UV luminescence from InAlN quantum well structures using two temperature growth

    International Nuclear Information System (INIS)

    Zubialevich, Vitaly Z.; Sadler, Thomas C.; Dinh, Duc V.; Alam, Shahab N.; Li, Haoning; Pampili, Pietro; Parbrook, Peter J.

    2014-01-01

    InAlN/AlGaN multiple quantum wells (MQWs) emitting between 300 and 350 nm have been prepared by metalorganic chemical vapor deposition on planar AlN templates. To obtain strong room temperature luminescence from InAlN QWs a two temperature approach was required. The intensity decayed weakly as the temperature was increased to 300 K, with ratios I PL (300 K)/I PL (T) max up to 70%. This high apparent internal quantum efficiency is attributed to the exceptionally strong carrier localization in this material, which is also manifested by a high Stokes shift (0.52 eV) of the luminescence. Based on these results InAlN is proposed as a robust alternative to AlGaN for ultraviolet emitting devices. - Highlights: • InAlN quantum wells with AlGaN barriers emitting in near UV successfully grown using quasi-2T approach. • 1 nm AlGaN capping of InAlN quantum wells used to avoid In desorption during temperature ramp to barrier growth conditions. • Strong, thermally resilient luminescence obtained as a result of growth optimization. • Promise of InAlN as an alternative active region for UV emitters demonstrated

  10. Ortho-para H₂ conversion by proton exchange at low temperature: an accurate quantum mechanical study.

    Science.gov (United States)

    Honvault, P; Jorfi, M; González-Lezana, T; Faure, A; Pagani, L

    2011-07-08

    We report extensive, accurate fully quantum, time-independent calculations of cross sections at low collision energies, and rate coefficients at low temperatures for the H⁺ + H₂(v = 0, j) → H⁺ + H₂(v = 0, j') reaction. Different transitions are considered, especially the ortho-para conversion (j = 1 → j' = 0) which is of key importance in astrophysics. This conversion process appears to be very efficient and dominant at low temperature, with a rate coefficient of 4.15 × 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹ at 10 K. The quantum mechanical results are also compared with statistical quantum predictions and the reaction is found to be statistical in the low temperature regime (T < 100 K).

  11. Evading Lyth bound in models of quintessential inflation

    International Nuclear Information System (INIS)

    Hossain, Md. Wali; Myrzakulov, R.; Sami, M.; Saridakis, Emmanuel N.

    2014-01-01

    Quintessential inflation refers to an attempt to unify inflation and late-time cosmic acceleration using a single scalar field. In this letter we consider two different classes of quintessential inflation, one of which is based upon a Lagrangian with non-canonical kinetic term k 2 (ϕ)∂ μ ϕ∂ μ ϕ and a steep exponential potential while the second class uses the concept of steep brane world inflation. We show that in both cases the Lyth bound can be evaded, despite the large tensor-to-scalar ratio of perturbations. The post-inflationary dynamics is consistent with nucleosynthesis constraint in these cases

  12. evad : [luuletused] / Philip Larkin ; inglise keelest tlk. Maarja Kangro

    Index Scriptorium Estoniae

    Larkin, Philip

    2007-01-01

    Sisu: Päevad ; Mitte midagi öelda ; See olgu värss ; Uurimus lugemisharjumustest ; Hommage valitsusele ; Vesi ; Vajakud ; Viige üks koju lastele ; Jutt voodis ; Kõrged aknad ; Sa jätkad elu ; Kui. Orig.: Days ; Nothing to be said ; This be the verse ; A study of reading habits ; Homage to a government ; Water ; Wants ; Take one home for the kiddies ; Talking in bed ; High windows ; Continuing to live ; If

  13. Anomalous temperature dependence of excitation transfer between quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2015-01-01

    Roč. 7, č. 4 (2015), 325-330 ISSN 2164-6627 R&D Projects: GA MŠk(CZ) LD14011; GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : excitation transfer * quantum dots * temperature dependence * electron-phonon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. The temperature dependence of quantum spin pumping generated using electron spin resonance with three-magnon splittings

    International Nuclear Information System (INIS)

    Nakata, Kouki

    2013-01-01

    On the basis of the Schwinger–Keldysh formalism, we have closely investigated the temperature dependence of quantum spin pumping generated using electron spin resonance. We have clarified that three-magnon splittings excite non-zero modes of magnons and characterize the temperature dependence of quantum spin pumping generated using electron spin resonance. (paper)

  15. Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions

    Energy Technology Data Exchange (ETDEWEB)

    Hammersley, S.; Dawson, P. [School of Physics and Astronomy, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Kappers, M. J.; Massabuau, F. C.-P.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2015-09-28

    InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nm and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation.

  16. Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions

    International Nuclear Information System (INIS)

    Hammersley, S.; Dawson, P.; Kappers, M. J.; Massabuau, F. C.-P.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J.

    2015-01-01

    InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nm and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation

  17. Zero-temperature Kosterlitz-Thouless transition in a two-dimensional quantum system

    International Nuclear Information System (INIS)

    Castelnovo, Claudio; Chamon, Claudio; Mudry, Christopher; Pujol, Pierre

    2007-01-01

    We construct a local interacting quantum dimer model on the square lattice, whose zero-temperature phase diagram is characterized by a line of critical points separating two ordered phases of the valence bond crystal type. On one side, the line of critical points terminates in a quantum transition inherited from a Kosterlitz-Thouless transition in an associated classical model. We also discuss the effect of a longer-range dimer interaction that can be used to suppress the line of critical points by gradually shrinking it to a single point. Finally, we propose a way to generalize the quantum Hamiltonian to a dilute dimer model in presence of monomers and we qualitatively discuss the phase diagram

  18. Pyoverdine, the Major Siderophore in Pseudomonas aeruginosa, Evades NGAL Recognition

    Directory of Open Access Journals (Sweden)

    Mary E. Peek

    2012-01-01

    Full Text Available Pseudomonas aeruginosa is the most common pathogen that persists in the cystic fibrosis lungs. Bacteria such as P. aeruginosa secrete siderophores (iron-chelating molecules and the host limits bacterial growth by producing neutrophil-gelatinase-associated lipocalin (NGAL that specifically scavenges bacterial siderophores, therefore preventing bacteria from establishing infection. P. aeruginosa produces a major siderophore known as pyoverdine, found to be important for bacterial virulence and biofilm development. We report that pyoverdine did not bind to NGAL, as measured by tryptophan fluorescence quenching, while enterobactin bound to NGAL effectively causing a strong response. The experimental data indicate that pyoverdine evades NGAL recognition. We then employed a molecular modeling approach to simulate the binding of pyoverdine to human NGAL using NGAL’s published crystal structures. The docking of pyoverdine to NGAL predicted nine different docking positions; however, neither apo- nor ferric forms of pyoverdine docked into the ligand-binding site in the calyx of NGAL where siderophores are known to bind. The molecular modeling results offer structural support that pyoverdine does not bind to NGAL, confirming the results obtained in the tryptophan quenching assay. The data suggest that pyoverdine is a stealth siderophore that evades NGAL recognition allowing P. aeruginosa to establish chronic infections in CF lungs.

  19. Bacteriophages use hypermodified nucleosides to evade host's defence systems

    DEFF Research Database (Denmark)

    Kot, Witold; Olsen, Nikoline S.; Carstens, Alexander Byth

    developed several strategies to evade these defence mechanisms. Ultimately, this led to the oldest and still running arms race - microorganisms vs. their molecular parasites. We here describe a remarkable new strategy used by the recently isolated Escherichia coli phage CAjan belonging to...... to investigate this mechanism in detail we have used several methods including direct plaque sequencing, restriction endonuclease analysis and CRISPR-Cas genome editing. Through generation of specific mutants, we were able to introduce a restriction sensitive phenotype in the CAjan bacteriophage providing new...

  20. Quantum conductance in silicon quantum wires

    CERN Document Server

    Bagraev, N T; Klyachkin, L E; Malyarenko, A M; Gehlhoff, W; Ivanov, V K; Shelykh, I A

    2002-01-01

    The results of investigations of electron and hole quantum conductance staircase in silicon quantum wires are presented. The characteristics of self-ordering quantum wells of n- and p-types, which from on the silicon (100) surface in the nonequilibrium boron diffusion process, are analyzed. The results of investigations of the quantum conductance as the function of temperature, carrier concentration and modulation degree of silicon quantum wires are given. It is found out, that the quantum conductance of the one-dimensional channels is observed, for the first time, at an elevated temperature (T >= 77 K)

  1. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids

    International Nuclear Information System (INIS)

    Kroon, Maaike C.; Buijs, Wim; Peters, Cor J.; Witkamp, Geert-Jan

    2007-01-01

    The long-term thermal stability of ionic liquids is of utmost importance for their industrial application. Although the thermal decomposition temperatures of various ionic liquids have been measured previously, experimental data on the thermal decomposition mechanisms and kinetics are scarce. It is desirable to develop quantitative chemical tools that can predict thermal decomposition mechanisms and temperatures (kinetics) of ionic liquids. In this work ab initio quantum chemical calculations (DFT-B3LYP) have been used to predict thermal decomposition mechanisms, temperatures and the activation energies of the thermal breakdown reactions. These quantum chemical calculations proved to be an excellent method to predict the thermal stability of various ionic liquids

  2. Eesti Muusika Päevad 2000 : ECPNMi juhatus Tallinnas / Consuelo Diez ; interv. Evelin Kõrvits

    Index Scriptorium Estoniae

    Diez, Consuelo

    2000-01-01

    28.-30. apr. pidas Tallinnas aastakoosolekut ning külastas Eesti Muusika Päevade kontserte ECPNMi (European Conference of Promoters of New Music) juhatus. ECPNMi juhatuse liikmed räägivad uue muusika üritustest oma riikides, muljeid eesti muusika päevadelt

  3. Topics in quantum field theories at finite temperature

    International Nuclear Information System (INIS)

    Kao, Y.C.

    1985-01-01

    Studies on four topics in quantum field theories at finite temperature are presented in this thesis. In Chapter 1, it is shown that the chiral anomaly has no finite temperature corrections by Fujikawa's path integral approach. Chapter 2 deals with the chiral condensate in the finite temperature Schwinger model. The cluster decomposition property is employed to find . No finite critical temperature is found and the chiral condensate vanishes only at infinite temperature. In Chapter 3, the finite temperature behavior of the fermion-number breaking (Rubakov-Callan) condensate around a 't Hooft-Polyakov monopole is studied. It is found that the Rubakov-Callan condensate is suppressed exponentially from the monopole core at high temperature. The limitation of the techniques is understanding the behavior of the condensate for all temperature is also discussed. Chapter 4 is on the topological mass terms in (2 + 1)-dimensional gauge theories. The authors finds that if the gauge bosons have no topological mass at tree level, no topological mass induced radiatively up to two-loop order in either Abelian or non-Abelian theories with massive fermions. The Pauli-Villars regularization is used for fermion loops. The one-loop contributions to the topological mass terms at finite temperature are calculated and the quantization constraints in this case are discussed

  4. Room-temperature near-field reflection spectroscopy of single quantum wells

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Marcher; Madsen, Steen

    1997-01-01

    . This technique suppresses efficiently the otherwise dominating far-field background and reduces topographic artifacts. We demonstrate its performance on a thin, strained near-surface CdS/ZnS single quantum well at room temperature. The optical structure of these topographically flat samples is due to Cd...

  5. Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, V. V., E-mail: korenev@spbau.ru; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V. [Saint Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)

    2013-10-15

    It is analytically shown that the both the charge carrier dynamics in quantum dots and their capture into the quantum dots from the matrix material have a significant effect on two-state lasing phenomenon in quantum dot lasers. In particular, the consideration of desynchronization in electron and hole capture into quantum dots allows one to describe the quenching of ground-state lasing observed at high injection currents both qualitatevely and quantitatively. At the same time, an analysis of the charge carrier dynamics in a single quantum dot allowed us to describe the temperature dependences of the emission power via the ground- and excited-state optical transitions of quantum dots.

  6. Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers

    International Nuclear Information System (INIS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2013-01-01

    It is analytically shown that the both the charge carrier dynamics in quantum dots and their capture into the quantum dots from the matrix material have a significant effect on two-state lasing phenomenon in quantum dot lasers. In particular, the consideration of desynchronization in electron and hole capture into quantum dots allows one to describe the quenching of ground-state lasing observed at high injection currents both qualitatevely and quantitatively. At the same time, an analysis of the charge carrier dynamics in a single quantum dot allowed us to describe the temperature dependences of the emission power via the ground- and excited-state optical transitions of quantum dots

  7. The quantum Hall effect in quantum dot systems

    International Nuclear Information System (INIS)

    Beltukov, Y M; Greshnov, A A

    2014-01-01

    It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given

  8. Security bound of cheat sensitive quantum bit commitment.

    Science.gov (United States)

    He, Guang Ping

    2015-03-23

    Cheat sensitive quantum bit commitment (CSQBC) loosens the security requirement of quantum bit commitment (QBC), so that the existing impossibility proofs of unconditionally secure QBC can be evaded. But here we analyze the common features in all existing CSQBC protocols, and show that in any CSQBC having these features, the receiver can always learn a non-trivial amount of information on the sender's committed bit before it is unveiled, while his cheating can pass the security check with a probability not less than 50%. The sender's cheating is also studied. The optimal CSQBC protocols that can minimize the sum of the cheating probabilities of both parties are found to be trivial, as they are practically useless. We also discuss the possibility of building a fair protocol in which both parties can cheat with equal probabilities.

  9. Security bound of cheat sensitive quantum bit commitment

    Science.gov (United States)

    He, Guang Ping

    2015-03-01

    Cheat sensitive quantum bit commitment (CSQBC) loosens the security requirement of quantum bit commitment (QBC), so that the existing impossibility proofs of unconditionally secure QBC can be evaded. But here we analyze the common features in all existing CSQBC protocols, and show that in any CSQBC having these features, the receiver can always learn a non-trivial amount of information on the sender's committed bit before it is unveiled, while his cheating can pass the security check with a probability not less than 50%. The sender's cheating is also studied. The optimal CSQBC protocols that can minimize the sum of the cheating probabilities of both parties are found to be trivial, as they are practically useless. We also discuss the possibility of building a fair protocol in which both parties can cheat with equal probabilities.

  10. Quantum statistical mechanics of nonrelativistic membranes: crumpling transition at finite temperature

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, Adriaan M. J.

    2000-03-01

    The effect of quantum fluctuations on a nearly flat, nonrelativistic two-dimensional membrane with extrinsic curvature stiffness and tension is investigated. The renormalization group analysis is carried out in first-order perturbative theory. In contrast to thermal fluctuations, which soften the membrane at large scales and turn it into a crumpled surface, quantum fluctuations are found to stiffen the membrane, so that it exhibits a Hausdorff dimension equal to two. The large-scale behavior of the membrane is further studied at finite temperature, where a nontrivial fixed point is found, signaling a crumpling transition.

  11. Thermo field dynamics: a quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Mancini, F.; Marinaro, M.; Matsumoto, H.

    1988-01-01

    A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs

  12. On the size and temperature dependence of the energy gap in cadmium-selenide quantum dots embedded in fluorophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lipatova, Zh. O., E-mail: zluka-yo@mail.ru; Kolobkova, E. V.; Babkina, A. N.; Nikonorov, N. V. [ITMO University (Russian Federation)

    2017-03-15

    The temperature and size dependences of the energy gap in CdSe quantum dots with diameters of 2.4, 4.0, and 5.2 nm embedded in fluorophosphate glasses are investigated. It is shown that the temperature coefficient of the band gap dE{sub g}/dT in the quantum dots differs from the bulk value and depends strictly on the dot size. It is found that, furthermore, the energy of each transition in these quantum dots is characterized by an individual temperature coefficient dE/dT.

  13. The thermodynamic meaning of local temperature of nonequilibrium open quantum systems

    OpenAIRE

    Ye, LvZhou; Zheng, Xiao; Yan, YiJing; Di Ventra, Massimiliano

    2016-01-01

    Measuring the local temperature of nanoscale systems out of equilibrium has emerged as a new tool to study local heating effects and other local thermal properties of systems driven by external fields. Although various experimental protocols and theoretical definitions have been proposed to determine the local temperature, the thermodynamic meaning of the measured or defined quantities remains unclear. By performing analytical and numerical analysis of bias-driven quantum dot systems both in ...

  14. Sudden transitions and scaling behavior of geometric quantum correlation for two qubits in quantum critical environments at finite temperature

    International Nuclear Information System (INIS)

    Luo, Da-Wei; Xu, Jing-Bo

    2014-01-01

    We investigate the phenomenon of sudden transitions in geometric quantum correlation of two qubits in spin chain environments at finite temperature. It is shown that when only one qubit is coupled to the spin environment, the geometric discord exhibits a double sudden transition behavior, which is closely related to the quantum criticality of the spin chain environment. When two qubits are uniformly coupled to a common spin chain environment, the geometric discord is found to display a sudden transition behavior whereby the system transits from pure classical decoherence to pure quantum decoherence. Moreover, an interesting scaling behavior is revealed for the frozen time, and we also present a scheme to prolong the time during which the discord remains constant by applying bang–bang pulses. (paper)

  15. Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures

    Science.gov (United States)

    Khordad, R.; Sedehi, H. R. Rastegar

    2018-02-01

    In this work, we study thermodynamic properties of a GaAs double ring-shaped quantum dot under external magnetic and electric fields. To this end, we first solve the Schrödinger equation and obtain the energy levels and wave functions, analytically. Then, we calculate the entropy, heat capacity, average energy and magnetic susceptibility of the quantum dot in the presence of a magnetic field using the canonical ensemble approach. According to the results, it is found that the entropy is an increasing function of temperature. At low temperatures, the entropy increases monotonically with raising the temperature for all values of the magnetic fields and it is independent of the magnetic field. But, the entropy depends on the magnetic field at high temperatures. The entropy also decreases with increasing the magnetic field. The heat capacity and magnetic susceptibility show a peak structure. The heat capacity reduces with increasing the magnetic field at low temperatures. The magnetic susceptibility shows a transition between diamagnetic and paramagnetic below for T<4 K. The transition temperature depends on the magnetic field.

  16. Hydrostatic pressure and temperature effects of an exciton-donor complex in quantum dots

    International Nuclear Information System (INIS)

    Xie Wenfang

    2012-01-01

    Using the matrix diagonalization method and the compact density-matrix approach, we studied the combined effects of hydrostatic pressure and temperature on the electronic and optical properties of an exciton-donor complex in a disc-shaped quantum dot. We have calculated the binding energy and the oscillator strength of the intersubband transition from the ground state into the first excited state as a function of the dot radius. Based on the computed energies and wave functions, the linear, third-order nonlinear and total optical absorption coefficients as well as the refractive index have been examined. We find that the ground state binding energy and the oscillator strength are strongly affected by the quantum dot radius, hydrostatic pressure and temperature. The results also show that the linear, third-order nonlinear and total absorption coefficients and refractive index changes strongly depend on temperature and hydrostatic pressure.

  17. Increase of temperature of an ideal nondegenerate quantum gas in a suddenly expanding box due to energy quantization

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Vieira Lopes, D.O.

    2008-01-01

    We show that due to energy quantization the temperature of an ideal nondegenerate quantum gas in a rectangular box always increases after a sudden expansion of the box and a subsequent thermalization. The maximal increment of temperature is proportional to the square root of the product of the initial absolute temperature by the energy of the first discrete quantum level, i.e., it is proportional to the first power of the Planck constant

  18. Quantum and classical vacuum forces at zero and finite temperature

    International Nuclear Information System (INIS)

    Niekerken, Ole

    2009-06-01

    In this diploma thesis the Casimir-Polder force at zero temperature and at finite temperatures is calculated by using a well-defined quantum field theory (formulated in position space) and the method of image charges. For the calculations at finite temperature KMS-states are used. The so defined temperature describes the temperature of the electromagnetic background. A one oscillator model for inhomogeneous dispersive absorbing dielectric material is introduced and canonically quantized to calculate the Casimir-Polder force at a dielectric interface at finite temperature. The model fulfils causal commutation relations and the dielectric function of the model fulfils the Kramer-Kronig relations. We then use the same methods to calculate the van der Waals force between two neutral atoms at zero temperature and at finite temperatures. It is shown that the high temperature behaviour of the Casimir-Polder force and the van der Waals force are independent of ℎ. This means that they have to be understood classically, what is then shown in an algebraic statistical theory by using classical KMS states. (orig.)

  19. Temperature and hydrostatic pressure effects on single dopant states in hollow cylindrical core-shell quantum dot

    Science.gov (United States)

    El-Yadri, M.; Aghoutane, N.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.

    2018-05-01

    This work reports on theoretical investigation of the temperature and hydrostatic pressure effects on the confined donor impurity in a AlGaAs-GaAs hollow cylindrical core-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with approximately rigid walls. Within the framework of the effective-mass approximation and by using a variational approach, we have computed the donor binding energies as a function of the shell size in order to study the behavior of the electron-impurity attraction for a very small thickness under the influence of both temperature and hydrostatic pressure. Our results show that the temperature and hydrostatic pressure have a significant influence on the impurity binding energy for large shell quantum dots. It will be shown that the binding energy is more pronounced with increasing pressure and decreasing temperature for any impurity position and quantum dot size. The photoionization cross section is also analyzed by considering only the in-plane incident radiation polarization. Its behavior is investigated as a function of photon energy for different values of pressure and temperature. The opposite effects caused by temperature and hydrostatic pressure reveal a big practical interest and offer an alternative way to tuning of correlated electron-impurity transitions in optoelectronic devices.

  20. Quantum Quench Dynamics in the Transverse Field Ising Model at Non-zero Temperatures

    Science.gov (United States)

    Abeling, Nils; Kehrein, Stefan

    The recently discovered Dynamical Phase Transition denotes non-analytic behavior in the real time evolution of quantum systems in the thermodynamic limit and has been shown to occur in different systems at zero temperature [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. In this talk we present the extension of the analysis to non-zero temperature by studying a generalized form of the Loschmidt echo, the work distribution function, of a quantum quench in the transverse field Ising model. Although the quantitative behavior at non-zero temperatures still displays features derived from the zero temperature non-analyticities, it is shown that in this model dynamical phase transitions do not exist if T > 0 . This is a consequence of the system being initialized in a thermal state. Moreover, we elucidate how the Tasaki-Crooks-Jarzynski relation can be exploited as a symmetry relation for a global quench or to obtain the change of the equilibrium free energy density. This work was supported through CRC SFB 1073 (Project B03) of the Deutsche Forschungsgemeinschaft (DFG).

  1. Lübecki filmipäevad 1999 ja Thomas Manni ekraniseering 1923 / Lauri Kärk

    Index Scriptorium Estoniae

    Kärk, Lauri, 1954-

    1999-01-01

    4.-7. novembrini Lübeckis toimunud Põhjamaade filmipäevade 41. Nordische Filmtage huvitavamatest filmidest, nagu Thomas Manni "Buddenbrookide" ekraniseering 1923. aastast (režissöör Gerhard Lamprecht) ja Rasmus Gerlachi dokumentaal "Operaator Kaufman" Dziga Vertovist ja tema kahest, samuti kino alal tegutsenud vennast

  2. Systematic investigation of the temperature behavior of InAs/InP quantum nanostructure passively mode-locked lasers

    DEFF Research Database (Denmark)

    Klaime, K.; Piron, R.; Grillot, F.

    2013-01-01

    This paper aims to investigate the effects of the temperature on the mode-locking capability of two section InAs/InP quantum nanostructure (QN) passively mode locked lasers. Devices are made with multi-layers of self-assembled InAs QN either grown on InP(100) (5 quantum dashes (QDashes) layers......) or on InP (311)B (6 quantum dots (QDs) layers). Using an analytical model, the mode-locking stability map is extracted for the two types of QN as a function of optical absorption, cavity length, current density and temperature. We believe that this study is of first importance since it reports...... for the first time a systematic investigation of the temperature-dependence on the mode-locking properties of InAs/InP QN devices. Beside, a rigorous comparison between QDashes and QDs temperature dependence is proposed through a proper analysis of the mode-locking stability maps. Experimental results also show...

  3. Eesti muusika päevad - üks kord aastas, kõigile / Jelena Gandshu

    Index Scriptorium Estoniae

    Gandshu, Jelena

    2008-01-01

    Muusikateadlased Jelena Gandshu ja Gerhard Lock, heliloojad Age Hirv ja Liis Jürgens 3.-10. aprillini toimunud Eesti muusika päevade kontsertidest: kinos Sõprus "Sensatsioon!!!", Kultuuritehases Polymer "Cellissimo", Estonia kontserdisaalis ERSO "Sümfoonilised hääled", Tallinna raekojas Mihkel Poll ja Oliver Kuusik, Katariina kirikus PaukenfEst, Nigulistes Jüri Reinvere autorikontsert. Järgneb

  4. Room-Temperature Dephasing in InAs Quantum Dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    2000-01-01

    The room temperature dephasing in InAs/InGaAs/GaAs self-assembled quantum dots, embedded in a waveguide for laser applications, is measured using two independent methods: spectral hole burning and four-wave mixing. Without the application of bias current for electrical carrier injection......, a dephasing time of ~260 fs, weakly dependent on the optical excitation density, is found and attributed to phonon interaction. The application of bias current, leading to population inversion in the dot ground state and optical gain, strongly decreases the dephasing time to less than 50 fs, likely due...

  5. Unconditionally secure commitment in position-based quantum cryptography.

    Science.gov (United States)

    Nadeem, Muhammad

    2014-10-27

    A new commitment scheme based on position-verification and non-local quantum correlations is presented here for the first time in literature. The only credential for unconditional security is the position of committer and non-local correlations generated; neither receiver has any pre-shared data with the committer nor does receiver require trusted and authenticated quantum/classical channels between him and the committer. In the proposed scheme, receiver trusts the commitment only if the scheme itself verifies position of the committer and validates her commitment through non-local quantum correlations in a single round. The position-based commitment scheme bounds committer to reveal valid commitment within allocated time and guarantees that the receiver will not be able to get information about commitment unless committer reveals. The scheme works for the commitment of both bits and qubits and is equally secure against committer/receiver as well as against any third party who may have interests in destroying the commitment. Our proposed scheme is unconditionally secure in general and evades Mayers and Lo-Chau attacks in particular.

  6. Why Do Firms Evade Taxes? The Role of Information Sharing and Financial Sector Outreach

    NARCIS (Netherlands)

    Beck, T.H.L.; Lin, C.; Ma, Y.

    2010-01-01

    Informality is a wide-spread phenomenon across the globe. We show that firms in countries with better information sharing systems and greater financial sector outreach evade taxes to a lesser degree, an effect that is stronger for smaller firms, firms in smaller cities and towns, and firms in

  7. Growth of room temperature ferromagnetic Ge1-xMnx quantum dots on hydrogen passivated Si (100) surfaces

    Science.gov (United States)

    Gastaldo, Daniele; Conta, Gianluca; Coïsson, Marco; Amato, Giampiero; Tiberto, Paola; Allia, Paolo

    2018-05-01

    A method for the synthesis of room-temperature ferromagnetic dilute semiconductor Ge1-xMnx (5 % < x < 8 %) quantum dots by molecular beam epitaxy by selective growth on hydrogen terminated silicon (100) surface is presented. The functionalized substrates, as well as the nanostructures, were characterized in situ by reflection high-energy electron diffraction. The quantum dots density and equivalent radius were extracted from field emission scanning electron microscope pictures, obtained ex-situ. Magnetic characterizations were performed by superconducting quantum interference device vibrating sample magnetometry revealing that ferromagnetic order is maintained up to room temperature: two different ferromagnetic phases were identified by the analysis of the field cooled - zero field cooled measurements.

  8. Quantum cryptography for secure free-space communications

    International Nuclear Information System (INIS)

    Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.; Lamoreaux, S.K.; Luther, G.G.; Morgan, G.L.; Nordholt, J.E.; Peterson, C.G.

    1999-01-01

    The secure distribution of the secret random bit sequences known as key material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is a new technique for secure key distribution with single-photon transmissions: Heisenberg's uncertainty principle ensures that an adversary can neither successfully tap the key transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). The authors have developed experimental quantum cryptography systems based on the transmission of non-orthogonal photon polarization states to generate shared key material over line-of-sight optical links. Key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. The authors have developed and tested a free-space quantum key distribution (QKD) system over an outdoor optical path of ∼1 km at Los Alamos National Laboratory under nighttime conditions. Results show that free-space QKD can provide secure real-time key distribution between parties who have a need to communicate secretly. Finally, they examine the feasibility of surface to satellite QKD

  9. Room-temperature operation of quantum cascade lasers at a wavelength of 5.8 μm

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, A. V. [Connector Optics LLC (Russian Federation); Bousseksou, A. [University Paris Saclay, Institut d’Electronique Fondamentale, UMR 8622 CNRS (France); Pikhtin, N. A.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Nikitina, E. V. [Russian Academy of Sciences, Saint Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation); Sofronov, A. N.; Firsov, D. A.; Vorobjev, L. E. [Peter-the-Great Saint-Petersburg Polytechnic University (Russian Federation); Novikov, I. I.; Karachinsky, L. Ya.; Egorov, A. Yu., E-mail: anton.egorov@connector-optics.com [Connector Optics LLC (Russian Federation)

    2016-10-15

    The room-temperature generation of multiperiod quantum-cascade lasers (QCL) at a wavelength of 5.8 μm in the pulsed mode is demonstrated. The heterostructure of a quantum-cascade laser based on a heterojunction of InGaAs/InAlAs alloys is grown by molecular-beam epitaxy and incorporates 60 identical cascades. The threshold current density of the stripe laser 1.4 mm long and 22 μm wide is ~4.8 kA/cm{sup 2} at a temperature of 303 K. The maximum power of the optical-radiation output from one QCL face, recorded by a detector, is 88 mW. The actual optical-power output from one QCL face is no less than 150 mW. The results obtained and possible ways of optimizing the structure of the developed quantum-cascade lasers are discussed.

  10. Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature.

    Science.gov (United States)

    Liu, Zhi; Cheng, Buwen; Hu, Weixuan; Su, Shaojian; Li, Chuanbo; Wang, Qiming

    2012-07-11

    Four-bilayer Ge quantum dots (QDs) with Si spacers were grown on Si(001) substrates by ultrahigh vacuum chemical vapor deposition. In three samples, all Ge QDs were grown at 520 °C, while Si spacers were grown at various temperatures (520 °C, 550 °C, and 580 °C). Enhancement and redshift of room temperature photoluminescence (PL) were observed from the samples in which Si spacers were grown at a higher temperature. The enhancement of PL is explained by higher effective electrons capturing in the larger size Ge QDs. Quantum confinement of the Ge QDs is responsible for the redshift of PL spectra. The Ge QDs' size and content were investigated by atomic force microscopy and Raman scattering measurements.

  11. Exotic quantum states for charmed baryons at finite temperature

    Directory of Open Access Journals (Sweden)

    Jiaxing Zhao

    2017-12-01

    Full Text Available The significantly screened heavy-quark potential in hot medium provides the possibility to study exotic quantum states of three-heavy-quark systems. By solving the Schrödinger equation for a three-charm-quark system at finite temperature, we found that, there exist Borromean states which might be realized in high energy nuclear collisions, and the binding energies of the system satisfy precisely the scaling law for Efimov states in the resonance limit.

  12. Room-temperature luminescence decay of colloidal semiconductor quantum dots: Nonexponentiality revisited

    Energy Technology Data Exchange (ETDEWEB)

    Bodunov, Evgeny N. [Department of Physics, Petersburg State Transport University, St. Petersburg (Russian Federation); Danilov, Vladimir V. [Department of Physics, Petersburg State Transport University, St. Petersburg (Russian Federation); Vavilov State Optical Institute, St. Petersburg (Russian Federation); Panfutova, Anastasia S. [Vavilov State Optical Institute, St. Petersburg (Russian Federation); Simoes Gamboa, A.L. [Center of Information Optical Technologies, ITMO University, St. Petersburg (Russian Federation)

    2016-04-15

    While time-resolved luminescence spectroscopy is commonly used as a quantitative tool for the analysis of the dynamics of photoexcitation in colloidal semiconductor quantum dots, the interpretation of the virtually ubiquitous nonexponential decay profiles is frequently ambiguous, because the assumption of multiple discrete exponential components with distinct lifetimes for resolving the decays is often arbitrary. Here, an interpretation of the room-temperature luminescence decay of CdSe/ZnS semiconductor quantum dots in colloidal solutions is presented based on the Kohlrausch relaxation function. It is proposed that the decay can be understood by using the concept of Foerster resonance energy transfer (FRET) assuming that the role of acceptors of photoexcitation energy is played by high-frequency anharmonic molecular vibrations in the environment of the quantum dots. The term EVFRET (Electronic - Vibrational Foerster Resonance Energy Transfer) is introduced in order to unequivocally refer to this energy transfer process. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning

    Science.gov (United States)

    Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro

    2016-08-01

    An increase in the efficiency of sampling from Boltzmann distributions would have a significant impact on deep learning and other machine-learning applications. Recently, quantum annealers have been proposed as a potential candidate to speed up this task, but several limitations still bar these state-of-the-art technologies from being used effectively. One of the main limitations is that, while the device may indeed sample from a Boltzmann-like distribution, quantum dynamical arguments suggest it will do so with an instance-dependent effective temperature, different from its physical temperature. Unless this unknown temperature can be unveiled, it might not be possible to effectively use a quantum annealer for Boltzmann sampling. In this work, we propose a strategy to overcome this challenge with a simple effective-temperature estimation algorithm. We provide a systematic study assessing the impact of the effective temperatures in the learning of a special class of a restricted Boltzmann machine embedded on quantum hardware, which can serve as a building block for deep-learning architectures. We also provide a comparison to k -step contrastive divergence (CD-k ) with k up to 100. Although assuming a suitable fixed effective temperature also allows us to outperform one-step contrastive divergence (CD-1), only when using an instance-dependent effective temperature do we find a performance close to that of CD-100 for the case studied here.

  14. Holographic geometry of cMERA for quantum quenches and finite temperature

    International Nuclear Information System (INIS)

    Mollabashi, Ali; Naozaki, Masahiro; Ryu, Shinsei; Takayanagi, Tadashi

    2014-01-01

    We study the time evolution of cMERA (continuous MERA) under quantum quenches in free field theories. We calculate the corresponding holographic metric using the proposal in http://arxiv.org/abs/1208.3469 and confirm that it qualitatively agrees with its gravity dual given by a half of the AdS black hole spacetime, argued by Hartman and Maldacena in http://arxiv.org/abs/1303.1080. By doubling the cMERA for the quantum quench, we give an explicit construction of finite temperature cMERA. We also study cMERA in the presence of chemical potential and show that there is an enhancement of metric in the infrared region corresponding to the Fermi energy

  15. Room-temperature light-emission from Ge quantum dots in photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xia Jinsong [Advanced Research Laboratories, Musashi Institute of Technolgy, 8-15-1 Todoroki, Setagaya-ku, Tokyo 158-0082 (Japan)], E-mail: jxia@sc.musashi-tech.ac.jp; Nemoto, Koudai; Ikegami, Yuta [Advanced Research Laboratories, Musashi Institute of Technolgy, 8-15-1 Todoroki, Setagaya-ku, Tokyo 158-0082 (Japan); Usami, Noritaka [Institute of Materials Research, Tohoku University, 2-2-1 Katahira, Aoba-ku, Sendai Japan (Japan)], E-mail: usa@imr.tohoku.ac.jp; Nakata, Yasushi [Horiba, Ltd., 1-7-8 Higashi-Kanda, Chiyoda-ku, Tokyo 101-0031 (Japan)], E-mail: yasushi.nakata@horiba.com; Shiraki, Yasuhiro [Advanced Research Laboratories, Musashi Institute of Technolgy, 8-15-1 Todoroki, Setagaya-ku, Tokyo 158-0082 (Japan)

    2008-11-03

    Multiple layers of Ge self-assembled quantum dots were embedded into two-dimensional silicon photonic crystal microcavities fabricated on silicon-on-insulator substrates. Microphotoluminescence was used to study the light-emission characteristic of the Ge quantum dots in the microcavities. Strong resonant room-temperature light-emission was observed in the telecommunication wavelength region. Significant enhancement of the luminescence from Ge dots was obtained due to the resonance in the cavities. Multiple sharp resonant peaks dominated the spectrum, showing strong optical resonance inside the cavity. By changing the lattice constant of photonic crystal structure, the wavelengths of the resonant peaks are tuned in the wide wavelength range from 1.2 to 1.6 {mu}m.

  16. Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED

    Science.gov (United States)

    Titkov, Ilya E.; Yadav, Amit; Zerova, Vera L.; Zulonas, Modestas; Tsatsulnikov, Andrey F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Rafailov, Edik U.

    2014-03-01

    Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperature (CCT) in pulsed operation mode and effect of self-heating on device performance.

  17. Bose-Einstein Condensation: Quantum weirdness at the lowest temperature in the universe

    Science.gov (United States)

    Wieman, Carl

    2004-10-01

    In 1924 Einstein predicted that a gas would undergo a dramatic transformation at a sufficiently low temperature (now known as Bose-Einstein condensation or BEC). In 1995, my group was able to observe this transformation by cooling a gas sample to the unprecedented temperature of less than 100 billionths of a degree above absolute zero. The BEC state is a novel form of matter in which a large number of atoms lose their individual identities and behave as a single quantum entity, the ``superatom.'' This entity is the atom analogue to laser light, and, although large enough to be easily seen and manipulated, exhibits the nonintuitive quantum behavior normally important only at much tinier size scales. The study and use of the curious properties of BEC has now become an important subfield of physics. I will discuss how we create BEC and some of the subsequent research we have done on it. Interactive applets as a tool for teaching science will be demonstrated in the presentation.

  18. Quantum and quasi-classical collisional dynamics of O2–Ar at high temperatures

    International Nuclear Information System (INIS)

    Ulusoy, Inga S.; Andrienko, Daniil A.; Boyd, Iain D.; Hernandez, Rigoberto

    2016-01-01

    A hypersonic vehicle traveling at a high speed disrupts the distribution of internal states in the ambient flow and introduces a nonequilibrium distribution in the post-shock conditions. We investigate the vibrational relaxation in diatom-atom collisions in the range of temperatures between 1000 and 10 000 K by comparing results of extensive fully quantum-mechanical and quasi-classical simulations with available experimental data. The present paper simulates the interaction of molecular oxygen with argon as the first step in developing the aerothermodynamics models based on first principles. We devise a routine to standardize such calculations also for other scattering systems. Our results demonstrate very good agreement of vibrational relaxation time, derived from quantum-mechanical calculations with the experimental measurements conducted in shock tube facilities. At the same time, the quasi-classical simulations fail to accurately predict rates of vibrationally inelastic transitions at temperatures lower than 3000 K. This observation and the computational cost of adopted methods suggest that the next generation of high fidelity thermochemical models should be a combination of quantum and quasi-classical approaches.

  19. Temperature and current dependent electroluminescence measurements on colour-coded multiple quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Bergbauer, Werner [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); FH Deggendorf (Germany); Laubsch, Ansgar; Peter, Matthias; Mayer, Tobias; Bader, Stefan; Oberschmid, Raimund; Hahn, Berthold [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); Benstetter, Guenther [FH Deggendorf (Germany)

    2008-07-01

    As the efficiency and the luminous flux have been increased enormously in the last few years, today Light Emitting Diodes (LEDs) are even pushed to applications like general lighting and Home Cinema Projection. Still, InGaN/GaN heterostructure based LEDs suffer from loss-mechanisms like non-radiative defect and Auger recombination, carrier leakage and piezo-field induced carrier separation. To optimize the high current efficiency we evaluated the benefit of Multiple Quantum Well (MQW) compared to Single Quantum Well (SQW) LEDs. Temperature dependent electroluminescence of colour-coded structures with different Indium content in certain Quantum Wells was measured. The experiments demonstrated a strong temperature and current dependence of the MQW operation. The comparison between different LED structures showed effectively the increased LED performance of those structures which operate with a well adjusted MQW active area. Due to the enhanced carrier distribution in the high current range, these LEDs show a higher light output and additionally a reduced wavelength shift.

  20. Temperature and current dependent electroluminescence measurements on colour-coded multiple quantum well light emitting diodes

    International Nuclear Information System (INIS)

    Bergbauer, Werner; Laubsch, Ansgar; Peter, Matthias; Mayer, Tobias; Bader, Stefan; Oberschmid, Raimund; Hahn, Berthold; Benstetter, Guenther

    2008-01-01

    As the efficiency and the luminous flux have been increased enormously in the last few years, today Light Emitting Diodes (LEDs) are even pushed to applications like general lighting and Home Cinema Projection. Still, InGaN/GaN heterostructure based LEDs suffer from loss-mechanisms like non-radiative defect and Auger recombination, carrier leakage and piezo-field induced carrier separation. To optimize the high current efficiency we evaluated the benefit of Multiple Quantum Well (MQW) compared to Single Quantum Well (SQW) LEDs. Temperature dependent electroluminescence of colour-coded structures with different Indium content in certain Quantum Wells was measured. The experiments demonstrated a strong temperature and current dependence of the MQW operation. The comparison between different LED structures showed effectively the increased LED performance of those structures which operate with a well adjusted MQW active area. Due to the enhanced carrier distribution in the high current range, these LEDs show a higher light output and additionally a reduced wavelength shift

  1. Influences of temperature on asymmetric quantum dot qubit in Coulombic impunity potential

    Science.gov (United States)

    Chen, Y.-J.; Song, H.-T.; Xiao, J.-L.

    2018-05-01

    Using the variational method of the Pekar-type, we study the influences of the temperature on the asymmetric quantum dot (QD) qubit in the Coulombic impunity potential. Then we derive the numerical results and formulate the derivative relationships of the electron probability density and the electron oscillation period in the superposition state of the ground state and the first-excited state with the electron-phonon coupling constant, the Coulombic impurity potential, the transverse and longitudinal confinement strengths at different temperatures, respectively.

  2. Quantum and classical vacuum forces at zero and finite temperature; Quantentheoretische und klassische Vakuum-Kraefte bei Temperatur Null und bei endlicher Temperatur

    Energy Technology Data Exchange (ETDEWEB)

    Niekerken, Ole

    2009-06-15

    In this diploma thesis the Casimir-Polder force at zero temperature and at finite temperatures is calculated by using a well-defined quantum field theory (formulated in position space) and the method of image charges. For the calculations at finite temperature KMS-states are used. The so defined temperature describes the temperature of the electromagnetic background. A one oscillator model for inhomogeneous dispersive absorbing dielectric material is introduced and canonically quantized to calculate the Casimir-Polder force at a dielectric interface at finite temperature. The model fulfils causal commutation relations and the dielectric function of the model fulfils the Kramer-Kronig relations. We then use the same methods to calculate the van der Waals force between two neutral atoms at zero temperature and at finite temperatures. It is shown that the high temperature behaviour of the Casimir-Polder force and the van der Waals force are independent of {Dirac_h}. This means that they have to be understood classically, what is then shown in an algebraic statistical theory by using classical KMS states. (orig.)

  3. Temperature dependence of photoluminescence from submonolayer deposited InGaAs/GaAs quantum dots

    DEFF Research Database (Denmark)

    Xu, Zhangcheng; Leosson, K.; Birkedal, Dan

    2002-01-01

    The temperature dependence of photoluminescence (PL) from self-assembled InGaAs quantum dots (QD's) grown by submonolayer deposition mode (non-SK mode), is investigated. It is found that the PL spectra are dominated by the ground-state transitions at low temperatures, but increasingly...... by the excited-state transitions at higher temperatures. The emission linewidth of the ground-state transitions of QDs ensembles first decreases and then increases with the increase of temperature, which results from the carrier transfer between dots via barrier states....

  4. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.

    Science.gov (United States)

    Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev

    2016-06-27

    We demonstrate the possibility of room-temperature, thermal equilibrium Bose-Einstein condensation (BEC) of exciton-polaritons in a multiple quantum well (QW) system composed of InGaAs quantum wells surrounded by InP barriers, allowing for the emission of light near telecommunication wavelengths. The QWs are embedded in a cavity consisting of double slanted pore (SP2) photonic crystals composed of InP. We consider exciton-polaritons that result from the strong coupling between the multiple quantum well excitons and photons in the lowest planar guided mode within the photonic band gap (PBG) of the photonic crystal cavity. The collective coupling of three QWs results in a vacuum Rabi splitting of 3% of the bare exciton recombination energy. Due to the full three-dimensional PBG exhibited by the SP2 photonic crystal (16% gap to mid-gap frequency ratio), the radiative decay of polaritons is eliminated in all directions. Due to the short exciton-phonon scattering time in InGaAs quantum wells of 0.5 ps and the exciton non-radiative decay time of 200 ps at room temperature, polaritons can achieve thermal equilibrium with the host lattice to form an equilibrium BEC. Using a SP2 photonic crystal with a lattice constant of a = 516 nm, a unit cell height of 2a=730nm and a pore radius of 0.305a = 157 nm, light in the lowest planar guided mode is strongly localized in the central slab layer. The central slab layer consists of 3 nm InGaAs quantum wells with 7 nm InP barriers, in which excitons have a recombination energy of 0.944 eV, a binding energy of 7 meV and a Bohr radius of aB = 10 nm. We take the exciton recombination energy to be detuned 35 meV above the lowest guided photonic mode so that an exciton-polariton has a photonic fraction of approximately 97% per QW. This increases the energy range of small-effective-mass photonlike states and increases the critical temperature for the onset of a Bose-Einstein condensate. With three quantum wells in the central slab layer

  5. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    Science.gov (United States)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical

  6. Boundary entropy of one-dimensional quantum systems at low temperature

    International Nuclear Information System (INIS)

    Friedan, Daniel; Konechny, Anatoly

    2004-01-01

    The boundary β function generates the renormalization group acting on the universality classes of one-dimensional quantum systems with boundary which are critical in the bulk but not critical at the boundary. We prove a gradient formula for the boundary β function, expressing it as the gradient of the boundary entropy s at fixed nonzero temperature. The gradient formula implies that s decreases under renormalization, except at critical points (where it stays constant). At a critical point, the number exp(s) is the 'ground-state degeneracy', g, of Affleck and Ludwig, so we have proved their long-standing conjecture that g decreases under renormalization, from critical point to critical point. The gradient formula also implies that s decreases with temperature, except at critical points, where it is independent of temperature. It remains open whether the boundary entropy is always bounded below

  7. Luminescent N-polar (In,Ga)N/GaN quantum wells achieved by plasma-assisted molecular beam epitaxy at temperatures exceeding 700 °C

    Science.gov (United States)

    Chèze, C.; Feix, F.; Lähnemann, J.; Flissikowski, T.; Kryśko, M.; Wolny, P.; Turski, H.; Skierbiszewski, C.; Brandt, O.

    2018-01-01

    Previously, we found that N-polar (In,Ga)N/GaN quantum wells prepared on freestanding GaN substrates by plasma-assisted molecular beam epitaxy at conventional growth temperatures of about 650 °C do not exhibit any detectable luminescence even at 10 K. In the present work, we investigate (In,Ga)N/GaN quantum wells grown on Ga- and N-polar GaN substrates at a constant temperature of 730 °C . This exceptionally high temperature results in a vanishing In incorporation for the Ga-polar sample. In contrast, quantum wells with an In content of 20% and abrupt interfaces are formed on N-polar GaN. Moreover, these quantum wells exhibit a spatially uniform green luminescence band up to room temperature, but the intensity of this band is observed to strongly quench with temperature. Temperature-dependent photoluminescence transients show that this thermal quenching is related to a high density of nonradiative Shockley-Read-Hall centers with large capture coefficients for electrons and holes.

  8. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  9. Geometric control theory for quantum back-action evasion

    Energy Technology Data Exchange (ETDEWEB)

    Yokotera, Yu; Yamamoto, Naoki [Keio University, Department of Applied Physics and Physico-Informatics, Yokohama (Japan)

    2016-12-15

    Engineering a sensor system for detecting an extremely tiny signal such as the gravitational-wave force is a very important subject in quantum physics. A major obstacle to this goal is that, in a simple detection setup, the measurement noise is lower bounded by the so-called standard quantum limit (SQL), which is originated from the intrinsic mechanical back-action noise. Hence, the sensor system has to be carefully engineered so that it evades the back-action noise and eventually beats the SQL. In this paper, based on the well-developed geometric control theory for classical disturbance decoupling problem, we provide a general method for designing an auxiliary (coherent feedback or direct interaction) controller for the sensor system to achieve the above-mentioned goal. This general theory is applied to a typical opto-mechanical sensor system. Also, we demonstrate a controller design for a practical situation where several experimental imperfections are present. (orig.)

  10. Geometric control theory for quantum back-action evasion

    International Nuclear Information System (INIS)

    Yokotera, Yu; Yamamoto, Naoki

    2016-01-01

    Engineering a sensor system for detecting an extremely tiny signal such as the gravitational-wave force is a very important subject in quantum physics. A major obstacle to this goal is that, in a simple detection setup, the measurement noise is lower bounded by the so-called standard quantum limit (SQL), which is originated from the intrinsic mechanical back-action noise. Hence, the sensor system has to be carefully engineered so that it evades the back-action noise and eventually beats the SQL. In this paper, based on the well-developed geometric control theory for classical disturbance decoupling problem, we provide a general method for designing an auxiliary (coherent feedback or direct interaction) controller for the sensor system to achieve the above-mentioned goal. This general theory is applied to a typical opto-mechanical sensor system. Also, we demonstrate a controller design for a practical situation where several experimental imperfections are present. (orig.)

  11. Temperature Dependence of Emission Properties of Self-Assembled InGaN Quantum Dots

    International Nuclear Information System (INIS)

    Zhao Wan-Ru; Zhang Jiang-Yong; Zhang Bao-Ping; Weng Guo-En; Liang Ming-Ming; Li Zeng-Cheng; Liu Jian-Ping

    2014-01-01

    Emission properties of self-assembled green-emitting InGaN quantum dots (QDs) grown on sapphire substrates by using metal organic chemical vapor deposition are studied by temperature-dependent photoluminescence (PL) measurements. As temperature increases (15–300 K), the PL peak energy shows an anomalous V-shaped (redshift—blueshift) variation instead of an S-shaped (redshift—blueshift—redshift) variation, as observed typically in green-emitting InGaN/GaN multi-quantum wells (MQWs). The PL full width at half maximum (FWHM) also shows a V-shaped (decrease—increase) variation. The temperature dependence of the PL peak energy and FWHM of QDs are well explained by a model similar to MQWs, in which carriers transferring in localized states play an important role, while the confinement energy of localized states in the QDs is significantly larger than that in MQWs. By analyzing the integrated PL intensity, the larger confinement energy of localized states in the QDs is estimated to be 105.9 meV, which is well explained by taking into account the band-gap shrinkage and carrier thermalization with temperature. It is also found that the nonradiative combination centers in QD samples are much less than those in QW samples with the same In content

  12. Quantum Nanostructures by Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2009-02-01

    Full Text Available Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C. Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic strain gives rise to quantum rings with square holes and non-uniform ring stripe. Regrowth of quantum dots on these anisotropic quantum rings, Quadra-Quantum Dots (QQDs could be realized. Potential applications of these quantum nanostructures are also discussed.

  13. Temperature dependent transport of two dimensional electrons in the integral quantum Hall regime

    International Nuclear Information System (INIS)

    Wi, H.P.

    1986-01-01

    This thesis is concerned with the temperature dependent electronic transport properties of a two dimensional electron gas subject to background potential fluctuations and a perpendicular magnetic field. The author carried out an extensive temperature dependent study of the transport coefficients, in the region of an integral quantum plateau, in an In/sub x/Ga/sub 1-x/As/InP heterostructure for 4.2K 10 cm -2 meV -1 ) even at the middle between two Landau levels, which is unexpected from model calculations based on short ranged randomness. In addition, the different T dependent behavior of rho/sub xx/ between the states in the tails and those near the center of a Landau level, indicates the existence of different electron states in a Landau level. Additionally, the author reports T-dependent transport measurements in the transition region between two quantum plateaus in several different materials

  14. Compositional disordering of GaAs/AlGaAs multiple quantum wells using ion bombardment at elevated temperatures

    International Nuclear Information System (INIS)

    Anderson, K.K.; Donnelly, J.P.; Wang, C.A.; Woodhouse, J.D.; Haus, H.A.

    1988-01-01

    A new method has been developed for compositional mixing of heterostructures by ion bombardment at elevated temperatures. Complete mixing of a 1-μm-thick GaAs/AlGaAs 40-period multiple quantum well layer has been achieved by bombardment with 380 keV Ne + ions for 1 h with the sample at 700 0 C. This temperature is much lower than the annealing temperatures used in other vacancy-enhanced disordering techniques, and even lower temperatures and shorter durations should be possible. Compositional disordering is verified by sputter-profile Auger electron spectroscopy and transmission electron microscopy. Complete mixing is also demonstrated by optical transmission spectra of the disordered material, which exhibit the same band edge as a uniform alloy with the average aluminum mole fraction of the multiple quantum well layer

  15. High-resolution hard x-ray spectroscopy of high-temperature plasmas using an array of quantum microcalorimeters.

    Science.gov (United States)

    Thorn, Daniel B; Gu, Ming F; Brown, Greg V; Beiersdorfer, Peter; Porter, F Scott; Kilbourne, Caroline A; Kelley, Richard L

    2008-10-01

    Quantum microcalorimeters show promise in being able to fully resolve x-ray spectra from heavy highly charged ions, such as would be found in hot plasmas with temperatures in excess of 50 keV. Quantum microcalorimeter arrays are able to achieve this as they have a high-resolving power and good effective quantum efficiency for hard x-ray photons up to 60 keV. To demonstrate this, we present a measurement using an array of thin HgTe quantum microcalorimeters to measure the K-shell spectrum of hydrogenlike through carbonlike praseodymium (Z=57). With this device we are able to attain a resolving power, E/DeltaE, of 1000 at a photon energy of 37 keV.

  16. Improvement of temperature-stability in a quantum well laser with asymmetric barrier layers

    DEFF Research Database (Denmark)

    Zhukov, Alexey E.; Kryzhanovskaya, Natalia V.; Zubov, Fedor I.

    2012-01-01

    We fabricated and tested a quantum well laser with asymmetric barrier layers. Such a laser has been proposed earlier to suppress bipolar carrier population in the optical confinement layer and thus to improve temperature-stability of the threshold current. As compared to the conventional reference...

  17. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Saniya; Frost, Thomas; Hazari, Arnab; Bhattacharya, Pallab, E-mail: pkb@eecs.umich.edu [Center for Photonics and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109 (United States)

    2014-10-06

    We demonstrate a semiconductor quantum dot based electrically pumped single-photon source operating at room temperature. Single photons emitted in the red spectral range from single In{sub 0.4}Ga{sub 0.6}N/GaN quantum dots exhibit a second-order correlation value g{sup (2)}(0) of 0.29, and fast recombination lifetime ∼1.3 ±0.3 ns at room temperature. The single-photon source can be driven at an excitation repetition rate of 200 MHz.

  18. Temperature dependent empirical pseudopotential theory for self-assembled quantum dots.

    Science.gov (United States)

    Wang, Jianping; Gong, Ming; Guo, Guang-Can; He, Lixin

    2012-11-28

    We develop a temperature dependent empirical pseudopotential theory to study the electronic and optical properties of self-assembled quantum dots (QDs) at finite temperature. The theory takes the effects of both lattice expansion and lattice vibration into account. We apply the theory to InAs/GaAs QDs. For the unstrained InAs/GaAs heterostructure, the conduction band offset increases whereas the valence band offset decreases with increasing temperature, and there is a type-I to type-II transition at approximately 135 K. Yet, for InAs/GaAs QDs, the holes are still localized in the QDs even at room temperature, because the large lattice mismatch between InAs and GaAs greatly enhances the valence band offset. The single-particle energy levels in the QDs show a strong temperature dependence due to the change of confinement potentials. Because of the changes of the band offsets, the electron wavefunctions confined in QDs increase by about 1-5%, whereas the hole wavefunctions decrease by about 30-40% when the temperature increases from 0 to 300 K. The calculated recombination energies of excitons, biexcitons and charged excitons show red shifts with increasing temperature which are in excellent agreement with available experimental data.

  19. Nonequilibrium quantum mechanics: A "hot quantum soup" of paramagnons

    Science.gov (United States)

    Scammell, H. D.; Sushkov, O. P.

    2017-01-01

    Motivated by recent measurements of the lifetime (decay width) of paramagnons in quantum antiferromagnet TlCuCl3, we investigate paramagnon decay in a heat bath and formulate an appropriate quantum theory. Our formulation can be split into two regimes: (i) a nonperturbative, "hot quantum soup" regime where the paramagnon width is comparable to its energy; (ii) a usual perturbative regime where the paramagnon width is significantly lower than its energy. Close to the Neel temperature, the paramagnon width becomes comparable to its energy and falls into the hot quantum soup regime. To describe this regime, we develop a new finite frequency, finite temperature technique for a nonlinear quantum field theory; the "golden rule of quantum kinetics." The formulation is generic and applicable to any three-dimensional quantum antiferromagnet in the vicinity of a quantum critical point. Specifically, we apply our results to TlCuCl3 and find agreement with experimental data. Additionally, we show that logarithmic running of the coupling constant in the upper critical dimension changes the commonly accepted picture of the quantum disordered and quantum critical regimes.

  20. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    Science.gov (United States)

    Nguyen, H. S.; Han, Z.; Abdel-Baki, K.; Lafosse, X.; Amo, A.; Lauret, J.-S.; Deleporte, E.; Bouchoule, S.; Bloch, J.

    2014-02-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  1. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    International Nuclear Information System (INIS)

    Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Han, Z.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.

    2014-01-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature

  2. Quantum and quasi-classical collisional dynamics of O{sub 2}–Ar at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ulusoy, Inga S. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 (United States); Andrienko, Daniil A.; Boyd, Iain D. [Nonequilibrium Gas and Plasma Dynamics Laboratory, Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109-2140 (United States); Hernandez, Rigoberto, E-mail: hernandez@gatech.edu [Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 (United States)

    2016-06-21

    A hypersonic vehicle traveling at a high speed disrupts the distribution of internal states in the ambient flow and introduces a nonequilibrium distribution in the post-shock conditions. We investigate the vibrational relaxation in diatom-atom collisions in the range of temperatures between 1000 and 10 000 K by comparing results of extensive fully quantum-mechanical and quasi-classical simulations with available experimental data. The present paper simulates the interaction of molecular oxygen with argon as the first step in developing the aerothermodynamics models based on first principles. We devise a routine to standardize such calculations also for other scattering systems. Our results demonstrate very good agreement of vibrational relaxation time, derived from quantum-mechanical calculations with the experimental measurements conducted in shock tube facilities. At the same time, the quasi-classical simulations fail to accurately predict rates of vibrationally inelastic transitions at temperatures lower than 3000 K. This observation and the computational cost of adopted methods suggest that the next generation of high fidelity thermochemical models should be a combination of quantum and quasi-classical approaches.

  3. Testing the ability of viral haemorrhagic septicaemia virus to evade the protective immune response induced in rainbow trout by DNA vaccination

    DEFF Research Database (Denmark)

    Sepulveda, Dagoberto; Lorenzen, Niels

    2013-01-01

    , this work aims to evaluate whether VHSV is able to evade the protective immune response induced by the DNA vaccination. Earlier studies have demonstrated that VHSV can evade the neutralizing effect of monoclonal antibodies by mutations in the glycoprotein gene. One approach of the present study is therefore...... to try to isolate VHSV variants which can escape the neutralizing activity of serum from fish immunized with the DNA vaccine. To do so, a highly pathogenic VHSV isolate (DK3592B) will be repeatedly passaged in fish cell cultures in the presence of neutralizing fish serum. Another approach comprises...

  4. The influence of carrier dynamics on double-state lasing in quantum dot lasers at variable temperature

    Science.gov (United States)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2014-12-01

    It is shown in analytical form that the carrier capture from the matrix as well as carrier dynamics in quantum dots plays an important role in double-state lasing phenomenon. In particular, the de-synchronization of hole and electron captures allows one to describe recently observed quenching of ground-state lasing, which takes place in quantum dot lasers operating in double-state lasing regime at high injection. From the other side, the detailed analysis of charge carrier dynamics in the single quantum dot enables one to describe the observed light-current characteristics and key temperature dependences.

  5. The influence of carrier dynamics on double-state lasing in quantum dot lasers at variable temperature

    International Nuclear Information System (INIS)

    Korenev, V V; Savelyev, A V; Zhukov, A E; Omelchenko, A V; Maximov, M V

    2014-01-01

    It is shown in analytical form that the carrier capture from the matrix as well as carrier dynamics in quantum dots plays an important role in double-state lasing phenomenon. In particular, the de-synchronization of hole and electron captures allows one to describe recently observed quenching of ground-state lasing, which takes place in quantum dot lasers operating in double-state lasing regime at high injection. From the other side, the detailed analysis of charge carrier dynamics in the single quantum dot enables one to describe the observed light-current characteristics and key temperature dependences

  6. Spin Squeezing and Entanglement with Room Temperature Atoms for Quantum Sensing and Communication

    DEFF Research Database (Denmark)

    Shen, Heng

    magnetometer at room temperature is reported. Furthermore, using spin-squeezing of atomic ensemble, the sensitivity of magnetometer is improved. Deterministic continuous variable teleportation between two distant atomic ensembles is demonstrated. The fidelity of teleportating dynamically changing sequence...... of spin states surpasses a classical benchmark, demonstrating the true quantum teleportation....

  7. Room temperature PL efficiency of InGaN/GaN quantum well structures with prelayers as a function of number of quantum wells

    International Nuclear Information System (INIS)

    Christian, George M.; Hammersley, Simon; Davies, Matthew J.; Dawson, Philip; Kappers, Menno J.; Massabuau, Fabien C.P.; Oliver, Rachel A.; Humphreys, Colin J.

    2016-01-01

    We report on the effects of varying the number of quantum wells (QWs) in an InGaN/GaN multiple QW (MQW) structure containing a 23 nm thick In0.05Ga0.95N prelayer doped with Si. The calculated conduction and valence bands for the structures show an increasing total electric field across the QWs with increasing number of QWs. This is due to the reduced strength of the surface polarisation field, which opposes the built-in field across the QWs, as its range is increased over thicker samples. Low temperature photoluminescence (PL) measurements show a red shifted QW emission peak energy, which is attributed to the enhanced quantum confined Stark effect with increasing total field strength across the QWs. Low temperature PL time decay measurements and room temperature internal quantum efficiency (IQE) measurements show decreasing radiative recombination rates and decreasing IQE, respectively, with increasing number of QWs. These are attributed to the increased spatial separation of the electron and hole wavefunctions, consistent with the calculated band profiles. It is also shown that, for samples with fewer QWs, the reduction of the total field across the QWs makes the radiative recombination rate sufficiently fast that it is competitive with the efficiency losses associated with the thermal escape of carriers. (copyright 2016 The Authors. Phys. Status Solidi C published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Temperature-Dependent Mollow Triplet Spectra from a Single Quantum Dot: Rabi Frequency Renormalization and Sideband Linewidth Insensitivity

    DEFF Research Database (Denmark)

    Wei, Yu-Jia; He, Yu; He, Yu-Ming

    2014-01-01

    We investigate temperature-dependent resonance fluorescence spectra obtained from a single self- assembled quantum dot. A decrease of the Mollow triplet sideband splitting is observed with increasing temperature, an effect we attribute to a phonon-induced renormalization of the driven dot Rabi fr...

  9. QUANTUM AND CLASSICAL CORRELATIONS IN GAUSSIAN OPEN QUANTUM SYSTEMS

    Directory of Open Access Journals (Sweden)

    Aurelian ISAR

    2015-01-01

    Full Text Available In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum correlations (quantum entanglement and quantum discord for a system consisting of two noninteracting bosonic modes embedded in a thermal environment. We solve the Kossakowski-Lindblad master equation for the time evolution of the considered system and describe the entanglement and discord in terms of the covariance matrix for Gaussian input states. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. We study the time evolution of logarithmic negativity, which characterizes the degree of entanglement, and show that in the case of an entangled initial squeezed thermal state, entanglement suppression takes place for all temperatures of the environment, including zero temperature. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that it decays asymptotically in time under the effect of the thermal bath. This is in contrast with the sudden death of entanglement. Before the suppression of the entanglement, the qualitative evolution of quantum discord is very similar to that of the entanglement. We describe also the time evolution of the degree of classical correlations and of quantum mutual information, which measures the total correlations of the quantum system.

  10. Quantum Nanostructures by Droplet Epitaxy

    OpenAIRE

    Somsak Panyakeow

    2009-01-01

    Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C). Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic...

  11. Room temperature negative differential resistance in terahertz quantum cascade laser structures

    Energy Technology Data Exchange (ETDEWEB)

    Albo, Asaf, E-mail: asafalbo@gmail.com; Hu, Qing [Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Reno, John L. [Center for Integrated Nanotechnologies, Sandia National Laboratories, MS 1303, Albuquerque, New Mexico 87185-1303 (United States)

    2016-08-22

    The mechanisms that limit the temperature performance of GaAs/Al{sub 0.15}GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding, we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. This result is a strong evidence for the effective suppression of the aforementioned leakage channel.

  12. Quantum Gravity Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Gu Je-An

    2018-01-01

    Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.

  13. Quantum phase transitions

    International Nuclear Information System (INIS)

    Sachdev, S.

    1999-01-01

    Phase transitions are normally associated with changes of temperature but a new type of transition - caused by quantum fluctuations near absolute zero - is possible, and can tell us more about the properties of a wide range of systems in condensed-matter physics. Nature abounds with phase transitions. The boiling and freezing of water are everyday examples of phase transitions, as are more exotic processes such as superconductivity and superfluidity. The universe itself is thought to have passed through several phase transitions as the high-temperature plasma formed by the big bang cooled to form the world as we know it today. Phase transitions are traditionally classified as first or second order. In first-order transitions the two phases co-exist at the transition temperature - e.g. ice and water at 0 deg., or water and steam at 100 deg. In second-order transitions the two phases do not co-exist. In the last decade, attention has focused on phase transitions that are qualitatively different from the examples noted above: these are quantum phase transitions and they occur only at the absolute zero of temperature. The transition takes place at the ''quantum critical'' value of some other parameter such as pressure, composition or magnetic field strength. A quantum phase transition takes place when co-operative ordering of the system disappears, but this loss of order is driven solely by the quantum fluctuations demanded by Heisenberg's uncertainty principle. The physical properties of these quantum fluctuations are quite distinct from those of the thermal fluctuations responsible for traditional, finite-temperature phase transitions. In particular, the quantum system is described by a complex-valued wavefunction, and the dynamics of its phase near the quantum critical point requires novel theories that have no analogue in the traditional framework of phase transitions. In this article the author describes the history of quantum phase transitions. (UK)

  14. Constructiveness and destructiveness of temperature in asymmetric quantum pseudo dot qubit system

    Science.gov (United States)

    Chen, Ying-Jie; Song, Hai-Tao; Xiao, Jing-Lin

    2018-06-01

    By using the variational method of the Pekar type, we theoretically study the temperature effects on the asymmetric quantum pseudo dot qubit with a pseudoharmonic potential under an electromagnetic field. The numerical results are analyzed and discussed in detail and show that the relationships of the ground and first excited state energies, the electron oscillation period and the electron probability density in the superposition state of the ground state and the first-excited state with the temperature, the chemical potential, the pseudoharmonic potential, the electric field strength, the cyclotron frequency, the electron phonon coupling constant, the transverse and longitudinal effective confinement length, respectively.

  15. Coherent control of diamond defects for quantum information science and quantum sensing

    Science.gov (United States)

    Maurer, Peter

    Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. Nitrogen Vacancy (NV) color centers in diamond have recently attracted attention as a room temperature solid state spin system that expresses long coherence times. The electronic spin associated with NV centers can be efficiently manipulated, initialized and readout using microwave and optical techniques. Inspired by these extraordinary properties, much effort has been dedicated to use NV centers as a building block for scalable room temperature quantum information processing and quantum communication as well as a quantum sensing. In the first part of this thesis we demonstrate that by decoupling the spin from the local environment the coherence time of a NV quantum register can be extended by three order of magnitudes. Employing a novel dissipative mechanism in combination with dynamical decoupling, memory times exceeding one second are observed. The second part shows that, based on quantum control, NV centers in nano-diamonds provide a nanoscale temperature sensor with unprecedented accuracy enabling local temperature measurements in living biological cells

  16. Towards the unified non-classical physics: account for quantum fluctuations in equilibrium thermodynamics via the effective temperature

    Directory of Open Access Journals (Sweden)

    Yu.G.Rudoy

    2005-01-01

    Full Text Available The concept of effective temperature (ET T*(T0, T is used in order to approximately "quantize" the thermodynamic functions of the dynamical object which is in the thermal equilibrium with thermal bath being at constant temperature T (T0=E0/kB, where E0 is the ground-state energy, kB - Boltzmann constant, is the characteristic ``quantum'' temperature of the system itself. On these grounds the extensive comparative investigation is carried out for the ``standard model'' of statistical mechanics - the one-dimensional harmonic oscillator (HO. Three well-known approaches are considered and their thermodynamic consequences thoroughly studied. These are: the exact quantum, or non-classical Planck-Einstein approach, intermediate, or semiclassical Bloch-Wigner approach and, finally, the pure classical, or Maxwell-Boltzmann approach.

  17. Effect of quantum lattice fluctuations on quantum coherent oscillations in a coherently driven quantum dot-cavity system

    International Nuclear Information System (INIS)

    Zhu, Ka-Di; Li, Wai-Sang

    2003-01-01

    The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly

  18. 1.5 μm InAs/InGaAsP/InP quantum dot laser with improved temperature stability

    DEFF Research Database (Denmark)

    Zubov, F. I.; Gladii, S. P.; Shernyakov, Yu M.

    2016-01-01

    Temperature characteristics of InAs/InGaAsP quantum dot (QD) lasers synthesized on InP (001) substrate are presented. The lasers demonstrate high temperature stability: a threshold current characteristic temperature as high as 205 K in the temperature range between 20 to 50°C was measured. Lasing...

  19. Temperature dependent admittance spectroscopy of GaAs/AlGaAs single-quantum-well laser diodes (SQWLDs)

    International Nuclear Information System (INIS)

    Bengi, A.; Uslu, H.; Asar, T.; Altindal, S.; Cetin, S.S.; Mammadov, T.S.; Ozcelik, S.

    2011-01-01

    Research highlights: → It is well known the quantum-well (QW) lasers are the most important optoelectronic devices in many application fields. The temperature dependent I-V and C-V measurements allow us to understand the different aspects of conduction mechanisms of these devices. The C-V and G/ω-V measurements should be done over a wide range of temperature in order to have a better understanding of the nature of barrier height and conduction mechanisms. Therefore, in this study, the main electrical parameters of GaAs/Al x Ga 1-x As single quantum well (SQW) laser diodes were determined from the admittance spectroscopy C-V and G/ω-V method in the temperature range of 80-360 K. In addition, the capacitance and conductance values measured under both reverse and forward bias were corrected in order to eliminate the effect of R s to obtain the real diode capacitance. - Abstract: In this study, the main electrical parameters, such as doping concentration (N D ), barrier height (Φ CV ), depletion layer width (W D ), series resistance (R s ) and Fermi energy level (E F ), of GaAs/Al x Ga 1-x As single quantum well (SQW) laser diodes were investigated using the admittance spectroscopy (C-V and G/ω-V) method in the temperature range of 80-360 K. The reverse bias C -2 vs. V plots gives a straight line in a wide voltage region, especially in weak inversion region. The values of Φ CV at the absolute temperature (T = 0 K) and the temperature coefficient (α) of barrier height were found as 1.22 eV and -8.65 x 10 -4 eV/K, respectively. This value of α is in a close agreement with α of GaAs band gap (-5.45 x 10 -4 eV/K). Experimental results show that the capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of the diode are affected by not only temperature but also R s . The capacitance-voltage-temperature (C-V-T) and conductance-voltage-temperature (G/ω-V-T) characteristics confirmed that temperature and R s of the diode have effects on the

  20. Temperature and magnetic field effect on oscillations observed in GaInNAs/GaAs multiple quantum wells structures

    International Nuclear Information System (INIS)

    Khalil, H.M.; Mazzucato, S.; Ardali, S.; Celik, O.; Mutlu, S.; Royall, B.; Tiras, E.; Balkan, N.; Puustinen, J.; Korpijärvi, V.-M.; Guina, M.

    2012-01-01

    Highlights: ► We studied p-i-n GaInNAs MQW devices as function of temperature and magnetic field. ► Observed oscillations in the sample current–voltage curves at low temperature. ► Shift in oscillation position with magnetic field described by Landau level split. ► Resonant tunnelling and thermionic emission used to describe oscillations. - Abstract: The photoconductivity of p-i-n GaInNAs/GaAs multiple quantum well (MQW) mesa structures is investigated. When illuminated with photons at energy greater than the GaAs bandgap, a number of oscillations are observed in the current–voltage I–V characteristics. The amplitude and position of the oscillations is shown to depend upon the temperature, as well as upon the exciting wavelength and intensity. Due to the absence of the oscillations in the dark I–V and at temperatures above T = 200 K, we explain them in terms of photogenerated electrons escaping from quantum wells via tunnelling or thermionic emission. Magnetic fields up to B = 11 T were applied parallel to the planes of the QWs. A small voltage shift in the position of the oscillations was observed, proportional to the magnetic field intensity and dependent upon the temperature. Calculation of the Landau level energy separation (16 meV) agrees with the observed experimental data. Magneto-tunnelling spectroscopy probes in detail the nature of band- or impurity-like states responsible for resonances in first and second subbands, observing the I–V plot in dark condition and under illumination. The field-dependence of the amplitude of the oscillation peaks in I–V has the characteristic form of a quantum mechanical admixing effect. This enhancement is also probably due to the hole recombination with majority electrons tunnelling in the N-related states of the quantum wells.

  1. Temperature and magnetic field effect on oscillations observed in GaInNAs/GaAs multiple quantum wells structures

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, H.M., E-mail: hkhalia@essex.ac.uk [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Mazzucato, S. [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Ardali, S.; Celik, O.; Mutlu, S. [Anadolu University, Faculty of Science, Department of Physics, Yunus Emre Campus 26470, Eskisehir (Turkey); Royall, B. [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Tiras, E. [Anadolu University, Faculty of Science, Department of Physics, Yunus Emre Campus 26470, Eskisehir (Turkey); Balkan, N. [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Puustinen, J.; Korpijaervi, V.-M.; Guina, M. [Optoelectronics Research Centre, Tampere University of Technology, Korkeakoulunkatu 10, FI-33720 Tampere (Finland)

    2012-06-05

    Highlights: Black-Right-Pointing-Pointer We studied p-i-n GaInNAs MQW devices as function of temperature and magnetic field. Black-Right-Pointing-Pointer Observed oscillations in the sample current-voltage curves at low temperature. Black-Right-Pointing-Pointer Shift in oscillation position with magnetic field described by Landau level split. Black-Right-Pointing-Pointer Resonant tunnelling and thermionic emission used to describe oscillations. - Abstract: The photoconductivity of p-i-n GaInNAs/GaAs multiple quantum well (MQW) mesa structures is investigated. When illuminated with photons at energy greater than the GaAs bandgap, a number of oscillations are observed in the current-voltage I-V characteristics. The amplitude and position of the oscillations is shown to depend upon the temperature, as well as upon the exciting wavelength and intensity. Due to the absence of the oscillations in the dark I-V and at temperatures above T = 200 K, we explain them in terms of photogenerated electrons escaping from quantum wells via tunnelling or thermionic emission. Magnetic fields up to B = 11 T were applied parallel to the planes of the QWs. A small voltage shift in the position of the oscillations was observed, proportional to the magnetic field intensity and dependent upon the temperature. Calculation of the Landau level energy separation (16 meV) agrees with the observed experimental data. Magneto-tunnelling spectroscopy probes in detail the nature of band- or impurity-like states responsible for resonances in first and second subbands, observing the I-V plot in dark condition and under illumination. The field-dependence of the amplitude of the oscillation peaks in I-V has the characteristic form of a quantum mechanical admixing effect. This enhancement is also probably due to the hole recombination with majority electrons tunnelling in the N-related states of the quantum wells.

  2. Quantum Link Models and Quantum Simulation of Gauge Theories

    International Nuclear Information System (INIS)

    Wiese, U.J.

    2015-01-01

    This lecture is about Quantum Link Models and Quantum Simulation of Gauge Theories. The lecture consists out of 4 parts. The first part gives a brief history of Computing and Pioneers of Quantum Computing and Quantum Simulations of Quantum Spin Systems are introduced. The 2nd lecture is about High-Temperature Superconductors versus QCD, Wilson’s Lattice QCD and Abelian Quantum Link Models. The 3rd lecture deals with Quantum Simulators for Abelian Lattice Gauge Theories and Non-Abelian Quantum Link Models. The last part of the lecture discusses Quantum Simulators mimicking ‘Nuclear’ physics and the continuum limit of D-Theorie models. (nowak)

  3. Quantum qubit measurement by a quantum point contact with a quantum Langevin equation approach

    International Nuclear Information System (INIS)

    Dong, Bing; Lei, X.L.; Horing, N.J.M.; Cui, H.L.

    2007-01-01

    We employ a microscopic quantum Heisenberg-Langevin equation approach to establish a set of quantum Bloch equations for a two-level system (coupled quantum dots) capacitively coupled to a quantum point contact (QPC). The resulting Bloch equations facilitate our analysis of qubit relaxation and decoherence in coupled quantum dots induced by measurement processes at arbitrary bias-voltage and temperature. We also examine the noise spectrum of the meter output current for a symmetric qubit. These results help resolve a recent debate about a quantum oscillation peak in the noise spectrum. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2016-01-01

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm

  5. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    Science.gov (United States)

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effects of low charge carrier wave function overlap on internal quantum efficiency in GaInN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Netzel, Carsten; Hoffmann, Veit; Wernicke, Tim; Knauer, Arne; Weyers, Markus [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Kneissl, Michael [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2010-07-15

    To determine relevant processes affecting the internal quantum efficiency in GaInN quantum well structures, we have studied the temperature and excitation power dependent photoluminescence intensity for quantum wells with different well widths on (0001) c-plane GaN and for quantum wells on nonpolar (11-20) a-plane GaN. In thick polar quantum wells, the quantum confined Stark effect (QCSE) causes a stronger intensity decrease with increasing temperature as long as the radiative recombination dominates. At higher temperatures, when the nonradiative recombination becomes more important, thick polar quantum wells feature a lower relative intensity decrease than thinner polar or nonpolar quantum wells. Excitation power dependent photoluminescence points to a transition from a recombination of excitons to a bimolecular recombination of uncorrelated charge carriers for thick polar quantum wells in the same temperature range. This transition might contribute to the limitation of nonradiative recombination by a reduced diffusivity of charge carriers. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Ambient temperature dependence on emission spectrum of InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, C.Y.; Yoon, S.F. [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore); Chua, S.J. [Institute of Materials Research and Engineering, Faculty of Engineering (Singapore)

    2009-04-15

    Semiconductor superluminescent diodes (SLDs) are important broadband light source for fiber optic gyroscope and biomedical imaging. Quantum dots (QDs) have been proposed to be the best candidate for broadband light sources due to the inhomogeneous broadening of the gain spectrum as a result of the inherited size inhomogeneity of the self-assembled QD growth. In this work, the effect of ambient temperature (25-100 C) on the emission spectrum of InAs QDs with wideband emission was investigated. It was found that the full-width at half-maximum (FWHM) of the photoluminescence (PL) spectra remains more than 125 nm throughout the temperature range, and the redshift as function of temperature is approximately 0.27 meV/K. Activation energy of 270 meV is extracted from the Arrhenius plot and the PL quenching at high temperature is attributed to thermally induced carriers escaping out of the In{sub 0.15}Ga{sub 0.85}As strain-reducing layer. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. High temperature limit of the order parameter correlation functions in the quantum Ising model

    Science.gov (United States)

    Reyes, S. A.; Tsvelik, A. M.

    2006-06-01

    In this paper we use the exact results for the anisotropic two-dimensional Ising model obtained by Bugrii and Lisovyy [A.I. Bugrii, O.O. Lisovyy, Theor. Math. Phys. 140 (2004) 987] to derive the expressions for dynamical correlation functions for the quantum Ising model in one dimension at high temperatures.

  9. High temperature limit of the order parameter correlation functions in the quantum Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, S.A. [Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY 11794-3840 (United States); Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Tsvelik, A.M. [Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY 11794-3840 (United States) and Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)]. E-mail tsvelik@bnl.gov

    2006-06-12

    In this paper we use the exact results for the anisotropic two-dimensional Ising model obtained by Bugrii and Lisovyy [A.I. Bugrii, O.O. Lisovyy, Theor. Math. Phys. 140 (2004) 987] to derive the expressions for dynamical correlation functions for the quantum Ising model in one dimension at high temperatures.

  10. DO PENALTIES AND ENFORCEMENT MEASURES MAKE TAXPAYERS MORE COMPLIANT? THE VIEW OF AUSTRALIAN TAX EVADERS

    OpenAIRE

    Dr Ken Devos

    2013-01-01

    The tax compliance literature indicates that many factors, including, economic, social, psychological and demographic, impact upon the compliance behaviour of individual taxpayers. This study explores the relationship, if any, that exists between selected tax compliance and demographic variables and the compliance behaviour of Australian individual tax evaders. The study employed a mixed method research approach comprising both a survey and interviews. The findings revealed that tax law enfor...

  11. The Amplification of the Critical Temperature by Quantum Size Effects In a Superlattice of Quantum Wires

    International Nuclear Information System (INIS)

    Bianconi, A.; Missori, M.; Saini, N.L.; Oyanagi, H.; Yamaguchi, H.; Nishihara, Y.; Ha, D.H.; Della Longa, S.

    1995-01-01

    Here we report experimental evidence that the high Tc superconductivity in a cuprate perovskite occurs in a superlattice of quantum wires. The structure of the high Tc superconducting CuO 2 plane in Bi 2 Sr 2 CaCu 2 O 8+y (Bi2212) at the mesoscopic level (10-100 A) has been determined. It is decorated by a plurality of parallel superconducting stripes of width L=14± 1 A defined by the domain walls formed by stripes of width W=11+1 A characterized by a 0.17 A shorter Cu-O (apical) distance and a large tilting angle θ =12±4degree of the distorted square pyramids. We show that this particular heterostructure provides the physical mechanism raising Tc from the low temperature range Tc 2 plane by a factor ∼10 is realized by 1) tuning the Fermi level near the bottom of the second ubband of the stripes, with k y =2π/L, formed by the quantum size effect and 2) by forming a superlattice of wires with domain walls of width W of the order of the superconducting coherence length ξ 0 . (author)

  12. Room-temperature continuous operation of InAsSb quantum-dot lasers near 2 mu m based on (100) InP substrate

    Science.gov (United States)

    Qui, Y.; Uhl, D.; Keo, S.

    2003-01-01

    Single-stack InAsSb self-assembled quantum-dot lasers based on (001) InP substrate have been grown by metalorganic vapor-phase epitaxy. The narrow ridge waveguide lasers lased at wavelengths near 2 mu m up to 25 degrees C in continuous-wave operation. At room temperature, a differential quantum efficiency of 13 percent is obtained and the maximum output optical power reaches 3 mW per facet with a threshold current density of 730 A/cm(sup 2). With increasing temperature the emission wavelength is extremely temperature stable, and a very low wavelength temperature sensitivity of 0.05 nm/degrees C is measured, which is even lower than that caused by the refractive index change.

  13. Quantum rotation and translation of hydrogen molecules encapsulated inside C₆₀: temperature dependence of inelastic neutron scattering spectra.

    Science.gov (United States)

    Horsewill, A J; Goh, K; Rols, S; Ollivier, J; Johnson, M R; Levitt, M H; Carravetta, M; Mamone, S; Murata, Y; Chen, J Y-C; Johnson, J A; Lei, X; Turro, N J

    2013-09-13

    The quantum dynamics of a hydrogen molecule encapsulated inside the cage of a C60 fullerene molecule is investigated using inelastic neutron scattering (INS). The emphasis is on the temperature dependence of the INS spectra which were recorded using time-of-flight spectrometers. The hydrogen endofullerene system is highly quantum mechanical, exhibiting both translational and rotational quantization. The profound influence of the Pauli exclusion principle is revealed through nuclear spin isomerism. INS is shown to be exceptionally able to drive transitions between ortho-hydrogen and para-hydrogen which are spin-forbidden to photon spectroscopies. Spectra in the temperature range 1.6≤T≤280 K are presented, and examples are given which demonstrate how the temperature dependence of the INS peak amplitudes can provide an effective tool for assigning the transitions. It is also shown in a preliminary investigation how the temperature dependence may conceivably be used to probe crystal field effects and inter-fullerene interactions.

  14. Towards a feasible implementation of quantum neural networks using quantum dots

    International Nuclear Information System (INIS)

    Altaisky, Mikhail V.; Zolnikova, Nadezhda N.; Kaputkina, Natalia E.; Krylov, Victor A.; Lozovik, Yurii E.; Dattani, Nikesh S.

    2016-01-01

    We propose an implementation of quantum neural networks using an array of quantum dots with dipole-dipole interactions. We demonstrate that this implementation is both feasible and versatile by studying it within the framework of GaAs based quantum dot qubits coupled to a reservoir of acoustic phonons. Using numerically exact Feynman integral calculations, we have found that the quantum coherence in our neural networks survive for over a hundred ps even at liquid nitrogen temperatures (77 K), which is three orders of magnitude higher than current implementations, which are based on SQUID-based systems operating at temperatures in the mK range.

  15. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 97 October. Tunneling reaction and quantum medium

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru [eds.

    1998-02-01

    Present report is the proceedings of the 3rd Meeting on Tunneling Reaction and Low Temperature Chemistry held in Oct. 13 and 14, 1997. The main subject of the meeting is `Tunneling Reaction and Quantum Medium`. In the meeting, the physical and chemical phenomena in the liquid helium such as quantum nucleation, spectroscopy of atoms and molecules, and tunneling abstraction reaction of tritium atom were discussed as the main topics as well as the tunneling reactions in the solid hydrogen and organic compounds. Through the meetings held in 1995, 1996, and 1997, the tunneling phenomena proceeding at various temperatures (room temperature to mK) in the wide fields of chemistry, biology, and physics were discussed intensively and the importance of the tunneling phenomena in the science has been getting clear. The 12 of the presented papers are indexed individually. (J.P.N.)

  16. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 97 October. Tunneling reaction and quantum medium

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru

    1998-02-01

    Present report is the proceedings of the 3rd Meeting on Tunneling Reaction and Low Temperature Chemistry held in Oct. 13 and 14, 1997. The main subject of the meeting is 'Tunneling Reaction and Quantum Medium'. In the meeting, the physical and chemical phenomena in the liquid helium such as quantum nucleation, spectroscopy of atoms and molecules, and tunneling abstraction reaction of tritium atom were discussed as the main topics as well as the tunneling reactions in the solid hydrogen and organic compounds. Through the meetings held in 1995, 1996, and 1997, the tunneling phenomena proceeding at various temperatures (room temperature to mK) in the wide fields of chemistry, biology, and physics were discussed intensively and the importance of the tunneling phenomena in the science has been getting clear. The 12 of the presented papers are indexed individually. (J.P.N.)

  17. Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature

    Science.gov (United States)

    Litman, Yair; Donadio, Davide; Ceriotti, Michele; Rossi, Mariana

    2018-03-01

    Water molecules adsorbed on inorganic substrates play an important role in several technological applications. In the presence of light atoms in adsorbates, nuclear quantum effects (NQEs) influence the structural stability and the dynamical properties of these systems. In this work, we explore the impact of NQEs on the dissociation of water wires on stepped Pt(221) surfaces. By performing ab initio molecular dynamics simulations with van der Waals corrected density functional theory, we note that several competing minima for both intact and dissociated structures are accessible at finite temperatures, making it important to assess whether harmonic estimates of the quantum free energy are sufficient to determine the relative stability of the different states. We thus perform ab initio path integral molecular dynamics (PIMD) in order to calculate these contributions taking into account the conformational entropy and anharmonicities at finite temperatures. We propose that when adsorption is weak and NQEs on the substrate are negligible, PIMD simulations can be performed through a simple partition of the system, resulting in considerable computational savings. We then calculate the full contribution of NQEs to the free energies, including also anharmonic terms. We find that they result in an increase of up to 20% of the quantum contribution to the dissociation free energy compared with the harmonic estimates. We also find that the dissociation process has a negligible contribution from tunneling but is dominated by zero point energies, which can enhance the rate of dissociation by three orders of magnitude. Finally we highlight how both temperature and NQEs indirectly impact dipoles and the redistribution of electron density, causing work function changes of up to 0.4 eV with respect to static estimates. This quantitative determination of the change in the work function provides a possible approach to determine experimentally the most stable configurations of water

  18. How type 1 fimbriae help Escherichia coli to evade extracellular antibiotics.

    Science.gov (United States)

    Avalos Vizcarra, Ima; Hosseini, Vahid; Kollmannsberger, Philip; Meier, Stefanie; Weber, Stefan S; Arnoldini, Markus; Ackermann, Martin; Vogel, Viola

    2016-01-05

    To survive antibiotics, bacteria use two different strategies: counteracting antibiotic effects by expression of resistance genes or evading their effects e.g. by persisting inside host cells. Since bacterial adhesins provide access to the shielded, intracellular niche and the adhesin type 1 fimbriae increases bacterial survival chances inside macrophages, we asked if fimbriae also influenced survival by antibiotic evasion. Combined gentamicin survival assays, flow cytometry, single cell microscopy and kinetic modeling of dose response curves showed that type 1 fimbriae increased the adhesion and internalization by macrophages. This was caused by strongly decreased off-rates and affected the number of intracellular bacteria but not the macrophage viability and morphology. Fimbriae thus promote antibiotic evasion which is particularly relevant in the context of chronic infections.

  19. Measurement of the quantum capacitance from two-dimensional surface state of a topological insulator at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyunwoo, E-mail: chw0089@gmail.com [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of); Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02841 (Korea, Republic of); Shin, Changhwan, E-mail: cshin@uos.ac.kr [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of)

    2017-06-15

    Highlights: • The quantum capacitance in topological insulator (TI) at room temperature is directly revealed. • The physical origin of quantum capacitance, the two dimensional surface state of TI, is experimentally validated. • Theoretically calculated results of ideal quantum capacitance can well predict the experimental data. - Abstract: A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in TIs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO{sub 2}-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., C{sub T}{sup −1} = C{sub Q}{sup −1} + C{sub SiO2}{sup −1}). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron–electron interaction in the two-dimensional surface state of the TI.

  20. Leading temperature dependence of the conductance in Kondo-correlated quantum dots

    Science.gov (United States)

    Aligia, A. A.

    2018-04-01

    Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.

  1. Quantum criticality.

    Science.gov (United States)

    Coleman, Piers; Schofield, Andrew J

    2005-01-20

    As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.

  2. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.

    Science.gov (United States)

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-21

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.

  3. Quantum and classical ripples in graphene

    Science.gov (United States)

    Hašík, Juraj; Tosatti, Erio; MartoÅák, Roman

    2018-04-01

    Thermal ripples of graphene are well understood at room temperature, but their quantum counterparts at low temperatures are in need of a realistic quantitative description. Here we present atomistic path-integral Monte Carlo simulations of freestanding graphene, which show upon cooling a striking classical-quantum evolution of height and angular fluctuations. The crossover takes place at ever-decreasing temperatures for ever-increasing wavelengths so that a completely quantum regime is never attained. Zero-temperature quantum graphene is flatter and smoother than classical graphene at large scales yet rougher at short scales. The angular fluctuation distribution of the normals can be quantitatively described by coexistence of two Gaussians, one classical strongly T -dependent and one quantum about 2° wide, of zero-point character. The quantum evolution of ripple-induced height and angular spread should be observable in electron diffraction in graphene and other two-dimensional materials, such as MoS2, bilayer graphene, boron nitride, etc.

  4. Room-Temperature Quantum Ballistic Transport in Monolithic Ultrascaled Al-Ge-Al Nanowire Heterostructures.

    Science.gov (United States)

    Sistani, Masiar; Staudinger, Philipp; Greil, Johannes; Holzbauer, Martin; Detz, Hermann; Bertagnolli, Emmerich; Lugstein, Alois

    2017-08-09

    Conductance quantization at room temperature is a key requirement for the utilizing of ballistic transport for, e.g., high-performance, low-power dissipating transistors operating at the upper limit of "on"-state conductance or multivalued logic gates. So far, studying conductance quantization has been restricted to high-mobility materials at ultralow temperatures and requires sophisticated nanostructure formation techniques and precise lithography for contact formation. Utilizing a thermally induced exchange reaction between single-crystalline Ge nanowires and Al pads, we achieved monolithic Al-Ge-Al NW heterostructures with ultrasmall Ge segments contacted by self-aligned quasi one-dimensional crystalline Al leads. By integration in electrostatically modulated back-gated field-effect transistors, we demonstrate the first experimental observation of room temperature quantum ballistic transport in Ge, favorable for integration in complementary metal-oxide-semiconductor platform technology.

  5. Intrinsic Dynamics of Quantum-Dash Lasers

    KAUST Repository

    Chen, Cheng; Djie, Hery Susanto; Hwang, James C. M.; Koch, Thomas L.; Lester, Luke F.; Ooi, Boon S.; Wang, Yang

    2011-01-01

    Temperature-dependent intrinsic modulation response of InAs/InAlGaAs quantum-dash lasers was investigated by using pulse optical injection modulation to minimize the effects of parasitics and self-heating. Compared to typical quantum-well lasers, the quantum-dash lasers were found to have comparable differential gain but approximately twice the gain compression factor, probably due to carrier heating by free-carrier absorption, as opposed to stimulated transition. Therefore, the narrower modulation bandwidth of the quantum-dash lasers than that of quantum-well lasers was attributed to their higher gain compression factor. In addition, as expected, quantum-dash lasers with relatively long and uniform dashes exhibit higher temperature stability than quantum-well lasers. However, the lasers with relatively short and nonuniform dashes exhibit stronger temperature dependence, probably due to their higher surface-to-volume ratio and nonuniform dash sizes. © 2011 IEEE.

  6. Intrinsic Dynamics of Quantum-Dash Lasers

    KAUST Repository

    Chen, Cheng

    2011-10-01

    Temperature-dependent intrinsic modulation response of InAs/InAlGaAs quantum-dash lasers was investigated by using pulse optical injection modulation to minimize the effects of parasitics and self-heating. Compared to typical quantum-well lasers, the quantum-dash lasers were found to have comparable differential gain but approximately twice the gain compression factor, probably due to carrier heating by free-carrier absorption, as opposed to stimulated transition. Therefore, the narrower modulation bandwidth of the quantum-dash lasers than that of quantum-well lasers was attributed to their higher gain compression factor. In addition, as expected, quantum-dash lasers with relatively long and uniform dashes exhibit higher temperature stability than quantum-well lasers. However, the lasers with relatively short and nonuniform dashes exhibit stronger temperature dependence, probably due to their higher surface-to-volume ratio and nonuniform dash sizes. © 2011 IEEE.

  7. Quantum effects on the temperature relaxation in plasmas

    International Nuclear Information System (INIS)

    Sakai, Kazuo; Aono, Osamu.

    1979-03-01

    This work was carried out under the collaborating Research Program at Institute of Plasma Physics, Nagoya University. Further communication about this report is to be sent to the Research Information Center, Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan. The rate of equilibration of difference between the ion and electron temperatures is obtained on the basis of the unified theory, in which the collective and binary interactions are both treated properly. The electrons obey the Fermi distribution of arbitrary degeneracy. The rate decreases owing to the degeneracy. Even in the nondegenerated case, the quantum effect appeares in the argument of the Coulomb logarithm. When the de Broglie wave length of the electron is much longer than the radius of close collision, the results agree with those obtained on the Born approximation. In the opposite limit, the classical theory applies. For other cases, graphical examples are given. (author)

  8. Temperature-dependent properties of semiconductor quantum dots in coherent regime; Temperaturabhaengige Eigenschaften einzelner Halbleiter-Quantenpunkte im Kohaerenten Regime

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, Marc C.

    2009-10-15

    Recently, the public has become aware of keywords like ''Quantum computer'' or ''Quantum cryptography''. Regarding their potential application in solid state based quantum information processing and their overall benefit in fundamental research quantum dots have gained more and more public interest. In this context, quantum dots are often referred to as ''artificial atoms'', a term subsuming their physical properties quite nicely and emphasizing the huge potential for further investigations. The basic mechanism to be considered is the theoretical model of a two-level system. A quantum dot itself represents this kind of system quite nicely, provided that only the presence or absence of a single exciton in the ground state of that structure is regarded. This concept can also be expanded to the presence of two excitons (bi-exciton). Transitions between the relevant levels can be induced by optical stimulation. When integrating quantum dots in diode like structures measurements of this phenomena can be accomplished regarding photo currents. This means of detection is highly sensitive and allows for tuning of the energy levels with respect to the energy of an exciting laser utilizing the Stark effect (via an external electric field). The photo current then shows narrow resonances representing those transitions. By this, the system can be used as a highly sensitive nano-spectrometer. The examination of coherent interactions between quantum dots and an electromagnetic field uses laser pulses that are much shorter than the dephasing time of the system (2 ps). The basic study to be done on two level systems is the measurement of Rabi oscillations allowing for the selection of an arbitrary superposition of states. In this work, the existing setup was improved regarding the possibility to control the temperature of the sample. Up to now, only investigations at 4,2 K have been possible. Even at 70 K Rabi oscillations

  9. The role of temperature ramp-up time before barrier layer growth in optical and structural properties of InGaN/GaN multi-quantum wells

    Science.gov (United States)

    Xing, Yao; Zhao, Degang; Jiang, Desheng; Liu, Zongshun; Zhu, Jianjun; Chen, Ping; Yang, Jing; Liu, Wei; Liang, Feng; Liu, Shuangtao; Zhang, Liqun; Wang, Wenjie; Li, Mo; Zhang, Yuantao; Du, Guotong

    2018-05-01

    In InGaN/GaN multi-quantum wells (MQWs), a low temperature cap (LT-cap) layer is grown between the InGaN well layer and low temperature GaN barrier layer. During the growth, a temperature ramp-up and ramp-down process is added between LT-cap and barrier layer growth. The effect of temperature ramp-up time duration on structural and optical properties of quantum wells is studied. It is found that as the ramp-up time increases, the Indium floating layer on the top of the well layer can be diminished effectively, leading to a better interface quality between well and barrier layers, and the carrier localization effect is enhanced, thereby the internal quantum efficiency (IQE) of QWs increases surprisingly. However, if the ramp-up time is too long, the carrier localization effect is weaker, which may increase the probabilities of carriers to meet with nonradiative recombination centers. Meanwhile, more nonradiative recombination centers will be introduced into well layers due to the indium evaporation. Both of them will lead to a reduction of internal quantum efficiency (IQE) of MQWs.

  10. Hydrostatic pressure and temperature effects on nonlinear optical rectification in a lens shape InAs/GaAs quantum dot

    International Nuclear Information System (INIS)

    Bouzaïene, L.; Ben Mahrsia, R.; Baira, M.; Sfaxi, L.; Maaref, H.

    2013-01-01

    We have performed theoretical calculation of the nonlinear optical rectification in a lens shape InAs/GaAs quantum dot (0D). The combined effects of hydrostatic pressure and temperature on the nonlinear optical rectification in lens-shaped InAs QDs are studied under the compact density matrix formalism and the effective mass approximation. From our calculation, it is found that the subband energies and optical rectification susceptibility are quite sensitive to the applied hydrostatic pressure and temperature. The results show that the resonant peak of the optical rectification can be red-shifted or blue-shifted and their intensity also varied by external probes such as hydrostatic pressure and temperature. In addition, the oscillator strength is strongly affected by these parameters. - Highlights: ► Theoretical calculation of the nonlinear optical rectification in a lens shape InAs/GaAs quantum dot was performed. ► Optical rectification susceptibility is quite sensitive to the applied hydrostatic pressure and temperature. ► The oscillator strength is strongly affected by the applied hydrostatic pressure and temperature.

  11. Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors.

    Science.gov (United States)

    Karimi, Mohammad; Jain, Vishal; Heurlin, Magnus; Nowzari, Ali; Hussain, Laiq; Lindgren, David; Stehr, Jan Eric; Buyanova, Irina A; Gustafsson, Anders; Samuelson, Lars; Borgström, Magnus T; Pettersson, Håkan

    2017-06-14

    The possibility to engineer nanowire heterostructures with large bandgap variations is particularly interesting for technologically important broadband photodetector applications. Here we report on a combined study of design, fabrication, and optoelectronic properties of infrared photodetectors comprising four million n + -i-n + InP nanowires periodically ordered in arrays. The nanowires were grown by metal-organic vapor phase epitaxy on InP substrates, with either a single or 20 InAsP quantum discs embedded in the i-segment. By Zn compensation of the residual n-dopants in the i-segment, the room-temperature dark current is strongly suppressed to a level of pA/NW at 1 V bias. The low dark current is manifested in the spectrally resolved photocurrent measurements, which reveal strong photocurrent contributions from the InAsP quantum discs at room temperature with a threshold wavelength of about 2.0 μm and a bias-tunable responsivity reaching 7 A/W@1.38 μm at 2 V bias. Two different processing schemes were implemented to study the effects of radial self-gating in the nanowires induced by the nanowire/SiO x /ITO wrap-gate geometry. Summarized, our results show that properly designed axial InP/InAsP nanowire heterostructures are promising candidates for broadband photodetectors.

  12. Quantum computing with defects in diamond

    International Nuclear Information System (INIS)

    Jelezko, F.; Gaebel, T.; Popa, I.; Domhan, M.; Wittmann, C.; Wrachtrup, J.

    2005-01-01

    Full text: Single spins in semiconductors, in particular associated with defect centers, are promising candidates for practical and scalable implementation of quantum computing even at room temperature. Such an implementation may also use the reliable and well known gate constructions from bulk nuclear magnetic resonance (NMR) quantum computing. Progress in development of quantum processor based on defects in diamond will be discussed. By combining optical microscopy, and magnetic resonance techniques, the first quantum logical operations on single spins in a solid are now demonstrated. The system is perspective for room temperature operation because of a weak dependence of decoherence on temperature (author)

  13. The effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity

    Science.gov (United States)

    Owji, Erfan; Keshavarz, Alireza; Mokhtari, Hosein

    2016-10-01

    In this paper, the effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity are investigated. For this purpose, the effects of temperature, pressure and quantum dot size on the band gap energy, effective mass, and dielectric constant are studied. The eigenenergies and eigenstates for valence and conduction band are calculated by using Runge-Kutta numerical method. Results show that changes in the temperature, pressure and size lead to the alteration of the band gap energy and effective mass. Also, increasing the temperature redshifts the optical gain peak and at special temperature ranges lead to increasing or decreasing of it. Further, by reducing the size, temperature-dependent of optical gain is decreased. Additionally, enhancing of the hydrostatic pressure blueshifts the peak of optical gain, and its behavior as a function of pressure which depends on the size. Finally, increasing the radius rises the redshifts of the peak of optical gain.

  14. Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot.

    Science.gov (United States)

    Song, Xiang-Xiang; Zhang, Zhuo-Zhi; You, Jie; Liu, Di; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping

    2015-11-05

    Standard semiconductor fabrication techniques are used to fabricate a quantum dot (QD) made of WS2, where Coulomb oscillations were found. The full-width-at-half-maximum of the Coulomb peaks increases linearly with temperature while the height of the peaks remains almost independent of temperature, which is consistent with standard semiconductor QD theory. Unlike graphene etched QDs, where Coulomb peaks belonging to the same QD can have different temperature dependences, these results indicate the absence of the disordered confining potential. This difference in the potential-forming mechanism between graphene etched QDs and WS2 QDs may be the reason for the larger potential fluctuation found in graphene QDs.

  15. Evolution of spin excitations in a gapped antiferromagnet from the quantum to the high-temperature limit

    DEFF Research Database (Denmark)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.

    2002-01-01

    We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200 K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70 Ksimilar...... is in agreement with quantum Monte Carlo calculations for the spin-1 chain. xi is also consistent with the single mode approximation, suggesting that the excitations are short-lived single particle excitations. Below T=12 K where three-dimensional spin correlations are important, xi is shorter than predicted...... and the experiment is not consistent with the random phase approximation for coupled quantum chains. At T=200 K, the structure factor and second energy moment of the excitation spectrum are in excellent agreement with the high-temperature series expansion....

  16. Analysis and investigation of temperature and hydrostatic pressure effects on optical characteristics of multiple quantum well slow light devices.

    Science.gov (United States)

    Abdolhosseini, Saeed; Kohandani, Reza; Kaatuzian, Hassan

    2017-09-10

    This paper represents the influences of temperature and hydrostatic pressure variations on GaAs/AlGaAs multiple quantum well slow light systems based on coherence population oscillations. An analytical model in non-integer dimension space is used to study the considerable effects of these parameters on optical properties of the slow light apparatus. Exciton oscillator strength and fractional dimension constants have special roles on the analytical model in fractional dimension. Hence, the impacts of hydrostatic pressure and temperature on exciton oscillator strength and fractional dimension quantity are investigated theoretically in this paper. Based on the achieved results, temperature and hydrostatic pressure play key roles on optical parameters of the slow light systems, such as the slow down factor and central energy of the device. It is found that the slope and value of the refractive index real part change with alterations of temperature and hydrostatic pressure in the range of 5-40 deg of Kelvin and 1 bar to 2 kbar, respectively. Thus, the peak value of the slow down factor can be adjusted by altering these parameters. Moreover, the central energy of the device shifts when the hydrostatic pressure is applied to the slow light device or temperature is varied. In comparison with previous reported experimental results, our simulations follow them successfully. It is shown that the maximum value of the slow down factor is estimated close to 5.5×10 4 with a fine adjustment of temperature and hydrostatic pressure. Meanwhile, the central energy shift of the slow light device rises up to 27 meV, which provides an appropriate basis for different optical devices in which multiple quantum well slow light is one of their essential subsections. This multiple quantum well slow light device has potential applications for use as a tunable optical buffer and pressure/temperature sensors.

  17. The effects of temperature on optical properties of InGaN/GaN multiple quantum well light-emitting diodes

    Science.gov (United States)

    Li, Yi; Zhu, Youhua; Huang, Jing; Deng, Honghai; Wang, Meiyu; Yin, HaiHong

    2017-02-01

    The effects of temperature on the optical properties of InGaN/GaN quantum well (QW) light-emitting diodes have been investigated by using the six-by-six K-P method taking into account the temperature dependence of band gaps, lattice constants, and elastic constants. The numerical results indicate that the increase of temperature leads to the decrease of the spontaneous emission rate at the same injection current density due to the redistribution of carrier density and the increase of the non-radiative recombination rate. The product of Fermi-Dirac distribution functions of electron fc n and hole ( 1 - fv U m ) for the transitions between the three lowest conduction subbands (c1-c3) and the top six valence subbands (v1-v6) is larger at the lower temperature, which indicates that there are more electron-hole pairs distributed on the energy levels. It should be noted that the optical matrix elements of the inter-band transitions slightly increase at the higher temperature. In addition, the internal quantum efficiency of the InGaN/GaN QW structure is evidently decreased with increasing temperature.

  18. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles

    DEFF Research Database (Denmark)

    Iida, Daisuke; Fadil, Ahmed; Chen, Yuntian

    2015-01-01

    We report internal quantum efficiency enhancement of thin p-GaN green quantumwell structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhance......We report internal quantum efficiency enhancement of thin p-GaN green quantumwell structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density...

  19. Bethe ansatz approach to quantum sine Gordon thermodynamics and finite temperature excitations

    International Nuclear Information System (INIS)

    Zotos, X.

    1982-01-01

    Takahashi and Suzuki (TS) using the Bethe ansatz method developed a formalism for the thermodynamics of the XYZ spin chain. Translating their formalism to the quantum sine-Gordon system, the thermodynamics and finite temperature elementary excitations are analyzed. Criteria imposed by TS on the allowed states simply correspond to the condition of normalizability of the wave functions. A set of coupled nonlinear integral equations for the thermodynamic equilibrium densities for particular values of the coupling constant in the attractive regime is derived. Solving numerically these Bethe ansatz equations, curves of the specific heat as a function of temperature are obtained. The soliton contribution peaks at a temperature of about 0.4 soliton masses shifting downward as the classical limit is approached. The weak coupling regime is analyzed by deriving the Bethe ansatz equations including the charged vacuum excitations. It is shown that they are necessary for a consistent presentation of the thermodynamics

  20. Continuous wave room temperature external ring cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W. [Physics and Astronomy Department, The University of Sheffield, S3 7RH Sheffield (United Kingdom); Hempler, N.; Maker, G. T.; Malcolm, G. P. A. [M Squared Lasers Ltd., G20 0SP Glasgow (United Kingdom)

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  1. Continuous wave room temperature external ring cavity quantum cascade laser

    International Nuclear Information System (INIS)

    Revin, D. G.; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W.; Hempler, N.; Maker, G. T.; Malcolm, G. P. A.

    2015-01-01

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm −1 is realized by the incorporation of a diffraction grating into the cavity

  2. Gain dynamics in p-doped InGaAs quantum dot amplifiers from room to cryogenic temperatures

    NARCIS (Netherlands)

    Borri, P.; Cesaria, V.; Rossetti, M.; Fiore, A.; Langbein, W.

    2009-01-01

    We have compared the gain dynamics of the ground state excitonic transition between undoped and p-doped electrically-pumped InGaAs quantum-dot optical amplifiers, for temperatures from 300K to 20K. A pump-probe differential transmission technique in heterodyne detection with sub-picosecond time

  3. Unravelling the size and temperature dependence of exciton lifetimes in colloidal ZnSe quantum dots

    NARCIS (Netherlands)

    Eilers, Joren; Van Hest, Jacobine; Meijerink, A; Donega, Celso De Mello

    2014-01-01

    We report on the temperature dependence of the band-edge photoluminescence decay of organically capped colloidal ZnSe quantum dots (QDs) in the size range from 4.0 to 7.5 nm. A similar trend is observed for all investigated sizes: the decay time is short (∼5 ns) above 20 K and increases sharply

  4. Overcoming the sign problem at finite temperature: Quantum tensor network for the orbital eg model on an infinite square lattice

    Science.gov (United States)

    Czarnik, Piotr; Dziarmaga, Jacek; Oleś, Andrzej M.

    2017-07-01

    The variational tensor network renormalization approach to two-dimensional (2D) quantum systems at finite temperature is applied to a model suffering the notorious quantum Monte Carlo sign problem—the orbital eg model with spatially highly anisotropic orbital interactions. Coarse graining of the tensor network along the inverse temperature β yields a numerically tractable 2D tensor network representing the Gibbs state. Its bond dimension D —limiting the amount of entanglement—is a natural refinement parameter. Increasing D we obtain a converged order parameter and its linear susceptibility close to the critical point. They confirm the existence of finite order parameter below the critical temperature Tc, provide a numerically exact estimate of Tc, and give the critical exponents within 1 % of the 2D Ising universality class.

  5. Thermal activation of carriers from semiconductor quantum wells

    International Nuclear Information System (INIS)

    Johnston, M.B.; Herz, L.M.; Dao, L.V.; Gal, M.; Tan, H.H.; Jagadish, C.

    1999-01-01

    Full text: We have conducted a systematic investigation of the thermal excitation of carriers in confined states of quantum wells. Carriers may be injected into a sample containing a quantum well electrically or optically, once there they rapidly thermalise and are captured by the confined state of the quantum well. Typically electrons and holes recombine radiatively from their respective quantum well states. As a quantum well sample is heated from low temperatures (∼10K), phonon interactions increase which leads to carriers being excited from the well region into the higher energy, barrier region of the sample. Since carrier recombination from barrier regions is via non-radiative processes, there is strong temperature dependence of photoluminescence from the quantum well region. We measured quantum well photoluminescence as a function of excitation intensity and wavelength over the temperature range from 8K to 300K. In high quality InGaAs quantum wells we found unexpected intensity dependence of the spectrally integrated temperature dependent photoluminescence. We believe that this is evidence for by the existence of saturable states at the interfaces of the quantum wells

  6. Quantum Dot Systems: a versatile platform for quantum simulations

    International Nuclear Information System (INIS)

    Barthelemy, Pierre; Vandersypen, Lieven M.K.

    2013-01-01

    Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum simulations can be used to overcome this problem: complex quantum problems can be solved by studying experimentally an artificial quantum system operated to simulate the desired hamiltonian. Quantum dot systems have shown to be widely tunable quantum systems, that can be efficiently controlled electrically. This tunability and the versatility of their design makes them very promising quantum simulators. This paper reviews the progress towards digital quantum simulations with individually controlled quantum dots, as well as the analog quantum simulations that have been performed with these systems. The possibility to use large arrays of quantum dots to simulate the low-temperature Hubbard model is also discussed. The main issues along that path are presented and new ideas to overcome them are proposed. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Elucidation of the origins of transport behaviour and quantum oscillations in high temperature superconducting cuprates

    International Nuclear Information System (INIS)

    Wilson, John A

    2009-01-01

    A detailed exposition is given of recent transport and 'quantum oscillation' results from high temperature superconducting (HTSC) systems covering the full carrier range from overdoped to underdoped material. This now very extensive and high quality data set is here interpreted within the framework developed by the author of local pairs and boson-fermion resonance, arising in the context of negative- U behaviour within an inhomogeneous electronic environment. The strong inhomogeneity comes with the mixed-valence condition of these materials, which when underdoped lie in close proximity to the Mott-Anderson transition. The observed intense scattering is presented as resulting from pair formation and from electron-boson collisions in the resonant crossover circumstance. The high level of scattering carries the systems to incoherence in the pseudogapped state, p c (= 0.183). In a high magnetic field the striped partition of the inhomogeneous charge distribution becomes much strengthened and regularized. Magnetization and resistance oscillations, of period dictated by the favoured positioning of the fluxon array within the real space environment of the diagonal 2D charge striping array, are demonstrated to be responsible for the recently reported behaviour hitherto widely attributed to the quantum oscillation response of a much more standard Fermi liquid condition. A detailed analysis embracing all the experimental data serves to reveal that in the given conditions of very high field, low temperature, 2D-striped, underdoped, d-wave superconducting, HTSC material the flux quantum becomes doubled to h/e.

  8. The influence of annealing temperature on the interface and photovoltaic properties of CdS/CdSe quantum dots sensitized ZnO nanorods solar cells.

    Science.gov (United States)

    Qiu, Xiaofeng; Chen, Ling; Gong, Haibo; Zhu, Min; Han, Jun; Zi, Min; Yang, Xiaopeng; Ji, Changjian; Cao, Bingqiang

    2014-09-15

    Arrays of ZnO/CdS/CdSe core/shell nanocables with different annealing temperatures have been investigated for CdS/CdSe quantum dots sensitized solar cells (QDSSCs). CdS/CdSe quantum dots were synthesized on the surface of ZnO nanorods that serve as the scaffold via a simple ion-exchange approach. The uniform microstructure was verified by scanning electron microscope and transmission electron microscope. UV-Visible absorption spectrum and Raman spectroscopy analysis indicated noticeable influence of annealing temperature on the interface structural and optical properties of the CdS/CdSe layers. Particularly, the relationship between annealing temperatures and photovoltaic performance of the corresponding QDSSCs was investigated employing photovoltaic conversion, quantum efficiency and electrochemical impedance spectra. It is demonstrated that higher cell efficiency can be obtained by optimizing the annealing temperature through extending the photoresponse range and improving QD layer crystal quality. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Effects of growth temperature and arsenic pressure on size distribution and density of InAs quantum dots on Si (001)

    International Nuclear Information System (INIS)

    Zhao, Z.M.; Hul'ko, O.; Kim, H.J.; Liu, J.; Shi, B.; Xie, Y.H.

    2005-01-01

    InAs self-assembled quantum dots (QDs) were grown on Si (001) substrates via molecular beam epitaxy. The size distribution and density of InAs QDs grown under different conditions were studied using plan-view transmission electron microscopy. Dot density was shown to strongly depend on arsenic beam equivalent pressure (BEP) ranging from 2.8x10 -5 to 1.2x10 -3 Pa. In contrast, dot density was nearly independent of substrate temperature from 295 to 410 deg. C under constant arsenic BEP, while broadening of size distribution was observed with increasing temperature. The mechanism accounting for some of the main features of the experimental observations is discussed. Finally, InAs quantum dots with optimized narrow size distribution and high density were grown at low arsenic BEP of 7.2 x10 -5 Pa and low temperature of 250 deg. C followed by annealing at arsenic BEP of 1.9 x10 -4 Pa and temperature of 410 deg. C

  10. Extremely low temperature behaviour of the thermodynamical properties of gaseous UF6 under an exact quantum approach

    International Nuclear Information System (INIS)

    Amarante, J.A.A. do.

    1979-10-01

    The thermodynamic functions of molecules of type XF 6 are calculated under an exact quantum-mechanical approach, which also yields general expressions valid for other types of molecules. The formalism is used to analyse the behavior of gaseous UF 6 at very low temperatures (around and below 1 0 K), where symmetry effects due to Pauli principle lead to results which are very markedly different from those obtained with the semi-classical approximation. It is shown that this approximation becomes sufficiently accurate only for temperatures about ten times the rotational temperature. (Author) [pt

  11. InGaAs/GaAs quantum-dot-quantum-well heterostructure formed by submonolayer deposition

    DEFF Research Database (Denmark)

    Xu, Zhangcheng; Leosson, K.; Birkedal, Dan

    2003-01-01

    -dot-quantum-well (QDQW) structure, by using high power PL and selective PL with excitation energies below the band gap of the GaAs barriers and temperature dependent PL. As the temperature is increased from 10 to 300 K, a narrowing of the full width at half-maximum at intermediate temperatures and a sigmoidal behaviour......Discrete emission lines from self-assembled InGaAs quantum dots (QDs) grown in the submonolayer (SML) deposition mode have been observed in micro-photoluminescence (PL) spectra at 10 K. For the first time, the SML-grown InGaAs/GaAs QD heterostructure is verified to be a quantum...

  12. Quantum oscillations in the parent magnetic phase of an iron arsenide high temperature superconductor

    International Nuclear Information System (INIS)

    Sebastian, Suchitra E; Gillett, J; Lau, P H C; Lonzarich, G G; Harrison, N; Mielke, C H; Singh, D J

    2008-01-01

    We report measurements of quantum oscillations in SrFe 2 As 2 -which is an antiferromagnetic parent of the iron arsenide family of superconductors-known to become superconducting under doping and the application of pressure. The magnetic field and temperature dependences of the oscillations between 20 and 55 T in the liquid helium temperature range suggest that the electronic excitations are those of a Fermi liquid. We show that the observed Fermi surface comprising small pockets is consistent with the formation of a spin-density wave. Our measurements thus demonstrate that high T c superconductivity can occur on doping or pressurizing a conventional metallic spin-density wave state. (fast track communication)

  13. Interplay of quantum and classical fluctuations near quantum critical points

    International Nuclear Information System (INIS)

    Continentino, Mucio Amado

    2011-01-01

    For a system near a quantum critical point (QCP), above its lower critical dimension d L , there is in general a critical line of second-order phase transitions that separates the broken symmetry phase at finite temperatures from the disordered phase. The phase transitions along this line are governed by thermal critical exponents that are different from those associated with the quantum critical point. We point out that, if the effective dimension of the QCP, d eff = d + z (d is the Euclidean dimension of the system and z the dynamic quantum critical exponent) is above its upper critical dimension d c there is an intermingle of classical (thermal) and quantum critical fluctuations near the QCP. This is due to the breakdown of the generalized scaling relation ψ = νz between the shift exponent ψ of the critical line and the crossover exponent νz, for d + z > d c by a dangerous irrelevant interaction. This phenomenon has clear experimental consequences, like the suppression of the amplitude of classical critical fluctuations near the line of finite temperature phase transitions as the critical temperature is reduced approaching the QCP. (author)

  14. Unraveling Quantum Annealers using Classical Hardness

    Science.gov (United States)

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  15. Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients

    Science.gov (United States)

    Can, Nuri; Okur, Serdal; Monavarian, Morteza; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Teke, Ali; Özgür, Ümit

    2015-03-01

    Temperature dependent recombination dynamics in c-plane InGaN light emitting diodes (LEDs) with different well thicknesses, 1.5, 2, and 3 nm, were investigated to determine the active region dimensionality and its effect on the internal quantum efficiencies. It was confirmed for all LEDs that the photoluminescence (PL) transients are governed by radiative recombination at low temperatures while nonradiative recombination dominates at room temperature. At photoexcited carrier densities of 3 - 4.5 x 1016 cm-3 , the room-temperature Shockley-Read-Hall (A) and the bimolecular (B) recombination coefficients (A, B) were deduced to be (9.2x107 s-1, 8.8x10-10 cm3s-1), (8.5x107 s-1, 6.6x10-10 cm3s-1), and (6.5x107 s-1, 1.4x10-10 cm3s-1) for the six period 1.5, 2, and 3 nm well-width LEDs, respectively. From the temperature dependence of the radiative lifetimes, τrad α Tn/2, the dimensionality n of the active region was found to decrease consistently with decreasing well width. The 3 nm wide wells exhibited ~T1.5 dependence, suggesting a three-dimensional nature, whereas the 1.5 nm wells were confirmed to be two-dimensional (~T1) and the 2 nm wells close to being two-dimensional. We demonstrate that a combination of temperature dependent PL and time-resolved PL techniques can be used to evaluate the dimensionality as well as the quantum efficiencies of the LED active regions for a better understanding of the relationship between active-region design and the efficiency limiting processes in InGaN LEDs.

  16. Free-Space Quantum Communication with a Portable Quantum Memory

    Science.gov (United States)

    Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden

    2017-12-01

    The realization of an elementary quantum network that is intrinsically secure and operates over long distances requires the interconnection of several quantum modules performing different tasks. In this work, we report the realization of a communication network functioning in a quantum regime, consisting of four different quantum modules: (i) a random polarization qubit generator, (ii) a free-space quantum-communication channel, (iii) an ultralow-noise portable quantum memory, and (iv) a qubit decoder, in a functional elementary quantum network possessing all capabilities needed for quantum-information distribution protocols. We create weak coherent pulses at the single-photon level encoding polarization states |H ⟩ , |V ⟩, |D ⟩, and |A ⟩ in a randomized sequence. The random qubits are sent over a free-space link and coupled into a dual-rail room-temperature quantum memory and after storage and retrieval are analyzed in a four-detector polarization analysis akin to the requirements of the BB84 protocol. We also show ultralow noise and fully portable operation, paving the way towards memory-assisted all-environment free-space quantum cryptographic networks.

  17. Analytical pair correlations in ideal quantum gases: temperature-dependent bunching and antibunching.

    Science.gov (United States)

    Bosse, J; Pathak, K N; Singh, G S

    2011-10-01

    The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T

  18. Uudised : Üheteistkümnendad trompetipäevad. Eesti Muusikanõukogus. Tüüri "Motus I" Londonis / Kadri Ruudi

    Index Scriptorium Estoniae

    Ruudi, Kadri

    2000-01-01

    4.-15. apr. toimuvad EMA XI trompetipäevad. 14.-19. märtsil viibis Eestis IMC asepresident F. Müller-Heuser, 22. märtsil toimus EMN juhatuse koosolek. 19. märtsil andis Londoni South Bank Centre'is kontserdi P. Carneiro, kes tõi Inglismaal esiettekandele ka E.-S. Tüüri teose "Motus I"

  19. Self-assembled quantum dot structures in a hexagonal nanowire for quantum photonics.

    Science.gov (United States)

    Yu, Ying; Dou, Xiu-Ming; Wei, Bin; Zha, Guo-Wei; Shang, Xiang-Jun; Wang, Li; Su, Dan; Xu, Jian-Xing; Wang, Hai-Yan; Ni, Hai-Qiao; Sun, Bao-Quan; Ji, Yuan; Han, Xiao-Dong; Niu, Zhi-Chuan

    2014-05-01

    Two types of quantum nanostructures based on self-assembled GaAs quantumdots embedded into GaAs/AlGaAs hexagonal nanowire systems are reported, opening a new avenue to the fabrication of highly efficient single-photon sources, as well as the design of novel quantum optics experiments and robust quantum optoelectronic devices operating at higher temperature, which are required for practical quantum photonics applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing

    Science.gov (United States)

    Martin, Stephen J.; Beekman, Madeleine; Wossler, Theresa C.; Ratnieks, Francis L. W.

    2002-01-01

    Relocation of the Cape honeybee, Apis mellifera capensis, by bee-keepers from southern to northern South Africa in 1990 has caused widespread death of managed African honeybee, A. m. scutellata, colonies. Apis mellifera capensis worker bees are able to lay diploid, female eggs without mating by means of automictic thelytoky (meiosis followed by fusion of two meiotic products to restore egg diploidy), whereas workers of other honeybee subspecies are able to lay only haploid, male eggs. The A. m. capensis workers, which are parasitizing and killing A. m. scutellata colonies in northern South Africa, are the asexual offspring of a single, original worker in which the small amount of genetic variation observed is due to crossing over during meiosis (P. Kryger, personal communication). Here we elucidate two principal mechanisms underlying this parasitism. Parasitic A. m. capensis workers activate their ovaries in host colonies that have a queen present (queenright colonies), and they lay eggs that evade being killed by other workers (worker policing)-the normal fate of worker-laid eggs in colonies with a queen. This unique parasitism by workers is an instance in which a society is unable to control the selfish actions of its members.

  1. Self-assembled InAs quantum dots formed by molecular beam epitaxy at low temperature and postgrowth annealing

    NARCIS (Netherlands)

    Zhan, H.H.; Nötzel, R.; Hamhuis, G.J.; Eijkemans, T.J.; Wolter, J.H.

    2003-01-01

    Self-assembled InAs quantum dots are grown at low temperature (LT) by molecular beam epitaxy (MBE) on GaAs substrates. The growth is in situ monitored by reflection high-energy electron diffraction, and ex situ evaluated by atomic force microscopy for the morphological properties, and by

  2. The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes

    DEFF Research Database (Denmark)

    Belstrøm, Daniel; Holmstrup, Palle; Damgaard, Christian

    2011-01-01

    A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows...... the bacterium to adhere to human red blood cells (RBCs) and thereby evade attack by circulating phagocytes. On incubation with normal human serum, the P. gingivalis strain efficiently fixed complement component 3 (C3). Incubation of bacteria with washed whole blood cells suspended in autologous serum resulted...... in a dose- and time-dependent adherence to RBCs. The adherence required functionally intact complement receptor 1 (CR1; also called CD35) on the RBCs and significantly inhibited the uptake of P. gingivalis by neutrophils and B cells within 1 min of incubation (by 64% and 51%, respectively...

  3. Quantum-entanglement storage and extraction in quantum network node

    Science.gov (United States)

    Shan, Zhuoyu; Zhang, Yong

    Quantum computing and quantum communication have become the most popular research topic. Nitrogen-vacancy (NV) centers in diamond have been shown the great advantage of implementing quantum information processing. The generation of entanglement between NV centers represents a fundamental prerequisite for all quantum information technologies. In this paper, we propose a scheme to realize the high-fidelity storage and extraction of quantum entanglement information based on the NV centers at room temperature. We store the entangled information of a pair of entangled photons in the Bell state into the nuclear spins of two NV centers, which can make these two NV centers entangled. And then we illuminate how to extract the entangled information from NV centers to prepare on-demand entangled states for optical quantum information processing. The strategy of engineering entanglement demonstrated here maybe pave the way towards a NV center-based quantum network.

  4. Finite-temperature spin dynamics in a perturbed quantum critical Ising chain with an E₈ symmetry.

    Science.gov (United States)

    Wu, Jianda; Kormos, Márton; Si, Qimiao

    2014-12-12

    A spectrum exhibiting E₈ symmetry is expected to arise when a small longitudinal field is introduced in the transverse-field Ising chain at its quantum critical point. Evidence for this spectrum has recently come from neutron scattering measurements in cobalt niobate, a quasi-one-dimensional Ising ferromagnet. Unlike its zero-temperature counterpart, the finite-temperature dynamics of the model has not yet been determined. We study the dynamical spin structure factor of the model at low frequencies and nonzero temperatures, using the form factor method. Its frequency dependence is singular, but differs from the diffusion form. The temperature dependence of the nuclear magnetic resonance (NMR) relaxation rate has an activated form, whose prefactor we also determine. We propose NMR experiments as a means to further test the applicability of the E₈ description for CoNb₂O₆.

  5. Quantum simulation of superconductors on quantum computers. Toward the first applications of quantum processors

    Energy Technology Data Exchange (ETDEWEB)

    Dallaire-Demers, Pierre-Luc

    2016-10-07

    Quantum computers are the ideal platform for quantum simulations. Given enough coherent operations and qubits, such machines can be leveraged to simulate strongly correlated materials, where intricate quantum effects give rise to counter-intuitive macroscopic phenomena such as high-temperature superconductivity. Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model. In general, no closed-form solution is known for lattices of more than one spatial dimension, but they can be numerically approximated using cluster methods. To model long-range effects such as order parameters, a powerful method to compute the cluster's Green's function consists in finding its self-energy through a variational principle. As is shown in this thesis, this allows the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model. However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation variables. We show theoretically that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory usage scales linearly with the number of orbitals in the simulated cluster and the number of measurements scales quadratically. We also provide a gate decomposition of the cluster Hamiltonian and a simple planar architecture for a quantum simulator that can also be used to simulate more general fermionic systems. We briefly analyze the Trotter-Suzuki errors and estimate the scaling properties of the algorithm for more complex applications. A quantum computer with a few tens of qubits could therefore simulate the thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.

  6. Quantum simulation of superconductors on quantum computers. Toward the first applications of quantum processors

    International Nuclear Information System (INIS)

    Dallaire-Demers, Pierre-Luc

    2016-01-01

    Quantum computers are the ideal platform for quantum simulations. Given enough coherent operations and qubits, such machines can be leveraged to simulate strongly correlated materials, where intricate quantum effects give rise to counter-intuitive macroscopic phenomena such as high-temperature superconductivity. Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model. In general, no closed-form solution is known for lattices of more than one spatial dimension, but they can be numerically approximated using cluster methods. To model long-range effects such as order parameters, a powerful method to compute the cluster's Green's function consists in finding its self-energy through a variational principle. As is shown in this thesis, this allows the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model. However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation variables. We show theoretically that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory usage scales linearly with the number of orbitals in the simulated cluster and the number of measurements scales quadratically. We also provide a gate decomposition of the cluster Hamiltonian and a simple planar architecture for a quantum simulator that can also be used to simulate more general fermionic systems. We briefly analyze the Trotter-Suzuki errors and estimate the scaling properties of the algorithm for more complex applications. A quantum computer with a few tens of qubits could therefore simulate the thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.

  7. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Optical detection of symmetric and antisymmetric states in double quantum wells at room temperature

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Marcelli, A.; Piccinini, M.; Cebulski, J.

    2009-09-01

    We studied the optical reflectivity of a specially grown double quantum well (DQW) structure characterized by a rectangular shape and a high electron density at room temperature. Assuming that the QWs depth is known, reflectivity spectra in the mid-IR range allow to carry out the precise measurements of the SAS-gap values (the energy gap between the symmetric and anti-symmetric states) and the absolute energies of both symmetric and antisymmetric electron states. The results of our experiments are in favor of the existence of the SAS splitting in the DQWs at room temperature. Here we have shown that the SAS gap increases proportionally to the subband quantum number and the optical electron transitions between symmetric and antisymmetric states belonging to different subbands are allowed. These results were used for interpretation of the beating effect in the Shubnikov-de Haas (SdH) oscillations at low temperatures (0.6 and 4.2 K). The approach to the calculation of the Landau-levels energies for DQW structures developed earlier [D. Ploch , Phys. Rev. B 79, 195434 (2009)] is used for the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to explain the beating effect in the SdH oscillations, one should introduce two different quasi-Fermi levels characterizing the two electron subsystems regarding symmetry properties of their wave functions, symmetric and antisymmetric ones. These states are not mixed neither by electron-electron interaction nor probably by electron-phonon interaction.

  9. A superconducting quantum interference device based read-out of a subattonewton force sensor operating at millikelvin temperatures

    International Nuclear Information System (INIS)

    Usenko, O.; Vinante, A.; Wijts, G.; Oosterkamp, T. H.

    2011-01-01

    We present a scheme to measure the displacement of a nanomechanical resonator at cryogenic temperature. The technique is based on the use of a superconducting quantum interference device to detect the magnetic flux change induced by a magnetized particle attached on the end of the resonator. Unlike conventional interferometric techniques, our detection scheme does not involve direct power dissipation in the resonator, and therefore, is particularly suitable for ultralow temperature applications. We demonstrate its potential by cooling an ultrasoft silicon cantilever to a noise temperature of 25 mK, corresponding to a subattonewton thermal force noise of 0.5 aN/√(Hz).

  10. Temperature dependence of the optical absorption spectra of InP/ZnS quantum dots

    Science.gov (United States)

    Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2017-03-01

    The optical-absorption spectra of InP/ZnS (core/shell) quantum dots have been studied in a broad temperature range of T = 6.5-296 K. Using the second-order derivative spectrophotometry technique, the energies of optical transitions at room temperature were found to be E 1 = 2.60 ± 0.02 eV (for the first peak of excitonic absorption in the InP core) and E 2 = 4.70 ± 0.02 eV (for processes in the ZnS shell). The experimental curve of E 1( T) has been approximated for the first time in the framework of a linear model and in terms of the Fan's formula. It is established that the temperature dependence of E 1 is determined by the interaction of excitons and longitudinal acoustic phonons with hω = 15 meV.

  11. Quantum interference effects at room temperature in OPV-based single-molecule junctions

    DEFF Research Database (Denmark)

    Arroyo, Carlos R.; Frisenda, Riccardo; Moth-Poulsen, Kasper

    2013-01-01

    Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on oligo(3......)-phenylenevinylene (OPV3) derivatives, in which the central benzene ring is coupled to either para- or meta-positions. Using the break-junction technique, we find that the conductance for a single meta-OPV3 molecule wired between gold electrodes is one order of magnitude smaller than that of a para-OPV3 molecule...

  12. Effects of Temperature on Sensitivity of Bacilus licheniformis RI 75-1 Vegetative Cells at Gamma Quantum

    International Nuclear Information System (INIS)

    Fernandez-Larrea Vega, O.; Rios Brito, F.; Marquez Alvarez, M.; Padron Soler, E.

    1986-01-01

    It is known that strains of E. Coli with wild genotype for reparation, when are irradiated at temperature between 42 0 C and 45 0 C, shown an increase of radioresistance. At the given temperature the number of double strands breaks of DNA decrease. Some authors report that the radioresistance increased is due to the elevation of the irradiation temperature is related to the cell membrane status. The paper includes reports on the effects of increased temperature on the sensitivity - at gamma quantum - of Bacillus licheniformis RI 75-1 vegetative cells. Temperatures of 42 0 C and 60 0 C during irradiation were employed. An increase in radioresistance was found when the temperature of irradiation was increased to 42 0 C. However, a decrease in viability was observed. Heat treatment prior to irradiation showed an increase in the number of radioresistance colonies when compared. (author)

  13. CdS quantum dots in a novel glass with a very low activation energy and its variation of diffusivity with temperature

    Science.gov (United States)

    Nagpal, Swati

    2011-07-01

    CdS quantum dots of different average sizes in the range 2 to 3.8 nm were grown by diffusion-limited growth process in indigenously made silicate glass. The absorption spectra showed a strong quantum confinement effect with a blue shift of the order of 500 meV depending on the average size. Critical radius of quantum dots was found to be 1.8 nm. The size dispersion decreased from 15.2 to 12.5% with a 20% increase in the particle size. The activation energy for diffusion was found to be very low i.e. 193 kJ mol-1 and the diffusion coefficient increased by 60% for 10 K rise in temperature. The PL emission spectra showed the presence of only deep traps around 600 nm with a red shift of 200 nm. No shallow traps or band edge emission was observed. The PL peak position changed from 560 to 640 nm with a 35 K increase in annealing temperature.

  14. Predicting fluorescence quantum yield for anisole at elevated temperatures and pressures

    Science.gov (United States)

    Wang, Q.; Tran, K. H.; Morin, C.; Bonnety, J.; Legros, G.; Guibert, P.

    2017-07-01

    Aromatic molecules are promising candidates for using as a fluorescent tracer for gas-phase scalar parameter diagnostics in a drastic environment like engines. Along with anisole turning out an excellent temperature tracer by Planar Laser-Induced Fluorescence (PLIF) diagnostics in Rapid Compression Machine (RCM), its fluorescence signal evolution versus pressure and temperature variation in a high-pressure and high-temperature cell have been reported in our recent paper on Applied Phys. B by Tran et al. Parallel to this experimental study, a photophysical model to determine anisole Fluorescence Quantum Yield (FQY) is delivered in this paper. The key to development of the model is the identification of pressure, temperature, and ambient gases, where the FQY is dominated by certain processes of the model (quenching effect, vibrational relaxation, etc.). In addition to optimization of the vibrational relaxation energy cascade coefficient and the collision probability with oxygen, the non-radiative pathways are mainly discussed. The common non-radiative rate (intersystem crossing and internal conversion) is simulated in parametric form as a function of excess vibrational energy, derived from the data acquired at different pressures and temperatures from the literature. A new non-radiative rate, namely, the equivalent Intramolecular Vibrational Redistribution or Randomization (IVR) rate, is proposed to characterize anisole deactivated processes. The new model exhibits satisfactory results which are validated against experimental measurements of fluorescence signal induced at a wavelength of 266 nm in a cell with different bath gases (N2, CO2, Ar and O2), a pressure range from 0.2 to 4 MPa, and a temperature range from 473 to 873 K.

  15. Hawking temperature: an elementary approach based on Newtonian mechanics and quantum theory

    Science.gov (United States)

    Pinochet, Jorge

    2016-01-01

    In 1974, the British physicist Stephen Hawking discovered that black holes have a characteristic temperature and are therefore capable of emitting radiation. Given the scientific importance of this discovery, there is a profuse literature on the subject. Nevertheless, the available literature ends up being either too simple, which does not convey the true physical significance of the issue, or too technical, which excludes an ample segment of the audience interested in science, such as physics teachers and their students. The present article seeks to remedy this shortcoming. It develops a simple and plausible argument that provides insight into the fundamental aspects of Hawking’s discovery, which leads to an approximate equation for the so-called Hawking temperature. The exposition is mainly intended for physics teachers and their students, and it only requires elementary algebra, as well as basic notions of Newtonian mechanics and quantum theory.

  16. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...

  17. Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors.

    Science.gov (United States)

    Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng

    2017-08-25

    The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ and heavy fermion superconductors CeCoIn 5 , where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.

  18. Influence of the temperature on the synthesis of CdS quantum dots stabilized with poly (vinil alcohol)

    International Nuclear Information System (INIS)

    Carvalho, Andre L.B. de; Mansur, Alexandra A.P.; Mansur, Herman S.; Gonzalez, Juan C.

    2011-01-01

    Semiconductor nanoparticles (Quantum Dots, QDs) have been the subject of recent research by presenting quantum properties. This property has stimulated the study of these particles in biological applications such as bookmarks, which creates the necessity of using different synthesis routes resulting in biocompatible systems. Thus, this study aimed to evaluate the effect of temperature on the properties of QDs cadmium sulfide, aqueous route using poly (vinyl alcohol), a biocompatible polymer, such as stabilizing agent. The characterization of particles produced was performed by UV-Vis spectroscopy and photoluminescence (PL) spectra for obtaining the absorption and emission, respectively and Transmission microscopy (TEM) for analysis of the diameter of the nanocrystals. (author)

  19. Proper energy of an electron in a topologically massive (2 + 1) quantum electrodynamics system at finite temperature and density

    International Nuclear Information System (INIS)

    Zhukovskii, K.V.; Eminov, P.A.

    1995-01-01

    The one-loop approximation is used to calculate the effects of finite temperature and nonzero chemical potential on the electron energy shift in a (2 + 1)-quantum electrodynamic system containing a Churn-Simon term. The induced electron mass is derived with a massless (2 + 1)-quantum electrodynamic system together with the exchange correction to the thermodynamic potential for a completely degenerate electron gas. It is shown that in the last case, incorporating the Churn-Simon term leads to loss of the gap in the direction law

  20. Quantum corrections to temperature dependent electrical conductivity of ZnO thin films degenerately doped with Si

    International Nuclear Information System (INIS)

    Das, Amit K.; Ajimsha, R. S.; Kukreja, L. M.

    2014-01-01

    ZnO thin films degenerately doped with Si (Si x Zn 1−x O) in the concentrations range of ∼0.5% to 5.8% were grown by sequential pulsed laser deposition on sapphire substrates at 400 °C. The temperature dependent resistivity measurements in the range from 300 to 4.2 K revealed negative temperature coefficient of resistivity (TCR) for the 0.5%, 3.8%, and 5.8% doped Si x Zn 1−x O films in the entire temperature range. On the contrary, the Si x Zn 1−x O films with Si concentrations of 1.0%, 1.7%, and 2.0% showed a transition from negative to positive TCR with increasing temperature. These observations were explained using weak localization based quantum corrections to conductivity

  1. The quantum phase-transitions of water

    Science.gov (United States)

    Fillaux, François

    2017-08-01

    It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.

  2. Temperature dependence of the CP/sup N-1/ model and the analogy with quantum chromodynamics

    International Nuclear Information System (INIS)

    Actor, A.

    1985-01-01

    The two-dimensional CP/sup N-1/ model - a simple field-theoretic analogue of four-dimensional quantum chromodynamics (QCD) - is analysed and reviewed. The major themes are the temperature dependence of the CP/sup N-1/ model, and the analogy between CP/sup N-1/ and QCD. A detailed treatment of the 1/N approximation of the CP/sup N-1/ model is given. The main results emerging from this approximation are discussed at length. These are: asymptotic freedom, dimensional transmutation, confinement and topological charge nonquantization at zero temperature T = 0, screening and topological charge quantization at finite temperature T. The analogy with QCD is explained in detail. A new, qualitative, analysis of the CP/sup N-1/ model at finite temperature is introduced. This approach exploits the conformal invariance of the model to 'heat' an arbitrary CP/sup N-1/ field from T = 0 to finite temperature. This is achieved by conformal-transforming the flat Euclidean space-time of the T = 0 theory to the cylindrical space-time of the finite temperature theory. (author)

  3. Evading the pulsar constraints on the cosmic string tension in supergravity inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Miyamoto, Yuhei [Tokyo Univ. (Japan). Dept. of Physics; Tokyo Univ. (JP). Research Center for the Early Universe (RESCEU); Yokoyama, Jun' ichi [Tokyo Univ. (JP). Research Center for the Early Universe (RESCEU); Tokyo Univ., Kashiwa, Chiba (JP). Inst. for the Physics and Mathematics of the Universe (IPMU)

    2012-04-15

    The cosmic string is a useful probe of the early Universe and may give us a clue to physics at high energy scales where any artificial particle accelerators cannot reach. Although one of the most promising tools is the cosmic microwave background, the constraint from gravitational waves is becoming so stringent that one may not hope to detect its signatures in the cosmic microwave background. In this paper, we construct a scenario that contains cosmic strings observable in the cosmic microwave background while evading the constraint imposed by the recent pulsar timing data. We argue that cosmic strings with relatively large tension are allowed by delaying the onset of the scaling regime. We also show that this scenario is naturally realized in the context of chaotic inflation in supergravity, where the phase transition is governed by the Hubble induced mass.

  4. Evading the pulsar constraints on the cosmic string tension in supergravity inflation

    International Nuclear Information System (INIS)

    Kamada, Kohei; Miyamoto, Yuhei; Yokoyama, Jun'ichi

    2012-04-01

    The cosmic string is a useful probe of the early Universe and may give us a clue to physics at high energy scales where any artificial particle accelerators cannot reach. Although one of the most promising tools is the cosmic microwave background, the constraint from gravitational waves is becoming so stringent that one may not hope to detect its signatures in the cosmic microwave background. In this paper, we construct a scenario that contains cosmic strings observable in the cosmic microwave background while evading the constraint imposed by the recent pulsar timing data. We argue that cosmic strings with relatively large tension are allowed by delaying the onset of the scaling regime. We also show that this scenario is naturally realized in the context of chaotic inflation in supergravity, where the phase transition is governed by the Hubble induced mass.

  5. Muusikamaailm : Arvo Pärdi uus teos. Telemanni päevad Magdeburgis. Uus orkester Soomes. Ingvar Lidholm 80. Auhindu ja preemiaid / Priit Kuusk

    Index Scriptorium Estoniae

    Kuusk, Priit, 1938-

    2001-01-01

    21. veebr. tuli Oxfordis maailmaesiettekandele A. Pärdi teos "Littlemore Tractus". Telemanni päevade raames toimuvast rahvusvahelisest kammeransamblite konkursist Magdeburgis. O. Mustonen asutas Helsingis uue orkestri. Lühidalt I.Lidholmi tegevusest ja loomingust. P. Norgaardile ja H. von Manen'ile antud autasust ja preemiast

  6. State-to-state quantum mechanical calculations of rate coefficients for the D+ + H2 → HD + H+ reaction at low temperature.

    Science.gov (United States)

    Honvault, P; Scribano, Y

    2013-10-03

    The dynamics of the D(+) + H2 → HD + H(+) reaction on a recent ab initio potential energy surface (Velilla, L.; Lepetit, B.; Aguado, A.; Beswick, J. A.; Paniagua, M. J. Chem. Phys. 2008, 129, 084307) has been investigated by means of a time-independent quantum mechanical approach. Cross-sections and rate coefficients are calculated, respectively, for collision energies below 0.1 eV and temperatures up to 100 K for astrophysical application. An excellent accord is found for collision energy above 5 meV, while a disagreement between theory and experiment is observed below this energy. We show that the rate coefficients reveal a slightly temperature-dependent behavior in the upper part of the temperature range considered here. This is in agreement with the experimental data above 80 K, which give a temperature independent value. However, a significant decrease is found at temperatures below 20 K. This decrease can be related to quantum effects and the decay back to the reactant channel, which are not considered by simple statistical approaches, such as the Langevin model. Our results have been fitted to appropriate analytical expressions in order to be used in astrochemical and cosmological models.

  7. Spin storage in quantum dot ensembles and single quantum dots

    International Nuclear Information System (INIS)

    Heiss, Dominik

    2009-01-01

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T 1 =20 ms at B=4 T and T=1 K. A strong magnetic field dependence T 1 ∝B -5 has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T 1 ∝T -1 . The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T 1 h in the microsecond range, therefore, comparable with

  8. Spin storage in quantum dot ensembles and single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Dominik

    2009-10-15

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T{sub 1}=20 ms at B=4 T and T=1 K. A strong magnetic field dependence T{sub 1}{proportional_to}B{sup -5} has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T{sub 1}{proportional_to}T{sup -1}. The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T{sub 1}{sup h

  9. Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise

    International Nuclear Information System (INIS)

    Saha, Surajit; Ganguly, Jayanta; Bera, Aindrila; Ghosh, Manas

    2016-01-01

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • Hydrostatic pressure (HP) and temperature (T) affect DMS. • The dot is subjected to Gaussian white noise. • DMS also depends on mode of application of noise. - Abstract: We explore the diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise and under the combined influence of hydrostatic pressure (HP) and temperature (T). Presence of noise and also its mode of application discernibly affect the DMS profile. Application of HP and T invites greater delicacies in the observed DMS profiles. However, whereas the interplay between T and noise comes out to be extremely sensitive in fabricating the DMS profile, the pressure-noise interplay appears to be not that much noticeable. Under all conditions of temperature and pressure, the presence of multiplicative noise diminishes the value of DMS in comparison with that in presence of its additive analogue. The present study renders a deep insight into the remarkable role played by the interplay between noise, hydrostatic pressure and temperature in controlling the effective confinement imposed on the system which bears unquestionable relevance.

  10. Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Surajit [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India); Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Bera, Aindrila [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2016-11-30

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • Hydrostatic pressure (HP) and temperature (T) affect DMS. • The dot is subjected to Gaussian white noise. • DMS also depends on mode of application of noise. - Abstract: We explore the diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise and under the combined influence of hydrostatic pressure (HP) and temperature (T). Presence of noise and also its mode of application discernibly affect the DMS profile. Application of HP and T invites greater delicacies in the observed DMS profiles. However, whereas the interplay between T and noise comes out to be extremely sensitive in fabricating the DMS profile, the pressure-noise interplay appears to be not that much noticeable. Under all conditions of temperature and pressure, the presence of multiplicative noise diminishes the value of DMS in comparison with that in presence of its additive analogue. The present study renders a deep insight into the remarkable role played by the interplay between noise, hydrostatic pressure and temperature in controlling the effective confinement imposed on the system which bears unquestionable relevance.

  11. Quadra-quantum Dots and Related Patterns of Quantum Dot Molecules:

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Abstract Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called ‘‘Droplet Epitaxy” has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390°C with a droplet growth rate of 1ML/s. Arsenic flux (7–8×10-6Torr is then exposed for InGaAs crystallization at 200°C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or , which are preferable crystallographic directions of quantum dot alignment in general.

  12. Local quantum thermal susceptibility

    Science.gov (United States)

    de Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio

    2016-09-01

    Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions.

  13. Quantum critical dynamics for a prototype class of insulating antiferromagnets

    Science.gov (United States)

    Wu, Jianda; Yang, Wang; Wu, Congjun; Si, Qimiao

    2018-06-01

    Quantum criticality is a fundamental organizing principle for studying strongly correlated systems. Nevertheless, understanding quantum critical dynamics at nonzero temperatures is a major challenge of condensed-matter physics due to the intricate interplay between quantum and thermal fluctuations. The recent experiments with the quantum spin dimer material TlCuCl3 provide an unprecedented opportunity to test the theories of quantum criticality. We investigate the nonzero-temperature quantum critical spin dynamics by employing an effective O (N ) field theory. The on-shell mass and the damping rate of quantum critical spin excitations as functions of temperature are calculated based on the renormalized coupling strength and are in excellent agreement with experiment observations. Their T lnT dependence is predicted to be dominant at very low temperatures, which will be tested in future experiments. Our work provides confidence that quantum criticality as a theoretical framework, which is being considered in so many different contexts of condensed-matter physics and beyond, is indeed grounded in materials and experiments accurately. It is also expected to motivate further experimental investigations on the applicability of the field theory to related quantum critical systems.

  14. Energy Dissipation in Quantum Computers

    OpenAIRE

    Granik, A.; Chapline, G.

    2003-01-01

    A method is described for calculating the heat generated in a quantum computer due to loss of quantum phase information. Amazingly enough, this heat generation can take place at zero temperature. and may explain why it is impossible to extract energy from vacuum fluctuations. Implications for optical computers and quantum cosmology are also briefly discussed.

  15. Low-temperature conductivity of weakly interacting quantum spin Hall edges in strained-layer InAs/GaInSb

    Science.gov (United States)

    Li, Tingxin; Wang, Pengjie; Sullivan, Gerard; Lin, Xi; Du, Rui-Rui

    2017-12-01

    We report low-temperature transport measurements in strained InAs /G a0.68I n0.32Sb quantum wells, which supports time-reversal symmetry-protected helical edge states. The temperature and bias voltage dependence of the helical edge conductance for devices of various sizes are consistent with the theoretical expectation of a weakly interacting helical edge state. Moreover, we found that the magnetoresistance of the helical edge states is related to the edge interaction effect and the disorder strength.

  16. Temperature-dependent measurement of Auger recombination in In{sub 0.40}Ga{sub 0.60}N/GaN red-emitting (λ = 630 nm) quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Frost, Thomas; Banerjee, Animesh; Jahangir, Shafat; Bhattacharya, Pallab, E-mail: pkb@eecs.umich.edu [Center for Photonics and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122 (United States)

    2014-02-24

    We have derived the Auger recombination coefficients, as a function of temperature, for In{sub 0.4}Ga{sub 0.6}N/GaN self-organized quantum dots from large-signal modulation measurements made on lasers in which the quantum dots form the gain media. The value of C{sub a} = 1.3 ±0.2 × 10{sup −31} cm{sup 6} s{sup −1} at room temperature and the coefficient decreases with increase of temperature.

  17. Quantum heat engine with coupled superconducting resonators

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Aslan, Nur; Wilson, C. M.

    2017-01-01

    the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal......We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one...... the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures....

  18. Quantum - statistical equation of state

    International Nuclear Information System (INIS)

    Kalitkin, N.N.; Kuz'mina, L.V.

    1976-01-01

    An atom model is considered which allows uniform description of the equation of an equilibrium plasma state in the range of densities from gas to superhigh ones and in the temperature range from 1-5 eV to a ten of keV. Quantum and exchange corrections to the Thomas-Fermi thermodynamic functions at non zero temperatures have been calculated. The calculated values have been compared with experimental data and with calculations performed by more accurate models. The differences result from the fact that a quantum approach does not allow for shell effects. The evaluation of these differences makes it possible to indicate the limits of applicability of the Thomas-Fermi model with quantum and exchange corrections. It turns out that if at zero temperature the model may be applied only for high compressions, at the temperature more than 1 eV it well describes the behaviour of plasma in a very wide range of densities and agrees satisfactorily with experiment even for non-ideal plasma

  19. Quadra-Quantum Dots and Related Patterns of Quantum Dot Molecules: Basic Nanostructures for Quantum Dot Cellular Automata Application

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.

  20. Evading the top-quark mass bound at the Fermilab Tevatron: New signals for the top quark

    International Nuclear Information System (INIS)

    Mukhopadhyaya, B.; Nandi, S.

    1991-01-01

    If an SU(2)-singlet charge-2/3 quark exists, current data allow a wide range for the parameters of the 4x4 mixing matrix in which the usual ''hard-lepton'' signal of the top quark is suppressed. For a light Higgs boson, the top quark decays predominantly via the flavor-changing Yukawa interaction, thus evading the Fermilab Tevatron bounds on its mass. For a heavier Higgs boson, flavor-changing neutral-current decays become important, giving rise to anomalous Z-pair production, testable at the upgraded Tevetron, at the CERN Large Hardon Collider, and at the Superconducting Super Collider

  1. Local quantum thermal susceptibility

    Science.gov (United States)

    De Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio

    2016-01-01

    Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions. PMID:27681458

  2. Scrambling in the quantum Lifshitz model

    Science.gov (United States)

    Plamadeala, Eugeniu; Fradkin, Eduardo

    2018-06-01

    We study signatures of chaos in the quantum Lifshitz model through out-of-time ordered correlators (OTOC) of current operators. This model is a free scalar field theory with dynamical critical exponent z  =  2. It describes the quantum phase transition in 2D systems, such as quantum dimer models, between a phase with a uniform ground state to another one with spontaneously broken translation invariance. At the lowest temperatures the chaotic dynamics are dominated by a marginally irrelevant operator which induces a temperature dependent stiffness term. The numerical computations of OTOC exhibit a non-zero Lyapunov exponent (LE) in a wide range of temperatures and interaction strengths. The LE (in units of temperature) is a weakly temperature-dependent function; it vanishes at weak interaction and saturates for strong interaction. The Butterfly velocity increases monotonically with interaction strength in the studied region while remaining smaller than the interaction-induced velocity/stiffness.

  3. Nontrivial transition of transmission in a highly open quantum point contact in the quantum Hall regime

    Science.gov (United States)

    Hong, Changki; Park, Jinhong; Chung, Yunchul; Choi, Hyungkook; Umansky, Vladimir

    2017-11-01

    Transmission through a quantum point contact (QPC) in the quantum Hall regime usually exhibits multiple resonances as a function of gate voltage and high nonlinearity in bias. Such behavior is unpredictable and changes sample by sample. Here, we report the observation of a sharp transition of the transmission through an open QPC at finite bias, which was observed consistently for all the tested QPCs. It is found that the bias dependence of the transition can be fitted to the Fermi-Dirac distribution function through universal scaling. The fitted temperature matches quite nicely to the electron temperature measured via shot-noise thermometry. While the origin of the transition is unclear, we propose a phenomenological model based on our experimental results that may help to understand such a sharp transition. Similar transitions are observed in the fractional quantum Hall regime, and it is found that the temperature of the system can be measured by rescaling the quasiparticle energy with the effective charge (e*=e /3 ). We believe that the observed phenomena can be exploited as a tool for measuring the electron temperature of the system and for studying the quasiparticle charges of the fractional quantum Hall states.

  4. Nonequilibrium quantum field theories

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1988-01-01

    Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)

  5. Effects of hydrostatic pressure and temperature on interband optical transitions in InAs/GaAs vertically coupled double quantum dots

    International Nuclear Information System (INIS)

    Baghramyan, H M; Barseghyan, M G; Kirakosyan, A A

    2012-01-01

    We consider the effect of hydrostatic pressure, temperature and the variations of structure's sizes on interband transition energy and absorption coefficient in InAs/GaAs vertically coupled double quantum dots. The threshold energy of interband optical transitions is examined as a function of hydrostatic pressure and temperature for the different geometries of the structure. We also investigated the dependencies of the interband light absorption coefficient on the incident photon energy.

  6. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures

    Science.gov (United States)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003), 10.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013), 10.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S =1 /2 , we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  7. A Ku band pulsed electron paramagnetic resonance spectrometer using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Yung Szen, E-mail: yungszen@utm.my [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka-shi, Osaka 560-8531 (Japan); Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Tabuchi, Yutaka [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904 (Japan); Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro, E-mail: kitagawa@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka-shi, Osaka 560-8531 (Japan)

    2015-06-15

    We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.

  8. Decoherence and Entanglement Simulation in a Model of Quantum Neural Network Based on Quantum Dots

    Directory of Open Access Journals (Sweden)

    Altaisky Mikhail V.

    2016-01-01

    Full Text Available We present the results of the simulation of a quantum neural network based on quantum dots using numerical method of path integral calculation. In the proposed implementation of the quantum neural network using an array of single-electron quantum dots with dipole-dipole interaction, the coherence is shown to survive up to 0.1 nanosecond in time and up to the liquid nitrogen temperature of 77K.We study the quantum correlations between the quantum dots by means of calculation of the entanglement of formation in a pair of quantum dots on the GaAs based substrate with dot size of 100 ÷ 101 nanometer and interdot distance of 101 ÷ 102 nanometers order.

  9. Continuous-Wave Operation of GaN Based Multi-Quantum-Well Laser Diode at Room Temperature

    International Nuclear Information System (INIS)

    Li-Qun, Zhang; Shu-Ming, Zhang; Hui, Yang; Lian, Ji; Jian-Jun, Zhu; Zong-Shun, Liu; De-Gang, Zhao; De-Sheng, Jiang; Li-Hong, Duan; Hai, Wang; Yong-Sheng, Shi; Su-Ying, Liu; Jun-Wu, Liang; Qing, Cao; Liang-Hui, Chen

    2008-01-01

    Room-temperature operation of cw GaN based multi-quantum-well laser diodes (LDs) is demonstrated. The LD structure is grown on a sapphire (0001) substrate by metalorganic chemical vapour deposition. A 2.5μm × 800μm ridge waveguide structure is fabricated. The electrical and optical characteristics of the laser diode under direct current injection at room temperature are investigated. The threshold current and voltage of the LD under cw operation are 110 mA and 10.5 V, respectively. Thermal induced series resistance decrease and emission wavelength red-shift are observed as the injection current is increased. The full width at half maximum for the parallel and perpendicular far field pattern (FFP) are 12° and 32°, respectively

  10. Asymptotics of quantum weighted Hurwitz numbers

    Science.gov (United States)

    Harnad, J.; Ortmann, Janosch

    2018-06-01

    This work concerns both the semiclassical and zero temperature asymptotics of quantum weighted double Hurwitz numbers. The partition function for quantum weighted double Hurwitz numbers can be interpreted in terms of the energy distribution of a quantum Bose gas with vanishing fugacity. We compute the leading semiclassical term of the partition function for three versions of the quantum weighted Hurwitz numbers, as well as lower order semiclassical corrections. The classical limit is shown to reproduce the simple single and double Hurwitz numbers studied by Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74). The KP-Toda τ-function that serves as generating function for the quantum Hurwitz numbers is shown to have the τ-function of Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74) as its leading term in the classical limit, and, with suitable scaling, the same holds for the partition function, the weights and expectations of Hurwitz numbers. We also compute the zero temperature limit of the partition function and quantum weighted Hurwitz numbers. The KP or Toda τ-function serving as generating function for the quantum Hurwitz numbers are shown to give the one for Belyi curves in the zero temperature limit and, with suitable scaling, the same holds true for the partition function, the weights and the expectations of Hurwitz numbers.

  11. Nonlinear optical rectification in vertically coupled InAs/GaAs quantum dots under electromagnetic fields, pressure and temperature effects

    Energy Technology Data Exchange (ETDEWEB)

    Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Ben Mahrsia, R.; Bouzaiene, L.; Maaref, H.

    2013-12-15

    In this paper we explore the effects of the structural dimensions, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). The analytical expression of the NOR is analyzed by using the density matrix formalism, the effective mass and the Finite Difference Method (FDM). Obtained results show that the NOR obtained with this coupled system is not a monotonic function of the barrier width, electromagnetic fields, pressure and temperature. Also, calculated results reveal that the resonant peaks of the NOR can be blue-shifted or red-shifted energies depending on the energy of the lowest confined states in the VCQDs structure. In addition, this condition can be controlled by changes in the structural dimensions and the external proofs mentioned above. -- Highlights: • In this paper we explore the effects of the barrier width, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). • The calculated results reveal that the resonant peaks of the NOR can be blue-shifted to large photon energies or red-shifted to lower photon energies. • In this paper, all parameters: electromagnetic fields, pressure and temperature effects are introduced and investigated. • The resonant energy and the magnitude of the NOR are controlled and adjusted.

  12. Muusikamaailm : Festivalil Schwetzingenis. Ellingtoni sajandi tähistamine. Linz saab uue ooperimaja. Isaac Stern viiulita Saksamaal. Muusikapäevad Luksemburgis / Priit Kuusk

    Index Scriptorium Estoniae

    Kuusk, Priit, 1938-

    1999-01-01

    30. apr.-7. juunini toimuvast muusikafestivalist Schwetzingenis. D. Ellingtoni 100. sünniaastapäeva tähistamisest maailmas. Valmis Linzi uue ooperimaja planeering. I. Stern juhatas kümnepäevast seminari Kölni Kõrgema Muusikakooli juures. Rahvusvahelise Nüüdismuusika Ühingu (ISCM) iga-aastased maailma muusikapäevad toimuvad 2000. aastal Luksemburgis

  13. Combined influence of hydrostatic pressure and temperature on interband emission energy of impurity doped quantum dots in presence of noise

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Aindrila; Ghosh, Manas, E-mail: pcmg77@rediffmail.com

    2016-11-01

    We explore the profiles of interband emission energy (IEE) of impurity doped quantum dots (QDs) under the simultaneous influence of hydrostatic pressure (HP) and temperature (T) and in presence and absence of Gaussian white noise. Noise has been incorporated to the system additively and multiplicatively. In this regard, modulation of IEE by the variation of several other relevant quantities such as electric field, magnetic field, confinement potential, dopant location, dopant potential and aluminium concentration has also been investigated. Gradual alteration of HP and T affects IEE discernibly. Inclusion of noise has been found to enhance or deplete the IEE depending upon its mode of application. Moreover, under given conditions of temperature and pressure, the difference between the impurity-free ground state energy and the binding energy appears to be crucial in determining whether or not the profiles of IEE would resemble that of binding energy. The findings reveal fascinating role played by noise in tailoring the IEE of doped QD system under conspicuous presence of hydrostatic pressure and temperature. - Highlights: • Interband emission energy (IEE) of doped quantum dot is studied. • Hydrostatic pressure (HP) and temperature (T) affect IEE. • The dot is subjected to Gaussian white noise. • Noise amplifies and suppresses IEE depending on particular condition.

  14. Quantum Triple Point and Quantum Critical End Points in Metallic Magnets.

    Science.gov (United States)

    Belitz, D; Kirkpatrick, T R

    2017-12-29

    In low-temperature metallic magnets, ferromagnetic (FM) and antiferromagnetic (AFM) orders can exist, adjacent to one another or concurrently, in the phase diagram of a single system. We show that universal quantum effects qualitatively alter the known phase diagrams for classical magnets. They shrink the region of concurrent FM and AFM order, change various transitions from second to first order, and, in the presence of a magnetic field, lead to either a quantum triple point where the FM, AFM, and paramagnetic phases all coexist or a quantum critical end point.

  15. Time travel paradoxes, path integrals, and the many worlds interpretation of quantum mechanics

    International Nuclear Information System (INIS)

    Everett, Allen

    2004-01-01

    We consider two approaches to evading paradoxes in quantum mechanics with closed timelike curves. In a model similar to Politzer's, assuming pure states and using path integrals, we show that the problems of paradoxes and of unitarity violation are related; preserving unitarity avoids paradoxes by modifying the time evolution so that improbable events become certain. Deutsch has argued, using the density matrix, that paradoxes do not occur in the 'many worlds interpretation'. We find that in this approach account must be taken of the resolution time of the device that detects objects emerging from a wormhole or other time machine. When this is done one finds that this approach is viable only if macroscopic objects traversing a wormhole interact with it so strongly that they are broken into microscopic fragments

  16. Groebner bases for finite-temperature quantum computing and their complexity

    International Nuclear Information System (INIS)

    Crompton, P. R.

    2011-01-01

    Following the recent approach of using order domains to construct Groebner bases from general projective varieties, we examine the parity and time-reversal arguments relating to the Wightman axioms of quantum field theory and propose that the definition of associativity in these axioms should be introduced a posteriori to the cluster property in order to generalize the anyon conjecture for quantum computing to indefinite metrics. We then show that this modification, which we define via ideal quotients, does not admit a faithful representation of the Braid group, because the generalized twisted inner automorphisms that we use to reintroduce associativity are only parity invariant for the prime spectra of the exterior algebra. We then use a coordinate prescription for the quantum deformations of toric varieties to show how a faithful representation of the Braid group can be reconstructed and argue that for a degree reverse lexicographic (monomial) ordered Groebner basis, the complexity class of this problem is bounded quantum polynomial.

  17. Electron-longitudinal-acoustic-phonon scattering in double-quantum-dot based quantum gates

    International Nuclear Information System (INIS)

    Zhao Peiji; Woolard, Dwight L.

    2008-01-01

    We propose a nanostructure design which can significantly suppress longitudinal-acoustic-phonon-electron scattering in double-quantum-dot based quantum gates for quantum computing. The calculated relaxation rates vs. bias voltage exhibit a double-peak feature with a minimum approaching 10 5 s -1 . In this matter, the energy conservation law prohibits scattering contributions from phonons with large momenta; furthermore, increasing the barrier height between the double quantum dots reduces coupling strength between the dots. Hence, the joint action of the energy conservation law and the decoupling greatly reduces the scattering rates. The degrading effects of temperatures can be reduced simply by increasing the height of the barrier between the dots

  18. Quantum interference effects for the electronic fluctuations in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.G.G.S. [Universidade Federal da Paraiba (UFPB), Rio Tinto, PB (Brazil). Departamento de Ciencias Exatas; Hussein, M.S. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Barbosa, A.L.R. [Universidade Federal Rural de Pernambuco (UAEADTec/UFRPE), Recife, PE (Brazil). Unidade Academica de Ensino a Distancia. Pos-Graduacao em Fisica Aplicada

    2014-07-01

    For the main quantum interference term of coherent electronic transport, we study the effect of temperature, perpendicular and/or parallel magnetic fields, spin-orbit coupling and tunneling rates in both metallic grains and mesoscopic heterostructures. We show that the Zeeman effects determines a crucial way to characterize the quantum interference phenomena of the noise for anisotropic systems (mesoscopic heterostructures), qualitatively distinct from those observed in isotropic structures (metallic grains). (author)

  19. Quantum interference effects for the electronic fluctuations in quantum dots

    International Nuclear Information System (INIS)

    Ramos, J.G.G.S.; Hussein, M.S.; Barbosa, A.L.R.

    2014-01-01

    For the main quantum interference term of coherent electronic transport, we study the effect of temperature, perpendicular and/or parallel magnetic fields, spin-orbit coupling and tunneling rates in both metallic grains and mesoscopic heterostructures. We show that the Zeeman effects determines a crucial way to characterize the quantum interference phenomena of the noise for anisotropic systems (mesoscopic heterostructures), qualitatively distinct from those observed in isotropic structures (metallic grains). (author)

  20. The role of hydrostatic pressure and temperature on bound polaron in semiconductor quantum dot

    International Nuclear Information System (INIS)

    El Moussaouy, A.; Ouchani, N.

    2014-01-01

    We studied theoretically the effects of hydrostatic pressure and temperature on the binding energy of shallow hydrogenic impurity in a cylindrical quantum dot (QD) using a variational approach within the effective mass approximation. The hydrostatic stress was applied along the QD growth axis. The interactions between the charge carriers and confined longitudinal optical (LO) phonon modes are taken into account. The numerical computation for GaAs/Ga 1−x Al x As QD has shown that the binding energy with and without the polaronic correction depends on the location of the impurity and the pressure effect and it is more pronounced for impurities in the QD center. Both the binding energy and the polaronic contribution increase linearly with increasing stress. For each pressure value, these energies are also found to decrease as the temperature increases. The results obtained show that in experimental studies of optical and electronic properties of QDs, the effects of pressure, temperature and polaronic correction on donor impurity binding energy should be taken into consideration

  1. Quantum Szilard Engine with Attractively Interacting Bosons

    Science.gov (United States)

    Bengtsson, J.; Tengstrand, M. Nilsson; Wacker, A.; Samuelsson, P.; Ueda, M.; Linke, H.; Reimann, S. M.

    2018-03-01

    We show that a quantum Szilard engine containing many bosons with attractive interactions enhances the conversion between information and work. Using an ab initio approach to the full quantum-mechanical many-body problem, we find that the average work output increases significantly for a larger number of bosons. The highest overshoot occurs at a finite temperature, demonstrating how thermal and quantum effects conspire to enhance the conversion between information and work. The predicted effects occur over a broad range of interaction strengths and temperatures.

  2. Entropic Barriers for Two-Dimensional Quantum Memories

    Science.gov (United States)

    Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.

    2014-03-01

    Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.

  3. Room-temperature quantum noise limited spectrometry and methods of the same

    Science.gov (United States)

    Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher T.

    2018-05-15

    According to one embodiment, a heterodyne detection system for detecting light, includes: a first input aperture configured to receive first light from a scene input; a second input aperture configured to receive second light from a local oscillator input; a broadband local oscillator configured to provide the second light to the second input aperture; a dispersive element configured to disperse the first light and the second light; and a final condensing lens coupled to a detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the detector. The detector is configured to sense a frequency difference between the first light and the second light; and the final condensing lens comprises a plasmonic condensing lens. Methods for forming a plasmonic condensing lens to enable room temperature quantum noise limited spectrometry are also disclosed.

  4. Locality of Temperature

    Science.gov (United States)

    Kliesch, M.; Gogolin, C.; Kastoryano, M. J.; Riera, A.; Eisert, J.

    2014-07-01

    This work is concerned with thermal quantum states of Hamiltonians on spin- and fermionic-lattice systems with short-range interactions. We provide results leading to a local definition of temperature, thereby extending the notion of "intensivity of temperature" to interacting quantum models. More precisely, we derive a perturbation formula for thermal states. The influence of the perturbation is exactly given in terms of a generalized covariance. For this covariance, we prove exponential clustering of correlations above a universal critical temperature that upper bounds physical critical temperatures such as the Curie temperature. As a corollary, we obtain that above the critical temperature, thermal states are stable against distant Hamiltonian perturbations. Moreover, our results imply that above the critical temperature, local expectation values can be approximated efficiently in the error and the system size.

  5. Quantum Teleportation via Completely Anisotropic Heisenberg Chain in Inhomogeneous Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    FU Cheng-Hua; HU Zhan-Ning

    2013-01-01

    The quantum teleportation with the entangled thermal state is investigated based on the completely anisotropic Heisenberg chain in the presence of the externally inhomogeneous magnetic field.The effects of the anisotropy and magnetic field for the quantum fidefity are studied in detail.The zero temperature limit and the features of the nonzero temperature for this nonclassical fidelity are obtained.We find that the quantum teleportation demands more stringent conditions than the thermal entanglement of the resource by investigating the threshold temperature of the thermal concurrence and the critical temperature of the maximal teleportation fidelity.The useful quantum teleportation should avoid the point of the phase transition of the system and the anisotropy of the chain and the external magnetic field can control the applicability of the resource in the quantum teleportation.

  6. Thermal effect of multi-quantum barriers within InGaN/GaN multi-quantum well light-emitting diodes

    International Nuclear Information System (INIS)

    Lee, Jiunn-Chyi; Wu, Ya-Fen

    2010-01-01

    We introduce the InGaN/GaN multi-quantum barriers (MQBs) into InGaN/GaN multi-quantum well (MQW) heterostructures to improve the performance of light-emitting diodes. The temperature and injection current dependent electroluminescence were carried out to study the thermal effect of InGaN/GaN MQWs. We observe the enhancement of carrier confinement in the active layer and the inhibited carrier leakage over the barrier for the sample with MQBs. In addition, the external quantum efficiency of the samples is obtained. It is found that the radiative efficiency of the sample possessing MQBs exhibits less sensitive temperature dependence and leads to an improved efficiency in the high temperature and high injection current range.

  7. Coherence enhanced quantum metrology in a nonequilibrium optical molecule

    Science.gov (United States)

    Wang, Zhihai; Wu, Wei; Cui, Guodong; Wang, Jin

    2018-03-01

    We explore the quantum metrology in an optical molecular system coupled to two environments with different temperatures, using a quantum master equation beyond secular approximation. We discover that the steady-state coherence originating from and sustained by the nonequilibrium condition can enhance quantum metrology. We also study the quantitative measures of the nonequilibrium condition in terms of the curl flux, heat current and entropy production at the steady state. They are found to grow with temperature difference. However, an apparent paradox arises considering the contrary behaviors of the steady-state coherence and the nonequilibrium measures in relation to the inter-cavity coupling strength. This paradox is resolved by decomposing the heat current into a population part and a coherence part. Only the latter, the coherence part of the heat current, is tightly connected to the steady-state coherence and behaves similarly with respect to the inter-cavity coupling strength. Interestingly, the coherence part of the heat current flows from the low-temperature reservoir to the high-temperature reservoir, opposite to the direction of the population heat current. Our work offers a viable way to enhance quantum metrology for open quantum systems through steady-state coherence sustained by the nonequilibrium condition, which can be controlled and manipulated to maximize its utility. The potential applications go beyond quantum metrology and extend to areas such as device designing, quantum computation and quantum technology in general.

  8. Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy*

    Directory of Open Access Journals (Sweden)

    Kostyantyn Kechedzhi

    2016-05-01

    Full Text Available Real-life quantum computers are inevitably affected by intrinsic noise resulting in dissipative nonunitary dynamics realized by these devices. We consider an open-system quantum annealing algorithm optimized for such a realistic analog quantum device which takes advantage of noise-induced thermalization and relies on incoherent quantum tunneling at finite temperature. We theoretically analyze the performance of this algorithm considering a p-spin model that allows for a mean-field quasiclassical solution and, at the same time, demonstrates the first-order phase transition and exponential degeneracy of states, typical characteristics of spin glasses. We demonstrate that finite-temperature effects introduced by the noise are particularly important for the dynamics in the presence of the exponential degeneracy of metastable states. We determine the optimal regime of the open-system quantum annealing algorithm for this model and find that it can outperform simulated annealing in a range of parameters. Large-scale multiqubit quantum tunneling is instrumental for the quantum speedup in this model, which is possible because of the unusual nonmonotonous temperature dependence of the quantum-tunneling action in this model, where the most efficient transition rate corresponds to zero temperature. This model calculation is the first analytically tractable example where open-system quantum annealing algorithm outperforms simulated annealing, which can, in principle, be realized using an analog quantum computer.

  9. Quantum entanglement at negative temperature

    International Nuclear Information System (INIS)

    Furman, G B; Meerovich, V M; Sokolovsky, V L

    2013-01-01

    An isolated spin system that is in internal thermodynamic equilibrium and that has an upper limit to its allowed energy states can possess a negative temperature. We calculate the thermodynamic characteristics and the concurrence in this system over the entire range of positive and negative temperatures. Our calculation was performed for different real structures, which can be used in experiments. It is found that the temperature dependence of the concurrence is substantially asymmetrical similarly to other thermodynamic characteristics. At a negative temperature the maximum concurrence and the absolute temperature of the entanglement appearance are significantly larger than those at a positive temperature. The concurrence can be characterized by two dimensionless parameters: the ratio between the Zeeman and dipolar energies and the ratio of the thermal and dipolar energies. It was shown that for all considered structures the dimensionless temperatures of the transition between entanglement and separability of the first and second spins are independent of spin structure and the number of spins. (paper)

  10. Photoluminescence studies of single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1999-01-01

    Semiconductor quantum dots are considered a promising material system for future optical devices and quantum computers. We have studied the low-temperature photoluminescence properties of single InGaAs quantum dots embedded in GaAs. The high spatial resolution required for resolving single dots...... to resolve luminescence lines from individual quantum dots, revealing an atomic-like spectrum of sharp transition lines. A parameter of fundamental importance is the intrinsic linewidth of these transitions. Using high-resolution spectroscopy we have determined the linewidth and investigated its dependence...... on temperature, which gives information about how the exciton confined to the quantum dot interacts with the surrounding lattice....

  11. Quantum Discord Determines the Interferometric Power of Quantum States

    Science.gov (United States)

    Girolami, Davide; Souza, Alexandre M.; Giovannetti, Vittorio; Tufarelli, Tommaso; Filgueiras, Jefferson G.; Sarthour, Roberto S.; Soares-Pinto, Diogo O.; Oliveira, Ivan S.; Adesso, Gerardo

    2014-05-01

    Quantum metrology exploits quantum mechanical laws to improve the precision in estimating technologically relevant parameters such as phase, frequency, or magnetic fields. Probe states are usually tailored to the particular dynamics whose parameters are being estimated. Here we consider a novel framework where quantum estimation is performed in an interferometric configuration, using bipartite probe states prepared when only the spectrum of the generating Hamiltonian is known. We introduce a figure of merit for the scheme, given by the worst-case precision over all suitable Hamiltonians, and prove that it amounts exactly to a computable measure of discord-type quantum correlations for the input probe. We complement our theoretical results with a metrology experiment, realized in a highly controllable room-temperature nuclear magnetic resonance setup, which provides a proof-of-concept demonstration for the usefulness of discord in sensing applications. Discordant probes are shown to guarantee a nonzero phase sensitivity for all the chosen generating Hamiltonians, while classically correlated probes are unable to accomplish the estimation in a worst-case setting. This work establishes a rigorous and direct operational interpretation for general quantum correlations, shedding light on their potential for quantum technology.

  12. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  13. Semiclassical approach to finite-temperature quantum annealing with trapped ions

    Science.gov (United States)

    Raventós, David; Graß, Tobias; Juliá-Díaz, Bruno; Lewenstein, Maciej

    2018-05-01

    Recently it has been demonstrated that an ensemble of trapped ions may serve as a quantum annealer for the number-partitioning problem [Nat. Commun. 7, 11524 (2016), 10.1038/ncomms11524]. This hard computational problem may be addressed by employing a tunable spin-glass architecture. Following the proposal of the trapped-ion annealer, we study here its robustness against thermal effects; that is, we investigate the role played by thermal phonons. For the efficient description of the system, we use a semiclassical approach, and benchmark it against the exact quantum evolution. The aim is to understand better and characterize how the quantum device approaches a solution of an otherwise difficult to solve NP-hard problem.

  14. Suppressing gravitino thermal production with a temperature-dependent messenger coupling

    International Nuclear Information System (INIS)

    Badziak, Marcin; Dalianis, Ioannis; Lalak, Zygmunt

    2016-01-01

    We show that the constraints on GMSB theories from the gravitino cosmology can be significantly relaxed if the messenger-spurion coupling is temperature dependent. We demonstrate this novel mechanism in a scenario in which this coupling depends on the VEV of an extra singlet field S that interacts with the thermalized plasma which can result in a significantly suppressed gravitino production rate. In such a scenario the relic gravitino abundance is determined by the thermal dynamics of the S field and it is easy to fit the observed dark matter abundance evading the stringent constraints on the reheating temperature, thus making gravitino dark matter consistent with thermal leptogenesis.

  15. Ultra-large scale synthesis of high electrochemical performance SnO{sub 2} quantum dots within 5 min at room temperature following a growth self-termination mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Hongtao, E-mail: htcui@ytu.edu.cn; Xue, Junying; Ren, Wanzhong; Wang, Minmin

    2015-10-05

    Highlights: • SnO{sub 2} quantum dots were prepared at an ultra-large scale at room temperature within 5 min. • The grinding of SnCl{sub 2}⋅2H{sub 2}O and ammonium persulphate with morpholine produces quantum dots. • The reactions were self-terminated through the rapid consumption of water. • The obtained SnO{sub 2} quantum dots own high electrochemical performance. - Abstract: SnO{sub 2} quantum dots are prepared at an ultra-large scale by a productive synthetic procedure without using any organic ligand. The grinding of solid mixture of SnCl{sub 2}⋅2H{sub 2}O and ammonium persulphate with morpholine in a mortar at room temperature produces 1.2 nm SnO{sub 2} quantum dots within 5 min. The formation of SnO{sub 2} is initiated by the reaction between tin ions and hydroxyl groups generated from hydrolysis of morpholine in the released hydrate water from SnCl{sub 2}⋅2H{sub 2}O. It is considered that as water is rapidly consumed by the hydrolysis reaction of morpholine, the growth process of particles is self-terminated immediately after their transitory period of nucleation and growth. As a result of simple procedure and high toleration to scaling up of preparation, at least 50 g of SnO{sub 2} quantum dots can be produced in one batch in our laboratory. The as prepared quantum dots present high electrochemical performance due to the effective faradaic reaction and the alternative trapping of electrons and holes.

  16. Muonium quantum diffusion and localization in cryocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Storchak, V. [Kurchatov Inst., Moscow (Russian Federation); Brewer, J.H.; Morris, G.D. [Univ. of British Columbia, Vancouver, British Columbia (Canada)

    1995-08-01

    The authors review their recent study of atomic muonium ({mu}{sup +}e{sup {minus}} or Mu, a light isotope of the hydrogen atom) diffusion in the simplest solids--Van der Walls cryocrystals. They give experimental evidence of the quantum-mechanical nature of the Mu diffusion in these solids. The results are compared with the current theories of quantum diffusion in insulators. The predicted T{sup {+-}7} power-law temperature dependence of the Mu hop rate is observed directly for the first time in solid nitrogen ({delta}-N{sub 2}) and is taken as confirmation of a two-phonon scattering mechanism. In solid xenon and krypton, by contrast, the one-phonon interaction is dominant in the whole temperature range under investigation due to the extremely low values of the Debye temperatures in those solids. Particular attention is devoted to processes of inhomogeneous quantum diffusion and Mu localization. It is shown that at low temperatures static crystal disorder results in an inhomogeneity of the Mu quantum diffusion which turns out to be inconsistent with diffusion models using a single correlation time {tau}{sub c}. Conventional trapping mechanisms are shown to be ineffective at low temperatures in insulators. Muonium localization effects are studied in detail in solid Kr. In all the cryocrystals studied, muonium atoms turn out to be localized at the lowest temperatures.

  17. Muonium quantum diffusion and localization in cryocrystals

    International Nuclear Information System (INIS)

    Storchak, V.; Brewer, J.H.; Morris, G.D.

    1995-08-01

    We review our recent study of atomic muonium (μ + e - or Mu, a light isotope of the hydrogen atom) diffusion in the simplest solids - Van der Waals cryocrystals. We give experimental evidence of the quantum-mechanical nature of the Mu diffusion in these solids. The results are compared with the current theories of quantum diffusion in insulators. The predicted T ±7 power-law temperature dependence of the Mu hop rate is observed directly for the first time in solid nitrogen (s-N 2 ) and is taken as confirmation of a two-phonon scattering mechanism. In solid xenon and krypton, by contrast, the one-phonon interaction is dominant in the whole temperature range under investigation due to the extremely low values of the Debye temperatures in those solids. Particular attention is devoted to processes of inhomogeneous quantum diffusion and Mu localization. It is shown that at low temperatures static crystal disorder results in an inhomogeneity of the Mu quantum diffusion which turns out to be inconsistent with diffusion models using a single correlation time t c . Conventional trapping mechanisms are shown to be ineffective at low temperatures in insulators. Muonium localization effects are studied in detail in solid Kr. In all the cryocrystals studied, muonium atoms turn out to be localized at the lowest temperatures. (author)

  18. Influence of electric field, hydrostatic pressure and temperature on the electric state in a Poschl-Teller quantum well

    International Nuclear Information System (INIS)

    Hakimyfard, A.; Barseghyan, M.G.; Kirakosyan, A.A.; Duque, C.A.

    2010-01-01

    Influence of the electric field and hydrostatic pressure on the electronic states in a Poschl-Teller quantum well is studied. In the framework of variational method the dependences of the ground state energy on the electric field and hydrostatic pressure are calculated for different values of the potential parameters and the temperature. It is shown that the increase in the electric field leads to the increase in the ground state energy, while the increase in the well width leads to the strengthening of the electric field effect. The ground state energy decreases with increasing pressure and increases with increasing temperature

  19. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures.

    Science.gov (United States)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)PRBMDO0163-182910.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S=1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  20. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    Science.gov (United States)

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-05-18

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.

  1. Power density and temperature dependent multi-excited states in InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Bouzaïene, L.; Sfaxi, L.; Baira, M.; Maaref, H.; Bru-Chevallier, C.

    2011-01-01

    Self-assembled InAs/GaAs (001) quantum dots (QDs) were grown by molecular beam epitaxy using ultra low-growth rate. A typical dot diameter of around 28 ± 2 nm and a typical height of 5 ± 1 nm are observed based on atomic force microscopy image. The photoluminescence (PL) spectra, their power and temperature dependences have been studied for ground (GS) and three excited states (1–3ES) in InAs QDs. By changing the excitation power density, we can significantly influence the distribution of excitons within the QD ensemble. The PL peak energy positions of GS and ES emissions bands depend on an excitation light power. With increasing excitation power, the GS emission energy was red-shifted, while the 1–3ES emission energies were blue-shifted. It is found that the full width at half maximum of the PL spectra has unusual relationship with increasing temperature from 9 to 300 K. The temperature dependence of QD PL spectra shown the existence of two stages of PL thermal quenching and two distinct activation energies corresponding to the temperature ranges I (9–100 K) and II (100–300 K).

  2. Quantum-Circuit Refrigerator

    Science.gov (United States)

    MöTtöNen, Mikko; Tan, Kuan Y.; Masuda, Shumpei; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Silveri, Matti; Grabert, Hermann

    Quantum technology holds great potential in providing revolutionizing practical applications. However, fast and precise cooling of the functional quantum degrees of freedom on demand remains a major challenge in many solid-state implementations, such as superconducting circuits. We demonstrate direct cooling of a superconducting resonator mode using voltage-controllable quantum tunneling of electrons in a nanoscale refrigerator. In our first experiments on this type of a quantum-circuit refrigerator, we measure the drop in the mode temperature by electron thermometry at a resistor which is coupled to the resonator mode through ohmic losses. To eliminate unwanted dissipation, we remove the probe resistor and directly observe the power spectrum of the resonator output in agreement with the so-called P(E) theory. We also demonstrate in microwave reflection experiments that the internal quality factor of the resonator can be tuned by orders of magnitude. In the future, our refrigerator can be integrated with different quantum electric devices, potentially enhancing their performance. For example, it may prove useful in the initialization of superconducting quantum bits and in dissipation-assisted quantum annealing. We acknowledge European Research Council Grant SINGLEOUT (278117) and QUESS (681311) for funding.

  3. Nonlinear optical rectification in a vertically coupled lens-shaped InAs/GaAs quantum dots with wetting layers under hydrostatic pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ben Mahrsia, R.; Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Bouzaiene, L.; Maaref, H.

    2016-06-25

    In this paper we explore the structure parameters, hydrostatic pressure and temperature effects on Nonlinear optical rectification (NOR) in an asymmetric vertically coupled lens-shaped InAs/GaAs quantum dots. During epitaxial growth, lens-shaped quantum dots (QDs) are formed on the wetting layer (WL). Many theoretical works have neglected WL and its effect on nonlinear optical properties of QD-based systems for sake of simplicity. However, in this work the WL has been shown to be so influential in the intersubband energy and nonlinear optical rectification magnitude. Also, a detailed and comprehensive study of the nonlinear optical rectification is theoretical investigated within the framework of the compact density-matrix approach and finite difference method (FDM). It's found that nonlinear optical rectification coefficient is strongly affected not only by the WL, but also by the pressure, temperature and the coupled width between the QDs. Obtained results revealed that a red or a blue shift cane be observed. This behavior in the NOR gives a new degree of freedom in regions of interest for device applications. - Highlights: • Vertically coupled lens-shaped InAs/GaAs quantum dots is investigated. • Photon energy shifts towards the red with increasing pressure. • Photon energy shifts towards the blue with increasing temperature. • Intersubband energy decreases with increasing the wetting layer width. • Nonlinear optical rectification magnitude is controlled and adjusted.

  4. Colossal magnetoresistance in amino-functionalized graphene quantum dots at room temperature: manifestation of weak anti-localization and doorway to spintronics

    Science.gov (United States)

    Roy, Rajarshi; Thapa, Ranjit; Kumar, Gundam Sandeep; Mazumder, Nilesh; Sen, Dipayan; Sinthika, S.; Das, Nirmalya S.; Chattopadhyay, Kalyan K.

    2016-04-01

    In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for future graphene quantum dot based spintronic applications.In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for

  5. Fermion condensation quantum phase transition versus conventional quantum phase transitions

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Han, J.G.; Lee, J.

    2004-01-01

    The main features of fermion condensation quantum phase transition (FCQPT), which are distinctive in several aspects from that of conventional quantum phase transition (CQPT), are considered. We show that in contrast to CQPT, whose physics in quantum critical region is dominated by thermal and quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT or undergone FCQPT is controlled by the system of quasiparticles resembling the Landau quasiparticles. Contrary to the Landau quasiparticles, the effective mass of these quasiparticles strongly depends on the temperature, magnetic fields, density, etc. This system of quasiparticles having general properties determines the universal behavior of the Fermi system in question. As a result, the universal behavior persists up to relatively high temperatures comparatively to the case when such a behavior is determined by CQPT. We analyze striking recent measurements of specific heat, charge and heat transport used to study the nature of magnetic field-induced QCP in heavy-fermion metal CeCoIn 5 and show that the observed facts are in good agreement with our scenario based on FCQPT and certainly seem to rule out the critical fluctuations related with CQPT. Our general consideration suggests that FCQPT and the emergence of novel quasiparticles near and behind FCQPT and resembling the Landau quasiparticles are distinctive features intrinsic to strongly correlated substances

  6. Energy and angular momentum balance in wall-bounded quantum turbulence at very low temperatures.

    Science.gov (United States)

    Hosio, J J; Eltsov, V B; Heikkinen, P J; Hänninen, R; Krusius, M; L'vov, V S

    2013-01-01

    A superfluid in the absence of a viscous normal component should be the best realization of an ideal inviscid Euler fluid. As expressed by d'Alembert's famous paradox, an ideal fluid does not drag on bodies past which it flows, or in other words it does not exchange momentum with them. In addition, the flow of an ideal fluid does not dissipate kinetic energy. Here we study experimentally whether these properties apply to the flow of superfluid (3)He-B in a rotating cylinder at low temperatures. It is found that ideal behaviour is broken by quantum turbulence, which leads to substantial energy dissipation, as was also observed earlier. Remarkably, the angular momentum exchange between the superfluid and its container approaches nearly ideal behaviour, as the drag almost disappears in the zero-temperature limit. Here the mismatch between energy and angular momentum transfer results in a new physical situation, with severe implications on the flow dynamics.

  7. Comparison of squashing and self-consistent input-output models of quantum feedback

    Science.gov (United States)

    Peřinová, V.; Lukš, A.; Křepelka, J.

    2018-03-01

    The paper (Yanagisawa and Hope, 2010) opens with two ways of analysis of a measurement-based quantum feedback. The scheme of the feedback includes, along with the homodyne detector, a modulator and a beamsplitter, which does not enable one to extract the nonclassical field. In the present scheme, the beamsplitter is replaced by the quantum noise evader, which makes it possible to extract the nonclassical field. We re-approach the comparison of two models related to the same scheme. The first one admits that in the feedback loop between the photon annihilation and creation operators, unusual commutation relations hold. As a consequence, in the feedback loop, squashing of the light occurs. In the second one, the description arrives at the feedback loop via unitary transformations. But it is obvious that the unitary transformation which describes the modulator changes even the annihilation operator of the mode which passes by the modulator which is not natural. The first model could be called "squashing model" and the second one could be named "self-consistent model". Although the predictions of the two models differ only a little and both the ways of analysis have their advantages, they have also their drawbacks and further investigation is possible.

  8. Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing

    Science.gov (United States)

    Mukherjee, Sudip; Rajak, Atanu; Chakrabarti, Bikas K.

    2018-02-01

    We explore the behavior of the order parameter distribution of the quantum Sherrington-Kirkpatrick model in the spin glass phase using Monte Carlo technique for the effective Suzuki-Trotter Hamiltonian at finite temperatures and that at zero temperature obtained using the exact diagonalization method. Our numerical results indicate the existence of a low- but finite-temperature quantum-fluctuation-dominated ergodic region along with the classical fluctuation-dominated high-temperature nonergodic region in the spin glass phase of the model. In the ergodic region, the order parameter distribution gets narrower around the most probable value of the order parameter as the system size increases. In the other region, the Parisi order distribution function has nonvanishing value everywhere in the thermodynamic limit, indicating nonergodicity. We also show that the average annealing time for convergence (to a low-energy level of the model, within a small error range) becomes system size independent for annealing down through the (quantum-fluctuation-dominated) ergodic region. It becomes strongly system size dependent for annealing through the nonergodic region. Possible finite-size scaling-type behavior for the extent of the ergodic region is also addressed.

  9. Temperature stability of static and dynamic properties of 1.55 µm quantum dot lasers.

    Science.gov (United States)

    Abdollahinia, A; Banyoudeh, S; Rippien, A; Schnabel, F; Eyal, O; Cestier, I; Kalifa, I; Mentovich, E; Eisenstein, G; Reithmaier, J P

    2018-03-05

    Static and dynamic properties of InP-based 1.55 µm quantum dot (QD) lasers were investigated. Due to the reduced size inhomogeneity and a high dot density of the newest generation of 1.55 µm QD gain materials, ridge waveguide lasers (RWG) exhibit improved temperature stability and record-high modulation characteristics. Detailed results are shown for the temperature dependence of static properties including threshold current, voltage-current characteristics, external differential efficiency and emission wavelength. Similarly, small and large signal modulations were found to have only minor dependences on temperature. Moreover, we show the impact of the active region design and the cavity length on the temperature stability. Measurements were performed in pulsed and continuous wave operation. High characteristic temperatures for the threshold current were obtained with T 0 values of 144 K (15 - 60 °C), 101 K (60 - 110 °C) and 70 K up to 180 °C for a 900-µm-long RWG laser comprising 8 QD layers. The slope efficiency in these lasers is nearly independent of temperature showing a T 1 value of more than 900 K up to 110 °C. Due to the high modal gain, lasers with a cavity length of 340 µm reached new record modulation bandwidths of 17.5 GHz at 20 °C and 9 GHz at 80 °C, respectively. These lasers were modulated at 26 GBit/s in the non-return to zero format at 80 °C and at 25 GBaud using a four-level pulse amplitude format at 21 °C.

  10. The effect of junction temperature on the optoelectrical properties of InGaN/GaN multiple quantum well light-emitting diodes

    International Nuclear Information System (INIS)

    Wang, Jen-Cheng; Fang, Chia-Hui; Wu, Ya-Fen; Chen, Wei-Jen; Kuo, Da-Chuan; Fan, Ping-Lin; Jiang, Joe-Air; Nee, Tzer-En

    2012-01-01

    Thermal effects on the optoelectrical characteristics of green InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs) have been investigated in detail for a broad temperature range, from 30 °C to 100 °C. The current-dependent electroluminescence (EL) spectra, current–voltage (I–V) curves and luminescence intensity–current (L–I) characteristics of green InGaN/GaN MQW LEDs have been measured to characterize the thermal-related effects on the optoelectrical properties of the InGaN/GaN MQW LEDs. The experimental results show that both the forward voltages decreased with a slope of −3.7 mV/K and the emission peak wavelength increased with a slope of +0.02 nm/K with increasing temperature, indicating a change in the contact resistance between the metal and GaN layers and the existence of a band gap shrinkage effect. The junction temperature estimated from the forward voltage and the emission peak shift varied from 25.6 to 14.5 °C and from 22.4 to 35.6 °C, respectively. At the same time, the carrier temperature decreased from 371.2 to 348.1 °C as estimated from the slope of high-energy side of the emission spectra. With increasing injection current, there was found to be a strong current-dependent blueshift of −0.15 nm/mA in the emission peak wavelength of the EL spectra. This could be attributed to not only the stronger band-filling effect but also the enhanced quantum confinement effect that resulted from the piezoelectric polarization and spontaneous polarization in InGaN/GaN heterostructures. We also demonstrate a helpful and easy way to measure and calculate the junction temperature of InGaN/GaN MQW LEDs. - Highlights: ► We examine the effect of junction temperature on the optoelectrical properties. ► Not only the band-filling effect but also the quantum confinement effect. ► Piezoelectric polarization and the spontaneous polarization in InGaN/GaN structures. ► Carrier transport was responsible for the influences on the

  11. Zero-field quantum critical point in CeCoIn5.

    Science.gov (United States)

    Tokiwa, Y; Bauer, E D; Gegenwart, P

    2013-09-06

    Quantum criticality in the normal and superconducting states of the heavy-fermion metal CeCoIn5 is studied by measurements of the magnetic Grüneisen ratio ΓH and specific heat in different field orientations and temperatures down to 50 mK. A universal temperature over magnetic field scaling of ΓH in the normal state indicates a hidden quantum critical point at zero field. Within the superconducting state, the quasiparticle entropy at constant temperature increases upon reducing the field towards zero, providing additional evidence for zero-field quantum criticality.

  12. Quantum Oscillator in the Thermostat as a Model in the Thermodynamics of Open Quantum Systems

    OpenAIRE

    Sukhanov, Aleksander

    2005-01-01

    The quantum oscillator in the thermostat is considered as the model of an open quantum system. Our analysis will be heavily founded on the use of the Schroedinger generalized uncertainties relations (SUR). Our first aim is to demonstrate that for the quantum oscillator the state of thermal equilibrium belongs to the correlated coherent states (CCS), which imply the saturation of SUR at any temperature. The obtained results open the perspective for the search of some statistical theory, which ...

  13. Effects of quantum entropy on bag constant

    International Nuclear Information System (INIS)

    Miller, D.E.; Tawfik, A.

    2012-01-01

    The effects of quantum entropy on the bag constant are studied at low temperatures and for small chemical potentials. The inclusion of the quantum entropy of the quarks in the equation of state provides the hadronic bag with an additional heat which causes a decrease in the effective latent heat inside the bag. We have considered two types of baryonic bags, Δ and Ω - . In both cases we have found that the bag constant without the quantum entropy almost does not change with temperature and quark chemical potential. The contribution from the quantum entropy to the equation of state clearly decreases the value of the bag constant. Furthermore, we construct states densities for quarks using the 'Thomas Fermi model' and take into consideration a thermal potential for the interaction. (author)

  14. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  15. Quantum heat engine with coupled superconducting resonators

    Science.gov (United States)

    Hardal, Ali Ü. C.; Aslan, Nur; Wilson, C. M.; Müstecaplıoǧlu, Özgür E.

    2017-12-01

    We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent electrical charging in our case. We explore the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures.

  16. Zero-temperature renormalization method for quantum systems. I. Ising model in a transverse field in one dimension

    International Nuclear Information System (INIS)

    Jullien, R.; Pfeuty, P.; Fields, J.N.; Doniach, S.

    1978-01-01

    A zero-temperature real-space renormalization-group method is presented and applied to the quantum Ising model with a transverse field in one dimension. The transition between the low-field and high-field regimes is studied. Magnetization components, spin correlation functions, and critical exponents are derived and checked against the exact results. It is shown that increasing the size of the blocks in the iterative procedure yields more accurate results, especially for the critical ''magnetic'' exponents near the transition

  17. Optical properties of the semiconductor quantum structure

    International Nuclear Information System (INIS)

    Haratizadeh, H.; Holtz, P.O.; Monemar, B.; Karlsoon, K.F.; Moskalenko, E.S.; Amano, H.; Akasaki, I.; Schoenfeld, W.V.; Garcia, J.M.; Petroff, P.M.

    2004-01-01

    Optical properties of the quantum structures have been discussed with emphasize of the AlGaN/GaN multiple quantum wells and InAs/GaAs quantum dot structures. We report on a detailed study of low temperature photoluminescence in Al 0 .07Ga 0 .93 N/GaN multiple quantum wells. The structures were nominally undoped multiple quantum well grown on sapphire substrate. The structure from discrete well width variations is here resolved in photoluminescence spectra. The results demonstrate that the theoretically estimated fields in this work are consistent with the experimental spectra

  18. Quantum phase transition and critical phenomena

    International Nuclear Information System (INIS)

    Dutta, A.; Chakrabarti, B.K.

    1998-01-01

    We intend to describe briefly the generic features associated with the zero temperature transition in quantum mechanical systems. We elucidate the discussion of the introductory section using the very common example of Ising model in a transverse field. We discuss the method of fermionisation for one dimensional systems. The quantum-classical correspondence is discussed using Suzuki-Trotter method. We then introduce the quantum rotor model and discuss its spherical limit. We finally discuss novel features arising due to the presence of quenched randomness in the quantum Ising and rotor systems. (author)

  19. Hydration structure and dynamics of a hydroxide ion in water clusters of varying size and temperature: Quantum chemical and ab initio molecular dynamics studies

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2012-01-01

    Highlights: ► A theoretical study of hydroxide ion-water clusters is carried for varying cluster size and temperature. ► The structures of OH − (H 2 O) n are found out through quantum chemical calculations for n = 4, 8, 16 and 20. ► The finite temperature behavior of the clusters is studied through ab initio dynamical simulations. ► The spectral features of OH modes (deuterated) and their dependence on hydrogen bonding states of water are discussed. ► The mechanism and kinetics of proton transfer processes in these anionic clusters are also investigated. - Abstract: We have investigated the hydration structure and dynamics of OH − (H 2 O) n clusters (n = 4, 8, 16 and 20) by means of quantum chemical and ab initio molecular dynamics calculations. Quantum chemical calculations reveal that the solvation structure of the hydroxide ion transforms from three and four-coordinated surface states to five-coordinated interior state with increase in cluster size. Several other isomeric structures with energies not very different from the most stable isomer are also found. Ab initio simulations show that the most probable configurations at higher temperatures need not be the lowest energy isomeric structure. The rates of proton transfer in these clusters are found to be slower than that in bulk water. The vibrational spectral calculations reveal distinct features for free OH (deuterated) stretch modes of water in different hydrogen bonding states. Effects of temperature on the structural and dynamical properties are also investigated for the largest cluster considered here.

  20. Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm

    Science.gov (United States)

    Hou, Chuncai; Zhao, Yue; Zhang, Jinchuan; Zhai, Shenqiang; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Liu, Shuman; Liu, Fengqi; Wang, Zhanguo

    2018-03-01

    Continuous wave (CW) operation of long wave infrared (LWIR) quantum cascade lasers (QCLs) is achieved up to a temperature of 303 K. For room temperature CW operation, the wafer with 35 stages was processed into buried heterostructure lasers. For a 2-mm-long and 10-μm-wide laser with high-reflectivity (HR) coating on the rear facet, CW output power of 45 mW at 283 K and 9 mW at 303 K is obtained. The lasing wavelength is around 9.4 μm locating in the LWIR spectrum range. Project supported by the National Key Research And Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61774146, 61674144, 61404131), the Key Projects of Chinese Academy of Sciences (Nos. ZDRW-XH-2016-4, QYZDJ-SSW-JSC027), and the Beijing Natural Science Foundation (No. 4162060, 4172060).

  1. Quantum criticality and black holes

    International Nuclear Information System (INIS)

    Sachdev, Subir; Mueller, Markus

    2009-01-01

    Many condensed matter experiments explore the finite temperature dynamics of systems near quantum critical points. Often, there are no well-defined quasiparticle excitations, and so quantum kinetic equations do not describe the transport properties completely. The theory shows that the transport coefficients are not proportional to a mean free scattering time (as is the case in the Boltzmann theory of quasiparticles), but are completely determined by the absolute temperature and by equilibrium thermodynamic observables. Recently, explicit solutions of this quantum critical dynamics have become possible via the anti-de Sitter/conformal field theory duality discovered in string theory. This shows that the quantum critical theory provides a holographic description of the quantum theory of black holes in a negatively curved anti-de Sitter space, and relates its transport coefficients to properties of the Hawking radiation from the black hole. We review how insights from this connection have led to new results for experimental systems: (i) the vicinity of the superfluid-insulator transition in the presence of an applied magnetic field, and its possible application to measurements of the Nernst effect in the cuprates, (ii) the magnetohydrodynamics of the plasma of Dirac electrons in graphene and the prediction of a hydrodynamic cyclotron resonance.

  2. Quantum critical environment assisted quantum magnetometer

    Science.gov (United States)

    Jaseem, Noufal; Omkar, S.; Shaji, Anil

    2018-04-01

    A central qubit coupled to an Ising ring of N qubits, operating close to a critical point is investigated as a potential precision quantum magnetometer for estimating an applied transverse magnetic field. We compute the quantum Fisher information for the central, probe qubit with the Ising chain initialized in its ground state or in a thermal state. The non-unitary evolution of the central qubit due to its interaction with the surrounding Ising ring enhances the accuracy of the magnetic field measurement. Near the critical point of the ring, Heisenberg-like scaling of the precision in estimating the magnetic field is obtained when the ring is initialized in its ground state. However, for finite temperatures, the Heisenberg scaling is limited to lower ranges of N values.

  3. Synthesis of quantum dots

    Science.gov (United States)

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  4. Zero Thermal Noise in Resistors at Zero Temperature

    Science.gov (United States)

    Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes-Göran

    2016-06-01

    The bandwidth of transistors in logic devices approaches the quantum limit, where Johnson noise and associated error rates are supposed to be strongly enhanced. However, the related theory — asserting a temperature-independent quantum zero-point (ZP) contribution to Johnson noise, which dominates the quantum regime — is controversial and resolution of the controversy is essential to determine the real error rate and fundamental energy dissipation limits of logic gates in the quantum limit. The Callen-Welton formula (fluctuation-dissipation theorem) of voltage and current noise for a resistance is the sum of Nyquist’s classical Johnson noise equation and a quantum ZP term with a power density spectrum proportional to frequency and independent of temperature. The classical Johnson-Nyquist formula vanishes at the approach of zero temperature, but the quantum ZP term still predicts non-zero noise voltage and current. Here, we show that this noise cannot be reconciled with the Fermi-Dirac distribution, which defines the thermodynamics of electrons according to quantum-statistical physics. Consequently, Johnson noise must be nil at zero temperature, and non-zero noise found for certain experimental arrangements may be a measurement artifact, such as the one mentioned in Kleen’s uncertainty relation argument.

  5. Comparison of post-tonsillectomy pain with two different types of bipolar forceps: low temperature quantum molecular resonance device versus high temperature conventional electrocautery.

    Science.gov (United States)

    Chang, Hyun; Hah, J Hun

    2012-06-01

    The low temperature device did not show any advantages over the conventional high temperature electrocautery in terms of the postoperative pain, operation time, and complications in pediatric tonsillectomy. To compare post-tonsillectomy pain following the use of two different instruments with the same bipolar forceps techniques: low temperature quantum molecular resonance (QMR) device versus conventional high temperature electrocautery. Pediatric patients admitted from July 2008 through January 2009 were included. The participants underwent bilateral tonsillectomy; one side by the QMR device and the other by the bipolar electrocautery. The sides for each instrument were counterbalanced by the order of presentation. The postoperative pain was measured using the faces pain rating scale. In all, 33 patients with a mean age of 7.6 years were enrolled. The postoperative pain, operation time, and complications in 33 sides dissected by the electrocautery and 33 sides by the QMR device were compared. The average operation times with each device were not statistically different. The mean ratings of the perception of pain related to each instrument were not different on operation day and postoperative day 1, day 4, and day 7 (p = 0.133, 0.057, 0.625, and 1.0, respectively). There was no postoperative complication in any of the patients.

  6. Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field

    International Nuclear Information System (INIS)

    Ungan, F.; Restrepo, R.L.; Mora-Ramos, M.E.; Morales, A.L.; Duque, C.A.

    2014-01-01

    The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga 0.7 Al 0.3 As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga 0.7 Al 0.3 As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications

  7. Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field

    Energy Technology Data Exchange (ETDEWEB)

    Ungan, F., E-mail: fungan@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Restrepo, R.L. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Escuela de Ingeniería de Antioquia AA 7516, Medellín (Colombia); Mora-Ramos, M.E. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-02-01

    The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga{sub 0.7}Al{sub 0.3}As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga{sub 0.7}Al{sub 0.3}As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications.

  8. Operator quantum error-correcting subsystems for self-correcting quantum memories

    International Nuclear Information System (INIS)

    Bacon, Dave

    2006-01-01

    The most general method for encoding quantum information is not to encode the information into a subspace of a Hilbert space, but to encode information into a subsystem of a Hilbert space. Recently this notion has led to a more general notion of quantum error correction known as operator quantum error correction. In standard quantum error-correcting codes, one requires the ability to apply a procedure which exactly reverses on the error-correcting subspace any correctable error. In contrast, for operator error-correcting subsystems, the correction procedure need not undo the error which has occurred, but instead one must perform corrections only modulo the subsystem structure. This does not lead to codes which differ from subspace codes, but does lead to recovery routines which explicitly make use of the subsystem structure. Here we present two examples of such operator error-correcting subsystems. These examples are motivated by simple spatially local Hamiltonians on square and cubic lattices. In three dimensions we provide evidence, in the form a simple mean field theory, that our Hamiltonian gives rise to a system which is self-correcting. Such a system will be a natural high-temperature quantum memory, robust to noise without external intervening quantum error-correction procedures

  9. Coupled quantum dot-ring structures by droplet epitaxy

    International Nuclear Information System (INIS)

    Somaschini, C; Bietti, S; Koguchi, N; Sanguinetti, S

    2011-01-01

    The fabrication, by pure self-assembly, of GaAs/AlGaAs dot-ring quantum nanostructures is presented. The growth is performed via droplet epitaxy, which allows for the fine control, through As flux and substrate temperature, of the crystallization kinetics of nanometer scale metallic Ga reservoirs deposited on the surface. Such a procedure permits the combination of quantum dots and quantum rings into a single, multi-functional, complex quantum nanostructure.

  10. Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits

    Science.gov (United States)

    Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoǧlu, Özgür E.

    2015-02-01

    We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.

  11. Femtosecond upconverted photocurrent spectroscopy of InAs quantum nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasuhiro [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Tex, David M.; Kanemitsu, Yoshihiko, E-mail: kanemitu@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Japan Science and Technology Agency, CREST, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kamiya, Itaru [Toyota Technological Institute, Nagoya, Aichi 468-8511 (Japan)

    2015-07-06

    The carrier upconversion dynamics in InAs quantum nanostructures are studied for intermediate-band solar-cell applications via ultrafast photoluminescence and photocurrent (PC) spectroscopy based on femtosecond excitation correlation (FEC) techniques. Strong upconverted PC-FEC signals are observed under resonant excitation of quantum well islands (QWIs), which are a few monolayer-thick InAs quantum nanostructures. The PC-FEC signal typically decays within a few hundred picoseconds at room temperature, which corresponds to the carrier lifetime in QWIs. The photoexcited electron and hole lifetimes in InAs QWIs are evaluated as functions of temperature and laser fluence. Our results provide solid evidence for electron–hole–hole Auger process, dominating the carrier upconversion in InAs QWIs at room temperature.

  12. Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots

    Science.gov (United States)

    Chekhovich, E. A.; Ulhaq, A.; Zallo, E.; Ding, F.; Schmidt, O. G.; Skolnick, M. S.

    2017-10-01

    Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC (ref. ) reaches 99% and beyond, it has been limited to 50-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent `dark' nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed--the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.

  13. A rapid method for measuring maximum density temperatures in water and aqueous solutions for the study of quantum zero point energy effects in these liquids

    International Nuclear Information System (INIS)

    Deeney, F A; O'Leary, J P

    2008-01-01

    The connection between quantum zero point fluctuations and a density maximum in water and in liquid He 4 has recently been established. Here we present a description of a simple and rapid method of determining the temperatures at which maximum densities in water and aqueous solutions occur. The technique is such as to allow experiments to be carried out in one session of an undergraduate laboratory thereby introducing students to the concept of quantum zero point energy

  14. Effect of temperature and ridge-width on the lasing characteristics of InAs/InP quantum-dash lasers: A thermal analysis view

    Science.gov (United States)

    Alkhazraji, E.; Khan, M. T. A.; Ragheb, A. M.; Fathallah, H.; Qureshi, K. K.; Alshebeili, S.; Khan, M. Z. M.

    2018-01-01

    We investigate the thermal characteristics of multi-stack chirped barrier thickness InAs/InGaAlAs/InP quantum-dash-in-a-well lasers of different ridge widths 2, 3, 4 and 15 μm. The effect of varying this geometrical parameter on the extracted thermal resistance and characteristic temperature, and their stability with temperature are examined. The results show an inverse relation of ridge-width with junction temperature with 2 μm device exhibiting the largest junction temperature buildup owing to an associated high thermal resistance of ∼45 °C/W. Under the light of this thermal analysis, lasing behavior of different ridge-width quantum-dash (Qdash) lasers with injection currents and operating temperatures, is investigated. Thermionic carrier escape and phonon-assisted tunneling are found to be the dominant carrier transport mechanisms resulting in wide thermal spread of carriers across the available transition states of the chirped active region. An emission coverage of ∼75 nm and 3 dB bandwidth of ∼55 nm is exhibited by the 2 μm device, thus possibly exploiting the inhomogeneous optical transitions to the fullest. Furthermore, successful external modulation of a single Qdash Fabry-Perot laser mode via injection locking is demonstrated with eye diagrams at bit rates of 2-12 Gbit/s incorporating various modulation schemes. These devices are being considered as potential light sources for future high-speed wavelength-division multiplexed optical communication systems.

  15. Quantum synchronization effects in intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Machida, M.; Kano, T.; Yamada, S.; Okumura, M.; Imamura, T.; Koyama, T.

    2008-01-01

    We investigate quantum dynamics of the superconducting phase in intrinsic Josephson junctions of layered high-T c superconductors motivated by a recent experimental observation for the switching rate enhancement in the low temperature quantum regime. We pay attention to only the capacitive coupling between neighboring junctions and perform large-scale simulations for the Schroedinger equation derived from the Hamiltonian considering the capacitive coupling alone. The simulation focuses on an issue whether the switching of a junction induces those of the other junctions or not. The results reveal that the superconducting phase dynamics show synchronous behavior with increasing the quantum character, e.g., decreasing the junction plane area and effectively the temperature. This is qualitatively consistent with the experimental result

  16. Exciton dephasing in single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    The homogeneous linewidth of excitonic transitions is a parameter of fundamental physical importance. In self-assembled quantum dot systems, a strong inhomogeneous broadening due to dot size fluctuations masks the homogeneous linewidth associated with transitions between individual states....... The homogeneous and inhomogeneous broadening of InGaAs quantum dot luminescence is of central importance for the potential application of this material system in optoelectronic devices. Recent measurements of MOCVD-grown InAs/InGaAs quantum dots indicate a large homogeneous broadening at room temperature due...... to fast dephasing. We present an investigation of the low-temperature homogeneous linewidth of individual PL lines from MBE-grown In0.5Ga0.5As/GaAs quantum dots....

  17. Quantum mechanical study of the proton exchange in the ortho-para H2 conversion reaction at low temperature.

    Science.gov (United States)

    Honvault, P; Jorfi, M; González-Lezana, T; Faure, A; Pagani, L

    2011-11-14

    Ortho-para H(2) conversion reactions mediated by the exchange of a H(+) proton have been investigated at very low energy for the first time by means of a time independent quantum mechanical (TIQM) approach. State-to-state probabilities and cross sections for H(+) + H(2) (v = 0, j = 0,1) processes have been calculated for a collision energy, E(c), ranging between 10(-6) eV and 0.1 eV. Differential cross sections (DCSs) for H(+) + H(2) (v = 0, j = 1) → H(+) + H(2) (v' = 0, j' = 0) for very low energies only start to develop a proper global minimum around the sideways scattering direction (θ≈ 90°) at E(c) = 10(-3) eV. Rate coefficients, a crucial information required for astrophysical models, are provided between 10 K and 100 K. The relaxation ortho-para process j = 1 → j' = 0 is found to be more efficient than the j = 0 → j' = 1 conversion at low temperatures, in line with the extremely small ratio between the ortho and para species of molecular hydrogen predicted at the temperature of interstellar cold molecular clouds. The results obtained by means of a statistical quantum mechanical (SQM) model, which has previously proved to provide an adequate description of the dynamics of the title reactions at a higher collision energy regime, have been compared with the TIQM results. A reasonable good agreement has been found with the only exception of the DCSs for the H(+) + H(2) (v = 0, j = 1) → H(+) + H(2) (v' = 0, j' = 0) process at very low energy. SQM cross sections are also slightly below the quantum results. Estimates for the rate coefficients, in good accord with the TIQM values, are a clear improvement with respect to pioneering statistical studies on the reaction.

  18. Self-correcting quantum computers

    International Nuclear Information System (INIS)

    Bombin, H; Chhajlany, R W; Horodecki, M; Martin-Delgado, M A

    2013-01-01

    Is the notion of a quantum computer (QC) resilient to thermal noise unphysical? We address this question from a constructive perspective and show that local quantum Hamiltonian models provide self-correcting QCs. To this end, we first give a sufficient condition on the connectedness of excitations for a stabilizer code model to be a self-correcting quantum memory. We then study the two main examples of topological stabilizer codes in arbitrary dimensions and establish their self-correcting capabilities. Also, we address the transversality properties of topological color codes, showing that six-dimensional color codes provide a self-correcting model that allows the transversal and local implementation of a universal set of operations in seven spatial dimensions. Finally, we give a procedure for initializing such quantum memories at finite temperature. (paper)

  19. Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors

    International Nuclear Information System (INIS)

    Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.

    2014-01-01

    A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped

  20. Thermal quantum discord of spins in an inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Guo Jinliang; Mi Yingjuan; Zhang Jian; Song Heshan

    2011-01-01

    In contrast with the thermal entanglement, we study the quantum discord and classical correlation in a two-qubit Heisenberg XXZ model with an inhomogeneous magnetic field. It is shown that the effects of the external magnetic fields, including the uniform and inhomogeneous magnetic fields, on the thermal entanglement, quantum discord and classical correlation behave differently in various aspects, which depend on system temperature and model type. We can tune the inhomogeneous magnetic field to enhance the entanglement or classical correlation and meanwhile decrease the quantum discord. In addition, taking into account the inhomogeneous magnetic field, the sudden change in the behaviour of quantum discord still survives, which can detect the critical points of quantum phase transitions at finite temperature, but not for a uniform magnetic field.

  1. Toward quantum FinFET

    CERN Document Server

    Wang, Zhiming

    2013-01-01

    This book reviews a range of quantum phenomena in novel nanoscale transistors called FinFETs, including quantized conductance of 1D transport, single electron effect, tunneling transport, etc. The goal is to create a fundamental bridge between quantum FinFET and nanotechnology to stimulate readers' interest in developing new types of semiconductor technology. Although the rapid development of micro-nano fabrication is driving the MOSFET downscaling trend that is evolving from planar channel to nonplanar FinFET, silicon-based CMOS technology is expected to face fundamental limits in the near future. Therefore, new types of nanoscale devices are being investigated aggressively to take advantage of the quantum effect in carrier transport. The quantum confinement effect of FinFET at room temperatures was reported following the breakthrough to sub-10nm scale technology in silicon nanowires. With chapters written by leading scientists throughout the world, Toward Quantum FinFET provides a comprehensive introductio...

  2. One-norm geometric quantum discord and critical point estimation in the XY spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chang-Cheng; Wang, Yao; Guo, Jin-Liang, E-mail: guojinliang80@163.com

    2016-11-15

    In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain. - Highlights: • Comparing with entanglement and QD, one-norm GQD is more robust versus the temperature. • One-norm GQD is more efficient in characterization of long-range quantum correlation between two distant qubits. • One-norm GQD performs well in highlighting the critical point of QPT at zero or low finite temperature. • One-norm GQD has a number of advantages over QD in detecting the critical point of the spin chain.

  3. Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer

    NARCIS (Netherlands)

    Hayton, D. J.; Khudchencko, A.; Pavelyev, D. G.; Hovenier, J. N.; Baryshev, A.; Gao, J. R.; Kao, T. Y.; Hu, Q.; Reno, J. L.; Vaks, V.

    2013-01-01

    We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60 dB is observed in the intermediate frequency

  4. Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer

    NARCIS (Netherlands)

    Hayton, D.J.; Khudchenko, A.; Pavelyev, D.G.; Hovenier, J.N.; Baryshev, A.; Gao, J.R.; Kao, T.Y.; Hu, Q.; Reno, J.L.; Vaks, V.

    2013-01-01

    We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60?dB is observed in the intermediate frequency

  5. Quantum fields on manifolds: an interplay between quantum theory, statistical thermodynamics and general relativity

    International Nuclear Information System (INIS)

    Sewell, G.L.

    1986-01-01

    The author shows how the basic axioms of quantum field theory, general relativity and statistical thermodynamics lead, in a model-independent way, to a generalized Hawking-Unruh effect, whereby the gravitational fields carried by a class of space-time manifolds with event horizons thermalize ambient quantum fields. The author is concerned with a quantum field on a space-time x containing a submanifold X' bounded by event horizons. The objective is to show that, for a wide class of space-times, the global vacuum state of the field reduces, in X', to a thermal state, whose temperature depends on the geometry. The statistical thermodynaical, geometrical, and quantum field theoretical essential ingredients for the reduction of the vacuum state are discussed

  6. Quantum Zeno and anti-Zeno effects on quantum and classical correlations

    International Nuclear Information System (INIS)

    Francica, F.; Plastina, F.; Maniscalco, S.

    2010-01-01

    In this paper we study the possibility of modifying the dynamics of both quantum correlations, such as entanglement and discord, and classical correlations of an open bipartite system by means of the quantum Zeno effect. We consider two qubits coupled to a common boson reservoir at zero temperature. This model describes, for example, two atoms interacting with a quantized mode of a lossy cavity. We show that when the frequencies of the two atoms are symmetrically detuned from that of the cavity mode, oscillations between the Zeno and anti-Zeno regimes occur. We also calculate analytically the time evolution of both classical correlations and quantum discord, and we compare the Zeno dynamics of entanglement with the Zeno dynamics of classical correlations and discord.

  7. Quantum statistical Monte Carlo methods and applications to spin systems

    International Nuclear Information System (INIS)

    Suzuki, M.

    1986-01-01

    A short review is given concerning the quantum statistical Monte Carlo method based on the equivalence theorem that d-dimensional quantum systems are mapped onto (d+1)-dimensional classical systems. The convergence property of this approximate tansformation is discussed in detail. Some applications of this general appoach to quantum spin systems are reviewed. A new Monte Carlo method, ''thermo field Monte Carlo method,'' is presented, which is an extension of the projection Monte Carlo method at zero temperature to that at finite temperatures

  8. Quantum maximum-entropy principle for closed quantum hydrodynamic transport within a Wigner function formalism

    International Nuclear Information System (INIS)

    Trovato, M.; Reggiani, L.

    2011-01-01

    By introducing a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is asserted as fundamental principle of quantum statistical mechanics. Accordingly, we develop a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theoretical formalism is formulated in both thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of (ℎ/2π) 2 . In particular, by using an arbitrary number of moments, we prove that (1) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives, both of the numerical density n and of the effective temperature T; (2) the results available from the literature in the framework of both a quantum Boltzmann gas and a degenerate quantum Fermi gas are recovered as a particular case; (3) the statistics for the quantum Fermi and Bose gases at different levels of degeneracy are explicitly incorporated; (4) a set of relevant applications admitting exact analytical equations are explicitly given and discussed; (5) the quantum maximum entropy principle keeps full validity in the classical limit, when (ℎ/2π)→0.

  9. High-temperature operation of self-assembled GaInNAs/GaAsN quantum-dot lasers grown by solid-source molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Liu, C.Y.; Yoon, S.F.; Sun, Z.Z.; Yew, K.C.

    2006-01-01

    Self-assembled GaInNAs/GaAsN single layer quantum-dot (QD) lasers grown using solid-source molecular-beam epitaxy have been fabricated and characterized. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. The lowest obtained threshold current density in this work is ∼1.05 kA/cm 2 from a GaInNAs QD laser (50x1700 μm 2 ) at 10 deg. C. High-temperature operation up to 65 deg. C was also demonstrated from an unbonded GaInNAs QD laser (50x1060 μm 2 ), with high characteristic temperature of 79.4 K in the temperature range of 10-60 deg. C

  10. QCAD simulation and optimization of semiconductor double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina; Muller, Richard Partain; Salinger, Andrew Gerhard; Young, Ralph Watson

    2013-12-01

    We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design

  11. Does there exist a sensible quantum theory of an ''algebra-valued'' scalar field?

    International Nuclear Information System (INIS)

    Anco, S.C.; Wald, R.M.

    1989-01-01

    Consider a scalar field phi in Minkowski spacetime, but let phi be valued in an associative, commutative algebra openA rather than openR. One may view the resulting theory as describing a collection of coupled real scalar fields. At the classical level, theories of this type are completely well behaved and have a global symmetry group which is a nontrivial enlargement of the Poincare group. (They are analogs of the new class of gauge theories for massless spin-2 fields found recently by one of us, whose gauge group is a nontrivial enlargement of the usual diffeomorphism group.) We investigate the quantization of such scalar field theories here by studying the case of a λphi 4 field, with phi valued in the two-dimensional algebra generated by an identity element e and a nilpotent element v satisfying v 2 = 0. The Coleman-Mandula theorem, which states that the symmetry group of a nontrivial quantum field theory cannot be a nontrivial enlargement of the Poincare group, is evaded here because the finite ''extra'' symmetries of the classical theory fail to be implemented in the quantum theory by unitary operators and the infinitesimal symmetries (which can be represented in the quantum theory by quadratic forms) connect the one-particle Hilbert space to multiparticle states. Nevertheless, we find that the conventional Feynman rules for this theory lead to vacuum decay at the tree level and fail to yield a well-defined S matrix. Some alternative approaches are investigated, but these also appear to fail

  12. Quantum versus thermally excited fluxoid transitions in a SQUID ring

    International Nuclear Information System (INIS)

    Kurkijaervi, J.

    1980-01-01

    The possibility of quantum tunneling as a mechanism for fluxoid transitions in a SQUID ring is carefully considered neglecting, however, dissipation arising from the quasiparticle current. The tunneling rates are compared with the thermally excited transition rates. The type of experiment Jackel et al. carried out in order to observe the thermal process is analyzed for observing the quantum tunneling. We find the expected result that the temperature at which the quantum process should begin to dominate depends essentially on ω 0 = 1/√LC of the ring. If an underdamped junction with C -13 F can be made the quantum tunneling temperature range should be easy to attain. (orig.)

  13. Influencing factors on the size uniformity of self-assembled SiGe quantum rings grown by molecular beam epitaxy.

    Science.gov (United States)

    Cui, J; Lv, Y; Yang, X J; Fan, Y L; Zhong, Z; Jiang, Z M

    2011-03-25

    The size uniformity of self-assembled SiGe quantum rings, which are formed by capping SiGe quantum dots with a thin Si layer, is found to be greatly influenced by the growth temperature and the areal density of SiGe quantum dots. Higher growth temperature benefits the size uniformity of quantum dots, but results in low Ge concentration as well as asymmetric Ge distribution in the dots, which induces the subsequently formed quantum rings to be asymmetric in shape or even broken somewhere in the ridge of rings. Low growth temperature degrades the size uniformity of quantum dots, and thus that of quantum rings. A high areal density results in the expansion and coalescence of neighboring quantum dots to form a chain, rather than quantum rings. Uniform quantum rings with a size dispersion of 4.6% and an areal density of 7.8×10(8) cm(-2) are obtained at the optimized growth temperature of 640°C.

  14. Bilayer graphene quantum dot defined by topgates

    Energy Technology Data Exchange (ETDEWEB)

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W., E-mail: hans.w.schumacher@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2014-06-21

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  15. The effect of confinement on the temperature dependence of the excitonic transition energy in GaAs/AlxGa1-xAs quantum wells

    International Nuclear Information System (INIS)

    Silva, M A T da; Morais, R R O; Dias, I F L; Lourenco, S A; Duarte, J L; Laureto, E; Quivy, A A; Silva, E C F da

    2008-01-01

    We determined by means of photoluminescence measurements the dependence on temperature of the transition energy of excitons in GaAs/Al x Ga 1-x As quantum wells with different alloy concentrations (with different barrier heights). Using a fitting procedure, we determined the parameters which describe the behavior of the excitonic transition energy as a function of temperature according to three different theoretical models. We verified that the temperature dependence of the excitonic transition energy does not only depend on the GaAs material but also depends on the barrier material, i.e. on the alloy composition. The effect of confinement on the temperature dependence of the excitonic transition is discussed

  16. Low temperature carrier redistribution dynamics in InGaN/GaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Badcock, T. J., E-mail: Thomas.badcock@crl.toshiba.co.uk; Dawson, P.; Davies, M. J. [School of Physics and Astronomy, Photon Science Institute, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Kappers, M. J.; Massabuau, F. C.-P.; Oehler, F.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2014-03-21

    We have studied the carrier recombination dynamics in an InGaN/GaN multiple quantum well structure as a function of emission energy and excitation density between temperatures of 10 K and 100 K. Under relatively low levels of excitation, the photoluminescence (PL) intensity and decay time of emission on the high energy side of the luminescence spectrum decrease strongly between 10 K and 50 K. In contrast, for emission detected on the low energy side of the spectrum, the PL intensity and decay time increase over the same temperature range. These results are consistent with a thermally activated carrier redistribution process in which the (temperature dependent) average timescale for carrier transfer into or out of a localised state depends on the energy of the given state. Thus, the transfer time out of shallow, weakly localised states is considerably shorter than the arrival time into more deeply localised states. This picture is consistent with carriers hopping between localisation sites in an uncorrelated disorder potential where the density of localised states decreases with increasing localisation depth, e.g., a exponential or Gaussian distribution resulting from random alloy disorder. Under significantly higher levels of excitation, the increased occupation fraction of the localised states results in a greater average separation distance between unoccupied localised states, causing a suppression of the spectral and dynamic signatures of the hopping transfer of carriers.

  17. Stiff quantum polymers

    OpenAIRE

    Kleinert, H.

    2009-01-01

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  18. Mn-doped Ge self-assembled quantum dots via dewetting of thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aouassa, Mansour, E-mail: mansour.aouassa@yahoo.fr [LMON, Faculté des Sciences de Monastir, Avenue de l’environnement Monastir 5019 (Tunisia); Jadli, Imen [LMON, Faculté des Sciences de Monastir, Avenue de l’environnement Monastir 5019 (Tunisia); Bandyopadhyay, Anup [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Kim, Sung Kyu [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Yuseong-daero 1689-gil, Yuseong-gu, Daejeon (Korea, Republic of); Department of Materials Science and Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Karaman, Ibrahim [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Lee, Jeong Yong [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Yuseong-daero 1689-gil, Yuseong-gu, Daejeon (Korea, Republic of); Department of Materials Science and Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-03-01

    Highlights: • We report the new fabrication approach for producing a self- assembled Mn dpoed Ge quantum dots (QDs) on SiO{sub 2} thin film with a Curie temperature above room temperature. These magnetic QDs are crystalline, monodisperse and have a well-defined shape and a controlled size. The investigation opens new routes for elaboration of self-assembled magnetic nanocrystals - Abstract: In this study, we demonstrate an original elaboration route for producing a Mn-doped Ge self-assembled quantum dots on SiO{sub 2} thin layer for MOS structure. These magnetic quantum dots are elaborated using dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing at high temperature of an amorphous Ge:Mn (Mn: 40%) nanolayer deposed at very low temperature by high-precision Solid Source Molecular Beam Epitaxy on SiO{sub 2} thin film. The size of quantum dots is controlled with nanometer scale precision by varying the nominal thickness of amorphous film initially deposed. The magnetic properties of the quantum-dots layer have been investigated by superconducting quantum interference device (SQUID) magnetometry. Atomic force microscopy (AFM), x-ray energy dispersive spectroscopy (XEDS) and transmission electron microscopy (TEM) were used to examine the nanostructure of these materials. Obtained results indicate that GeMn QDs are crystalline, monodisperse and exhibit a ferromagnetic behavior with a Curie temperature (TC) above room temperature. They could be integrated into spintronic technology.

  19. Quantum electrodynamics at high temperature. 2

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1988-01-01

    The photon sector of QED in d = 3 spatial dimensions is analyzed at high temperature thereby generalizing nontrivially a previous study for d = 1. The imaginary time formalism and an improved renormalized perturbation theory which incorporates second order Debye screening are used. General results are presented for the leading high temperature contributions to all renormalized connected photon Green's functions for fixed external momenta (much smaller than the temperature) to all orders in the improved perturbation theory. Those leading contributions are ultraviolet finite, infrared convergent and gauge invariant, and display an interesting form of dimensional reduction at high temperature. A new path integral representations is given for the high temperature partition function with an external photon source, which is shown to generate all leading high temperature Green's functions mentioned above, and, so, it displays neatly the kind of dimensional reduction which makes QED to become simpler at high temperature. This limiting partition function corresponds to an imaginary time dependent electron positron field interacting with an electromagnetic field at zero imaginary time, and it depends on the renormalized electron mass and electric charge, the second order contribution to the usual renormalization constant Z 3 and a new mass term, which is associated to the photon field with vanishing Lorentz index. The new mass term corresponds to a finite number of diagrams in the high temperature improved perturbation theory and carriers ultraviolet divergences which are compensated for by other contributions (so that the leading high temperature Green's functions referred to above are ultraviolet finite). The dominant high temperature contributions to the renormalized thermodynamic potential to all perturbative orders: i) are given in terms of the above leading high-temperature contributions to the photon Green's functions (except for a few diagrams of low order in the

  20. Correlation effects in side-coupled quantum dots

    International Nuclear Information System (INIS)

    Zitko, R; Bonca, J

    2007-01-01

    Using Wilson's numerical renormalization group (NRG) technique, we compute zero-bias conductance and various correlation functions of a double quantum dot (DQD) system. We present different regimes within a phase diagram of the DQD system. By introducing a negative Hubbard U on one of the quantum dots, we simulate the effect of electron-phonon coupling and explore the properties of the coexisting spin and charge Kondo state. In a triple quantum dot (TQD) system, a multi-stage Kondo effect appears where localized moments on quantum dots are screened successively at exponentially distinct Kondo temperatures

  1. Pressure and temperature effects on the third-order nonlinear optical properties in GaAs quantum dots

    International Nuclear Information System (INIS)

    Duque, C.M.; Mora-Ramos, M.E.; Duque, C.A.

    2012-01-01

    This work is used in the density matrix formalism and the effective mass approximation to study the third harmonic generation coefficient in a GaAs disc-shaped quantum dot with parabolic confinement potential. It is discussed the strong and weak confinement regime. The results show that the third harmonic generation coefficient is strongly dependent on the excitonic pair localization. The study is extended to consider effects such as hydrostatic pressure and temperature to show that it is possible to induce a blue-shift and/or red-shift on the resonant peaks of the third harmonic generation coefficient.

  2. Pressure and temperature effects on the third-order nonlinear optical properties in GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.M. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia)

    2012-12-15

    This work is used in the density matrix formalism and the effective mass approximation to study the third harmonic generation coefficient in a GaAs disc-shaped quantum dot with parabolic confinement potential. It is discussed the strong and weak confinement regime. The results show that the third harmonic generation coefficient is strongly dependent on the excitonic pair localization. The study is extended to consider effects such as hydrostatic pressure and temperature to show that it is possible to induce a blue-shift and/or red-shift on the resonant peaks of the third harmonic generation coefficient.

  3. About the structure of quantum intermediate state of superconductors

    International Nuclear Information System (INIS)

    Ledenev, O.P.

    2008-01-01

    The calculation of spatial structure of a quantum intermediate state in Type I superconductors is completed. Theoretical model of thermodynamics of considered state was proposed by Andreev. It is shown, that in a quantum case, the period of structure appears significantly smaller and has different dependence on both the magnetic field and temperature than in the classical intermediate Landau state. The decrease of thickness of normal layers results in increase of characteristic distance between the quantum Andreev levels of electronic excitations, and the transition to the quantum intermediate from classical state is realized at higher temperatures ∼1 K, than it was supposed in previous works. The comparison of calculation data with experimental results, for example using the sample of mono-crystal gallium, is conducted

  4. Nonlinear intersubband absorption and refractive index changes in square and graded quantum well modulated by temperature and Hydrostatic pressure

    International Nuclear Information System (INIS)

    Ozturk, Emine; Sokmen, Ismail

    2013-01-01

    In this study, the effects of hydrostatic pressure and temperature on the linear and nonlinear intersubband transitions and the refractive index changes in the conduction band of square and graded quantum well (QW) are theoretically calculated within the framework of effective mass approximation. Results obtained show that the energy levels in different QWs and intersubband properties can be modified and controlled by the hydrostatic pressure and temperature. The modulation of the absorption coefficients and the refractive index changes which can be suitable for good performance optical modulators and various infrared optical device applications can be easily obtained by tuning the temperature and the hydrostatic pressure. - Highlights: ► Linear and nonlinear optical processes can be changed by pressure and temperature. ► Magnitude and energy of absorption peaks decrease as pressure increases. ► Refractive index changes in magnitude and energy decrease by increasing pressure. ► Energy differences are dependent on pressure, temperature and QW shapes. ► By increasing pressure we can obtain redshift in the optical transitions. ► For SQW, the absorption spectrum shows blueshift as the temperature increases. ► For GQW, the absorption spectrum shows redshift by temperature.

  5. Quantum indistinguishability in chemical reactions.

    Science.gov (United States)

    Fisher, Matthew P A; Radzihovsky, Leo

    2018-05-15

    Quantum indistinguishability plays a crucial role in many low-energy physical phenomena, from quantum fluids to molecular spectroscopy. It is, however, typically ignored in most high-temperature processes, particularly for ionic coordinates, implicitly assumed to be distinguishable, incoherent, and thus well approximated classically. We explore enzymatic chemical reactions involving small symmetric molecules and argue that in many situations a full quantum treatment of collective nuclear degrees of freedom is essential. Supported by several physical arguments, we conjecture a "quantum dynamical selection" (QDS) rule for small symmetric molecules that precludes chemical processes that involve direct transitions from orbitally nonsymmetric molecular states. As we propose and discuss, the implications of the QDS rule include ( i ) a differential chemical reactivity of para- and orthohydrogen, ( ii ) a mechanism for inducing intermolecular quantum entanglement of nuclear spins, ( iii ) a mass-independent isotope fractionation mechanism, ( iv ) an explanation of the enhanced chemical activity of "reactive oxygen species", ( v ) illuminating the importance of ortho-water molecules in modulating the quantum dynamics of liquid water, and ( vi ) providing the critical quantum-to-biochemical linkage in the nuclear spin model of the (putative) quantum brain, among others.

  6. Capacitance and conductance of mesoscopic systems connected by quantum point contacts

    DEFF Research Database (Denmark)

    Flensberg, Karsten

    1993-01-01

    We study the transport properties of quantum dots and quantum point contacts in the Coulomb blockade regime and in the limit where the quantum point contact has nearly fully transmitting channels. Using a transformation to a multichannel Tomonaga-Luttinger-type model, we find the scaling behavior...... of the junction close to pinchoff. It is shown that the junction scales to an insulating junction. We find a crossover between a low-temperature regime with Coulomb blockade to a high-temperature regime where the quantum charge fluctuations are dominant. The crossover temperature between these regimes is given...... by Tc∼U[1-G0/NGH]N/2, where U are the bare charging energy, G0 is the nominal conductance, N is the number of channels, and GH=e2/h....

  7. Relativistic quantum theory of composite systems

    International Nuclear Information System (INIS)

    Sogami, I.

    1978-01-01

    A relativistic quantum theory free from the difficulties of tachyons and ghosts is formulated to describe the scattering processes between composite systems of spinless quarks. To evade the complication brewed by introducing gluon fields or strings, valence quarks are effectively assumed to be in the relative motion of harmonic oscillation correlating with the motion of the composite system as a whole. A quark-antiquark system is represented by a bilocal field describing a sequence of mesons and every meson is identified with the composite system in a definite eigenstate of relative motion. The quantization is performed in the interaction picture, so that the microcausal condition is satisfied by local fields which result from the decomposition of bilocal fields. Imposing a weakened macrocausal condition on the whole motion of the extended system, a causal bilocal propagator is defined and a consistent time ordering among bilocal fields is defined. The invariant S-matrix is obtained and the graphical method for the calculation of its elements is developed in parallel with the conventional local field theory. For the (bilocal field) 3 interaction any malignant divergence does not appear excepting those in the renormalizable local field theory. The theory provides one promising and comprehensive phenomenology of hadrons which is suitable especially to describe the hard structure of hadrons. (author)

  8. Henipaviruses Employ a Multifaceted Approach to Evade the Antiviral Interferon Response

    Directory of Open Access Journals (Sweden)

    Megan L. Shaw

    2009-12-01

    Full Text Available Hendra and Nipah virus, which constitute the genus Henipavirus, are zoonotic paramyxoviruses that have been associated with sporadic outbreaks of severe disease and mortality in humans since their emergence in the late 1990s. Similar to other paramyxoviruses, their ability to evade the host interferon (IFN response is conferred by the P gene. The henipavirus P gene encodes four proteins; the P, V, W and C proteins, which have all been described to inhibit the antiviral response. Further studies have revealed that these proteins have overlapping but unique properties which enable the virus to block multiple signaling pathways in the IFN response. The best characterized of these is the JAK-STAT signaling pathway which is targeted by the P, V and W proteins via an interaction with the transcription factor STAT1. In addition the V and W proteins can both limit virus-induced induction of IFN but they appear to do this via distinct mechanisms that rely on unique sequences in their C-terminal domains. The ability to generate recombinant Nipah viruses now gives us the opportunity to determine the precise role for each of these proteins and address their contribution to pathogenicity. Additionally, the question of whether these multiple anti-IFN strategies are all active in the different mammalian hosts for henipaviruses, particularly the fruit bat reservoir, warrants further exploration.

  9. Could one make a diamond-based quantum computer?

    International Nuclear Information System (INIS)

    Stoneham, A Marshall; Harker, A H; Morley, Gavin W

    2009-01-01

    We assess routes to a diamond-based quantum computer, where we specifically look towards scalable devices, with at least 10 linked quantum gates. Such a computer should satisfy the deVincenzo rules and might be used at convenient temperatures. The specific examples that we examine are based on the optical control of electron spins. For some such devices, nuclear spins give additional advantages. Since there have already been demonstrations of basic initialization and readout, our emphasis is on routes to two-qubit quantum gate operations and the linking of perhaps 10-20 such gates. We analyse the dopant properties necessary, especially centres containing N and P, and give results using simple scoping calculations for the key interactions determining gate performance. Our conclusions are cautiously optimistic: it may be possible to develop a useful quantum information processor that works above cryogenic temperatures.

  10. Quantum switching of polarization in mesoscopic ferroelectrics

    International Nuclear Information System (INIS)

    Sa de Melo, C.A.

    1996-01-01

    A single domain of a uniaxial ferroelectric grain may be thought of as a classical permanent memory. At the mesoscopic level this system may experience considerable quantum fluctuations due to tunneling between two possible memory states, thus destroying the classical permanent memory effect. To study these quantum effects the concrete example of a mesoscopic uniaxial ferroelectric grain is discussed, where the orientation of the electric polarization determines two possible memory states. The possibility of quantum switching of the polarization in mesoscopic uniaxial ferroelectric grains is thus proposed. To determine the degree of memory loss, the tunneling rate between the two polarization states is calculated at zero temperature both in the absence and in the presence of an external static electric field. In addition, a discussion of crossover temperature between thermally activated behavior and quantum tunneling behavior is presented. And finally, environmental effects (phonons, defects, and surfaces) are also considered. copyright 1996 The American Physical Society

  11. Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas

    Science.gov (United States)

    Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.

    2013-04-01

    The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad

  12. Quantum heat engine with coupled superconducting resonators

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Aslan, Nur; Wilson, C. M.

    2017-01-01

    We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one...... the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures....

  13. Overspinning a nearly extreme black hole and the weak cosmic censorship conjecture

    International Nuclear Information System (INIS)

    Richartz, Mauricio; Saa, Alberto

    2008-01-01

    We revisit here the recent proposal for overspinning a nearly extreme black hole by means of a quantum tunneling process. We show that electrically neutral massless fermions evade possible backreaction effects related to superradiance, confirming the view that it would be indeed possible to form a naked singularity due to quantum effects.

  14. Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Thomas C.

    2010-12-16

    In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases

  15. A Comparison of the recombination efficiency in green-emitting InGaN quantum dots and quantum wells

    International Nuclear Information System (INIS)

    Park, Il-Kyu; Kwon, Min-Ki; Park, Seong-Ju

    2012-01-01

    A comparative investigation of the recombination efficiency of green-emitting InGaN quantum dots (QDs) and quantum wells (QWs) is reported in this paper. Optical investigations using temperature dependent photoluminescence (PL) results showed that the internal quantum efficiency of InGaN QDs at room temperature was 8.7 times larger than that found for InGaN QWs because they provided dislocation-free recombination sites for the electrical charge carriers. The excitation power-dependent PL and electroluminescence results showed that the effect of the polarization induced electric field on the recombination process of electrical charge carriers in the QDs was negligibly small whereas it was dominant in the QWs. These results indicate that InGaN QDs are more beneficial than QWs in improving the luminescence efficiency of LEDs in the green spectral range.

  16. Room Temperature Electroluminescence from Tensile-Strained Si0.13Ge0.87/Ge Multiple Quantum Wells on a Ge Virtual Substrate

    Directory of Open Access Journals (Sweden)

    Guangyang Lin

    2016-09-01

    Full Text Available Direct band electroluminescence (EL from tensile-strained Si0.13Ge0.87/Ge multiple quantum wells (MQWs on a Ge virtual substrate (VS at room temperature is reported herein. Due to the competitive result of quantum confinement Stark effect and bandgap narrowing induced by tensile strain in Ge wells, electroluminescence from Γ1-HH1 transition in 12-nm Ge wells was observed at around 1550 nm. As injection current density increases, additional emission shoulders from Γ2-HH2 transition in Ge wells and Ge VS appeared at around 1300–1400 nm and 1600–1700 nm, respectively. The peak energy of EL shifted to the lower energy side superquadratically with an increase of injection current density as a result of the Joule heating effect. During the elevation of environmental temperature, EL intensity increased due to a reduction of energy between L and Γ valleys of Ge. Empirical fitting of the relationship between the integrated intensity of EL (L and injection current density (J with L~Jm shows that the m factor increased with injection current density, suggesting higher light emitting efficiency of the diode at larger injection current densities, which can be attributed to larger carrier occupations in the Γ valley and the heavy hole (HH valance band at higher temperatures.

  17. Effects of InAlAs strain reducing layer on the photoluminescence properties of InAs quantum dots embedded in InGaAs/GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingmin, E-mail: konglm@qq.com [School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316000 (China); Sun, Wei [SEM School of Electromechanical Engineering, Weifang Engineering Vocational College, Qingzhou 262500 (China); Feng, Zhe Chuan, E-mail: zcfeng@nut.edu.tw [Institute of Photonics and Optoelectronics, Department of Electrical Engineering, and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106-17, Taiwan (China); Xie, Sheng [School of Electronic and Information Engineering, Tianjin University, Tianjin 300072 (China); Zhou, Yunqing; Wang, Rui; Zhang, Cunxi; Zong, Zhaocun; Wang, Hongxia; Qiao, Qian [Department of Physics, Zhejiang Ocean University, Zhoushan 316000 (China); Wu, Zhengyun [Department of Physics, Xiamen University, Xiamen 361005 China (China)

    2014-07-01

    Two kinds of self-assembled quantum dots (QDs) embedded within InGaAs/GaAs quantum wells were grown by molecular beam epitaxy: one was capped with an InAlAs strain reducing (SR) layer, while the other was not. Their emission dynamics was investigated by time-resolved and temperature dependent (TD) photoluminescence (PL) measurements. A significant redshift can be observed in the emission peak position of InAs QDs with thin InAlAs SR cap layer, which results from SR effects. Different behaviors of the integrated PL intensity for the samples with or without InAlAs layer may be ascribed to the reduced carrier transition at higher temperature for the higher energy barrier of the InAlAs layer, and the TD mode of carrier migration. The PL decay time of quantum dots grown with InAlAs layer was much longer than that without the layer, which implies that the InAlAs layer with higher energy barrier may enhance the quantum restriction of carriers in InAs QDs. These observations are discussed from the viewpoint of strain compensation and potential barrier variation with SR layers. Our experiments also demonstrate that the main mode of carrier migration is quantum tunneling effect at lower temperature, while it is quantum transition at higher temperature. The results demonstrate the importance of InAlAs SR layer for the optical quality of InAs QDs. - Highlights: • InAs quantum dots (QDs) were grown on GaAs. • A thin InAlAs layer was grown on InAs QDs. • Temperature dependent photoluminescence (PL) and time-resolved PL were carried out. • Both a redshift and a double exponential decay of PL emission were generated by the InAlAs layer.

  18. Perturbative study in quantum field theory at finite temperature, application to lepton pair production from a quark-gluon plasma

    International Nuclear Information System (INIS)

    Altherr, T.

    1989-12-01

    The main topic of this thesis is a perturbative study of Quantum Field Theory at Finite Temperature. The real-time formalism is used throughout this work. We show the cancellation of infrared and mass singularities in the case of the first order QCD corrections to lepton pair production from a quark-gluon plasma. Two methods of calculation are presented and give the same finite result in the limit of vanishing quark mass. These finite terms are analysed and give small corrections in the region of interest for ultra-relativistic heavy ions collisions, except for a threshold factor. Specific techniques for finite temperature calculations are explicited in the case of the fermionic self-energy in QED [fr

  19. Effect of Temperature and Pressure on Correlation Energy in a Triplet State of a Two Electron Spherical Quantum Dot

    Directory of Open Access Journals (Sweden)

    A. Rejo Jeice

    2013-09-01

    Full Text Available The combined effect of hydrostatic pressure and temperature on correlation energy in a triplet state of two electron spherical quantum dot with square well potential is computed. The result is presented taking GaAs dot as an example. Our result shows the correlation energies are inegative in the triplet state contrast to the singlet state ii it increases with increase in pressure  iiifurther decreases due to the application  of temperature iv it approaches zero as dot size approaches infinity and v it contribute 10% decrement in total confined energy to the narrow dots. All the calculations have been carried out with finite models and the results are compared with existing literature.

  20. Evidence for possible quantum dot interdiffusion induced by cap layer growth

    International Nuclear Information System (INIS)

    Jasinski, J.; Czeczott, M.; Gladysz, A.; Babinski, A.; Kozubowski, J.

    1999-01-01

    Self-organised InGaAs quantum dots were grown on (001) GaAs substrates and covered with two different types of cap layers grown at significantly different temperatures. In order to determine quantum dot emission energy and dot size distribution, photoluminescence and transmission electron microscopy studies were carried out on such samples. Simple theoretical model neglecting effect of interdiffusion allowed for correlation between quantum dot size and photoluminescence emission energy only in the case of dots covered by cap layers grown at the lower temperature. For dots covered by layers grown at the higher temperature such correlation was possible only when strong interdiffusion was assumed. (author)

  1. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad

    2016-07-16

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm were operated in pulsed mode, causing a frequency "down-chirp" across two ro-vibrational transitions of carbon monoxide. The down-chirp phenomenon resulted in large spectral tuning (δν ∼2.8cm-1) within a single pulse of each laser at a high pulse repetition frequency (100kHz). The wide tuning range allowed the application of the two-line thermometry technique, thus making the sensor quantitative and calibration-free. The sensor was first tested in non-reactive CO-N2 gas mixtures in the RCM and then applied to cases of n-pentane oxidation. Experiments were carried out for end of compression (EOC) pressures and temperatures ranging 9.21-15.32bar and 745-827K, respectively. Measured EOC temperatures agreed with isentropic calculations within 5%. Temperature rise measured during the first-stage ignition of n-pentane is over-predicted by zero-dimensional kinetic simulations. This work presents, for the first time, highly time-resolved temperature measurements in reactive and non-reactive rapid compression machine experiments. © 2016 Elsevier Ltd.

  2. Quantum critical scaling and fluctuations in Kondo lattice materials

    Science.gov (United States)

    Yang, Yi-feng; Pines, David; Lonzarich, Gilbert

    2017-01-01

    We propose a phenomenological framework for three classes of Kondo lattice materials that incorporates the interplay between the fluctuations associated with the antiferromagnetic quantum critical point and those produced by the hybridization quantum critical point that marks the end of local moment behavior. We show that these fluctuations give rise to two distinct regions of quantum critical scaling: Hybridization fluctuations are responsible for the logarithmic scaling in the density of states of the heavy electron Kondo liquid that emerges below the coherence temperature T∗, whereas the unconventional power law scaling in the resistivity that emerges at lower temperatures below TQC may reflect the combined effects of hybridization and antiferromagnetic quantum critical fluctuations. Our framework is supported by experimental measurements on CeCoIn5, CeRhIn5, and other heavy electron materials. PMID:28559308

  3. Superconductivity versus quantum criticality: Effects of thermal fluctuations

    Science.gov (United States)

    Wang, Huajia; Wang, Yuxuan; Torroba, Gonzalo

    2018-02-01

    We study the interplay between superconductivity and non-Fermi liquid behavior of a Fermi surface coupled to a massless SU(N ) matrix boson near the quantum critical point. The presence of thermal infrared singularities in both the fermionic self-energy and the gap equation invalidates the Eliashberg approximation, and makes the quantum-critical pairing problem qualitatively different from that at zero temperature. Taking the large N limit, we solve the gap equation beyond the Eliashberg approximation, and obtain the superconducting temperature Tc as a function of N . Our results show an anomalous scaling between the zero-temperature gap and Tc. For N greater than a critical value, we find that Tc vanishes with a Berezinskii-Kosterlitz-Thouless scaling behavior, and the system retains non-Fermi liquid behavior down to zero temperature. This confirms and extends previous renormalization-group analyses done at T =0 , and provides a controlled example of a naked quantum critical point. We discuss the crucial role of thermal fluctuations in relating our results with earlier work where superconductivity always develops due to the special role of the first Matsubara frequency.

  4. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  5. Electromagnetic pulse compression and energy localization in quantum plasmas

    International Nuclear Information System (INIS)

    Hefferon, Gareth; Sharma, Ashutosh; Kourakis, Ioannis

    2010-01-01

    The evolution of the intensity of a relativistic laser beam propagating through a dense quantum plasma is investigated, by considering different plasma regimes. A cold quantum fluid plasma and then a thermal quantum description(s) is (are) adopted, in comparison with the classical case of reference. Considering a Gaussian beam cross-section, we investigate both the longitudinal compression and lateral/longitudinal localization of the intensity of a finite-radius electromagnetic pulse. By employing a quantum plasma fluid model in combination with Maxwell's equations, we rely on earlier results on the quantum dielectric response, to model beam-plasma interaction. We present an extensive parametric investigation of the dependence of the longitudinal pulse compression mechanism on the electron density in cold quantum plasmas, and also study the role of the Fermi temperature in thermal quantum plasmas. Our numerical results show pulse localization through a series of successive compression cycles, as the pulse propagates through the plasma. A pulse of 100 fs propagating through cold quantum plasma is compressed to a temporal size of ∼1.35 attosecond and a spatial size of ∼1.08.10 -3 cm. Incorporating Fermi pressure via a thermal quantum plasma model is shown to enhance localization effects. A 100 fs pulse propagating through quantum plasma with a Fermi temperature of 350 K is compressed to a temporal size of ∼0.6 attosecond and a spatial size of ∼2.4.10 -3 cm.

  6. Coherence protection in coupled quantum systems

    Science.gov (United States)

    Cammack, H. M.; Kirton, P.; Stace, T. M.; Eastham, P. R.; Keeling, J.; Lovett, B. W.

    2018-02-01

    The interaction of a quantum system with its environment causes decoherence, setting a fundamental limit on its suitability for quantum information processing. However, we show that if the system consists of coupled parts with different internal energy scales then the interaction of one part with a thermal bath need not lead to loss of coherence from the other. Remarkably, we find that the protected part can remain coherent for longer when the coupling to the bath becomes stronger or the temperature is raised. Our theory will enable the design of decoherence-resistant hybrid quantum computers.

  7. Quantum logic gates based on ballistic transport in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Dragoman, Daniela [Faculty of Physics, University of Bucharest, P.O. Box MG-11, 077125 Bucharest (Romania); Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest (Romania); Dragoman, Mircea, E-mail: mircea.dragoman@imt.ro [National Institute for Research and Development in Microtechnology (IMT), P.O. Box 38-160, 023573 Bucharest (Romania)

    2016-03-07

    The paper presents various configurations for the implementation of graphene-based Hadamard, C-phase, controlled-NOT, and Toffoli gates working at room temperature. These logic gates, essential for any quantum computing algorithm, involve ballistic graphene devices for qubit generation and processing and can be fabricated using existing nanolithographical techniques. All quantum gate configurations are based on the very large mean-free-paths of carriers in graphene at room temperature.

  8. Quantum decay of metastable current states in rf squids

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Khlus, V.A.; Tsoj, C.M.; Shnyrkov, V.I.

    1985-01-01

    Quantum decay of metastable current states in a rf SQUID superconducting ring of a hysteresis mode are considered. Point contacts are used as a Josephson weak link. The first derivative of rf IVC, dVsub(T)/dIsub(RF), is measured which gives the dependence of the density of decay probability on the amplitude of magnetic flux oscillations in the ring. The temperature dependence of probability distribution width between 4.2 and 0.5 K suggests that for most of high-ohmic contacts Nb-Nb, Nb-Ag-Nb the quantum mechanisms of decay become dominant beginning with the temperature of about 2 K. The experimental parameters of distribution of decay probability in the quantum limit are compared to those calculated by the theory of macroscopic quantum tunneling in the limit of high and low dissipation. The experimental values of probability density distribution width and characteristic quantum temperature are higher than the theoretical ones, the fact can be attributed to the deviation of current-phase relation of contact from a sinusoidal one. Besides, some contacts seem to correspond to the case of an intermediate value of dissipation. As the frequency of rf oscillations varies from 30 to 6 MHz, the distribution width remains unchanged in accordance with the theory of quantum tunneling decay of metastable current state in the ring in the limit of high damping. At low temperatures (T approximately 0.5 K), and rather small damping coefficient, the density of probability displays anomalous peaks when the amplitude of rf oscillations is lower considerably than the critical vaiue of magnetic flux in the ring

  9. Quantum localization and protein-assisted vibrational energy flow in cofactors

    International Nuclear Information System (INIS)

    Leitner, David M

    2010-01-01

    Quantum effects influence vibrational dynamics and energy flow in biomolecules, which play a central role in biomolecule function, including control of reaction kinetics. Lifetimes of many vibrational modes of proteins and their temperature dependence, as determined by quantum golden-rule-based calculations, exhibit trends consistent with experimental observation and distinct from estimates based on classical modeling. Particularly notable are quantum coherence effects that give rise to localization of vibrational states of sizable organic molecules in the gas phase. Even when such a molecule, for instance a cofactor, is embedded in a protein, remnants of quantum localization survive that influence vibrational energy flow and its dependence on temperature. We discuss these effects on the mode-damping rates of a cofactor embedded in a protein, using the green fluorescent protein chromophore as a specific example. We find that for cofactors of this size embedded in their protein and solvent environment at room temperature a golden-rule calculation often overestimates the mode-damping rate.

  10. The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots.

    Science.gov (United States)

    Narayanaswamy, Arun; Feiner, L F; Meijerink, A; van der Zaag, P J

    2009-09-22

    Visual color changes between 300 and 510 K were observed in the photoluminescence (PL) of colloidal InP/ZnS core-shell nanocrystals. A subsequent study of PL spectra in the range 2-510 K and fitting the temperature dependent line shift and line width to theoretical models show that the dominant (dephasing) interaction is due to scattering by acoustic phonons of about 23 meV. Low temperature photoluminescence excitation measurements show that the excitonic band gap depends approximately inversely linearly on the quantum dot size d, which is distinctly weaker than the dependence predicted by current theories.

  11. Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature

    Science.gov (United States)

    Boventer, Isabella; Pfirrmann, Marco; Krause, Julius; Schön, Yannick; Kläui, Mathias; Weides, Martin

    2018-05-01

    Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave cavity over the full temperature range from 290 K to 30 mK . The cavity-magnon polaritons are studied from the classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at temperatures below 1 K . We compare the temperature dependence of the coupling strength geff(T ) , describing the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering leading to a strong peak at 40 K . The linewidth κm decreases to 1.2 MHz at 30 mK , making this system suitable as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single measurement, thus simplifying investigations significantly.

  12. The GUP and quantum Raychaudhuri equation

    Science.gov (United States)

    Vagenas, Elias C.; Alasfar, Lina; Alsaleh, Salwa M.; Ali, Ahmed Farag

    2018-06-01

    In this paper, we compare the quantum corrections to the Schwarzschild black hole temperature due to quadratic and linear-quadratic generalised uncertainty principle, with the corrections from the quantum Raychaudhuri equation. The reason for this comparison is to connect the deformation parameters β0 and α0 with η which is the parameter that characterises the quantum Raychaudhuri equation. The derived relation between the parameters appears to depend on the relative scale of the system (black hole), which could be read as a beta function equation for the quadratic deformation parameter β0. This study shows a correspondence between the two phenomenological approaches and indicates that quantum Raychaudhuri equation implies the existence of a crystal-like structure of spacetime.

  13. Theory of Correlated Pairs of Electrons Oscillating in Resonant Quantum States to Reach the Critical Temperature in a Metal

    OpenAIRE

    Aroche, Raúl Riera; Rosas-Cabrera, Rodrigo Arturo; Burgos, Rodrigo Arturo Rosas; Betancourt-Riera, René; Betancourt-Riera, Ricardo

    2017-01-01

    The formation of Correlated Electron Pairs Oscillating around the Fermi level in Resonant Quantum States (CEPO-RQS), when a metal is cooled to its critical temperature T=Tc, is studied. The necessary conditions for the existence of CEPO-RQS are analyzed. The participation of electron-electron interaction screened by an electron dielectric constant of the form proposed by Thomas Fermi is considered and a physical meaning for the electron-phonon-electron interaction in the formation of the CEPO...

  14. Quantum statistical effects in the mass transport of interstitial solutes in a crystalline solid

    Science.gov (United States)

    Woo, C. H.; Wen, Haohua

    2017-09-01

    The impact of quantum statistics on the many-body dynamics of a crystalline solid at finite temperatures containing an interstitial solute atom (ISA) is investigated. The Mori-Zwanzig theory allows the many-body dynamics of the crystal to be formulated and solved analytically within a pseudo-one-particle approach using the Langevin equation with a quantum fluctuation-dissipation relation (FDR) based on the Debye model. At the same time, the many-body dynamics is also directly solved numerically via the molecular dynamics approach with a Langevin heat bath based on the quantum FDR. Both the analytical and numerical results consistently show that below the Debye temperature of the host lattice, quantum statistics significantly impacts the ISA transport properties, resulting in major departures from both the Arrhenius law of diffusion and the Einstein-Smoluchowski relation between the mobility and diffusivity. Indeed, we found that below one-third of the Debye temperature, effects of vibrations on the quantum mobility and diffusivity are both orders-of-magnitude larger and practically temperature independent. We have shown that both effects have their physical origin in the athermal lattice vibrations derived from the phonon ground state. The foregoing theory is tested in quantum molecular dynamics calculation of mobility and diffusivity of interstitial helium in bcc W. In this case, the Arrhenius law is only valid in a narrow range between ˜300 and ˜700 K. The diffusivity becomes temperature independent on the low-temperature side while increasing linearly with temperature on the high-temperature side.

  15. Quantum percolation phase transition and magnetoelectric dipole glass in hexagonal ferrites

    Science.gov (United States)

    Rowley, S. E.; Vojta, T.; Jones, A. T.; Guo, W.; Oliveira, J.; Morrison, F. D.; Lindfield, N.; Baggio Saitovitch, E.; Watts, B. E.; Scott, J. F.

    2017-07-01

    Hexagonal ferrites not only have enormous commercial impact (£2 billion/year in sales) due to applications that include ultrahigh-density memories, credit-card stripes, magnetic bar codes, small motors, and low-loss microwave devices, they also have fascinating magnetic and ferroelectric quantum properties at low temperatures. Here we report the results of tuning the magnetic ordering temperature in PbF e12 -xG axO19 to zero by chemical substitution x . The phase transition boundary is found to vary as TN˜(1-x /xc ) 2 /3 with xc very close to the calculated spin percolation threshold, which we determine by Monte Carlo simulations, indicating that the zero-temperature phase transition is geometrically driven. We find that this produces a form of compositionally tuned, insulating, ferrimagnetic quantum criticality. Close to the zero-temperature phase transition, we observe the emergence of an electric dipole glass induced by magnetoelectric coupling. The strong frequency behavior of the glass freezing temperature Tm has a Vogel-Fulcher dependence with Tm finite, or suppressed below zero in the zero-frequency limit, depending on composition x . These quantum-mechanical properties, along with the multiplicity of low-lying modes near the zero-temperature phase transition, are likely to greatly extend applications of hexaferrites into the realm of quantum and cryogenic technologies.

  16. Spectral properties of polarized light from semipolar grown InGaN quantum wells at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Schade, L.; Schwarz, U.T. [Fraunhofer Institute for Applied Solid State Physics IAF, Freiburg (Germany); Department of Microsystems Engineering (IMTEK), University of Freiburg (Germany); Wernicke, T.; Ploch, S. [Institute of Solid State Physics, TU Berlin (Germany); Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, TU Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Berlin (Germany)

    2012-03-15

    The polarization dependent photoluminescence at low temperatures of strained semipolar and nonpolar InGaN quantum wells was studied as a function of the emission wavelength. We found for semipolar QWs that the maximum of the spectral resolved optical polarization is either red- or blue-shifted with respect to the maximum of the emission. In contrast, the nonpolar emission exhibits no clear maximum. We assign all effects to an inhomogeneous broadening of the emission caused by indium fluctuations and explain this behavior here in the light of the optical polarization switching. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Numerical simulation of a quantum controlled-not gate implemented on four-spin molecules at room temperature

    CERN Document Server

    López, G V; Berman, G P; Doolen, G D; Tsifrinovich, V I

    2003-01-01

    We study numerically the non-resonant effects on four-spin molecules at room temperature with the implemented quantum controlled-not gate and using the 2 pi k method. The four nuclear spins in each molecule represent a four-qubit register. The qubits interact with each other through Ising-type interaction which is characterized by the coupling constant J sub a sub , sub b. We study the errors on the reduced density matrix as a function of the Rabi frequency, OMEGA, using the 2 pi k method and when all the coupling constants are equal or when one of them is different from the others.

  18. Non-linear quantum critical dynamics and fluctuation-dissipation ratios far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Farzaneh [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Ribeiro, Pedro [CeFEMA, Instituto Superior Tcnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Russian Quantum Center, Novaya Street 100 A, Skolkovo, Moscow Area, 143025 (Russian Federation); Kirchner, Stefan, E-mail: stefan.kirchner@correlated-matter.com [Center for Correlated Matter, Zhejiang University, Hangzhou, Zhejiang 310058 (China)

    2016-02-15

    Non-thermal correlations of strongly correlated electron systems and the far-from-equilibrium properties of phases of condensed matter have become a topical research area. Here, an overview of the non-linear dynamics found near continuous zero-temperature phase transitions within the context of effective temperatures is presented. In particular, we focus on models of critical Kondo destruction. Such a quantum critical state, where Kondo screening is destroyed in a critical fashion, is realized in a number of rare earth intermetallics. This raises the possibility of experimentally testing for the existence of fluctuation-dissipation relations far from equilibrium in terms of effective temperatures. Finally, we present an analysis of a non-interacting, critical reference system, the pseudogap resonant level model, in terms of effective temperatures and contrast these results with those obtained near interacting quantum critical points. - Highlights: • Critical Kondo destruction explains the unusual properties of quantum critical heavy fermion compounds. • We review the concept of effective temperatures in models of critical Kondo destruction. • We compare effective temperatures found near non-interacting and fully interacting fixed points. • A comparison with non-interacting quantum impurity models is presented.

  19. Electron confinement in quantum nanostructures: Self-consistent Poisson-Schroedinger theory

    International Nuclear Information System (INIS)

    Luscombe, J.H.; Bouchard, A.M.; Luban, M.

    1992-01-01

    We compute the self-consistent electron states and confining potential, V(r,T), for laterally confined cylindrical quantum wires at a temperature T from a numerical solution of the coupled Poisson and Schroedinger (PS) equations. Finite-temperature effects are included in the electron density function, n(r,T), via the single-particle density matrix in the grand-canonical ensemble using the self-consistent bound states. We compare our results for a GaAs quantum wire with those obtained previously [J. H. Luscombe and M. Luban, Appl. Phys. Lett. 57, 61 (1990)] from a finite-temperature Thomas-Fermi (TF) approximation. We find that the TF results agree well with those of the more realistic, but also more computationally intensive PS theory, except for low temperatures or for cases where the quantum wire is almost, but not totally, depleted due to a combination of either small geometry, surface boundary conditions, or low doping concentrations. In the latter situations, the number of subbands that are populated is relatively small, and both n(r,T) and V(r,T) exhibit Friedel-type oscillations. Otherwise the TF theory, which is based on free-particle states, is remarkably accurate. We also present results for the partial electron density functions associated with the angular momentum quantum numbers, and discuss their role in populating the quantum wire

  20. Temperature-dependent photoluminescence and contactless electroreflectance characterization of a ZnxCd1-xSe/Znx'Cdy'Mg1-x'-y'Se asymmetric coupled quantum well structure

    International Nuclear Information System (INIS)

    Wu, J.D.; Huang, Y.S.; Lin, D.Y.; Charles, W.O.; Shen, A.; Tamargo, M.C.; Tiong, K.K.

    2011-01-01

    Research highlights: → We report a detailed study of a ZnxCd 1-x Se/Znx'Cdy'Mg 1-x '-y'Se asymmetric coupled quantum well structure by using temperature-dependent photoluminescence (PL) and contactless electroreflectance (CER) techniques. → The PL peak position yielded information of the fundamental excitonic recombinations. → Analysis of the CER spectra led to the identification of various interband transitions. →Study of the temperature dependence of the excitonic transition energies indicated that main influence of temperature on the quantized transitions is through temperature dependence of the constituent material band gap in the well. - Abstract: Temperature-dependent photoluminescence (PL) and contactless electroreflectance (CER) were used to characterize a Zn x Cd 1-x Se/Zn x' Cd y' Mg 1-x'-y' Se asymmetric coupled quantum well (ACQW) structure in the range of 10-300 K. The PL peak position yielded information of the fundamental excitonic recombinations. A detailed analysis of the CER spectra led to the identification of various interband transitions. The intersubband transitions were then estimated and found to be in a good agreement with the previous report of Fourier-transform infrared absorption measurements. At low temperature, the PL spectra of the sample showed an asymmetric behavior with an exponential tail at the lower-energy side and were attributed to the localized excitonic recombinations due to potential fluctuations. Detailed study of the temperature dependence of the excitonic transition energies indicated that the main influence of temperature on the quantized transitions is through the temperature dependence of the band gap of the constituent material in the well.

  1. Cold molecules: Progress in quantum engineering of chemistry and quantum matter

    Science.gov (United States)

    Bohn, John L.; Rey, Ana Maria; Ye, Jun

    2017-09-01

    Cooling atoms to ultralow temperatures has produced a wealth of opportunities in fundamental physics, precision metrology, and quantum science. The more recent application of sophisticated cooling techniques to molecules, which has been more challenging to implement owing to the complexity of molecular structures, has now opened the door to the longstanding goal of precisely controlling molecular internal and external degrees of freedom and the resulting interaction processes. This line of research can leverage fundamental insights into how molecules interact and evolve to enable the control of reaction chemistry and the design and realization of a range of advanced quantum materials.

  2. Algebraic Topology Foundations of Supersymmetry and Symmetry Breaking in Quantum Field Theory and Quantum Gravity: A Review

    Directory of Open Access Journals (Sweden)

    Ion C. Baianu

    2009-04-01

    Full Text Available A novel algebraic topology approach to supersymmetry (SUSY and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, the quantum groups and quantum groupoids with their dual algebraic structures; quantum double constructions are also discussed in this context in relation to quasi-triangular, quasi-Hopf algebras, bialgebroids, Grassmann-Hopf algebras and higher dimensional algebra. On the one hand, this quantum algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On the other hand, our novel approach to extended quantum symmetries and their associated representations is shown to be relevant to locally covariant general relativity theories that are consistent with either nonlocal quantum field theories or local bosonic (spin models with the extended quantum symmetry of entangled, 'string-net condensed' (ground states.

  3. Fundamental properties of devices for quantum information technology

    DEFF Research Database (Denmark)

    Nielsen, Per Kær

    This thesis reports a theoretical investigation of the influence of the electronphonon interaction on semiconductor cavity quantum electrodynamical systems, specifically a quantum dot coupled to an optical microcavity. We develop a theoretical description of the decay dynamics of the quantum dot...... interacting with the cavity and the phonons. It is shown that the presence of the phonon interaction, fundamentally changes the spontaneous emission decay behavior of the quantum dot. Especially in the regime where the quantum dotcavity spectral detuning is significantly larger than any linewidth...... of the system, the effect of the phonon interaction is very pronounced. A simple approximate analytical expression for the quantum dot decay rate is derived, which predicts a strong asymmetry with respect to the quantum dot-cavity detuning at low temperatures, and allows for a clear interpretation...

  4. Deviation from the Knudsen law on quantum gases

    International Nuclear Information System (INIS)

    Babac, Gulru

    2014-01-01

    Gas flow in micro/nano scale systems has been generally studied for the Maxwell gases. In the limits of very low temperature and very confined domains, the Maxwellian approximation can break down and the quantum character of the gases becomes important. In these cases, Knudsen law, which is one of the important equations to analyze rarefied gas flows is invalid and should be reanalyzed for quantum gases. In this work, the availability of quantum gas conditions in the high Knudsen number cases is discussed and Knudsen law is analyzed for quantum gases

  5. High-speed noise-free optical quantum memory

    Science.gov (United States)

    Kaczmarek, K. T.; Ledingham, P. M.; Brecht, B.; Thomas, S. E.; Thekkadath, G. S.; Lazo-Arjona, O.; Munns, J. H. D.; Poem, E.; Feizpour, A.; Saunders, D. J.; Nunn, J.; Walmsley, I. A.

    2018-04-01

    Optical quantum memories are devices that store and recall quantum light and are vital to the realization of future photonic quantum networks. To date, much effort has been put into improving storage times and efficiencies of such devices to enable long-distance communications. However, less attention has been devoted to building quantum memories which add zero noise to the output. Even small additional noise can render the memory classical by destroying the fragile quantum signatures of the stored light. Therefore, noise performance is a critical parameter for all quantum memories. Here we introduce an intrinsically noise-free quantum memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We demonstrate successful storage of GHz-bandwidth heralded single photons in a warm atomic vapor with no added noise, confirmed by the unaltered photon-number statistics upon recall. Our ORCA memory meets the stringent noise requirements for quantum memories while combining high-speed and room-temperature operation with technical simplicity, and therefore is immediately applicable to low-latency quantum networks.

  6. Complex quantum transport in a modulation doped strained Ge quantum well heterostructure with a high mobility 2D hole gas

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, C., E-mail: c.morrison.2@warwick.ac.uk; Casteleiro, C.; Leadley, D. R.; Myronov, M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-09-05

    The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm{sup 2}/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m{sub 0}. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.

  7. Complex quantum transport in a modulation doped strained Ge quantum well heterostructure with a high mobility 2D hole gas

    Science.gov (United States)

    Morrison, C.; Casteleiro, C.; Leadley, D. R.; Myronov, M.

    2016-09-01

    The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm2/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m0. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.

  8. Quantum chemistry and dynamics of the abstraction reaction of H atoms from formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Siaï, A. [Faculté des Sciences de Tunis, Département de Physique, (LPMC), Université de Tunis El Manar, 2092 Tunis (Tunisia); Oueslati, I. [Faculté des Sciences de Tunis, Département de Physique, (LPMC), Université de Tunis El Manar, 2092 Tunis (Tunisia); Observatoire de Paris-Meudon, Sorbonne Universités, UPMC Univ Paris 06, UMR8112 du CNRS, LERMA, 5 Place Jules Janssen, 92195 Meudon cedex (France); Académie Militaire, Fondouk Jedid, 8012 Nabeul (Tunisia); Kerkeni, Boutheïna, E-mail: Boutheina.kerkeni@obspm.fr [Faculté des Sciences de Tunis, Département de Physique, (LPMC), Université de Tunis El Manar, 2092 Tunis (Tunisia); Observatoire de Paris-Meudon, Sorbonne Universités, UPMC Univ Paris 06, UMR8112 du CNRS, LERMA, 5 Place Jules Janssen, 92195 Meudon cedex (France); Institut Supérieur des Arts Multimédia de la Manouba, Université de la Manouba, 2010 la Manouba (Tunisia)

    2016-08-02

    This work reports a reduced dimensionality rate constant calculation of the H-abstraction reaction from formaldehyde. Quantum scattering calculations are performed treating explicitly the bonds being broken and formed. Geometry optimisations and frequency calculations are done at the MP2/cc-pVTZ level while energies are calculated with the CCSD(T) method. An analytical potential energy surface was developed from a relatively small number of grid points. When compared to semi-classical approaches, the quantum scattering calculations show that quantum tunnelling yields large contributions at low temperatures. At 200 K, we note a difference of about 5 orders of magnitude between transition state theory (TST) and quantum rate constants. Our predicted results show that the quantum and the CVT/SCT rate constants are in reasonable agreement with the available experiment at high temperatures, but that the last one gives better agreement to experimental results at low temperatures.

  9. Quantum computing with defects.

    Science.gov (United States)

    Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2010-05-11

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

  10. Quantum Coherence, Time-Translation Symmetry, and Thermodynamics

    Directory of Open Access Journals (Sweden)

    Matteo Lostaglio

    2015-04-01

    Full Text Available The first law of thermodynamics imposes not just a constraint on the energy content of systems in extreme quantum regimes but also symmetry constraints related to the thermodynamic processing of quantum coherence. We show that this thermodynamic symmetry decomposes any quantum state into mode operators that quantify the coherence present in the state. We then establish general upper and lower bounds for the evolution of quantum coherence under arbitrary thermal operations, valid for any temperature. We identify primitive coherence manipulations and show that the transfer of coherence between energy levels manifests irreversibility not captured by free energy. Moreover, the recently developed thermomajorization relations on block-diagonal quantum states are observed to be special cases of this symmetry analysis.

  11. Casimir Force Between Quantum Plasmas

    International Nuclear Information System (INIS)

    Buenzli, P.

    2005-01-01

    Field fluctuations are responsible for an attractive force - the Casimir force - between two parallel (globally neutral) metallic plates separated by a distance d. At high temperature, or equivalently large d, this force is known to exhibit a classical and universal character (independent of the material constitution of the plates). In a recent work, we have displayed the microscopic mechanisms responsible for this universality within a classical model. The plates consist of slabs containing classical charged particles in fluid phase and thermal equilibrium (plasmas). The universality of the force proves to originate from screening sum rules satisfied by the charge correlations. Here we show how this result is altered when the quantum-mechanical nature of the particles is taken into account. It turns out that in addition to the classical result, the asymptotic force for large d comprises a non-universal quantum correction, which is, however, small at high temperature. The method relies on an exact representation of the charge correlations by quantum Mayer graphs, based on the Feynman-Kac path integral formalism. (author)

  12. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  13. Linear and nonlinear optical properties of multilayered spherical quantum dots: Effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature

    International Nuclear Information System (INIS)

    Karimi, M.J.; Rezaei, G.; Nazari, M.

    2014-01-01

    Based on the effective mass and parabolic one band approximations, simultaneous effects of the geometrical size, hydrogenic impurity, hydrostatic pressure, and temperature on the intersubband optical absorption coefficients and refractive index changes in multilayered spherical quantum dots are studied. Energy eigenvalues and eigenvectors are calculated using the fourth-order Runge–Kutta method and optical properties are obtained using the compact density matrix approach. The results indicate that the hydrogenic impurity, hydrostatic pressure, temperature and geometrical parameters such as the well and barrier widths have a great influence on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes. -- Highlights: • Hydrogenic impurity effects on the optical properties of a MSQD are investigated. • Hydrostatic pressure and temperature effects are also studied. • Hydrogenic impurity has a great influence on the linear and nonlinear ACs and RICs. • Hydrostatic pressure and temperature change the linear and nonlinear ACs and RICs

  14. Quantum walks, quantum gates, and quantum computers

    International Nuclear Information System (INIS)

    Hines, Andrew P.; Stamp, P. C. E.

    2007-01-01

    The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included

  15. Growth of InAs Quantum Dots on Germanium Substrate Using Metal Organic Chemical Vapor Deposition Technique

    Directory of Open Access Journals (Sweden)

    Tyagi Renu

    2009-01-01

    Full Text Available Abstract Self-assembled InAs quantum dots (QDs were grown on germanium substrates by metal organic chemical vapor deposition technique. Effects of growth temperature and InAs coverage on the size, density, and height of quantum dots were investigated. Growth temperature was varied from 400 to 450 °C and InAs coverage was varied between 1.40 and 2.35 monolayers (MLs. The surface morphology and structural characteristics of the quantum dots analyzed by atomic force microscope revealed that the density of the InAs quantum dots first increased and then decreased with the amount of InAs coverage; whereas density decreased with increase in growth temperature. It was observed that the size and height of InAs quantum dots increased with increase in both temperature and InAs coverage. The density of QDs was effectively controlled by growth temperature and InAs coverage on GaAs buffer layer.

  16. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    Science.gov (United States)

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  17. The effect of quantum correction on plasma electron heating in ultraviolet laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Zare, S.; Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir; Anvari, A. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Yazdani, E. [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2015-04-14

    The interaction of the sub-picosecond UV laser in sub-relativistic intensities with deuterium is investigated. At high plasma temperatures, based on the quantum correction in the collision frequency, the electron heating and the ion block generation in plasma are studied. It is found that due to the quantum correction, the electron heating increases considerably and the electron temperature uniformly reaches up to the maximum value of 4.91 × 10{sup 7 }K. Considering the quantum correction, the electron temperature at the laser initial coupling stage is improved more than 66.55% of the amount achieved in the classical model. As a consequence, by the modified collision frequency, the ion block is accelerated quicker with higher maximum velocity in comparison with the one by the classical collision frequency. This study proves the necessity of considering a quantum mechanical correction in the collision frequency at high plasma temperatures.

  18. Quantum vortex motion in high-Tc superconductors

    International Nuclear Information System (INIS)

    Garcia, A.; Zhang, X.X.; Tejada, J.

    1996-01-01

    Magnetic relaxation experiments at low temperatures were performed in different zero-field-cooled (ZFC) and field-cooled (FC) high-T c superconductors (HTSCs): TlBaCaCuO (2212 and 2223 phases, polycrystalline and thin-film samples), (Hg,Tl)BaCaCuO (1223 phase, polycrystalline material), and (Bi,Pb)SrCaCuO (2212 phase, single crystal). For each system and in the whole temperature range investigated, the relaxation curves obtained after both cooling processes are linear with the logarithm of time. The temperature dependence of the relaxation rate normalized to the first magnetization value, R=parallel d(M/M 0 )/dln(t)parallel, follows a trend which is common to all systems: R decreases linearly with decreasing temperature down to a value, which is called the crossover temperature, below which it levels off to a T-independent plateau. This behavior gives evidence of a transition in the mechanism responsible for the relaxation process at low temperatures, from thermally activated (linear dependence on T) to quantum vortex motion (T-independent regime). The experimental values for the crossover temperatures and normalized relaxation rates compare fairly well to numerical estimates in the framework of the theories of quantum vortex motion in layered HTSCs. Finally, the transition from one regime into another was studied in two samples of the TlBaCaCuO, 2223 phase, system in order to investigate the influence of dissipation on the quantum process. A clear conclusion on this point could not be drawn from these kinds of measurements. copyright 1996 American Institute of Physics

  19. Performance characteristics of a quantum Diesel refrigeration cycle

    International Nuclear Information System (INIS)

    He Jizhou; Wang Hao; Liu Sanqiu

    2009-01-01

    The Diesel refrigeration cycle using an ideal quantum gas as the working substance is called quantum Diesel refrigeration cycle, which is different from Carnot, Ericsson, Brayton, Otto and Stirling refrigeration cycles. For ideal quantum gases, a corrected equation of state, which considers the quantum behavior of gas particles, is used instead of the classical one. The purpose of this paper is to investigate the effect of quantum gas as the working substance on the performance of a quantum Diesel refrigeration cycle. It is found that coefficients of performance of the cycle are not affected by the quantum degeneracy of the working substance, which is the same as that of the classical Diesel refrigeration cycle. However, the refrigeration load is different from those of the classical Diesel refrigeration cycle. Lastly, the influence of the quantum degeneracy on the performance characteristics of the quantum Diesel refrigeration cycle operated in different temperature regions is discussed

  20. Temperature-reflection I

    DEFF Research Database (Denmark)

    McGady, David A.

    2017-01-01

    -temperature path integrals for quantum field theories (QFTs) should be T-reflection invariant. Because multi-particle partition functions are equal to Euclidean path integrals for QFTs, we expect them to be T-reflection invariant. Single-particle partition functions though are often not invariant under T......In this paper, we revisit the claim that many partition functions are invariant under reflecting temperatures to negative values (T-reflection). The goal of this paper is to demarcate which partition functions should be invariant under T-reflection, and why. Our main claim is that finite...... that T-reflection is unrelated to time-reversal. Finally, we study the interplay between T-reflection and perturbation theory in the anharmonic harmonic oscillator in quantum mechanics and in Yang-Mills in four-dimensions. This is the first in a series of papers on temperature-reflections....

  1. Electron interaction and spin effects in quantum wires, quantum dots and quantum point contacts: a first-principles mean-field approach

    International Nuclear Information System (INIS)

    Zozoulenko, I V; Ihnatsenka, S

    2008-01-01

    We have developed a mean-field first-principles approach for studying electronic and transport properties of low dimensional lateral structures in the integer quantum Hall regime. The electron interactions and spin effects are included within the spin density functional theory in the local density approximation where the conductance, the density, the effective potentials and the band structure are calculated on the basis of the Green's function technique. In this paper we present a systematic review of the major results obtained on the energetics, spin polarization, effective g factor, magnetosubband and edge state structure of split-gate and cleaved-edge overgrown quantum wires as well as on the conductance of quantum point contacts (QPCs) and open quantum dots. In particular, we discuss how the spin-resolved subband structure, the current densities, the confining potentials, as well as the spin polarization of the electron and current densities in quantum wires and antidots evolve when an applied magnetic field varies. We also discuss the role of the electron interaction and spin effects in the conductance of open systems focusing our attention on the 0.7 conductance anomaly in the QPCs. Special emphasis is given to the effect of the electron interaction on the conductance oscillations and their statistics in open quantum dots as well as to interpretation of the related experiments on the ultralow temperature saturation of the coherence time in open dots

  2. Revisiting the quantum Szilard engine with fully quantum considerations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); School of Information and Electronics Engineering, Shandong Institute of Business and Technology, Yantai 264000 (China); Zou, Jian, E-mail: zoujian@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Jun-Gang; Shao, Bin [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), P.O. Box 644, ES-48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, ES-48011 Bilbao (Spain)

    2012-12-15

    By considering level shifting during the insertion process we revisit the quantum Szilard engine (QSZE) with fully quantum consideration. We derive the general expressions of the heat absorbed from thermal bath and the total work done to the environment by the system in a cycle with two different cyclic strategies. We find that only the quantum information contributes to the absorbed heat, and the classical information acts like a feedback controller and has no direct effect on the absorbed heat. This is the first demonstration of the different effects of quantum information and classical information for extracting heat from the bath in the QSZE. Moreover, when the well width L{yields}{infinity} or the temperature of the bath T{yields}{infinity} the QSZE reduces to the classical Szilard engine (CSZE), and the total work satisfies the relation W{sub tot}=k{sub B}Tln2 as obtained by Sang Wook Kim et al. [S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106 (2011) 070401] for one particle case. - Highlights: Black-Right-Pointing-Pointer For the first time analyze the QSZE by considering energy level shifts. Black-Right-Pointing-Pointer Find different roles played by classical and quantum information in the QSZE. Black-Right-Pointing-Pointer The amount of work extracted depends on the cyclic strategies of the QSZE. Black-Right-Pointing-Pointer Verify that the QSZE will reduce to the CSZE in the classical limits.

  3. Study of Exciton Hopping Transport in PbS Colloidal Quantum Dot Thin Films Using Frequency- and Temperature-Scanned Photocarrier Radiometry

    Science.gov (United States)

    Hu, Lilei; Mandelis, Andreas; Melnikov, Alexander; Lan, Xinzheng; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Solution-processed colloidal quantum dots (CQDs) are promising materials for realizing low-cost, large-area, and flexible photovoltaic devices. The study of charge carrier transport in quantum dot solids is essential for understanding energy conversion mechanisms. Recently, solution-processed two-layer oleic-acid-capped PbS CQD solar cells with one layer treated with tetrabutylammonium iodide (TBAI) serving as the main light-absorbing layer and the other treated with 1,2-ethanedithiol (EDT) acting as an electron-blocking/hole-extraction layer were reported. These solar cells demonstrated a significant improvement in power conversion efficiency of 8.55% and long-term air stability. Coupled with photocarrier radiometry measurements, this work used a new trap-state mediated exciton hopping transport model, specifically for CQD thin films, to unveil and quantify exciton transport mechanisms through the extraction of hopping transport parameters including exciton lifetimes, hopping diffusivity, exciton detrapping time, and trap-state density. It is shown that PbS-TBAI has higher trap-state density than PbS-EDT that results in higher PbS-EDT exciton lifetimes. Hopping diffusivities of both CQD thin film types show similar temperature dependence, particularly higher temperatures yield higher hopping diffusivity. The higher diffusivity of PbS-TBAI compared with PbS-EDT indicates that PbS-TBAI is a much better photovoltaic material than PbS-EDT. Furthermore, PCR temperature spectra and deep-level photothermal spectroscopy provided additional insights to CQD surface trap states: PbS-TBAI thin films exhibit a single dominant trap level, while PbS-EDT films with lower trap-state densities show multiple trap levels.

  4. Parallel magnetotransport in multiple quantum well structures

    International Nuclear Information System (INIS)

    Sheregii, E.M.; Ploch, D.; Marchewka, M.; Tomaka, G.; Kolek, A.; Stadler, A.; Mleczko, K.; Strupinski, W.; Jasik, A.; Jakiela, R.

    2004-01-01

    The results of investigations of parallel magnetotransport in AlGaAs/GaAs and InGaAs/InAlAs/InP multiple quantum wells structures (MQW's) are presented in this paper. The MQW's were obtained by metalorganic vapour phase epitaxy with different shapes of QW, numbers of QW and levels of doping. The magnetotransport measurements were performed in wide region of temperatures (0.5-300 K) and at high magnetic fields up to 30 T (B is perpendicular and current is parallel to the plane of the QW). Three types of observed effects are analyzed: quantum Hall effect and Shubnikov-de Haas oscillations at low temperatures (0.5-6 K) as well as magnetophonon resonance at higher temperatures (77-300 K)

  5. The GUP and quantum Raychaudhuri equation

    Directory of Open Access Journals (Sweden)

    Elias C. Vagenas

    2018-06-01

    Full Text Available In this paper, we compare the quantum corrections to the Schwarzschild black hole temperature due to quadratic and linear-quadratic generalised uncertainty principle, with the corrections from the quantum Raychaudhuri equation. The reason for this comparison is to connect the deformation parameters β0 and α0 with η which is the parameter that characterises the quantum Raychaudhuri equation. The derived relation between the parameters appears to depend on the relative scale of the system (black hole, which could be read as a beta function equation for the quadratic deformation parameter β0. This study shows a correspondence between the two phenomenological approaches and indicates that quantum Raychaudhuri equation implies the existence of a crystal-like structure of spacetime.

  6. Foundations of quantum theory and thermodynamics

    International Nuclear Information System (INIS)

    Olkhov, Victor

    1998-01-01

    Physical reasons to support the statement that Quantum theory (Quantum Gravity in particular as well as Classical Gravity) loose applicability due to Thermodynamical effects are presented. The statement is based on several points: 1. N.Bohr requirement that measuring units must have macro size is one of common fundamentals of Quantum theory. 2. The Reference System--the base notion of Classical and Quantum theory and of any observation process as well, must be protected from any external Thermal influence to provide precise measurements of Time and Distance. 3. No physical screen or process, that can reduce or reflect the action of Gravity is known and hence nothing can cool or protect the measuring units of the Reference System from heating by Thermal Gravity fluctuations. 4. Thermal Gravity fluctuations--Thermal fluctuations of Gravity free fall acceleration, are induced by Thermal behavior of matter and Thermal properties of Electromagnetic fields, but usually are neglected as near zero values. Matter heat Gravity and Gravity heat Matter. Thermal fluctuations of Gravity free fall acceleration act as a Universal Heater on any kind of Matter or Field. 5. Nevertheless the usual Thermal properties of Gravity are negligible, they can be dramatically increased by Gravity Blue Shift (near Gravitational Radius) or usual Doppler effects. 6. If Thermal action of Gravity become significant all measurements of Time and Distance that determine the Reference System notion, must depend on the Thermal properties of Gravity, like Temperature or Entropy, and that violate applicability of the Reference System notion and Quantum and Classical theories as well. If so, Thermal notions, like Temperature or Entropy, become more fundamental than common Time and Distance characters. The definition of the Temperature of the Gravity fluctuations and it's possible measurements are suggested

  7. Discontinuity of maximum entropy inference and quantum phase transitions

    International Nuclear Information System (INIS)

    Chen, Jianxin; Ji, Zhengfeng; Yu, Nengkun; Zeng, Bei; Li, Chi-Kwong; Poon, Yiu-Tung; Shen, Yi; Zhou, Duanlu

    2015-01-01

    In this paper, we discuss the connection between two genuinely quantum phenomena—the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference of local observable measurements signals the non-local type of transitions, where local density matrices of the ground state change smoothly at the transition point. We then propose to use the quantum conditional mutual information of the ground state as an indicator to detect the discontinuity and the non-local type of quantum phase transitions in the thermodynamic limit. (paper)

  8. Energy-filtered cold electron transport at room temperature.

    Science.gov (United States)

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-09-10

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

  9. Two-dimensional electron gas in monolayer InN quantum wells

    International Nuclear Information System (INIS)

    Pan, W.; Wang, G. T.; Dimakis, E.; Moustakas, T. D.; Tsui, D. C.

    2014-01-01

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in a superlattice structure of 40 InN quantum wells consisting of one monolayer of InN embedded between 10 nm GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5 × 10 15  cm −2 (or 1.25 × 10 14  cm −2 per InN quantum well, assuming all the quantum wells are connected by diffused indium contacts) and 420 cm 2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES

  10. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Quantum chromodynamics; finite temperature; chiral perturbation theory; QCD sum rules. PACS Nos 11.10. ..... at finite temperature. The self-energy diagrams of figure 2 modify it to ..... method of determination at present. Acknowledgement.

  11. Quantum critical point in high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation); Stephanovich, V.A. [Opole University, Institute of Mathematics and Informatics, Opole 45-052 (Poland)], E-mail: stef@math.uni.opole.pl

    2009-02-02

    Recently, in high-T{sub c} superconductors (HTSC), exciting measurements have been performed revealing their physics in superconducting and pseudogap states and in normal one induced by the application of magnetic field, when the transition from non-Fermi liquid to Landau-Fermi liquid behavior occurs. We employ a theory, based on fermion condensation quantum phase transition which is able to explain facts obtained in the measurements. We also show, that in spite of very different microscopic nature of HTSC, heavy-fermion metals and 2D {sup 3}He, the physical properties of these three classes of substances are similar to each other.

  12. Magnetization and susceptibility of a parabolic InAs quantum dot with electron–electron and spin–orbit interactions in the presence of a magnetic field at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D. Sanjeev, E-mail: sanjeevchs@gmail.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, Soma [Department of Physics, CMR College of Engineering and Technology, Hyderabad (India); Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2016-11-15

    The magnetization and susceptibility of a two-electron parabolic quantum dot are studied in the presence of electron–electron and spin–orbit interactions as a function of magnetic field and temperature. The spin–orbit interactions are treated by a unitary transformation and an exactly soluble parabolic interaction model is considered to mimic the electron–electron interaction. The theory is finally applied to an InAs quantum dot. Magnetization and susceptibility are calculated using canonical ensemble approach. Our results show that Temperature has no effect on magnetization and susceptibility in the diamagnetic regime whereas electron–electron interaction reduces them. The temperature however reduces the height of the paramagnetic peak. The Rashba spin–orbit interaction is shown to shift the paramagnetic peak towards higher magnetic fields whereas the Dresselhaus spin–orbit interaction shifts it to the lower magnetic field side. Spin–orbit interaction has no effect on magnetization and susceptibility at larger temperatures. - Highlights: • Temperature has no effect on magnetization and susceptibility in the diamagnetic regime but reduces the height of the paramagnetic peak. • Electron-electron interaction reduces magnetization and susceptibility in the diamagnetic region. • Rashba spin–orbit interaction shifts the paramagnetic peak towards higher magnetic fields. • Dresselhaus spin–orbit interaction shifts the paramagnetic peak towards lower magnetic fields. • Spin–orbit interaction has no effect on magnetization and susceptibility at larger temperatures.

  13. The Quantum Socket: Wiring for Superconducting Qubits - Part 3

    Science.gov (United States)

    Mariantoni, M.; Bejianin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    The implementation of a quantum computer requires quantum error correction codes, which allow to correct errors occurring on physical quantum bits (qubits). Ensemble of physical qubits will be grouped to form a logical qubit with a lower error rate. Reaching low error rates will necessitate a large number of physical qubits. Thus, a scalable qubit architecture must be developed. Superconducting qubits have been used to realize error correction. However, a truly scalable qubit architecture has yet to be demonstrated. A critical step towards scalability is the realization of a wiring method that allows to address qubits densely and accurately. A quantum socket that serves this purpose has been designed and tested at microwave frequencies. In this talk, we show results where the socket is used at millikelvin temperatures to measure an on-chip superconducting resonator. The control electronics is another fundamental element for scalability. We will present a proposal based on the quantum socket to interconnect a classical control hardware to a superconducting qubit hardware, where both are operated at millikelvin temperatures.

  14. Temperature dependence of optical transitions in Al xGa1-xAs/GaAs quantum well structures grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Caballero-Rosas, A.; Mejia-Garcia, C.; Contreras-Puente, G.; Lopez-Lopez, M.

    2005-01-01

    Quantum well (QW) structures of Al x Ga 1-x As/GaAs were characterized by photoluminescence technique as a function of the temperature between 10 and 300 K. The structures were grown on a 500 nm thick GaAs buffer layer with Molecular Beam Epitaxy technique. We have studied the properties of in-situ Cl 2 -etched GaAs surfaces and overgrown QW structures as a function of the etching temperature (70 and 200 deg. C). Several models were used to fit the experimental points. Best fit to experimental points was obtained with the Paessler model

  15. The elicitin-like glycoprotein, ELI025, is secreted by the pathogenic oomycete Pythium insidiosum and evades host antibody responses.

    Directory of Open Access Journals (Sweden)

    Tassanee Lerksuthirat

    Full Text Available Pythium insidiosum is a unique oomycete that can infect humans and animals. Patients with a P. insidiosum infection (pythiosis have high rates of morbidity and mortality. The pathogen resists conventional antifungal drugs. Information on the biology and pathogenesis of P. insidiosum is limited. Many pathogens secrete proteins, known as effectors, which can affect the host response and promote the infection process. Elicitins are secretory proteins and are found only in the oomycetes, primarily in Phytophthora and Pythium species. In plant-pathogenic oomycetes, elicitins function as pathogen-associated molecular pattern molecules, sterol carriers, and plant defense stimulators. Recently, we reported a number of elicitin-encoding genes from the P. insidiosum transcriptome. The function of elicitins during human infections is unknown. One of the P. insidiosum elicitin-encoding genes, ELI025, is highly expressed and up-regulated at body temperature. This study aims to characterize the biochemical, immunological, and genetic properties of the elicitin protein, ELI025. A 12.4-kDa recombinant ELI025 protein (rELI025 was expressed in Escherichia coli. Rabbit anti-rELI025 antibodies reacted strongly with the native ELI025 in P. insidiosum's culture medium. The detected ELI025 had two isoforms: glycosylated and non-glycosylated. ELI025 was not immunoreactive with sera from pythiosis patients. The region near the transcriptional start site of ELI025 contained conserved oomycete core promoter elements. In conclusion, ELI025 is a small, abundant, secreted glycoprotein that evades host antibody responses. ELI025 is a promising candidate for development of diagnostic and therapeutic targets for pythiosis.

  16. Quantum criticality among entangled spin chains

    Science.gov (United States)

    Blanc, N.; Trinh, J.; Dong, L.; Bai, X.; Aczel, A. A.; Mourigal, M.; Balents, L.; Siegrist, T.; Ramirez, A. P.

    2018-03-01

    An important challenge in magnetism is the unambiguous identification of a quantum spin liquid1,2, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems3,4 wherein classical order is suppressed by a frustrating lattice5, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at the quantum critical point, with little entropy available for quantum fluctuations6. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K2PbCu(NO2)6. Across the temperature-magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.

  17. On the definition of entropy for quantum unstable states

    International Nuclear Information System (INIS)

    Civitarese, Osvaldo; Gadella, Manuel

    2015-01-01

    The concept of entropy is central to the formulation of the quantum statistical mechanics, and it is linked to the definition of the density operator and the associated probabilities of occupation of quantum states. The extension of this scheme to accommodate for quantum decaying states is conceptually difficult, because of the nature of these states. Here we present a way to treat quantum unstable states in the context of statistical mechanics. We focuss on the definition of the entropy and avoid the use of complex temperatures

  18. Detection of acrolein and acrylonitrile with a pulsed room temperature quantum cascade laser

    Science.gov (United States)

    Manne, J.; Jäger, W.; Tulip, J.

    2010-06-01

    We investigated the use of a pulsed, distributed feedback quantum cascade laser centered at 957 cm-1 in combination with an astigmatic Herriot cell with 250 m path length for the detection of acrolein and acrylonitrile. These molecules have been identified as hazardous air-pollutants because of their adverse health effects. The spectrometer utilizes the intra-pulse method, where a linear frequency down-chirp, that is induced when a top-hat current pulse is applied to the laser, is used for sweeping across the absorption line. Up to 450 ns long pulses were used for these measurements which resulted in a spectral window of ~2.2 cm-1. A room temperature mercury-cadmium-telluride detector was used, resulting in a completely cryogen free spectrometer. We demonstrated detection limits of ~3 ppb for acrylonitrile and ~6 ppb for acrolein with ~10 s averaging time. Laser characterization and optimization of the operational parameters for sensitivity improvement are discussed.

  19. Indications of quantum diffusion of H in Pd

    International Nuclear Information System (INIS)

    Behar, M; Weiser, M.; Kalbitzer, S.

    1989-01-01

    Low temperature diffusion measurements of hydrogen in palladium using the nuclear reaction technique have shown indications of H quantum diffusion behaviour. For temperatures higher than 100 K the experimental diffusion coefficients follow an Arrhenius type behaviour. However, for lower temperatures (30 K 2 behaviour. (Author) [es

  20. Room temperature diode-pumped Yb:CaYAlO4 laser with near quantum limit slope efficiency

    International Nuclear Information System (INIS)

    Tan, W D; Tang, D Y; Zhang, J; Xu, C W; Cong, Z H; Xu, X D; Li, D Z; Xu, J

    2011-01-01

    The room temperature continuous wave (CW) laser performance of a compact Yb:CaYAlO 4 (Yb:CYA) laser with near quantum limit slope efficiency is demonstrated. Pumped with a CW diode operating at 979 nm, the laser emitted a maximum CW output power of 2.3 W at 1050 nm. The corresponding slope efficiency was found to be 92% while the optical to optical conversion efficiency was 70%. The laser can also be continuously tuned from 1008 nm to 1063 nm using an intra-cavity SF 10 prism. The round trip cavity losses of Yb:CYA was 0.6% while the loss coefficient of the crystal was 0.01 cm -1

  1. Luttinger liquid behavior of weakly disordered quantum wires

    International Nuclear Information System (INIS)

    Palevski, A.; Levy, E.; Karpovski, M.; Tsukernik, A.; Dwir, B.; Kapon, E.

    2005-01-01

    Full Text:The talk will be devoted to the electronic transport in quantum nano wires. The temperature dependence of the conductance in long V-groove quantum wires fabricated in GaAs/AlGaAs heterostructures is consistent with recent theories given within the framework of the Luttinger liquid model, in the limit of weakly disordered wires. We show that for the relatively small amount of disorder in our quantum wires, the value of the interaction parameter g is g=0.66, which is the expected value for GaAs. However, samples with a higher level of disorder show conductance with stronger temperature dependence, which exceeds the range of validity of a perturbation theory. Trying to fit such data with perturbation-theory models leads inevitably to wrong (lower) values of g

  2. Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems with applications to quantum information theory of continuous variable systems

    International Nuclear Information System (INIS)

    Hoerhammer, C.

    2007-01-01

    In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends

  3. Quantum Monte Carlo studies of a metallic spin-density wave transition

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Max Henner

    2017-01-20

    Plenty experimental evidence indicates that quantum critical phenomena give rise to much of the rich physics observed in strongly correlated itinerant electron systems such as the high temperature superconductors. A quantum critical point of particular interest is found at the zero-temperature onset of spin-density wave order in two-dimensional metals. The appropriate low-energy theory poses an exceptionally hard problem to analytic theory, therefore the unbiased and controlled numerical approach pursued in this thesis provides important contributions on the road to comprehensive understanding. After discussing the phenomenology of quantum criticality, a sign-problem-free determinantal quantum Monte Carlo approach is introduced and an extensive toolbox of numerical methods is described in a self-contained way. By the means of large-scale computer simulations we have solved a lattice realization of the universal effective theory of interest. The finite-temperature phase diagram, showing both a quasi-long-range spin-density wave ordered phase and a d-wave superconducting dome, is discussed in its entirety. Close to the quantum phase transition we find evidence for unusual scaling of the order parameter correlations and for non-Fermi liquid behavior at isolated hot spots on the Fermi surface.

  4. Near-field strong coupling of single quantum dots.

    Science.gov (United States)

    Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert

    2018-03-01

    Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.

  5. Quantum phase transitions of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Imada, Masatoshi

    1998-01-01

    Interacting electrons in solids undergo various quantum phase transitions driven by quantum fluctuations. The quantum transitions take place at zero temperature by changing a parameter to control quantum fluctuations rather than thermal fluctuations. In contrast to classical phase transitions driven by thermal fluctuations, the quantum transitions have many different features where quantum dynamics introduces a source of intrinsic fluctuations tightly connected with spatial correlations and they have been a subject of recent intensive studies as we see below. Interacting electron systems cannot be fully understood without deep analyses of the quantum phase transitions themselves, because they are widely seen and play essential roles in many phenomena. Typical and important examples of the quantum phase transitions include metal-insulator transitions, (2, 3, 4, 5, 6, 7, 8, 9) metal-superconductor transitions, superconductor-insulator transitions, magnetic transitions to antiferromagnetic or ferromagnetic phases in metals as well as in Mott insulators, and charge ordering transitions. Here, we focus on three different types of transitions

  6. Quantum electric-dipole liquid on a triangular lattice.

    Science.gov (United States)

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F; Sun, Young

    2016-02-04

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics.

  7. Quantum Transport Simulation of High-Power 4.6-μm Quantum Cascade Lasers

    Directory of Open Access Journals (Sweden)

    Olafur Jonasson

    2016-06-01

    Full Text Available We present a quantum transport simulation of a 4.6- μ m quantum cascade laser (QCL operating at high power near room temperature. The simulation is based on a rigorous density-matrix-based formalism, in which the evolution of the single-electron density matrix follows a Markovian master equation in the presence of applied electric field and relevant scattering mechanisms. We show that it is important to allow for both position-dependent effective mass and for effective lowering of very thin barriers in order to obtain the band structure and the current-field characteristics comparable to experiment. Our calculations agree well with experiments over a wide range of temperatures. We predict a room-temperature threshold field of 62 . 5 kV/cm and a characteristic temperature for threshold-current-density variation of T 0 = 199 K . We also calculate electronic in-plane distributions, which are far from thermal, and show that subband electron temperatures can be hundreds to thousands of degrees higher than the heat sink. Finally, we emphasize the role of coherent tunneling current by looking at the size of coherences, the off-diagonal elements of the density matrix. At the design lasing field, efficient injection manifests itself in a large injector/upper lasing level coherence, which underscores the insufficiency of semiclassical techniques to address injection in QCLs.

  8. Dissipative dynamics with the corrected propagator method. Numerical comparison between fully quantum and mixed quantum/classical simulations

    International Nuclear Information System (INIS)

    Gelman, David; Schwartz, Steven D.

    2010-01-01

    The recently developed quantum-classical method has been applied to the study of dissipative dynamics in multidimensional systems. The method is designed to treat many-body systems consisting of a low dimensional quantum part coupled to a classical bath. Assuming the approximate zeroth order evolution rule, the corrections to the quantum propagator are defined in terms of the total Hamiltonian and the zeroth order propagator. Then the corrections are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The evolution of the primary part is governed by the corrected propagator yielding the exact quantum dynamics. The method has been tested on two model systems coupled to a harmonic bath: (i) an anharmonic (Morse) oscillator and (ii) a double-well potential. The simulations have been performed at zero temperature. The results have been compared to the exact quantum simulations using the surrogate Hamiltonian approach.

  9. Effects of quantum coherence on work statistics

    Science.gov (United States)

    Xu, Bao-Ming; Zou, Jian; Guo, Li-Sha; Kong, Xiang-Mu

    2018-05-01

    In the conventional two-point measurement scheme of quantum thermodynamics, quantum coherence is destroyed by the first measurement. But as we know the coherence really plays an important role in the quantum thermodynamics process, and how to describe the work statistics for a quantum coherent process is still an open question. In this paper, we use the full counting statistics method to investigate the effects of quantum coherence on work statistics. First, we give a general discussion and show that for a quantum coherent process, work statistics is very different from that of the two-point measurement scheme, specifically the average work is increased or decreased and the work fluctuation can be decreased by quantum coherence, which strongly depends on the relative phase, the energy level structure, and the external protocol. Then, we concretely consider a quenched one-dimensional transverse Ising model and show that quantum coherence has a more significant influence on work statistics in the ferromagnetism regime compared with that in the paramagnetism regime, so that due to the presence of quantum coherence the work statistics can exhibit the critical phenomenon even at high temperature.

  10. Cryo-CMOS Circuits and Systems for Quantum Computing Applications

    NARCIS (Netherlands)

    Patra, B; Incandela, R.M.; van Dijk, J.P.G.; Homulle, H.A.R.; Song, Lin; Shahmohammadi, M.; Staszewski, R.B.; Vladimirescu, A.; Babaie, M.; Sebastiano, F.; Charbon, E.E.E.

    2018-01-01

    A fault-tolerant quantum computer with millions of quantum bits (qubits) requires massive yet very precise control electronics for the manipulation and readout of individual qubits. CMOS operating at cryogenic temperatures down to 4 K (cryo-CMOS) allows for closer system integration, thus promising

  11. Quasi-one-dimensional density of states in a single quantum ring.

    Science.gov (United States)

    Kim, Heedae; Lee, Woojin; Park, Seongho; Kyhm, Kwangseuk; Je, Koochul; Taylor, Robert A; Nogues, Gilles; Dang, Le Si; Song, Jin Dong

    2017-01-05

    Generally confinement size is considered to determine the dimensionality of nanostructures. While the exciton Bohr radius is used as a criterion to define either weak or strong confinement in optical experiments, the binding energy of confined excitons is difficult to measure experimentally. One alternative is to use the temperature dependence of the radiative recombination time, which has been employed previously in quantum wells and quantum wires. A one-dimensional loop structure is often assumed to model quantum rings, but this approximation ceases to be valid when the rim width becomes comparable to the ring radius. We have evaluated the density of states in a single quantum ring by measuring the temperature dependence of the radiative recombination of excitons, where the photoluminescence decay time as a function of temperature was calibrated by using the low temperature integrated intensity and linewidth. We conclude that the quasi-continuous finely-spaced levels arising from the rotation energy give rise to a quasi-one-dimensional density of states, as long as the confined exciton is allowed to rotate around the opening of the anisotropic ring structure, which has a finite rim width.

  12. Hot electron and real space transfer in double-quantum-well structures

    International Nuclear Information System (INIS)

    Okuno, Eiichi; Sawaki, Nobuhiko; Akasaki, Isamu; Kano, Hiroyuki; Hashimoto, Masafumi.

    1991-01-01

    The hot electron phenomena and real space transfer (RST) effect are studied in GaAs/AlGaAs double-quantum-well (DQW) structures, in which we have two kind of quantum wells with different widths. The drift velocity and the electron temperature at liquid helium temperature are investigated as a function of the external electric field applied parallel to the heterointerface. By increasing the field, the electron temperature rises and reaches a plateau in the intermediate region, followed by further rise in the high-field region. The appearance of the plateau is attributed to the RST effect between the two quantum wells. The threshold field for the appearance of the plateau is determined by the difference energy between the quantized levels in two wells. The energy loss rate as a function of the electron temperature indicates that the RST is assisted by LO phonon scattering. (author)

  13. The sandwich InGaAs/GaAs quantum dot structure for IR photoelectric detectors

    International Nuclear Information System (INIS)

    Moldavskaya, L. D.; Vostokov, N. V.; Gaponova, D. M.; Danil'tsev, V. M.; Drozdov, M. N.; Drozdov, Yu. N.; Shashkin, V. I.

    2008-01-01

    A new possibility for growing InAs/GaAs quantum dot heterostructures for infrared photoelectric detectors by metal-organic vapor-phase epitaxy is discussed. The specific features of the technological process are the prolonged time of growth of quantum dots and the alternation of the low-and high-temperature modes of overgrowing the quantum dots with GaAs barrier layers. During overgrowth, large-sized quantum dots are partially dissolved, and the secondary InGaAs quantum well is formed of the material of the dissolved large islands. In this case, a sandwich structure is formed. In this structure, quantum dots are arranged between two thin layers with an increased content of indium, namely, between the wetting InAs layer and the secondary InGaAs layer. The height of the quantum dots depends on the thickness of the GaAs layer grown at a comparatively low temperature. The structures exhibit intraband photoconductivity at a wavelength around 4.5 μm at temperatures up to 200 K. At 90 K, the photosensitivity is 0.5 A/W, and the detectivity is 3 x 10 9 cm Hz 1/2 W -1

  14. Early germs of quantum field theory in the history of quantum physics

    International Nuclear Information System (INIS)

    Hund, F.

    1983-01-01

    The main concepts of quantum electrodynamics: duality of fields and particles, field quanta, antiparticles, creation and annihilation of particles, reactions based on a coupling, these concepts are common for all quantum field theory. Roots and germs of them we find already in the early history of quantum physics. Up to creation and physical understanding of quantum mechanics (1927) we can distinguish three steps. The first, ranging from black body radiation to specific heat (1900-1913) was essentially low temperature physics; h became the natural unity for counting cases in statistics. The second step was search for atomic mechanics (19131925): it was guided by a special law of atomic spectra, the combination principle ν=F (n,1...) - F (n',1'...); The third step (1923-1927), De Broglie's transfer of duality from light to matter, Schrodinger's equation, the concept of probability amplitudes, led to a general mathematical formalism and its physical understanding. During the first of these historical steps duality of light was detected and a sort of quantization of the light field took place; during the second step this duality remained in the background; during the third step duality of light and matter were seen as the center of quantum physics

  15. Operating single quantum emitters with a compact Stirling cryocooler.

    Science.gov (United States)

    Schlehahn, A; Krüger, L; Gschrey, M; Schulze, J-H; Rodt, S; Strittmatter, A; Heindel, T; Reitzenstein, S

    2015-01-01

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g((2))(0) Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g((2))(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.

  16. Operating single quantum emitters with a compact Stirling cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Schlehahn, A.; Krüger, L.; Gschrey, M.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T., E-mail: tobias.heindel@tu-berlin.de; Reitzenstein, S. [Institute of Solid State Physics, Technische Universität Berlin, 10623 Berlin (Germany)

    2015-01-15

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g{sup (2)}(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g{sup (2)}(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.

  17. Quantum Dynamics in Biological Systems

    Science.gov (United States)

    Shim, Sangwoo

    In the first part of this dissertation, recent efforts to understand quantum mechanical effects in biological systems are discussed. Especially, long-lived quantum coherences observed during the electronic energy transfer process in the Fenna-Matthews-Olson complex at physiological condition are studied extensively using theories of open quantum systems. In addition to the usual master equation based approaches, the effect of the protein structure is investigated in atomistic detail through the combined application of quantum chemistry and molecular dynamics simulations. To evaluate the thermalized reduced density matrix, a path-integral Monte Carlo method with a novel importance sampling approach is developed for excitons coupled to an arbitrary phonon bath at a finite temperature. In the second part of the thesis, simulations of molecular systems and applications to vibrational spectra are discussed. First, the quantum dynamics of a molecule is simulated by combining semiclassical initial value representation and density funcitonal theory with analytic derivatives. A computationally-tractable approximation to the sum-of-states formalism of Raman spectra is subsequently discussed.

  18. Quantum work in the Bohmian framework

    Science.gov (United States)

    Sampaio, R.; Suomela, S.; Ala-Nissila, T.; Anders, J.; Philbin, T. G.

    2018-01-01

    At nonzero temperature classical systems exhibit statistical fluctuations of thermodynamic quantities arising from the variation of the system's initial conditions and its interaction with the environment. The fluctuating work, for example, is characterized by the ensemble of system trajectories in phase space and, by including the probabilities for various trajectories to occur, a work distribution can be constructed. However, without phase-space trajectories, the task of constructing a work probability distribution in the quantum regime has proven elusive. Here we use quantum trajectories in phase space and define fluctuating work as power integrated along the trajectories, in complete analogy to classical statistical physics. The resulting work probability distribution is valid for any quantum evolution, including cases with coherences in the energy basis. We demonstrate the quantum work probability distribution and its properties with an exactly solvable example of a driven quantum harmonic oscillator. An important feature of the work distribution is its dependence on the initial statistical mixture of pure states, which is reflected in higher moments of the work. The proposed approach introduces a fundamentally different perspective on quantum thermodynamics, allowing full thermodynamic characterization of the dynamics of quantum systems, including the measurement process.

  19. Quantum uncertainty in critical systems with three spins interaction

    International Nuclear Information System (INIS)

    Carrijo, Thiago M; Avelar, Ardiley T; Céleri, Lucas C

    2015-01-01

    In this article we consider two spin-1/2 chains described, respectively, by the thermodynamic limit of the XY model with the usual two site interaction, and an extension of this model (without taking the thermodynamics limit), called XYT, were a three site interaction term is presented. To investigate the critical behaviour of such systems we employ tools from quantum information theory. Specifically, we show that the local quantum uncertainty, a quantity introduced in order to quantify the minimum quantum share of the variance of a local measurement, can be used to indicate quantum phase transitions presented by these models at zero temperature. Due to the connection of this quantity with the quantum Fisher information, the results presented here may be relevant for quantum metrology and quantum thermodynamics. (paper)

  20. High Momentum Particle Identification Detector The Study of Cesium Iodide Quantum Efficiency Dependency on Substrate Material, Temperature and Quartz Window

    CERN Document Server

    Wisna, Gde Bimananda M

    2014-01-01

    The Cesium Iodide (CsI) is used as a material for detecting Cherenkov radiation produced by high momentum particle in High Momentum Particle Identification Detector (HMPID) at ALICE Experiment at CERN. This work provides investigation and analysis of The Quantum Efficiency (QE) result of CsI which is deposited on five samples substrates such as copper passivated red, copper passivated yellow, aluminium, copper coated with nickel and copper coated with nickel then coated with gold. The measurement of five samples is held under temperature $60^{0}$ C and $25^{0}$ C (room temperature) and also with optical quartz window which can be adjusted to limit the wavelength range which reach the CsI. The result shows there are dependency of substrate, temperature due to enhancement effect and also quartz windows usage on QE of CsI. The results of five samples is then compared and analyzed.

  1. Temperature dependence of the optical energy gap in CdS sub x Se sub 1 sub - sub x quantum dots

    CERN Document Server

    Kunets, V P; Kunets, V P; Lisitsa, M P; Malysh, N I

    2002-01-01

    The temperature dependence of the optical energy gap E sub g (T) in CdS sub x Se sub 1 sub - sub x quantum dots synthesized in a borosilicate glass matrix has been investigated in the range of 4.2-500 K. A dependence similar to that for bulk crystals is observed for dots with r-bar > a sub B (r-bar being an average radius of the dot and a sub B the Bohr exciton radius in the bulk), which is described by Varshni formula within the whole temperature range. Deviations from the Varshni dependence in the range 4.2-100 K and smaller band-gap temperature coefficient are observed for dots with r-bar < a sub B. These results are explained in terms of the decrease of the macroscopic electron-phonon interaction potential and the modification of the vibration spectrum peculiar to the dot volume shrinkage

  2. Photoluminescent enhancement of CdSe/Cd(1-x) Zn(x)S quantum dots by hexadecylamine at room temperature.

    Science.gov (United States)

    Yang, Jie; Yang, Ping

    2012-09-01

    CdSe/Cd(1-x) Zn(x)S core/shell quantum dots (QDs) were fabricated in 1-octadecene via a two step synthesis. CdSe cores were first prepared using CdO, trioctylphosphine (TOP) selenium, and stearic acid. Subsquently, a Cd(1-x) Zn(x)S shell coating was carried out using zinc acetate dihydrate, cadmium acetate dihydrate, TOPS, and hexadecylamine (HDA) starting materials in the friendly organic system under relatively low temperature. The absorption and photoluminescence (PL) spectra have a significant red shift after the coverage of Cd(1-x)Zn(x)S shell on CdSe cores. The X-ray diffraction analysis of samples confirmed the formation of core/shell structure. The PL quantum yields (QYs) of CdSe/Cd(1-x)Zn(x)S QDs were improved gradually with time at room temperature. This is ascribed to the surface passivation of HDA to the QDs during store. This phenomenon was confirmed by the Fourier transform infrared spectrum of samples. Namely, HDA does not capped on the surface of as-prepared QDs, in which a low PL QYs was observed (less than 10%). Being storing for certain time, HDA attached to the surface of the QDs, in which the PL QYs increased (up to 31%) and the full width at half maximum of PL spectra decreased. Moreover, the fluorescence decay curve of the core/shell QDs is closer to a biexponential decay profile and has a longer average PL lifetime. The variation of average PL lifetime also indicated the influence of HDA during store.

  3. Quantum critical scaling at the edge of Fermi liquid stability in a cuprate superconductor.

    Science.gov (United States)

    Butch, Nicholas P; Jin, Kui; Kirshenbaum, Kevin; Greene, Richard L; Paglione, Johnpierre

    2012-05-29

    In the high-temperature cuprate superconductors, the pervasiveness of anomalous electronic transport properties suggests that violation of conventional Fermi liquid behavior is closely tied to superconductivity. In other classes of unconventional superconductors, atypical transport is well correlated with proximity to a quantum critical point, but the relative importance of quantum criticality in the cuprates remains uncertain. Here, we identify quantum critical scaling in the electron-doped cuprate material La(2-x)Ce(x)CuO(4) with a line of quantum critical points that surrounds the superconducting phase as a function of magnetic field and charge doping. This zero-temperature phase boundary, which delineates a metallic Fermi liquid regime from an extended non-Fermi liquid ground state, closely follows the upper critical field of the overdoped superconducting phase and gives rise to an expanse of distinct non-Fermi liquid behavior at finite temperatures. Together with signatures of two distinct flavors of quantum fluctuations, these facts suggest that quantum criticality plays a significant role in shaping the anomalous properties of the cuprate phase diagram.

  4. I, Quantum Robot: Quantum Mind control on a Quantum Computer

    OpenAIRE

    Zizzi, Paola

    2008-01-01

    The logic which describes quantum robots is not orthodox quantum logic, but a deductive calculus which reproduces the quantum tasks (computational processes, and actions) taking into account quantum superposition and quantum entanglement. A way toward the realization of intelligent quantum robots is to adopt a quantum metalanguage to control quantum robots. A physical implementation of a quantum metalanguage might be the use of coherent states in brain signals.

  5. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.

    Science.gov (United States)

    Takeda, Keiji; Mori, Hatsumi; Yamaguchi, Akira; Ishimoto, Hidehiko; Nakamura, Takayoshi; Kuriki, Shinya; Hozumi, Toshiya; Ohkoshi, Shin-ichi

    2008-03-01

    We have developed a high temperature superconductor (HTS) micrometer-sized dc superconducting quantum interference device (SQUID) magnetometer for high field and high temperature operation. It was fabricated from YBa2Cu3O7-delta of 92 nm in thickness with photolithography techniques to have a hole of 4x9 microm2 and 2 microm wide grain boundary Josephson junctions. Combined with a three dimensional magnetic field coil system, the modulation patterns of critical current Ic were observed for three different field directions. They were successfully used to measure the magnetic properties of a molecular ferrimagnetic microcrystal (23x17x13 microm3), [Mn2(H2O)2(CH3COO)][W(CN)8]2H2O. The magnetization curve was obtained in magnetic field up to 0.12 T between 30 and 70 K. This is the first to measure the anisotropy of hysteresis curve in the field above 0.1 T with an accuracy of 10(-12) J T(-1) (10(-9) emu) with a HTS micro-SQUID magnetometer.

  6. Quantum saturation of the order parameter and the dynamical soft mode in quartz

    CERN Document Server

    Romero, F J

    2003-01-01

    The temperature evolution of the static order parameter of alpha-quartz and its soft-mode frequencies were determined at temperatures below 300 K. While these parameters follow classic Landau theory at higher temperatures, quantum saturation was found below room temperature with a characteristic quantum temperature of 187 K. A quantitative analysis gave a good agreement with the predictions of a PHI sup 6 model close to the displacive limit and a rather flat dispersion of the soft-mode branch. No indication of any effect of strong mode-mode coupling on the saturation behaviour was observed.

  7. Temperature effects on the Davydov soliton

    DEFF Research Database (Denmark)

    Cruzeiro, L.; Halding, J.; Christiansen, Peter Leth

    1988-01-01

    As a possible mechanism for energy storage and transport in proteins, Davydov has proposed soliton formation and propagation. In this paper we investigate the stability of Davydov solitons at biological temperatures. From Davydov’s original theory evolution equations are derived quantum mechanica......As a possible mechanism for energy storage and transport in proteins, Davydov has proposed soliton formation and propagation. In this paper we investigate the stability of Davydov solitons at biological temperatures. From Davydov’s original theory evolution equations are derived quantum...

  8. Structural Investigation of Cesium Lead Halide Perovskites for High-Efficiency Quantum Dot Light-Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Le, Quyet Van [School; Kim, Jong Beom [Department; Kim, Soo Young [School; Lee, Byeongdu [X-ray; Lee, Dong Ryeol [Department

    2017-08-15

    We have investigated the effect of reaction temperature of hot-injection method on the structural properties of CsPbX3 (X: Br, I, Cl) perovskite nanocrystals (NCs) using the small- and wide-angle X-ray scattering. It is confirmed that the size of the NCs decreased as the reaction temperature decreased, resulting stronger quantum confinement. The cubic-phase perovskite NCs were formed despite the reaction temperatures increased from 140 to 180 °C. However, monodispersive NC cubes which are required for densely packing self-assembly film were only formed at lower temperatures. From the X-ray scattering measurements, the spin-coated film from more monodispersive perovskite nanocubes synthesized at lower temperatures resulted in more preferred orientation. This dense-packing perovskite film with preferred orientation yielded efficient light-emitting diode (LED) performance. Thus, the dense-packing structure of NC assemblies formed after spin-coating should be considered for high-efficient LEDs based on perovskite quantum dots in addition to quantum confinement effect of the quantum dots.

  9. Colloidal quantum dot photodetectors

    KAUST Repository

    Konstantatos, Gerasimos; Sargent, Edward H.

    2011-01-01

    in particular on visible-, near-infrared, and short-wavelength infrared photodetectors based on size-effect-tuned semiconductor nanoparticles made using quantum-confined PbS, PbSe, Bi 2S3, and In2S3. These devices have in recent years achieved room-temperature D

  10. Evaluation of the two-photon absorption characteristics of GaSb/GaAs quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, M. C.; Botha, J. R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Carrington, P. J. [Department of Electronic and Electrical Engineering, University College London, London (United Kingdom); Krier, A. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-07-28

    The optical parameters describing the sub-bandgap response of GaSb/GaAs quantum rings solar cells have been obtained from photocurrent measurements using a modulated pseudo-monochromatic light source in combination with a second, continuous photo-filling source. By controlling the charge state of the quantum rings, the photoemission cross-sections describing the two-photon sub-bandgap transitions could be determined independently. Temperature dependent photo-response measurements also revealed that the barrier for thermal hole emission from the quantum rings is significantly below the quantum ring localisation energy. The temperature dependence of the sub-bandgap photo-response of the solar cell is also described in terms of the photo- and thermal-emission characteristics of the quantum rings.

  11. Quantum Electrodynamics in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Nielsen, Henri Thyrrestrup

    In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations...... in the local density of states (LDOS) in PhC waveguides. From decay rate measurements on quantum dot lines temperature tuned in the vicinity of the waveguide band edge, a β-factor for a single quantum dot of more then 85% has been extracted. Finite difference time domain simulations (FDTD) for disordered Ph...... is shown to increase from 3 − 7 um for no intentional disorder to 25 um for 6% disorder. A distribution of losses is seen to be necessary to explain the measured Q-factor distributions. Finally we have performed a cavity QED experiment between single quantum dots and an Anderson localized mode, where a β...

  12. A molecular dynamics study of nuclear quantum effect on the diffusion of hydrogen in condensed phase

    International Nuclear Information System (INIS)

    Nagashima, Hiroki; Tokumasu, Takashi; Tsuda, Shin-ichi; Tsuboi, Nobuyuki; Koshi, Mitsuo; Hayashie, A. Koichi

    2014-01-01

    In this paper, the quantum effect of hydrogen molecule on its diffusivity is analyzed using Molecular Dynamics (MD) method. The path integral centroid MD (CMD) method is applied for the reproduction method of time evolution of the molecules. The diffusion coefficient of liquid hydrogen is calculated using the Green-Kubo method. The simulation is performed at wide temperature region and the temperature dependence of the quantum effect of hydrogen molecule is addressed. The calculation results are compared with those of classical MD results. As a result, it is confirmed that the diffusivity of hydrogen molecule is changed depending on temperature by the quantum effect. It is clarified that this result can be explained that the dominant factor by quantum effect on the diffusivity of hydrogen changes from the swollening the potential to the shallowing the potential well around 30 K. Moreover, it is found that this tendency is related to the temperature dependency of the ratio of the quantum kinetic energy and classical kinetic energy

  13. Three-particle recombination at low temperature: QED approach

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Roy, A.

    2001-01-01

    A theoretical study of three-body recombination of proton in presence of a spectator electron with electronic beam at near-zero temperature is presented using field theory and invariant Lorentz gauge. Contributions from the Feynman diagrams of different orders give an insight into the physics of the phenomena. Recombination rate coefficient is obtained for low lying principal quantum number n = 1 to 10. At a fixed ion beam temperature (300 K) recombination rate coefficient is found to increase in general with n, having a flat and a sharp peak at quantum states 3 to 5, respectively. In absence of any theoretical and experimental results for low temperature formation of H-atom by three-body recombination at low lying quantum states, we have presented the theoretical results of Stevefelt and group for three-body recombination of deuteron with electron along with the present results. Three-body recombination of antihydrogen in antiproton-positron plasma is expected to yield similar result as that for three-body recombination of hydrogen formation in proton-electron plasma. The necessity for experimental investigation of low temperature three-body recombination at low quantum states is stressed. (author)

  14. Quantum-Well Thermophotovoltaic Cells

    Science.gov (United States)

    Freudlich, Alex; Ignatiev, Alex

    2009-01-01

    Thermophotovoltaic cells containing multiple quantum wells have been invented as improved means of conversion of thermal to electrical energy. The semiconductor bandgaps of the quantum wells can be tailored to be narrower than those of prior thermophotovoltaic cells, thereby enabling the cells to convert energy from longer-wavelength photons that dominate the infrared-rich spectra of typical thermal sources with which these cells would be used. Moreover, in comparison with a conventional single-junction thermophotovoltaic cell, a cell containing multiple narrow-bandgap quantum wells according to the invention can convert energy from a wider range of wavelengths. Hence, the invention increases the achievable thermal-to-electrical energy-conversion efficiency. These thermophotovoltaic cells are expected to be especially useful for extracting electrical energy from combustion, waste-heat, and nuclear sources having temperatures in the approximate range from 1,000 to 1,500 C.

  15. Impact of ion-implantation-induced band gap engineering on the temperature-dependent photoluminescence properties of InAs/InP quantum dashes

    International Nuclear Information System (INIS)

    Hadj Alouane, M. H.; Ilahi, B.; Maaref, H.; Salem, B.; Aimez, V.; Morris, D.; Turala, A.; Regreny, P.; Gendry, M.

    2010-01-01

    We report on the effects of the As/P intermixing induced by phosphorus ion implantation in InAs/InP quantum dashes (QDas) on their photoluminescence (PL) properties. For nonintermixed QDas, usual temperature-dependent PL properties characterized by a monotonic redshift in the emission band and a continual broadening of the PL linewidth as the temperature increases, are observed. For intermediate ion implantation doses, the inhomogeneous intermixing enhances the QDas size dispersion and the enlarged distribution of carrier confining potential depths strongly affects the temperature-dependent PL properties below 180 K. An important redshift in the PL emission band occurs between 10 and 180 K which is explained by a redistribution of carriers among the different intermixed QDas of the ensemble. For higher implantation doses, the homogeneous intermixing reduces the broadening of the localized QDas state distribution and the measured linewidth temperature behavior matches that of the nonintermixed QDas. An anomalous temperature-dependent emission energy behavior has been observed for extremely high implantation doses, which is interpreted by a possible QDas dissolution.

  16. The second quantum revolution

    International Nuclear Information System (INIS)

    Larousserie, D.

    2008-01-01

    The development of quantum mechanics has now reached such a level that we can consider its promising applications in various fields as a looming second quantum revolution. The classical computer that relies on logical gates is out, now quantum properties open the way to new machines that will simulate nature's events exactly, this will be possible because both nature and the machine will be quantum. The machine will mimic nature and some problems like high temperature superconductivity that resist any modelling will be reproduced easily and then put within hand reach to be understood. Another application is quantum imaging based on the property of quantum entanglement. In the case of 2 entangled particle beams, the measurement of the properties of one beam fixes the values on the other beam. In other words, in case of entangled fluctuations, the measurement of the fluctuations on one beam fixes the value of the fluctuations on the other beam and by subtracting them on the second beam, we get a more accurate result: we have made the background noise disappear. Another application, that has already entered our daily life, is the generation of random numbers in a simple way: quantum mechanics states that a photon has a probability of 50 % to be reflected by a semi-reflecting plate and be detected, this experimental setting is a perfect toss play. The most known application of quantum mechanics is cryptography to assure the security of information transfer. Various systems have proved its efficiency but this technology is hampered by the damping of the signal in optical fibers and is reliable on distances shorter than a few hundreds kilometers. (A.C.)

  17. Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll

    Directory of Open Access Journals (Sweden)

    M. Khaledian

    2014-01-01

    schematic perfect scroll-like Archimedes spiral. The DOS model was derived at first, while it was later applied to compute the carrier concentration and quantum capacitance model. Furthermore, the carrier concentration and quantum capacitance were modeled for both degenerate and nondegenerate regimes, along with examining the effect of structural parameters and chirality number on the density of state and carrier concentration. Latterly, the temperature effect on the quantum capacitance was studied too.

  18. Quantum noise in a terahertz hot electron bolometer mixer

    OpenAIRE

    Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M.

    2010-01-01

    We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model for HEB mixers, we confirm the effect of QN. The QN is found to be responsible for about half of the receiver noise at the highest frequency in our measurements. The ?-factor (the quantum efficiency ...

  19. Single-Molecule Electronics with Cross- Conjugated Molecules: Quantum Interference, IETS and Non-Equilibrium "Temperatures"

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo

    Abstract The idea of using single-molecules as components in electronic devices is fas- cinating. For this idea to come into fruition, a number of technical and theo- retical challenges must be overcome. In this PhD thesis, the electron-phonon interaction is studied for a special class of molecules......, which is characterised by destructive quantum interference. The molecules are cross-conjugated, which means that the two parts of the molecules are conjugated to a third part, but not to each other. This gives rise to an anti-resonance in the trans- mission. In the low bias and low temperature regime......-conjugated molecules. We nd that the vibrational modes that would be expected to dominate, following the propensity, rules are very weak. Instead, other modes are found to be the dominant ones. We study this phenomenon for a number of cross-conjugated molecules, and link these ndings to the anti...

  20. Whispering-gallery mode microcavity quantum-dot lasers

    International Nuclear Information System (INIS)

    Kryzhanovskaya, N V; Maximov, M V; Zhukov, A E

    2014-01-01

    This review examines axisymmetric-cavity quantum-dot microlasers whose emission spectrum is determined by whisperinggallery modes. We describe the possible designs, fabrication processes and basic characteristics of the microlasers and demonstrate the possibility of lasing at temperatures above 100 °C. The feasibility of creating multichannel optical sources based on a combination of a broadband quantum-dot laser and silicon microring modulators is discussed. (review)