WorldWideScience

Sample records for european pressurized water

  1. Franco-German nuclear cooperation: from the `common product` to the first European pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vignon, D. [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-la-Defense (France)

    1999-01-01

    It has now been 10 years since Framatome and Siemens decided to collaborate on the design and sales of an advanced nuclear power plant (NPP) model based on pressurized water reactor (PWR) technology. Originally called the `common product`, this model was renamed the European pressurized water reactor when Electricite de France (EDF) and the German electric utilities joined this cooperative development effort in 1992. Since the beginning, this cooperation has been formalized in the framework of an agreement that led to the founding of a joint and equally owned subsidiary, Nucler Power International (NPI), which is reponsible for leading the development of the new model and later handling its export sales.

  2. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  3. European Water Footprint Scenarios for 2050

    Directory of Open Access Journals (Sweden)

    A. Ertug Ercin

    2016-05-01

    Full Text Available This study develops water footprint scenarios for Europe for 2050, at the country level, based on projections regarding population and economic growth, production and trade patterns, consumption patterns (diets and bioenergy use and technological development. The objective is to estimate possible future changes in the green, blue and grey water footprint (WF of production and consumption, to analyze the main drivers of projected changes and to assess Europe’s future dependence on water resources elsewhere in the world. We develop four scenarios, considering globalization versus regional self-sufficiency, and development driven by economic objectives versus development driven by social and environmental objectives. The study shows that the most critical driver of change affecting Europe’s future WF is the consumption pattern. The WFs of both production and consumption in Western Europe increase under scenarios with high meat consumption and decrease with low-meat scenarios. Besides, additional water demands from increasing biofuel needs will put further pressure on European water resources. The European countries with a large ratio of external to total WF of consumption in 2000 decrease their dependencies on foreign water resources in 2050.

  4. Water Pressure. Water in Africa.

    Science.gov (United States)

    Garrett, Carly Sporer

    The Water in Africa Project was realized over a 2-year period by a team of Peace Corps volunteers. As part of an expanded, detailed design, resources were collected from over 90 volunteers serving in African countries, photos and stories were prepared, and standards-based learning units were created for K-12 students. This unit, "Water…

  5. Coolant mixing in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, T.; Grunwald, G.

    1998-10-01

    The behavior of PWRs during cold water or boron dilution transients is strongly influenced by the distribution of coolant temperature and boron concentration at the core inlet. This distribution is the needed input to 3-dimensional neutron kinetics to calculate the power distribution in the core. It mainly depends on how the plugs of cold or unborated water formed in a single loop are mixed in the downcomer and in the lower plenum. To simulate such mixture phenomena requires the application of 3-dimensional CFD (computational fluid dynamics) codes. The results of the simulation have to be validated against mixture experiments at scaled facilities. Therefore, in the framework of a research project funded by BMBF, the institute creates a 1:5 mixture facility representing first the geometry of a German pressurized water reactor and later the European Pressurized Water Reactor (EPR) geometry. The calculations are based on the CFD Code CFX-4. (orig.)

  6. Characteristics and economy of the European reactor of pressurized water (EPR); Caracteristicas y economia del reactor europeo de agua a presion (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz V, J.; Ramirez S, J.R.; Palacios H, J.C. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jov@nuclear.inin.mx

    2005-07-01

    The high current costs of the fossil fuels, have propitiated that the industries of electric power generation in the world reconsider the nuclear option as medium of generation. In Europe, the more recently contracted nuclear power plant is that of Olkiluoto-III in Finland that waits it enters in operation at the end of 2009. The reactor that will be installed in this power plant will be a prototype of pressurized water reactor of the companies AREVA and EDF. In this work they are described the reactor EPR and the major components of the nuclear power plant as well as the main characteristics of safety and the flexibility of the operation of the EPR. The supposed costs reported in different sources of information are also described and calculated with information provided by the manufacturer company. (Author)

  7. Future harvesting pressure on European forests

    NARCIS (Netherlands)

    Nabuurs, G.J.; Pussinen, A.; Brusselen, van J.; Schelhaas, M.J.

    2007-01-01

    We provide quantitative insight in the spatial distribution of the future supply of wood as a raw material from European forests (27 countries) until 2060. This supply is tested for two scenarios: `projection of historical management¿ and `new management trends¿ and compared against a benchmark

  8. European attitudes to water pricing

    DEFF Research Database (Denmark)

    Jensen, Anne Kejser

    2016-01-01

    as is affordability concern, which may be explained by expectations of inequity measures to come in place in parallel with increasing water prices. Overall these results support the hypothesis that lack of information and affordability concern could lead to resistance towards efficient water pricing among the general......Efficient use of the water resource requires internalization of all costs in the price of water, including environmental and resource costs. However, water resource management tends to be highly political and increasing water prices are a sensitive and complicated policy matter. Hence......, there is a need for increased understanding of the implementation process and the attitudes towards implementation among the general public. This paper explores the spatial heterogeneity in the public attitude towards internalizing environmental and resource costs in the price of water across the EU regions...

  9. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  10. Carbon dioxide in European coastal waters

    NARCIS (Netherlands)

    Borges, A.V.; Schiettecatte, L.-S.; Abril, G.; Delille, B.; Gazeau, F.P.H.

    2006-01-01

    We compiled from literature annually integrated air–water fluxes of carbon dioxide (CO2) computed from field measurements, in 20 coastal European environments that were gathered into 3 main ecosystems: inner estuaries, upwelling continental shelves and non-upwelling continental shelves. The

  11. An Approach for harmonizing European Water Portals

    Science.gov (United States)

    Pesquer, Lluís; Stasch, Christoph; Masó, Joan; Jirka, Simon; Domingo, Xavier; Guitart, Francesc; Turner, Thomas; Hinderk Jürrens, Eike

    2017-04-01

    A number of European funded research projects is developing novel solutions for water monitoring, modeling and management. To generate innovations in the water sector, third parties from industry and the public sector need to take up the solutions and bring them into the market. A variety of portals exists to support this move into the market. Examples on the European level are the EIP Water Online Marketplace(1), the WaterInnEU Marketplace(2), the WISE RTD Water knowledge portal(3), the WIDEST- ICT for Water Observatory(4) or the SWITCH-ON Virtual Product Market and Virtual Water-Science Laboratory(5). Further innovation portals and initiatives exist on the national or regional level, for example, the Denmark knows water platform6 or the Dutch water alliance(7). However, the different portals often cover the same projects, the same products and the same services. Since they are technically separated and have their own data models and databases, people need to duplicate information and maintain it at several endpoints. This requires additional efforts and hinders the interoperable exchange between these portals and tools using the underlying data. In this work, we provide an overview on the existing portals and present an approach for harmonizing and integrating common information that is provided across different portals. The approach aims to integrate the common in formation in a common database utilizing existing vocabularies, where possible. An Application Programming Interface allows access the information in a machine-readable way and utilizing the information in other applications beyond description and discovery purposes. (1) http://www.eip-water.eu/my-market-place (2) https://marketplace.waterinneu.org (3) http://www.wise-rtd.info/ (4) http://iwo.widest.eu (5) http://www.switch-on-vwsl.eu/ (6) http://www.rethinkwater.dk/ (7) http://wateralliance.nl/

  12. Educational inequalities in blood pressure and cholesterol screening in nine European countries

    DEFF Research Database (Denmark)

    Rodin, Danielle; Stirbu, Irina; Ekholm, Ola

    2012-01-01

    To perform the first European overview of educational inequalities in the use of blood pressure and cholesterol screening.......To perform the first European overview of educational inequalities in the use of blood pressure and cholesterol screening....

  13. Assessment of water pipes durability under pressure surge

    Science.gov (United States)

    Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia

    2017-10-01

    Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.

  14. Managing water pressure for water savings in developing countries

    African Journals Online (AJOL)

    2014-04-02

    Apr 2, 2014 ... prediction of the total amount of water savings under reduced pressures, with only 6% difference between measured and estimated volume ... efficiently used for estimating water savings when a calibrated simulation model .... that under high pressure these appliances consume water faster but the volumes ...

  15. Managing water pressure for water savings in developing countries ...

    African Journals Online (AJOL)

    Many water utilities, particularly in the developing countries, continue to operate inefficient water distribution systems (WDSs) with a significant amount of water and revenue losses. Various factors, manageable to different extents, contribute to water losses, such as poor infrastructure, high pressures, illegal water use, etc.

  16. The role of nutrition for pressure ulcer management: national pressure ulcer advisory panel, European pressure ulcer advisory panel, and pan pacific pressure injury alliance white paper.

    Science.gov (United States)

    Posthauer, Mary Ellen; Banks, Merrilyn; Dorner, Becky; Schols, Jos M G A

    2015-04-01

    Nutrition and hydration play an important role in preserving skin and tissue viability and in supporting tissue repair for pressure ulcer (PrU) healing. The majority of research investigating the relationship between nutrition and wounds focuses on PrUs. This white paper reviews the 2014 National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel, and Pan Pacific Pressure Injury Alliance Nutrition Guidelines and discusses nutrition strategies for PrU management.

  17. Development of a water quality index based on a European ...

    African Journals Online (AJOL)

    ... water supply rather than general supply, and has been developed by studying the supranational standard, i.e. the European Community Standard. Three classification schemes for water quality are proposed for surface water quality assessment. Water quality determinants of the new index are cadmium, cyanide, mercury, ...

  18. Environmental pressures from European consumption and production. A study in integrated environmental and economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D. [Copenhagen Resource Institute, Copenhagen (Denmark); Fernandez, J.A.; Wittmer, D. [Wuppertal Institute, Wuppertal (Germany); Gravgaerd Pedersen, O. [Statistics Denmark, Copenhagen (Denmark); European Topic Centre on Sustainable Consumption and Production, Copenhagen (Denmark)

    2013-03-15

    Environmental pressures from European consumption and production shows how economic and environmental data can be integrated to analyse environmental performance and material efficiency of whole economies as well as their individual elements. The analyses presented in the report provide policy makers with a tool to target economic incentives and information campaigns, encouraging a shift to more sustainable production and consumption patterns in order to reduce Europe's global footprint. The report discusses two analytical approaches. The production-based method considers direct environmental pressures caused by European industries and service providers - for example, the extraction of material resources by the mining and quarrying sector, air pollutants from power stations, greenhouse gas emissions from agriculture and so on. The consumption-based method focuses on the indirect environmental pressures caused by European consumers. In this approach, the direct production-related pressures are attributed to broad groups of products and services, also taking into account pressures that are embodied in goods imported into the EU. Using Environmentally Extended Input Output Analysis (EE-IOA) it is possible to estimate the environmental pressures ultimately generated by individual product groups and also by European consumption as a whole. Four types of environmental pressures are considered by the report: raw material use, greenhouse gas emissions, acidifying air emissions, and air pollutants leading to harmful ground-level ozone. However, the method has the potential to assess many other types of environmental pressure including land use, water use, waste generation and energy use. Thanks to the conceptual consistency between the system of national economic accounts and environmental accounts, data on environmental pressures is directly comparable to economic expenditure. Policy makers can thus see which sectors have been most successful in decoupling

  19. Water-Pressure Distribution on Seaplane Float

    Science.gov (United States)

    Thompson, F L

    1929-01-01

    The investigation presented in this report was conducted for the purpose of determining the distribution and magnitude of water pressures likely to be experienced on seaplane hulls in service. It consisted of the development and construction of apparatus for recording water pressures lasting one one-hundredth second or longer and of flight tests to determine the water pressures on a UO-1 seaplane float under various conditions of taxiing, taking off, and landing. The apparatus developed was found to operate with satisfactory accuracy and is suitable for flight tests on other seaplanes. The tests on the UO-1 showed that maximum pressures of about 6.5 pounds per square inch occur at the step for the full width of the float bottom. Proceeding forward from the step the maximum pressures decrease in magnitude uniformly toward the bow, and the region of highest pressures narrows toward the keel. Immediately abaft the step the maximum pressures are very small, but increase in magnitude toward the stern and there once reached a value of about 5 pounds per square inch. (author)

  20. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  1. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  2. High pressure water jet mining machine

    Science.gov (United States)

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  3. Towards the review of the European Union Water Framework management of chemical contamination in European surface water resources

    Science.gov (United States)

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protectingit from chemical contamination is a major societal goal in the European Union. The Water Framework Directive(WFD) and its daughter directives are the major body of ...

  4. European scale climate information services for water use sectors

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Donnelly, Chantal; Strömbäck, Lena; Capell, René; Ludwig, Fulco

    2015-01-01

    This study demonstrates a climate information service for pan-European water use sectors that are vulnerable to climate change induced hydrological changes, including risk and safety (disaster preparedness), agriculture, energy (hydropower and cooling water use for thermoelectric power) and

  5. Managing water pressure for water savings in developing countries

    African Journals Online (AJOL)

    2014-03-03

    Mar 3, 2014 ... The Kotež district is a suburb located in the northern part of the city, on the flatlands on the left bank of the Danube River at an altitude of 71.50 m asl, at the edge of the Belgrade water supply system's lowest pressure zone. The water distribution network in Kotež was constructed during the 1970s and is pre-.

  6. Peer Pressure: Comments on the European Educational Reform

    Science.gov (United States)

    Liesner, Andrea

    2012-01-01

    This article reports on the growing influence of informal and not democratically legitimised authority within the educational field in Europe. The Programme for International Student Assessment (PISA), the Bologna Process and the European Qualifications Framework are discussed as instances of neoliberal strategies of modernisation that change the…

  7. European seaweeds under pressure: Consequences for communities and ecosystem functioning

    Science.gov (United States)

    Mineur, Frédéric; Arenas, Francisco; Assis, Jorge; Davies, Andrew J.; Engelen, Aschwin H.; Fernandes, Francisco; Malta, Erik-jan; Thibaut, Thierry; Van Nguyen, Tu; Vaz-Pinto, Fátima; Vranken, Sofie; Serrão, Ester A.; De Clerck, Olivier

    2015-04-01

    Seaweed assemblages represent the dominant autotrophic biomass in many coastal environments, playing a central structural and functional role in several ecosystems. In Europe, seaweed assemblages are highly diverse systems. The combined seaweed flora of different European regions hold around 1550 species (belonging to nearly 500 genera), with new species continuously uncovered, thanks to the emergence of molecular tools. In this manuscript we review the effects of global and local stressors on European seaweeds, their communities, and ecosystem functioning. Following a brief review on the present knowledge on European seaweed diversity and distribution, and the role of seaweed communities in biodiversity and ecosystem functioning, we discuss the effects of biotic homogenization (invasive species) and global climate change (shifts in bioclimatic zones and ocean acidification) on the distribution of individual species and their effect on the structure and functioning of seaweed communities. The arrival of new introduced species (that already account for 5-10% of the European seaweeds) and the regional extirpation of native species resulting from oceans' climate change are creating new diversity scenarios with undetermined functional consequences. Anthropogenic local stressors create additional disruption often altering dramatically assemblage's structure. Hence, we discuss ecosystem level effects of such stressors like harvesting, trampling, habitat modification, overgrazing and eutrophication that impact coastal communities at local scales. Last, we conclude by highlighting significant knowledge gaps that need to be addressed to anticipate the combined effects of global and local stressors on seaweed communities. With physical and biological changes occurring at unexpected pace, marine phycologists should now integrate and join their research efforts to be able to contribute efficiently for the conservation and management of coastal systems.

  8. European landscape architecture and territorial strategies for water landscapes

    DEFF Research Database (Denmark)

    Diedrich, Lisa Babette

    2010-01-01

    This article sums up the author’s lecture at the 2009 Sydney Resilient Water Landscapes Symposium and presents a series of realized or planned European landscape architectural and urbanistic projects on water landscapes taken from the recently published book On Site/ Landscape Architecture Europe...... and accompanying reflections. The hypothesis is that further scientific research can help defining weaknesses and strengths of the existing water landscape designs in terms of resilience, extract principles and tools, improve the weak ones and communicate the strong ones and develop general quality criteria...... and tools for future resilient water landscapes....

  9. Effect of pressure on colloidal behavior in hydrothermal water.

    Science.gov (United States)

    Ghosh, Swapan K; Tsujii, Kaoru

    2008-06-12

    The pressure dependence of the colloidal phenomena of nanoparticles in hydrothermal water was investigated by both experiment and theory. Dynamic light scattering experiments show that diamond nanoparticles, which are highly stable in ambient water, easily aggregate in high-temperature and high-pressure water. Although the stability of nanoparticles in ambient pure water does not depend on pressure, it is interestingly found that at constant temperature particles aggregate faster in the hydrothermal regime when the pressure is higher. A theoretical interpretation is proposed to predict the stability of colloids in water as a function of temperature and pressure. Numerical analysis shows that the repulsive interparticle potential barrier, which stabilizes particles in the dispersion, decreases dramatically in high-temperature and high-pressure water. The decrease in the potential barrier arises from the temperature and the pressure dependencies of the dielectric constant (epsilon) and the ion product (p K w) of water. Numerical analysis shows that the pressure dependence of epsilon is negligible in the temperature range of 20-300 degrees C, whereas the pressure dependence of p K w is significant at temperatures of T > 150 degrees C. The theory reveals that the pressure dependence of the rate of size increment in the hydrothermal regime results from the pressure dependence of p K w. An increase in pressure in the hydrothermal water enhances the ionization of water molecules which reduces the surface potential of the particles. This effect lowers the interparticle repulsive potential barrier, which accelerates aggregation of the particles.

  10. The relationship between phytoplankton distribution and water column characteristics in North West European shelf sea waters.

    Science.gov (United States)

    Fehling, Johanna; Davidson, Keith; Bolch, Christopher J S; Brand, Tim D; Narayanaswamy, Bhavani E

    2012-01-01

    Phytoplankton underpin the marine food web in shelf seas, with some species having properties that are harmful to human health and coastal aquaculture. Pressures such as climate change and anthropogenic nutrient input are hypothesized to influence phytoplankton community composition and distribution. Yet the primary environmental drivers in shelf seas are poorly understood. To begin to address this in North Western European waters, the phytoplankton community composition was assessed in light of measured physical and chemical drivers during the "Ellett Line" cruise of autumn 2001 across the Scottish Continental shelf and into adjacent open Atlantic waters. Spatial variability existed in both phytoplankton and environmental conditions, with clear differences not only between on and off shelf stations but also between different on shelf locations. Temperature/salinity plots demonstrated different water masses existed in the region. In turn, principal component analysis (PCA), of the measured environmental conditions (temperature, salinity, water density and inorganic nutrient concentrations) clearly discriminated between shelf and oceanic stations on the basis of DIN:DSi ratio that was correlated with both salinity and temperature. Discrimination between shelf stations was also related to this ratio, but also the concentration of DIN and DSi. The phytoplankton community was diatom dominated, with multidimensional scaling (MDS) demonstrating spatial variability in its composition. Redundancy analysis (RDA) was used to investigate the link between environment and the phytoplankton community. This demonstrated a significant relationship between community composition and water mass as indexed by salinity (whole community), and both salinity and DIN:DSi (diatoms alone). Diatoms of the Pseudo-nitzschia seriata group occurred at densities potentially harmful to shellfish aquaculture, with the potential for toxicity being elevated by the likelihood of DSi limitation of

  11. The relationship between phytoplankton distribution and water column characteristics in North West European shelf sea waters.

    Directory of Open Access Journals (Sweden)

    Johanna Fehling

    Full Text Available Phytoplankton underpin the marine food web in shelf seas, with some species having properties that are harmful to human health and coastal aquaculture. Pressures such as climate change and anthropogenic nutrient input are hypothesized to influence phytoplankton community composition and distribution. Yet the primary environmental drivers in shelf seas are poorly understood. To begin to address this in North Western European waters, the phytoplankton community composition was assessed in light of measured physical and chemical drivers during the "Ellett Line" cruise of autumn 2001 across the Scottish Continental shelf and into adjacent open Atlantic waters. Spatial variability existed in both phytoplankton and environmental conditions, with clear differences not only between on and off shelf stations but also between different on shelf locations. Temperature/salinity plots demonstrated different water masses existed in the region. In turn, principal component analysis (PCA, of the measured environmental conditions (temperature, salinity, water density and inorganic nutrient concentrations clearly discriminated between shelf and oceanic stations on the basis of DIN:DSi ratio that was correlated with both salinity and temperature. Discrimination between shelf stations was also related to this ratio, but also the concentration of DIN and DSi. The phytoplankton community was diatom dominated, with multidimensional scaling (MDS demonstrating spatial variability in its composition. Redundancy analysis (RDA was used to investigate the link between environment and the phytoplankton community. This demonstrated a significant relationship between community composition and water mass as indexed by salinity (whole community, and both salinity and DIN:DSi (diatoms alone. Diatoms of the Pseudo-nitzschia seriata group occurred at densities potentially harmful to shellfish aquaculture, with the potential for toxicity being elevated by the likelihood of DSi

  12. Equality machineries matter: The impact of women's political pressure on European social care policies

    NARCIS (Netherlands)

    Bleijenbergh, I.L.; Roggeband, C.M.

    2007-01-01

    This study examines the impact of feminist pressure and European Union (EU) policies on national policy changes, such as the introduction or extension of public childcare provision, parental leave, and part-time work legislation. We compared six countries on the basis of Qualitative Comparative

  13. Development of Gender Typicality and Felt Pressure in European French and North African French Adolescents.

    Science.gov (United States)

    Hoffman, Adam J; Dumas, Florence; Loose, Florence; Smeding, Annique; Kurtz-Costes, Beth; Régner, Isabelle

    2017-11-14

    Trajectories of gender identity were examined from Grade 6 (Mage  = 11.9 years) to Grade 9 in European French (n = 570) and North African French (n = 534) adolescents, and gender and ethnic group differences were assessed in these trajectories. In Grade 6, boys of both ethnic groups reported higher levels of gender typicality and felt pressure for gender conformity than girls. European French girls and boys and North African French girls reported decreasing gender typicality from Grade 6 to Grade 9, whereas North African French boys did not change. Felt pressure decreased among girls, did not change in European French boys, and increased in North African French boys. Ethnic and gender differences in gender identity development are discussed. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  14. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  15. Evaluation of pressure transducers under turbid natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.; Desa, E.; Smith, D.; Peshwe, V.B.; VijayKumar, K.; Desa, J.A.E.

    , the use of rho sub(eff) in contrast to the bulk density, significantly improves the measurement accuracy. For celar waters, precision density measurements made on discrete water samples agreed with rho sub(eff) values derived from pressure measurements...

  16. Adaptive Reference Control for Pressure Management in Water Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Jensen, Tom Nørgaard; Wisniewski, Rafal

    2015-01-01

    Water scarcity is an increasing problem worldwide and at the same time a huge amount of water is lost through leakages in the distribution network. It is well known that improved pressure control can lower the leakage problems. In this work water networks with a single pressure actuator and several....... Subsequently, these relations are exploited in an adaptive reference control scheme for the actuator pressure that ensures constant pressure at the critical points. Numerical experiments underpin the results. © Copyright IEEE - All rights reserved....

  17. Decline in Endangered Species as an Indication of Anthropic Pressures: The Case of European Mink Mustela lutreola Western Population

    Science.gov (United States)

    Lodé, Thierry; Cormier, Jean-Paul; Le Jacques, Dominique

    2001-12-01

    Populations of threatened species, especially predators at the top of the food chain, may be affected by anthropic pressures. The endangered western population of European mink Mustela lutreola has shown a large decline over 50% of its natural range. M. lutreola disappeared from northwestern France between 1984 and 1997, and the decline was associated with an increase in mustelid trapping, changes in watercourse quality, and habitat modifications due to agricultural practices. The pattern of decline showed a fragmentation restricting the minks into very small areas. Trapping was the first known cause of mortality. Although feral American mink Mustela vison may compete with autochthonous carnivores, M. lutreola had disappeared from streams before the introduction of the American species, suggesting that competitive interactions were not responsible. Furthermore, American mink has never been found or has remained rare in 62.4% of the area from which M. lutreola has disappeared. During the past 25 years, permanent grassland surfaces were reduced by 40%, whereas fodder culture increased by 470%, causing considerable habitat changes. Furthermore, 55.7% of water courses were classified as being of bad quality or polluted. Therefore, our data suggests that a conjunction of intensive trapping, alterations in water quality and habitat modification was critical for the European mink's decline. Although there are difficulties in ascribing specific cause to distribution changes in a top predator, this decline can be regarded as an indication for anthropic pressures on natural habitats.

  18. Attitudes of Irish and European dentists to water quality of dental unit water systems.

    Science.gov (United States)

    Burke, F M; O'Mullane, D; O'Sullivan, M

    2005-01-01

    Dental unit water systems (DUWS) are used in dental practices to provide water to irrigate the oral cavity. Dental surgeries across the European Union (EU) use DUWS that may be prone to microbial contamination. To determine Irish dental practitioners' attitudes to perceived risk from working with DUWS and their protocols for the management of biofilm in their DUWS and compare these with other European dentists. A questionnaire was used to determine DUWS types in use, practitioners' attitudes to risks associated with using DUWS and their DUWS management protocols. There were six different types of DUWS, 40 per cent of which were > 5 years old, 42 per cent of DUWS were fed by purified or distilled water. Only four per cent of practitioners carried out microbiological analysis on their water, but 38 per cent indicated that they cleaned or disinfected their DUWS. One-hundred per cent of practitioners were not aware of national/international guidelines for microbial contamination of DUWS but 77 per cent were concerned about DUWS water quality. The majority of practitioners were working with equipment that is dental unit water quality and would welcome regular microbiological water tests and clear advice on cleaning/disinfection of the water supply in their dental units. Practitioner attitudes and behaviours were broadly similar in the other European countries studied.

  19. The status of water reuse in European textile sector.

    Science.gov (United States)

    Vajnhandl, Simona; Valh, Julija Volmajer

    2014-08-01

    The textile finishing industry is known as a very fragmented and heterogeneous industrial sector dominated mainly by small and medium enterprises (SMEs). As with many other industrial sectors in Europe, it is obliged to act more sustainably in regard to increasingly limited natural resources such as water. This paper presents in-depth survey of wastewater reuse programmes over the last ten years covering the European textile finishing industry. Different wastewater treatment solutions developed are presented and discussed. Special attention is given to the project AquaFit4Use (7th Framework Programme), where almost five years of project work has resulted in valuable know-how practices in water reuse for the most water consuming sectors in Europe i.e. paper, food, chemical and textile. Only the latter is discussed in this paper. The main negative impacts by the textile finishing sector on the environment are still related to intensive water consumption and wastewater discharge, characterised by greater amounts of organic chemicals and colouring agents, low biodegradability, and high salinity. End of pipe treatment of such complex effluents in order to produce reusable water is not feasible. Therefore, separation of waste effluents regarding their pollution level and their separate treatment was the basic approach used in the project. As a result waste effluents with a big reuse potential could be effectively treated by combination of conventional treatment technologies. Proposed water treatment scenarios enable more than 40% reduction in fresh water consumption. Since different guidelines of minimum water quality to be safely reuse in textile processes exist at this stage this issue is discussed as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Volume analysis of supercooled water under high pressure

    OpenAIRE

    Duki, Solomon F.; Tsige, Mesfin

    2016-01-01

    Motivated by recent experimental findings on the volume of supercooled water at high pressure [O. Mishima, J. Chem. Phys. 133, 144503 (2010)] we performed atomistic molecular dynamics simulations study of bulk water in the isothermal-isobaric ensemble. Cooling and heating cycles at different isobars and isothermal compression at different temperatures are performed on the water sample with pressures that range from 0 to 1.0 GPa. The cooling simulations are done at temperatures that range from...

  1. Electrical Pressurization Concept for the Orion MPCV European Service Module Propulsion System

    Science.gov (United States)

    Meiss, Jan-Hendrik; Weber, Jorg; Ierardo, Nicola; Quinn, Frank D.; Paisley, Jonathan

    2015-01-01

    The paper presents the design of the pressurization system of the European Service Module (ESM) of the Orion Multi-Purpose Crew Vehicle (MPCV). Being part of the propulsion subsystem, an electrical pressurization concept is implemented to condition propellants according to the engine needs via a bang-bang regulation system. Separate pressurization for the oxidizer and the fuel tank permits mixture ratio adjustments and prevents vapor mixing of the two hypergolic propellants during nominal operation. In case of loss of pressurization capability of a single side, the system can be converted into a common pressurization system. The regulation concept is based on evaluation of a set of tank pressure sensors and according activation of regulation valves, based on a single-failure tolerant weighting of three pressure signals. While regulation is performed on ESM level, commanding of regulation parameters as well as failure detection, isolation and recovery is performed from within the Crew Module, developed by Lockheed Martin Space System Company. The overall design and development maturity presented is post Preliminary Design Review (PDR) and reflects the current status of the MPCV ESM pressurization system.

  2. European research activities within the project: High Performance Light Water Reactor phase 2 (HPLWR phase 2)

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J.; Schulenberg, T. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, Karlsruhe (Germany); Marsault, P. [CEA Cadarache (DER/SESI), 13 - Saint Paul lez Durance (France). Dept. d' Etudes des Reacteurs; Bittermann, D. [AREVA NP, NEPR-G, Erlangen (Germany); Maraczy, C. [AEKI-KFKI, Budapest (Hungary); Laurien, E. [Stuttgart Univ. IKE (Germany); Lycklama, J.A. [NRG Petten, NL (Netherlands); Anglart, H. [KTH Energy Technology, Stockholm (Sweden); Aksan, N. [Paul Scherrer Institut CH, Villigen PSI (Switzerland); Ruzickova, M. [UJV Rez plc, Husinec-Rez c.p. (Czech Republic); Heikinheimo, L. [VTT, FIN (Finland)

    2007-07-01

    The High Performance Light Water Reactor (HPLWR) is a Light Water Reactor (LWR) operating at supercritical pressure (25 MPa). It belongs to the six reactors currently being investigated under the framework of the Generation IV International Forum. The most visible advantage of the HPLWR shall be the low construction costs in the order of 1000 Euro/kWe, because of size reduction of components and buildings compared to current Light Water Reactors, and the low electricity production costs which are targeted at 3-4 cents/kWh. In Europe, investigations on the HPLWR have been integrated into a joint research project, called High Performance Light Water Reactor Phase 2 (HPLWR Phase 2), which is co-funded by the European Commission. Within 42 months, ten partners from eight European countries working on critical scientific issues shall show the feasibility of the HPLWR concept. This paper reports on 5 points relevant for HPLWR: 1) design and integration, 2) core design, 3) safety, 4) materials, and 5) heat transfer. The final goal is to assess the future potential of this reactor in the electricity market.

  3. Lattuce growth and water use in closed, low pressure environment

    Science.gov (United States)

    Fowler, P.; Rygalov, V.; Wheeler, R.; Bucklin, R.; Schumacher, N.

    Lettuce (Lactuca sativa L.) cv. Waldmann's Green plants were grown in a clear, hemispherical enclosure at a reduced atmospheric pressure to study the potential for using low pressure greenhouses on planetary missions. The atmosphere was maintained at 25 kPa total pressure, with ˜20 kPa of N_2, ˜5 kPa of O_2, and between 0.1 and 0.2 kPa of CO_2, supplied by CO_2 injection and a feed-back control system. A closed water cycle was maintained inside the low pressure greenhouse by recycling condensed humidity back to the plants, and only adding external water to offset water vapor leakage and uptake in the plant tissue. All plants were grown in a granular, arcillite medium (calcined clay chips), with nutrients supplied by adding time-release fertilizer (Osmocote 20-20-20). Plants were harvested after 45 days, averaging 237 g fresh mass, and 23.7 g dry mass. No obvious adverse effects were noted on the plants, with the exception of some minor "tip-burn" injury to some leaves. Additional studies are planned to compare growth and water flux (evapotranspiration) rates at higher pressures. Preliminary results suggest that water fluxes should be lower at the higher pressures provided equal vapor pressure deficits can be maintained. The results suggest that vegetative crops such as lettuce should grow well at reduced pressures if adequate water, nutrients, and CO_2 are provided.

  4. Towards the review of the European Union Water Framework ...

    Science.gov (United States)

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protectingit from chemical contamination is a major societal goal in the European Union. The Water Framework Directive(WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of Europeanfreshwater resources. The practical implementation of the WFD with regard to chemical pollution has facedsome challenges. In support of the upcoming WFD review in 2019 the research project SOLUTIONS and the Europeanmonitoring network NORMAN has analyzed these challenges, evaluated the state-of-the-art of the science andsuggested possible solutions. We give 10 recommendations to improve monitoring and to strengthen comprehensiveprioritization, to foster consistent assessment and to support solution-oriented management of surface waters.The integration of effect-based tools, the application of passive sampling for bioaccumulative chemicals and an integratedstrategy for prioritization of contaminants, accounting for knowledge gaps, are seen as important approachesto advance monitoring. Including all relevant chemical contaminants in more holistic “chemical status”assessment, using effect-based trigger values to address priority mixtures of chemicals, to better consider historicalburdens accumulated in sediments and to use models to fill data gaps are recommended for a consistent assessmentof contamination. Solution-oriented m

  5. The sensitivity of the northwest European continental shelf ecosystem to anthropogenic pressures

    Science.gov (United States)

    Wakelin, Sarah; Artioli, Yuri; Holt, Jason; Butenschön, Momme

    2013-04-01

    Anthropogenic pressure is exerted on ecosystems in several ways, through direct drivers such as eutrophication and levels of fishing effort and by changes in the physical environment brought about by climate change. Changes in water temperature, the timing and duration of seasonal stratification, circulation patterns and ocean-shelf exchange all impact on shelf-sea primary production. We use a coupled hydrodynamics-ecosystem model (POLCOMS-ERSEM) to study ecosystem sensitivity to climate change and the anthropogenic drivers of river nutrient loads, impacting on eutrophication, and trawling effort on the northwest European continental shelf, with an emphasis on changes in the North Sea. To force the model we use data from a coupled ocean-atmosphere global model (IPSL-CM4) representative of conditions in the recent past (1983-2000) and possible conditions in the near future (2030-2040) under a business as usual emissions scenario SRES A1B. To study ecosystem sensitivity to direct anthropogenic forcing, we adopt two scenarios impacting on river nutrient loads and trawling effort - one where there is rapid economic growth and limited environmental policies and a second where economic growth is constrained by environmental objectives. The sensitivity of the system to each single driver: climate change, increase in river nutrient loads, decrease in river nutrient loads and reduction in trawling effort is explored. The response of the ecosystem to the combined effects of changes in multiple drivers under the two scenarios of economic growth is also studied. The results are relevant to the Marine Strategy Framework Directive descriptors on marine food webs, eutrophication and biodiversity.

  6. European large-scale farmland investments and the land-water-energy-food nexus

    Science.gov (United States)

    Siciliano, Giuseppina; Rulli, Maria Cristina; D'Odorico, Paolo

    2017-12-01

    The escalating human demand for food, water, energy, fibres and minerals have resulted in increasing commercial pressures on land and water resources, which are partly reflected by the recent increase in transnational land investments. Studies have shown that many of the land-water issues associated with land acquisitions are directly related to the areas of energy and food production. This paper explores the land-water-energy-food nexus in relation to large-scale farmland investments pursued by investors from European countries. The analysis is based on a "resource assessment approach" which evaluates the linkages between land acquisitions for agricultural (including both energy and food production) and forestry purposes, and the availability of land and water in the target countries. To that end, the water appropriated by agricultural and forestry productions is quantitatively assessed and its impact on water resource availability is analysed. The analysis is meant to provide useful information to investors from EU countries and policy makers on aspects of resource acquisition, scarcity, and access to promote responsible land investments in the target countries.

  7. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Nagae, Takayuki; Kawamura, Takashi [Nagoya University, (Japan); Chavas, Leonard M. G. [High Energy Research Organization (KEK), (Japan); Niwa, Ken; Hasegawa, Masashi [Nagoya University, (Japan); Kato, Chiaki [Japan Agency for Marine-Earth Science and Technology (JAMSTEC), (Japan); Watanabe, Nobuhisa, E-mail: nobuhisa@nagoya-u.jp [Nagoya University, (Japan); Nagoya University, (Japan)

    2012-03-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH.

  8. Water resources management and European integration of Serbia

    Directory of Open Access Journals (Sweden)

    Todić Dragoljub

    2015-01-01

    Full Text Available The paper points to the main elements important for understanding the obligations arising from the process of accession of the Republic of Serbia (RS to the European Union (EU as related to water resources management. The general framework is determined by the importance of water resources for contemporary international relations as well as the rules governing the process of harmonizing the national legislation with the EU legislation. This paper provides an overview of the most important regulations of the RS and the EU in the field of water resources management, including its status in international treaties. Drawing upon the rules governing the harmonization process, the paper provides indicators of the achieved level of compliance of national legislation with key EU regulations in the field of water resources management. The provided analysis is based on the premise that the process of joining the EU is the main factor that determines the current position and policy of RS in the field of water resources management. In that context, management of water resources falls into the group of EU regulations which are, within the framework of Chapter 27, most difficult to transpose and apply in the internal legal system. Although the process of harmonizing the national legislation with the EU legislation has been underway as regards a vast number of regulations, the process of reaching full compliance is likely to take a couple of years. Concurrently, it has been estimated that the full implementation of legislation harmonized with the EU legislation will take at least two decades, primarily due to the substantial financial resources to be invested in the development of water infrastructure. In terms of participation in the activities undertaken within the framework of international agreements in the field of water resources management and the state's membership in relevant international treaties, it is noted that in the last decade the RS has

  9. Exploring the utility of Posidonia oceanica chlorophyll fluorescence as an indicator of water quality within the European Water Framework Directive.

    Science.gov (United States)

    Gera, Alessandro; Alcoverro, Teresa; Mascaró, Oriol; Pérez, Marta; Romero, Javier

    2012-06-01

    The European Water Framework Directive commits partner countries to evolve uniform protocols for monitoring the environmental condition of natural water bodies, crucially integrating biological and ecological criteria from the associated ecosystems. This has encouraged considerable research on the development of bioindicator-based systems of water quality monitoring. A critical step towards this end is providing evidence that the proposed bioindicator system adequately reflects the human pressures to which a specific water body is submitted. Here we investigate the utility of pulse-amplitude-modulated (PAM) fluorometry, a fast, non-destructive and increasingly popular bioindicator-based method, in assessing water quality based on the widespread Mediterranean seagrass Posidonia oceanica, an important constituent of submersed benthic vegetation. Specifically, we evaluated the ability of PAM to discriminate between sites along a pre-established gradient of anthropogenic pressures and the consistency and reliability of PAM parameters across spatial scales. Our results show that the maximum quantum yield (Fv/Fm), representing the structural photosynthetic efficiency of the plant, responds significantly to the degree of site-level anthropogenic pressure. However, Fv/Fm values in our study increased with increasing pressure, in striking contrast with other studies that report declines in Fv/Fm values with increasing stress. A potential explanation for this discrepancy is that our study sites were influenced by multiple diffuse stressors (characteristic of most coastal waters) that could potentially interact with each other to influence Fv/Fm values in often unpredictable ways. The photosynthetic variables calculated from rapid light curves (ETR(max), maximum electron transport rate; α, initial slope of the curve; I (k), saturating irradiance), which represent an instant picture of the photosynthetic activity of the plant, were unable to clearly discriminate between sites

  10. Performance Evaluation of Pressure Transducers for Water Impacts

    Science.gov (United States)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  11. Bridge pressure flow scour for clear water conditions

    Science.gov (United States)

    2009-10-01

    The equilibrium scour at a bridge caused by pressure flow with critical approach velocity in clear-water simulation conditions was studied both analytically and experimentally. The flume experiments revealed that (1) the measured equilibrium scour pr...

  12. Capital Cost: Pressurized Water Reactor Plant Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139-MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume includes in addition to the foreword and summary, the plant description and the detailed cost estimate.

  13. Experimental Study and Engineering Practice of Pressured Water Coupling Blasting

    Directory of Open Access Journals (Sweden)

    J. X. Yang

    2017-01-01

    Full Text Available Overburden strata movement in large space stope is the major reason that induces the appearance of strong mining pressure. Presplitting blasting for hard coal rocks is crucial for the prevention and control of strong pressure in stope. In this study, pressured water coupling blasting technique was proposed. The process and effect of blasting were analyzed by orthogonal test and field practice. Results showed that the presence of pressure-bearing water and explosive cartridges in the drill are the main influence factors of the blasting effect of cement test block. The high load-transmitting performance of pore water and energy accumulation in explosive cartridges were analyzed. Noxious substances produced during the blasting process were properly controlled because of the moistening, cooling, and diluting effect of pore water. Not only the goal of safe and static rock fragmentation by high-explosive detonation but also a combination of superdynamic blast loading and static loading effect of the pressured water was achieved. Then the practice of blasting control of hard coal rocks in Datong coal mine was analyzed to determine reasonable parameters of pressured water coupling blasting. A good presplitting blasting control effect was achieved for the hard coal rocks.

  14. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  15. Cavitation nuclei in water exposed to transient pressures

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Mørch, Knud Aage

    2015-01-01

    A model of skin-stabilized interfacial cavitation nuclei and their response to tensile and compressive stressing is presented. The model is evaluated in relation to experimental tensile strength results for water at rest at the bottom of an open water-filled container at atmospheric pressure...... and room temperature. These results are obtained by recording the initial growth of cavities generated by a short tensile pulse applied to the bottom of the container. It is found that the cavitation nuclei shift their tensile strength depending on their pressure history. Static pressurization...

  16. Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade.

    Science.gov (United States)

    Steen-Olsen, Kjartan; Weinzettel, Jan; Cranston, Gemma; Ercin, A Ertug; Hertwich, Edgar G

    2012-10-16

    A nation's consumption of goods and services causes various environmental pressures all over the world due to international trade. We use a multiregional input-output model to assess three kinds of environmental footprints for the member states of the European Union. Footprints are indicators that take the consumer responsibility approach to account for the total direct and indirect effects of a product or consumption activity. We quantify the total environmental pressures (greenhouse gas emissions: carbon footprint; appropriation of biologically productive land and water area: land footprint; and freshwater consumption: water footprint) caused by consumption in the EU. We find that the consumption activities by an average EU citizen in 2004 led to 13.3 tCO(2)e of induced greenhouse gas emissions, appropriation of 2.53 gha (hectares of land with global-average biological productivity), and consumption of 179 m(3) of blue water (ground and surface water). By comparison, the global averages were 5.7 tCO(2)e, 1.23 gha, and 163 m(3) blue water, respectively. Overall, the EU displaced all three types of environmental pressures to the rest of the world, through imports of products with embodied pressures. Looking at intra-EU displacements only, the UK was the most important displacer overall, while the largest net exporters of embodied environmental pressures were Poland (greenhouse gases), France (land), and Spain (freshwater).

  17. Undermoderated spectrum MOX core study. Supercritical pressure light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Yoshiaki; Kosizuka, Seiichi [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1998-09-01

    The supercritical pressure light water cooling reactor is a nuclear reactor concept with the once through type and the direct cycle reactor cooled with supercritical pressure water. The cooling water controlled with the feed pump flows directly to the turbine and a recirculation is never done by the nuclear reactor of this type. Therefore, this system isn`t equipped with the recirculation system and the steam separator, the system becomes simple. As for this system, it is expected that the cost performance improves. Here, the outline of former study is described. (author)

  18. Pressure caused by underwater discharge near the surface of water

    Science.gov (United States)

    Kusakabe, K.; Uchiyama, M.; Isuzugawa, Kohji

    2001-04-01

    Spark discharge in water generates a spherical shock wave and a bubble that contains water vapor, with each center at a gap between electrodes. The bubble repeats the movement of the expansion and contraction. An impulsive pressure wave also arises at each transition from the contraction to the expansion of the bubble. In case that a rigid wall exists near the bubble, the bubble moves toward it keeping the expansion and contraction and then a water jet is formed toward the wall. The jet exerts the impulsive pressure on the wall. In case that the bubble is near the surface of water, it moves as if a rigid wall existed just below it and then the downward water jet is also formed. We are interested in the relationship of the movement of the bubble to the effect of the pressure caused by the under-water discharge near the surface of water. We are also interested in whether there are some differences between the following two cases as to the effect of pressure; one case is that the bubble exists near the surface of water and its movement is affected by the surface, another case the movement of the bubble is not affected by the surface of water for the sake of enough large distance between the bubble and the surface. In this study, impulsive pressure waves caused by the under-water discharge in above two cases are observed by means of a transducer or their schlieren photographs are taken with an image converter camera, and observations are examined.

  19. ANALYSIS OF TAX AND EXTRA TAXES PRESSURE IN ROMANIA AND EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    DOBROTĂ GABRIELA

    2010-12-01

    Full Text Available The fiscal pressure requires certain limits of affordability for taxpayers. These limits are imposed by the reactions of taxpayers who can resist to compulsory levies increase, reacting with evasion, fraud, reduce productive activity or even riots. If by a certain time, the tax pay is made voluntarily by the honest taxpayer, at a time when taxes exceed certain limits of endurance events occur that bring serious damages to state's desire to collect these revenues. Taxpayer behavior becomes abnormal in any way always trying to avoid paying tax, hoping for a reduction in tax burden. In this work paper we propose to approach a distinction between the concept of actual tax burden and the extra fiscal pressure, also a comparative analysis of the taxation level in member states of the European Union based on indicators that allow knowledge of the tax burden of the structure.

  20. Glycerin Reformation in High Temperature and Pressure Water

    Science.gov (United States)

    2012-01-01

    hygroscopic, while ethanol is renewable and non-toxic (94). Water has a detrimental effect on the reaction because soaps can be formed, which cause...Lavric, V. (2005) Delocalized organic pollutant destruction through a self-sustaining supercritical water oxidation process, Energy Conversion and...2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Glycerin Reformation in High Temperature and Pressure Water

  1. Water Pressure Distribution on a Twin-Float Seaplane

    Science.gov (United States)

    Thompson, F L

    1930-01-01

    This is the second of a series of investigations to determine water pressure distribution on various types of seaplane floats and hulls, and was conducted on a twin-float seaplane. It consisted of measuring water pressures and accelerations on a TS-1 seaplane during numerous landing and taxiing maneuvers at various speeds and angles. The results show that water pressures as great as 10 lbs. per sq. in.may occur at the step in various maneuvers and that pressures of approximately the same magnitude occur at the stern and near the bow in hard pancake landings with the stern way down. At the other parts of the float the pressures are less and are usually zero or slightly negative for some distance abaft the step. A maximum negative pressure of 0.87 lb. Per square inch was measured immediately abaft the step. The maximum positive pressures have a duration of approximately one-twentieth to one-hundredth second at any given location and are distributed over a very limited area at any particular instant.

  2. Water cycles in closed ecological systems: effects of atmospheric pressure.

    Science.gov (United States)

    Rygalov, Vadim Y; Fowler, Philip A; Metz, Joannah M; Wheeler, Raymond M; Bucklin, Ray A

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from ~1 to 10 L m-2 d-1 (~1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  3. Pan-European Sarcoma Trials: Moving Forward in a Climate of Increasing Economic and Regulatory Pressure

    Directory of Open Access Journals (Sweden)

    Dorothe Carrle

    2007-06-01

    Full Text Available Advances in sarcoma treatment are largely based on investigator-initiated, multicentric and interdisciplinary clinical trials. The EU's Good Clinical Practice Directive 2001/20/EC, effective since 2004, was meant to harmonize the conditions for clinical trials across Europe, but, instead, the challenge of initiating and running multinational, noncommercial clinical trials has become greater than ever. Institutions participating in existing noncommercial Pan-European studies are struggling to cope with increased administrative and financial burdens, and few new studies are initiated any more. The aim of a conference entitled “Pan-European Sarcoma Trials: Moving Forward in a Climate of Increasing Economic and Regulatory Pressure,” held in Stuttgart, Germany, 30 November–2 December 2006 as part of the European Science Foundation's ECT-program, was not only to provide an overview of currently active and planned multinational studies on osteo-, Ewing's, and soft tissue sarcoma, but also to draw on areas of synergy between various established sarcoma groups in Europe to define plausible survival strategies for collaborative, interdisciplinary, patient-oriented research.

  4. Continuous positive airway pressure treatment for obstructive sleep apnoea: Maori, Pacific and New Zealand European experiences.

    Science.gov (United States)

    Bakker, Jessie P; O'Keeffe, Karyn M; Neill, Alister M; Campbell, Angela J

    2014-09-01

    Continuous positive airway pressure (CPAP) is an effective treatment of obstructive sleep apnoea (OSA), but can be limited by poor adherence. In New Zealand (NZ), ethnicity has been shown to be a predictor of CPAP adherence. This study aimed to explore Maori , Pacific and NZ European patients' experience of CPAP treatment. Patients identifying as Maori , Pacific, or NZ European ethnicity referred for CPAP treatment for OSA attended separate, 1.5-hour group discussions facilitated by a health care worker of the same ethnic group, using an interview template. Thematic analysis was applied to the discussion transcripts independently by two investigators, following published guidelines. Five Maori , five Pacific, and eight NZ Europeans participated (mean age 47, range 30-71 years, mean ± standard deviation CPAP adherence 6.32 ± 1.25 hours/night). Patients in all three groups reported that they had little knowledge of OSA or CPAP prior to treatment initiation. All groups identified barriers to treatment (both at the CPAP initiation phase and long term), reported feelings of being 'overwhelmed' with information during the initial CPAP education session, and discussed the importance of successful role models. Family and friends were generally reported as being supportive of CPAP therapy. The three groups all reported similar initial CPAP experiences, highlighting access barriers to publicly funded assessment and treatment pathways, and sleep health knowledge as key issues. Educational resources to improve access, enable self-management, and increase community awareness of OSA would help overcome some of the issues identified in this study.

  5. The water footprint of agricultural products in European river basins

    Science.gov (United States)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  6. Draft layout, containment and performance of the safety system of the European Supercritical Water-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J.; Schlagenhaufer, M.; Kohly, C.; Schulenberg, T. [Karlsruhe Inst. of Tech., Karlsruhe (Germany); Rothschmitt, S.; Bittermann, D. [AREVA NP GmbH, Erlangen (Germany)

    2010-07-01

    In Europe, the research on Supercritical Water-Cooled Reactors is integrated in a project called 'High Performance Light Water Reactor Phase 2' (HPLWR Phase 2), co-funded by the European Commission. Ten partners and three active supporters are working on critical scientific issues to determine the potential of this reactor concept in the electricity market. Close to the end of the project the technical results are translated into a draft layout of the HPLWR. The containment and safety system are being explained. Exemplarily, a depressurization event shows the capabilities of the safety system to sufficiently cool the reactor by means of a low pressure coolant injection system. (author)

  7. Determining the impacts of trawling on benthic function in European waters : a biological traits approach

    DEFF Research Database (Denmark)

    Bolam, Stefan; Kenny, Andrew; Garcia, Clement

    One of the most widespread yet manageable pressures we impose on the seabed is disturbance of the substrate by towed demersal fishing gear (bottom trawling and dredging). Over the past forty to fifty years, many studies have been conducted specifically aiming to understand the impacts of such fis......One of the most widespread yet manageable pressures we impose on the seabed is disturbance of the substrate by towed demersal fishing gear (bottom trawling and dredging). Over the past forty to fifty years, many studies have been conducted specifically aiming to understand the impacts...... the functional impacts of this activity (as opposed to impacts on the structure of benthic assemblages) has only recently been attempted. Advances in the application of biological traits analysis (BTA) wherein the assemblages are described in terms of their life history, behavioural and morphological...... on benthic ecosystem functioning over much larger spatial scales than previously undertaken. Biological traits information from 887 stations across European waters (Norwegian, UK, Belgian, Dutch, Danish waters, the Mediterranean and Black Sea) were analysed to: i) quantify the relationships between infaunal...

  8. Design of virtual SCADA simulation system for pressurized water reactor

    Science.gov (United States)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-02-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  9. Design of virtual SCADA simulation system for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman [Electrical Power System Research Group, Department of Electrical Engineering Education, Jl. Dr. Setiabudi No. 207 Bandung, Indonesia 40154 (Indonesia)

    2016-02-08

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  10. WAVE-E: The WAter Vapour European-Explorer Mission

    Science.gov (United States)

    Jimenez-LLuva, David; Deiml, Michael; Pavesi, Sara

    2017-04-01

    In the last decade, stratosphere-troposphere coupling processes in the Upper Troposphere Lower Stratosphere (UTLS) have been increasingly recognized to severely impact surface climate and high-impact weather phenomena. Weakened stratospheric circumpolar jets have been linked to worldwide extreme temperature and high-precipitation events, while anomalously strong stratospheric jets can lead to an increase in surface winds and tropical cyclone intensity. Moreover, stratospheric water vapor has been identified as an important forcing for global decadal surface climate change. In the past years, operational weather forecast and climate models have adapted a high vertical resolution in the UTLS region in order to capture the dynamical processes occurring in this highly stratified region. However, there is an evident lack of available measurements in the UTLS region to consistently support these models and further improve process understanding. Consequently, both the IPCC fifth assessment report and the ESA-GEWEX report 'Earth Observation and Water Cycle Science Priorities' have identified an urgent need for long-term observations and improved process understanding in the UTLS region. To close this gap, the authors propose the 'WAter Vapour European - Explorer' (WAVE-E) space mission, whose primary goal is to monitor water vapor in the UTLS at 1 km vertical, 25 km horizontal and sub-daily temporal resolution. WAVE-E consists of three quasi-identical small ( 500 kg) satellites (WAVE-E 1-3) in a constellation of Sun-Synchronous Low Earth Orbits, each carrying a limb sounding and cross-track scanning mid-infrared passive spectrometer (824 cm-1 to 829 cm-1). The core of the instruments builds a monolithic, field-widened type of Michelson interferometer without any moving parts, rendering it rigid and fault tolerant. Synergistic use of WAVE-E and MetOp-NG operational satellites is identified, such that a data fusion algorithm could provide water vapour profiles from the

  11. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert

    2017-09-14

    The present invention discloses a system and method for supercritical water gasification (SCWG) of biomass materials wherein the system includes a SCWG reactor and a plurality of heat exchangers located within a shared pressurized vessel, which decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed and fabricated in manner that would support commercial scaled-up SCWG operations. By using heat exchangers coupled to the reactor in a series configuration, significant efficiencies are achieved by the present invention SCWG system over prior known SCWG systems.

  12. Methodology for surge pressure evaluation in a water injection system

    Energy Technology Data Exchange (ETDEWEB)

    Meliande, Patricia; Nascimento, Elson A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Civil; Mascarenhas, Flavio C.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Hidraulica Computacional; Dandoulakis, Joao P. [SHELL of Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Predicting transient effects, known as surge pressures, is of high importance for offshore industry. It involves detailed computer modeling that attempts to simulate the complex interaction between flow line and fluid in order to ensure efficient system integrity. Platform process operators normally raise concerns whether the water injection system is adequately designed or not to be protected against possible surge pressures during sudden valve closure. This report aims to evaluate the surge pressures in Bijupira and Salema water injection systems due to valve closure, through a computer model simulation. Comparisons among the results from empirical formulations are discussed and supplementary analysis for Salema system were performed in order to define the maximum volumetric flow rate for which the design pressure was able to withstand. Maximum surge pressure values of 287.76 bar and 318.58 bar, obtained in Salema and Bijupira respectively, using empirical formulations have surpassed the operating pressure design, while the computer model results have pointed the greatest surge pressure value of 282 bar in Salema system. (author)

  13. High-resolution mapping of European fishing pressure on the benthic habitats

    DEFF Research Database (Denmark)

    Eigaard, Ole Ritzau; Bastardie, Francois; Hintzen, Niels T.

    Mapping and monitoring of pressure from fishery on the marine benthic environment is necessary to support an ecosystem approach to fisheries management (EAFM). In many cases this need is not reflected in official fisheries statistics and logbooks, where focus typically is on catch rather than......-scale maps of benthic fishing pressure covering the EU, Norwegian and Turkish waters. First individual logbook observations from 13 countries were assigned to 17 different functional gear groups (métiers) based on target species and gear type information. Secondly, relationships between gear width and vessel...

  14. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S.; Bhasin, V.; Mahajan, S.C. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  15. European identity: A lot of water will pass...

    Directory of Open Access Journals (Sweden)

    Šuvaković Uroš V.

    2015-01-01

    Full Text Available The basic problem that the process of Euro integrations faces today is the absence of the European identity. There are ideas how it could be built, on what it should be based, but the basic problem is the EU has give up in a great extent from the real European values - the ideals like freedom, equality, solidarity, social justice, etc. Human rights are the European achievement, but a distinctive, therefore identity difference between the European and the Anglo-American interpretation is that the European variant guaranteed social-economic rights, which was actually a concretization of the great ideal of solidarity. Today, with prevailing ideology of globalism, just this element of human rights has been brutally waded, a part of the European identity with it. A similar situation is with what the Europeans consider the greatest achievement of the EU - free movement of people, goods and capital. Free movement of people is questioned by building barbed wires and creation of a new ante murale christianitatis, even in Islamic states, far away from the Schengen Area that is proclaimed untouchable. Moreover, all those people swarming to the Europe actually have close connections with it - they originate from former European colonies, brutally exploited by their metropolises for decades and centuries. Not only that, but recently their new 'Europeanization' has been attempted through the initialization of the 'Arab Spring' , which resulted with increase of the Islamic fundamentalism, disintegration of certain Arab states and tribal war in them, increase of terrorism and, of course, migrants from those areas. Although it would be justified to try to return the evil gotten to them at least partly, by refusing to accept the miserable the Europe gives the mortal strike to some of the main values that are considered its identity characteristics - free movement of people and solidarity. All this, actually, indicates on the absence of the European identity

  16. Disjoining pressure isotherms of water-in-bitumen emulsion films.

    Science.gov (United States)

    Taylor, Shawn D; Czarnecki, Jan; Masliyah, Jacob

    2002-08-01

    In the oil sands industry, undesirable water-in-oil emulsions are often formed during the bitumen recovery process where water is used to liberate bitumen from sand grains. Nearly all of the water is removed except for a small percentage (approximately 1 to 2%), which remains in the solvent-diluted bitumen as micrometer-sized droplets. Knowledge of the colloidal forces that stabilized these water droplets would help to increase our understanding of how these emulsions are stabilized. In this study, the thin liquid film-pressure balance technique has been used to measure isotherms of disjoining pressure in water/toluene-diluted bitumen/water films at five different toluene-bitumen mass ratios. Even though a broad range of mass ratios was studied, only two isotherms are obtained, indicating a possible change in the molecular orientation of surfactant molecules at the bitumen/water interfaces. At low toluene-bitumen mass ratios, the film stability appears to be due to a strong, short-range steric repulsion created by a surfactant bilayer. Similar isotherms were obtained for water/toluene-diluted asphaltene/water films, indicating that the surface active material at the interface probably originated from the asphaltene fraction of the bitumen. However, unlike the bitumen films, films of toluene-diluted asphaltenes often formed very rigid interfaces similar to the "protective skin" described by other researcher.

  17. A study of water pressure influence on failure of large diameter water pipelines

    OpenAIRE

    Rathnayaka, Suranji Uditha Priyankara

    2017-01-01

    This research is part of a large research project investigating how, when, and where critical pipes (diameter≥300mm) fail in water supply networks. The failure of large- diameter pipe is critical, as it may have devastating consequences for both the public and the water utility. Factors contributing to pipe failure, such as internal pressure, external load, and corrosion, are examined in this research. The objective of the study is to understand the contribution of internal water pressur...

  18. Ultra-high pressure water jet: Baseline report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  19. Ultra-high pressure water jet: Baseline report; Greenbook (chapter)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The technologies being tested for concrete decontamination are targeted for alpha contamination. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  20. Pressure effect on water dynamics in tert-butyl alcohol/water solutions

    Science.gov (United States)

    Calandrini, Vania; Deriu, Antonio; Onori, Giuseppe; Paciaroni, Alessandro; Telling, Mark T. F.

    2006-09-01

    We report here a quasi-elastic neutron scattering (QENS) investigation of the effect of pressure on the diffusivity properties of water in a dilute aqueous solution of hydrophobic molecules (tert-butyl alcohol, TBA). The experiment was performed at fixed TBA concentration (0.02 molar fraction) by varying pressure from 1 to 2000 bar at two different temperatures (268 and 278 K). The quasi-elastic line-shapes have been analysed in terms of a model based on the memory function formalism. Our data indicate that, on increasing pressure up to 2000 bar, the diffusion coefficient of water in the TBA/water mixture exhibits a relative increase larger than that of pure water under the same thermodynamic conditions. The extent of this effect increases with decreasing temperature. The observed behaviour is described in terms of pressure-induced distortions of the H-bonded random network of liquid water.

  1. Fracturing Pressure of Shallow Sediment in Deep Water Drilling

    Directory of Open Access Journals (Sweden)

    Chuanliang Yan

    2013-01-01

    Full Text Available The shallow sediment in deep water has weak strength and easily gets into plastic state under stress concentration induced by oil and gas drilling. During drilling, the formation around a wellbore can be divided into elastic zone and plastic zone. The unified strength theory was used after yielding. The radius of the plastic zone and the theoretical solution of the stress distribution in these two zones were derived in undrained condition. The calculation model of excess pore pressure induced by drilling was obtained with the introduction of Henkel’s excess pore pressure theory. Combined with hydraulic fracturing theory, the fracturing mechanism of shallow sediment was analyzed and the theoretical formula of fracturing pressure was given. Furthermore, the influence of the parameters of unified strength theory on fracturing pressure was analyzed. The theoretical calculation results agreed with measured results approximately, which preliminary verifies the reliability of this theory.

  2. Structural analysis of fuel rod applied to pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Danilo P.; Pinheiro, Andre Ricardo M.; Lotto, André A., E-mail: danilo.pinheiro@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil)

    2017-07-01

    The design of fuel assemblies applied to Pressurized Water Reactors (PWR) has several requirements and acceptance criteria that must be attended for licensing. In the case of PWR fuel rods, an important mechanical structural requirement is to keep the radial stability when submitted to the coolant external pressure. In the framework of the Accident Tolerant Fuel (ATF) program new materials have been studied to replace zirconium based alloys as cladding, including iron-based alloys. In this sense, efforts have been made to evaluate the behavior of these materials under PWR conditions. The present work aims to evaluate the collapse cold pressure of a stainless steel thin-walled tube similar to that used as cladding material of fuel rods by means of the comparison of numeric data, and experimental results. As a result of the simulations, it was observed that the collapse pressure has a value intermediate value between those found by regulatory requirements and analytical calculations. The experiment was carried out for the validation of the computational model using test specimens of thin-walled tubes considering empty tube. The test specimens were sealed at both ends by means of welding. They were subjected to a high pressure device until the collapse of the tubes. Preliminary results obtained from experiments with the empty test specimens indicate that the computational model can be validated for stainless steel cladding, considering the difference between collapse pressure indicated in the regulatory document and the actual limit pressure concerning to radial instability of tubes with the studied characteristics. (author)

  3. Contribution of Water to Pressure and Cold Denaturation of Proteins

    Science.gov (United States)

    Bianco, Valentino; Franzese, Giancarlo

    2015-09-01

    The mechanisms of cold and pressure denaturation of proteins are matter of debate and are commonly understood as due to water-mediated interactions. Here, we study several cases of proteins, with or without a unique native state, with or without hydrophilic residues, by means of a coarse-grain protein model in explicit solvent. We show, using Monte Carlo simulations, that taking into account how water at the protein interface changes its hydrogen bond properties and its density fluctuations is enough to predict protein stability regions with elliptic shapes in the temperature-pressure plane, consistent with previous theories. Our results clearly identify the different mechanisms with which water participates to denaturation and open the perspective to develop advanced computational design tools for protein engineering.

  4. Water constraints on European power supply under climate change: impacts on electricity prices

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Vögele, S.; Rübbelke, D.

    2013-01-01

    Recent warm, dry summers showed the vulnerability of the European power sector to low water availability and high river temperatures. Climate change is likely to impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power

  5. Discarded fish in European waters: general patterns and contrasts

    DEFF Research Database (Denmark)

    Uhlmann, Sebastian S.; Helmond, Aloysius T. M. van; Stefansdottir, Elisabet Kemp

    2014-01-01

    To reduce the practice of discarding commercially fished organisms, several measures such as a discard ban and extra allowances on top of landings quotas (“catch quota”) have been proposed by the European Commission. However, for their development and successful implementation, an understanding...... of discard patterns on a European scale is needed. In this study, we present an inter-national synthesis of discard data collected on board commercial, towed-gear equipped vessels operating under six different national flags spanning from the Baltic to the Mediterranean Seas mainly between 2003 and 2008. We...

  6. Water vapor pressure versus environmental lapse rate near the tropopause

    Science.gov (United States)

    Ferreira, Antonio; Castanheira, Jose; Gimeno, Luis

    2010-05-01

    The relationship between water vapor pressure and temperature lapse rate in the vicinity of the tropopause was investigated using in situ observations. The water vapor partial pressures and the lapse rates within a vertical distance of ±1.5 km around the first thermal tropopause were calculated from the vertical soundings conducted by the NOAA/CMDL at several locations in the last few decades (GMD Data Archive). A positive non-linear relationship between the two quantities was found to hold across the studied tropopause region at mid-latitudes and polar latitudes. A similar analysis was performed on the 300 and 250 hPa pressure levels (which often intercept the tropopause region), by collecting temperature and humidity observations within 1979-2008 from the Integrated Global Radiosonde Archive (IGRA). A relationship having almost the same shape was detected for statically stable lapse rates at all latitude zones. Given the relevance of water vapor in the radiative transfer in the upper troposphere, the results are an indication of a local influence of water vapor on the thermal structure of the transition layer between the troposphere and stratosphere

  7. Discarded fish in European waters: general patterns and contrasts

    NARCIS (Netherlands)

    Uhlmann, S.S.; Helmond, van A.T.M.; Stefánsdóttir, E.K.

    2014-01-01

    To reduce the practice of discarding commercially fished organisms, several measures such as a discard ban and extra allowances on top of landings quotas (“catch quota”) have been proposed by the European Commission. However, for their development and successful implementation, an understanding of

  8. Energy efficiency in the European water industry. A compendium of best practices and case studies

    Energy Technology Data Exchange (ETDEWEB)

    Frijns, J. [Watercycle Research Institute KWR, Nieuwegein (Netherlands); Uijterlinde, C. [Foundation for Applied Water Research STOWA, Amersfoort (Netherlands)

    2010-02-15

    This European report on best practices of energy efficiency in the water industry showcases 23 energy efficiency initiatives which were collected as case studies from European water utilities. The 25 case studies presented in this report will be submitted to UKWIR and Black and Veatch, for potential inclusion in the Global Water Research Coalition (GWRC) global compendium of best practice case studies. The aim of the GWRC-compendium is to identify the promising developments and future opportunities to help deliver incremental improvements in energy efficiency through optimisation of existing assets and operations. But also more substantial improvements in energy efficiency from the adoption of novel (but proven at full scale) technologies. The European report describes case studies from: Belgium, Denmark, France, Germany, Hungary, Netherlands, Norway, Spain and Switzerland. Black and Veatch has gathered furthermore information on 47 cases from the UK. These are reported separately and are not included in this European overview.

  9. Theoretical study of flashing and water hammer in a supercritical water cycle during pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Imre, A.R., E-mail: imre@aeki.kfki.h [Simulator Laboratory, MTA KFKI Atomic Energy Research Institute, Budapest, POB 49, H-1525 (Hungary); Barna, I.F.; Ezsoel, G. [Thermohydraulics Laboratory, MTA KFKI Atomic Energy Research Institute, Budapest, POB 49, H-1525 (Hungary); Hazi, G. [Simulator Laboratory, MTA KFKI Atomic Energy Research Institute, Budapest, POB 49, H-1525 (Hungary); Kraska, T. [Institute for Physical Chemistry, University of Cologne, Luxemburger Str. 116, D-50939 Koeln (Germany)

    2010-06-15

    During a loss of coolant accident (LOCA) the pressure of the coolant can drop significantly in the vicinity of the leak. It will be shown that unlike in pressurized water reactors (PWRs) where this pressure drop can cause only sudden vaporization - also called flashing - in supercritical water cooled reactors (SCWRs) it can cause sudden condensation (condensation-induced water hammer), too. The reason is that from supercritical state the system can go to metastable liquid as well as to metastable vapour state after LOCA. Relaxation from metastable fluid states is a fast process, followed by a local positive or negative pressure-jump, which might increase the damage around the leak. Conservative estimation will be given for the magnitude of these pressure jumps caused by the flashing or water hammer by assuming various initial pressure losses. In our calculations, three different equations of state are used: the simple van der Waals EoS; the Redlich-Kwong as an empirical development; and the more sophisticated non-cubic Deiters equation of state. These equations are able to describe metastable states qualitatively but with different accuracy. These calculations can help us to map the local immediate effect of any sudden pressure drop and therefore it can help to design better safety protocols.

  10. Risks assessment of water pollution by pesticides at local scale (PESTEAUX project): study of polluting pressure.

    Science.gov (United States)

    Noel, Stéphanie; Billo Bah, Boubacar

    2009-01-01

    Pollution of water resources (surface waters and ground waters) by pesticide uses is one of the key point of the European policy with the implementation of the Water Frame Work Directive (2000/60/EC) and the thematic Strategy on the Sustainable use of pesticides. According to this legislation, the Member States must initiate measures to limit environmental and toxicological effects caused by pesticide uses. The Agricultural Research Centre of Wallonia (CRA-W) emphasized the need of a tool for spatial risk analysis and develOPs it within the framework of PESTEAUX project. The originality of the approach proposed by the CRA-W is to generate maps to identify the risk of pollution at locale scale (agricultural parcel). The risk will be assessed according to the study of different factors, grouped under 3 data's layers: polluting pressure, vulnerability of the physical environment (soil) and meteorological data. This approach is directly based on the risk's definition which takes into account the polluting pressure, linked to the human activities, and the vulnerability of the soil, defined by factors of physical environment which characterize the water flow in the parcel. Moreover, meteorological data influence the intensity and likelihood flow of water, and indirectly pesticide by leaching or runoff. The PESTEAUX's approach to study the pollution is based on the model "source-vector-target". The source is the polluting pressure, in other words, the pesticides which could reach the targets. The main vector is the water which vehicles the pesticide on and trough the soil until the target which are the surface waters or ground waters. In this paper we introduce the factors contributing to the polluting pressure. These factors are linking to the human activities and more precisely, to the pesticide uses. The factors considered have an influence on pesticide's transport by water (in its solid state or in dissolved state by leaching, run-off, or erosion) but also on a set of

  11. Drinking water fluoride and blood pressure? An environmental study.

    Science.gov (United States)

    Amini, Hassan; Taghavi Shahri, Seyed Mahmood; Amini, Mohamad; Ramezani Mehrian, Majid; Mokhayeri, Yaser; Yunesian, Masud

    2011-12-01

    The relationship between intakes of fluoride (F) from drinking water and blood pressure has not yet been reported. We examined the relationship of F in ground water resources (GWRs) of Iran with the blood pressure of Iranian population in an ecologic study. The mean F data of the GWRs (as a surrogate for F levels in drinking water) were derived from a previously conducted study. The hypertension prevalence and the mean of systolic and diastolic blood pressures (SBP & DBP) of Iranian population by different provinces and genders were also derived from the provincial report of non-communicable disease risk factor surveillance of Iran. Statistically significant positive correlations were found between the mean concentrations of F in the GWRs and the hypertension prevalence of males (r = 0.48, p = 0.007), females (r = 0.36, p = 0.048), and overall (r = 0.495, p = 0.005). Also, statistically significant positive correlations between the mean concentrations of F in the GWRs and the mean SBP of males (r = 0.431, p = 0.018), and a borderline correlation with females (r = 0.352, p = 0.057) were found. In conclusion, we found the increase of hypertension prevalence and the SBP mean with the increase of F level in the GWRs of Iranian population.

  12. Development of a water quality index based on a European ...

    African Journals Online (AJOL)

    This study comprised the development of a new index called the 'universal water quality index (UWQI)'. This index has advantages over pre-existing indices by reflecting the appropriateness of water for specific use, e.g. drinking water supply rather than general supply, and has been developed by studying the ...

  13. Anomalies in bulk supercooled water at negative pressure

    Science.gov (United States)

    Pallares, Gaël; El Mekki Azouzi, Mouna; González, Miguel A.; Aragones, Juan L.; Abascal, José L. F.; Valeriani, Chantal; Caupin, Frédéric

    2014-01-01

    Water anomalies still defy explanation. In the supercooled liquid, many quantities, for example heat capacity and isothermal compressibility κT, show a large increase. The question arises if these quantities diverge, or if they go through a maximum. The answer is key to our understanding of water anomalies. However, it has remained elusive in experiments because crystallization always occurred before any extremum is reached. Here we report measurements of the sound velocity of water in a scarcely explored region of the phase diagram, where water is both supercooled and at negative pressure. We find several anomalies: maxima in the adiabatic compressibility and nonmonotonic density dependence of the sound velocity, in contrast with a standard extrapolation of the equation of state. This is reminiscent of the behavior of supercritical fluids. To support this interpretation, we have performed simulations with the 2005 revision of the transferable interaction potential with four points. Simulations and experiments are in near-quantitative agreement, suggesting the existence of a line of maxima in κT (LMκT). This LMκT could either be the thermodynamic consequence of the line of density maxima of water [Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Phys Rev E 53:6144–6154], or emanate from a critical point terminating a liquid–liquid transition [Sciortino F, Poole PH, Essmann U, Stanley HE (1997) Phys Rev E 55:727–737]. At positive pressure, the LMκT has escaped observation because it lies in the “no man’s land” beyond the homogeneous crystallization line. We propose that the LMκT emerges from the no man’s land at negative pressure. PMID:24843177

  14. Anomalies in bulk supercooled water at negative pressure.

    Science.gov (United States)

    Pallares, Gaël; El Mekki Azouzi, Mouna; González, Miguel A; Aragones, Juan L; Abascal, José L F; Valeriani, Chantal; Caupin, Frédéric

    2014-06-03

    Water anomalies still defy explanation. In the supercooled liquid, many quantities, for example heat capacity and isothermal compressibility κT, show a large increase. The question arises if these quantities diverge, or if they go through a maximum. The answer is key to our understanding of water anomalies. However, it has remained elusive in experiments because crystallization always occurred before any extremum is reached. Here we report measurements of the sound velocity of water in a scarcely explored region of the phase diagram, where water is both supercooled and at negative pressure. We find several anomalies: maxima in the adiabatic compressibility and nonmonotonic density dependence of the sound velocity, in contrast with a standard extrapolation of the equation of state. This is reminiscent of the behavior of supercritical fluids. To support this interpretation, we have performed simulations with the 2005 revision of the transferable interaction potential with four points. Simulations and experiments are in near-quantitative agreement, suggesting the existence of a line of maxima in κT (LMκT). This LMκT could either be the thermodynamic consequence of the line of density maxima of water [Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Phys Rev E 53:6144-6154], or emanate from a critical point terminating a liquid-liquid transition [Sciortino F, Poole PH, Essmann U, Stanley HE (1997) Phys Rev E 55:727-737]. At positive pressure, the LMκT has escaped observation because it lies in the "no man's land" beyond the homogeneous crystallization line. We propose that the LMκT emerges from the no man's land at negative pressure.

  15. Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes.

    Science.gov (United States)

    De Palma, Adriana; Kuhlmann, Michael; Roberts, Stuart P M; Potts, Simon G; Börger, Luca; Hudson, Lawrence N; Lysenko, Igor; Newbold, Tim; Purvis, Andy

    2015-12-01

    Bees are a functionally important and economically valuable group, but are threatened by land-use conversion and intensification. Such pressures are not expected to affect all species identically; rather, they are likely to be mediated by the species' ecological traits.Understanding which types of species are most vulnerable under which land uses is an important step towards effective conservation planning.We collated occurrence and abundance data for 257 bee species at 1584 European sites from surveys reported in 30 published papers (70 056 records) and combined them with species-level ecological trait data. We used mixed-effects models to assess the importance of land use (land-use class, agricultural use-intensity and a remotely-sensed measure of vegetation), traits and trait × land-use interactions, in explaining species occurrence and abundance.Species' sensitivity to land use was most strongly influenced by flight season duration and foraging range, but also by niche breadth, reproductive strategy and phenology, with effects that differed among cropland, pastoral and urban habitats. Synthesis and applications. Rather than targeting particular species or settings, conservation actions may be more effective if focused on mitigating situations where species' traits strongly and negatively interact with land-use pressures. We find evidence that low-intensity agriculture can maintain relatively diverse bee communities; in more intensive settings, added floral resources may be beneficial, but will require careful placement with respect to foraging ranges of smaller bee species. Protection of semi-natural habitats is essential, however; in particular, conversion to urban environments could have severe effects on bee diversity and pollination services. Our results highlight the importance of exploring how ecological traits mediate species responses to human impacts, but further research is needed to enhance the predictive ability of such analyses.

  16. European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters.

    Science.gov (United States)

    Tousova, Zuzana; Oswald, Peter; Slobodnik, Jaroslav; Blaha, Ludek; Muz, Melis; Hu, Meng; Brack, Werner; Krauss, Martin; Di Paolo, Carolina; Tarcai, Zsolt; Seiler, Thomas-Benjamin; Hollert, Henner; Koprivica, Sanja; Ahel, Marijan; Schollée, Jennifer E; Hollender, Juliane; Suter, Marc J-F; Hidasi, Anita O; Schirmer, Kristin; Sonavane, Manoj; Ait-Aissa, Selim; Creusot, Nicolas; Brion, Francois; Froment, Jean; Almeida, Ana Catarina; Thomas, Kevin; Tollefsen, Knut Erik; Tufi, Sara; Ouyang, Xiyu; Leonards, Pim; Lamoree, Marja; Torrens, Victoria Osorio; Kolkman, Annemieke; Schriks, Merijn; Spirhanzlova, Petra; Tindall, Andrew; Schulze, Tobias

    2017-12-01

    Growing concern about the adverse environmental and human health effects of a wide range of micropollutants requires the development of novel tools and approaches to enable holistic monitoring of their occurrence, fate and effects in the aquatic environment. A European-wide demonstration program (EDP) for effect-based monitoring of micropollutants in surface waters was carried out within the Marie Curie Initial Training Network EDA-EMERGE. The main objectives of the EDP were to apply a simplified protocol for effect-directed analysis, to link biological effects to target compounds and to estimate their risk to aquatic biota. Onsite large volume solid phase extraction of 50 L of surface water was performed at 18 sampling sites in four European river basins. Extracts were subjected to effect-based analysis (toxicity to algae, fish embryo toxicity, neurotoxicity, (anti-)estrogenicity, (anti-)androgenicity, glucocorticoid activity and thyroid activity), to target analysis (151 organic micropollutants) and to nontarget screening. The most pronounced effects were estrogenicity, toxicity to algae and fish embryo toxicity. In most bioassays, major portions of the observed effects could not be explained by target compounds, especially in case of androgenicity, glucocorticoid activity and fish embryo toxicity. Estrone and nonylphenoxyacetic acid were identified as the strongest contributors to estrogenicity, while herbicides, with a minor contribution from other micropollutants, were linked to the observed toxicity to algae. Fipronil and nonylphenol were partially responsible for the fish embryo toxicity. Within the EDP, 21 target compounds were prioritized on the basis of their frequency and extent of exceedance of predicted no effect concentrations. The EDP priority list included 6 compounds, which are already addressed by European legislation, and 15 micropollutants that may be important for future monitoring of surface waters. The study presents a novel simplified

  17. EU-wide survey of polar organic persistent pollutants in European river waters

    Energy Technology Data Exchange (ETDEWEB)

    Loos, Robert [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, 21020 Ispra (Italy)], E-mail: robert.loos@jrc.it; Gawlik, Bernd Manfred; Locoro, Giovanni; Rimaviciute, Erika; Contini, Serafino; Bidoglio, Giovanni [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, 21020 Ispra (Italy)

    2009-02-15

    This study provides the first EU-wide reconnaissance of the occurrence of polar organic persistent pollutants in European river waters. More than 100 individual water samples from over 100 European rivers from 27 European Countries were analysed for 35 selected compounds, comprising pharmaceuticals, pesticides, PFOS, PFOA, benzotriazoles, hormones, and endocrine disrupters. Around 40 laboratories participated in this sampling exercise. The most frequently and at the highest concentration levels detected compounds were benzotriazole, caffeine, carbamazepine, tolyltriazole, and nonylphenoxy acetic acid (NPE{sub 1}C). Only about 10% of the river water samples analysed could be classified as 'very clean' in terms of chemical pollution. The rivers responsible for the major aqueous emissions of PFOS and PFOA from the European Continent could be identified. For the target compounds chosen, we are proposing 'indicative warning levels' in surface waters, which are (for most compounds) close to the 90th percentile of all water samples analysed. - More than 100 river water samples from 27 European Countries were analysed for 35 selected polar organic contaminants.

  18. Pan-European household and industrial water demand: regional relevant estimations

    Science.gov (United States)

    Bernhard, Jeroen; Reynaud, Arnaud; de Roo, Ad

    2016-04-01

    Sustainable water management is of high importance to provide adequate quality and quantity of water to European households, industries and agriculture. Especially since demographic, economic and climate changes are expected to increase competition for water between these sectors in the future. A shortage of water implies a reduction in welfare of households or damage to economic sectors. This socio-economic component should be incorporated into the decision-making process when developing water allocation schemes, requiring detailed water use information and cost/benefit functions. We now present the results of our study which is focused at providing regionally relevant pan-European water demand and cost-benefit estimations for the household and industry sector. We gathered consistent data on water consumption, water prices and other relevant variables at the highest spatial detail available from national statistical offices and other organizational bodies. This database provides the most detailed up to date picture of present water use and water prices across Europe. The use of homogeneous data allowed us to compare regions and analyze spatial patterns. We applied econometric methods to determine the main determinants of water demand and make a monetary valuation of water for both the domestic and industry sector. This monetary valuation is important to allow water allocation based on economic damage estimates. We also attempted to estimate how population growth, as well as socio-economic and climatic changes impact future water demand up to 2050 using a homogeneous method for all countries. European projections for the identified major drivers of water demand were used to simulate future conditions. Subsequently, water demand functions were applied to estimate future water use and potential economic damage caused by water shortages. We present our results while also providing some estimation of the uncertainty of our predictions.

  19. Processing of water level derived from water pressure data at the Time Series Station Spiekeroog

    OpenAIRE

    Holinde, L.; Badewien, T. H.; Freund, J. A.; E. V. Stanev; Zielinski, O.

    2015-01-01

    The quality of water level time series data strongly varies with periods of high- and low-quality sensor data. In this paper we are presenting the processing steps which were used to generate high-quality water level data from water pressure measured at the Time Series Station (TSS) Spiekeroog. The TSS is positioned in a tidal inlet between the islands of Spiekeroog and Langeoog in the East Frisian Wadden Sea (southern North Sea). The processing steps will cover sensor drift...

  20. Russia and the West After the Ukrainian Crisis: European Vulnerabilities to Russian Pressures

    Science.gov (United States)

    2017-01-01

    European Dependence on Russian Gas: Distinguishing Natural Gas Security from Geopolitics,” OIES Paper: NG 92, Oxford, UK: Oxford Institute for Energy ...27 CHAPTER FOUR European Energy ...its way to Europe. Some Central European refineries do depend on receiving Russian crude through the Druzhba pipeline, but Russia would have a

  1. Amsterdam as a Sustainable European Metropolis : Integration of Water, Energy and Material Flows

    NARCIS (Netherlands)

    Van Der Hoek, J.P.; Struker, A.; Danschutter, J.E.M.

    2013-01-01

    Amsterdam has the ambition to develop as a competitive and sustainable European metropolis. The flows of energy, water and resources within the urban environment have a large potential to contribute to this ambition. The overall mass balances of phosphate, food, water, energy and material imports in

  2. European attitudes to water pricing: Internalizing environmental and resource costs.

    Science.gov (United States)

    Kejser, Anne

    2016-12-01

    Efficient use of the water resource requires internalization of all costs in the price of water, including environmental and resource costs. However, water resource management tends to be highly political and increasing water prices are a sensitive and complicated policy matter. Hence, there is a need for increased understanding of the implementation process and the attitudes towards implementation among the general public. This paper explores the spatial heterogeneity in the public attitude towards internalizing environmental and resource costs in the price of water across the EU regions. Within an extensive spatial dataset constructed for the purpose, we estimate the effect of individual information levels and affordability concerns on the attitude towards environmental water pricing. Information about water problems is found to have a significant and positive effect on attitudes as is affordability concern, which may be explained by expectations of inequity measures to come in place in parallel with increasing water prices. Overall these results support the hypothesis that lack of information and affordability concern could lead to resistance towards efficient water pricing among the general public. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The footprint of bottom trawling in European waters: distribution, intensity, and seabed integrity

    DEFF Research Database (Denmark)

    Eigaard, Ole Ritzau; Bastardie, Francois; Hinzen, N.T.

    2017-01-01

    Mapping trawling pressure on the benthic habitats is needed as background to support an ecosystem approach to fisheries management. The extent and intensity of bottom trawling on the European continental shelf (0-1000 m) was analysed from logbook statistics and vessel monitoring system data for 2...

  4. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  5. Water Intake and Hydration Indices in Healthy European Adults: The European Hydration Research Study (EHRS)

    Science.gov (United States)

    Malisova, Olga; Athanasatou, Adelais; Pepa, Alex; Husemann, Marlien; Domnik, Kirsten; Braun, Hans; Mora-Rodriguez, Ricardo; Ortega, Juan F.; Fernandez-Elias, Valentin E.; Kapsokefalou, Maria

    2016-01-01

    Hydration status is linked with health, wellness, and performance. We evaluated hydration status, water intake, and urine output for seven consecutive days in healthy adults. Volunteers living in Spain, Germany, or Greece (n = 573, 39 ± 12 years (51.1% males), 25.0 ± 4.6 kg/m2 BMI) participated in an eight-day study protocol. Total water intake was estimated from seven-day food and drink diaries. Hydration status was measured in urine samples collected over 24 h for seven days and in blood samples collected in fasting state on the mornings of days 1 and 8. Total daily water intake was 2.75 ± 1.01 L, water from beverages 2.10 ± 0.91 L, water from foods 0.66 ± 0.29 L. Urine parameters were: 24 h volume 1.65 ± 0.70 L, 24 h osmolality 631 ± 221 mOsmol/kg Η2Ο, 24 h specific gravity 1.017 ± 0.005, 24 h excretion of sodium 166.9 ± 54.7 mEq, 24 h excretion of potassium 72.4 ± 24.6 mEq, color chart 4.2 ± 1.4. Predictors for urine osmolality were age, country, gender, and BMI. Blood indices were: haemoglobin concentration 14.7 ± 1.7 g/dL, hematocrit 43% ± 4% and serum osmolality 294 ± 9 mOsmol/kg Η2Ο. Daily water intake was higher in summer (2.8 ± 1.02 L) than in winter (2.6 ± 0.98 L) (p = 0.019). Water intake was associated negatively with urine specific gravity, urine color, and urine sodium and potassium concentrations (p hydration level. PMID:27058557

  6. Overview of the principal european and french regulations on air, water and solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Piro, M.

    1995-12-31

    This paper summarises French and European regulation on discharges into the environment (excluding radio-active emissions), whether solid, liquid or gaseous, that is to say, covering solid wastes, aqueous effluents and atmospheric emissions. The report includes commentaries allowing a better understanding of the legislation. Three fields are examined: the air, solid wastes and water. For each sector, we have listed the European directives and their application in French law. The chronological order facilitates consultation. (author).

  7. Water constraints on European power supply under climate change: impacts on electricity prices

    Science.gov (United States)

    van Vliet, Michelle T. H.; Vögele, Stefan; Rübbelke, Dirk

    2013-09-01

    Recent warm, dry summers showed the vulnerability of the European power sector to low water availability and high river temperatures. Climate change is likely to impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power production. Here, we show the impacts of climate change and changes in water availability and water temperature on European electricity production and prices. Using simulations of daily river flows and water temperatures under future climate (2031-2060) in power production models, we show declines in both thermoelectric and hydropower generating potential for most parts of Europe, except for the most northern countries. Based on changes in power production potentials, we assess the cost-optimal use of power plants for each European country by taking electricity import and export constraints into account. Higher wholesale prices are projected on a mean annual basis for most European countries (except for Sweden and Norway), with strongest increases for Slovenia (12-15%), Bulgaria (21-23%) and Romania (31-32% for 2031-2060), where limitations in water availability mainly affect power plants with low production costs. Considering the long design life of power plant infrastructures, short-term adaptation strategies are highly recommended to prevent undesired distributional and allocative effects.

  8. Culinary and pressure irrigation water system hydroelectric generation

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, Cory [Water Works Engineers, Pleasant Grove City, UT (United States)

    2016-01-29

    Pleasant Grove City owns and operates a drinking water system that included pressure reducing stations (PRVs) in various locations and flow conditions. Several of these station are suitable for power generation. The City evaluated their system to identify opportunities for power generation that can be implemented based on the analysis of costs and prediction of power generation and associated revenue. The evaluation led to the selection of the Battle Creek site for development of a hydro-electric power generating system. The Battle Creek site includes a pipeline that carries spring water to storage tanks. The system utilizes a PRV to reduce pressure before the water is introduced into the tanks. The evaluation recommended that the PRV at this location be replaced with a turbine for the generation of electricity. The system will be connected to the utility power grid for use in the community. A pelton turbine was selected for the site, and a turbine building and piping system were constructed to complete a fully functional power generation system. It is anticipated that the system will generate approximately 440,000 kW-hr per year resulting in $40,000 of annual revenue.

  9. ENERGY RECOVERY POTENTIAL FROM EXCESS PRESSURE in WATER SUPPLY and DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    I.Ethem Karadirek

    2016-06-01

    Full Text Available Sustainability of water supply systems has started to become an important issue besides continuous and hygienic supply of water. Sustainable water supply systems require improvement of energy efficiency, reduction of energy and water losses in water distribution systems and reduction of carbon dioxide emissions. Pressure is one of the main design parameters for gravity water supply systems and water distribution networks. Therefore, pressure has to be between certain limits. An excess pressure occurs during water transmission from high elevations of water resources to low elevations. By use of break pressure tanks, water storage tanks or pressure reducing valves (PRV excess pressure is reduced and damages on transmission pipes are prevented. However, energy recovery from excess pressure is possible at this stage by using turbines. Similarly, PRVs are used at certain locations of water distribution networks to control excess water pressure and to reduce it down to optimum operational levels. Energy recovery from excess pressure is also possible at this stage although energy recovery will be low. High pressure at water supply systems causes both energy and water losses. In Turkey, allowable water pressure at water distribution networks is between 20-60 m water column but excess pressure is commonly observed. At low pressure levels, water cannot reach water subscribers and this causes customer dissatisfaction. On the other side, at high pressure levels, water losses and pipe bursts increase which causes indirect increase in energy losses. For sustainable operation of water distribution networks, it is recommended to divide the network into smaller and independent subzones (District Metered Area, DMA. By placing a flow meter and a pressure meter at the entrance of a DMA, flow rate and pressure could be monitored on-line. However, in order to monitor spatial and temporal variations of flow rate and pressure at all pipes in the network, a hydraulic

  10. The water framework directive: A new directive for a changing social, political and economic European Framework

    OpenAIRE

    Kaika, Maria

    2003-01-01

    This article examines the intricate process of developing the European Union's Water Framework Directive. It sees the Directive as a response to recent economic, political and social changes related to water management, including the shift from government to governance, the liberalization of water markets and the emergence of a new set of institutions, actors, etc. and their respective relations (i.e. social capital). The article focuses on the key points of disagreement between the Council o...

  11. High pressure supercritical water - still an open field

    Energy Technology Data Exchange (ETDEWEB)

    Franck, E.U. [Inst. fuer Physikalische Chemie, Univ. Karlsruhe (Germany)

    1999-07-01

    A selected group of thermophysical phenomena of aqueous systems is presented and discussed. Emphasis is given to temperatures well above the critical temperature of water and to pressures extending in some cases to 3000 bar. Special attention is given to homogeneous supercritical binary mixture systems. The viscosity of water to 1000 C is discussed as well as the thermal conductivity and the static dielectric constant. As an example for dense water-molten salt systems, measurements of density and electrolytic conductivity up to the pure molten sodium hydroxide are shown. - Above its critical temperature the dense water is miscible also with nonpolar partners. Sveral of these have practical interest, for example H{sub 2}O-CO{sub 2}, H{sub 2}O-CH{sub 4}, H{sub 2}O-H{sub 2} and H{sub 2}O-O{sub 2}. Critical curves are demonstrated and discussed with phase diagrams of ternary systems to 2500 bar. ''Hydrothermal'' diffusion flames in dense H{sub 2}O-CH{sub 4} mixtures to 1000 bar can be produced and are presented. For the first time a phase diagram of the ternary water-oxyhydrogen system is shown, calculated to 350 C and 2500 bar. Also for hydrogen fluoride the molar volume V = (p,T) is shown for the first time to 2000 bar and 600 C. (orig.)

  12. Water Intake and Hydration Indices in Healthy European Adults: The European Hydration Research Study (EHRS

    Directory of Open Access Journals (Sweden)

    Olga Malisova

    2016-04-01

    Full Text Available Hydration status is linked with health, wellness, and performance. We evaluated hydration status, water intake, and urine output for seven consecutive days in healthy adults. Volunteers living in Spain, Germany, or Greece (n = 573, 39 ± 12 years (51.1% males, 25.0 ± 4.6 kg/m2 BMI participated in an eight-day study protocol. Total water intake was estimated from seven-day food and drink diaries. Hydration status was measured in urine samples collected over 24 h for seven days and in blood samples collected in fasting state on the mornings of days 1 and 8. Total daily water intake was 2.75 ± 1.01 L, water from beverages 2.10 ± 0.91 L, water from foods 0.66 ± 0.29 L. Urine parameters were: 24 h volume 1.65 ± 0.70 L, 24 h osmolality 631 ± 221 mOsmol/kg Η2Ο, 24 h specific gravity 1.017 ± 0.005, 24 h excretion of sodium 166.9 ± 54.7 mEq, 24 h excretion of potassium 72.4 ± 24.6 mEq, color chart 4.2 ± 1.4. Predictors for urine osmolality were age, country, gender, and BMI. Blood indices were: haemoglobin concentration 14.7 ± 1.7 g/dL, hematocrit 43% ± 4% and serum osmolality 294 ± 9 mOsmol/kg Η2Ο. Daily water intake was higher in summer (2.8 ± 1.02 L than in winter (2.6 ± 0.98 L (p = 0.019. Water intake was associated negatively with urine specific gravity, urine color, and urine sodium and potassium concentrations (p < 0.01. Applying urine osmolality cut-offs, approximately 60% of participants were euhydrated and 20% hyperhydrated or dehydrated. Most participants were euhydrated, but a substantial number of people (40% deviated from a normal hydration level.

  13. Advanced fuels for plutonium management in pressurized water reactors

    Science.gov (United States)

    Vasile, A.; Dufour, Ph; Golfier, H.; Grouiller, J. P.; Guillet, J. L.; Poinot, Ch; Youinou, G.; Zaetta, A.

    2003-06-01

    Several fuel concepts are under investigation at CEA with the aim of manage plutonium inventories in pressurized water reactors. This options range from the use of mature technologies like MOX adapted in the case of MOX-EUS (enriched uranium support) and COmbustible Recyclage A ILot (CORAIL) assemblies to more innovative technologies using IMF like DUPLEX and advanced plutonium assembly (APA). The plutonium burning performances reported to the electrical production go from 7 to 60 kg (TW h) -1. More detailed analysis covering economic, sustainability, reliability and safety aspects and their integration in the whole fuel cycle would allow identifying the best candidate.

  14. Potential for polyhydroxyalkanoate production on German or European municipal waste water treatment plants.

    Science.gov (United States)

    Pittmann, T; Steinmetz, H

    2016-08-01

    Biopolymers, which are made of renewable raw materials and/or biodegradable residual materials present a possible alternative to common plastic. A potential analysis, based on experimental results in laboratory scale and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 20% of the 2015 worldwide biopolymer production. In addition a profound estimation regarding all European Union member states showed that theoretically about 115% of the actual worldwide biopolymer production could be produced on European waste water treatment plants. With an upgraded biopolymer production and a theoretically reachable biopolymer proportion of around 60% of the cell dry weight a total of 1,794,656tPHAa or approximately 236% of today's biopolymer production could be produced on waste water treatment plants in the European Union, using primary sludge as raw material only. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Soil Water Thermodynamic to Unify Water Retention Curve by Pressure Plates and Tensiometer

    Directory of Open Access Journals (Sweden)

    Erik eBraudeau

    2014-10-01

    Full Text Available The pressure plate method is a standard method for measuring the pF curves, also called soil water retention curves, in a large soil moisture range from saturation to a dry state corresponding to a tension pressure of near 1500 kPa. However, the pressure plate can only provide discrete water retention curves represented by a dozen measured points. In contrast, the measurement of the soil water retention curves by tensiometer is direct and continuous, but limited to the range of the tensiometer reading: from saturation to near 70-80 kPa. The two methods stem from two very different concepts of measurement and the compatibility of both methods has never been demonstrated. The recently established thermodynamic formulation of the pedostructure water retention curve, will allow the compatibility of the two curves to be studied, both theoretically and experimentally. This constitutes the object of the present article. We found that the pressure plate method provides accurate measurement points of the pedostructure water retention curve h(W, conceptually the same as that accurately measured by the tensiometer. However, contrarily to what is usually thought, h is not equal to the applied air pressure on the sample, but rather, is proportional to its logarithm, in agreement with the thermodynamic theory developed in the article. The pF curve and soil water retention curve, as well as their methods of measurement are unified in a same physical theory. It is the theory of the soil medium organization (pedostructure and its interaction with water. We show also how the hydrostructural parameters of the theoretical curve equation can be estimated from any measured curve, whatever the method of measurement. An application example using published pF curves is given.

  16. Instrumentation and control strategies for an integral pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Belle R. Upadhyaya

    2015-03-01

    Full Text Available Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C strategies for a large 1,000 MWe iPWR is described. Reactor system modeling—which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum—is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

  17. Water-Energy balance in pressure irrigation systems

    Science.gov (United States)

    Sánchez, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco V.; Castañón, Guillermo; Gil, María; Benitez, Javier

    2013-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. Automation techniques become easier after modernization, and operation management plays an important role in energy efficiency issues. Modern systems use to include elevated water reservoirs with enough capacity to irrigate during peak water demand period about 16 to 48 h. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems according to their management possibilities. Also is an objective to estimate the fraction of the water reservoirs available along the irrigation campaign for storing the energy from renewable sources during their availability periods. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity and new opportunities in the renewable energy field.

  18. Public or private water management: Experience from different European Countries

    Science.gov (United States)

    Wackerbauer, Johann

    2008-11-01

    Faced with liberalisation proposals and an increasing internationalisation of water resource management, the question arises as to how a change of the regulatory framework would affect the market structure and the supply conditions in this area. While the term "privatisation" relates to the ownership structure of the providers, the term "liberalisation" implies extensive free market ideas. Privatisation involves the outsourcing of public services from the public authorities to a privately organised organisation. Through this, however, nothing needs to change in terms of the market or the intensity of competition for the commodity in question. Within the framework of privatisation it can also occur that the public monopoly is only transferred to a private monopoly. The term "liberalisation" in addition refers to the basic regulatory constraints: liberalisation signifies the cessation of limitations to competition and supply monopolies, and open competition between several suppliers for the consumers. In the EU-15, the only country where the provision of operational services in the water supply has been totally passed to the private sector is the UK, but this is only true for UK and Wales. Another singular case is France, where there is a mix of mainly private operating companies and municipalities which have divided the regional supply areas among themselves. In six other EU-15 countries where some privatisation took place, either the municipalities or (majority) publicly owned companies are controlling water supply. In the remaining seven countries, the water supply is organised by municipality companies only. In an international comparison, there are three basic models for the regulation of natural monopolies in the public water supply: the Anglo-Saxon, the French and the German model. The delimitation between supervisory bodies and operations in the water supply is strongest in the first model and weakest in the last. This has led to three basic types of

  19. Public or private water management: Experience from different European Countries

    Energy Technology Data Exchange (ETDEWEB)

    Wackerbauer, Johann [Ifo Institute for Economic Research, Poschingerstrasse 5, 81679 Munich (Germany)], E-mail: wackerbauer@ifo.de

    2008-11-01

    Faced with liberalisation proposals and an increasing internationalisation of water resource management, the question arises as to how a change of the regulatory framework would affect the market structure and the supply conditions in this area. While the term 'privatisation' relates to the ownership structure of the providers, the term 'liberalisation' implies extensive free market ideas. Privatisation involves the outsourcing of public services from the public authorities to a privately organised organisation. Through this, however, nothing needs to change in terms of the market or the intensity of competition for the commodity in question. Within the framework of privatisation it can also occur that the public monopoly is only transferred to a private monopoly. The term 'liberalisation' in addition refers to the basic regulatory constraints: liberalisation signifies the cessation of limitations to competition and supply monopolies, and open competition between several suppliers for the consumers. In the EU-15, the only country where the provision of operational services in the water supply has been totally passed to the private sector is the UK, but this is only true for UK and Wales. Another singular case is France, where there is a mix of mainly private operating companies and municipalities which have divided the regional supply areas among themselves. In six other EU-15 countries where some privatisation took place, either the municipalities or (majority) publicly owned companies are controlling water supply. In the remaining seven countries, the water supply is organised by municipality companies only. In an international comparison, there are three basic models for the regulation of natural monopolies in the public water supply: the Anglo-Saxon, the French and the German model. The delimitation between supervisory bodies and operations in the water supply is strongest in the first model and weakest in the last. This has led to

  20. Potential water saving through changes in European diets

    NARCIS (Netherlands)

    Vanham, D.; Hoekstra, Arjen Ysbert; Bidoglio, G.

    2013-01-01

    This study quantifies the water footprint of consumption (WFcons) regarding agricultural products for three diets – the current diet (REF), a healthy diet (HEALTHY) and a vegetarian diet (VEG) – for the four EU zones WEST, NORTH, SOUTH and EAST. The WFcons related to the consumption of agricultural

  1. Intra-abdominal pressure correlates with extracellular water content.

    Directory of Open Access Journals (Sweden)

    Wojciech Dąbrowski

    Full Text Available Secondary increase in intra-abdominal pressure (IAP may result from extra-abdominal pathology, such as massive fluid resuscitation, capillary leak or sepsis. All these conditions increase the extravascular water content. The aim of this study was to analyze the relationship between IAP and body water volume.Adult patients treated for sepsis or septic shock with acute kidney injury (AKI and patients undergoing elective pharyngolaryngeal or orthopedic surgery were enrolled. IAP was measured in the urinary bladder. Total body water (TBW, extracellular water content (ECW and volume excess (VE were measured by whole body bioimpedance. Among critically ill patients, all parameters were analyzed over three consecutive days, and parameters were evaluated perioperatively in surgical patients.One hundred twenty patients were studied. Taken together, the correlations between IAP and VE, TBW, and ECW were measured at 408 time points. In all participants, IAP strongly correlated with ECW and VE. In critically ill patients, IAP correlated with ECW and VE. In surgical patients, IAP correlated with ECW and TBW. IAP strongly correlated with ECW and VE in the mixed population. IAP also correlated with VE in critically ill patients. ROC curve analysis showed that ECW and VE might be discriminative parameters of risk for increased IAP.IAP strongly correlates with ECW.

  2. Fecundity of migrating European eel (Anguilla anguilla from Polish waters

    Directory of Open Access Journals (Sweden)

    Marta Dębowska

    2015-09-01

    Full Text Available This study demonstrated that individual fecundity of 34 migrating European female eels Anguilla anguilla increases linearly with body weight (BW and total length (TL. The total individual fecundity of fish from 560 to 1960 g BW was between 981 x 103 and 6320 x 103 eggs, respectively. The mean relative individual fecundity equalled 2415 x 103 (± 524 x 103 per kg BW. The values of this parameter ranged from 1753 x 103 to 3224.5 x 103 kg–1. Based on the results, it might be suggested that A. anguilla has lower total individual fecundity than New Zealand longfin eel (Anguilla dieffenbachii, American eel (Anguilla rostrata and Japanese eel (Anguilla japonica although it has one of the highest fecundity values per kg BW. Total fecundity was strongly depended from fat level in muscle (R2 = 0.9523 and ovary (R2 = 0.9531 as well as level of DHA content in ovary (R2 = 0.8967 and muscle (R2 = 0.6274 (N=10. There were no important relationship between total fecundity and protein level as well as in muscle and ovary

  3. European industrial water use: a new dataset with high spatial and sectorial detail

    Science.gov (United States)

    Bernhard, Jeroen; Reynaud, Arnaud; de Roo, Ad; Karssenberg, Derek

    2017-04-01

    One of the most important components of the water balance in terms of water scarcity modelling is an accurate quantification of water abstractions by water using sectors. Data availability for this topic is sadly strikingly limited, most notably for the industry sector. Due to the lack of data, many global and continental scale modelling studies rely on relatively outdated water use datasets with course resolution which generally treat the industry sector as a single unit. The lack of spatial and sectorial detail hurts the local relevance and applicability of these large-scale models to the point that results might be meaningless for regional policy support, especially because economic assessments of potential water allocation policies require the separation of economic activities with different water use behavior and water productivity (industrial production per unit of water). With this work, we aim to solve this knowledge gap for Europe by providing a pan-European dataset with regional relevance of water use and water productivity values at the highest sectorial and spatial detail possible. We gathered industrial water use data from national statistical offices and other organizational bodies, separating ten different industry subsections of the NACE classification (Nomenclature of Economic Activities). Where data was not adequately available from national databases, we used complementary figures from EUROSTAT (official database of the European Commission). Then we used national GVA (Gross Value Added) to calculate water productivity values per country for all industrial subsections. As a final step, we used a database with locations and production records of nearly 20,000 individual industrial activities to proportionally distribute the national water use values for each industry section to roughly 1200 regions in Europe. This resulted in a pan-European dataset of water use at regional level and water productivity at the national level for ten industry sections

  4. Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources.

    Science.gov (United States)

    Brack, Werner; Dulio, Valeria; Ågerstrand, Marlene; Allan, Ian; Altenburger, Rolf; Brinkmann, Markus; Bunke, Dirk; Burgess, Robert M; Cousins, Ian; Escher, Beate I; Hernández, Félix J; Hewitt, L Mark; Hilscherová, Klára; Hollender, Juliane; Hollert, Henner; Kase, Robert; Klauer, Bernd; Lindim, Claudia; Herráez, David López; Miège, Cécil; Munthe, John; O'Toole, Simon; Posthuma, Leo; Rüdel, Heinz; Schäfer, Ralf B; Sengl, Manfred; Smedes, Foppe; van de Meent, Dik; van den Brink, Paul J; van Gils, Jos; van Wezel, Annemarie P; Vethaak, A Dick; Vermeirssen, Etienne; von der Ohe, Peter C; Vrana, Branislav

    2017-01-15

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources. The practical implementation of the WFD with regard to chemical pollution has faced some challenges. In support of the upcoming WFD review in 2019 the research project SOLUTIONS and the European monitoring network NORMAN has analyzed these challenges, evaluated the state-of-the-art of the science and suggested possible solutions. We give 10 recommendations to improve monitoring and to strengthen comprehensive prioritization, to foster consistent assessment and to support solution-oriented management of surface waters. The integration of effect-based tools, the application of passive sampling for bioaccumulative chemicals and an integrated strategy for prioritization of contaminants, accounting for knowledge gaps, are seen as important approaches to advance monitoring. Including all relevant chemical contaminants in more holistic "chemical status" assessment, using effect-based trigger values to address priority mixtures of chemicals, to better consider historical burdens accumulated in sediments and to use models to fill data gaps are recommended for a consistent assessment of contamination. Solution-oriented management should apply a tiered approach in investigative monitoring to identify toxicity drivers, strengthen consistent legislative frameworks and apply solutions-oriented approaches that explore risk reduction scenarios before and along with risk assessment. Copyright © 2016. Published by Elsevier B.V.

  5. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003

    DEFF Research Database (Denmark)

    Granier, A.; Reichstein, M.; Breda, N.

    2007-01-01

    stand to estimate the water balance terms: trees and understorey transpiration, rainfall interception, throughfall, drainage in the different soil layers and soil water content. This model calculated the onset date, duration and intensity of the soil water shortage (called water stress) using measured......The drought of 2003 was exceptionally severe in many regions of Europe, both in duration and in intensity. In some areas, especially in Germany and France, it was the strongest drought for the last 50 years, lasting for more than 6 months. We used continuous carbon and water flux measurements at 12...... European monitoring sites covering various forest ecosystem types and a large climatic range in order to characterise the consequences of this drought on ecosystems functioning. As soil water content in the root zone was only monitored in a few sites, a daily water balance model was implemented at each...

  6. Ecological classification of European transitional waters in the North-East Atlantic eco-region

    Science.gov (United States)

    Galván, Cristina; Juanes, José Antonio; Puente, Araceli

    2010-04-01

    A new methodology to classify European North-East Atlantic transitional waters into ecological types has been developed based on the most important hydrological and morphological features that are likely to determine the ecology of aquatic systems in transitional waters. Hydrological indicators help identifying if a transitional water area is dominated by fresh or sea water and/or by intertidal or subtidal areas, while morphological indicators allow an estimation of the complexity of the transitional water and the diversity of the habitats involved. Twelve transitional waters of the southern Bay of Biscay were classified using this methodology and the five hydro-morphological types obtained were validated with benthic macro-invertebrate data. Transitional waters with a complex morphology showed the highest values of species diversity, while those with a smaller tidal influence showed lower species diversity. The ' Scrobicularia' and ' Abra' assemblages, previously identified in the study area, were found to be related to different types of transitional waters. The ' Abra' assemblage only appeared in estuaries with a complex morphology and dominated by tidal influences, while the ' Scrobicularia' assemblage was detected in all the transitional waters except for a single coastal lagoon. This classification of transitional waters may therefore be useful to establish the biological reference conditions needed for European Directives.

  7. Stakeholders Participation In The European Water Framework Directive

    Science.gov (United States)

    van Ast, J. A.; Boot, S. P.

    In the new framework directive, public information and consultation are main ele- ments in the procedure towards River Basin Management Plans. In general decision making in integrated water management should not be limited to the application of models and desk study. All important decisions need interaction with societal actors. These stakeholders have visions, ideas, patterns of behaviour and solutions for per- ceived problems. For example, farmer organisations, environmental groups and house- owners associations all have different ideas about measures that change the physical, chemical or biological characteristics of a river basin. Well- organised interaction has two main advantages: 1. The quality of the decision will be higher because specific knowledge of involved people and their different views are being taken into consider- ation. 2. The interaction enables exchange of information which can lead to a better understanding of the ins and outs of the specific situation and in this way contribute to public support. There are different ways for operationalisation of public informa- tion and consultation, like interactive workshops, internet assessment and interview rounds with key players. In this paper some of the different methods of interaction with stakeholders are elaborated. The aim is to improve the quality of integrated water management in river basins.

  8. Potential water saving through changes in European diets.

    Science.gov (United States)

    Vanham, D; Hoekstra, A Y; Bidoglio, G

    2013-11-01

    This study quantifies the water footprint of consumption (WFcons) regarding agricultural products for three diets - the current diet (REF), a healthy diet (HEALTHY) and a vegetarian diet (VEG) - for the four EU zones WEST, NORTH, SOUTH and EAST. The WFcons related to the consumption of agricultural products (4265l per capita per day or lcd) accounts for 89% of the EU's total WFcons (4815lcd). The effect of diet has therefore an essential impact on the total WFcons. The current zonal WFcons regarding agricultural products is: 5875lcd (SOUTH), 4053lcd (EAST), 3761lcd (WEST) and 3197lcd (NORTH). These differences are the result of different consumption behaviours as well as different agricultural production methods and conditions. From the perspective of a healthy diet based on regional dietary guidelines, the intake of several product groups (sugar, crop oils, animal fats and meat) should be decreased and increased for others (vegetables, fruit). The WFcons regarding agricultural products for the alternative diets are the following: HEALTHY 4110lcd (-30%) and VEG 3476lcd (-41%) for SOUTH; HEALTHY 3606lcd (-11%) and VEG 2956lcd (-27%) for EAST; HEALTHY 2766lcd (-26%) and VEG 2208lcd (-41%) for WEST; HEALTHY 3091lcd (-3%) and VEG 2166lcd (-32%) for NORTH. Both the healthy and vegetarian diets thus result - consistent for all zones - in substantial WFcons reductions. The largest reduction takes place for the vegetarian diet. Indeed, a lot of water can be saved by EU citizens by a change in their diet. © 2013.

  9. Options in European legislation to reduce water pollution in the Netherlands: cadmium as case study

    NARCIS (Netherlands)

    Vos JH; Poorter LRM de; SEC

    2007-01-01

    The RIVM has performed a study on European legislation useful for reducing cadmium pollution in Dutch surface waters. The Integrated Pollution Prevention Control Directive (IPPC) is an instrument that can impose restraints on one of the main sources of pollution, the industrial sector. However, for

  10. Impact of food and water-borne diseases on European population health

    NARCIS (Netherlands)

    Cassini, A.; Colzani, E.; Kramarz, P.; Kretzschmar, M. E.|info:eu-repo/dai/nl/075187981; Takkinen, J.

    2016-01-01

    Composite health measures are increasingly applied in studies aiming at describing the burden of diseases, and food and water-borne diseases (FWDs) are no exception. The Burden of Communicable Diseases in Europe (BCoDE) is a project led and funded by the European Centre for Disease Prevention and

  11. Impact of European union micro-projects Programme in water and ...

    African Journals Online (AJOL)

    Many studies in Nigeria have revealed that the Niger Delta Region is the least served in terms of basic infrastructure such as electricity, roads, water and sanitation. This study examined the impact of the European Union Micro-Projects Program in the rural areas of Imo State, in the heart of the Niger Delta Region.

  12. A longitudinal study of blood pressure variability in African-American and European American youth

    NARCIS (Netherlands)

    Li, Zhibin; Snieder, Harold; Su, Shaoyong; Harshfield, Gregory A.; Treiber, Frank A.; Wang, Xiaoling

    Objectives High blood pressure variability is increasingly used as a predictor of target-organ damage and cardiovascular events. However, little is known about blood pressure variability changes with age and its possible sociodemographic, anthropometric, and genetic moderators. Methods

  13. Treatment of high blood pressure in elderly and octogenarians: European Society of Hypertension statement on blood pressure targets.

    Science.gov (United States)

    Kjeldsen, Sverre E; Stenehjem, Aud; Os, Ingrid; Van de Borne, Philippe; Burnier, Michel; Narkiewicz, Krzysztof; Redon, Josep; Agabiti Rosei, Enrico; Mancia, Giuseppe

    2016-12-01

    The European Society of Hypertension recommend the following main rules for treatment of hypertension in elderly and octogenarians: 1) In elderly hypertensives with SBP ≥ 160 mmHg there is solid evidence to recommend reducing SBP to between 140 mmHg and 150 mmHg. 2) In fit elderly patients less than 80 years old treatment may be considered at SBP ≥ 140 mmHg with a target SBP hypertensive agents are recommended and can be used in the elderly, although diuretics and calcium antagonists may be preferred in isolated systolic hypertension.

  14. Decision-making in the European water framework directive

    DEFF Research Database (Denmark)

    Wright, Stuart Anthony Lewis

    2007-01-01

    The paper focuses on the decision-making process in the EU Water Framework Directive (WFD). The WFD is an important piece of legislation, which will decide the quality of the EU aquatic environment for the foreseeable future. The main environmental goal of the Directive is good ecological status...... draws attention to a potential development path, which the DCA process could take, based on an important guidance document on economics in the WFD (WATECO) and the AquaMoney project, a large neoclassical project established to produce guidelines for member states as to how to conduct DCA, essentially...... based on economic valuation methodologies, specifically contingent valuation and benefit transfer. The paper is critical of this potential approach based on a theoretical discussion, which concludes that deliberative approaches to decision-making appear to be more appropriate as they better fit...

  15. Detecting pin diversion from pressurized water reactors spent fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young S.; Sitaraman, Shivakumar

    2017-01-10

    Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and taking the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.

  16. Dominant accident sequences in Oconee-1 pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dearing, J F; Henninger, R J; Nassersharif, B

    1985-04-01

    A set of dominant accident sequences in the Oconee-1 pressurized water reactor was selected using probabilistic risk analysis methods. Because some accident scenarios were similar, a subset of four accident sequences was selected to be analyzed with the Transient Reactor Analysis Code (TRAC) to further our insights into similar types of accidents. The sequences selected were loss-of-feedwater, small-small break loss-of-coolant, loss-of-feedwater-initiated transient without scram, and interfacing systems loss-of-coolant accidents. The normal plant response and the impact of equipment availability and potential operator actions were also examined. Strategies were developed for operator actions not covered in existing emergency operator guidelines and were tested using TRAC simulations to evaluate their effectiveness in preventing core uncovery and maintaining core cooling.

  17. Analytical study on water hammer pressure in pressurized conduits with a throttled surge chamber for slow closure

    Directory of Open Access Journals (Sweden)

    Yong-liang Zhang

    2010-06-01

    Full Text Available This paper presents an analytical investigation of water hammer in a hydraulic pressurized pipe system with a throttled surge chamber located at the junction between a tunnel and a penstock, and a valve positioned at the downstream end of the penstock. Analytical formulas of maximum water hammer pressures at the downstream end of the tunnel and the valve were derived for a system subjected to linear and slow valve closure. The analytical results were then compared with numerical ones obtained using the method of characteristics. There is agreement between them. The formulas can be applied to estimating water hammer pressure at the valve and transmission of water hammer pressure through the surge chamber at the junction for a hydraulic pipe system with a surge chamber.

  18. Basal interstitial water pressure in laboratory debris flows over a rigid bed in an open channel

    Directory of Open Access Journals (Sweden)

    N. Hotta

    2012-08-01

    Full Text Available Measuring the interstitial water pressure of debris flows under various conditions gives essential information on the flow stress structure. This study measured the basal interstitial water pressure during debris flow routing experiments in a laboratory flume. Because a sensitive pressure gauge is required to measure the interstitial water pressure in shallow laboratory debris flows, a differential gas pressure gauge with an attached diaphragm was used. Although this system required calibration before and after each experiment, it showed a linear behavior and a sufficiently high temporal resolution for measuring the interstitial water pressure of debris flows. The values of the interstitial water pressure were low. However, an excess of pressure beyond the hydrostatic pressure was observed with increasing sediment particle size. The measured excess pressure corresponded to the theoretical excess interstitial water pressure, derived as a Reynolds stress in the interstitial water of boulder debris flows. Turbulence was thought to induce a strong shear in the interstitial space of sediment particles. The interstitial water pressure in boulder debris flows should be affected by the fine sediment concentration and the phase transition from laminar to turbulent debris flow; this should be the subject of future studies.

  19. Optimising The Available Scarce Water Resources At European Scale In A Modelling Environment: Results And Challenges

    Science.gov (United States)

    de Roo, Ad; Burek, Peter; Gentile, Alessandro; Udias, Angel; Bouraoui, Faycal

    2013-04-01

    As a next step to European drought monitoring and forecasting, which is covered in the European Drought Observatory (EDO) activity of JRC, a modeling environment has been developed to assess optimum measures to match water availability and water demand, while keeping ecological, water quality and flood risk aspects also into account. A multi-modelling environment has been developed to assess combinations of water retention measures, water savings measures, and nutrient reduction measures for continental Europe. These simulations have been carried out to assess the effects of those measures on several hydro-chemical indicators, such as the Water Exploitation Index, Environmental Flow indicators, low-flow frequency, N and P concentrations in rivers, the 50-year return period river discharge as an indicator for flooding, and economic losses due to water scarcity for the agricultural sector, the industrial sector, and the public sector. Also, potential flood damage of a 100-year return period flood has been used as an indicator. This modeling environment consists of linking the agricultural CAPRI model, the land use LUMP model, the water quantity LISFLOOD model, the water quality EPIC model, the combined water quantity/quality and hydro-economic LISQUAL model and a multi-criteria optimization routine. A python interface platform (IMO) has been built to link the different models. The work was carried out in the framework of a new European Commission policy document "Blueprint to Safeguard Europe's Water Resources", COM(2012)673), launched in November 2012. Simulations have been carried out to assess the effects of water retention measures, water savings measures, and nutrient reduction measures on several hydro-chemical indicators, such as the Water Exploitation Index, Environmental Flow indicators, N and P concentrations in rivers, the 50-year return period river discharge as an indicator for flooding, and economic losses due to water scarcity for the agricultural

  20. Water-bearing, high-pressure Ca-silicates

    Science.gov (United States)

    Németh, Péter; Leinenweber, Kurt; Ohfuji, Hiroaki; Groy, Thomas; Domanik, Kenneth J.; Kovács, István J.; Kovács, Judit S.; Buseck, Peter R.

    2017-07-01

    Water-bearing minerals provide fundamental knowledge regarding the water budget of the mantle and are geophysically significant through their influence on the rheological and seismic properties of Earth's interior. Here we investigate the CaO-SiO2-H2O system at 17 GPa and 1773 K, corresponding to mantle transition-zone condition, report new high-pressure (HP) water-bearing Ca-silicates and reveal the structural complexity of these phases. We document the HP polymorph of hartrurite (Ca3SiO5), post-hartrurite, which is tetragonal with space group P4/ncc, a = 6.820 (5), c = 10.243 (8) Å, V = 476.4 (8) Å3, and Z = 4, and is isostructural with Sr3SiO5. Post-hartrurite occurs in hydrous and anhydrous forms and coexists with larnite (Ca2SiO4), which we find also has a hydrous counterpart. Si is 4-coordinated in both post-hartrurite and larnite. In their hydrous forms, H substitutes for Si (4H for each Si; hydrogrossular substitution). Fourier transform infrared (FTIR) spectroscopy shows broad hydroxyl absorption bands at ∼3550 cm-1 and at 3500-3550 cm-1 for hydrous post-hartrurite and hydrous larnite, respectively. Hydrous post-hartrurite has a defect composition of Ca2.663Si0.826O5H1.370 (5.84 weight % H2O) according to electron-probe microanalysis (EPMA), and the Si deficiency relative to Ca is also observed in the single-crystal data. Hydrous larnite has average composition of Ca1.924Si0.851O4H0.748 (4.06 weight % H2O) according to EPMA, and it is in agreement with the Si occupancy obtained using X-ray data collected on a single crystal. Superlattice reflections occur in electron-diffraction patterns of the hydrous larnite and could indicate crystallographic ordering of the hydroxyl groups and their associated cation defects. Although textural and EPMA-based compositional evidence suggests that hydrous perovskite may occur in high-Ca-containing (or low silica-activity) systems, the FTIR measurement does not show a well-defined hydroxyl absorption band for this

  1. Climate change and the vulnerability of electricity generation to water stress in the European Union

    Science.gov (United States)

    Behrens, Paul; van Vliet, Michelle T. H.; Nanninga, Tijmen; Walsh, Brid; Rodrigues, João F. D.

    2017-08-01

    Thermoelectric generation requires large amounts of water for cooling. Recent warm periods have led to curtailments in generation, highlighting concerns about security of supply. Here we assess EU-wide climate impacts for 1,326 individual thermoelectric plants and 818 water basins in 2020 and 2030. We show that, despite policy goals and a decrease in electricity-related water withdrawal, the number of regions experiencing some reduction in power availability due to water stress rises from 47 basins to 54 basins between 2014 and 2030, with further plants planned for construction in stressed basins. We examine the reasons for these pressures by including water demand for other uses. The majority of vulnerable basins lie in the Mediterranean region, with further basins in France, Germany and Poland. We investigate four adaptations, finding that increased future seawater cooling eases some pressures. This highlights the need for an integrated, basin-level approach in energy and water policy.

  2. Genomic Comparison of Indigenous African and Northern European Chickens Reveals Putative Mechanisms of Stress Tolerance Related to Environmental Selection Pressure.

    Science.gov (United States)

    Fleming, Damarius S; Weigend, Steffen; Simianer, Henner; Weigend, Annett; Rothschild, Max; Schmidt, Carl; Ashwell, Chris; Persia, Mike; Reecy, James; Lamont, Susan J

    2017-05-05

    Global climate change is increasing the magnitude of environmental stressors, such as temperature, pathogens, and drought, that limit the survivability and sustainability of livestock production. Poultry production and its expansion is dependent upon robust animals that are able to cope with stressors in multiple environments. Understanding the genetic strategies that indigenous, noncommercial breeds have evolved to survive in their environment could help to elucidate molecular mechanisms underlying biological traits of environmental adaptation. We examined poultry from diverse breeds and climates of Africa and Northern Europe for selection signatures that have allowed them to adapt to their indigenous environments. Selection signatures were studied using a combination of population genomic methods that employed FST , integrated haplotype score (iHS), and runs of homozygosity (ROH) procedures. All the analyses indicated differences in environment as a driver of selective pressure in both groups of populations. The analyses revealed unique differences in the genomic regions under selection pressure from the environment for each population. The African chickens showed stronger selection toward stress signaling and angiogenesis, while the Northern European chickens showed more selection pressure toward processes related to energy homeostasis. The results suggest that chromosomes 2 and 27 are the most diverged between populations and the most selected upon within the African (chromosome 27) and Northern European (chromosome 2) birds. Examination of the divergent populations has provided new insight into genes under possible selection related to tolerance of a population's indigenous environment that may be baselines for examining the genomic contribution to tolerance adaptions. Copyright © 2017 Fleming et al.

  3. Genomic Comparison of Indigenous African and Northern European Chickens Reveals Putative Mechanisms of Stress Tolerance Related to Environmental Selection Pressure

    Directory of Open Access Journals (Sweden)

    Damarius S. Fleming

    2017-05-01

    Full Text Available Global climate change is increasing the magnitude of environmental stressors, such as temperature, pathogens, and drought, that limit the survivability and sustainability of livestock production. Poultry production and its expansion is dependent upon robust animals that are able to cope with stressors in multiple environments. Understanding the genetic strategies that indigenous, noncommercial breeds have evolved to survive in their environment could help to elucidate molecular mechanisms underlying biological traits of environmental adaptation. We examined poultry from diverse breeds and climates of Africa and Northern Europe for selection signatures that have allowed them to adapt to their indigenous environments. Selection signatures were studied using a combination of population genomic methods that employed FST, integrated haplotype score (iHS, and runs of homozygosity (ROH procedures. All the analyses indicated differences in environment as a driver of selective pressure in both groups of populations. The analyses revealed unique differences in the genomic regions under selection pressure from the environment for each population. The African chickens showed stronger selection toward stress signaling and angiogenesis, while the Northern European chickens showed more selection pressure toward processes related to energy homeostasis. The results suggest that chromosomes 2 and 27 are the most diverged between populations and the most selected upon within the African (chromosome 27 and Northern European (chromosome 2 birds. Examination of the divergent populations has provided new insight into genes under possible selection related to tolerance of a population’s indigenous environment that may be baselines for examining the genomic contribution to tolerance adaptions.

  4. Design of a supercritical water-cooled reactor. Pressure vessel and internals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Kai

    2008-08-15

    The High Performance Light Water Reactor (HPLWR) is a light water reactor with supercritical steam conditions which has been investigated within the 5th Framework Program of the European Commission. Due to the supercritical pressure of 25 MPa, water, used as moderator and as coolant, flows as a single phase through the core and can be directly fed to the turbine. Using the technology of coal fired power plants with supercritical steam conditions, the heat-up in the core is done in several steps to achieve the targeted high steam outlet temperature of 500.C without exceeding available cladding material limits. Based on a first design of a fuel assembly cluster for a HPLWR with a single pass core, the surrounding internals and the reactor pressure vessel (RPV) are dimensioned for the first time, following the safety standards of the nuclear safety standards commission in Germany. Furthermore, this design is extended to the incorporation of core arrangements with two and three passes. The design of the internals and the RPV are verified using mechanical or, in the case of large thermal deformations, combined mechanical and thermal stress analyses. Additionally, a passive safety component for the feedwater inlet of the RPV of the HPLWR is designed. Its purpose is the reduction of the mass flow rate in case of a LOCA for a feedwater line break until further steps are executed. Starting with a simple vortex diode, several steps are executed to enhance the performance of the diode and adapt it to this application. Then, this first design is further optimized using combined 1D and 3D flow analyses. Parametric studies determine the performance and characteristic for changing mass flow rates for this backflow limiter. (orig.)

  5. Activation analysis and characteristics of the European community water cooled ceramic breeder blanket design proposal for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Petrizzi, L.; Rado, V. [ENEA-ERG-FUS, Frascati (Italy); Cepraga, D.G. [ENEA-INN-FIS, Bologna (Italy)

    1994-12-31

    The European Community (EC) Home Team has proposed various alternative blanket designs to the basic concept (essentially integrated first wall, cooled by liquid metal, with structures made by vanadium alloys). One of the EC proposal is the Water Cooled Ceramic Blanket developed on the basis of a common action between NET and ENEA. It is based on a more conservative approach, but involving well proven technologies and qualified materials: SS-316L as structural material, Li{sub 2}ZrO{sub 3} as first breeder material choice (50% Li{sup 6} enrichment) and low temperature water coolant (160/200{degrees}C). Beryllium has been chosen as multiplying material. The nominal performance are: 1 MW/m{sup 2} as average neutron wall load, corresponding to 1.5 GW fusion power, 1 MW-y/m{sup 2} beneath it has been proved to withstand power excursion till 5 GW. The proposed blanket concept is based on a Breeder Inside Tube (BIT) type technology, with poloidal breeding elements, each one consisting of two concentric tubes. Breeder pebbles are filled into the inner tube, the water coolant flows in the annular channel between the two tubes. Beryllium pebbles fill the space of the blanket box outside the outer tube. A helium purge gas flows through the breeder pebbles bed for tritium recovery. Alternative operating water temperature and pressure are proposed, considering also batch tritium recovery.

  6. Water resource management: a comparative evaluation of Brazil, Rio de Janeiro, the European Union, and Portugal.

    Science.gov (United States)

    Araújo, Ronaldo S; da Gloria Alves, Maria; Condesso de Melo, M Teresa; Chrispim, Zélia M P; Mendes, M Paula; Silva Júnior, Gerson C

    2015-04-01

    This paper presents an overview of water resource management in Brazil, in particular the state of Rio de Janeiro, and in the European Union, with an emphasis on member country Portugal. The study examines the primary laws, governing bodies and water resource plans. The paper describes the concerns and interests of the scientific community and other sectors of society with regard to water resource management. The paper also draws attention to challenges and opportunities concerning the main objective of water resource management, which is to ensure the availability of water of high quality and sustainable quantity. Additionally, it also mentions good and poor management practices. Among the concerns highlighted are integrated water resource management and water resource monitoring. The objective of this study was to contribute to water resource management processes. The primary reasons for this study are the growing scarcity of freshwater in the world, recurrent problems in managing this resource and a desire to contribute to the improvement of the current situation. The study of water management in different contexts allows for a greater understanding of the subject, thereby assisting the decision-making of managers and society in general with regard to environmental quality and ecological and human health. There is an increasing interest in efficient water resource management, which creates a demand for information on the subject. Both Brazil and the European Union are facing problems related to quantity and quality of water. Problems like scarcity of freshwater, contamination, salinization, and floods. This makes the realities of them quite close, despite the physical distance between them. In general, Brazil, Rio de Janeiro, the European Union and Portugal have similar water resource management requirements. If these regions are to supply a consistent quantity of high-quality water to present and future generations, then they need effective laws and plans

  7. Income, Economic Structure and Trade: Impacts on Recent Water Use Trends in the European Union

    Directory of Open Access Journals (Sweden)

    Rosa Duarte

    2018-01-01

    Full Text Available From the mid-1990s to the recent international economic crisis, the European Union (EU27 experienced a significant economic growth and a flat population increase. During these years, the water resources directly used by the EU countries displayed a growing but smooth trend. However, European activities intensively demanded water resources throughout the whole global supply chain. The growth rate of embodied water use was three times higher than the growth in water directly used by these economies. This was mainly due to the large upsurge of virtual water imports in the EU (e.g., about 25% of the change in water imports in the world was directly linked to the increasing imports in the EU27 countries. In this context, we analyze water use changes in the EU27 from 1995 to 2009, combining the production and consumption perspectives. To that aim, we use the environmentally extended input-output approach to obtain the volume of water embodied in domestic production and in trade flows at the sector and country levels. In the empirical analysis, we utilize multi-regional input-output data from the World Input Output Database. In addition, by means of a structural decomposition analysis we identify and quantify the factors explaining changes in these trends. We focus both on the role of domestic production and trade and estimate the associated intensity, technology and scale effects. This analysis is done for different clusters, identifying singular patterns depending on income criteria. Our results confirm the boost of demand growth in that period, the positive but negligible effect of structural change, and the decline in water intensity which, however, was not enough to compensate the effects on water associated to the economic expansion in the period. These findings also point at a gradual substitution of domestic water use for virtual water imports. More concretely, in most countries the food industry tended to reduce its backward linkages with the

  8. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  9. Pressurized-water reactor internals aging degradation study. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Luk, K.H. [Oak Ridge National Lab., TN (United States)

    1993-09-01

    This report documents the results of a Phase I study on the effects of aging degradations on pr internals. Primary stressers for internals an generated by the primary coolant flow in the they include unsteady hydrodynamic forces and pump-generated pressure pulsations. Other stressors are applied loads, manufacturing processes, impurities in the coolant and exposures to fast neutron fluxes. A survey of reported aging-related failure information indicates that fatigue, stress corrosion cracking (SCC) and mechanical wear are the three major aging-related degradation mechanisms for PWR internals. Significant reported failures include thermal shield flow-induced vibration problems, SCC in guide tube support pins and core support structure bolts, fatigue-induced core baffle water-jet impingement problems and excess wear in flux thimbles. Many of the reported problems have been resolved by accepted engineering practices. Uncertainties remain in the assessment of long-term neutron irradiation effects and environmental factors in high-cycle fatigue failures. Reactor internals are examined by visual inspections and the technique is access limited. Improved inspection methods, especially one with an early failure detection capability, can enhance the safety and efficiency of reactor operations.

  10. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    Science.gov (United States)

    Martinez, N.; Michoud, G.; Cario, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J.

    2016-09-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  11. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    KAUST Repository

    Martinez, N.

    2016-09-06

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  12. Pressure dependence of viscosity in supercooled water and a unified approach for thermodynamic and dynamic anomalies of water

    Science.gov (United States)

    Singh, Lokendra P.; Issenmann, Bruno; Caupin, Frédéric

    2017-01-01

    The anomalous decrease of the viscosity of water with applied pressure has been known for over a century. It occurs concurrently with major structural changes: The second coordination shell around a molecule collapses onto the first shell. Viscosity is thus a macroscopic witness of the progressive breaking of the tetrahedral hydrogen bond network that makes water so peculiar. At low temperature, water at ambient pressure becomes more tetrahedral and the effect of pressure becomes stronger. However, surprisingly, no data are available for the viscosity of supercooled water under pressure, in which dramatic anomalies are expected based on interpolation between ambient pressure data for supercooled water and high pressure data for stable water. Here we report measurements with a time-of-flight viscometer down to 244K and up to 300MPa, revealing a reduction of viscosity by pressure by as much as 42%. Inspired by a previous attempt [Tanaka H (2000) J Chem Phys 112:799–809], we show that a remarkably simple extension of a two-state model [Holten V, Sengers JV, Anisimov MA (2014) J Phys Chem Ref Data 43:043101], initially developed to reproduce thermodynamic properties, is able to accurately describe dynamic properties (viscosity, self-diffusion coefficient, and rotational correlation time) as well. Our results support the idea that water is a mixture of a high density, “fragile” liquid, and a low density, “strong” liquid, the varying proportion of which explains the anomalies and fragile-to-strong crossover in water. PMID:28404733

  13. Thermal-hydraulic analysis of heat transfer in subchannels of the European high performance supercritical Water-Cooled Reactor for different CFD turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos, E-mail: lcastro@instec.cu, E-mail: leored1984@gmail.com, E-mail: agamezgmf@gmail.com, E-mail: jrosales@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional

    2015-07-01

    Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)

  14. Transboundary river basin management in Europe
    Legal instruments to comply with European water management obligations in case of transboundary water pollution and floods

    Directory of Open Access Journals (Sweden)

    Andrea M. Keessen

    2008-12-01

    Full Text Available Although modern European water policy follows a river basin approach where Member States have to cooperate in order to achieve a ‘good status’ of their water bodies, the obligations arising from the European water directives are to be achieved by each Member State individually. This situation creates problems when water pollution and water quantity problems cross borders. It is still unclear whether Member States can be held responsible for not achieving objectives due to causes (partly originating abroad. This article describes some of the legal instruments that water authorities have at their disposal to comply with the European water management obligations in case of transboundary water pollution and floods and thus shape transboundary river management. The article describes instruments to create, implement and enforce transboundary cooperation, and addresses the possibility of transboundary compensation if cooperation fails. Here, the focus is on a civil lawsuit before a domestic court.

  15. Beverage Consumption Habits among the European Population: Association with Total Water and Energy Intakes

    Science.gov (United States)

    Nissensohn, Mariela; Sánchez-Villegas, Almudena; Galan, Pilar; Turrini, Aida; Arnault, Nathalie; Mistura, Lorenza; Ortiz-Andrellucchi, Adriana; Szabo de Edelenyi, Fabien; D’Addezio, Laura; Serra-Majem, Lluis

    2017-01-01

    Background: Fluid and water intake have received limited attention in epidemiological studies. The aim of this study was to compare the average daily consumption of foods and beverages in adults of selective samples of the European Union (EU) population in order to understand the contribution of these to the total water intake (TWI), evaluate if the EU adult population consumes adequate amounts of total water (TW) according to the current guidelines, and to illustrate the real water intake in Europe. Methods: Three national European dietary surveys have been selected: Spain used the Anthropometry, Intake, and Energy Balance Study (ANIBES) population database, Italy analyzed data from the Italian National Food Consumption Survey (INRAN-SCAI 2005-06), and French data came from the NutriNet-Santé database. Mean daily consumption was used to compare between individuals. TWI was compared with European Food Safety Authority (EFSA) reference values for adult men and women. Results: On average, in Spain, TWI was 1.7 L (SE 22.9) for men and 1.6 L (SE 19.4) for women; Italy recorded 1.7 L (SE 16.9) for men and 1.7 L (SE 14.1) for women; and France recorded 2.3 L (SE 4.7) for men and 2.1 L (SE 2.4) for women. With the exception of women in France, neither men nor women consumed sufficient amounts of water according to EFSA reference values. Conclusions: This study highlights the need to formulate appropriate health and nutrition policies to increase TWI in the EU population. The future of beverage intake assessment requires the use of new instruments, techniques, and the application of the new available technologies. PMID:28406441

  16. Beverage Consumption Habits among the European Population: Association with Total Water and Energy Intakes.

    Science.gov (United States)

    Nissensohn, Mariela; Sánchez-Villegas, Almudena; Galan, Pilar; Turrini, Aida; Arnault, Nathalie; Mistura, Lorenza; Ortiz-Andrellucchi, Adriana; Edelenyi, Fabien Szabo de; D'Addezio, Laura; Serra-Majem, Lluis

    2017-04-13

    Fluid and water intake have received limited attention in epidemiological studies. The aim of this study was to compare the average daily consumption of foods and beverages in adults of selective samples of the European Union (EU) population in order to understand the contribution of these to the total water intake (TWI), evaluate if the EU adult population consumes adequate amounts of total water (TW) according to the current guidelines, and to illustrate the real water intake in Europe. Three national European dietary surveys have been selected: Spain used the Anthropometry, Intake, and Energy Balance Study (ANIBES) population database, Italy analyzed data from the Italian National Food Consumption Survey (INRAN-SCAI 2005-06), and French data came from the NutriNet-Santé database. Mean daily consumption was used to compare between individuals. TWI was compared with European Food Safety Authority (EFSA) reference values for adult men and women. On average, in Spain, TWI was 1.7 L (SE 22.9) for men and 1.6 L (SE 19.4) for women; Italy recorded 1.7 L (SE 16.9) for men and 1.7 L (SE 14.1) for women; and France recorded 2.3 L (SE 4.7) for men and 2.1 L (SE 2.4) for women. With the exception of women in France, neither men nor women consumed sufficient amounts of water according to EFSA reference values. This study highlights the need to formulate appropriate health and nutrition policies to increase TWI in the EU population. The future of beverage intake assessment requires the use of new instruments, techniques, and the application of the new available technologies.

  17. Dual temperature dual pressure water-hydrogen chemical exchange for water detritiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Takada, Akito; Morita, Youhei [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Kotoh, Kenji [Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Munakata, Kenzo [Faculty of Engineering and Resource Science, Akita University, Tegata-gakuen-machi 1-1, Akita 010-8502 (Japan); Taguchi, Akira [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Kawano, Takao; Tanaka, Masahiro; Akata, Naofumi [National Institute for Fusion Science, Oroshi-cho 322-6, Toki, Gifu 509-5292 (Japan)

    2015-10-15

    Experimental and analytical studies on hydrogen-tritium isotope separation by a dual temperature dual pressure catalytic exchange (DTDP-CE) with liquid phase chemical exchange columns were carried out in order to apply it to a part of the water detritiation system for DEMO fuel cycle. A prototype DTDP-CE apparatus was successfully operated and it was confirmed that tritium was separated by the apparatus as significantly distinguishable. A calculation code was developed based on the channeling stage model. The values of separation factors and the effects of some operating parameters were well predicted by the separative analyses with the code.

  18. Anomalous dependence of the heat capacity of supercooled water on pressure and temperature

    Directory of Open Access Journals (Sweden)

    I.A. Stepanov

    2014-01-01

    Full Text Available In some papers, dependences of the isobaric heat capacity of water versus pressure and temperature were obtained. It is shown that these dependences contradict both the dependence of heat capacity on temperature for supercooled water, and an important thermodynamic equation for the dependence of heat capacity on pressure. A possible explanation for this contradiction is proposed.

  19. The Climaware project: Impacts of climate change on water resources management - regional strategies and European view

    Science.gov (United States)

    Thirel, Guillaume; D'Agostino, Daniela; Démerliac, Stéphane; Dorchies, David; Flörke, Martina; Jay-Allemand, Maxime; Jost, Claudine; Kehr, Katrin; Perrin, Charles; Scardigno, Alessandra; Schneider, Christof; Theobald, Stephan; Träbing, Klaus

    2014-05-01

    Climate projections produced with CMIP5 and applied by the Intergovernmental Panel on Climate Change (IPCC) in its fifth assessment report indicate that changes in precipitation and temperature are expected to occur throughout Europe in the 21th century, with a likely decrease of water availability in many regions. Besides, water demand is also expected to increase, in link with these expected climate modifications, but also due to socio-economic and demographic changes. In this respect, the use of future freshwater resources may not be sustainable from the current water management perspective. Therefore adaptation strategies will most likely be needed to cope with these evolutions. In this context, the main objective of the ClimAware project (2010-2013 - www.uni-kassel.de/fb14/wasserbau/CLIMAWARE/, a project implemented within the IWRM-NET Funding Initiative) was to analyse the impacts of climate change (CC) on freshwater resources at the continental and regional scales and to identify efficient adaptation strategies to improve water management for various socio-economic sectors. This should contribute to a more effective implementation of the Water Framework Directive (WFD) and its instruments (river basin management plans, programmes of measures). The project developed integrated measures for improved freshwater management under CC constraints. More specifically, the objectives of the ClimAware project were to: • elaborate quantitative projections of changes in river flows and consequences such as flood frequency, drought occurrence and sectorial water uses. • analyse the effect of CC on the hydromorphological reference conditions of rivers and therefore the definition of "good status". • define management rules/strategies concerning dam management and irrigation practices on different time perspectives. • investigate uncertainties in climate model - scenario combinations. The research approach considered both European and regional perspectives, to get

  20. Reconsidering the relevance of social license pressure and government regulation for environmental performance of European SMEs

    NARCIS (Netherlands)

    Graafland, Johan; Smid, Hugo

    Whereas social license pressure is held as a strong motive for the corporate social performance (CSP) of large enterprises, it is argued in literature that it will not sufficiently motivate small and medium-sized enterprises (SMEs). In this view, government regulation is the most effective way to

  1. Water Property Models as Sovereignty Prerogatives: European Legal Perspectives in Comparison

    Directory of Open Access Journals (Sweden)

    Dario Casalini

    2010-08-01

    Full Text Available Water resources in European legal systems have always been vested in sovereign power, regardless of their legal nature as goods vested in State property or as res communes omnium not subject to ownership. The common legal foundation of sovereign power over water resources departed once civil law jurisdictions leveled the demesne on ownership model, by introducing public ownership in the French codification of 1804, while common law jurisdiction developed a broader legal concept of property that includes even the rights to use res communes. The models led respectively to the establishment of administrative systems of water rights and markets of water rights. According to the first, public authorities’ power to manage and preserve water resources is grounded in a derogatory regime, whereby water rights, grounded on licenses or concessions, are neither transferable nor tradeable. On the contrary, environmental and social concerns in water market schemes must be enforced by means of regulation, thus limiting private property rights on water, in compliance with the constitutional and common law constraints set out to protect the minimum content of property as a fundamental human right.

  2. Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures

    DEFF Research Database (Denmark)

    Zambrano, H.A.; Walther, Jens Honore; Jaffe, R.L.

    2014-01-01

    Wepresent a force field forMolecular Dynamics (MD) simulations ofwater and air in contactwith an amorphous silica surface. We calibrate the interactions of each species present in the systemusing dedicated criteria such as the contact angle of a water droplet on a silica surface, and the solubility...... of air in water at different pressures. Using the calibrated force field, we conduct MD simulations to study the interface between a hydrophilic silica substrate and water surrounded by air at different pressures. We find that the static water contact angle is independent of the air pressure imposed...

  3. Water footprint of European cars: potential impacts of water consumption along automobile life cycles.

    Science.gov (United States)

    Berger, Markus; Warsen, Jens; Krinke, Stephan; Bach, Vanessa; Finkbeiner, Matthias

    2012-04-03

    Due to global increase of freshwater scarcity, knowledge about water consumption in product life cycles is important. This study analyzes water consumption and the resulting impacts of Volkswagen's car models Polo, Golf, and Passat and represents the first application of impact-oriented water footprint methods on complex industrial products. Freshwater consumption throughout the cars' life cycles is allocated to material groups and assigned to countries according to import mix shares or location of production sites. Based on these regionalized water inventories, consequences for human health, ecosystems, and resources are determined by using recently developed impact assessment methods. Water consumption along the life cycles of the three cars ranges from 52 to 83 m(3)/car, of which more than 95% is consumed in the production phase, mainly resulting from producing iron, steel, precious metals, and polymers. Results show that water consumption takes place in 43 countries worldwide and that only 10% is consumed directly at Volkswagen's production sites. Although impacts on health tend to be dominated by water consumption in South Africa and Mozambique, resulting from the production of precious metals and aluminum, consequences for ecosystems and resources are mainly caused by water consumption of material production in Europe.

  4. The initial responses of hot liquid water released under low atmospheric pressures: Experimental insights

    Science.gov (United States)

    Bargery, Alistair Simon; Lane, Stephen J.; Barrett, Alexander; Wilson, Lionel; Gilbert, Jennie S.

    2010-11-01

    Experiments have been performed to simulate the shallow ascent and surface release of water and brines under low atmospheric pressure. Atmospheric pressure was treated as an independent variable and water temperature and vapor pressure were examined as a function of total pressure variation down to low pressures. The physical and thermal responses of water to reducing pressure were monitored with pressure transducers, temperature sensors and visible imaging. Data were obtained for pure water and for solutions with dissolved NaCl or CO 2. The experiments showed the pressure conditions under which the water remained liquid, underwent a rapid phase change to the gas state by boiling, and then solidified because of removal of latent heat. Liquid water is removed from phase equilibrium by decompression. Solid, liquid and gaseous water are present simultaneously, and not at the 611 Pa triple point, because dynamic interactions between the phases maintain unstable temperature gradients. After phase changes stop, the system reverts to equilibrium with its surroundings. Surface and shallow subsurface pressure conditions were simulated for Mars and the icy satellites of the outer Solar System. Freezing by evaporation in the absence of wind on Mars is shown to be unlikely for pure water at pressures greater than c. 670 Pa, and for saline solutions at pressures greater than c. 610 Pa. The physical nature of ice that forms depends on the salt content. Ice formed from saline water at pressures less than c. 610 Pa could be similar to terrestrial sea ice. Ice formed from pure water at pressures less than c. 100 Pa develops a low thermal conductivity and a 'honeycomb' structure created by sublimation. This ice could have a density as low as c. 450 kg m -3 and a thermal conductivity as low as 1.6 W m -1 K -1, and is highly reflective, more akin to snow than the clear ice from which it grew. The physical properties of ice formed from either pure or saline water at low pressures will

  5. The Scaling of Water Governance Tasks: A Comparative Federal Analysis of the European Union and Australia

    Science.gov (United States)

    Benson, David; Jordan, Andrew

    2010-07-01

    Conflicts over how to “scale” policy-making tasks have characterized environmental governance since time immemorial. They are particularly evident in the area of water policy and raise important questions over the democratic legitimacy, economic efficiency and effectiveness of allocating (or “scaling”) tasks to some administrative levels as opposed to others. This article adopts a comparative federalism perspective to assess the “optimality” of scaling—either upward or downward—in one issue area, namely coastal recreational water quality. It does so by comparing the scaling of recreational water quality tasks in the European Union (EU) and Australia. It reveals that the two systems have adopted rather different approaches to scaling and that this difference can partly be accounted for in federal theoretical terms. However, a much greater awareness of the inescapably political nature of scaling processes is nonetheless required. Finally, some words of caution are offered with regard to transferring policy lessons between these two jurisdictions.

  6. High conversion pressurized water reactor with boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Margulis, M., E-mail: maratm@post.bgu.ac.il [The Unit of Nuclear Engineering, Ben Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E., E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom)

    2015-10-15

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–{sup 233}U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–{sup 233}U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm{sup 3}, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore

  7. Effects of water availability and pest pressures on tea (Camellia sinensis) growth and functional quality

    OpenAIRE

    Ahmed, Selena; Orians, Colin M.; Griffin, Timothy S; Buckley, Sarabeth; Unachukwu, Uchenna; Stratton, Anne Elise; Stepp, John Richard; Robbat, Albert; Cash, Sean; Kennelly, Edward J.

    2013-01-01

    Extreme shifts in water availability linked to global climate change are impacting crops worldwide. The present study examines the direct and interactive effects of water availability and pest pressures on tea (Camellia sinensis; Theaceae) growth and functional quality. Manipulative greenhouse experiments were used to measure the effects of variable water availability and pest pressures simulated by jasmonic acid (JA) on tea leaf growth and secondary metabolites that determine tea quality. Wa...

  8. Construction management of Indian pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bohra, S.A. [Nuclear Power Corporation of India Limited, Vikram Sarabhai Bhavan, Anushaktinagar, Mumbai 400094 (India)]. E-mail: sabohra@npcil.co.in; Sharma, P.D. [Nuclear Power Corporation of India Limited, Vikram Sarabhai Bhavan, Anushaktinagar, Mumbai 400094 (India)

    2006-04-15

    Pandit Jawaharlal Nehru and Dr. Homi J. Bhabha, the visionary architects of Science and Technology of modern India foresaw the imperative need to establish a firm base for indigenous research and development in the field of nuclear electricity generation. The initial phase has primarily focused on the technology development in a systematic and structured manner, which has resulted in establishment of strong engineering, manufacturing and construction base. The nuclear power program started with the setting up of two units of boiling light water type reactors in 1969 for speedy establishment of nuclear technology, safety culture, and development of operation and maintenance manpower. The main aim at that stage was to demonstrate (to ourselves, and indeed to the rest of the world) that India, inspite of being a developing country, with limited industrial infrastructure and low capacity power grids, could successfully assimilate the high technology involved in the safe and economical operation of nuclear power reactors. The selection of a BWR was in contrast to the pressurized heavy water reactors (PHWR), which was identified as the flagship for the first stage of India's nuclear power program. The long-term program in three stages utilizes large reserves of thorium in the monazite sands of Kerala beaches in the third stage with first stage comprising of series of PHWR type plants with a base of 10,000 MW. India has at present 14 reactors in operation 12 of these being of PHWR type. The performance of operating units of 2720 MW has improved significantly with an overall capacity factor of about 90% in recent times. The construction work on eight reactor units with installed capacity of 3960 MW (two PHWRs of 540 MW each, four PHWRs of 220 MW each and two VVERs of 1000 MW each) is proceeding on a rapid pace with project schedules of less than 5 years from first pour of concrete. This is being achieved through advanced construction technology and management. Present

  9. Review of Water Resource Exploitation and Landuse Pressure in ...

    African Journals Online (AJOL)

    In addition, changes in climate regime, due to increasing temperature and reduced rainfall conditions, contribute to the reduced water supply. ... methods and 4- application of modern innovative techniques of water storage such as Aquifer Storage and Recovery (ASR) in preference to surface water storage systems.

  10. Pressure suppression containment system for boiling water reactor

    Science.gov (United States)

    Gluntz, Douglas M.; Nesbitt, Loyd B.

    1997-01-01

    A system for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs.

  11. Vitamins and iron blood biomarkers are associated with blood pressure levels in European adolescents. The HELENA study.

    Science.gov (United States)

    de Moraes, Augusto César Ferreira; Gracia-Marco, Luis; Iglesia, Iris; González-Gross, Marcela; Breidenassel, Christina; Ferrari, Marika; Molnar, Dénes; Gómez-Martínez, Sonia; Androutsos, Odysseas; Kafatos, Anthony; Cuenca-García, Magdalena; Sjöström, Michael; Gottrand, Frederic; Widhalm, Kurt; Carvalho, Heráclito Barbosa; Moreno, Luis A

    2014-01-01

    Previous research showed that low concentration of biomarkers in the blood during adolescence (i.e., iron status; retinol; and vitamins B6, B12, C, and D) may be involved in the early stages of development of many chronic diseases, such as hypertension. The aim was to evaluate if iron biomarkers and vitamins in the blood are associated with blood pressure in European adolescents. Participants from the Healthy Lifestyle in Europe by Nutrition in Adolescence cross-sectional study (N = 1089; 12.5-17.5 y; 580 girls) were selected by complex sampling. Multilevel linear regression models examined the associations between iron biomarkers and vitamins in the blood and blood pressure; the analyses were stratified by sex and adjusted for contextual and individual potential confounders. A positive association was found in girls between RBC folate concentration and systolic blood pressure (SBP) (β = 3.19; 95% confidence interval [CI], 0.61-5.77), although no association between the vitamin serum biomarkers concentrations and diastolic blood pressure (DBP) was found. In boys, retinol was positively associated with DBP (β = 3.84; 95% CI, 0.51-7.17) and vitamin B6 was positively associated with SBP (β = 3.82; 95% CI, 1.46-6.18). In contrast, holotranscobalamin was inversely associated with SBP (β = -3.74; 95% CI, -7.28 to -0.21). Levels of RBC folate and vitamin B6 in blood may affect BP in adolescents. In this context, programs aimed at avoiding high BP levels should promote healthy eating behavior by focusing on the promotion of vegetable proteins and foods rich in vitamin B12 (i.e., white meat and eggs), which may help to achieve BP blood control in adolescents. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Biogeography of wood-boring crustaceans (Isopoda: Limnoriidae established in European coastal waters.

    Directory of Open Access Journals (Sweden)

    Luísa M S Borges

    Full Text Available Marine wood-borers of the Limnoriidae cause great destruction to wooden structures exposed in the marine environment. In this study we collated occurrence data obtained from field surveys, spanning over a period of 10 years, and from an extensive literature review. We aimed to determine which wood-boring limnoriid species are established in European coastal waters; to map their past and recent distribution in Europe in order to infer species range extension or contraction; to determine species environmental requirements using climatic envelopes. Of the six species of wood-boring Limnoria previously reported occurring in Europe, only Limnoria lignorum, L. quadripunctata and L. tripunctata are established in European coastal waters. L. carinata and L. tuberculata have uncertain established status, whereas L. borealis is not established in European waters. The species with the widest distribution in Europe is Limnoria lignorum, which is also the most tolerant species to a range of salinities. L. quadripunctata and L. tripunctata appear to be stenohaline. However, the present study shows that both L. quadripunctata and L. tripunctata are more widespread in Europe than previous reports suggested. Both species have been found occurring in Europe since they were described, and their increased distribution is probably the results of a range expansion. On the other hand L. lignorum appears to be retreating poleward with ocean warming. In certain areas (e.g. southern England, and southern Portugal, limnoriids appear to be very abundant and their activity is rivalling that of teredinids. Therefore, it is important to monitor the distribution and destructive activity of these organisms in Europe.

  13. Simulation and experiment research on the proportional pressure control of water-assisted injection molding

    Science.gov (United States)

    Zhou, Hua; Chen, Yinglong; Zhang, Zengmeng; Yang, Huayong

    2012-05-01

    Water-assisted injection molding (WAIM), a newly developed fluid-assisted injection molding technology has drawn more and more attentions for the energy saving, short cooling circle time and high quality of products. Existing research for the process of WAIM has shown that the pressure control of the injecting water is mostly important for the WAIM. However, the proportional pressure control for the WAIM system is quite complex due to the existence of nonlinearities in the water hydraulic system. In order to achieve better pressure control performance of the injecting water to meet the requirements of the WAIM, the proportional pressure control of the WAIM system is investigated both numerically and experimentally. A newly designed water hydraulic system for WAIM is first modeled in AMEsim environment, the load characteristics and the nonlinearities of water hydraulic system are both considered, then the main factors affecting the injecting pressure and load flow rate are extensively studied. Meanwhile, an open-loop model-based compensation control strategy is employed to regulate the water injection pressure and a feedback proportional integrator controller is further adopted to achieve better control performance. In order to verify the AMEsim simulation results WAIM experiment for particular Acrylonitrile Butadiene Styrene (ABS) parts is implemented and the measured experimental data including injecting pressure and flow rate results are compared with the simulation. The good coincidence between experiment and simulation shows that the AMEsim model is accurate, and the tracking performance of the load pressure indicates that the proposed control strategy is effective for the proportional pressure control of the nonlinear WAIM system. The proposed proportional pressure control strategy and the conclusions drawn from simulation and experiment contribute to the application of water hydraulic proportional control and WAIM technology.

  14. Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves.

    Science.gov (United States)

    Stan, Claudiu A; Willmott, Philip R; Stone, Howard A; Koglin, Jason E; Liang, Mengning; Aquila, Andrew L; Robinson, Joseph S; Gumerlock, Karl L; Blaj, Gabriel; Sierra, Raymond G; Boutet, Sébastien; Guillet, Serge A H; Curtis, Robin H; Vetter, Sharon L; Loos, Henrik; Turner, James L; Decker, Franz-Josef

    2016-06-02

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below -100 MPa were reached in the drops. We model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

  15. Heat transfer in vertical pipe flow at supercritical pressures of water; Waermeuebergang von Wasser in vertikalen Rohrstroemungen bei ueberkritischem Druck

    Energy Technology Data Exchange (ETDEWEB)

    Loewenberg, M.F.

    2007-05-15

    A new reactor concept with light water at supercritical conditions is investigated in the framework of the European project ''High Performance Light Water Reactor'' (HPLWR). Characteristics of this reactor are the system pressure and the coolant outlet temperature above the critical point of water. Water is regarded as a single phase fluid under these conditions with a high energy density. This high energy density should be utilized in a technical application. Therefore in comparison with up to date nuclear power plants some constructive savings are possible. For instance, steam dryers or steam separators can be avoided in contrast to boiling water reactors. A thermal efficiency of about 44% can be accomplished at a system pressure of 25MPa through a water heat-up from 280 C to 510 C. To ensure this heat-up within the core reliable predictions of the heat transfer are necessary. Water as the working fluid changes its fluid properties dramatically during the heat up in the core. As such; the density in the core varies by the factor of seven. The motivation to develop a look-up table for heat transfer predications in supercritical water is due to the significant temperature dependence of the fluid properties of water. A systematic consolidation of experimental data was performed. Together with further developments of the methods to derive a look-up table made it possible to develop a look-up table for heat transfer in supercritical water in vertical flows. A look-up table predicts the heat transfer for different boundary conditions (e.g. pressure or heat flux) with tabulated data. The tabulated wall temperatures for fully developed turbulent flows can be utilized for different geometries by applying hydraulic diameters. With the developed look-up table the difficulty of choosing one of the many published correlations can be avoided. In general, the correlations have problems with strong fluid property variations. Strong property variations

  16. Water shortage affects the water and nitrogen balance in Central European beech forests.

    Science.gov (United States)

    Gessler, A; Keitel, C; Nahm, M; Rennenberg, H

    2004-05-01

    Whilst forest policy promotes cultivation and regeneration of beech dominated forest ecosystems, beech itself is a highly drought sensitive tree species likely to suffer from the climatic conditions prognosticated for the current century. Taking advantage of model ecosystems with cool-moist and warm-dry local climate, the latter assumed to be representative for future climatic conditions, the effects of climate and silvicultural treatment (different thinning regimes) on water status, nitrogen balance and growth parameters of adult beech trees and beech regeneration in the understorey were assessed. In addition, validation experiments with beech seedlings were carried out under controlled conditions, mainly in order to assess the effect of drought on the competitive abilities of beech. As measures of water availability xylem flow, shoot water potential, stomatal conductance as well as delta (13)C and delta (18)O in different tissues (leaves, phloem, wood) were analysed. For the assessment of nitrogen balance we determined the uptake of inorganic nitrogen by the roots as well as total N content and soluble N compounds in different tissues of adult and young trees. Retrospective and current analysis of delta (13)C, growth and meteorological parameters revealed that beech growing under warm-dry climatic conditions were impaired in growth and water balance during periods with low rain-fall. Thinning affected water, N balance and growth mostly of young beech, but in a different way under different local climatic conditions. Under cool, moist conditions, representative for the current climatic and edaphic conditions in beech forests of Central Europe, thinning improves nutrient and water status consistent to published literature and long-term experience of forest practitioners. However, beech regeneration was impaired as a result of thinning at higher temperatures and under reduced water availability, as expected in future climate.

  17. Response of the water status of soybean to changes in soil water potentials controlled by the water pressure in microporous tubes

    Science.gov (United States)

    Steinberg, S. L.; Henninger, D. L.

    1997-01-01

    Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.

  18. China's coal-fired power plants impose pressure on water resources

    NARCIS (Netherlands)

    Zhang, Xinxin; Liu, Junguo; Tang, Yu; Zhao, Xu; Yang, Hong; Gerbens-Leenes, P.W.; Vliet, van Michelle T.H.; Yan, Jinyue

    2017-01-01

    Coal is the dominant fuel for electricity generation around the world. This type of electricity generation uses large amounts of water, increasing pressure on water resources. This calls for an in-depth investigation in the water-energy nexus of coal-fired electricity generation. In China,

  19. Gray water recycle: Effect of pretreatment technologies on low pressure reverse osmosis treatment

    Science.gov (United States)

    Gray water can be a valuable source of water when properly treated to reduce the risks associated with chemical and microbial contamination to acceptable levels for the intended reuse application. In this study, the treatment of gray water using low pressure reverse osmosis (RO) filtration after pre...

  20. EUROPEAN POLICY CONCERNING THE PROTECTION OF THE QUALITY OF THE ENVIRONMENTAL FACTOR - WATER

    Directory of Open Access Journals (Sweden)

    FLORICA BRASOVEANU

    2012-05-01

    Full Text Available European Union environmental policy, as was established in the EC Treaty aims at ensuring environmental sustainability activities through its inclusion in EU sectoral policies, by developing measures to prevent by following the basic principles of sustainable development and by taking joint responsibilities. Environmental legislation is one of those tools that combine management of natural resources with the prevention and control of the pollution. These laws attempt to prevent, or at least limit the effects of environmental degradation caused by the phenomenon of pollution. Environmental legislation should primarily be flexible in the sense to allow the fulfillment of current and the future goals in order to stimulate sustainable development concept and to base on general criteria for the purposes of allowing the extension to complex environmental problems. The environmental legislation is due to focus on integrating the source - effect policy, that is to focus on regulations for issuing permits for pollution, but also the responsibility of companies and citizens.Despite the significant improvements that have occurred especially in reducing air and water pollution, European legislation should be developed further. It is true that there are still many points that require completion and perfection, but the path followed is the best. In the European Union the process of implementation and adoption of new regulations on environmental protection (regulations, directives, decisions,recommendations to combat the causes of degradation of environmental quality and life quality time with them continues.

  1. Hot water epilepsy: a video case of European boy with positive family history and subsequent non-reflex epilepsy.

    Science.gov (United States)

    Vignoli, Aglaia; Savini, Miriam Nella; La Briola, Francesca; Chiesa, Valentina; Zambrelli, Elena; Peron, Angela; Canevini, Maria Paola

    2014-03-01

    A 9-year-old Caucasian boy affected by hot water epilepsy, with positive family history, experienced complex partial seizures during contact with hot water. A video-EEG recording was taken while hot water was poured onto his chest. Hot water epilepsy is rarely described in European countries, where bathing epilepsy in younger children is more common and often confused with this type of epilepsy.

  2. Soak Feet Warm Water Therapy Effective To Reduce Blood Pressure In The Elderly

    Directory of Open Access Journals (Sweden)

    yessi harnani

    2017-12-01

    Full Text Available Hypertension is a heart and blood vessels disease that is manifested by rising blood pressure. Untreated hypertension will lead to complication such as stroke and heart failure. Soak feet warm water is one of the complementary therapy that can reduce blood pressure. The purpose of this research is to find out the effecveness of soak feet warm water therapy to reduce blood pressure in the elderly. This research was a quantave by using the pre-experimental design and pretest and posest approach. The Sample were elderly with hypertension in working area of Puskesmas Simpang Tiga Pekanbaru. The sampling technique was used purposive sampling. The data collection techniques were used observation and measuring blood pressure by using sphignomanometer. The data analyzed was used Wilcoxon test. The Results showed that generally elderly with hypertension were on stage II. Stasc result showed that mean blood pressure post soak feet warm water therapy was 74,00 and standard deviaon was 5, 026, with the sistolic P value was 0.000 (<0.05 and diastolic P value was 0.000 (<0.05. So, it could be stated that soak feet warm water therapy effecve to reduce blood pressure in elderly. It is recommended to elderly with hypertension to always controlling their blood pressure, if there is a rising of blood pressure they could using soak feet warm water therapy to treat hypertension as a complementary therapy, cheap and easy to do indenpendently.

  3. Complex cooling water systems optimization with pressure drop consideration

    CSIR Research Space (South Africa)

    Gololo, KV

    2012-12-01

    Full Text Available -integer nonlinear programming (MINLP) structure. The cooling tower model is used to predict the exit conditions of the cooling towers, given the inlet conditions from the cooling water network model. The case studies showed that the circulating cooling water flow...

  4. Troubled waters: Growing climate and population pressures in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2014-04-09

    Apr 9, 2014 ... Rapid urbanization is squeezing India's limited water resources. While climate change may compound the problem, research in two southern watersheds points to industrial pollution, unregulated extraction, and changes in land use as the greatest threats to water quality and availability.

  5. Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves

    Directory of Open Access Journals (Sweden)

    A. Wackerbarth

    2012-11-01

    Full Text Available Interpreting stable oxygen isotope (δ18O records from stalagmites is still one of the complex tasks in speleothem research. Here, we present a novel model-based approach, where we force a model describing the processes and modifications of δ18O from rain water to speleothem calcite (Oxygen isotope Drip water and Stalagmite Model – ODSM with the results of a state-of-the-art atmospheric general circulation model enhanced by explicit isotope diagnostics (ECHAM5-wiso. The approach is neither climate nor cave-specific and allows an integrated assessment of the influence of different varying climate variables, e.g. temperature and precipitation amount, on the isotopic composition of drip water and speleothem calcite.

    First, we apply and evaluate this new approach under present-day climate conditions using observational data from seven caves from different geographical regions in Europe. Each of these caves provides measured δ18O values of drip water and speleothem calcite to which we compare our simulated isotope values. For six of the seven caves modeled δ18O values of drip water and speleothem calcite are in good agreement with observed values. The mismatch of the remaining caves might be caused by the complexity of the cave system, beyond the parameterizations included in our cave model.

    We then examine the response of the cave system to mid-Holocene (6000 yr before present, 6 ka climate conditions by forcing the ODSM with ECHAM5-wiso results from 6 ka simulations. For a set of twelve European caves, we compare the modeled mid-Holocene-to-modern difference in speleothem calcite δ18O to available measurements. We show that the general European changes are simulated well. However, local discrepancies are found, and might be explained either by a too low model resolution, complex local soil-atmosphere interactions affecting evapotranspiration or by cave specific factors

  6. Integrative taxonomy supports the presence of two species of Kyphosus (Perciformes: Kyphosidae in Atlantic European waters

    Directory of Open Access Journals (Sweden)

    Rafael Bañón

    2017-12-01

    Full Text Available The taxonomic identification of one Kyphosus sectatrix and two Kyphosus vaigiensis specimens caught in the European Atlantic waters of Galicia, northwestern Spain, was carried out by means of integrative taxonomy, combining the examination of morphological characters and DNA barcodes. Taxonomical assignation based on morphological characters of these specimens was tested by comparing their COI sequences with available data of Kyphosus deposited in public repositories. The resulting neighbour-joining tree defined four clades corresponding to Barcode Index Number (BIN and indicated that some nucleotide sequences from Kyphosus, previously deposited, probably originate from misidentified specimens, as would be expected from cryptic and sympatric species. The specimens of Kyphosus vaigiensis represent a new record for the waters of Galicia and the northernmost record in the eastern Atlantic. This kind of herbivorous tropical fishes could play an important role in the tropho-dynamic context of this temperate coastal ecosystem.

  7. Variability in the Water Footprint of Arable Crop Production across European Regions

    Directory of Open Access Journals (Sweden)

    Anne Gobin

    2017-02-01

    Full Text Available Crop growth and yield are affected by water use during the season: the green water footprint (WF accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R2 = 0.64–0.80; d = 0.91–0.95. The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield ( c v ¯ = 45% and to a lesser extent to variability in crop water use ( c v ¯ = 21%. The WF variability between countries ( c v ¯ = 14% is lower than the variability between seasons ( c v ¯ = 22% and between crops ( c v ¯ = 46%. Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.

  8. Analysis of External Water Pressure for a Tunnel in Fractured Rocks

    Directory of Open Access Journals (Sweden)

    Ze-jun Liu

    2017-01-01

    Full Text Available External water pressure around tunnels is a main influential factor in relation to the seepage safety of underground chambers and powerhouses which make managing external water pressure crucial to water conservation and hydropower projects. The equivalent continuous medium model and the discrete fracture network (DFN model were, respectively, applied to calculate the seepage field of the study domain. Calculations were based on the integrity and permeability of rocks, the extent of fracture development, and the combination of geological and hydrogeological conditions in the Huizhou pump-storage hydropower station. The station generates electricity from the upper reservoir and stores power by pumping water from the lower to the upper reservoir. In this paper, the external water pressure around the cavern and variations in pressure with only one operational and one venting powerhouse were analyzed to build a predictive model. The results showed that the external water pressure was small with the current anti-seepage and drainage system that normal operation of the reservoir can be guaranteed. The results of external water pressure around the tunnels provided sound scientific evidence for the future design of antiseepage systems.

  9. Are Lead Exposures a Risk in European Fresh Waters? A Regulatory Assessment Accounting for Bioavailability.

    Science.gov (United States)

    Peters, Adam; Wilson, Iain; Merrington, Graham; Chowdhury, M Jasim

    2018-01-01

    An indicative compliance assessment of the Europe-wide bioavailable lead Environmental Quality Standard of 1.2 µg L-1 (EQS) was undertaken against regulatory freshwater monitoring data from six European member states and FOREGS database. Bio-met, a user-friendly tool based upon Biotic Ligand Models (BLMs) was used to account for bioavailability, along with the current European Water Framework Directive lead dissolved organic carbon correction approach. The outputs from both approaches were compared to the BLM. Of the 9054 freshwater samples assessed only 0.6% exceeded the EQS of 1.2 µg L-1 after accounting for bioavailability. The data showed that ambient background concentrations of lead across Europe are unlikely to influence general compliance with the EQS, although there may be isolated local issues. The waters showing the greatest sensitivity to potential lead exposures are characterized by relatively low DOC (< 0.5 mg L-1), regardless of the pH and calcium concentrations.

  10. Self-similar distribution of oil spills in European coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Jose M; Platonov, Alexei K [Departament de Fisica Aplicada, Universidad Politecnica de Catalunya C/ J G Salgado s/n, Campus Nord, Modul B-4, E-08034, Barcelona (Spain)], E-mail: redondo@fa.upc.es

    2009-01-15

    Marine pollution has been highlighted thanks to the advances in detection techniques as well as increasing coverage of catastrophes (e.g. the oil tankers Amoco Cadiz, Exxon Valdez, Erika, and Prestige) and of smaller oil spills from ships. The new satellite based sensors SAR and ASAR and new methods of oil spill detection and analysis coupled with self-similar statistical techniques allow surveys of environmental pollution monitoring large areas of the ocean. We present a statistical analysis of more than 700 SAR images obtained during 1996-2000, also comparing the detected small pollution events with the historical databases of great marine accidents during 1966-2004 in European coastal waters. We show that the statistical distribution of the number of oil spills as a function of their size corresponds to Zipf's law, and that the common small spills are comparable to the large accidents due to the high frequency of the smaller pollution events. Marine pollution from tankers and ships, which has been detected as oil spills between 0.01 and 100 km{sup 2}, follows the marine transit routes. Multi-fractal methods are used to distinguish between natural slicks and spills, in order to estimate the oil spill index in European coastal waters, and in particular, the north-western Mediterranean Sea, which, due to the influence of local winds, shows optimal conditions for oil spill detection.

  11. Validation of Omron RS8, RS6, and RS3 home blood pressure monitoring devices, in accordance with the European Society of Hypertension International Protocol revision 2010

    Directory of Open Access Journals (Sweden)

    Takahashi H

    2013-05-01

    Full Text Available Hakuo Takahashi, Masamichi Yoshika, Toyohiko YokoiDepartment of Clinical Sciences and Laboratory Medicine, Kansai Medical University, Hirakata, Osaka, JapanBackground: Allowing patients to measure their blood pressure at home is recognized as being of clinical value. However, it is not known how often these measurements are taken correctly. Blood pressure monitors for home use fall into two types based on the position of the cuff, ie, at the upper arm or the wrist. The latter is particularly convenient, as measurements can be taken fully clothed. This study aimed to evaluate the performance of the wrist-type blood pressure monitors Omron RS8 (HEM-6310F-E, Omron RS6 (HEM-6221-E, and Omron RS3 (HEM-6130-E.Methods: A team of three trained doctors validated the performance of these devices by comparing the measurements obtained from these devices with those taken using a standard mercury sphygmomanometer. All the devices met the validation requirements of the European Society of Hypertension International Protocol revision 2010.Results: The difference in blood pressure readings between the tested device and the standard mercury sphygmomanometer was within 3 mmHg, which is acceptable according to the European Society of Hypertension guidelines.Conclusion: All the home devices tested were found to be suitable for measuring blood pressure at home because their performance fulfilled the requirement of the guidelines.Keywords: blood pressure, device, European Society of Hypertension, guideline, measurement, validation

  12. Study on the pressure self-adaptive water-tight junction box in underwater vehicle

    Directory of Open Access Journals (Sweden)

    Haocai Huang

    2012-09-01

    Full Text Available Underwater vehicles play a very important role in underwater engineering. Water-tight junction box (WJB is one of the key components in underwater vehicle. This paper puts forward a pressure self-adaptive water-tight junction box (PSAWJB which improves the reliability of the WJB significantly by solving the sealing and pressure problems in conventional WJB design. By redundancy design method, the pressure self-adaptive equalizer (PSAE is designed in such a way that it consists of a piston pressure-adaptive compensator (PPAC and a titanium film pressure-adaptive compensator (TFPAC. According to hydro-mechanical simulations, the operating volume of the PSAE is more than or equal to 11.6 % of the volume of WJB liquid system. Furthermore, the required operating volume of the PSAE also increases as the gas content of oil, hydrostatic pressure or temperature difference increases. The reliability of the PSAWJB is proved by hyperbaric chamber tests.

  13. High-Pressure Water-Rinse Cleaning of Copper(LCC-0067)

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, R

    2003-11-06

    Copper, niobium and stainless steel surfaces were cleaned by high-pressure water-rinsing spray (HPWR). Surface chemical and topographic analyses show that the HPWR process is neither a contaminating nor a significantly eroding process.

  14. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description.

  15. Regulation of Water Use in the Southernmost European Fir (Abies pinsapo Boiss.: Drought Avoidance Matters

    Directory of Open Access Journals (Sweden)

    Raúl Sánchez-Salguero

    2015-06-01

    Full Text Available The current scenario of global warming has resulted in considerable uncertainty regarding the capacity of forest trees to adapt to increasing drought. Detailed ecophysiological knowledge would provide a basis to forecast expected species dynamics in response to climate change. Here, we compare the water balance (stomatal conductance, xylem water potential, needle osmotic adjustment of Abies pinsapo, a relict drought-sensitive Mediterranean fir, along an altitudinal gradient. We related these variables to soil water and nutrient availability, air temperature, atmospheric water potential, and vapour pressure deficit during two consecutive years. Our results indicate that A. pinsapo closed stomata rapidly over a very narrow range of soil water availability and atmospheric dryness. This isohydric response during water stress suggests that this relict conifer relied on the plant hormone abscisic acid to maintain closed stomata during sustained drought, instead of needle desiccation to passively drive stomatal closure, needle osmotic adjustment or a plastic response of the xylem to different levels of water availability. Both the soil and foliar nutrient contents suggest that the studied populations are not limited by nutrient deficiencies, and drought was stronger in the warmer low-elevation areas.

  16. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    Science.gov (United States)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  17. Constructing a strategic, national resource: European policies and the up-scaling of water services in the Algarve, Portugal.

    Science.gov (United States)

    Thiel, Andreas

    2010-07-01

    Water management has been significantly reshaped throughout recent decades in Europe and worldwide. Vivid examples of this restructuring include Southern European coastal zones which have been transformed into the European "pleasure periphery" over the last 40 years, requiring significant changes in water service provision. Taking it as an illustrative case of the Southern European coastal freshwater crisis and the way different European Member States have dealt with it, the article provides an account of the Algarve, indicative of typical Portuguese dynamics, and compares it with developments in other European countries. Expanding demands on water services in this region led to a crisis situation throughout the nineties, which was resolved by shifting physical infrastructures and competencies to the supra-local level. The re-scaling of water management was instrumental to expanding national control over the sector at the expense of local authorities and privatization. The national level used European funds and regulations to re-configure the institutional and infrastructure set-up in order to provide for tourism and agricultural expansion. Quality tourism was constructed as a decentral, hegemonic state spatial project, with the Algarvian's entire water resource base being put at its disposal. The solution found illustrates a modified version of the supply side and surface water oriented "hydraulic paradigm" in Portugal: geared towards tourism and urban areas and the maintenance of irrigation agriculture. Delays in infrastructures, ideological preferences, maintaining national control over strategic water services and territoriality contributed towards the construction of water services as part of this hegemonic state spatial strategy for tourism expansion.

  18. Constructing a Strategic, National Resource: European Policies and the Up-Scaling of Water Services in the Algarve, Portugal

    Science.gov (United States)

    Thiel, Andreas

    2010-07-01

    Water management has been significantly reshaped throughout recent decades in Europe and worldwide. Vivid examples of this restructuring include Southern European coastal zones which have been transformed into the European “pleasure periphery” over the last 40 years, requiring significant changes in water service provision. Taking it as an illustrative case of the Southern European coastal freshwater crisis and the way different European Member States have dealt with it, the article provides an account of the Algarve, indicative of typical Portuguese dynamics, and compares it with developments in other European countries. Expanding demands on water services in this region led to a crisis situation throughout the nineties, which was resolved by shifting physical infrastructures and competencies to the supra-local level. The re-scaling of water management was instrumental to expanding national control over the sector at the expense of local authorities and privatization. The national level used European funds and regulations to re-configure the institutional and infrastructure set-up in order to provide for tourism and agricultural expansion. Quality tourism was constructed as a decentral, hegemonic state spatial project, with the Algarvian’s entire water resource base being put at its disposal. The solution found illustrates a modified version of the supply side and surface water oriented “hydraulic paradigm” in Portugal: geared towards tourism and urban areas and the maintenance of irrigation agriculture. Delays in infrastructures, ideological preferences, maintaining national control over strategic water services and territoriality contributed towards the construction of water services as part of this hegemonic state spatial strategy for tourism expansion.

  19. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-1: Pressurized Water Reactors.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical pressurized water reactor (PWR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module is the PWR…

  20. Development of a quasi-adiabatic calorimeter for the determination of the water vapor pressure curve.

    Science.gov (United States)

    Mokdad, S; Georgin, E; Hermier, Y; Sparasci, F; Himbert, M

    2012-07-01

    Progress in the knowledge of the water saturation curve is required to improve the accuracy of the calibrations in humidity. In order to achieve this objective, the LNE-CETIAT and the LNE-CNAM have jointly built a facility dedicated to the measurement of the saturation vapor pressure and temperature of pure water. The principle is based on a static measurement of the pressure and the temperature of pure water in a closed, temperature-controlled thermostat, conceived like a quasi-adiabatic calorimeter. A copper cell containing pure water is placed inside a temperature-controlled copper shield, which is mounted in a vacuum-tight stainless steel vessel immersed in a thermostated bath. The temperature of the cell is measured with capsule-type standard platinum resistance thermometers, calibrated with uncertainties below the millikelvin. The vapor pressure is measured by calibrated pressure sensors connected to the cell through a pressure tube whose temperature is monitored at several points. The pressure gauges are installed in a thermostatic apparatus ensuring high stability of the pressure measurement and avoiding any condensation in the tubes. Thanks to the employment of several technical solutions, the thermal contribution to the overall uncertainty budget is reduced, and the remaining major part is mainly due to pressure measurements. This paper presents a full description of this facility and the preliminary results obtained for its characterization.

  1. Effects of altitude on transpiration, leaf vapor pressure deficit and leaf water potential in oriental beech

    Directory of Open Access Journals (Sweden)

    Fatih Bayraktar

    2015-04-01

    Full Text Available This study was designed to determine the effect of altitude on transpiration, leaf vapor pressure deficit and leaf water potential in oriental beech (Fagus orientalis Lipsky. The study area was located in Ortaköy, Artvin, and the experimental area had the same soil structure and aspect. The study showed that transpiration and leaf vapor pressure deficit increased but leaf water potential decreased by altitudinal gradient

  2. Liquid sinusoidal pressure measurement by laser interferometry based on the refractive index of water.

    Science.gov (United States)

    Yang, Jun; Fan, Shangchun; Li, Cheng; Guo, Zhanshe; Li, Bo; Shi, Bo

    2016-12-01

    A new method with laser interferometry is used to enhance the traceability for sinusoidal pressure calibration in water. The laser vibrometer measures the dynamic pressure based on the acousto-optic effect. The relation of the refractive index of water and the optical path length with the pressure's change is built based on the Lorentz-Lorenz equation, and the conversion coefficients are tested by static calibration in situ. A device with a piezoelectric transducer and resonant pressure pipe with water is set up to generate sinusoidal pressure up to 20 kHz. With the conversion coefficients, the reference sinusoidal pressure is measured by the laser interferometer for pressure sensors' dynamic calibration. The experiment results show that under 10 kHz, the measurement results between the laser vibrometer and a piezoelectric sensor are in basic agreement and indicate that this new method and its measurement system are feasible in sinusoidal pressure calibration. Some disturbing components including small amplitude, temperature change, pressure maldistribution, and glass windows' vibration are also analyzed, especially for the dynamic calibrations above 10 kHz.

  3. EFFECTS OF PRESSURE AND TEMPERATURE ON ULTRAFILTRATION HOLLOW FIBER MEMBRANE IN MOBILE WATER TREATMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    ROSDIANAH RAMLI

    2016-07-01

    Full Text Available In Sabah, Malaysia, there are still high probability of limited clean water access in rural area and disaster site. Few villages had been affected in Pitas due to improper road access, thus building a water treatment plant there might not be feasible. Recently, Kundasang area had been affected by earthquake that caused water disruption to its people due to the damage in the underground pipes and water tanks. It has been known that membrane technology brought ease in making mobile water treatment system that can be transported to rural or disaster area. In this study, hollow fiber membrane used in a mobile water treatment system due to compact and ease setup. Hollow fiber membrane was fabricated into small module at 15 and 30 fibers to suit the mobile water treatment system for potable water production of at least 80 L/day per operation. The effects of transmembrane pressure (TMP and feed water temperature were investigated. It was found that permeate flux increases by more than 96% for both 15 and 30 fiber bundles with increasing pressure in the range of 0.25 to 3.0 bar but dropped when the pressure reached maximum. Lower temperature of 17 to 18˚C increase the water viscosity by 15% from normal temperature of water at 24˚C, making the permeate flux decreases. The fabricated modules effectively removed 96% turbidity of the surface water sample tested.

  4. Water pressure and ground vibrations induced by water guns at a backwater pond on the Illinois River near Morris, Illinois

    Science.gov (United States)

    Koebel, Carolyn M.; Egly, Rachel M.

    2016-09-27

    Three different geophysical sensor types were used to characterize the underwater pressure waves and ground velocities generated by the underwater firing of seismic water guns. These studies evaluated the use of water guns as a tool to alter the movement of Asian carp. Asian carp are aquatic invasive species that threaten to move into the Great Lakes Basin from the Mississippi River Basin. Previous studies have identified a threshold of approximately 5 pounds per square inch (lb/in2) for behavioral modification and for structural limitation of a water gun barrier.Two studies were completed during August 2014 and May 2015 in a backwater pond connected to the Illinois River at a sand and gravel quarry near Morris, Illinois. The August 2014 study evaluated the performance of two 80-cubic-inch (in3) water guns. Data from the 80-in3 water guns showed that the pressure field had the highest pressures and greatest extent of the 5-lb/in2 target value at a depth of 5 feet (ft). The maximum recorded pressure was 13.7 lb/in2, approximately 25 ft from the guns. The produced pressure field took the shape of a north-south-oriented elongated sphere with the 5-lb/in2 target value extending across the entire study area at a depth of 5 ft. Ground velocities were consistent over time, at 0.0067 inches per second (in/s) in the transverse direction, 0.031 in/s in the longitudinal direction, and 0.013 in/s in the vertical direction.The May 2015 study evaluated the performance of one and two 100-in3 water guns. Data from the 100-in3 water guns, fired both individually and simultaneously, showed that the pressure field had the highest pressures and greatest extent of the 5-lb/in2 target value at a depth of 5 ft. The maximum pressure was 57.4 lb/in2, recorded at the underwater blast sensor closest to the water guns (at a horizontal distance of approximately 3 ft), as two guns fired simultaneously. Pressures and extent of the 5-lb/in2 target value decrease above and below this 5-ft depth

  5. High pressure water electrolysis for space station EMU recharge

    Science.gov (United States)

    Lance, Nick; Puskar, Michael; Moulthrop, Lawrence; Zagaja, John

    1988-01-01

    A high pressure oxygen recharge system (HPORS), is being developed for application on board the Space Station. This electrolytic system can provide oxygen at up to 6000 psia without a mechanical compressor. The Hamilton standard HPORS based on a solid polymer electrolyte system is an extension of the much larger and succesful 3000 psia system of the U.S. Navy. Cell modules have been successfully tested under conditions beyond which spacecraft may encounter during launch. The control system with double redundancy and mechanical backups for all electronically controlled components is designed to ensure a safe shutdown.

  6. Water vaporization promotes coseismic fluid pressurization and buffers temperature rise

    NARCIS (Netherlands)

    Chen, Jianye|info:eu-repo/dai/nl/370819071; Niemeijer, André|info:eu-repo/dai/nl/370832132; Yao, Lu; Ma, Shengli

    2017-01-01

    We investigated the frictional properties of carbonate-rich gouge layers at a slip rate of 1.3 m/s, under dry and water-saturated conditions, while monitoring temperature at different locations on one of the gouge-host rock interfaces. All experiments showed a peak frictional strength of 0.4–0.7,

  7. Failure Mode of the Water-filled Fractures under Hydraulic Pressure in Karst Tunnels

    Directory of Open Access Journals (Sweden)

    Dong Xin

    2017-06-01

    Full Text Available Water-filled fractures continue to grow after the excavation of karst tunnels, and the hydraulic pressure in these fractures changes along with such growth. This paper simplifies the fractures in the surrounding rock as flat ellipses and then identifies the critical hydraulic pressure values required for the occurrence of tensile-shear and compression-shear failures in water-filled fractures in the case of plane stress. The occurrence of tensile-shear fracture requires a larger critical hydraulic pressure than compression-shear failure in the same fracture. This paper examines the effects of fracture strike and lateral pressure coefficient on critical hydraulic pressure, and identifies compression-shear failure as the main failure mode of water-filled fractures. This paper also analyses the hydraulic pressure distribution in fractures with different extensions, and reveals that hydraulic pressure decreases along with the continuous growth of fractures and cannot completely fill a newly formed fracture with water. Fracture growth may be interrupted under the effect of hydraulic tensile shear.

  8. Two innovative pore pressure calculation methods for shallow deep-water formations

    Science.gov (United States)

    Deng, Song; Fan, Honghai; Liu, Yuhan; He, Yanfeng; Zhang, Shifeng; Yang, Jing; Fu, Lipei

    2017-11-01

    There are many geological hazards in shallow formations associated with oil and gas exploration and development in deep-water settings. Abnormal pore pressure can lead to water flow and gas and gas hydrate accumulations, which may affect drilling safety. Therefore, it is of great importance to accurately predict pore pressure in shallow deep-water formations. Experience over previous decades has shown, however, that there are not appropriate pressure calculation methods for these shallow formations. Pore pressure change is reflected closely in log data, particularly for mudstone formations. In this paper, pore pressure calculations for shallow formations are highlighted, and two concrete methods using log data are presented. The first method is modified from an E. Philips test in which a linear-exponential overburden pressure model is used. The second method is a new pore pressure method based on P-wave velocity that accounts for the effect of shallow gas and shallow water flow. Afterwards, the two methods are validated using case studies from two wells in the Yingqiong basin. Calculated results are compared with those obtained by the Eaton method, which demonstrates that the multi-regression method is more suitable for quick prediction of geological hazards in shallow layers.

  9. Pressurized hydrogenotrophic denitrification reactor for small water systems.

    Science.gov (United States)

    Epsztein, Razi; Beliavski, Michael; Tarre, Sheldon; Green, Michal

    2017-03-15

    The implementation of hydrogenotrophic denitrification is limited due to safety concerns, poor H2 utilization and low solubility of H2 gas with the resulting low transfer rate. The current paper presents the main research work conducted on a pressurized hydrogenotrophic reactor for denitrification that was recently developed. The reactor is based on a new concept suggesting that a gas-liquid equilibrium is achieved in the closed headspace of denitrifying reactor, further produced N2 gas is carried out by the effluent and gas purging is not required. The feasibility of the proposed reactor was shown for two effluent concentrations of 10 and 1 mg NO3--N/L. Hydrogen gas utilization efficiencies of 92.8% and 96.9% were measured for the two effluent concentrations, respectively. Reactor modeling predicted high denitrification rates above 4 g NO3--N/(Lreactor·d) at reasonable operational conditions. Hydrogen utilization efficiency was improved up to almost 100% by combining the pressurized reactor with a following open-to-atmosphere polishing unit. Also, the potential of the reactor to remove ClO4- was shown. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Pressure-induced volume phase transition of polyacrylamide gels in acetone-water mixtures

    Science.gov (United States)

    Kato, Eiji

    2000-07-01

    Equilibrium swelling curves of ionized polyacrylamide gels immersed in acetone-water mixtures were measured as a function of pressure up to pressures of 300 MPa. The gels, which shrank at atmospheric pressure, underwent an abrupt volume change (pressure-induced volume phase transition) from a shrunken state to a swollen state at the transition pressure. The transition pressure increased with an increase of acetone concentration. The pressure-induced volume phase transition can be interpreted by taking account of the free-energy change ΔVṡP between swollen (hydrated) and shrunken (dehydrated) states. The ΔV represents the difference between the molar volume of water structured around hydrophilic groups of polyacrylamide chains and that of free water in the bulk mixtures. The estimated value of ΔV is -3.3 mL/mol, which qualitatively agrees with that obtained from the experiments of denaturation of proteins. The pressure-induced volume phase transition is generally expected in many hydrogels.

  11. Optimization of pressure gauge locations for water distribution systems using entropy theory.

    Science.gov (United States)

    Yoo, Do Guen; Chang, Dong Eil; Jun, Hwandon; Kim, Joong Hoon

    2012-12-01

    It is essential to select the optimal pressure gauge location for effective management and maintenance of water distribution systems. This study proposes an objective and quantified standard for selecting the optimal pressure gauge location by defining the pressure change at other nodes as a result of demand change at a specific node using entropy theory. Two cases are considered in terms of demand change: that in which demand at all nodes shows peak load by using a peak factor and that comprising the demand change of the normal distribution whose average is the base demand. The actual pressure change pattern is determined by using the emitter function of EPANET to reflect the pressure that changes practically at each node. The optimal pressure gauge location is determined by prioritizing the node that processes the largest amount of information it gives to (giving entropy) and receives from (receiving entropy) the whole system according to the entropy standard. The suggested model is applied to one virtual and one real pipe network, and the optimal pressure gauge location combination is calculated by implementing the sensitivity analysis based on the study results. These analysis results support the following two conclusions. Firstly, the installation priority of the pressure gauge in water distribution networks can be determined with a more objective standard through the entropy theory. Secondly, the model can be used as an efficient decision-making guide for gauge installation in water distribution systems.

  12. The determination of ecological quality in shallow lakes - a tested system (EcoFrame) for implementation of the European Water Framework Directive

    NARCIS (Netherlands)

    Moss, B.; Stephen, D.; Alvarez, C.; Becares, E.; Bunt, van de W.; Collings, S.E.; Donk, van E.; Eyto, de E.; Feldmann, T.; Fernandez-Alaez, C.; Fernandez-Alaez, M.; Franken, R.J.M.; Carcia-Criado, F.; Gross, E.M.; Gyllstrom, M.; Hansson, L.; Irvine, K.; Jarvalt, A.; Jenssen, J.P.; Jeppesen, E.; Kairesalo, T.; Kornijow, R.; Krause, T.; Kunnap, H.; Laas, A.; Lill, E.; Lorens, B.; Luup, H.; Miracle, M.; Noges, P.; Noges, T.; Nykannen, M.; Ott, I.; Peczula, W.; Peeters, E.T.H.M.; Phillips, G.; Romo, S.; Russell, V.; Salujoe, J.; Scheffer, M.; Siewertsen, K.; Smal, H.; Tesch, C.; Timm, H.; Tuvikene, L.; Tonno, I.; Virro, T.; Vicente, E.; Wilson, D.

    2003-01-01

    1. The European Water Framework Directive requires the determination of ecological status in European fresh and saline waters. This is to be through the establishment of a typology of surface water bodies, the determination of reference (high status) conditions in each element (ecotype) of the

  13. Revisiting the Integrated Pressurized Thermal Shock Studies of an Aging Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryson, J.W.; Dickson, T.L.; Malik, S.N.M.; Simonen, F.A.

    1999-08-01

    The Integrated Pressurized Thermal Shock (IPTS) studies were a series of studies performed in the early-mid 1980s as part of an NRC-organized comprehensive research project to confirm the technical bases for the pressurized thermal shock (PTS) rule, and to aid in the development of guidance for licensee plant-specific analyses. The research project consisted of PTS pilot analyses for three PWRs: Oconee Unit 1, designed by Babcock and Wilcox; Calvert Cliffs Unit 1, designed by Combustion Engineering; and H.B. Robinson Unit 2, designed by Westinghouse. The primary objectives of the IPTS studies were (1) to provide for each of the three plants an estimate of the probability of a crack propagating through the wall of a reactor pressure vessel (RPV) due to PTS; (2) to determine the dominant overcooling sequences, plant features, and operator actions and the uncertainty in the plant risk due to PTS; and (3) to evaluate the effectiveness of potential corrective actions. The NRC is currently evaluating the possibility of revising current PTS regulatory guidance. Technical bases must be developed to support any revisions. In the years since the results of IPTS studies were published, the fracture mechanics model, the embrittlement database, embrittlement correlation, inputs for flaw distributions, and the probabilistic fracture mechanics (PFM) computer code have been refined. An ongoing effort is underway to determine the impact of these fracture-technology refinements on the conditional probabilities of vessel failure calculated in the IPTS Studies. This paper discusses the results of these analyses performed for one of these plants.

  14. Capillary pressure as a unique function of electric permittivity and water saturation

    NARCIS (Netherlands)

    Plug, W.J.; Slob, E.; Van Turnhout, J.; Bruining, J.

    2007-01-01

    The relation between capillary pressure (Pc) and interfacial area has been investigated by measuring Pc and the electric permittivity at 100 kHz simultaneously as function of the water saturation, (Sw). Drainage and imbibition experiments have been conducted for sand-distilled water-gas (CO2/N2)

  15. Comparison of Water Flows in Four European Lagoon Catchments under a Set of Future Climate Scenarios

    Directory of Open Access Journals (Sweden)

    Cornelia Hesse

    2015-02-01

    Full Text Available Climate change is supposed to remarkably affect the water resources of coastal lagoons as they are highly vulnerable to changes occurring at their catchment and/or ocean or sea boundaries. Probable impacts of projected climate changes on catchment hydrology and freshwater input were assessed using the eco-hydrological model SWIM (Soil and Water Integrated Model for the drainage areas of four European lagoons: Ria de Aveiro (Portugal, Mar Menor (Spain, Tyligulskyi Liman (Ukraine and Vistula Lagoon (Poland/Russia under a set of 15 climate scenarios covering the time period until the year 2100. Climate change signals for all regions show continuously increasing trends in temperature, but various trends in precipitation. Precipitation is projected to decrease in two catchments on the Iberian Peninsula and increase in the Baltic region catchment, and does not show a clear trend in the catchment located near the Black Sea. The average projected changes in freshwater inputs reflect these changes in climate conditions, but often show variability between the scenarios, in future periods, and within the catchments. According to the individual degrees of water management influences in the four drainage basins, the climate sensitivity of river inflows is differently pronounced in each.

  16. Undermoderated spectrum MOX core study. Pressurized water-type breeder

    Energy Technology Data Exchange (ETDEWEB)

    Tochihara, Hiroshi; Komano, Yasuo [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    1998-09-01

    The purpose of this development is the advance of the PWR core. The conversion ratio (the breeding ratio) are examined. In the case of heavy water as the coolant, the breeding ratio can be achieved about 1.1 with using a hexagonal lattice and space about 1 mm assembly fuel. In the case of light water coolant, the breeding ratio becomes about 1.0, using a hexagonal lattice and fuel space about 0.5 mm fuel assembly. Here, it reports on the situation of the examination such as the nucleus design of core, the design of fuel assembly, the heat hydraulics design of the core, the structure design and so on. (author)

  17. Integrating the implementation of the European Union Water Framework Directive and Floods Directive in Ireland.

    Science.gov (United States)

    Earle, J R; Blacklocke, S; Bruen, M; Almeida, G; Keating, D

    2011-01-01

    Water Framework Directive (WFD) statutory authorities and stakeholders in Ireland are now challenged with the issue of how the proposed programmes of measures in the newly required River Basin Management Plans - designed to protect and restore good ecology by reverting as closely as possible back to natural conditions - are to be implemented in a way that concurrently complies with other existing and emerging intersecting European Union legislation, such as the Floods Directive (FD). The WFD is driven largely by ecological considerations, whereas the FD and other legislation are more geared towards protecting physical property and mitigating public safety risks. Thus many of the same waterbodies, especially heavily modified waterbodies, arguably have somewhat competing policy objectives put upon them. This paper explores the means by which Ireland might best achieve the highest degrees of cost effectiveness, economic efficiency and institutional durability in pursuing the common and overarching objective of the WFD and FD - to ensure Irish waterways are put to their highest valued uses.

  18. The invasive ctenophore Mnemiopsis leidyi in northern European waters and its potential impact on fisheries

    DEFF Research Database (Denmark)

    Jaspers, Cornelia

    The recent invasion by Mnemiopsis in northern European waters has lead to concerns for fishery interests especially in the central Baltic Sea, where it overlaps with commercially important cod recruits on their spawning grounds. We present laboratory feeding rate experiments along with video...... selected against cod eggs. Application of our clearance rates to in situ abundances confirmed that Mnemiopsis has a negligible direct predation impact on cod offspring. Further, due to drastically reduced reproduction rates at low salinities, occurrence of Mnemiopsis in the central Baltic appears...... to be dependent on advection, and is unlikely to reach large population sizes. Hence, Mnemiopsis constitutes neither a direct nor a potential indirect threat to the cod population in the central Baltic. However, its large reproduction potential in high saline areas with 11,500 eggs ind-1 d-1 and observed high...

  19. Characterization of condensed tannins and carbohydrates in hot water bark extracts of European softwood species.

    Science.gov (United States)

    Bianchi, Sauro; Kroslakova, Ivana; Janzon, Ron; Mayer, Ingo; Saake, Bodo; Pichelin, Frédéric

    2015-12-01

    Condensed tannins extracted from European softwood bark are recognized as alternatives to synthetic phenolics. The extraction is generally performed in hot water, leading to simultaneous extraction of other bark constituents such as carbohydrates, phenolic monomers and salts. Characterization of the extract's composition and identification of the extracted tannins' molecular structure are needed to better identify potential applications. Bark from Silver fir (Abies alba [Mill.]), European larch (Larix decidua [Mill.]), Norway spruce (Picea abies [Karst.]), Douglas fir (Pseudotsuga menziesii [Mirb.]) and Scots pine (Pinus sylvestris [L.]) were extracted in water at 60°C. The amounts of phenolic monomers, condensed tannins, carbohydrates, and inorganic compounds in the extract were determined. The molecular structures of condensed tannins and carbohydrates were also investigated (HPLC-UV combined with thiolysis, MALDI-TOF mass spectrometry, anion exchange chromatography). Distinct extract compositions and tannin structures were found in each of the analysed species. Procyanidins were the most ubiquitous tannins. The presence of phenolic glucosides in the tannin oligomers was suggested. Polysaccharides such as arabinans, arabinogalactans and glucans represented an important fraction of all extracts. Compared to traditionally used species (Mimosa and Quebracho) higher viscosities as well as faster chemical reactivities are expected in the analysed species. The most promising species for a bark tannin extraction was found to be larch, while the least encouraging results were detected in pine. A better knowledge of the interaction between the various extracted compounds is deemed an important matter for investigation in the context of industrial applications of such extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Water pressure and ground vibrations induced by water guns near Bandon Road Lock and Dam and Lemont, Illinois

    Science.gov (United States)

    Adams, Ryan F.; Koebel, Carolyn M.; Morrow, William S.

    2018-02-13

    Multiple geophysical sensors were used to characterize the underwater pressure field and ground vibrations of a seismic water gun and its suitability to deter the movement of Asian carps (particularly the silver [Hypophthalmichthys molitrix] and bighead [Hypophthalmichthys nobilis] carps) while ensuring the integrity of surrounding structures. The sensors used to collect this information were blast-rated hydrophones, surface- and borehole-mounted geophones, and fixed accelerometers.Results from two separate studies are discussed in this report. The Brandon Road study took place in May 2014, in the Des Plaines River, in a concrete-walled channel downstream of the Brandon Road Lock and Dam near Joliet, Illinois. The Lemont study took place in June 2014, in a segment of the dolomite setblock-lined Chicago Sanitary and Ship Canal near Lemont, Illinois.Two criteria were evaluated to assess the potential deterrence to carp migration, and to minimize the expected effect on nearby structures from discharge of the seismic water gun. The first criterion was a 5-pound-per-square-inch (lb/in2) limit for dynamic underwater pressure variations. The second criterion was a maximum velocity and acceleration disturbance of 0.75 inch per second (in/s) for sensitive machinery (such as the lock gates and pumps) and 2.0 in/s adjacent to canal walls, respectively. The criteria were based on previous studies of fish responses to dynamic pressure variations, and effects of vibrations on the structural integrity of concrete walls.The Brandon Road study evaluated the magnitude and extent of the pressure field created by two water gun configurations in the concrete-walled channel downstream of the lock where channel depths ranged from 11 to 14 feet (ft). Data from a single 80-cubic-inch (in³) water gun set at 6 ft below water surface (bws) produced a roughly cylindrical 5-lb/in2 pressure field 20 ft in radius, oriented vertically, with the radius decreasing to less than 15 ft at the water

  1. Molecular Dynamics Simulation of Water Nanodroplets on Silica Surfaces at High Air Pressures

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Jaffe, Richard Lawrence; Walther, Jens Honore

    2010-01-01

    Silicon dioxides-water systems are abundant in nature and play fundamental roles in a diversity of novel science and engineering applications. Although extensive research has been devoted to study the nature of the interaction between silica and water a complete understanding of the system has...... e.g., nanobubbles. In the present work we study the role of air on the wetting of hydrophilic systems. We conduct molecular dynamics simulations of a water nanodroplet on an amorphous silica surface at different air pressures. The interaction potentials describing the silica, water, and air...... are obtained from the literature. The silica surface is modeled by a large 32 ⨯ 32 ⨯ 2 nm amorphous SiO2 structure consisting of 180000 atoms. The water consists of 18000 water molecules surrounded by N2 and O2 air molecules corresponding to air pressures of 0 bar (vacuum), 50 bar, 100 bar and 200 bar. We...

  2. Experimental apparatus for measurement of density of supercooled water at high pressure

    Directory of Open Access Journals (Sweden)

    Peukert Pavel

    2012-04-01

    Full Text Available Thermodynamic behavior of supercooled water (metastable fluid water existing transiently below the equilibrium freezing point at high pressures was subject to many recent theoretical studies. Some of them assume that a second critical point of water exists, related to two liquid phases of supercooled water: the low-density liquid and the high-density liquid. To test these theories, an original experimental cryogenic apparatus is being developed. The volume changes are measured optically in custom-treated fused-silica capillary tubes. The capillaries are placed in a metal vessel designed for pressures up to 200 MPa. The vessel is connected to a circulation thermostat enabling a rapid change of temperature to prevent freezing. A new high-vacuum device was developed for degassing of the ultrapure water sample and filling it into the measuring capillaries. The experiments will contribute to fundamental understanding of the anomalous behavior of water and to applications in meteorology, aerospace engineering, cryobiology etc.

  3. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  4. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    Science.gov (United States)

    Liaw, P. K.; Logsdon, W. A.; Begley, J. A.

    1989-10-01

    The fatigue crack growth rate (FCGR) properties of SA508 C1 2a and SA533 Gr A C1 2 pressure vessel steels and the corresponding automatic submerged are weldments were developed in a high-temperature pressurized water (HPW) environment at 288 °C (550°F) and 7.2 MPa (1044 psi) at load ratios of 0.02 and 0.50. The HPW enviromment FCGR properties of these pressure vessel steels and submerged arc weldments were generally conservative, compared with the approrpriate American Society of Mechanical Engineers (ASME) Section XI water environmental reference curve. The growth rate of fatigue cracks in the base materials, however, was considerably faster in the HPW environment than in a corresponding 288°C (550°F) base line air environment. The growth rate of fatigue cracks in the two submerged are weldments was also accelerated in the HPW environment but to a significantly lesser degree than that demonstrated by the corresponding base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials, as compared with the weldments, was attributed to a different sulfide composition and morphology.

  5. The European Water Framework Directive: Challenges For A New Type of Social and Policy Analysis

    Science.gov (United States)

    Pahl-Wostl, C.

    Water resources managment is facing increasing uncertainties in all areas. Socio- economic boundary conditions change quickly and require more flexible management strategies. Climate change, for example results in an increase in uncertainties, in par- ticular extreme events. Given the fact that current management practices deal with extreme events by designing the technical systems to manage the most extreme of all cases (e.g. higher dams for the protection against extreme floods, larger water reser- voirs for droughts and to meet daily peak demand) a serious problem is posed for long-term planning and risk management. Engineering planning has perceived the hu- man dimension as exogenous boundary conditions. Legislation focused largely on the environmental and technological dimensions that set limits and prescribe new tech- nologies without taking the importance of institutional change into account. However, technology is only the "hardware" and it is becoming increasingly obvious that the "software", the social dimension, has to become part of planning and management processes. Hence, the inclusion of the human dimension into integrated models and processes will be valuable in supporting the introduction of new elements into plan- ning processes in water resources management. With the European Water Framework Directive environmental policy enters a new era. The traditional approach to solving isolated environmental problems with technological fixes and end-of-pipe solutions has started to shift towards a more thoughtful attitude which involves the development of integrated approaches to problem solving. The WFD introduces the river basin as the management unit, thus following the experience of some European countries (e.g. France) and the example of the management of some international rivers (e.g. the Rhine). Overall the WFD represents a general shift towards a polycentric understand- ing of policy making that requires the involvement of stakeholders as active

  6. Tensile Strength of Water Exposed to Pressure Pulses

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Mørch, Knud Aage

    2012-01-01

    at an extended water-solid interface by imposing a tensile stress pulse which easily causes cavitation. Next, a compressive pulse of duration ~1 ms and a peak intensity of a few bar is imposed prior to the tensile stress pulse. A dramatic increase of the tensile strength is observed immediately after...... the compressive pulse, but the effect is shortlived. We presume that diffusion of non-condensable gas from the cavitation nuclei into the liquid at compression, and back again later, is responsible for the changes of tensile strength....

  7. Development of a pressurized bipolar alkaline water electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Neves Junior, Newton Pimenta; Pinto, Edgar A. de Godoi Rodrigues; Silva, Ennio Peres da; Rapelli, Rubia; Pinto, Cristiano da Silva [Universidade Estadual de Campinas (DFA/ IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada], Email: nevesjr@unicamp.br; Marin Neto, Antonio Jose; Lopes, Daniel Gabriel; Camargo, Joao Carlos; Ferreira, Paulo F.P. [Hydrogen Technology (HyTron), Campinas, SP (Brazil); Furlan, Andre Luis [Universidade Estadual de Campinas (DE/FEC/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    This paper reports the actual development status of a bipolar alkaline water electrolyzer with maximum production capacity of 1 m3/h of hydrogen and controlled by a PLC (Programmable Logic Controller), which also interfaces the electrolytic system with operators and other equipment, such as gas storage tanks, fuel cells and photovoltaic panels. The project also includes the construction of an electrolysis test bench to record electrical parameters (cathode, anode, separator and electrolyte potentials), the amount of produced gases and gas quality determined by gas chromatography. (author)

  8. Capillary pressure-saturation relationships for diluted bitumen and water in gravel

    Science.gov (United States)

    Hossain, S. Zubair; Mumford, Kevin G.

    2017-08-01

    Spills of diluted bitumen (dilbit) to rivers by rail or pipeline accidents can have serious long-term impacts on environment and ecology due to the submergence and trapping of oil within the river bed sediment. The extent of this problem is dictated by the amount of immobile oil available for mass transfer into the water flowing through the sediment pores. An understanding of multiphase (oil and water) flow in the sediment, including oil trapping by hysteretic drainage and imbibition, is important for the development of spill response and risk assessment strategies. Therefore, the objective of this study was to measure capillary pressure-saturation (Pc-Sw) relationships for dilbit and water, and air and water in gravel using a custom-made pressure cell. The Pc-Sw relationships obtained using standard procedures in coarse porous media are height-averaged and often require correction. By developing and comparing air-water and dilbit-water Pc-Sw curves, it was found that correction was less important in dilbit-water systems due to the smaller difference in density between the fluids. In both systems, small displacement pressures were needed for the entry of non-wetting fluid in gravel. Approximately 14% of the pore space was occupied by trapped dilbit after imbibition, which can serve as a source of long-term contamination. While air-water data can be scaled to reasonably predict dilbit-water behaviour, it cannot be used to determine the trapped amount.

  9. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2011-10-01

    The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~1.5 kWh/m3) of the energy used for high pressure seawater RO (SWRO) desalination (2.5-4 kWh/m3), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14 days. After 10 days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5 L/m2-h is needed to compete with water reuse using UF-LPRO, and 5.5 L/m2-h is needed to recover and desalinate water at less cost than SWRO. © 2011 Elsevier B.V.

  10. Experimental Study on Peak Pressure of Shock Waves in Quasi-Shallow Water

    Directory of Open Access Journals (Sweden)

    Zhenxiong Wang

    2015-01-01

    Full Text Available Based on the similarity laws of the explosion, this research develops similarity requirements of the small-scale experiments of underwater explosions and establishes a regression model for peak pressure of underwater shock waves under experimental condition. Small-scale experiments are carried out with two types of media at the bottom of the water and for different water depths. The peak pressure of underwater shock waves at different measuring points is acquired. A formula consistent with the similarity law of explosions is obtained and an analysis of the regression precision of the formula confirms its accuracy. Significance experiment indicates that the influence of distance between measuring points and charge on peak pressure of underwater shock wave is the greatest and that of water depth is the least within the range of geometric parameters. An analysis of data from experiments with different media at the bottom of the water reveals an influence on the peak pressure, as the peak pressure of a shock wave in a body of water with a bottom soft mud and rocks is about 1.33 times that of the case where the bottom material is only soft mud.

  11. Development of Extended Period Pressure-Dependent Demand Water Distribution Models

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mcpherson, Timothy N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-20

    Los Alamos National Laboratory (LANL) has used modeling and simulation of water distribution systems for N-1 contingency analyses to assess criticality of water system assets. Critical components considered in these analyses include pumps, tanks, and supply sources, in addition to critical pipes or aqueducts. A contingency represents the complete removal of the asset from system operation. For each contingency, an extended period simulation (EPS) is run using EPANET. An EPS simulates water system behavior over a time period, typically at least 24 hours. It assesses the ability of a system to respond and recover from asset disruption through distributed storage in tanks throughout the system. Contingencies of concern are identified as those in which some portion of the water system has unmet delivery requirements. A delivery requirement is defined as an aggregation of water demands within a service area, similar to an electric power demand. The metric used to identify areas of unmet delivery requirement in these studies is a pressure threshold of 15 pounds per square inch (psi). This pressure threshold is used because it is below the required pressure for fire protection. Any location in the model with pressure that drops below this threshold at any time during an EPS is considered to have unmet service requirements and is used to determine cascading consequences. The outage area for a contingency is the aggregation of all service areas with a pressure below the threshold at any time during the EPS.

  12. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa.

    Science.gov (United States)

    Borysow, Jacek; del Rosso, Leonardo; Celli, Milva; Moraldi, Massimo; Ulivi, Lorenzo

    2014-04-28

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  13. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Borysow, Jacek, E-mail: jborysow@mtu.edu; Rosso, Leonardo del; Celli, Milva; Ulivi, Lorenzo, E-mail: lorenzo.ulivi@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy); Moraldi, Massimo [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (Italy)

    2014-04-28

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  14. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters

    Directory of Open Access Journals (Sweden)

    Jürg Oliver Straub

    2013-03-01

    Full Text Available An environmental risk assessment (ERA for the aquatic compartment in Europe from human use was developed for the old antibiotic Trimethoprim (TMP, comparing exposure and effects. The exposure assessment is based on European risk assessment default values on one hand and is refined with documented human use figures in Western Europe from IMS Health and measured removal in wastewater treatment on the other. The resulting predicted environmental concentrations (PECs are compared with measured environmental concentrations (MECs from Europe, based on a large dataset incorporating more than 1800 single MECs. On the effects side, available chronic ecotoxicity data from the literature were complemented by additional, new chronic results for fish and other organisms. Based on these data, chronic-based deterministic predicted no effect concentrations (PNECs were derived as well as two different probabilistic PNEC ranges. The ERA compares surface water PECs and MECs with aquatic PNECs for TMP. Based on all the risk characterization ratios (PEC÷PNEC as well as MEC÷PNEC and risk graphs, there is no significant risk to surface waters.

  15. The European Water Framework Directive: How Ecological Assumptions Frame Technical and Social Change

    Directory of Open Access Journals (Sweden)

    Patrick Steyaert

    2007-06-01

    Full Text Available The European Water Framework Directive (WFD is built upon significant cognitive developments in the field of ecological science but also encourages active involvement of all interested parties in its implementation. The coexistence in the same policy text of both substantive and procedural approaches to policy development stimulated this research as did our concerns about the implications of substantive ecological visions within the WFD policy for promoting, or not, social learning processes through participatory designs. We have used a qualitative analysis of the WFD text which shows the ecological dimension of the WFD dedicates its quasi-exclusive attention to a particular current of thought in ecosystems science focusing on ecosystems status and stability and considering human activities as disturbance factors. This particular worldview is juxtaposed within the WFD with a more utilitarian one that gives rise to many policy exemptions without changing the general underlying ecological model. We discuss these policy statements in the light of the tension between substantive and procedural policy developments. We argue that the dominant substantive approach of the WFD, comprising particular ecological assumptions built upon "compositionalism," seems to be contradictory with its espoused intention of involving the public. We discuss that current of thought in regard to more functionalist thinking and adaptive management, which offers greater opportunities for social learning, i.e., place a set of interdependent stakeholders in an intersubjective position in which they operate a "social construction" of water problems through the co-production of knowledge.

  16. Parasites as biological tags in marine fisheries research: European Atlantic waters.

    Science.gov (United States)

    Mackenzie, K; Hemmingsen, W

    2015-01-01

    Studies of the use of parasites as biological tags for stock identification and to follow migrations of marine fish, mammals and invertebrates in European Atlantic waters are critically reviewed and evaluated. The region covered includes the North, Baltic, Barents and White Seas plus Icelandic waters, but excludes the Mediterranean and Black Seas. Each fish species or ecological group of species is treated separately. More parasite tag studies have been carried out on Atlantic herring Clupea harengus than on any other species, while cod Gadus morhua have also been the subject of many studies. Other species that have been the subjects of more than one study are: blue whiting Micromesistius poutassou, whiting Merlangius merlangus, haddock Melanogrammus aeglefinus, Norway pout Trisopterus esmarkii, horse mackerel Trachurus trachurus and mackerel Scomber scombrus. Other species are dealt with under the general headings redfishes, flatfish, tunas, anadromous fish, elasmobranchs, marine mammals and invertebrates. A final section highlights how parasites can be, and have been, misused as biological tags, and how this can be avoided. It also reviews recent developments in methodology and parasite genetics, considers the potential effects of climate change on the distributions of both hosts and parasites, and suggests host-parasite systems that should reward further research.

  17. Fasting serum insulin in relation to fat distribution, serum lipid profile, and blood pressure in European women : the European Fat Distribution Study

    NARCIS (Netherlands)

    Cigolini, M; Seidell, J C; Charzewska, J; Ellsinger, B M; Dibiase, G; Björntorp, P; Hautvast, J.G.A.J.; Contaldo, F; Szostak, V; Scuro, L A

    Samples of 38-year-old women were randomly selected from five European centers: Ede (The Netherlands), Warsaw (Poland), Gothenburg (Sweden), Verona (northern Italy), and Afragola (Naples-southern Italy). In total, 452 healthy women were studied. Anthropometric measurements were taken by one operator

  18. The initiation of boiling during pressure transients. [water boiling on metal surfaces

    Science.gov (United States)

    Weisman, J.; Bussell, G.; Jashnani, I. L.; Hsieh, T.

    1973-01-01

    The initiation of boiling of water on metal surfaces during pressure transients has been investigated. The data were obtained by a new technique in which light beam fluctuations and a pressure signal were simultaneously recorded on a dual beam oscilloscope. The results obtained agreed with those obtained using high speed photography. It was found that, for water temperatures between 90-150 C, the wall superheat required to initiate boiling during a rapid pressure transient was significantly higher than required when the pressure was slowly reduced. This result is explained by assuming that a finite time is necessary for vapor to fill the cavity at which the bubble originates. Experimental measurements of this time are in reasonably good agreement with calculations based on the proposed theory. The theory includes a new procedure for estimating the coefficient of vaporization.

  19. Experimental study of the ecological impact of hot water/high pressure cleaning on rocky shores

    Energy Technology Data Exchange (ETDEWEB)

    Menot, L.; Chasse, C.; Kerambrun, L. [CEDRE, Plouzane (France)

    1998-09-01

    The efficiency of high pressure/hot water washing for cleaning oiled rocky shores was determined. The study also highlighted the level of tolerance towards high pressure/hot water of different intertidal biota and proposed some operational recommendations for using this technique in regards with the biota sensitivity range. The study showed that pressure, higher than 170 g/m{sup 2} on the substratum, had the most detrimental effects on intertidal biota. Temperatures between 25 and 53 degrees C had only minor effects. The most sensitive taxa were the foliaceous lichens and the barnacles. Crustose lichens and algae were found to be tolerant to both pressure and temperature. Seaweeds protected the underneath epifauna. 12 refs., 1 tab., 4 figs.

  20. Probabilistic Structural Integrity Analysis of Boiling Water Reactor Pressure Vessel under Low Temperature Overpressure Event

    Directory of Open Access Journals (Sweden)

    Hsoung-Wei Chou

    2015-01-01

    Full Text Available The probabilistic structural integrity of a Taiwan domestic boiling water reactor pressure vessel has been evaluated by the probabilistic fracture mechanics analysis. First, the analysis model was built for the beltline region of the reactor pressure vessel considering the plant specific data. Meanwhile, the flaw models which comprehensively simulate all kinds of preexisting flaws along the vessel wall were employed here. The low temperature overpressure transient which has been concluded to be the severest accident for a boiling water reactor pressure vessel was considered as the loading condition. It is indicated that the fracture mostly happens near the fusion-line area of axial welds but with negligible failure risk. The calculated results indicate that the domestic reactor pressure vessel has sufficient structural integrity until doubling of the present end-of-license operation.

  1. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    Energy Technology Data Exchange (ETDEWEB)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common

  2. Improved prediction of vegetation composition in NW European softwater lakes by combining location, water and sediment chemistry

    DEFF Research Database (Denmark)

    Pulido Pérez, Cristina; Jensen, Kaj Sand; Lucassen, Esther C.H.E.T.

    2012-01-01

    with environmental variables for surface water, porewater and sediment significantly improved prediction of vegetation composition. Specifically, the combination of latitude, surface water alkalinity, porewater phosphate and redox potential offered the highest correlation (BIO ENV correlation 0.66) to vegetation......Isoetids, as indicators of near-pristine softwater lakes, have a high priority in national and international (European Water Directive Framework) assessments of ecological lake quality. Our main goal was to identify the most important environmental factors that influence the composition of plant...... communities and specifically determine the presence and abundance of the isoetid Lobelia dortmanna in NW European softwater lakes. Geographical position and composition of surface water, porewater, sediment and plant communities were examined in 39 lakes in four regions (The Netherlands, Denmark, West Norway...

  3. Crop yields response to water pressures in the Ebro basin in Spain: risk and water policy implications

    Directory of Open Access Journals (Sweden)

    S. Quiroga

    2011-02-01

    Full Text Available The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro river basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  4. Ultra-high pressure water jetting for coating removal and surface preparation

    Science.gov (United States)

    Johnson, Spencer T.

    1995-01-01

    This paper shall examine the basics of water technology with particular attention paid to systems currently in use and some select new applications. By providing an overview of commercially available water jet systems in the context of recent case histories, potential users may evaluate the process for future applications. With the on going introduction of regulations prohibiting the use of chemical paint strippers, manual scrapping and dry abrasive media blasting, the need for an environmentally compliant coating removal process has been mandated. Water jet cleaning has been a traditional part of many industrial processed for year, although it has only been in the last few years that reliable pumping equipment capable of ultra-high pressure operation have become available. With the advent of water jet pumping equipment capable of sustaining pressures in excess of 36,000 psi. there has been shift away from lower pressure, high water volume systems. One of the major factors in driving industry to seek higher pressures is the ability to offer higher productivity rates while lowering the quantity of water used and subsequently reprocessed. Among benefits of the trend toward higher pressure/lower volume systems is the corresponding reduction in water jet reaction forces making hand held water jetting practical and safe. Other unique applications made possible by these new generation pumping systems include the use of alternative fluids including liquid ammonia for specialized and hazardous material removal applications. A review of the equipment used and the required modifications will be presented along with the conclusions reached reached during this test program.

  5. Effects of organic management on water-extractable organic matter and C mineralization in European arable soils

    NARCIS (Netherlands)

    Marinari, S.; Liburdi, K.; Fliessbach, A.; Kalbitz, K.

    2010-01-01

    In this study we tested the hypothesis that water-extractable organic carbon (WEOC) content and its properties can be used to distinguish conventionally (CONV) from organically (ORG) managed arable soils as responsible for C mineralization. We sampled soils at three different European sites located

  6. Pressurized water extraction of isoflavones by experimental design from soybean flour and Soybean Protein Isolate.

    Science.gov (United States)

    Moras, Benjamin; Rey, Stéphane; Vilarem, Gérard; Pontalier, Pierre-Yves

    2017-01-01

    A Doehlert experimental design was conducted and surface response methodology was used to determine the effect of temperature, contact time and solid liquid ratio on isoflavone extraction from soybean flour or Soybean Protein Isolate in pressurized water system. The optimal conditions conducted gave an extraction yield of 85% from soybean flour. For Soybean Protein Isolate compared to soybean flour, the isoflavone extraction yield is 61%. This difference could be explained by higher aglycon content, while aglycon appears to be the least extracted isoflavone by pressurized water. The solid liquid ratio in the ASE cell was the overriding factor in obtaining high yields with both soybean products, while temperature has less influence. A high temperature causes conversion of the malonyls-glucosides and glucosides isoflavone derivatives into glucosides or aglycons forms. pressurized water extraction showed a high solubilization of protein material up to 95% of inserted Soybean Protein Isolate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effects of water availability and pest pressures on tea (Camellia sinensis) growth and functional quality.

    Science.gov (United States)

    Ahmed, Selena; Orians, Colin M; Griffin, Timothy S; Buckley, Sarabeth; Unachukwu, Uchenna; Stratton, Anne Elise; Stepp, John Richard; Robbat, Albert; Cash, Sean; Kennelly, Edward J

    2014-01-01

    Extreme shifts in water availability linked to global climate change are impacting crops worldwide. The present study examines the direct and interactive effects of water availability and pest pressures on tea (Camellia sinensis; Theaceae) growth and functional quality. Manipulative greenhouse experiments were used to measure the effects of variable water availability and pest pressures simulated by jasmonic acid (JA) on tea leaf growth and secondary metabolites that determine tea quality. Water treatments were simulated to replicate ideal tea growing conditions and extreme precipitation events in tropical southwestern China, a major centre of tea production. Results show that higher water availability and JA significantly increased the growth of new leaves while their interactive effect was not significant. The effect of water availability and JA on tea quality varied with individual secondary metabolites. Higher water availability significantly increased total methylxanthine concentrations of tea leaves but there was no significant effect of JA treatments or the interaction of water and JA. Water availability, JA treatments or their interactive effects had no effect on the concentrations of epigallocatechin 3-gallate. In contrast, increased water availability resulted in significantly lower concentrations of epicatechin 3-gallate but the effect of JA and the interactive effects of water and JA were not significant. Lastly, higher water availability resulted in significantly higher total phenolic concentrations but there was no significant impact of JA and their interaction. These findings point to the fascinating dynamics of climate change effects on tea plants with offsetting interactions between precipitation and pest pressures within agro-ecosystems, and the need for future climate studies to examine interactive biotic and abiotic effects.

  8. Total dissolved gas, barometric pressure, and water temperature data, lower Columbia River, Oregon and Washington, 1996

    Science.gov (United States)

    Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.

    1996-01-01

    Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.

  9. Simulation of Pressure-swing Distillation for Separation of Ethyl Acetate-Ethanol-Water

    Science.gov (United States)

    Yang, Jing; Zhou, Menglin; Wang, Yujie; Zhang, Xi; Wu, Gang

    2017-12-01

    In the light of the azeotrope of ethyl acetate-ethanol-water, a process of pressure-swing distillation is proposed. The separation process is simulated by Aspen Plus, and the effects of theoretical stage number, reflux ratio and feed stage about the pressure-swing distillation are optimized. Some better process parameters are as follows: for ethyl acetate refining tower, the pressure is 500.0 kPa, theoretical stage number is 16, reflux ratio is 0.6, feed stage is 5; for crude ethanol tower, the pressure is 101.3 kPa, theoretical stage number is 15, reflux ratio is 0.3, feed stage is 4; for ethanol tower, the pressure is 101.3 kPa, theoretical stage number is 25, reflux ratio is 1.2, feed stage is 10. The mass fraction of ethyl acetate in the bottom of the ethyl acetate refining tower reaches 0.9990, the mass fraction of ethanol in the top of the ethanol tower tower reaches 0.9017, the mass fraction of water in the bottom of the ethanol tower tower reaches 0.9622, and there is also no ethyl acetate in the bottom of the ethanol tower. With laboratory tests, experimental results are in good agreement with the simulation results, which indicates that the separation of ethyl acetate ethanol water can be realized by the pressure-swing distillation separation process. Moreover, it has certain practical significance to industrial practice.

  10. The effects of pulse pressure from seismic water gun technology on Northern Pike

    Science.gov (United States)

    Gross, Jackson A.; Irvine, Kathryn M.; Wilmoth, Siri K.; Wagner, Tristany L.; Shields, Patrick A; Fox, Jeffrey R.

    2013-01-01

    We examined the efficacy of sound pressure pulses generated from a water gun for controlling invasive Northern Pike Esox lucius. Pulse pressures from two sizes of water guns were evaluated for their effects on individual fish placed at a predetermined random distance. Fish mortality from a 5,620.8-cm3 water gun (peak pressure source level = 252 dB referenced to 1 μP at 1 m) was assessed every 24 h for 168 h, and damage (intact, hematoma, or rupture) to the gas bladder, kidney, and liver was recorded. The experiment was replicated with a 1,966.4-cm3 water gun (peak pressure source level = 244 dB referenced to 1 μP at 1 m), but fish were euthanized immediately. The peak sound pressure level (SPLpeak), peak-to-peak sound pressure level (SPLp-p), and frequency spectrums were recorded, and the cumulative sound exposure level (SELcum) was subsequently calculated. The SPLpeak, SPLp-p, and SELcum were correlated, and values varied significantly by treatment group for both guns. Mortality increased and organ damage was greater with decreasing distance to the water gun. Mortality (31%) by 168 h was only observed for Northern Pike exhibiting the highest degree of organ damage. Mortality at 72 h and 168 h postexposure was associated with increasing SELcum above 195 dB. The minimum SELcum calculated for gas bladder rupture was 199 dB recorded at 9 m from the 5,620.8-cm3 water gun and 194 dB recorded at 6 m from the 1,966.4-cm3water gun. Among Northern Pike that were exposed to the large water gun, 100% of fish exposed at 3 and 6 m had ruptured gas bladders, and 86% exposed at 9 m had ruptured gas bladders. Among fish that were exposed to pulse pressures from the smaller water gun, 78% exhibited gas bladder rupture. Results from these initial controlled experiments underscore the potential of water guns as a tool for controlling Northern Pike.

  11. The EU Nitrates Directive: a European approach to combat water pollution from agriculture.

    Science.gov (United States)

    Monteny, G J

    2001-12-12

    From 1991 onward, the European Union (EU) member states have had to comply with the Nitrates Directive. The aim of this directive is to sustainably protect ground and surface waters from pollution with nitrogen (nitrate) originating from agriculture. Agriculture is, on an EU level, the largest single source of nitrate (runoff, leaching) pollution, although households and industries also contribute to some extent. An important element in the directive is the reporting every 4 years on the monitoring of ground- and surface-water quality. Furthermore, all 15 member states are compelled to designate so-called Nitrate Vulnerable Zones (NVZs). These are regions where the nitrate concentrations in the groundwater amount to 50 mg/l or more. In addition to Codes of Good Agricultural Practice, valid on a countrywide basis and often consisting of voluntary-based measures, specific Action Programmes with mandatory measures have to be developed for the NVZs. The first reporting period ended in 1995. This paper describes the progress in member states" compliance with the Nitrates Directive during the second period (1996-1999), with a focus on the agricultural practices and action programmes. An evaluation of the member states' reports shows that good progress is being made on the farmers" awareness of the need to comply with EU regulations on the protection of the aquatic environment. Action programmes are valuable tools to enforce measures that lead to a reduction of the water pollution by agricultural activities. Regional projects show that significant improvements can be achieved (e.g., reduced fertiliser inputs) while maintaining crop yields and thus maintaining the economic potential of agriculture.

  12. The EU Nitrates Directive: A European Approach to Combat Water Pollution from Agriculture

    Directory of Open Access Journals (Sweden)

    Gert J. Monteny

    2001-01-01

    Full Text Available From 1991 onward, the European Union (EU member states have had to comply with the Nitrates Directive. The aim of this directive is to sustainably protect ground and surface waters from pollution with nitrogen (nitrate originating from agriculture. Agriculture is, on an EU level, the largest single source of nitrate (runoff, leaching pollution, although households and industries also contribute to some extent. An important element in the directive is the reporting every 4 years on the monitoring of ground- and surface-water quality. Furthermore, all 15 member states are compelled to designate so-called Nitrate Vulnerable Zones (NVZs. These are regions where the nitrate concentrations in the groundwater amount to 50 mg/l or more. In addition to Codes of Good Agricultural Practice, valid on a countrywide basis and often consisting of voluntary-based measures, specific Action Programmes with mandatory measures have to be developed for the NVZs. The first reporting period ended in 1995. This paper describes the progress in member states’ compliance with the Nitrates Directive during the second period (1996–1999, with a focus on the agricultural practices and action pro- grammes. An evaluation of the member states’ reports shows that good progress is being made on the farmers’ awareness of the need to comply with EU regulations on the protection of the aquatic environment. Action programmes are valuable tools to enforce measures that lead to a reduction of the water pollution by agricultural activities. Regional projects show that significant improvements can be achieved (e.g., reduced fertiliser inputs while maintaining crop yields and thus maintaining the economic potential of agriculture.

  13. Pressure of drinking water network on the Meyrin site to be boosted

    CERN Multimedia

    2004-01-01

    In the framework of the refurbishment of CERN's drinking water supply system, the final part of the network on the Meyrin site is to be connected to the pumping station operated by Services Industriels de Genève, bringing about a significant increase in the network pressure of up to 5 bar. This means that from January 2005 onwards, the water pressure in buildings will be increased from 2 - 4 bar to 7 - 9 bar. The TS Department will be checking and upgrading the drinking water supply equipment in toilets and washrooms. All users with devices connected to the water supply system are kindly requested to check that these are compatible with the new pressure levels. More information on the buildings affected, the new pressure levels and the dates on which the changes will come into effect can be found at: https://edms.cern.ch/document/525717/1 Should any equipment under your responsibility be incompatible with the future pressure levels, please contact the Technical Control Room on 72201.

  14. Managing risks from virus intrusion into water distribution systems due to pressure transients.

    Science.gov (United States)

    Yang, Jian; LeChevallier, Mark W; Teunis, Peter F M; Xu, Minhua

    2011-06-01

    Low or negative pressure transients in water distribution systems, caused by unexpected events (e.g. power outages) or routine operation/maintenance activities, are usually brief and thus are rarely monitored or alarmed. Previous studies have shown connections between negative pressure events in water distribution systems and potential public health consequences. Using a quantitative microbial risk assessment (QMRA) model previously developed, various factors driving the risk of viral infection from intrusion were evaluated, including virus concentrations external to the distribution system, maintenance of a disinfectant residual, leak orifice sizes, the duration and the number of nodes drawing negative pressures. The most sensitive factors were the duration and the number of nodes drawing negative pressures, indicating that mitigation practices should be targeted to alleviate the severity of low/negative pressure transients. Maintaining a free chlorine residual of 0.2 mg/L or above is the last defense against the risk of viral infection due to negative pressure transients. Maintaining a chloramine residual did not appear to significantly reduce the risk. The effectiveness of ensuring separation distances from sewer mains to reduce the risk of infection may be system-specific. Leak detection/repair and cross-connection control should be prioritized in areas vulnerable to negative pressure transients.

  15. Methodology for Calculation of Pressure Impulse Distribution at Gas-Impulse Regeneration of Water Well Filters

    Directory of Open Access Journals (Sweden)

    V. V. Ivashechkin

    2010-01-01

    Full Text Available The paper considers a mathematical model for process of pressure impulse distribution in a water well which appear as a result of underwater gas explosions in cylindrical and spherical explosive chambers with elastic shells and in a rigid cylindrical chamber which is open from the bottom. The proposed calculation methodology developed on the basis of the mathematical model makes it possible to determine pressure in the impulse on a filter wall and at any point of a water well pre-filter zone. 

  16. The analysis of energy efficiency in water electrolysis under high temperature and high pressure

    Science.gov (United States)

    Hourng, L. W.; Tsai, T. T.; Lin, M. Y.

    2017-11-01

    This paper aims to analyze the energy efficiency of water electrolysis under high pressure and high temperature conditions. The effects of temperature and pressure on four different kinds of reaction mechanisms, namely, reversible voltage, activation polarization, ohmic polarization, and concentration polarization, are investigated in details. Results show that the ohmic and concentration over-potentials are increased as temperature is increased, however, the reversible and activation over-potentials are decreased as temperature is increased. Therefore, the net efficiency is enhanced as temperature is increased. The efficiency of water electrolysis at 350°C/100 bars is increased about 17%, compared with that at 80°C/1bar.

  17. Energetic behavior of the pure silica ITQ-12 (ITW) zeolite under high pressure water intrusion.

    Science.gov (United States)

    Khay, Ismail; Tzanis, Lydie; Daou, T Jean; Nouali, Habiba; Ryzhikov, Andrey; Patarin, Joël

    2013-12-14

    Experimental water intrusion-extrusion isotherms were obtained at room temperature on pure silica ITW-type zeolites (ITQ-12 zeosil). The water intrusion is obtained by applying a high hydraulic pressure corresponding to the intrusion step. When the pressure is released, the water extrusion occurs at a similar pressure to that of the intrusion one. Therefore, the "ITW zeosil-water" system behaves like a spring and the phenomenon is reproducible over several cycles. Several characterization techniques have been performed before and after water intrusion-extrusion experiments in order to reveal the presence or the lack of defects after such experiments. Structural modifications at the long range order cannot be observed by XRD analysis after three water intrusion-extrusion cycles. However, solid state NMR spectroscopy provides evidence of the presence of Q3 groups revealing the breaking of some siloxane bridges after the intrusion step. The "ITW zeosil-water" system can restore 100% of the stored energy corresponding to about 8 J g(-1).

  18. Application of principal component and hierarchical cluster analyses in the classification of Serbian bottled waters and a comparison with waters from some European countries

    Directory of Open Access Journals (Sweden)

    Cvejanov Jelena Đ.

    2017-01-01

    Full Text Available The contents of major ions in bottled waters were analyzed by principal component (PCA and hierarchical cluster (HCA analysis in order to investigate if these techniques could provide the information necessary for classifications of the water brands marketed in Serbia. Data on the contents of Ca2+, Mg2+, Na+, K+, Cl-, SO4 2-, HCO3 - and total dissolved solids (TDS of 33 bottled waters was used as the input data set. The waters were separated into three main clusters according to their levels of TDS, Na+ and HCO3 -; sub-clustering revealed a group of soft waters with the lowest total hardness. Based on the determined chemical parameters, the Serbian waters were further compared with available literature data on bottled waters from some other European countries. To the best of our knowledge, this is the first report applying chemometric classification of bottled waters from different European countries, thereby representing a unique attempt in contrast to previous studies reporting the results primarily on a country-to-country scale. The diverse character of Serbian bottled waters was demonstrated as well as the usefulness of PCA and HCA in the fast classification of the water brands based on their main chemical parameters. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172050

  19. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    Science.gov (United States)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  20. Early contamination of European flounder (Platichthys flesus) by PCDD/Fs and dioxin-like PCBs in European waters.

    Science.gov (United States)

    Nunes, Margarida; Martinho, Filipe; Vernisseau, Anaïs; Marchand, Philippe; Le Bizec, Bruno; van der Veer, Henk W; Cabral, Henrique N; Ramos, Fernando; Pardal, Miguel A

    2014-08-15

    Contamination levels and profiles of 7 polychlorinated-p-dioxins, 10 polychlorinated furans (PCDD/Fs) and 12 dioxin-like polychlorinated biphenyls (dl-PCBs) were investigated in juvenile European flounder (Platichthys flesus) captured in different nursery areas in the northeastern Atlantic coast across its geographical distribution range. The toxic equivalent concentrations (WHO-TEQfish) were also determined in order to evaluate which P. flesus population was more exposed to dioxin-like toxicity. Juveniles caught in the Sørfjord (Norway) showed the lowest WHO-TEQfish concentration (0.052 pg WHO-TEQfish g(-1)wet weight) whereas the highest value was observed in fish from the Wadden Sea (The Netherlands; 0.291 pg WHO-TEQfish g(-1)ww), mainly due to the greater contribution of 2,3,7,8-tetrachlorodibenzo-p-dioxin, the most toxic congener. Nonetheless, when comparing the results with existent tissue residue-based toxicity benchmarks, no adverse effects resulting from PCDD/Fs and dl-PCBs are expected to occur in flounder from the studied systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Water surface elevations recorded by submerged pressure transducers along the upper Willamette River, Oregon, Spring, 2015

    Science.gov (United States)

    Lind, Greg D.; Wellman, Roy E.; Mangano, Joseph F.

    2017-01-01

    Water-surface elevations were recorded by submerged pressure transducers in Spring, 2015 along the upper Willamette River, Oregon, between Eugene and Corvallis. The water-surface elevations were surveyed by using a real-time kinematic global positioning system (RTK-GPS) at each pressure sensor location. These water-surface elevations were logged over a small range of discharges, from 4,600 cubic feet per second to 10,800 cubic feet per second at Harrisburg, OR. These datasets were collected for equipment calibration and validation for the National Aeronautics and Space Administration’s (NASA) Surface Water and Ocean Topography (SWOT) satellite mission. This is one of multiple datasets that will be released for this effort.

  2. High-pressure, low-abundance water in bipolar outflows. Results from a Herschel-WISH survey

    Science.gov (United States)

    Tafalla, M.; Liseau, R.; Nisini, B.; Bachiller, R.; Santiago-García, J.; van Dishoeck, E. F.; Kristensen, L. E.; Herczeg, G. J.; Yıldız, U. A.

    2013-03-01

    Context. Water is a potential tracer of outflow activity because it is heavily depleted in cold ambient gas and is copiously produced in shocks. Aims: We present a survey of the water emission in a sample of more than 20 outflows from low-mass young stellar objects with the goal of characterizing the physical and chemical conditions of the emitting gas. Methods: We used the HIFI and PACS instruments on board the Herschel Space Observatory to observe the two fundamental lines of ortho-water at 557 and 1670 GHz. These observations were part of the "Water In Star-forming regions with Herschel" (WISH) key program, and have been complemented with CO and H2 data. Results: The emission of water has a different spatial and velocity distribution from that of the J = 1-0 and 2-1 transitions of CO. On the other hand, it has a similar spatial distribution to H2, and its intensity follows the H2 intensity derived from IRAC images. This suggests that water traces the outflow gas at hundreds of kelvins that is responsible for the H2 emission, and not the component at tens of kelvins typical of low-J CO emission. A warm origin of the water emission is confirmed by a remarkable correlation between the intensities of the 557 and 1670 GHz lines, which also indicates that the emitting gas has a narrow range of excitations. A radiative transfer analysis shows that while there is some ambiguity in the exact combination of density and temperature values, the gas thermal pressure nT is constrained within less than a factor of 2. The typical nT over the sample is 4 × 109 cm-3K, which represents an increase of 104 with respect to the ambient value. The data also constrain the water column density within a factor of 2 and indicate values in the sample between 2 × 1012 and 1014 cm-2. When these values are combined with estimates of the H2 column density, the typical water abundance is only 3 × 10-7, with an uncertainty of a factor of 3. Conclusions: Our data challenge current C

  3. Marine ornamental species from European waters: a valuable overlooked resource or a future threat for the conservation of marine ecosystems?

    Directory of Open Access Journals (Sweden)

    Ricardo Calado

    2006-09-01

    Full Text Available P align=justify>The worldwide growth of the marine aquarium market has contributed to the degradation of coral reef ecosystems. Enforcing the legislation on importing ornamental species has led some European traders to concentrate on local species. Portugal is used as a case study of marine ornamental fish and invertebrate collection in European waters. One hundred and seventy two species occurring in Portuguese waters (mainland, the Azores and Madeira archipelagos were considered as potential targets for the marine aquarium industry, some of which are already traded on a regular basis (e.g. Clibanarius erythropus, Lysmata seticaudata, Cerithium vulgatum, Hinia reticulata and Ophioderma longicauda. To ensure appropriate management and conservation of these resources, the following options have been evaluated: banning the harvest and trade of all marine ornamental species from European waters; creating sanctuaries and “no take zones”; issuing collection permits; creating certified wholesalers; implementing the use of suitable gear and collecting methods; setting minimum and maximum size limits; establishing species-based quotas; protecting rare, or “key stone” species and organisms with poor survivability in captivity; establishing closed seasons; culturing ornamental organisms; and creating an “eco-fee” to support research and management. Establishing this sustainable alternative fishery may help minimise the economical and social impacts caused by the crash of important food fisheries in Portugal and other European and West African countries.

  4. Negative Pressures and the First Water Siphon Taller than 10.33 Meters.

    Science.gov (United States)

    Vera, Francisco; Rivera, Rodrigo; Romero-Maltrana, Diego; Villanueva, Jaime

    2016-01-01

    A siphon is a device that is used to drain a container, with water rising inside a hose in the form of an inverted U and then going down towards a discharge point placed below the initial water level. The siphon is the first of a number of inventions of the ancients documented about 2.000 years ago by Hero of Alexandria in his treatise Pneumatics, and although the explanation given by Hero was essentially correct, there is nowadays a controversy about the underlying mechanism that explains the working of this device. Discussions concerning the physics of a siphon usually refer to concepts like absolute negative pressures, the strength of liquid's cohesion and the possibility of a siphon working in vacuum or in the presence of bubbles. Torricelli understood the working principle of the barometer and the impossibility of pumping water out of wells deeper than 10.33 m. Following Torricelli's ideas it would also not be possible to build a siphon that drives pure water to ascend higher than 10.33 m. In this work, we report the first siphon that drives water (with surfactant) to ascend higher than the Torricellian limit. Motivated by the rising of sap in trees, we built a 15.4 m siphon that shows that absolute negative pressures are not prohibited, that cohesion plays an important role in transmitting forces through a fluid, and that surfactants can help to the transport of water in a metastable regime of negative pressures.

  5. Negative Pressures and the First Water Siphon Taller than 10.33 Meters.

    Directory of Open Access Journals (Sweden)

    Francisco Vera

    Full Text Available A siphon is a device that is used to drain a container, with water rising inside a hose in the form of an inverted U and then going down towards a discharge point placed below the initial water level. The siphon is the first of a number of inventions of the ancients documented about 2.000 years ago by Hero of Alexandria in his treatise Pneumatics, and although the explanation given by Hero was essentially correct, there is nowadays a controversy about the underlying mechanism that explains the working of this device. Discussions concerning the physics of a siphon usually refer to concepts like absolute negative pressures, the strength of liquid's cohesion and the possibility of a siphon working in vacuum or in the presence of bubbles. Torricelli understood the working principle of the barometer and the impossibility of pumping water out of wells deeper than 10.33 m. Following Torricelli's ideas it would also not be possible to build a siphon that drives pure water to ascend higher than 10.33 m. In this work, we report the first siphon that drives water (with surfactant to ascend higher than the Torricellian limit. Motivated by the rising of sap in trees, we built a 15.4 m siphon that shows that absolute negative pressures are not prohibited, that cohesion plays an important role in transmitting forces through a fluid, and that surfactants can help to the transport of water in a metastable regime of negative pressures.

  6. Effects of High Hydrostatic Pressure on Water Absorption of Adzuki Beans

    Directory of Open Access Journals (Sweden)

    Shigeaki Ueno

    2015-05-01

    Full Text Available The effect of high hydrostatic pressure (HHP treatment on dried soybean, adzuki bean, and kintoki kidney bean, which are low-moisture-content cellular biological materials, was investigated from the viewpoint of water absorption. The samples were vacuum-packed with distilled water and pressurized at 200 MPa and 25 °C for 10 min. After the HHP treatment, time courses of the moisture contents of the samples were measured, and the dimensionless moisture contents were estimated. Water absorption in the case of soybean could be fitted well by a simple water diffusion model. High pressures were found to have negligible effects on water absorption into the cotyledon of soybean and kintoki kidney bean. A non-linear least square method based on the Weibull equation was applied for the adzuki beans, and the effective water diffusion coefficient was found to increase significantly from 8.6 × 10−13 to 6.7 × 10−10 m2/s after HHP treatment. Approximately 30% of the testa of the adzuki bean was damaged upon HHP treatment, which was comparable to the surface area of the testa in the partially peeled adzuki bean sample. Thus, HHP was confirmed to promote mass transfer to the cotyledon of legumes with a tight testa.

  7. Low-pressure membrane integrity tests for drinking water treatment: A review.

    Science.gov (United States)

    Guo, H; Wyart, Y; Perot, J; Nauleau, F; Moulin, P

    2010-01-01

    Low-pressure membrane systems, including microfiltration (MF) and ultrafiltration (UF) membranes, are being increasingly used in drinking water treatments due to their high level of pathogen removal. However, the pathogen will pass through the membrane and contaminate the product if the membrane integrity is compromised. Therefore, an effective on-line integrity monitoring method for MF and UF membrane systems is essential to guarantee the regulatory requirements for pathogen removal. A lot of works on low-pressure membrane integrity tests have been conducted by many researchers. This paper provides a literature review about different low-pressure membrane integrity monitoring methods for the drinking water treatment, including direct methods (pressure-based tests, acoustic sensor test, liquid porosimetry, etc.) and indirect methods (particle counting, particle monitoring, turbidity monitoring, surrogate challenge tests). Additionally, some information about the operation of membrane integrity tests is presented here. It can be realized from this review that it remains urgent to develop an alternative on-line detection technique for a quick, accurate, simple, continuous and relatively inexpensive evaluation of low-pressure membrane integrity. To better satisfy regulatory requirements for drinking water treatments, the characteristic of this ideal membrane integrity test is proposed at the end of this paper.

  8. Water cycle and its management for plant habitats at reduced pressures

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Wheeler, Raymond M.; Bucklin, Ray A.

    2004-01-01

    Experimental and mathematical models were developed for describing and testing temperature and humidity parameters for plant production in bioregenerative life support systems. A factor was included for analyzing systems operating at low (10-101.3 kPa) pressure to reduce gas leakage and structural mass (e.g., inflatable greenhouses for space application). The expected close relationship between temperature and relative humidity was observed, along with the importance of heat exchanger coil temperature and air circulation rate. The presence of plants in closed habitats results in increased water flux through the system. Changes in pressure affect gas diffusion rates and surface boundary layers, and change convective transfer capabilities and water evaporation rates. A consistent observation from studies with plants at reduced pressures is increased evapotranspiration rates, even at constant vapor pressure deficits. This suggests that plant water status is a critical factor for managing low-pressure production systems. The approach suggested should help space mission planners design artificial environments in closed habitats.

  9. Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from the Eastern Ukraine

    Science.gov (United States)

    2013-01-01

    Background Hybridogenesis (hemiclonal inheritance) is a kind of clonal reproduction in which hybrids between parental species are reproduced by crossing with one of the parental species. European water frogs (Pelophylax esculentus complex) represent an appropriate model for studying interspecies hybridization, processes of hemiclonal inheritance and polyploidization. P. esculentus complex consists of two parental species, P. ridibundus (the lake frog) and P. lessonae (the pool frog), and their hybridogenetic hybrid – P. esculentus (the edible frog). Parental and hybrid frogs can reproduce syntopically and form hemiclonal population systems. For studying mechanisms underlying the maintenance of water frog population systems it is required to characterize the karyotypes transmitted in gametes of parental and different hybrid animals of both sexes. Results In order to obtain an instrument for characterization of oocyte karyotypes in hybrid female frogs, we constructed cytological maps of lampbrush chromosomes from oocytes of both parental species originating in Eastern Ukraine. We further identified certain molecular components of chromosomal marker structures and mapped coilin-rich spheres and granules, chromosome associated nucleoli and special loops accumulating splicing factors. We recorded the dissimilarities between P. ridibundus and P. lessonae lampbrush chromosomes in the length of orthologous chromosomes, number and location of marker structures and interstitial (TTAGGG)n-repeat sites as well as activity of nucleolus organizer. Satellite repeat RrS1 was mapped in centromere regions of lampbrush chromosomes of the both species. Additionally, we discovered transcripts of RrS1 repeat in oocytes of P. ridibundus and P. lessonae. Moreover, G-rich transcripts of telomere repeat were revealed in association with terminal regions of P. ridibundus and P. lessonae lampbrush chromosomes. Conclusions The constructed cytological maps of lampbrush chromosomes of P

  10. Formation of genotoxic compounds by medium pressure ultra violet treatment of nitrate rich water

    NARCIS (Netherlands)

    Martijn, A.J.; Boersma, M.G.; Vervoort, Jacques; Rietjens, I.; Kruithof, J.C.

    2014-01-01

    Genotoxic compounds were produced by full-scale medium pressure (MP) ultraviolet hydrogen peroxide (UV/H2O2) treatment of nitrate-rich pretreated surface water. It was hypothesized that this formation was caused by the reaction of nitrate photolysis intermediates with natural organic matter (NOM).

  11. Creep and stick-slip in subglacial granular beds forced by variations in water pressure

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Beem, Lucas H.

    of grain and fluid dynamics to show that rapid rearrangements of load-bearing force chains within the granular sediments drive mechanical transitions between stability and failure. Cyclic variations in driving stresses or pore-water pressure give rise to strain-rate dependent creeping motion at stress...

  12. An investigation of rock fall and pore water pressure using LIDAR in Highway 63 rock cuts.

    Science.gov (United States)

    2014-07-01

    The purpose of this research work is compare LIDAR scanning measurements of rock fall with the natural changes in groundwater level to determining the effect of water pressures (levels) on rock fall. To collect the information of rock cut volume chan...

  13. 77 FR 23513 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Science.gov (United States)

    2012-04-19

    ... COMMISSION Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water... Management Criteria for PWR Reactor Vessel Internal Components.'' The original notice provided the ADAMS... published a notice requesting public comments on draft LR-ISG-2011-04, ``Updated Aging Management Criteria...

  14. 77 FR 16270 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Science.gov (United States)

    2012-03-20

    ... COMMISSION Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water... license renewal interim staff guidance (LR-ISG), LR-ISG-2011-04, ``Updated Aging Management Criteria for... Aging Lessons Learned (GALL) Report for the aging management of stainless steel structures and...

  15. Low pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    DEFF Research Database (Denmark)

    Fumagalli, F; Kylian, O; Amato, Letizia

    2012-01-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can...... vapour plasma process are discussed for practical applications in medical devices decontamination....

  16. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil

    2011-10-03

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher\\'s and Chun & Seban\\'s falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  17. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    Science.gov (United States)

    Shahzada, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw; Myat, Aung; Gee, Chun Won

    2012-06-01

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 - 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher's and Chun & Seban's falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  18. Sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, J.F.; Birchall, D.J. [British Geological Survey, Chemical and Biological Hazards Programme, Kingsley Dunham Centre (United Kingdom)

    2007-04-15

    In the current Swedish repository design concept, composite copper and steel canisters containing spent nuclear fuel will be placed in large diameter disposal boreholes drilled into the floor of the repository tunnels. The space around each canister will be filled with pre-compacted bentonite which over time will draw in the surrounding ground water and swell, closing up any construction joints. However, for the purposes of performance assessment, it is necessary to consider the effect of glacial loading of a future repository and its impact on the mechanical behaviour of the bentonite, in particular, the sensitivity of total stress to changes in porewater pressure (backpressure). Two experimental histories have been undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. In both tests backpressure was varied in a number of incremental and decremental cycles while total stress, porewater pressure and volumetric flow rate were continuously monitored. The swelling pressure of the buffer clay at dry densities of 1.8 Mg/m{sup 3} and 1.61 Mg/m{sup 3} was determined to be around 5.5 MPa and 7.2 MPa respectively. For initial ascending porewater pressure histories the average proportionality factor {alpha} ranged from 0.86 and 0.92. Data exhibited a general trend of increasing {alpha} with increasing backpressure. In test Mx80-11 this was supported by analysis of the water inflow data which indicated a reduction in system compressibility. Asymptotic values of porewater pressure within the clay are in good agreement with externally applied backpressure values. Inspection of data provides no evidence for the development of hydraulic thresholds within the clay, subject to the boundary conditions of this test geometry. Analysis of the stress data demonstrates significant hysteresis between ascending and descending porewater pressure histories. The amount of hysteresis appears to be linked to the magnitude of the backpressure applied to the specimen

  19. The evolution of the Environmental Quality concept: from the US EPA Red Book to the European Water Framework Directive.

    Science.gov (United States)

    Vighi, Marco; Finizio, Antonio; Villa, Sara

    2006-01-01

    Water Quality Criteria were firstly defined in the 1970s by the EPA in the USA and the EIFAC in Europe, recognizing the need for protecting water quality in order to allow the use of water resources by man. In the 1990s, the European Commission emphasized the importance of safeguarding structure and function of biologic communities. These approaches were chemically-based. The European Water Framework Directive (WFD) substantially changes the concept of Water Quality, by assuming that a water body needs to be protected as an environmental good and not as a resource to be exploited. In this frame, the biological-ecological quality assumes a prevailing role. The Water Quality concept introduced by the WFD is a challenge for environmental sciences. Reference conditions should be defined for different typologies of water bodies and for different European ecoregions. Suitable indicators should be developed in order to quantify ecological status and to define what a 'good' ecological status is. Procedures should be developed for correlating the deviation from a good ecological to the effects of multiple stressors on function and structure of the ecosystem. The protection of biodiversity becomes a key objective. In this frame, the traditional procedures for ecotoxicological risk assessment, mainly based on laboratory testing, should be overcome by more site-specific approaches, taking into account the characteristics and the homeostatic capabilities of natural communities. In the paper an overview of the present knowledge and of the new trends in ecotoxicology to get these objectives will be given. A procedure is suggested based on the concept of Species Sensitivity Distribution (SSD). The need for more site-specific and ecologically-oriented approaches in ecotoxicology is strongly recommended. The development of new tools for implementing the concept of 'Stress Ecology' has been recently proposed by van Straalen (2003). In the same time, more 'cological realism' is needed

  20. Differences in brain gene transcription profiles advocate for an important role of cognitive function in upstream migration and water obstacles crossing in European eel.

    Science.gov (United States)

    Podgorniak, Tomasz; Milan, Massimo; Pujolar, Jose Marti; Maes, Gregory E; Bargelloni, Luca; De Oliveira, Eric; Pierron, Fabien; Daverat, Francoise

    2015-05-12

    European eel is a panmictic species, whose decline has been recorded since the last 20 years. Among human-induced environmental factors of decline, the impact of water dams during species migration is questioned. The main issue of this study was to pinpoint phenotypic traits that predisposed glass eels to successful passage by water barriers. The approach of the study was individual-centred and without any a priori hypothesis on traits involved in the putative obstacles selective pressure. We analyzed the transcription level of 14,913 genes. Transcriptome analysis of three tissues (brain, liver and muscle) from individuals sampled on three successive forebays separated by water obstacles indicated different gene transcription profiles in brain between the two upstream forebays. No differences in gene transcription levels were observed in liver and muscle samples among segments. A total of 26 genes were differentially transcribed in brain. These genes encode for, among others, keratins, cytokeratins, calcium binding proteins (S100 family), cofilin, calmodulin, claudin and thy-1 membrane glycoprotein. The functional analysis of these genes highlighted a putative role of cytoskeletal dynamics and synaptic plasticity in fish upstream migration. Synaptic connections in brain are solicited while eels are climbing the obstacles with poorly designed fishways. Successful passage by such barriers can be related to spatial learning and spatial orientation abilities when fish is out of the water.

  1. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    Science.gov (United States)

    Hill, Paul R.

    1994-01-01

    A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

  2. Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant

    KAUST Repository

    Jamil, Shazad

    2016-07-26

    The use of forward osmosis (FO) is growing among the researchers for water desalination and wastewater treatment due to use of natural osmotic pressure of draw solute. In this study pressure assisted forward osmosis (PAFO) was used instead of FO to increase the water production rate. In this study a low concentration of draw solution (0.25 M KCl) was applied so that diluted KCl after PAFO operation can directly be used for fertigation. The performance of PAFO was investigated for the treatment of reverse osmosis concentrate (ROC) from a water reclamation plant. The water production in PAFO was increased by 9% and 29% at applied pressure of 2 and 4 bars, respectively, to feed side based on 90 h of experiments. Granular activated carbon (GAC) pretreatment and HCl softening were used to reduce organic fouling and scaling prior to application of PAFO. It reduced total organic carbon (TOC) and total inorganic carbon (TIC) by around 90% and 85%, respectively from untreated ROC. Subsequently, this led to an increase in permeate flux. In addition, GAC pretreatment adsorbed 12 out of 14 organic micropollutants tested from ROC to below detection limit. This application enabled to minimise the ROC volume with a sustainable operation and produced high quality and safe water for discharge or reuse. The draw solution (0.25 M KCl) used in this study was diluted to 0.14 M KCl, which is a suitable concentration (10 kg/m3) for fertigation, due to water transport from feed solution. © 2016 Elsevier B.V.

  3. Effect of renal venous pressure elevation on tubular sodium and water reabsorption in the dog kidney

    DEFF Research Database (Denmark)

    Abildgaard, U; Amtorp, O; Holstein-Rathlou, N H

    1988-01-01

    of [51Cr]EDTA was used as a measure of the rate of glomerular filtration (GFR). GFR, urinary excretion rates of sodium and water, and lithium clearance were used for assessing the absolute and fractional reabsorption rates of sodium and water in the proximal as well as in more distal segments......This study was performed in order to quantify the effects of renal venous pressure (RVP) elevation on absolute and fractional reabsorption rates of sodium and water in proximal and distal segments of the nephron in dog kidneys. Renal blood flow (RBF) was measured electromagnetically. Clearance...

  4. Licensing assessment of the Candu Pressurized Heavy Water Reactor. Preliminary safety information document. Volume II. [USA

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    ERDA has requested United Engineers and Constructors (UE and C) to evaluate the design of the Canadian natural uranium fueled, heavy water moderated (CANDU) nuclear reactor power plant to assess its conformance with the licensing criteria and guidelines of the U.S. Nuclear Regulatory Commission (USNRC) for light water reactors. This assessment was used to identify cost significant items of nonconformance and to provide a basis for developing a detailed cost estimate for a 1140 MWe, 3-loop Pressurized Heavy Water Reactor (PHWR) located at the Middletown, USA Site.

  5. Pressure in a tank due to water-ice phase transformation

    Science.gov (United States)

    Lexcellent, C.; Vigoureux, D.; Vigoureux, J.-M.

    2017-11-01

    Our aim is to show the surprising force of hydrogen bonds in ice. When a tank completely filled with water is cooled, ice formation can generate a pressure which can cause its breaking. This phenomenon is due to the fact that water has a higher density in its liquid phase than in its solid state. Such a breaking is all the more surprising in that hydrogen bonds between water molecules are known as being weak chemical bonds. We show here that in the case of a total phase change, even the best steels or alloys could not prevent its breakage.

  6. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  7. Integration of a Water Scrubbing Technique and Two-Stage Pressurized Anaerobic Digestion in One Process

    Directory of Open Access Journals (Sweden)

    Andreas Lemmer

    2015-03-01

    Full Text Available Two-stage pressurized anaerobic digestion is a promising technology. This technology integrates in one process biogas production with upgrading and pressure boosting for grid injection. To investigate whether the efficiency of this novel system could be further increased, a water scrubbing system was integrated into the methanogensis step. Therefore, six leach-bed reactors were used for hydrolysis/acidification and a 30-L pressurized anaerobic filter operated at 9 bar was adopted for acetogenesis/methanogenesis. The fermentation liquid of the pressurized anaerobic filter was circulated periodically via a flash tank, operating at atmospheric pressure. Due to the pressure drop, part of dissolved carbon dioxide was released from the liquid phase into the flash tank. The depressurized fermentation liquid was then recycled to the pressurized reactor. Three different flow rates (0 L·day−1, 20 L·day−1 and 40 L·day−1 were tested with three repetitions. As the daily recycled flashed liquid flow was increased from 0 to 40 L, six times as much as the daily feeding, the methane content in the biogas increased from 75 molar percent (mol% to 87 mol%. The pH value of the substrate in the methane reactor rose simultaneously from 6.5 to 6.7. The experimental data were verified by calculation.

  8. Acrylic resin water sorption under different pressure, temperature and time conditions

    Directory of Open Access Journals (Sweden)

    Rizzatti-Barbosa Célia Marisa

    2001-01-01

    Full Text Available The purpose of this work was to analyze water sorption by polymerized acrylic resins under different pressure, temperature and time treatments. A thermo-cured acrylic resin was used as the denture base (Classico Ltda. and ethylene glycol di-methacrylate as a cross-linking agent, with processing carried out in a water bath at 73 °C for nine hours. Forty-five samples were prepared following the criteria and dimensions of specification # 12 of the American Dental Association (ADA, using a matrix in the shape of a stainless steel disc with 50 ± 1 mm diameter and 0.5 ± 0.05 mm thickness. The control group samples were stored in distilled water for 30 days, while groups GII to GIX were placed in a polymerization device with adjustable pressure, time and temperature. An analysis of the variance of the results revealed the influence of different factors on water sorption only, with significant factors being temperature, time, pressure and the interaction between time and temperature. Other interactions exerted no significant influence on water sorption. Neither additional treatments nor the control group (GI showed any significant difference in comparison to the averages of other treatments.

  9. Robust aqua material. A pressure-resistant self-assembled membrane for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Erez; Weissman, Haim; Rybtchinski, Boris [Department of Organic Chemistry, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Shimoni, Eyal; Kaplan-Ashiri, Ifat [Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Werle, Kai; Wohlleben, Wendel [Department of Material Physics, Materials and Systems Research, BASF SE, 67056, Ludwigshafen (Germany)

    2017-02-13

    ''Aqua materials'' that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel-like membrane self-assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water-based self-assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Effect of supplementation of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives.

    Science.gov (United States)

    Talikoti, Prashanth; Bobby, Zachariah; Hamide, Abdoul

    2015-01-01

    The objective of the study was to evaluate the effect of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives. Sixty prehypertensives were recruited and randomized into 2 groups of 30 each. One group received water-soluble vitamins and the other placebo for 4 months. Further increase in blood pressure was not observed in the vitamin group which increased significantly in the placebo group at the end of 4 months. Malonedialdehyde and protein carbonylation were reduced during the course of treatment with vitamins whereas in the placebo group there was an increase in the level of malondialdehyde. In conclusion, supplementation of water-soluble vitamins in prehypertension reduces oxidative stress and its progression to hypertension.

  11. Anthropometric and dietary determinants of blood pressure in over 7000 Mediterranean women: the European Prospective Investigation into Cancer and Nutrition-Florence cohort.

    Science.gov (United States)

    Masala, Giovanna; Bendinelli, Benedetta; Versari, Daniele; Saieva, Calogero; Ceroti, Marco; Santagiuliana, Federica; Caini, Saverio; Salvini, Simonetta; Sera, Francesco; Taddei, Stefano; Ghiadoni, Lorenzo; Palli, Domenico

    2008-11-01

    Anthropometric characteristics and dietary habits are widely recognized to influence blood pressure. We evaluated their role in a large series of Mediterranean adult women. In Florence, in the European Prospective Investigation into Cancer and Nutrition, we recruited 10 083 women, aged 35-64 years. Detailed information on diet, lifestyle, physical activity, and medical history were collected. Anthropometric indices and systolic and diastolic blood pressures were measured at recruitment using standardized procedures. Overall, after excluding those women who reported a clinical diagnosis of hypertension and/or an antihypertensive treatment and those without measurements, 7601 women were available for analyses with an average systolic and diastolic blood pressure value of 123.2+/-16.0 and 78.7+/-9.4 mmHg, respectively. Multivariate regression models showed that body mass index (Por=88 cm, Polive oil) or both systolic and diastolic values (leafy vegetables, milk, coffee). Analyses performed on nutrients showed a positive association with alcohol and sodium intake, and an inverse one with potassium and micronutrients derived from fruits and vegetables. In this large series of women from Tuscany, Central Italy, we confirm the independent influence of anthropometric characteristics on blood pressure. The role of specific foods and nutrients in modulating blood pressure also emerged, suggesting a central role for lifestyle modifications in blood pressure control.

  12. Weak interactions between water and clathrate-forming gases at low pressures

    Energy Technology Data Exchange (ETDEWEB)

    Thurmer, Konrad; Yuan, Chunqing; Kimmel, Gregory A.; Kay, Bruce D.; Smith, R. Scott

    2015-11-01

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10-1 mbar methane or 10-5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10-5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water-gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~43 K and isobutane desorbs near ~100 K. Similar desorption temperatures were observed for desorption from amorphous solid water.

  13. Environmental response nanosilica for reducing the pressure of water injection in ultra-low permeability reservoirs

    Science.gov (United States)

    Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun

    2017-12-01

    The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.

  14. The magnesium sulfate-water system at pressures to 4 kilobars

    Science.gov (United States)

    Hogenboom, D. L.; Kargel, Jeffrey S.; Ganasan, J. P.; Lewis, J. S.

    1991-01-01

    Hydrated magnesium sulfate constitutes up to 1/6 of the mass of carbonaceous chondrites, and probably is important in many icy asteroids and satellites. It occurs naturally in meteorites mostly as epsomite. MgSO4, considered anhydrously, comprises nearly 3/4 of the highly soluble fraction of C1 chondrites. Thus, MgSO4 is probably an important solute in cryovolcanic brines erupted on certain icy objects in the outer solar system. While the physiochemical properties of the water-magnesium sulfate system are well known at low pressures, planetological applications of these data are hindered by a dearth of useful published data at elevated pressures. Accordingly, solid-liquid phase equilibria was recently explored in this chemical system at pressures extending to about 4 kilobars. The water magnesium sulfate system in the region of the eutectic exhibits qualitatively constant behavior between pressures of 1 atm and 2 kbar. The eutectic melting curve closely follows that for water ice, with a freezing point depression of about 4 K at 1 atm decreasing to around 3.3 K at 2 kbars. The eutectic shifts from 17 pct. MgSO4 at 1 atm to about 15.3 pct at 2 kbars. Above 2 kbars, the eutectic melting curve again tends to follow ice.

  15. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  16. Removal of barometric pressure effects and earth tides from observed water levels.

    Science.gov (United States)

    Toll, Nathanial J; Rasmussen, Todd C

    2007-01-01

    The effects of barometric pressure and earth tide changes are often observed in ground water level measurements. These disturbances can make aquifer test interpretation difficult by masking the small changes induced by aquifer testing at late times and great distances. A computer utility is now available that automatically removes the effects of barometric pressure and earth tides from water level observations using regression deconvolution. This procedure has been shown to remove more noise then traditional constant barometric efficiency techniques in both confined and unconfined aquifers. Instead of a single, instantaneous barometric efficiency, the procedure more correctly accounts for the lagged responses caused by barometric pressure and earth tide changes. Simultaneous measurements of water levels (or total heads) and nearby barometric pressures are required. As an additional option, the effects of earth tides can also be removed using theoretical earth tides. The program is demonstrated for two data sets collected at the Waste Isolation Pilot Plant, Carlsbad, New Mexico. The program is available free by request at http://www.hydrology.uga.edu/tools.html.

  17. Why European Entrepreneurs in the Water and Waste Management Sector Are Willing to Go beyond Environmental Legislation

    Directory of Open Access Journals (Sweden)

    Adrián Rabadán

    2017-02-01

    Full Text Available Sustainability in the water sector in Europe is a major concern, and compliance with the current legislation alone does not seem to be enough to face major challenges like climate change or population growth and concentration. The greatest potential for improvement appears when companies decide to take a step forward and go beyond environmental legislation. This study focuses on the environmental responsibility (ER of European small and medium-sized enterprises (SMEs in the water and waste management sector and analyzes the drivers that lead these firms to the adoption of more sustainable practices. Our results show that up to 40% of European SMEs within this industry display environmental responsibility. Market pull has a low incidence in encouraging ER, while values and the strategic decisions of entrepreneurs seem decisive. Policy makers should prioritize subsidies over fiscal incentives because they show greater potential to promote the adoption of environmental responsibility among these firms.

  18. Real-time adjustment of pressure to demand in water distribution systems: Parameter-less P-controller algorithm

    CSIR Research Space (South Africa)

    Page, Philip R

    2016-08-01

    Full Text Available Remote real-time control is currently the most advanced form of pressure management. Here the parameters describing pressure control valves (or pumps) are changed in real-time in such a way to provide the most optimal pressure in the water...

  19. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Science.gov (United States)

    2010-10-01

    ... connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST... § 52.01-110 Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure.... (Modifies PG-60.3.) Gage glasses and gage cocks shall be connected directly to the head or shell of a boiler...

  20. Tissue fusion bursting pressure and the role of tissue water content

    Science.gov (United States)

    Cezo, James; Kramer, Eric; Taylor, Kenneth; Ferguson, Virginia; Rentschler, Mark

    2013-02-01

    Tissue fusion is a complex, poorly understood process which bonds collagenous tissues together using heat and pressure. The goal of this study is to elucidate the role of hydration in bond efficacy. Hydration of porcine splenic arteries (n=30) was varied by pre-fusion treatments: 24-48 hour immersion in isotonic, hypotonic, or hypertonic baths. Treated arteries were fused in several locations using Conmed's Altrus thermal fusion device and the bursting pressure was then measured for each fused segment. Artery sections were then weighed before and after lyophilization, to quantify water content. Histology (HE, EVG staining) enabled visualization of the bonding interface. Bursting pressure was significantly greater (p=4.17 E-ll) for the hypotonic group (607.6 +/- 83.2mmHg), while no significant difference existed between the isotonic (332.6 +/- 44.7mmHg) and hypertonic (348.7 +/- 44.0mmHg) treatment groups. Total water content varied (p=8.80 E-24) from low water content in the hypertonic samples (72.5% weight +/- 0.9), to high water content in the hypotonic samples (83.1% weight +/- 1.9), while the isotonic samples contained 78.8% weight +/- 1.1. Strength differences between the treated vessels imply that bound water driven from the tissue during fusion may reveal available collagen crosslinking sites to facilitate bond formation during the fusion process. Thus when the tissue contains greater bound water volumes, more crosslinking sites may become available during fusion, leading to a stronger bond. This study provides an important step towards understanding the chemistry underlying tissue fusion and the mechanics of tissue fusion as a function of bound water within the tissue.

  1. Climate Change and European Water Bodies, a Review of Existing Gaps and Future Research Needs: Findings of the ClimateWater Project

    Science.gov (United States)

    Garnier, Monica; Harper, David M.; Blaskovicova, Lotta; Hancz, Gabriella; Janauer, Georg A.; Jolánkai, Zsolt; Lanz, Eva; Porto, Antonio Lo; Mándoki, Monika; Pataki, Beata; Rahuel, Jean-Luc; Robinson, Victoria J.; Stoate, Chris; Tóth, Eszter; Jolánkai, Géza

    2015-08-01

    There is general agreement among scientists that global temperatures are rising and will continue to increase in the future. It is also agreed that human activities are the most important causes of these climatic variations, and that water resources are already suffering and will continue to be greatly impaired as a consequence of these changes. In particular, it is probable that areas with limited water resources will expand and that an increase of global water demand will occur, estimated to be around 35-60 % by 2025 as a consequence of population growth and the competing needs of water uses. This will cause a growing imbalance between water demand (including the needs of nature) and supply. This urgency demands that climate change impacts on water be evaluated in different sectors using a cross-cutting approach (Contestabile in Nat Clim Chang 3:11-12, 2013). These issues were examined by the EU FP7-funded Co-ordination and support action "ClimateWater" (bridging the gap between adaptation strategies of climate change impacts and European water policies). The project studied adaptation strategies to minimize the water-related consequences of climate change and assessed how these strategies should be taken into consideration by European policies. This article emphasizes that knowledge gaps still exist about the direct effects of climate change on water bodies and their indirect impacts on production areas that employ large amounts of water (e.g., agriculture). Some sectors, such as ecohydrology and alternative sewage treatment technologies, could represent a powerful tool to mitigate climate change impacts. Research needs in these still novel fields are summarized.

  2. Climate Change and European Water Bodies, a Review of Existing Gaps and Future Research Needs: Findings of the ClimateWater Project.

    Science.gov (United States)

    Garnier, Monica; Harper, David M; Blaskovicova, Lotta; Hancz, Gabriella; Janauer, Georg A; Jolánkai, Zsolt; Lanz, Eva; Lo Porto, Antonio; Mándoki, Monika; Pataki, Beata; Rahuel, Jean-Luc; Robinson, Victoria J; Stoate, Chris; Tóth, Eszter; Jolánkai, Géza

    2015-08-01

    There is general agreement among scientists that global temperatures are rising and will continue to increase in the future. It is also agreed that human activities are the most important causes of these climatic variations, and that water resources are already suffering and will continue to be greatly impaired as a consequence of these changes. In particular, it is probable that areas with limited water resources will expand and that an increase of global water demand will occur, estimated to be around 35-60% by 2025 as a consequence of population growth and the competing needs of water uses. This will cause a growing imbalance between water demand (including the needs of nature) and supply. This urgency demands that climate change impacts on water be evaluated in different sectors using a cross-cutting approach (Contestabile in Nat Clim Chang 3:11-12, 2013). These issues were examined by the EU FP7-funded Co-ordination and support action "ClimateWater" (bridging the gap between adaptation strategies of climate change impacts and European water policies). The project studied adaptation strategies to minimize the water-related consequences of climate change and assessed how these strategies should be taken into consideration by European policies. This article emphasizes that knowledge gaps still exist about the direct effects of climate change on water bodies and their indirect impacts on production areas that employ large amounts of water (e.g., agriculture). Some sectors, such as ecohydrology and alternative sewage treatment technologies, could represent a powerful tool to mitigate climate change impacts. Research needs in these still novel fields are summarized.

  3. Shallow water tides over the European continental shelf : what improvments can we expect from satellite altimetry?

    Science.gov (United States)

    Letellier, T.; Le Provost, C.; Lyard, F.

    2003-04-01

    Ocean tides have been intensively studied at the global scale during the last decade. Their knowledge has been greatly improved thanks to satellite altimetry and assimilation of these data in new hydrodynamic models. Over the continental shelves and coastal areas, however, larger uncertainties remains in the description of the tides. The accuracy of the main constituents (M2, S2, N2, ...) is still limited to a ten of cm, by contrast to the cm level reached for the deep ocean. For the non linear constituents, only a few studies have addressed the question: how spatial altimetry data can be used to improve our knowledge over the major shallow water areas of the world ocean? Our aim is here to investigate these questions by focusing on the European shelf. We have now more than ten years of Topex/Poseidon data, followed by JASON1, and ERS+ENVISAT altimetric mission. From these data sets, we have performed along track and cross over analyses to investigate the accuracy of the tidal constituents, especially non linear constituents. It has been demonstrated, among other things, how this accuracy can be improved by using more elaborated "inverse barometer" correction based on a hydrodynamic model simulating the response of the sea level to high frequency atmospheric forcing. Over the shallow water areas, the horizontal scales of the non linear tidal components are greatly reduced, as the square root of the depth in relation with their propagation speed, and proportionally to their time period for the higher constituents (M4, MS4, ...). The spatial resolution of the altimetric mission is then a limiting factor for precise description of these constituents. Hence the interest of assimilating these data in a hydrodynamic model. Following the approach developed by our group for the global ocean (the "FES" Finite Element ocean tide Solutions series, that have been produced over the recent years), such assimilation exercises have been performed and qualified. The portability of

  4. Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres.

    Science.gov (United States)

    Alix, S; Colasse, L; Morvan, C; Lebrun, L; Marais, S

    2014-02-15

    The tensile properties of flax fibres might permit them to be used in composites as reinforcement in organic resin, as long as their mechanical properties are reproducible and their water sorption are reduced. In this study, to minimise the variability of mechanical properties, several samples of flax fibres were blended as a non-woven fabric. In order to reduce the water absorption of this non-woven technical fibres, an autoclave treatment was performed which was expected to remove the pectins and then to reduce the water sorption on their negative charges. The impact of autoclave pressure (0.5, 1 and 2 bars) on water sorption was investigated by using a gravimetric static equilibrium method. The Park model based on the three sorption modes: Langmuir, Henry's law and clustering, was successfully used to simulate the experimental sorption data. The lowest pressure treatments impacted only the Langmuir contribution while the 2 bar autoclave-treatment positively impacted the water resistance in the core of fibres by reducing Henry's absorption rate. This was shown to be related to the chemical modifications at the surface and in the core of fibres. A schematic model is presented relating the water sorption and the pectic composition of the fabric. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Attenuation of wave-induced groundwater pressure in shallow water. Part 2. Theory

    Directory of Open Access Journals (Sweden)

    Stanisław R. Massel

    2005-09-01

    Full Text Available In this Part 2 of the paper (Part 1 was published by Massel et al. 2004 an exact close-form solution for the pore-water pressure component and velocity circulation pattern induced by surface waves is developed. This comprehensive theoretical model, based on Biot's theory, takes into account soil deformations, volume change and pore-water flow. The calculations indicate that for the stiffness ratio G/E'w ≥ 100, the vertical distribution of the pore pressure becomes very close to the Moshagen & Tørum (1975 approach, when the soil is rigid and the fluid is incompressible.     The theoretical results of the paper have been compared with the experimental data collected during the laboratory experiment in the Large Wave Channel in Hannover (see Massel et al. 2004 and showed very good agreement. The apparent bulk modulus of pore water was not determined in the experiment but was estimated from the best fit of the experimental pore-water pressure with the theoretical one. In the paper only a horizontal bottom is considered and the case of an undulating bottom will be dealt with in another paper.

  6. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity

    Science.gov (United States)

    Leip, Adrian; Billen, Gilles; Garnier, Josette; Grizzetti, Bruna; Lassaletta, Luis; Reis, Stefan; Simpson, David; Sutton, Mark A.; de Vries, Wim; Weiss, Franz; Westhoek, Henk

    2015-11-01

    Livestock production systems currently occupy around 28% of the land surface of the European Union (equivalent to 65% of the agricultural land). In conjunction with other human activities, livestock production systems affect water, air and soil quality, global climate and biodiversity, altering the biogeochemical cycles of nitrogen, phosphorus and carbon. Here, we quantify the contribution of European livestock production to these major impacts. For each environmental effect, the contribution of livestock is expressed as shares of the emitted compounds and land used, as compared to the whole agricultural sector. The results show that the livestock sector contributes significantly to agricultural environmental impacts. This contribution is 78% for terrestrial biodiversity loss, 80% for soil acidification and air pollution (ammonia and nitrogen oxides emissions), 81% for global warming, and 73% for water pollution (both N and P). The agriculture sector itself is one of the major contributors to these environmental impacts, ranging between 12% for global warming and 59% for N water quality impact. Significant progress in mitigating these environmental impacts in Europe will only be possible through a combination of technological measures reducing livestock emissions, improved food choices and reduced food waste of European citizens.

  7. Modeling the stream water nitrate dynamics in a 60,000-km2 European catchment, the Garonne, southwest France.

    Science.gov (United States)

    Tisseuil, Clément; Wade, Andrew J; Tudesque, Loïc; Lek, Sovan

    2008-01-01

    The spatial and temporal dynamics in the stream water NO(3)-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byråns Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed under the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO(3)-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distributed catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO(3)-N patterns at large spatial (>300 km(2)) and temporal (> or = monthly) scales using available national datasets.

  8. Molecular dynamics of equilibrium and pressure-driven transport properties of water through LTA-type zeolites.

    Science.gov (United States)

    Turgman-Cohen, Salomon; Araque, Juan C; Hoek, Eric M V; Escobedo, Fernando A

    2013-10-08

    We consider an atomistic model to investigate the flux of water through thin Linde type A (LTA) zeolite membranes with differing surface chemistries. Using molecular dynamics, we have studied the flow of water under hydrostatic pressure through a fully hydrated LTA zeolite film (~2.5 nm thick) capped with hydrophilic and hydrophobic moieties. Pressure drops in the 50-400 MPa range were applied across the membrane, and the flux of water was monitored for at least 15 ns of simulation time. For hydrophilic membranes, water molecules adsorb at the zeolite surface, creating a highly structured fluid layer. For hydrophobic membranes, a depletion of water molecules occurs near the water/zeolite interface. For both types of membranes, the water structure is independent of the pressure drop established in the system and the flux through the membranes is lower than that observed for the bulk zeolitic material; the latter allows an estimation of surface barrier effects to pressure-driven water transport. Mechanistically, it is observed that (i) bottlenecks form at the windows of the zeolite structure, preventing the free flow of water through the porous membrane, (ii) water molecules do not move through a cage in a single-file fashion but rather exhibit a broad range of residence times and pronounced mixing, and (iii) a periodic buildup of a pressure difference between inlet and outlet cages takes place which leads to the preferential flow of water molecules toward the low-pressure cages.

  9. Molecular Dynamics of Equilibrium and Pressure-Driven Transport Properties of Water through LTA-Type Zeolites

    KAUST Repository

    Turgman-Cohen, Salomon

    2013-10-08

    We consider an atomistic model to investigate the flux of water through thin Linde type A (LTA) zeolite membranes with differing surface chemistries. Using molecular dynamics, we have studied the flow of water under hydrostatic pressure through a fully hydrated LTA zeolite film (∼2.5 nm thick) capped with hydrophilic and hydrophobic moieties. Pressure drops in the 50-400 MPa range were applied across the membrane, and the flux of water was monitored for at least 15 ns of simulation time. For hydrophilic membranes, water molecules adsorb at the zeolite surface, creating a highly structured fluid layer. For hydrophobic membranes, a depletion of water molecules occurs near the water/zeolite interface. For both types of membranes, the water structure is independent of the pressure drop established in the system and the flux through the membranes is lower than that observed for the bulk zeolitic material; the latter allows an estimation of surface barrier effects to pressure-driven water transport. Mechanistically, it is observed that (i) bottlenecks form at the windows of the zeolite structure, preventing the free flow of water through the porous membrane, (ii) water molecules do not move through a cage in a single-file fashion but rather exhibit a broad range of residence times and pronounced mixing, and (iii) a periodic buildup of a pressure difference between inlet and outlet cages takes place which leads to the preferential flow of water molecules toward the low-pressure cages. © 2013 American Chemical Society.

  10. European experience on air and water pollution control: monitoring network and warning station

    Energy Technology Data Exchange (ETDEWEB)

    Aflalo, Sergio S. [Groupe Environnement S.A., Poissy (France)

    1993-12-31

    After a review of the energy consumption and pollutants emitted in the European Community, especially those concerning the `green house effect`, the author proceeded a summary of the actual legislation and Europeans directives, and also, the Best Available Technology for reducing air pollution is discussed. Original Air Quality monitoring networks performed by Environnement SA are described including measurements obtained around Paris and other areas of France. 7 refs., 11 figs.

  11. Blood pressure and risk of renal cell carcinoma in the European prospective investigation into cancer and nutrition

    DEFF Research Database (Denmark)

    Weikert, Steffen; Boeing, Heiner; Pischon, Tobias

    2007-01-01

    Elevated blood pressure has been implicated as a risk factor for renal cell carcinoma (RCC), but prospective studies were confined to men and did not consider the effect of antihypertensive medication. The authors examined the relation among blood pressure, antihypertensive medication, and RCC in...

  12. Effects of changes in water salinity upon exercise and cardiac performance in the European seabass ( Dicentrarchus labrax )

    DEFF Research Database (Denmark)

    Chatelier, A.; McKenzie, David; Claireaux, G.

    2005-01-01

    The European seabass is an active euryhaline teleost that migrates and forages in waters of widely differing salinities. Oxygen uptake (M-O2) was measured in seabass (average mass and forklength 510 g and 34 cm, respectively) during exercise at incremental swimming speeds in a tunnel respirometer...... in seawater (SW) at a salinity of 30 parts per thousand and temperature of 14 degrees C, and their maximal sustainable (critical) swimming speed (U-crit) determined. Cardiac output (Q) was measured via an ultrasound flow probe on their ventral aorta. The fish were then exposed to acute reductions in water...... performance. This was linked to an exceptional capacity to maintain plasma osmolality and tissue water content unchanged following all salinity challenges. This extraordinary adaptation would allow the seabass to maintain skeletal and cardiac muscle function while migrating through waters of widely differing...

  13. Impact of climate change and anthropogenic pressure on the water resources of India: challenges in management

    Science.gov (United States)

    Shadananan Nair, K.

    2016-10-01

    Freshwater resources of India are getting fast degraded and depleted from the changing climate and pressure of fast rising population. Changing intensity and seasonality of rainfall affect quantity and quality of water. Most of the rivers are polluted far above safety limits from the untreated domestic, industrial and agricultural effluents. Changes in the intensity, frequency and tracks of storms salinate coastal aquifers. Aquifers are also under the threat from rising sea level. Groundwater in urban limits and industrial zones are far beyond safety limits. Large-scale destruction of wetlands for industries and residential complexes has affected the quality of surface and groundwater resources in most parts of India. Measures to maintain food security and the new developments schemes such as river linking will further deteriorate the water resources. Falling water availability leads to serious health issues and various socio-economic issues. India needs urgent and appropriate adaptation strategies in the water sector.

  14. Impact of climate change and anthropogenic pressure on the water resources of India: challenges in management

    Directory of Open Access Journals (Sweden)

    K. Shadananan Nair

    2016-10-01

    Full Text Available Freshwater resources of India are getting fast degraded and depleted from the changing climate and pressure of fast rising population. Changing intensity and seasonality of rainfall affect quantity and quality of water. Most of the rivers are polluted far above safety limits from the untreated domestic, industrial and agricultural effluents. Changes in the intensity, frequency and tracks of storms salinate coastal aquifers. Aquifers are also under the threat from rising sea level. Groundwater in urban limits and industrial zones are far beyond safety limits. Large-scale destruction of wetlands for industries and residential complexes has affected the quality of surface and groundwater resources in most parts of India. Measures to maintain food security and the new developments schemes such as river linking will further deteriorate the water resources. Falling water availability leads to serious health issues and various socio-economic issues. India needs urgent and appropriate adaptation strategies in the water sector.

  15. Interfacing systems LOCA (loss-of-coolant accidents): Pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bozoki, G.; Kohut, P.; Fitzpatrick, R.

    1989-02-01

    This report summarizes a study performed by Brookhaven National Laboratory for the Office of Nuclear Regulatory Research, Reactor and Plant Safety Issues Branch, Division of Reactor and Plant Systems, US Nuclear Regulatory Commission. This study was requested by the NRC in order to provide a technical basis for the resolution of Generic Issue 105 ''Interfacing LOCA at LWRs.'' This report deals with pressurized water reactors (PWRs). A parallel report was also accomplished for boiling water reactors. This study focuses on three representative PWRs and extrapolates the plant-specific findings for their generic applicability. In addition, a generic analysis was performed to investigate the cost-benefit aspects of imposing a testing program that would require some minimum level of leak testing of the pressure isolation valves on plants that presently have no such requirements. 28 refs., 31 figs., 64 tabs.

  16. TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liles, D.R.; Mahaffy, J.H.

    1984-02-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided.

  17. Welding residual stress distributions for dissimilar metal nozzle butt welds in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Soo; Kim, Ju Hee; Bae, Hong Yeol; OH, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyungsoo [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Song, Tae Kwang [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-02-15

    In pressurized water nuclear reactors, dissimilar metal welds are susceptible to primary water stress corrosion cracking. To access this problem, accurate estimation of welding residual stresses is important. This paper provides general welding residual stress profiles in dissimilar metal nozzle butt welds using finite element analysis. By introducing a simplified shape for dissimilar metal nozzle butt welds, changes in the welding residual stress distribution can be seen using a geometry variable. Based on the results, a welding residual stress profile for dissimilar metal nozzle butt welds is proposed that modifies the existing welding residual stress profile for austenitic pipe butt welds.

  18. Pressure induced by the interaction of water waves with nearly equal frequencies and nearly opposite directions

    Directory of Open Access Journals (Sweden)

    L. Pellet

    2017-05-01

    Full Text Available We present second-order expressions for the free-surface elevation, velocity potential and pressure resulting from the interaction of surface waves in water of arbitrary depth. When the surface waves have nearly equal frequencies and nearly opposite directions, a second-order pressure can be felt all the way to the sea bottom. There are at least two areas of applications: reflective structures and microseisms. Microseisms generated by water waves in the ocean are small vibrations of the ground resulting from pressure oscillations associated with the coupling of ocean surface gravity waves and the sea floor. They are recorded on land-based seismic stations throughout the world and they are divided into primary and secondary types, as a function of spectral content. Secondary microseisms are generated by the interaction of surface waves with nearly equal frequencies and nearly opposite directions. The efficiency of microseism generation thus depends in part on ocean wave frequency and direction. Based on the second-order expressions for the dynamic pressure, a simple theoretical analysis that quantifies the degree of nearness in amplitude, frequency, and incidence angle, which must be reached to observe the phenomenon, is presented.

  19. The flooding incident at the Aagesta pressurized heavy water nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Dahlgren, C. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1996-03-01

    This work is an independent investigation of the consequences of the flooding incident at the Aagesta HPWR, Stockholm in May 1969. The basis for the report is an incident in which, due to short circuits in the wiring because of flooding water, the ECCS is momentarily subjected to a pressure much higher than designed for. The hypothetical scenario analyzed here is the case in which the ECCS breaks due to the high pressure. As a consequence of the break, the pressure and the water level in the reactor vessel decrease. The report is divided into three parts; First the Aagesta HPWR is described as well as the chronology of the incident, an analysis of the effects of a hypothetical break in the ECCS is then developed. The second part is a scoping analysis of the incident, modeling the pressure decrease and mass flow rate out of the break. The heat-up of the core, and the core degradation was modeled as well. The third part is formed by a RELAP5/MOD3.1 modeling of the Aagesta HPWR. 18 refs.

  20. European perspectives on regional estimates of standing water bodies and the relevance of man-made ponds

    Science.gov (United States)

    Terasmaa, Jaanus; Bartout, Pascal; Marzecova, Agata; Touchart, Laurent; Koff, Tiiu; Choffel, Quentin; Kapanen, Galina; Maleval, Véronique; Millot, Camille; Qsair, Zoubida; Vandel, Egert

    2015-04-01

    Until recently, the small water bodies have been disregarded in the environmental management and protection policies. For example, the European Water Framework Directive 2000/60/EC proposes the threshold surface area of water bodies for typology and reporting as 50 ha. The inventories on state level or scientific studies took into account smaller water bodies (e.g. inventories of lakes and water bodies. Although with differences in the total counts and in the statistical estimates of abundance-size relationship, these recent global estimates reveal the quantitative importance of the terrestrial standing water bodies in the global hydrology (Downing et al., 2006; Verpoorter et al., 2014). Yet, our analysis of the abundance and distribution EU water bodies suggest that these global counts underrepresents the hydrologically complex terrain of the European territory. One of the main limits is the high cutoff limit that excludes small water bodies below ~0.2 ha. For example, in France, Bartout and Touchart (2013) report that including water bodies below 0.01 ha in the estimates resulted in 16 times higher number of water bodies with the surface area one-third higher than officially registered inventories. Also, in Estonia, the water bodies with a surface area below 1 ha are almost 50 times more abundant than those above 1 ha and 92% of all standing water bodies are smaller than 0.2 ha. Using the OpenStreetMap database we will discuss the differences between global inventories and EU-level analysis. We will show the alternative regional estimates of water bodies with the surface size threshold limit 0.01 ha which will illustrate the quantitative importance of very small often man-made ponds, which are however, abundant cultural heritage in many parts of Europe. Secondly, by comparing detailed national inventories compiled for France and Estonia, we will introduce usefulness of the the 'local to global' approach in which the local databases may significantly strengthen

  1. Borehole water level response to barometric pressure as an indicator of aquifer vulnerability

    OpenAIRE

    Hussein, MEA; Odling, NE; Clark, RA

    2013-01-01

    The response of borehole water levels to barometric pressure changes in semiconfined aquifers can be used to determine barometric response functions from which aquifer and confining layer properties can be obtained. Following earlier work on barometric response functions and aquifer confinement, we explore the barometric response function as a tool to improve the assessment of groundwater vulnerability in semiconfined aquifers, illustrated through records from two contrasting boreholes in the...

  2. REFERENCE ON THERMOPHYSICAL PROPERTIES: DENSITY AND VISCOSITY OF WATER FOR ATMOSPHERIC PRESSURE

    Directory of Open Access Journals (Sweden)

    Elin Yusibani

    2016-09-01

    Full Text Available A reference on thermophysical properties, density and viscosity, for water at atmospheric pressure has been developed in MS Excel (as a macros. Patterson’s density equations and Kestin’s viscosity equations have been chosen as a basic equation in the VBA programming as a user-defined function. These results have been compared with REFPROF as a wellknow standart reference

  3. Optimal pressure sensor placement in water distribution networks minimizing leak location uncertainty

    OpenAIRE

    Nejjari, Fatiha; Sarrate, Ramon; Blesa, Joaquim

    2015-01-01

    In this paper an optimal sensor placement strategy based on pressure sensitivity matrix analysis and an exhaustive search strategy that maximizes some diagnosis specifications for a water distribution network is presented. An average worst leak expansion distance as a new leak location performance measure has been proposed. This metric is later used to assess the leak location uncertainty provided by a sensor configuration. The method is combined with a clustering technique in order to reduce...

  4. Water ingestion affects orthostatic challenge-induced blood pressure and heart rate responses in young healthy subjects: gender implications.

    Science.gov (United States)

    Olatunji, L A; Aaron, A O; Micheal, O S; Oyeyipo, I P

    2011-11-23

    Evidence exists that women have lower orthostatic tolerance than men during quiescent standing. Water ingestion has been demonstrated to improve orthostatic tolerance in patients with severe autonomic dysfunction. We therefore sought to test the hypothesis that water ingestion would improve orthostatic tolerance in healthy young women more than in aged-matched men. Thirty seven (22 men and 15 women) healthy subjects aged 22.5± 1.7 and 21.5±1.4 (means±SD) respectively, ingested 50ml (control) and 500ml of water 40min before orthostatic challenge on two separate days of appointment in a randomized controlled, cross-over design. Seated and standing blood pressure and heart rate were determined. Orthostatic tolerance was assessed as the time to presyncope during standing. Ingesting 500ml of water significantly improves orthostatic tolerance by 22% (32.0 ± 5.2 vs 26.2 ± 2.4min; pwater, seated systolic blood pressure, diastolic blood pressure, pulse pressure and mean arterial pressure rose significantly in men while only systolic blood pressure and pulse pressure rose significantly in women. However ingesting 500ml of water did not have significant effect on seated heart rate in both men and women. Ingestion of 500ml of water significantly attenuated both the orthostatic challenge-induced increased heart rate and decreased pulse pressure responses especially in women. Diastolic blood pressure tended to be positively correlated with orthostatic tolerance strongly in men than in women. Pulse pressure correlated positively while heart rate correlated negatively to orthostatic tolerance in women but not in men independent of other correlates. Water ingestion is associated with orthostatic tolerance strongly in women but weakly in men independent of other correlates. In conclusion, the findings in the present study demonstrated that water ingestion caused improvement strongly in young women than in young men. This improvement is associated with increased pulse pressure

  5. Evaluation of low degree polynomial kernel support vector machines for modelling Pore-water pressure responses

    Directory of Open Access Journals (Sweden)

    Babangida Nuraddeen Muhammad

    2016-01-01

    Full Text Available Pore-water pressure (PWP is influenced by climatic changes, especially rainfall. These changes may affect the stability of, particularly unsaturated slopes. Thus monitoring the changes in PWP resulting from climatic factors has become an important part of effective slope management. However, this monitoring requires field instrumentation program, which is resource and labour expensive. Recently, soft computing modelling has become an alternative. Low degree polynomial kernel support vector machine (SVM was evaluated in modelling the PWP changes. The developed model used pore-water pressure and rainfall data collected from an instrumented slope. Wrapper technique was used to select input features and k-fold cross validation was used to calibrate the model parameters. The developed model showed great promise in modelling the pore-water pressure changes. High correlation, with coefficient of determination of 0.9694 between the predicted and observed changes was obtained. The one degree polynomial SVM model yielded competitive result, and can be used to provide lead time records of PWP which can aid in better slope management.

  6. Acute combined pressure and temperature exposures on a shallow-water crustacean: novel insights into the stress response and high pressure neurological syndrome.

    Science.gov (United States)

    Morris, J P; Thatje, S; Ravaux, J; Shillito, B; Fernando, D; Hauton, C

    2015-03-01

    Little is known about the ecological and physiological processes governing depth distribution limits in species. Temperature and hydrostatic pressure are considered to be two dominant factors. Research has shown that some marine ectotherms are shifting their bathymetric distributions in response to rapid anthropogenic ocean surface warming. Shallow-water species unable to undergo latitudinal range shifts may depend on bathymetric range shifts to seek refuge from warming surface waters. As a first step in constraining the molecular basis of pressure tolerance in shallow water crustaceans, we examined differential gene expression in response to acute pressure and temperature exposures in juveniles of the shallow-water shrimp Palaemonetes varians. Significant increases in the transcription of genes coding for an NMDA receptor-regulated protein, an ADP ribosylation factor, β-actin, two heat shock protein 70 kDa isoforms (HSP70), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were found in response to elevated pressure. NMDA receptors have been implicated in pathways of excitotoxic damage to neurons and the onset of high pressure neurological syndrome (HPNS) in mammals. These data indicate that the sub-lethal effects of acute barotrauma are associated with transcriptional disturbances within the nervous tissue of crustaceans, and cellular macromolecular damage. Such transcriptional changes lead to the onset of symptoms similar to that described as HPNS in mammals, and may act as a limit to shallow water organisms' prolonged survival at depth. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Environmental Levels and Trends of 1,2-dichloroethane, vinyl chloride and chloroform in water, sediment and biota for the European and Arctic regions: literature study

    NARCIS (Netherlands)

    Korytar, P.; Leslie, H.A.

    2005-01-01

    Data on concentrations of chloroform, 1,2-dichloroethane and vinyl chloride in European and Arctic waters, sediments and biota were collected from scientific literature and monitoring programmes for the period 1980–2005 and are presented in this report.

  8. Plasma-water interactions at atmospheric pressure in a dc microplasma

    Science.gov (United States)

    Patel, Jenish; Němcová, Lucie; Mitra, Somak; Graham, William; Maguire, Paul; Švrček, Vladimir; Mariotti, Davide

    2013-09-01

    Plasma-liquid interactions generate a variety of chemical species that are very useful for the treatment of many materials and that makes plasma-induced liquid chemistry (PiLC) very attractive for industrial applications. The understanding of plasma-induced chemistry with water can open up a vast range of plasma-activated chemistry in liquid with enormous potential for the synthesis of chemical compounds, nanomaterials synthesis and functionalization. However, this basic understanding of the chemistry occurring at the plasma-liquid interface is still poor. In the present study, different properties of water are analysed when processed by plasma at atmospheric-pressure with different conditions. In particular, pH, temperature and conductivity of water are measured against current and time of plasma processing. We also observed the formation of molecular oxygen (O2) and hydrogen peroxide (H2O2) for the same plasma conditions. The current of plasma processing was found to affect the water properties and the production of hydrogen peroxide in water. The relation between the number of electrons injected from plasma in water and the number of H2O2 molecules was established and based on these results a scenario of reactions channels activated by plasma-water interface is concluded.

  9. A new classification scheme of European cold-water coral habitats: Implications for ecosystem-based management of the deep sea

    Science.gov (United States)

    Davies, J. S.; Guillaumont, B.; Tempera, F.; Vertino, A.; Beuck, L.; Ólafsdóttir, S. H.; Smith, C. J.; Fosså, J. H.; van den Beld, I. M. J.; Savini, A.; Rengstorf, A.; Bayle, C.; Bourillet, J.-F.; Arnaud-Haond, S.; Grehan, A.

    2017-11-01

    Cold-water corals (CWC) can form complex structures which provide refuge, nursery grounds and physical support for a diversity of other living organisms. However, irrespectively from such ecological significance, CWCs are still vulnerable to human pressures such as fishing, pollution, ocean acidification and global warming Providing coherent and representative conservation of vulnerable marine ecosystems including CWCs is one of the aims of the Marine Protected Areas networks being implemented across European seas and oceans under the EC Habitats Directive, the Marine Strategy Framework Directive and the OSPAR Convention. In order to adequately represent ecosystem diversity, these initiatives require a standardised habitat classification that organises the variety of biological assemblages and provides consistent and functional criteria to map them across European Seas. One such classification system, EUNIS, enables a broad level classification of the deep sea based on abiotic and geomorphological features. More detailed lower biotope-related levels are currently under-developed, particularly with regards to deep-water habitats (>200 m depth). This paper proposes a hierarchical CWC biotope classification scheme that could be incorporated by existing classification schemes such as EUNIS. The scheme was developed within the EU FP7 project CoralFISH to capture the variability of CWC habitats identified using a wealth of seafloor imagery datasets from across the Northeast Atlantic and Mediterranean. Depending on the resolution of the imagery being interpreted, this hierarchical scheme allows data to be recorded from broad CWC biotope categories down to detailed taxonomy-based levels, thereby providing a flexible yet valuable information level for management. The CWC biotope classification scheme identifies 81 biotopes and highlights the limitations of the classification framework and guidance provided by EUNIS, the EC Habitats Directive, OSPAR and FAO; which largely

  10. First Record of Anisakis simplex Third-Stage Larvae (Nematoda, Anisakidae in European Hake Merluccius merluccius lessepsianus in Egyptian Water

    Directory of Open Access Journals (Sweden)

    Yasmin Abou-Rahma

    2016-01-01

    Full Text Available The prevalence of infection and the identification of anisakid larvae in European hake Merluccius merluccius lessepsianus from Hurghada City, Red Sea Governorate, Egypt, were investigated. Fish samples were collected during the period of February and November 2014. Twenty-two (36.66% out of sixty examined fish specimens were found to be naturally infected with Anisakis type I larvae mostly found as encapsulated larvae in visceral organs. There was a positive relationship between host length/weight and prevalence of infection. Based on morphological, morphometric, and molecular analyses, these nematodes were identified as third-stage larvae of Anisakis simplex. The present study was considered as the first report of anisakid larvae from European hake in the Egyptian water.

  11. The Atlantic blue crab Callinectes sapidus in southern European coastal waters: Distribution, impact and prospective invasion management strategies.

    Science.gov (United States)

    Mancinelli, Giorgio; Chainho, Paula; Cilenti, Lucrezia; Falco, Silvia; Kapiris, Kostas; Katselis, George; Ribeiro, Filipe

    2017-06-15

    The native distribution of the blue crab Callinectes sapidus in the western Atlantic extends from Nova Scotia to Argentina. Introduced to Europe at the beginning of the 20th century, it is currently recorded almost ubiquitously in the Mediterranean and in the Black Sea. An overview of the occurrence, abundance, and ecological impact of the species in southern European waters is provided; additionally, we present a pragmatic assessment of its management scenarios, explicitly considering the dual nature of C. sapidus as both an invasive species and a fishery resource. We emphasise that the ongoing expansion of C. sapidus in the region may represent a stimulating challenge for the identification and implementation of future strategies in the management of invasive crustaceans. The impact of the invader could be converted into an enhancement of the services delivered by southern European coastal ecosystems, while mitigation costs could be transformed into profits for local populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. First Record of Anisakis simplex Third-Stage Larvae (Nematoda, Anisakidae) in European Hake Merluccius merluccius lessepsianus in Egyptian Water

    Science.gov (United States)

    Abou-Rahma, Yasmin; Abdel-Gaber, Rewaida; Kamal Ahmed, Amira

    2016-01-01

    The prevalence of infection and the identification of anisakid larvae in European hake Merluccius merluccius lessepsianus from Hurghada City, Red Sea Governorate, Egypt, were investigated. Fish samples were collected during the period of February and November 2014. Twenty-two (36.66%) out of sixty examined fish specimens were found to be naturally infected with Anisakis type I larvae mostly found as encapsulated larvae in visceral organs. There was a positive relationship between host length/weight and prevalence of infection. Based on morphological, morphometric, and molecular analyses, these nematodes were identified as third-stage larvae of Anisakis simplex. The present study was considered as the first report of anisakid larvae from European hake in the Egyptian water. PMID:26925257

  13. Hydrostatic pressure effect on PNIPAM cononsolvency in water-methanol solutions.

    Science.gov (United States)

    Pica, Andrea; Graziano, Giuseppe

    2017-12-01

    When methanol is added to water at room temperature and 1atm, poly (N-isopropylacrylamide), PNIPAM, undergoes a coil-to-globule collapse transition. This intriguing phenomenon is called cononsolvency. Spectroscopic measurements have shown that application of high hydrostatic pressure destroys PNIPAM cononsolvency in water-methanol solutions. We have developed a theoretical approach that identifies the decrease in solvent-excluded volume effect as the driving force of PNIPAM collapse on increasing the temperature. The same approach indicates that cononsolvency, at room temperature and P=1atm, is caused by the inability of PNIPAM to make all the attractive energetic interactions that it could be engaged in, due to competition between water and methanol molecules. The present analysis suggests that high hydrostatic pressure destroys cononsolvency because the coil state becomes more compact, and the quantity measuring PNIPAM-solvent attractions increases in magnitude due to the solution density increase, and the ability of small water molecules to substitute methanol molecules on PNIPAM surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Pellet-Cladding Mechanical Interaction Failure Threshold for Reactivity Initiated Accidents for Pressurized Water Reactors and Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Carl E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geelhood, Kenneth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-06-01

    Pacific Northwest National Laboratory (PNNL) has been requested by the U.S. Nuclear Regulatory Commission to evaluate the reactivity initiated accident (RIA) tests that have recently been performed in the Nuclear Safety Research Reactor (NSRR) and CABRI (French research reactor) on uranium dioxide (UO2) and mixed uranium and plutonium dioxide (MOX) fuels, and to propose pellet-cladding mechanical interaction (PCMI) failure thresholds for RIA events. This report discusses how PNNL developed PCMI failure thresholds for RIA based on least squares (LSQ) regression fits to the RIA test data from cold-worked stress relief annealed (CWSRA) and recrystallized annealed (RXA) cladding alloys under pressurized water reactor (PWR) hot zero power (HZP) conditions and boiling water reactor (BWR) cold zero power (CZP) conditions.

  15. Delivery and fate of fluvial water and sediment to the sea: a marine geologist's view of European rivers

    Directory of Open Access Journals (Sweden)

    John D. Milliman

    2001-12-01

    resulted in increased shoreline erosion. Decreased nutrient fluxes almost certainly will affect water quality in European coastal waters, and decreased silicate delivery by some dammed rivers may result in proliferation of new (and perhaps harmful estuarine and coastal ecosystems. Everything points to further changes as European rivers and their drainage basins continue to change in the coming years.

  16. Variability in the water footprint of arable crop production across European regions

    NARCIS (Netherlands)

    Gobin, Anne; Kersebaum, Kurt Christian; Eitzinger, Josef; Trnka, Miroslav; Hlavinka, Petr; Takáč, Jozef; Kroes, Joop; Ventrella, Domenico; Marta, Dalla Anna; Deelstra, Johannes

    2017-01-01

    Crop growth and yield are affected by water use during the season: the green water footprint (WF) accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO's water balance model "Aquacrop" at field level. We collected

  17. Water Consumption in European Children: Associations with Intake of Fruit Juices, Soft Drinks and Related Parenting Practices.

    Science.gov (United States)

    Mantziki, Krystallia; Renders, Carry M; Seidell, Jaap C

    2017-05-31

    Background : High intake of fruit juices and soft drinks contributes to excessive weight gain and obesity in children. Furthermore, parenting practices play an important role in the development of children's dietary habits. The way parents play this role in the development of their children's choices of beverages is still unclear. Objectives : To study the associations: (1) of both fruit juices and soft drinks consumption with water consumption of children and (2) The associations between parenting practices towards fruit juices and soft drinks and water consumption of children. Design : Cross-sectional data from 6 to 8 year old children from seven European communities ( n = 1187) were collected. Associations among fruit juices, soft drinks, the respective parenting practices and the child's water consumption were assessed by parental questionnaires. Results : The consumption of water was inversely associated with that of soft drinks but not with the consumption of fruit juices. The child's water intake was favorably influenced when stricter parenting practices towards soft drinks were adopted (e.g., less parental allowance, low home availability and high parental self-efficacy in managing intake). There was less influence observed of parenting practices towards fruit juices. Fruit juices were consumed more often than soft drinks. Conclusions : Low consumption of soft drinks-and not of fruit juices-was associated with high water consumption in children in the current study. Moreover, parenting practices towards both fruit juices and soft drinks were associated with the water intake of the children, irrespective of their socio-economic status.

  18. Structure and Dynamics of Low-Density and High-Density Liquid Water at High Pressure.

    Science.gov (United States)

    Fanetti, Samuele; Lapini, Andrea; Pagliai, Marco; Citroni, Margherita; Di Donato, Mariangela; Scandolo, Sandro; Righini, Roberto; Bini, Roberto

    2014-01-02

    Liquid water has a primary role in ruling life on Earth in a wide temperature and pressure range as well as a plethora of chemical, physical, geological, and environmental processes. Nevertheless, a full understanding of its dynamical and structural properties is still lacking. Water molecules are associated through hydrogen bonds, with the resulting extended network characterized by a local tetrahedral arrangement. Two different local structures of the liquid, called low-density (LDW) and high-density (HDW) water, have been identified to potentially affect many different chemical, biological, and physical processes. By combining diamond anvil cell technology, ultrafast pump-probe infrared spectroscopy, and classical molecular dynamics simulations, we show that the liquid structure and orientational dynamics are intimately connected, identifying the P-T range of the LDW and HDW regimes. The latter are defined in terms of the speeding up of the orientational dynamics, caused by the increasing probability of breaking and reforming the hydrogen bonds.

  19. Feasibility study of underground energy storage using high-pressure, high-temperature water. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, J.L.; Frost, G.P.; Gore, L.A.; Hammond, R.P.; Rawson, D.L.; Ridgway, S.L.

    1977-01-01

    A technical, operational and economic feasibility study on the storage of energy as heated high pressure water in underground cavities that utilize the rock overburden for containment is presented. Handling peak load requirements of electric utility power networks is examined in some detail. The cavity is charged by heating water with surplus steaming capacity during periods of low power requirement. Later this hot water supplies steam to peaking turbines when high load demands must be met. This system can be applied to either new or existing power plants of nuclear or fossil fuel type. The round trip efficiency (into storage and back) is higher than any other system - over 90%. Capital costs are competitive and the environmental impact is quite benign. Detailed installation and design problems are studied and costs are estimated. The continental United States is examined for the most applicable geology. Formations favorable for these large cavities exist in widespread areas.

  20. Oxidation of uranium in low partial pressures of oxygen and water vapor at 100/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Weirick, L J

    1984-06-01

    Oxygen isotope studies indicate that a previously proposed theory describing the oxidation of uranium is incorrect. This theory had proposed that the uranium reacted directly with water vapor to form uranium dioxide and hydrogen and the hydrogen subsequently reacted with the free oxygen to form water. This study shows that oxygen reacts directly with uranium, the role of water vapor being to affect the uranium oxide structure which is formed. The reaction rate of uranium with water vapor in the absence of oxygen was linear and proportional to the water vapor pressure for water vapor pressures between 2 and 20 Torr. Hydrogen was produced by the reaction at a rate of almost two moles for every one mole of uranium dioxide formed. The oxide was identified as UO/sub 2/ /sub 0/. The reaction of uranium with water vapor in the presence of oxygen showed three separate regions of reaction response. In one region, at low oxygen pressure, the reaction was the same as with no oxygen, a second region at oxygen pressures between 0.05 and 1 Torr was a transition stage and in the third region, at oxygen pressures above 1 Torr, the reaction rate was linear and independent of both oxygen and water vapor pressure. The oxide formed was identified as nominally U/sub 4/O/sub 9/. Only a small amount of hydrogen was produced.

  1. Salinity of injection water and its impact on oil recovery absolute permeability, residual oil saturation, interfacial tension and capillary pressure

    Directory of Open Access Journals (Sweden)

    Mehdi Mohammad Salehi

    2017-06-01

    This paper presents laboratory investigation of the effect of salinity injection water on oil recovery, pressure drop, permeability, IFT and relative permeability in water flooding process. The experiments were conducted at the 80 °C and a net overburden pressure of 1700 psi using core sample. The results of this study have been shown oil recovery increases as the injected water salinity up to 200,000 ppm and appointment optimum salinity. This increase has been found to be supported by a decrease in the IFT. This effect caused a reduction in capillary pressure increasing the tendency to reduce the residual oil saturation.

  2. STUDY OF WATER HAMMERS IN THE FILLING OF THE SYSTEM OF PRESSURE COMPENSATION IN THE WATER-COOLED AND WATER-MODERATED POWER REACTORS

    Directory of Open Access Journals (Sweden)

    A. V. Korolyev

    2017-01-01

    Full Text Available The research presented in the article conforms to the severe accident that took place at the Three Mail Island nuclear power plant in the USA. The research is focused on improving the reliability of the pressure compensator that is an important equipment of the primary circuit. In order to simulate such a situation, the stand has been developed to simulate the design of the pressurizer of the PWR-440 reactor, in particular an elliptical shape of the upper lid which has a steam outlet pipe at the top of the construction that creates conditions for occurrence of such water hammers. For the experiments, an installation has been created that makes it possible to measure and record the water hammering that occur when the tanks are filled. Measurement of the amplitude of the water hammering was carried out by a specially developed piezoelectric sensor, and the registration – by a light-beam oscilloscope. The technique of carrying out the experiment is described and the results of an experimental study of the water hammers arising when the vessels are completely filled are presented. Quantitative data were obtained on the amplitudes of the hydraulic impacts depending on the rate of filling of the vessel and the diameter of the outlet, the maximum pressure of the hydraulic shock was 7–9 atm. Comparison of calculated and experimental data has been performed. The allowable discrepancy is explained by the calculated value of the system stiffness coefficient, which did not take into account the presence of welded seams in the tank that imparts the system with additional rigidity. The calculated relationships are obtained, that make it possible to estimate the amplitudes of the water hammers through the acceleration of the water level in front of the outlet from a vessel with an elliptical bottom. The possibility of a water hammer in the pressure compensator is demonstrated by experiment and by theoretical calculations. Based on the experimental data, a

  3. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure

    Science.gov (United States)

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu

    2017-01-01

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf water potential of −2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO2 concentration based on leaf gas exchange

  4. COMPARISON OF VENTED AND ABSOLUTE PRESSURE TRANSDUCERS FOR WATER-LEVEL MONITORING IN HANFORD SITE CENTRAL PLATEAU WELLS

    Energy Technology Data Exchange (ETDEWEB)

    MCDONALD JP

    2011-09-08

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The

  5. Introduction: achieving sustainable and adaptive fresh water management : Selective studies of international, European, Dutch and Chinese water law

    NARCIS (Netherlands)

    van Rijswick, Marleen; Wouters, Patricia

    2015-01-01

    China and Europe face serious water challenges. Europe has developed a comprehensive and adaptive legal framework for addressing water-related management issues. China continues to go forward with its water management schemes. While China and Europe may seem unlikely comparative settings, this

  6. Governance Strengths and Weaknesses to implement the Marine Strategy Framework Directive in European Waters

    DEFF Research Database (Denmark)

    Freire-Gibb, L. Carlos; Koss, Rebecca; Piotr, Margonski

    2014-01-01

    The ambitious Marine Strategy Framework Directive (MSFD) has been the focus of much marine research across Europe in the pursuit of achieving Good Environmental Status in the four European Union marine regions; Baltic Sea, Black Sea, Mediterranean Sea and North-east Atlantic. This research...

  7. Assessment of the water balance of European forests: a model study

    NARCIS (Netherlands)

    Salm, van der C.; Reinds, G.J.; Vries, de W.

    2004-01-01

    As part of the UN-ECE Intensive Monitoring Program, data on precipitation, throughfall and soil solution concentrations are measured on a regular basis in approximately 300 forest stands. These data were used to construct element budgets for European forests. To construct such budgets drainage

  8. Evaluation of an accident management strategy of emergency water injection using fire engines in a typical pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Soo-Yong Park

    2015-10-01

    Full Text Available Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

  9. Nonlinear Creep Model for Deep Rock under High Stress and High Pore Water Pressure Condition

    Directory of Open Access Journals (Sweden)

    Xie Yuanguang

    2016-05-01

    Full Text Available Conventional triaxial compression creep experiments for deep sandstone under high confining pressure and high pore water pressure were carried out, in order to predict the creep response of deep rock under these conditions. A nonlinear viscoelastic-plastic creep constitutive model was proposed based on the experimental results. The theory of component model was used as a basis for the formulation of this model. First, by using mathematical fitting and analogy, a new nonlinear viscous component was introduced based on the properties of the creep curves during the tertiary stage. Second, a timer component to judge whether the creep can get into the tertiary stage was presented. Finally, a nonlinear creep model was proposed. Results showed good agreement between theory curves from the nonlinear creep model and experimental data. This model can be applied to predict deep rock creep responses under high stress and high pore water pressure conditions. Hence, the obtained conclusions in this study are beneficial to deep rock engineering.

  10. Hydrothermal Treatment of Cellulose in Hot-Pressurized Water for the Production of Levulinic Acid

    Directory of Open Access Journals (Sweden)

    ASLI YUKSEL

    2016-12-01

    Full Text Available In this paper, hot-pressurized water, operating above boiling point and below critical point of water (374. 15 °C and 22.1 MPa, was used as a reaction medium for the decomposition of cellulose to high-value chemicals, such levulinic acid. Effects of reaction temperature, pressure, time, external oxidant type and concentration on the cellulose degradation and product distribution were evaluated. In order to compare the cellulose decomposition and yields of levulinic acid, experiments were performed with and without addition of oxidizing agents (H2SO4 and H2O2. Analysis of the liqueur was monitored by HPLC and GC-MS at different temperatures (150 - 280 °C, pressures (5-64 bars and reaction times (30 - 120 mins. Levulinic acid, 5-HMF and formic acid were detected as main products. 73% cellulose conversion was achieved with 38% levulinic acid yield when 125 mM of sulfuric acid was added to the reaction medium at 200 °C for 60 min reaction time.

  11. Existence for a global pressure formulation of water-gas flow in porous media

    Directory of Open Access Journals (Sweden)

    Brahim Amaziane

    2012-06-01

    Full Text Available We consider a model of water-gas flow in porous media with an incompressible water phase and a compressible gas phase. Such models appear in gas migration through engineered and geological barriers for a deep repository for radioactive waste. The main feature of this model is the introduction of a new global pressure and it is fully equivalent to the original equations. The system is written in a fractional flow formulation as a degenerate parabolic system with the global pressure and the saturation potential as the main unknowns. The major difficulties related to this model are in the nonlinear degenerate structure of the equations, as well as in the coupling in the system. Under some realistic assumptions on the data, including unbounded capillary pressure function and non-homogeneous boundary conditions, we prove the existence of weak solutions of the system. Furthermore, it is shown that the weak solution has certain desired properties, such as positivity of the saturation. The result is proved with the help of an appropriate regularization and a time discretization of the coupled system. We use suitable test functions to obtain a priori estimates and a compactness result in order to pass to the limit in nonlinear terms.

  12. Countercurrent Air-Water Flow in a Scale-Down Model of a Pressurizer Surge Line

    Directory of Open Access Journals (Sweden)

    Takashi Futatsugi

    2012-01-01

    Full Text Available Steam generated in a reactor core and water condensed in a pressurizer form a countercurrent flow in a surge line between a hot leg and the pressurizer during reflux cooling. Characteristics of countercurrent flow limitation (CCFL in a 1/10-scale model of the surge line were measured using air and water at atmospheric pressure and room temperature. The experimental results show that CCFL takes place at three different locations, that is, at the upper junction, in the surge line, and at the lower junction, and its characteristics are governed by the most dominating flow limitation among the three. Effects of inclination angle and elbows of the surge line on CCFL characteristics were also investigated experimentally. The effects of inclination angle on CCFL depend on the flow direction, that is, the effect is large for the nearly horizontal flow and small for the vertical flow at the upper junction. The presence of elbows increases the flow limitation in the surge line, whereas the flow limitations at the upper and lower junctions do not depend on the presence of elbows.

  13. Intraocular pressure dynamics with prostaglandin analogs: a clinical application of water-drinking test

    Directory of Open Access Journals (Sweden)

    Özyol P

    2016-07-01

    Full Text Available Pelin Özyol,1 Erhan Özyol,1 Ercan Baldemir2 1Ophthalmology Department, 2Biostatistics Department, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey Aim: To evaluate the clinical applicability of the water-drinking test in treatment-naive primary open-angle glaucoma patients. Methods: Twenty newly diagnosed primary open-angle glaucoma patients and 20 healthy controls were enrolled in this prospective study. The water-drinking test was performed at baseline and 6 weeks and 3 months after prostaglandin analog treatment. Peak and fluctuation of intraocular pressure (IOP measurements obtained with the water-drinking test during follow-up were analyzed. Analysis of variance for repeated measures and paired and unpaired t-tests were used for statistical analysis. Results: The mean baseline IOP values in patients with primary open-angle glaucoma were 25.1±4.6 mmHg before prostaglandin analog treatment, 19.8±3.7 mmHg at week 6, and 17.9±2.2 mmHg at month 3 after treatment. The difference in mean baseline IOP of the water-drinking tests was statistically significant (P<0.001. At 6 weeks of prostaglandin analog treatment, two patients had high peak and fluctuation of IOP measurements despite a reduction in baseline IOP. After modifying treatment, patients had lower peak and fluctuation of IOP values at month 3 of the study. Conclusion: Peak and fluctuation of IOP in response to the water-drinking test were lower with prostaglandin analogs compared with before medication. The water-drinking test can represent an additional benefit in the management of glaucoma patients, especially by detecting higher peak and fluctuation of IOP values despite a reduced mean IOP. Therefore, it could be helpful as a supplementary method in monitoring IOP in the clinical practice. Keywords: glaucoma, intraocular pressure, water-drinking test, prostaglandin analog, intra­ocular pressure fluctuation

  14. Societal Drivers of European Water Governance: A Comparison of Urban River Restoration Practices in France and Germany

    Directory of Open Access Journals (Sweden)

    Aude Zingraff-Hamed

    2017-03-01

    Full Text Available The European water governance took a decisive turn with the formulation of the Water Framework Directive (WFD, which demands the restoration of all water bodies that did not achieve sufficient ecological status. Urban rivers are particularly impaired by human activities and their restorations are motivated by multiple ecological and societal drivers, such as requirements of laws and legislation, and citizen needs for a better quality of life. In this study we investigated the relative influence of socio-political and socio-cultural drivers on urban river restorations by comparing projects of different policy contexts and cultural norms to cross-fertilize knowledge. A database of 75 projects in French and German major cities was compiled to apply (a a comparative statistical analysis of main project features, i.e., motivation, goals, measures, morphological status, and project date; and (b a qualitative textual analysis on project descriptions and titles. The results showed that despite a powerful European directive, urban river restoration projects still keep national specificities. The WFD drives with more intensity German, rather than French, urban river restoration. This study showed the limits of macro-level governance and the influence of microlevel governance driven by societal aspects such as nature perception and relationships between humans and rivers.

  15. Preliminary Study on the High Efficiency Supercritical Pressure Water-Cooled Reactor for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Yeong; Park, Jong Kyun; Cho, Bong Hyun and others

    2006-01-15

    This research has been performed to introduce a concept of supercritical pressure water cooled reactor(SCWR) in Korea The area of research includes core conceptual design, evaluation of candidate fuel, fluid systems conceptual design with mechanical consideration, preparation of safety analysis code, and construction of supercritical pressure heat transfer test facility, SPHINX, and preliminary test. As a result of the research, a set of tools for the reactor core design has been developed and the conceptual core design with solid moderator was proposed. The direct thermodynamic cycle has been studied to find a optimum design. The safety analysis code has also been adapted to supercritical pressure condition. A supercritical pressure CO2 heat transfer test facility has been constructed and preliminary test proved the facility works as expected. The result of this project will be good basis for the participation in the international collaboration under GIF GEN-IV program and next 5-year mid and long term nuclear research program of MOST. The heat transfer test loop, SPHINX, completed as a result of this project may be used for the power cycle study as well as further heat transfer study for the various geometries.

  16. An innovative technique for estimating water saturation from capillary pressure in clastic reservoirs

    Science.gov (United States)

    Adeoti, Lukumon; Ayolabi, Elijah Adebowale; James, Logan

    2017-11-01

    A major drawback of old resistivity tools is the poor vertical resolution and estimation of hydrocarbon when applying water saturation (Sw) from historical resistivity method. In this study, we have provided an alternative method called saturation height function to estimate hydrocarbon in some clastic reservoirs in the Niger Delta. The saturation height function was derived from pseudo capillary pressure curves generated using modern wells with complete log data. Our method was based on the determination of rock type from log derived porosity-permeability relationship, supported by volume of shale for its classification into different zones. Leverette-J functions were derived for each rock type. Our results show good correlation between Sw from resistivity based method and Sw from pseudo capillary pressure curves in wells with modern log data. The resistivity based model overestimates Sw in some wells while Sw from the pseudo capillary pressure curves validates and predicts more accurate Sw. In addition, the result of Sw from pseudo capillary pressure curves replaces that of resistivity based model in a well where the resistivity equipment failed. The plot of hydrocarbon pore volume (HCPV) from J-function against HCPV from Archie shows that wells with high HCPV have high sand qualities and vice versa. This was further used to predict the geometry of stratigraphic units. The model presented here freshly addresses the gap in the estimation of Sw and is applicable to reservoirs of similar rock type in other frontier basins worldwide.

  17. Heavy metals in precipitation waters under conditions of varied anthropopressure in typical of European low mountain regions

    Directory of Open Access Journals (Sweden)

    Rabajczyk A.

    2013-04-01

    Full Text Available The environment is a dynamic system, subject to change resulting from a variety of physicochemical factors, such as temperature, pressure, pH, redox potential and human activity. The quantity and variety of these determinants cause the inflow of substances into individual environmental elements to vary in both time and space, as well as in terms of substance types and quantities. The energy and matter flow in the environment determines its integrity, which means that the processes occurring in one element of the environment affect the others. A certain measure of the energy and matter flow is the migration of chemical substances in various forms from one place to another. In a particular geographical space, under natural conditions, a specific level of balance between individual processes appears; in areas subject to anthropopressure, the correlations are different. In small areas, varying deposition volumes and chemism of precipitation waters which reach the substratum directly can both be observed. The study area is similar in terms of geological origins as well as morphological, structural and physico-chemical properties, and is typical of European low mountain regions. A qualitative and quantitative study of wet atmospheric precipitation was conducted between February 2009 and May 2011 in the Bobrza river catchment in the Holy Cross (Świętokrzyskie Mountains (Poland, at three sampling sites of varying land development and distance from sources of various acidic-alkaline emissions. Field and laboratory work was conducted over 29 months, from February 2009 to May 2011. Atmospheric precipitation measurements were carried out in a continuous manner by means of a Hellman rain gauge (200cm2. The collecting surface was placed at ground level (0m AGL. The application of a collecting funnel and an adequately prepared polyethylene collecting can in the rain gauge enabled the measurement of precipitation volume and water sampling for chemical

  18. A numerical study on high-pressure water-spray cleaning for CSP reflectors

    Science.gov (United States)

    Anglani, Francesco; Barry, John; Dekkers, Willem

    2016-05-01

    Mirror cleaning for concentrated solar thermal (CST) systems is an important aspect of operation and maintenance (O&M), which affects solar field efficiency. The cleaning process involves soil removal by erosion, resulting from droplet impingement on the surface. Several studies have been conducted on dust accumulation and CSP plant reflectivity restoration, demonstrating that parameters such as nozzle diameter, jet impingement angle, interaxial distance between nozzles, standoff distance, water velocity, nozzle pressure and others factors influence the extent of reflectance restoration. In this paper we aim at identifying optimized cleaning strategies suitable for CST plants, able to restore mirror reflectance by high-pressure water-spray systems through the enhancement of shear stress over reflectors' surface. In order to evaluate the forces generated by water-spray jet impingement during the cleaning process, fluid dynamics simulations have been undertaken with ANSYS CFX software. In this analysis, shear forces represent the "critical phenomena" within the soil removal process. Enhancing shear forces on a particular area of the target surface, varying the angle of impingement in combination with the variation of standoff distances, and managing the interaxial distance of nozzles can increase cleaning efficiency. This procedure intends to improve the cleaning operation for CST mirrors reducing spotted surface and increasing particles removal efficiency. However, turbulence developed by adjacent flows decrease the shear stress generated on the reflectors surface. The presence of turbulence is identified by the formation of "fountain regions" which are mostly responsible of cleaning inefficiency. By numerical analysis using ANSYS CFX, we have modelled a stationary water-spray system with an array of three nozzles in line, with two angles of impingement: θ = 90° and θ = 75°. Several numerical tests have been carried out, varying the interaxial distance of

  19. Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Li-Hua Yu

    2015-09-01

    Full Text Available In recent years, water (R718 as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the characteristics at sub-atmospheric pressures, especially lower than 3 kPa (the saturation temperature is 24 °C. In this paper, the experimental research on water boiling heat transfer on a horizontal copper rod surface at 1.8–3.3 kPa is presented. Regression equations of the boiling heat transfer coefficient are obtained based on the experimental data, which are convenient for practical application.

  20. Relative Distribution of Water Clusters at Temperature (300-3000K) and Pressure (1-500MPa)

    CERN Document Server

    Ri, Yong-U; Sin, Kye-Ryong

    2016-01-01

    At 300-3000K and 1-500MPa, variations of relative contents for small water clusters (H2O)n (n=1~6) were calculated by using statistical mechanical methods. First, 9 kinds of small water clusters were selected and their structures were optimized by using ab initio method. In the wide range of temperature (300-3000K) and pressure (1-500MPa), their equilibrium constants of reactions for formation of 9 kinds of water clusters were determined by using molecular partition function. Next, changes of contents (molar fractions) as function of temperature and pressure were estimated. The obtained results for small water clusters can be used to interpret temperature-pressure dependency of the average number for the hydrogen bonds in water clusters and redistribution of the water clusters at the ultrasonic cavitation reactions.

  1. Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural network

    DEFF Research Database (Denmark)

    Papale, D.; Black, T Andrew; Carvalhais, Nuno

    2015-01-01

    Empirical modeling approaches are frequently used to upscale local eddy covariance observations of carbon, water, and energy fluxes to regional and global scales. The predictive capacity of such models largely depends on the data used for parameterization and identification of input......-output relationships, while prediction for conditions outside the training domain is generally uncertain. In this work, artificial neural networks (ANNs) were used for the prediction of gross primary production (GPP) and latent heat flux (LE) on local and European scales with the aim to assess the portion...

  2. Water quality assessment using satellite-derived chlorophyll-a within the European directives, in the southeastern Bay of Biscay.

    Science.gov (United States)

    Novoa, S; Chust, G; Sagarminaga, Y; Revilla, M; Borja, A; Franco, J

    2012-04-01

    The implementation of water quality European Directives requires an intensification of water quality monitoring, within the limits of the Exclusive Economic Zone. Remote sensing technologies can provide a valuable tool for frequent, synoptic, water-quality observations, over large areas. The aim of this study is to assess the ecological status of Basque coastal water bodies using satellite imagery from MODIS sensor, together with optical and chlorophyll-ain situ measurements. Thus, sea surface satellite-derived chl-a algorithms, the OC3 M, OC5 and a Local empirical algorithm, were compared against in situ measurements using satellite in situ match-ups, 90th Percentile (P90) monthly values for the 2005-2010 period. The OC5 algorithm corresponded most accurately with in situ measurements performed in the area, hence, it was selected. A P90 chlorophyll-a map was created with this algorithm to apply the classification scheme required by the directives. The classification of water bodies, based upon satellite-derived chlorophyll-a, could improve considerably the assessment of water quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. High Pressure Water Jet System Performance Assessment Project A-2A

    Energy Technology Data Exchange (ETDEWEB)

    FARWICK, C.C.

    1999-12-03

    Performance assessment for canister cleaning system in the KE Basin. Information obtained from this assessment will be used to design any additional equipment used to clean canisters. After thorough review of the design, maintenance history and operational characteristics of the 105 K East (KE) canister cleaning system, Bartlett recommends that the high pressure water jet system (HPWJS) be modified as outlined in section 5.0, and retained for future use. Further, it is recommended that Spent Nuclear Fuel (SNF) Project consider use of a graded approach for canister cleaning, based on individual canister type and characteristics. This approach would allow a simple method to be used on canisters not needing the more rigorous, high-pressure method. Justification is provided in section 5.0. Although Bartlett has provided some preliminary cost estimates, it is recommended that SNF Project perform a detailed cost-benefit analysis to weigh the alternatives presented.

  4. Power supply improvements for ballasts-low pressure mercury/argon discharge lamp for water purification

    Science.gov (United States)

    Bokhtache, A. Aissa; Zegaoui, A.; Djahbar, A.; Allouache, H.; Hemici, K.; Kessaissia, F. Z.; Bouchrit, M. S.; Aillerie, M.

    2017-02-01

    The low-pressure electrical discharges established in the mercury rare gas mixtures are the basis of many applications both in the field of lighting and for industrial applications. In order to select an efficient high frequency power supply (ECG -based PWM inverter), we present and discuss results obtained in the simulation of three kinds of power supplies delivering a 0.65 A - 50KHz sinusoidal current dedicated to power low pressure UV Mercury - Argon lamp used for effect germicide on water treatment thus allowing maximum UVC radiation at 253.7 nm. Three ballasts half-bridge configurations were compared with criteria based on resulting germicide efficiency, electrical yield and reliability, for example the quality of the sinusoidal current with reduced THD, and finally, we also considered in this analysis the final economic aspect.

  5. Renin, water drinking, walt preference and blood pressure in alcohol preferring and alcohol avoiding rats.

    Science.gov (United States)

    Linkola, J; Tikkanen, I; Fyhrquist, F; Rusi, M

    1980-02-01

    Mechanisms controlling fluid volume were studied in alcohol preferring AA (Alko, Alcohol) and alcohol avoiding ANA (Alko, Non-Alcohol) rats. Hypertonic sodium chloride solution (5%) given orally caused a higher dipsogenic response in AA rats than in the ANA's. One hour after ethanol loading (4.8 g/kg, by stomach tube), plasma renin activity of AA rats was four times as high as in ANA rats. ANA rats had higher degree of sodium chloride (0.9%) preference and higher blood pressure. The strain differences in voluntary salt intake and salt metabolism may modulate the consumption of calories and water as well as blood pressure and different reactivity of the renin system in AA and ANA rats.

  6. Molecular density functional theory for water with liquid-gas coexistence and correct pressure.

    Science.gov (United States)

    Jeanmairet, Guillaume; Levesque, Maximilien; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-04-21

    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. The solvation free energy of small molecular solutes like n-alkanes and hard sphere solutes whose radii range from angstroms to nanometers is now in quantitative agreement with reference all atom simulations. The macroscopic liquid-gas surface tension predicted by the theory is comparable to experiments. This theory gives an alternative to the empirical hard sphere bridge correction used so far by several authors.

  7. Numerical investigation on stress corrosion cracking behavior of dissimilar weld joints in pressurized water reactor plants

    Directory of Open Access Journals (Sweden)

    Lingyan Zhao

    2014-07-01

    Full Text Available There have been incidents recently where stress corrosion cracking (SCC observed in the dissimilar metal weld (DMW joints connecting the reactor pressure vessel (RPV nozzle with the hot leg pipe. Due to the complex microstructure and mechanical heterogeneity in the weld region, dissimilar metal weld joints are more susceptible to SCC than the bulk steels in the simulated high temperature water environment of pressurized water reactor (PWR. Tensile residual stress (RS, in addition to operating loads, has a great contribution to SCC crack growth. Limited experimental conditions, varied influence factors and diverging experimental data make it difficult to accurately predict the SCC behavior of DMW joints with complex geometry, material configuration, operating loads and crack shape. Based on the film slip/dissolution oxidation model and elastic-plastic finite element method (EPFEM, an approach is developed to quantitatively predict the SCC growth rate of a RPV outlet nozzle DMW joint. Moreover, this approach is expected to be a pre-analytical tool for SCC experiment of DMW joints in PWR primary water environment.

  8. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  9. The effect of temperature and methanol–water mixture on pressurized hot water extraction (PHWE) of anti-HIV analogoues from Bidens pilosa

    CSIR Research Space (South Africa)

    Gbashi, S

    2016-06-01

    Full Text Available Pressurized hot water extraction (PHWE) technique has recently gain much attention for the extraction of biologically active compounds from plant tissues for analytical purposes, due to the limited use of organic solvents, its cost...

  10. Variability in the Water Footprint of Arable Crop Production across European Regions

    Czech Academy of Sciences Publication Activity Database

    Gobin, A.; Kersebaum, K. C.; Eitzinger, Josef; Trnka, Miroslav; Hlavinka, Petr; Takáč, J.; Kroes, J.; Ventrella, D.; Dalla Marta, A.; Deelstra, J.; Lalic, B.; Nejedlík, P.; Orlandini, S.; Peltonen-Sainio, P.; Rajala, A.; Saue, T.; Saylan, L.; Stricevic, R.; Vucetic, V.; Zoumides, C.

    2017-01-01

    Roč. 9, č. 2 (2017), č. článku 93. ISSN 2073-4441 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD13030 Institutional support: RVO:86652079 Keywords : simulate yield response * climate-change * virtual water * impact * green * model * blue * agriculture * irrigation * reduction * water footprint * arable crops * cereals * Europe * crop water use * yield Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Water resources Impact factor: 1.832, year: 2016

  11. General installation of pressurized water reactors; Installation generale des reacteurs a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, M. [Electricite de France (EDF), 75 - Paris (France)

    2002-07-01

    This article describes the criteria considered for the installation of PWR reactors according to the most recent French standard: the N4 - 1450 MWe plant series which benefits of the experience feedback of the previous 900 and 1300 MWe series: 1 - functional organization: nuclear island, classical island; 2 - general principles of installation: safety, functional and operation requirements, grouping of equipments inside buildings, criteria of equipments separation; 3 - location of the main equipments, plot plan: specific site constraints, sitting of facilities, leveling; 4 - general installation of buildings: reactor building, fuel building, electrical and auxiliaries building, nuclear auxiliaries building, machines room, pumping station, standby generators building, water storage tank and pool building, effluents processing building; 5 - the EPR european concept: 4 sub-series concept, prevention of serious accidents, annual collective dose. (J.S.)

  12. GOZCARDS Source Data for Water Vapor Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Water Vapor Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpH2O) contains zonal means and related...

  13. GOZCARDS Merged Data for Water Vapor Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Water Vapor Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpH2O) contains zonal means and related...

  14. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    CERN Document Server

    Makarieva, A M; Sheil, D; Nobre, A D; Li, B -L

    2010-01-01

    Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from the fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 deg C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the...

  15. The effect of pressure and temperature on aluminium hydrolysis: Implications to trace metal scavenging in natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    Removal of aluminium through precipitation/scavenging in natural waters was evaluated based on its hydrolysis at different temperatures and pressures. In general, pH for the occurrence of cation hydrolysis was lowered with hike in temperature which...

  16. Pressure drop correlation for air/water two-phase flow in horizontal helicoidal pipes

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.; Dong, Z.F.; Awwad, A.; Xin, R.C. [Florida International Univ., Miami, FL (United States)

    1995-10-01

    In this paper, an experimental investigation is reported for air/water two-phase flow in horizontal helicoidal pipes. The helicoidal pipes are constructed of Tygon tubing with varying inside diameters of 12.7 mm, 19.1 mm, 25.4 mm, and 38.1 mm wrapped around two different cylindrical concrete forms with outside diameters of 304.8 mm and 609.6 mm each. Also, the helix angle of each helicoidal pipe varies up to 20 degrees. The experiments are conducted for superficial water velocity in the range of U{sub L} = 0.008 {minus} 2.2 m/s and superficial air velocity in the range of U{sub G} = 0.2 {minus} 50 m/s. The pressure drop of the two-phase flow is measured and the data are correlated. It was found that the Lockhart-Martinelli correlation for a straight pipe can represent the data for a helicoidal pipe only in the cases of a high rate of flow; nevertheless, the pressure drop relates strongly to the superficial air/water velocity when the flow rate is lower. The helix angle has almost no effect on the pressure drop, although the pipe and coil diameters have certain effects in low rates of flow. Correlations for two-phase flow in each of the horizontal helicoidal pipes have been established based on the present data. Helicoidal pipes are used extensively in compact heat exchangers, boilers, refrigerators, nuclear reactors, chemical plants, as well as the food, drug, and cryogenics industries.

  17. Tissue distribution of CysAP activity and its relationship to blood pressure and water balance.

    Science.gov (United States)

    Prieto, Isabel; Villarejo, Ana Belén; Segarra, Ana Belén; Wangensteen, Rosemary; Banegas, Inmaculada; de Gasparo, Marc; Vanderheyden, Patrick; Zorad, Stefan; Vives, Francisco; Ramírez-Sánchez, Manuel

    2015-08-01

    To better understand the functional role of soluble (Sol) and membrane-bound (MB) cystinyl-aminopeptidase (CysAP) activities, we studied differentially their organ distribution in adult male Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR)with or without treatment with captopril.We searched for a possible tissue-specific association of CysAP with water balance and blood pressure. We used twenty WKY rats distributed in ten controls and ten captopril-treated, and sixteen SHR divided in eight controls and eight captopril-treated. Captopril (100 mg/kg/day) was administered in drinking water for 4 weeks. Systolic blood pressure, water intake and diuresis were measured individually. CysAP was assayed fluorometrically using L-cystine-di-β-naphthylamide as substrate. Sol or MB activities were generally higher in SHR compared to WKY notably in hypothalamus and kidney than in the other tissues. Captopril mainly decreased CysAP in SHR whereas it increased in WKY. The distribution of Sol CysAP was more homogeneous among tissues ofWKY than SHR. In contrast, the distribution of MB CysAP was more heterogeneous than Sol CysAP in both WKY and SHR. This suggests that MB CysAP activity acts in a more tissue-specific manner than Sol CysAP. The majority of the significant correlations between tissue activities and the measured physiological parameters were observed mostly in renal medulla and hypothalamus. Sol and MB CysAP activities, acting separately or in concert and mainly in renal medulla, regulate the function of their susceptible endogenous substrates, and may participate meaningfully in the control of blood pressure and fluid balance.

  18. Saving the Planet’s Climate or Water Resources? The Trade-Off between Carbon and Water Footprints of European Biofuels

    Directory of Open Access Journals (Sweden)

    Markus Berger

    2015-05-01

    Full Text Available Little information regarding the global water footprint of biofuels consumed in Europe is available. Therefore, the ultimate origin of feedstock underlying European biodiesel and bioethanol consumption was investigated and combined with the irrigation requirements of different crops in different countries. A (blue water consumption of 1.9 m3 in 12 countries per GJ of European biodiesel and 3.3 m3 in 23 countries per GJ of bioethanol was determined. Even though this represents an increase by a factor of 60 and 40 compared to fossil diesel and gasoline, these figures are low compared to global average data. The assessment of local consequences has shown that the irrigation of sunflower seed in Spain causes 50% of the impacts resulting from biodiesel—even though it constitutes only 0.9% of the feedstock. In case of bioethanol production, the irrigation of sugar cane in Egypt, which constitutes only 0.7% of the underlying feedstock, causes 20% of the impacts. In a case study on passenger cars, it was shown that biofuels can reduce the global warming potential by circa 50% along the product life cycle. However, the price of this improvement is an approximate 19 times increased water consumption, and resulting local impacts are even more severe.

  19. In-Vessel Melt Retention of Pressurized Water Reactors: Historical Review and Future Research Needs

    OpenAIRE

    Ma, Weimin; Yuan, Yidan; Sehgal, Bal Raj

    2016-01-01

    A historical review of in-vessel melt retention (IVR) is given, which is a severe accident mitigation measure extensively applied in Generation III pressurized water reactors (PWRs). The idea of IVR actually originated from the back-fitting of the Generation II reactor Loviisa VVER-440 in order to cope with the core-melt risk. It was then employed in the new deigns such as Westinghouse AP1000, the Korean APR1400 as well as Chinese advanced PWR designs HPR1000 and CAP1400. The most influential...

  20. Mesos-scale modeling of irradiation in pressurized water reactor concrete biological shields

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, Yann [ORNL; Huang, Hai [Idaho National Laboratory (INL)

    2016-01-01

    Neutron irradiation exposure causes aggregate expansion, namely radiation-induced volumetric expansion (RIVE). The structural significance of RIVE on a portion of a prototypical pressurized water reactor (PWR) concrete biological shield (CBS) is investigated by using a meso- scale nonlinear concrete model with inputs from an irradiation transport code and a coupled moisture transport-heat transfer code. RIVE-induced severe cracking onset appears to be triggered by the ini- tial shrinkage-induced cracking and propagates to a depth of > 10 cm at extended operation of 80 years. Relaxation of the cement paste stresses results in delaying the crack propagation by about 10 years.

  1. Vibration analysis of land mine detection using high-pressure water jets

    Science.gov (United States)

    Denier, Robert; Herrick, Thomas J.

    2000-08-01

    The goal of the waterjet-based mine location and identification project is to investigate the use of waterjets to locate and differentiate buried objects. When a buried object is struck with a high-pressure waterjet, the impact will cause characteristic vibrations in the object depending on the object's shape and composition. These vibrations will be transferred to the ground and then to the water stream that is hitting the object. Some of these vibrations will also be transferred to the air via the narrow channel the waterjet cuts in the ground.

  2. PCB pollution continues to impact populations of orcas and other dolphins in European waters.

    Science.gov (United States)

    Jepson, Paul D; Deaville, Rob; Barber, Jonathan L; Aguilar, Àlex; Borrell, Asunción; Murphy, Sinéad; Barry, Jon; Brownlow, Andrew; Barnett, James; Berrow, Simon; Cunningham, Andrew A; Davison, Nicholas J; Ten Doeschate, Mariel; Esteban, Ruth; Ferreira, Marisa; Foote, Andrew D; Genov, Tilen; Giménez, Joan; Loveridge, Jan; Llavona, Ángela; Martin, Vidal; Maxwell, David L; Papachlimitzou, Alexandra; Penrose, Rod; Perkins, Matthew W; Smith, Brian; de Stephanis, Renaud; Tregenza, Nick; Verborgh, Philippe; Fernandez, Antonio; Law, Robin J

    2016-01-14

    Organochlorine (OC) pesticides and the more persistent polychlorinated biphenyls (PCBs) have well-established dose-dependent toxicities to birds, fish and mammals in experimental studies, but the actual impact of OC pollutants on European marine top predators remains unknown. Here we show that several cetacean species have very high mean blubber PCB concentrations likely to cause population declines and suppress population recovery. In a large pan-European meta-analysis of stranded (n = 929) or biopsied (n = 152) cetaceans, three out of four species:- striped dolphins (SDs), bottlenose dolphins (BNDs) and killer whales (KWs) had mean PCB levels that markedly exceeded all known marine mammal PCB toxicity thresholds. Some locations (e.g. western Mediterranean Sea, south-west Iberian Peninsula) are global PCB "hotspots" for marine mammals. Blubber PCB concentrations initially declined following a mid-1980s EU ban, but have since stabilised in UK harbour porpoises and SDs in the western Mediterranean Sea. Some small or declining populations of BNDs and KWs in the NE Atlantic were associated with low recruitment, consistent with PCB-induced reproductive toxicity. Despite regulations and mitigation measures to reduce PCB pollution, their biomagnification in marine food webs continues to cause severe impacts among cetacean top predators in European seas.

  3. Geophysical investigation of the pressure field produced by water guns at a pond site in La Crosse, Wisconsin

    Science.gov (United States)

    Adams, Ryan F.; Morrow, William S.

    2015-09-03

    Three different geophysical sensor types were used to characterize the underwater pressure waves generated by the underwater firing of a seismic water gun and their suitability for establishing a pressure barrier to potentially direct or prevent the movement of the Asian carps. The sensors used to collect the seismic information were blast rated hydrophones and underwater blast sensors. Specific location information for the water guns and the sensors was obtained using either laser rangefinders or differentially corrected global positioning systems (GPS).

  4. Sustainable River Basin Management under the European Water Framework Directive: an Effective Protection of Drinking-Water Resources

    NARCIS (Netherlands)

    van Rijswick, H.F.M.W.; Wuijts, Susanne

    2016-01-01

    In the Netherlands drinking water is produced both from surface water and groundwater. Due to the shortage of space, resources are often found in combination with other activities, such as those pertaining to industry or agriculture, in the same neighbourhood. These combinations impose strong

  5. Cardiovascular disease risk factors and blood pressure response during exercise in healthy children and adolescents: The European Youth Heart Study

    DEFF Research Database (Denmark)

    Møller, Niels C; Grøntved, Anders; Wedderkopp, Niels

    2010-01-01

    that physiological cardiovascular disease (CVD) risk factors would influence BP response during exercise in children and adolescents. This is a cross-sectional study of 439 Danish third-grade children and 364 ninth-grade adolescents. Systolic blood pressure (SBP) was measured with sphygmomanometer during a maximal...... was used to test the hypotheses. In boys, HOMA-IR score and BMI were positively related to SBP response during exercise (β = 1.03, P = 0.001, and β = 0.58, P = 0.017, respectively). The effects sizes of HOMA-IR score and BMI and the significance levels only changed slightly (β = 0.91, P = 0.004, and β = 0......Raised blood pressure (BP) response during exercise independently predicts future hypertension. Subjects with higher BP in childhood also have elevated BP later in life. Therefore, the factors related to the regulation of exercise BP in children needs to be well understood. We hypothesized...

  6. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents.

    Science.gov (United States)

    Lurbe, Empar; Agabiti-Rosei, Enrico; Cruickshank, J Kennedy; Dominiczak, Anna; Erdine, Serap; Hirth, Asle; Invitti, Cecilia; Litwin, Mieczyslaw; Mancia, Giuseppe; Pall, Denes; Rascher, Wolfgang; Redon, Josep; Schaefer, Franz; Seeman, Tomas; Sinha, Manish; Stabouli, Stella; Webb, Nicholas J; Wühl, Elke; Zanchetti, Alberto

    2016-10-01

    Increasing prevalence of hypertension (HTN) in children and adolescents has become a significant public health issue driving a considerable amount of research. Aspects discussed in this document include advances in the definition of HTN in 16 year or older, clinical significance of isolated systolic HTN in youth, the importance of out of office and central blood pressure measurement, new risk factors for HTN, methods to assess vascular phenotypes, clustering of cardiovascular risk factors and treatment strategies among others. The recommendations of the present document synthesize a considerable amount of scientific data and clinical experience and represent the best clinical wisdom upon which physicians, nurses and families should base their decisions. In addition, as they call attention to the burden of HTN in children and adolescents, and its contribution to the current epidemic of cardiovascular disease, these guidelines should encourage public policy makers to develop a global effort to improve identification and treatment of high blood pressure among children and adolescents.

  7. European Multidisciplinary seafloor and the Observatory of the water column for Development; The setup of an interoperable Generic Sensor Module

    Science.gov (United States)

    Danobeitia, J.; Oscar, G.; Bartolomé, R.; Sorribas, J.; Del Rio, J.; Cadena, J.; Toma, D. M.; Bghiel, I.; Martinez, E.; Bardaji, R.; Piera, J.; Favali, P.; Beranzoli, L.; Rolin, J. F.; Moreau, B.; Andriani, P.; Lykousis, V.; Hernandez Brito, J.; Ruhl, H.; Gillooly, M.; Terrinha, P.; Radulescu, V.; O'Neill, N.; Best, M.; Marinaro, G.

    2016-12-01

    European Multidisciplinary seafloor and the Observatory of the water column for Development (EMSODEV) is a Horizon-2020 UE project whose overall objective is the operationalization of eleven marine observatories and four test sites distributed throughout Europe, from the Arctic to the Atlantic, from the Mediterranean to the Black Sea. The whole infrastructure is managed by the European consortium EMSO-ERIC (European Research Infrastructure Consortium) with the participation of 8 European countries and other partner countries. Now, we are implementing a Generic Sensor Module (EGIM) within the EMSO ERIC distributed marine research infrastructure. Our involvement is mainly on developing standard-compliant generic software for Sensor Web Enablement (SWE) on EGIM device. The main goal of this development is to support the sensors data acquisition on a new interoperable EGIM system. The EGIM software structure is made up of one acquisition layer located between the recorded data at EGIM module and the data management services. Therefore, two main interfaces are implemented: first, assuring the EGIM hardware acquisition and second allowing push and pull data from data management layer (Sensor Web Enable standard compliant). All software components used are Open source licensed and has been configured to manage different roles on the whole system (52º North SOS Server, Zabbix Monitoring System). The acquisition data module has been implemented with the aim to join all components for EGIM data acquisition and server fulfilling SOS standards interface. The system is already achieved awaiting for the first laboratory bench test and shallow water test connection to the OBSEA node, offshore Vilanova I la Geltrú (Barcelona, Spain). The EGIM module will record a wide range of ocean parameters in a long-term consistent, accurate and comparable manner from disciplines such as biology, geology, chemistry, physics, engineering, and computer science, from polar to subtropical

  8. Pressure Drop in Cold Water Flow in Beds Packed with Several Kinds of Crushed Ice.

    Science.gov (United States)

    Yanadori, Michio; Ohira, Akiyoshi

    This paper deals with the pressure drop in cold water flow in the beds packed with crushed ice. 1n each case, ice-packed beds were filled with sevral kinds of crushed ice, and friction-loss coefficients were examined. The following results were obtained. (1) The friction factor of rectangular-type ice-packed beds is smaller than that of ideal sphere beds by about 1/4 to 1/2. (2) The friction factor of small-stone-type ice-packed beds is about twice as large as that of ideal sphere beds. (3) It is difficult to compare the flow model of water in restricted channel of particle-type ice-packed beds with that of ideal packed beds.

  9. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks

    Science.gov (United States)

    De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio

    2016-05-01

    This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.

  10. A Flooding Induced Station Blackout Analysis for a Pressurized Water Reactor Using the RISMC Toolkit

    Directory of Open Access Journals (Sweden)

    Diego Mandelli

    2015-01-01

    Full Text Available In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code called NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. In addition, the impact of power uprate is determined in terms of both core damage probability and safety margins.

  11. Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions

    Science.gov (United States)

    Rybkin, V. V.; Shutov, D. A.

    2017-11-01

    Results of experimental studies and numerical simulations of physicochemical characteristics of plasmas generated in different types of atmospheric-pressure discharges (pulsed streamer corona, gliding electric arc, dielectric barrier discharge, glow-discharge electrolysis, diaphragmatic discharge, and dc glow discharge) used to initiate various chemical processes in water solutions are analyzed. Typical reactor designs are considered. Data on the power supply characteristics, plasma electron parameters, gas temperatures, and densities of active particles in different types of discharges excited in different gases and their dependences on the external parameters of discharges are presented. The chemical composition of active particles formed in water is described. Possible mechanisms of production and loss of plasma particles are discussed.

  12. A comparative summary on streamers of positive corona discharges in water and atmospheric pressure gases

    Science.gov (United States)

    Tachibana, Kunihide; Motomura, Hideki

    2015-07-01

    From an intention of summarizing present understandings of positive corona discharges in water and atmospheric pressure gases, we tried to observe streamers in those media by reproducing and complementing previously reported results under a common experimental setup. We used a point-to-plane electrode configuration with different combinations of electrode gap (7 and 19 mm length) and pulsed power sources (0.25 and 2.5 ɛs duration). The general features of streamers were similar and the streamer-to-spark transition was also observed in both the media. However, in the details large differences were observed due to inherent nature of the media. The measured propagation speed of streamers in water of 0.035 × 106 ms-1 was much smaller than the speed in gases (air, N2 and Ar) from 0.4 to 1.1 × 106 ms-1 depending on species. In He the discharge looked glow-like and no streamer was observed. The other characteristics of streamers in gases, such as inception voltage, number of branches and thickness did also depend on the species. The thickness and the length of streamers in water were smaller than those in gases. From the volumetric expansion of a streamer in water after the discharge, the molecular density within the streamer medium was estimated to be rarefied from the density of water by about an order of magnitude in the active discharge phase. We derived also the electron density from the analysis of Stark broadened spectral lines of H and O atoms on the order of 1025 m-3 at the earlier time of the streamer propagation. The analyzed background blackbody radiation, rotational temperature of OH band emission and population density of Cu atomic lines yielded a consistent temperature of the streamer medium between 7000 and 10 000 K. Using the present data with a combination of the analysis of static electric field and previously reported results, we discuss the reason for the relatively low streamer inception voltage in water as compared to the large difference in the

  13. Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement: current status and future directions - Position statement of the European Society of Hypertension Working Group on blood pressure monitoring and cardiovascular variability.

    Science.gov (United States)

    Stergiou, George S; Parati, Gianfranco; Vlachopoulos, Charalambos; Achimastos, Apostolos; Andreadis, Emanouel; Asmar, Roland; Avolio, Alberto; Benetos, Athanase; Bilo, Grzegorz; Boubouchairopoulou, Nadia; Boutouyrie, Pierre; Castiglioni, Paolo; de la Sierra, Alejandro; Dolan, Eamon; Head, Geoffrey; Imai, Yutaka; Kario, Kazuomi; Kollias, Anastasios; Kotsis, Vasilis; Manios, Efstathios; McManus, Richard; Mengden, Thomas; Mihailidou, Anastasia; Myers, Martin; Niiranen, Teemu; Ochoa, Juan Eugenio; Ohkubo, Takayoshi; Omboni, Stefano; Padfield, Paul; Palatini, Paolo; Papaioannou, Theodore; Protogerou, Athanasios; Redon, Josep; Verdecchia, Paolo; Wang, Jiguang; Zanchetti, Alberto; Mancia, Giuseppe; O'Brien, Eoin

    2016-09-01

    Office blood pressure measurement has been the basis for hypertension evaluation for almost a century. However, the evaluation of blood pressure out of the office using ambulatory or self-home monitoring is now strongly recommended for the accurate diagnosis in many, if not all, cases with suspected hypertension. Moreover, there is evidence that the variability of blood pressure might offer prognostic information that is independent of the average blood pressure level. Recently, advancement in technology has provided noninvasive evaluation of central (aortic) blood pressure, which might have attributes that are additive to the conventional brachial blood pressure measurement. This position statement, developed by international experts, deals with key research and practical issues in regard to peripheral blood pressure measurement (office, home, and ambulatory), blood pressure variability, and central blood pressure measurement. The objective is to present current achievements, identify gaps in knowledge and issues concerning clinical application, and present relevant research questions and directions to investigators and manufacturers for future research and development (primary goal).

  14. Exploring the potential impact of implementing carbon capture technologies in fossil fuel power plants on regional European water stress index levels

    NARCIS (Netherlands)

    Schakel, W.B.; Pfister, Stephan; Ramirez, C.A.

    Equipping power plants with carbon capture technology can affect cooling demand and water use. This study has explored the potential impact of large scale deployment of power plants with carbon capture technologies on future regional water stress in Europe. A database including 458 of European

  15. Pump schedules optimisation with pressure aspects in complex large-scale water distribution systems

    Directory of Open Access Journals (Sweden)

    P. Skworcow

    2014-06-01

    Full Text Available This paper considers optimisation of pump and valve schedules in complex large-scale water distribution networks (WDN, taking into account pressure aspects such as minimum service pressure and pressure-dependent leakage. An optimisation model is automatically generated in the GAMS language from a hydraulic model in the EPANET format and from additional files describing operational constraints, electricity tariffs and pump station configurations. The paper describes in details how each hydraulic component is modelled. To reduce the size of the optimisation problem the full hydraulic model is simplified using module reduction algorithm, while retaining the nonlinear characteristics of the model. Subsequently, a nonlinear programming solver CONOPT is used to solve the optimisation model, which is in the form of Nonlinear Programming with Discontinuous Derivatives (DNLP. The results produced by CONOPT are processed further by heuristic algorithms to generate integer solution. The proposed approached was tested on a large-scale WDN model provided in the EPANET format. The considered WDN included complex structures and interactions between pump stations. Solving of several scenarios considering different horizons, time steps, operational constraints, demand levels and topological changes demonstrated ability of the approach to automatically generate and solve optimisation problems for a variety of requirements.

  16. Changes in Land Surface Water Dynamics since the 1990s and Relation to Population Pressure

    Science.gov (United States)

    Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W. B.; Matthews, E.

    2012-01-01

    We developed a remote sensing approach based on multi-satellite observations, which provides an unprecedented estimate of monthly distribution and area of land-surface open water over the whole globe. Results for 1993 to 2007 exhibit a large seasonal and inter-annual variability of the inundation extent with an overall decline in global average maximum inundated area of 6% during the fifteen-year period, primarily in tropical and subtropical South America and South Asia. The largest declines of open water are found where large increases in population have occurred over the last two decades, suggesting a global scale effect of human activities on continental surface freshwater: denser population can impact local hydrology by reducing freshwater extent, by draining marshes and wetlands, and by increasing water withdrawals. Citation: Prigent, C., F. Papa, F. Aires, C. Jimenez, W. B. Rossow, and E. Matthews (2012), Changes in land surface water dynamics since the 1990s and relation to population pressure, in section 4, insisting on the potential applications of the wetland dataset.

  17. Atmospheric Pressure Glow Discharge for Point-of-Use Water Treatment

    Science.gov (United States)

    Lindsay, Alexander; Byrns, Brandon; Shannon, Steven; Knappe, Detlef

    2012-10-01

    Treatment of biological and chemical contaminants is an area of growing global interest where atmospheric pressure plasmas can make a significant contribution. Addressing key challenges of volume processing and operational cost, a large volume 162 MHz coaxial air-plasma source has been developed.footnotetextByrns (2012) J. Phys. D: Appl. Phys. 45 (2012) 195204 Because of VHF ballasting effects, the electric discharge is maintained at a steady glow, allowing formation of critical non-equilibrium chemistry. High densities, ne = 10^11-10^12, have been recorded. The atmospheric nature of the device permits straightforward and efficient treatment of water samples. [H^+] concentrations in 150 milliliter tap water samples have been shown to increase by 10^5 after five minutes of discharge exposure. Recent literature has demonstrated that increasing acidity is strongly correlated with a solution's ability to deactivate microbial contaminants.footnotetextTraylor (2011) J. Phys. D: Appl. Phys. 44 (2011) 472001 The work presented here will explore the impact of treatment gas, system configuration, and power density on water disinfection and PFC abatement. An array of plasma diagnostics, including OES and electrical measurements, are combined with post-process water analysis, including GC-MS and QT analysis of coliform and E.coli bacteria. Development of volume processing atmospheric plasma disinfection methods offers promise for point-of-use treatments in developing areas of the world, potentially supplementing or replacing supply and weather-dependent disinfection methods.

  18. Effect of pressure on the anomalous response functions of a confined water monolayer at low temperature

    Science.gov (United States)

    Mazza, Marco G.; Stokely, Kevin; Stanley, H. Eugene; Franzese, Giancarlo

    2012-11-01

    We study a coarse-grained model for a water monolayer that cannot crystallize due to the presence of confining interfaces, such as protein powders or inorganic surfaces. Using both Monte Carlo simulations and mean field calculations, we calculate three response functions: the isobaric specific heat CP, the isothermal compressibility KT, and the isobaric thermal expansivity αP. At low temperature T, we find two distinct maxima in CP, KT, and |αP|, all converging toward a liquid-liquid critical point (LLCP) with increasing pressure P. We show that the maximum in CP at higher T is due to the fluctuations of hydrogen (H) bond formation and that the second maximum at lower T is due to the cooperativity among the H bonds. We discuss a similar effect in KT and |αP|. If this cooperativity were not taken into account, both the lower-T maximum and the LLCP would disappear. However, comparison with recent experiments on water hydrating protein powders provides evidence for the existence of the lower-T maximum, supporting the hypothesized LLCP at positive P and finite T. The model also predicts that when P moves closer to the critical P the CP maxima move closer in T until they merge at the LLCP. Considering that other scenarios for water are thermodynamically possible, we discuss how an experimental measurement of the changing separation in T between the two maxima of CP as P increases could determine the best scenario for describing water.

  19. The effect of head-down tilt and water immersion on intracranial pressure in nonhuman primates

    Science.gov (United States)

    Keil, Lanny C.; Mckeever, Kenneth H.; Skidmore, Michael G.; Hines, John; Severs, Walter B.

    1992-01-01

    Intracranial pressure (ICP) is investigated in primates during and after -6-deg head-down tilt (HDT) and immersion in water to examine the effects of the headward fluid shift related to spaceflight. Following the HDT the primates are subjected to head-out thermoneutral water immersion, and the ICP is subsequently measured. ICP is found to increase from 3.8 +/- 1.1 to 5.3 +/- 1.3 mm Hg during the horizontal control period. ICP stabilizes at -6.3 +/- 1.3 mm Hg and then increases to -2.2 +/- 1.9 mm Hg during partial immersion, and ICP subsequently returns to preimmersion levels after immersion. These data indicate that exposure to HDT or water immersion lead to an early sharp increase in ICP, and water immersion alone leads to higher ICP levels. A significant conclusion of the work is that the ICP did not approach pathological levels, and this finding is relevant to human spaceflight research.

  20. The Effect of Water Pressure and Chlorine Concentration on Microbiological Characteristics of Spray Washed Broiler Carcasses

    Directory of Open Access Journals (Sweden)

    Pissol AD

    2013-08-01

    Full Text Available The objective of this study was to evaluate the efficiency of water pressure and concentration of dichloromethane after the evisceration system under the fecal decontamination of chicken carcasse  surfaces with and without apparent contamination. From a total of  322 carcasses, 50% were intentionally added chicken droppings in an area of more  than 2 cm2 and the rest of carcasses were kept without fecal inoculation. Escherichia coli and Enterobacteriaceae counting was carried out in samples immediately after the inoculation (initial counting and after different treatments. Treatments consisted of water with different pressures (1.5,  3.5 and  5.5 Kgf/cm2, and the addition of a echnological adjuvant (dichloride at the concentrations of 0, 5 and 10 ppm. The results were validated using  40 chicken carcasses for each treatment by means of a  22  factorial statistical design. The results showed no significant differences (P

  1. Characterization of pressurized hot water extracts of grape pomace: chemical and biological antioxidant activity.

    Science.gov (United States)

    Vergara-Salinas, J R; Vergara, Mauricio; Altamirano, Claudia; Gonzalez, Álvaro; Pérez-Correa, J R

    2015-03-15

    Pressurized hot water extracts obtained at different temperatures possess different compositions and antioxidant activities and, consequently, different bioactivities. We characterized two pressurized hot water extracts from grape pomace obtained at 100°C (GPE100) and 200°C (GPE200) in terms of antioxidant activity and composition, as well as protective effect on cell growth and mitochondrial membrane potential (Δψm) in a HL-60 cell culture under oxidative conditions. GPE100 extracts were richer in polyphenols and poorer in Maillard reaction products (MRPs) than were GPE200 extracts. Moreover, hydroxymethylfurfural was detected only in GPE200. Both extracts exhibited similar protective effects on cell growth (comparable to the effect of trolox). In addition, GPE100 strongly decreased the Δψm loss, reaching values even lower than those of the control culture. This protective effect may be related to its high polyphenols content. At the highest concentration assessed, both extracts showed strong cytotoxicity, especially GPE200. This cytotoxicity could be related to their MRPs content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The acoustic advantage of hunting at low heights above water: behavioural experiments on the European 'trawling' bats Myotis capaccinii, M. dasycneme and M. daubentonii.

    Science.gov (United States)

    Siemers, B M; Stilz, P; Schnitzler, H U

    2001-11-01

    We have demonstrated in behavioural experiments that success in capturing prey from surfaces in 'trawling Myotis' (Leuconoë-type) depends on the acoustic properties of the surface on which the prey is presented. Two types of surface structure were ensonified with artificial bat signals to probe their acoustic characteristics. We have shown that perception of prey by echolocation is easier if the prey is presented on a smooth surface (such as calm water) than if it is presented on a structured surface (such as vegetation or the ground). This is because the smooth surface reflects a much lower level of clutter echoes than the structured one if ensonified at an angle typical for bats foraging low over water. The ensonification experiments revealed that the sound pressure level of the echo was even higher for mealworms on a smooth surface than for mealworms suspended in air. This might be because waves travelling via the surface also contribute to the echo (e.g. reflection from the surface to the mealworm, back to the surface and then to the receiver). From the behavioural experiments, we conclude that 'trawling Myotis' take isolated objects on smooth (water) surfaces for prey. Those objects reflect isolated, stationary acoustic glints back to the echolocating bats. Conversely, 'trawling Myotis' will not recognise prey if prey echoes are embedded in numerous clutter echoes. We have demonstrated marked similarities between the three European 'trawling Myotis' species M. dasycneme, M. daubentonii and M. capaccinii in echolocation behaviour, search image, foraging strategy and prey perception. We propose that a combination of prey abundance and acoustic advantages could have led to repeated and convergent evolution of 'trawling' bats in different parts of the world.

  3. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh

    Science.gov (United States)

    Chowdhury, Muhammad A.H.; Haines, Andy; Alam, Dewan S.; Hoque, Mohammad A.; Butler, Adrian P.; Khan, Aneire E.; Mojumder, Sontosh K.; Blangiardo, Marta A.G.; Elliott, Paul; Vineis, Paolo

    2017-01-01

    Background: Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. Objectives: We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. Methods: DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from “conventional” ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. Results: DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. Conclusions: DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in “real-life” salinity-affected settings. https://doi.org/10.1289/EHP659 PMID:28599268

  4. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh.

    Science.gov (United States)

    Scheelbeek, Pauline FD; Chowdhury, Muhammad A H; Haines, Andy; Alam, Dewan S; Hoque, Mohammad A; Butler, Adrian P; Khan, Aneire E; Mojumder, Sontosh K; Blangiardo, Marta A G; Elliott, Paul; Vineis, Paolo

    2017-05-30

    Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from "conventional" ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100 mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57 mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in "real-life" salinity-affected settings. https://doi.org/10.1289/EHP659.

  5. Water Consumption in European Children: Associations with Intake of Fruit Juices, Soft Drinks and Related Parenting Practices

    Directory of Open Access Journals (Sweden)

    Krystallia Mantziki

    2017-05-01

    Full Text Available Background: High intake of fruit juices and soft drinks contributes to excessive weight gain and obesity in children. Furthermore, parenting practices play an important role in the development of children’s dietary habits. The way parents play this role in the development of their children’s choices of beverages is still unclear. Objectives: To study the associations: (1 of both fruit juices and soft drinks consumption with water consumption of children and (2 The associations between parenting practices towards fruit juices and soft drinks and water consumption of children. Design: Cross-sectional data from 6 to 8 year old children from seven European communities (n = 1187 were collected. Associations among fruit juices, soft drinks, the respective parenting practices and the child’s water consumption were assessed by parental questionnaires. Results: The consumption of water was inversely associated with that of soft drinks but not with the consumption of fruit juices. The child’s water intake was favorably influenced when stricter parenting practices towards soft drinks were adopted (e.g., less parental allowance, low home availability and high parental self-efficacy in managing intake. There was less influence observed of parenting practices towards fruit juices. Fruit juices were consumed more often than soft drinks. Conclusions: Low consumption of soft drinks—and not of fruit juices—was associated with high water consumption in children in the current study. Moreover, parenting practices towards both fruit juices and soft drinks were associated with the water intake of the children, irrespective of their socio-economic status.

  6. Regulating water pollution in China and the European Union in terms of agricultural pollution

    NARCIS (Netherlands)

    Dai, Liping|info:eu-repo/dai/nl/355129876

    2015-01-01

    Regulatory instruments, are the most commonly used policy instruments in both China and the EU. This article explores how China and the EU establish their water quality objectives by regulation and how they design implementation strategies, with a particular focus of agricultural water pollution

  7. European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vishaldeep [ORNL; Shen, Bo [ORNL; Keinath, Chris [Stone Mountain Technologies, Inc., Johnson City; Garrabrant, Michael A. [Stone Mountain Technologies, Inc., Johnson City; Geoghegan, Patrick J [ORNL

    2017-01-01

    High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in colder climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.

  8. Voluntary arrangements to cope with diffuse pollution from agriculture and their role in European water policy

    NARCIS (Netherlands)

    Heinz, I.; Andrews, K.; Brouwer, F.; Zabel, T.

    2002-01-01

    A limited number of Member States in the EU have gained experience with establishing co-operative agreements between agriculture and the water sector. Their main aim is to reduce or prevent water pollution caused by intensive farming practices. The research has shown that significant changes in

  9. The "shallow-waterness" of the wave climate in European coastal regions

    Science.gov (United States)

    Håkon Christensen, Kai; Carrasco, Ana; Bidlot, Jean-Raymond; Breivik, Øyvind

    2017-07-01

    In contrast to deep water waves, shallow water waves are influenced by bottom topography, which has consequences for the propagation of wave energy as well as for the energy and momentum exchange between the waves and the mean flow. The ERA-Interim reanalysis is used to assess the fraction of wave energy associated with shallow water waves in coastal regions in Europe. We show maps of the distribution of this fraction as well as time series statistics from eight selected stations. There is a strong seasonal dependence and high values are typically associated with winter storms, indicating that shallow water wave effects can occasionally be important even in the deeper parts of the shelf seas otherwise dominated by deep water waves.

  10. Aging of the containment pressure boundary in light-water reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States)] [and others

    1997-01-01

    Research is being conducted by the Oak Ridge National Laboratory to address aging of the containment pressure boundary in light-water reactor plants. The objectives of this work are to (1) identify the significant factors related to occurrence of corrosion, efficacy of inspection, and structural capacity reduction of steel containments and liners of concrete containments, and to make recommendations on use of risk models in regulatory decisions; (2) provide NRC reviewers a means of establishing current structural capacity margins for steel containments, and concrete containments as limited by liner integrity; and (3) provide recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by NRC reviewers in assessing the seriousness of reported incidences of containment degradation. In meeting these objectives research is being conducted in two primary task areas - pressure boundary condition assessment and root-cause resolution practices, and reliability-based condition assessments. Under the first task area a degradation assessment methodology was developed for use in characterizing the in-service condition of metal and concrete containment pressure boundary components and quantifying the amount of damage that is present. An assessment of available destructive and nondestructive techniques for examining steel containments and liners is ongoing. Under the second task area quantitative structural reliability analysis methods are being developed for application to degraded metallic pressure boundaries to provide assurances that they will be able to withstand future extreme loads during the desired service period with a level of reliability that is sufficient for public safety. To date, mathematical models that describe time-dependent changes in steel due to aggressive environmental factors have been identified, and statistical data supporting their use in time-dependent reliability analysis have been summarized.

  11. Modified water solubility of milk protein concentrate powders through the application of static high pressure treatment.

    Science.gov (United States)

    Udabage, Punsandani; Puvanenthiran, Amirtha; Yoo, Jin Ah; Versteeg, Cornelis; Augustin, Mary Ann

    2012-02-01

    The effects of high pressure (HP) treatment (100-400 MPa at 10-60 °C) on the solubility of milk protein concentrate (MPC) powders were tested. The solubility, measured at 20 °C, of fresh MPC powders made with no HP treatment was 66%. It decreased by 10% when stored for 6 weeks at ambient temperature (~20 °C) and continued to decrease to less than 50% of its initial solubility after 12 months of storage. Of the combinations of pressure and heat used, a pressure of 200 MPa at 40 °C applied to the concentrate before spray drying was found to be the most beneficial for improved solubility of MPC powders. This combination of pressure/heat improved the initial cold water solubility to 85%. The solubility was maintained at this level after 6 weeks storage at ambient temperature and 85% of the initial solubility was preserved after 12 months. The improved solubility of MPC powders on manufacture and on storage are attributed to an altered surface composition arising from an increased concentration of non-micellar casein in the milk due to HP treatment prior to drying. The improved solubility of high protein powders (95% protein) made from blends of sodium caseinate and whey protein isolate compared with MPC powders (~85% protein) made from ultrafiltered/diafiltered milk confirmed the detrimental role of micellar casein on solubility. The results suggest that increasing the non-micellar casein content by HP treatment of milk or use of blends of sodium caseinate and whey proteins are strategies that may be used to obtain high protein milk powders with enhanced solubility.

  12. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m -2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation. © 2013 Elsevier B.V. All rights reserved.

  13. High-pressure vapor-liquid equilibria of systems containing ethylene glycol, water and methane - Experimental measurements and modeling

    DEFF Research Database (Denmark)

    Folas, Georgios; Berg, Ole J.; Solbraa, Even

    2007-01-01

    This work presents new experimental phase equilibrium measurements of the binary MEG-methane and the ternary MEG-water-methane system at low temperatures and high pressures which are of interest to applications related to natural gas processing. Emphasis is given to MEG and water solubility...

  14. European society of intensive care medicine study of therapeutic hypothermia (32-35°C for intracranial pressure reduction after traumatic brain injury (the Eurotherm3235Trial

    Directory of Open Access Journals (Sweden)

    Stocchetti Nino

    2011-01-01

    Full Text Available Abstract Background Traumatic brain injury is a major cause of death and severe disability worldwide with 1,000,000 hospital admissions per annum throughout the European Union. Therapeutic hypothermia to reduce intracranial hypertension may improve patient outcome but key issues are length of hypothermia treatment and speed of re-warming. A recent meta-analysis showed improved outcome when hypothermia was continued for between 48 hours and 5 days and patients were re-warmed slowly (1°C/4 hours. Previous experience with cooling also appears to be important if complications, which may outweigh the benefits of hypothermia, are to be avoided. Methods/design This is a pragmatic, multi-centre randomised controlled trial examining the effects of hypothermia 32-35°C, titrated to reduce intracranial pressure Participants are randomised to either standard care or standard care with titrated therapeutic hypothermia. Hypothermia is initiated with 20-30 ml/kg of intravenous, refrigerated 0.9% saline and maintained using each centre's usual cooling technique. There is a guideline for detection and treatment of shivering in the intervention group. Hypothermia is maintained for at least 48 hours in the treatment group and continued for as long as is necessary to maintain intracranial pressure 20 mmHg in accordance with the Brain Trauma Foundation Guidelines, 2007. Discussion The Eurotherm3235Trial is the most important clinical trial in critical care ever conceived by European intensive care medicine, because it was launched and funded by the European Society of Intensive Care Medicine and will be the largest non-commercial randomised controlled trial due to the substantial number of centres required to deliver the target number of patients. It represents a new and fundamental step for intensive care medicine in Europe. Recruitment will continue until January 2013 and interested clinicians from intensive care units worldwide can still join this important

  15. Toxic cyanobacteria and cyanotoxins in European waters – recent progress achieved through the CYANOCOST Action and challenges for further research

    Directory of Open Access Journals (Sweden)

    Jussi Meriluoto

    2017-05-01

    Full Text Available This review aims to summarise the outcomes of some recent European research concerning toxic cyanobacteria and cyanotoxins, with an emphasis on developments within the framework of the CYANOCOST Action (COST Action ES1105, Cyanobacterial Blooms and Toxins in Water Resources: Occurrence, Impacts and Management. State of the art research and management capabilities in Europe on cyanobacteria have benefitted from input from the pure and applied life sciences, the human and animal health sectors, water engineers, economists and planners. Many of these professional groups have been brought together and they interacted favourably within the framework of CYANOCOST. Highlights of the Action include phycological and ecological studies, development of advanced techniques for cyanotoxin analysis, elucidation of cyanotoxin modes of action, management techniques to reduce cyanobacterial mass development, and research on methods and practices for cyanotoxin removal during drinking water treatment. The CYANOCOST Action has had an active outreach policy throughout its lifetime, resulting in e.g. three handbooks, two special issues in scientific journals and activities in the social media. The many contact channels to end-users, including environmental and drinking water supply authorities, health professionals and the general public are described in this review. Furthermore, the authors have identified a number of gaps in knowledge. Proposed  directions for  future research in the field of toxic cyanobacteria and cyanotoxins are also discussed.

  16. Improving the oxidation resistance of 316L stainless steel in simulated pressurized water reactor primary water by electropolishing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guangdong [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, Shanghai, 200072 (China); Ru, Xiangkun; Chen, Junjie; Xiao, Qian; Tian, Yongwu [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China)

    2015-12-15

    The oxidation behavior of 316L stainless steel specimens after emery paper grounding, mechanical polishing, and electropolishing were investigated in simulated pressurized water reactor primary water at 310 °C for 120 and 500 h. Electropolishing afforded improved oxidation resistance especially during the early immersion stages. Duplex oxide films comprising a coarse Fe-rich outer layer and a fine Cr-rich inner layer formed on all specimens after 500 h of immersion. Only a compact layer was observed on the electropolished specimen after 120 h of immersion. The enrichment of chromium in the electropolished layer contributed to the passivity and protectiveness of the specimen. - Highlights: • Duplex oxide films on ground and mechanically polished specimens. • Compact oxide on electropolished specimen after 120 h immersion. • Large spinel outer layer rich in Fe and fine spinel inner layer rich in Cr. • Electropolishing improved oxidation resistance especially at the early stages. • Inhomogeneous Cr-rich inner layer with granular areas affected by surface treatment.

  17. Combined effects of high hydrostatic pressure and sodium nitrite on color, water holding capacity and texture of frankfurter

    Science.gov (United States)

    Jonas, G.; Csehi, B.; Palotas, P.; Toth, A.; Kenesei, Gy; Pasztor-Huszar, K.; Friedrich, L.

    2017-10-01

    The aim of this study was to investigate the effect of sodium nitrite and high hydrostatic pressure on the color, water holding capacity (WHC) and texture characteristics of frankfurter. Three hundred, 450 and 600 MPa (5 minutes; 20 °C) and 50, 75, 100 and 125 ppm (calculated on weight of meat) sodium nitrite were applied. Parameters were measured right after the pressure treatment. Data were evaluated with two-way analysis of variance (p 0.05) with pressure levels and sodium nitrite amounts as factors. Nitrite reduction significantly increased lightness (L*) and resulted in decreased redness (a*) value. The pressure treatments decreased the lightness at all nitrite concentrations and did not significantly affect the red color of frankfurters. Fifty and 75 ppm nitrite and pressurization at 300 or 450 MPa improved the water holding property of frankfurter. The pressure treatment did not significantly affect the WHC but changing the nitrite amount had significant effect on it. Interactive effect occurred between pressure levels and nitrite concentrations for hardness. The pressure treatment increased and the nitrite reduction decreased hardness. Significant changes were found in cohesiveness at 450 and 600 MPa in frankfurters containing 50 and 75 ppm nitrite: pressure treatment at higher levels and nitrite reduction decreased the value of cohesiveness.

  18. Acute blood pressure response in hypertensive elderly women immediately after water aerobics exercise: A crossover study.

    Science.gov (United States)

    Cunha, Raphael Martins; Vilaça-Alves, José; Noleto, Marcelo Vasconcelos; Silva, Juliana Sá; Costa, Andressa Moura; Silva, Christoffer Novais Farias; Póvoa, Thaís Inácio Rolim; Lehnen, Alexandre Machado

    2017-01-01

    Water aerobics exercise is widely recommended for elderly people. However, little is known about the acute effects on hemodynamic variables. Thus, we assessed the effects of a water aerobic session on blood pressure in hypertensive elderly women. Fifty hypertensive elderly women aged 67.8 ± 4.1 years, 1.5 ± 0.6 m high and BMI 28.6 ± 3.9 kg/m(2), participated in a crossover clinical trial. The experiment consisted of a 45-minute water aerobics session (70%-75% HRmax adjusted for the aquatic environment) (ES) and a control session (no exercise for 45 minutes) (CS). Heart rate was monitored using a heart rate monitor and systolic blood pressure (SBP) and diastolic (DBP) measurements were taken using a semi-automatic monitor before and immediately after the sessions, and at 10, 20 and 30 minutes thereafter. It was using a generalized estimating equation (GEE) with Bonferroni's post-hoc test (p exercise, BP declined in ES by a greater magnitude than in CS (SBP 7.5 mmHg, 6.2%, p = 0.005 and DBP 3.8 mmHg, 5.5%, p = 0.013). At 20 minutes after exercise and thereafter, SBP and DBP were similar in both ES and CS. In conclusion, BP returned to control levels within 10-20 minutes remaining unchanged until 30 minutes after exercise, and post-exercise hypotension was not observed. Besides, BP changed after exercise was a safe rise of small magnitude for hypertensive people.

  19. Potential impacts of human water management on the European heat wave 2003 using fully integrated bedrock-to-atmosphere simulations

    Science.gov (United States)

    Keune, Jessica; Sulis, Mauro; Kollet, Stefan; Wada, Yoshihide

    2017-04-01

    Recent studies indicate that anthropogenic impacts on the terrestrial water cycle lead to a redistribution of water resources in space and time, can trigger land-atmosphere feedbacks, such as the soil moisture-precipitation feedback, and potentially enhance convection and precipitation. Yet, these studies do not consider the full hydrologic cycle from the bedrock to the atmosphere or apply simplified hydrologic models, neglecting the connection of irrigation to water withdrawal and groundwater depletion. Thus, there is a need to incorporate water resource management in 3D hydrologic models coupled to earth system models. This study addresses the impact of water resource management, i.e. irrigation and groundwater abstraction, on land-atmosphere feedbacks through the terrestrial hydrologic cycle in a physics-based soil-vegetation-atmosphere system simulating 3D groundwater dynamics at the continental scale. The integrated Terrestrial Systems Modeling Platform, TerrSysMP, consisting of the three-dimensional subsurface and overland flow model ParFlow, the Community Land Model CLM3.5 and the numerical weather prediction model COSMO of the German Weather Service, is set up over the European CORDEX domain in 0.11° resolution. The model closes the terrestrial water and energy cycles from aquifers into the atmosphere. Anthropogenic impacts are considered by applying actual daily estimates of irrigation and groundwater abstraction from Wada et al. (2012, 2016), as a source at the land surface and explicit removal of groundwater from aquifer storage, respectively. Simulations of the fully coupled system are performed over the 2003 European heat wave and compared to a reference simulation, which does not consider human interactions in the terrestrial water cycle. We study the space and time characteristics and evolution of temperature extremes, and soil moisture and precipitation anomalies influenced by human water management during the heat wave. A first set of simulations

  20. The future of small hydropower within the European union. An environmental policy study based on the European Water framework directive and the renewable energy directive

    NARCIS (Netherlands)

    Pabbruwee, Kees

    2006-01-01

    Small hydropower facilities according to European Union (EU) standards have an installed capacity of less than 10 MW. The Renewable Energy Directive has set targets for installed capacity and electricity produced by small hydropower facilities to be reach

  1. Removal of aqueous nC60 fullerene from water by low pressure membrane filtration.

    Science.gov (United States)

    Floris, R; Nijmeijer, K; Cornelissen, E R

    2016-03-15

    The potential environmental and health risks of engineered nanoparticles such as buckminsterfullerene C60 in water require their removal during the production of drinking water. We present a study focusing on (i) the removal mechanism and (ii) the elucidation of the role of the membrane pore size during removal of nC60 fullerene nanoparticle suspensions in dead-end microfiltration and ultrafiltration mimicking separation in real industrial water treatment plants. Membranes were selected with pore sizes ranging from 18 nm to 500 nm to determine the significance of the nC60 to membrane pore size ratio and the adsorption affinity between nC60 and membrane material during filtration. Experiments were carried out with a dead-end bench-scale system operated at constant flux conditions including a hydraulic backwash cleaning procedure. nC60 nanoparticles can be efficiently removed by low pressure membrane technology with smaller and, unexpectedly, also by mostly similar or larger pores than the particle size, although the nC60 filtration behaviour appeared to be different. The nC60 size to membrane pore size ratio and the ratio of the cake-layer deposition resistance to the clean membrane resistance, both play an important role on the nC60 filtration behaviour and on the efficiency of the backwash procedure recovering the initial membrane filtration conditions. These results become specifically significant in the context of drinking water production, for which they provide relevant information for an accurate selection between membrane processes and operational parameters for the removal of nC60 in the drinking water treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Sea-water/groundwater interactions along a small catchment of the European Atlantic coast

    DEFF Research Database (Denmark)

    Einsiedl, Florian

    2012-01-01

    , located in SW Ireland has facilitated the characterization of groundwater recharge conditions in the western part of Ireland and suggests that groundwater is mostly replenished by the isotopically light winter precipitation. The dissolved SO42- in the karstic groundwater that was collected during baseflow......The geochemistry and isotopic composition of a karstic coastal aquifer in western Ireland has shed light on the effect of sea-water/groundwater interactions on the water quality of Ireland’s Atlantic coastal zone. The use of stable isotope data from the IAEA precipitation station in Valentia......‰), and intruding sea-water SO42- (δ34S: 20.2‰). The isotopic composition of δ18O in dissolved groundwater SO42- collected during baseflow conditions is interpreted as reflecting sea-water intrusion to the karstic coastal groundwater system. The highest δ18O values in dissolved groundwater SO42- were in samples...

  3. Effect of High Hydrostatic Pressure Combined with Moderate Heat to Inactivate Pressure-Resistant Bacteria in Water-Boiled Salted Duck.

    Science.gov (United States)

    Ye, Keping; Feng, Yulin; Wang, Kai; Bai, Yun; Xu, Xinglian; Zhou, Guanghong

    2015-06-01

    The objective of this work was to study the effect of high hydrostatic pressure combined with moderate heat to inactivate pressure-resistant bacteria in water-boiled salted duck meat (WBSDM), and to establish suitable procedures to improve the quality of WBSDM. The conditions (300 MPa/60 °C, 400 MPa/60 °C, and 500 MPa/50 °C) effectively inactivated the pressure-resistant bacteria (Bacillus cereus and Staphylococcus warneri) in WBSDM. Although more pressure-resistant than S. warneri, the above treatment conditions inactivated B. cereus more than 10(7) CFU/mL in buffer, and more than 10(6) CFU/g in WBSDM, and did not cause any changes in color, texture, or moisture content of products. The interaction between pressure and temperature is a more significant factor than only pressure in inactivating both B. cereus and S. warneri, the treatment of WBSDM at 400 MPa/ 60 °C/ 10 min is the most practical condition for postprocess of WBSDM after cooking. © 2015 Institute of Food Technologists®

  4. Hypermetabolic Conversion of Plant Oil into Water: Endothermic Biochemical Process Stimulated by Juvenile Hormone in the European Firebug, L.

    Directory of Open Access Journals (Sweden)

    Karel Sláma

    2016-01-01

    Full Text Available The physiological and biochemical mechanisms that enable insects to feed on dry food to secure enough water for larval growth were investigated. The study was carried out with a plethora of physiological methods, ranging from the simple volumetric determination of O 2 consumption and water intake to more advanced methods such as scanning microrespirography and thermovision imaging of insect's body temperature. The experiments were done on the European firebug, Pyrrhocoris apterus , which feeds exclusively on dry linden seeds. In order to survive, it needs to drink water or suck a sap from plants occasionally. It was found that the young larval instars compensate the occasional water deficiency by the increased production of metabolic water. The juvenile hormone (JH-dependent production of metabolic water, which was previously found in other species consuming dry food, was achieved in P. apterus by total metabolic combustion of the dietary lipid (neutral seed oil. The water-producing, hypermetabolic larvae were heated from inside by endothermic energy released from the uncoupling of oxidation from oxidative phosphorylation. The “warm”, hypermetabolic larvae burning the dietary oil into CO 2 and water showed the increased rates of respiratory metabolism. Microrespirographic recording of these larvae revealed the ratio of the respiratory quotient (RQ, CO 2 /O 2 of 0.7, which indicated the breakdown of a pure triglyceride. The warm hypermetabolic larvae could be easily spotted and distinguished from the “cold” larvae on the screen of a thermovision camera. The last instar larvae lacking the JH were always only cold. They metabolized a carbohydrate substrate exclusively (RQ = 1.0, while the dietary lipid was stored in the fat body. In comparison with the hypermetabolic larvae of some other species fed on dry food, which exhibited the highest rates of O 2 consumption ever recorded in a living organism (10–20 mL O 2 /g per hour, the metabolic

  5. Seismic evidence for water transport out of the mantle transition zone beneath the European Alps

    Science.gov (United States)

    Liu, Zhen; Park, Jeffrey; Karato, Shun-ichiro

    2018-01-01

    The mantle transition zone has been considered a major water reservoir in the deep Earth. Mass transfer across the transition-zone boundaries may transport water-rich minerals from the transition zone into the water-poor upper or lower mantle. Water release in the mantle surrounding the transition zone could cause dehydration melting and produce seismic low-velocity anomalies if some conditions are met. Therefore, seismic observations of low-velocity layers surrounding the transition zone could provide clues of water circulation at mid-mantle depths. Below the Alpine orogen, a depressed 660-km discontinuity has been imaged clearly using seismic tomography and receiver functions, suggesting downwellings of materials from the transition zone. Multitaper-correlation receiver functions show prominent ∼0.5-1.5% velocity reductions at ∼750-800-km depths, possibly caused by partial melting in the upper part of lower mantle. The gap between the depressed 660-km discontinuity and the low-velocity layers is consistent with metallic iron as a minor phase in the topmost lower mantle reported by laboratory studies. Velocity drops atop the 410-km discontinuity are observed surrounding the Alpine orogeny, suggesting upwelling of water-rich rock from the transition zone in response to the downwelled materials below the orogeny. Our results provide evidence that convective penetration of the mantle transition zone pushes hydrated minerals both upward and downward to add hydrogen to the surrounding mantle.

  6. Validation of four automatic devices for self-measurement of blood pressure according to the international protocol of the European Society of Hypertension

    Directory of Open Access Journals (Sweden)

    Asmar R

    2011-11-01

    Full Text Available Jirar Topouchian1, Davide Agnoletti1, Jacques Blacher1, Ahmed Youssef1, Isabel Ibanez2,3, Jose Khabouth2, Salwa Khawaja2, Layale Beaino2, Roland Asmar1–31Centre de Diagnostic, Hôpital Hôtel-Dieu, Paris, France; 2Hôpital Libanais and Faculté Libanaise de Médecine, Beirut, Lebanon; 3Foundation-Medical Research Institutes, Geneva, SwitzerlandBackground: Four oscillometric devices for self-measurement of blood pressure (SBPM were evaluated according to the European Society of Hypertension (ESH international protocol and its 2010 revision in four separate studies. The Omron® M2, Omron M3, and Omron M6 measure blood pressure (BP at the brachial level, while the Omron R2 measures BP at the wrist level.Methods: The international protocol requires a total number of 33 subjects in which the validation is performed. The Omron M2 and Omron R2 were validated in 2009 according to the ESH international protocol, while the Omron M3 and Omron M6 were validated in 2010–2011 according to the 2010 ESH international protocol revision. The protocol procedures were followed precisely.Results: All four tested devices passed the validation process. The mean differences between the device and mercury readings were 2.7 ± 5.0 and –1.4 ± 3.2 mmHg for systolic and diastolic BP, respectively, using the Omron M2 device, and 1.7 ± 3.2 and –0.9 ± 2.6 mmHg using the Omron M3, 1.6 ± 2.9 and -0.9 ± 2.5 mmHg using the Omron M6, and –1.1 ± 4.8 and –0.9 ± 4.3 mmHg using the Omron R2.Conclusion: Readings from the Omron M2, Omron M3, Omron M6, and Omron R2, differing by less than 5, 10, and 15 mmHg, fulfill the ESH international protocol and its 2010 revision requirements. Therefore, each of these four devices can be used by patients for SBPM.Keywords: Omron R2, M2, M3, M6, blood pressure measurement, validation, international protocol, European Society of Hypertension

  7. Linking Pan-European data to the local scale for decision making for global change and water scarcity within water resources planning and management.

    Science.gov (United States)

    Suárez-Almiñana, Sara; Pedro-Monzonís, María; Paredes-Arquiola, Javier; Andreu, Joaquín; Solera, Abel

    2017-12-15

    This study focuses on a novel type of methodology which connects Pan-European data to the local scale in the field of water resources management. This methodology is proposed to improve and facilitate the decision making within the planning and management of water resources, taking into account climate change and its expected impacts. Our main point of interest is focused on the assessment of the predictability of extreme events and their possible effects, specifically droughts and water scarcity. Consequently, the Júcar River Basin was selected as the case study, due to the ongoing water scarcity problems and the last drought episodes suffered in the Mediterranean region. In order to study these possible impacts, we developed a modeling chain divided into four steps, they are: i) data collection, ii) analysis of available data, iii) models calibration and iv) climate impact analysis. Over previous steps, we used climate data from 15 different regional climate models (RCMs) belonging to the three different Representative Concentration Pathways (RCPs) coming from a hydrological model across all of Europe called E-HYPE. The data were bias corrected and used to obtain statistical results of the availability of water resources for the future (horizon 2039) and in form of indicators. This was performed through a hydrological (EVALHID), stochastic (MASHWIN) and risk management (SIMRISK) models, all of which were specifically calibrated for this basin. The results show that the availability of water resources is much more enthusiastic than in the current situation, indicating the possibility that climate change, which was predicted to occur in the future has already happened in the Júcar River Basin. It seems that the so called "Effect 80", an important decrease in water resources for the last three decades, is not well contemplated in the initial data. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Salinity of injection water and its impact on oil recovery absolute permeability, residual oil saturation, interfacial tension and capillary pressure

    OpenAIRE

    Mohammad Salehi, Mehdi; Omidvar, Pouria; Naeimi, Fatemeh

    2016-01-01

    Laboratory tests and field applications show that low-salinity water flooding could lead to significant reduction of residual oil saturation. There has been a growing interest with an increasing number of low-salinity water flooding studies. However, there are few quantitative studies on flow and transport behavior of low-salinity IOR processes. This paper presents laboratory investigation of the effect of salinity injection water on oil recovery, pressure drop, permeability, IFT and relat...

  9. Computational investigations of streamers in a single bubble suspended in distilled water under atmospheric pressure conditions

    Science.gov (United States)

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan

    2016-09-01

    We present a computational model of nanosecond streamers generated in helium bubbles immersed in distilled water at the atmospheric pressure conditions. The model is based on the self-consistent, multispecies and the continuum description of plasma and takes into account the presence of water vapor in the gas bubble for a more accurate description of the kinetics of the discharge. We find that the dynamic characteristics of the streamer discharge are completely different at low and high over voltages. We observe that the polarity of the trigger voltage has a substantial effect on initiation, transition and evolution stages of streamers with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages due to the presence of multiple streamers. We also find that the presence of water vapor significantly influences the distribution of the dominant species in the streamer trail and has a profound effect on the flux of the dominant species to the bubble wall. The research reported in this publication was supported by Competitive Research Funding from King Abdullah University of Science and Technology (KAUST).

  10. Subacute blood pressure response in elderly hypertensive women after a water exercise session : a controlled clinical trial.

    Science.gov (United States)

    Cunha, Raphael M; Macedo, Camilla B; Araújo, Siomara F M; Santos, Jessica C; Borges, Viviane S; Soares, Ademar A; Ayres, Flávio; Pfrimer, Linda M

    2012-12-01

    There are few studies relating the practice of water exercises and blood pressure responses. The objective of this study was to evaluate the subacute blood pressure behaviour in elderly hypertensive women after a water exercise session. This was a controlled clinical trial, carried out with 16 hypertensive elderly women with the following characteristics (mean ± SD): age 66 ± 2.94 years, body weight 68.43 ± 12.08 kg, height 158 ± 5.34 cm and body mass index 27.32 ± 4.30 kg/m(2). The study occurred on 2 days, 48 hours apart, with an experimental protocol and a control protocol. The experimental protocol underwent a moderately intense and predominantly aerobic 40-minute session with water exercises for the upper and lower limbs. The control protocol did not enter the pool and did not exercise, but all other procedures were similar to those of the experimental protocol. The blood pressure measurements were performed at times before and every 10 minutes for 30 minutes after the protocols. Student's t-test was used to determine if the averages of the two samples were significantly different. Blood pressure increased significantly but not greatly after the water exercise session, but this did not happen with the control protocol. Systolic blood pressure in the experimental protocol decreased significantly only 30 minutes after the exercise session, which did not occur in the control protocol. Diastolic blood pressure, on the other hand, decreased significantly at minutes 10, 20 and 30. This also did not occur with the control protocol, but an intergroup analysis showed that diastolic blood pressure was similar for the two protocols. The results of this study show that a prescription of water exercises can be carried out in relative safety with this group of patients, and that systolic blood pressure tended to decrease, as shown by the measurement at minute 30.

  11. Composition of the body mass overshoot in European barn owl nestlings (Tyto alba): insurance against scarcity of energy or water?

    Science.gov (United States)

    Durant, Joël M; Landys, Meta M; Handrich, Yves

    2008-07-01

    European barn owl chicks (Tyto alba) show a body mass overshoot prior to fledging that has been predicted to serve as an energy reservoir during periods of stochastic food availability. However, the composition of the mass overshoot has heretofore not been directly examined in nestlings of this or any other species displaying a body mass overshoot during growth (e.g., raptors and seabirds). To experimentally determine whether the overshoot in body mass in juvenile European barn owls (Tyto alba) may act as an energy reservoir, we compared the body composition of owl chicks raised on an ad libitum diet to those fed a restricted diet designed to eliminate the overshoot. Chicks raised on the two diets were also compared for differences in maturation of diverse functions (e.g., locomotion) and tissues (e.g., skeletal development). Contrary to expectations, our results on body composition in juvenile barn owls indicate that the mass overshoot prior to fledging is primarily comprised of an increased water compartment. Thus, we suggest that the mass overshoot in owls (and possibly in other species) does not serve as an energy reservoir but, rather, may function as an insurance against dehydration when hot in-nest conditions force chicks to rely on evaporative cooling: temperatures in barn owl nests can reach up to 43 degrees C. We found no significant differences in maturation indexes between diet treatments at the time of fledging.

  12. Fucus spiralis as monitoring tool of metal contamination in the northwest coast of Portugal under the European Water Framework Directives.

    Science.gov (United States)

    Reis, Pedro A; Cassiano, Júlia; Veiga, Puri; Rubal, Marcos; Sousa-Pinto, Isabel

    2014-09-01

    Metals (Cd, Cr, Cu, Fe, Mn and Zn) in coastal seawaters and soft tissues of macroalga Fucus spiralis from the northwest coast of Portugal were determined to assess spatial variations of metal bioavailabilities and bioaccumulation factors to compare different ecological quality classifications. Both coastal seawaters and soft tissues of F. spiralis showed significant spatial variations in their metal concentrations along the coast. The macroalgae F. spiralis accumulated more efficiently Cd, Mn and Zn and showed low bioaccumulation factors to Cr, Cu and Fe. Regarding the metal guidelines of the Norwegian Pollution Control Authority, the entire northwest (NW) coast of Portugal in April 2013 should be classified as 'class I--unpolluted' for all metals, except in Ave for Cu ('class II--moderately polluted') and Cavado for Cd and Cu ('class II-moderately polluted'), revealing the low metal bioavailabilities of these seawaters. As there were always significant positive correlations between all metals in seawaters and F. spiralis, this macroalga species was considered a suitable monitoring tool of metal contamination in the NW coast of Portugal and a useful aquatic organism to be included in the European Environmental Specimen Banks in order to establish a real-time environmental monitoring network under the European Water Framework Directives.

  13. Functions of biological soil crusts on central European inland dunes: Water repellency and pore clogging influence water infiltration

    Science.gov (United States)

    Fischer, Thomas; Spröte, Roland; Veste, Maik; Wiehe, Wolfgang; Lange, Philipp; Bens, Oliver; Raab, Thomas; Hüttl, Reinhard F.

    2010-05-01

    Biological soil crusts play a key role for hydrological processes in many open landscapes. They seal and stabilize the topsoil and promote surface run-off. Three crust types were identified on two inland dunes in Brandenburg, North-East Germany: A natural, active dune, located in a former military training area near Lieberose, and an artificial dune, which was constructed in 2001 and which serves as a study area for geo-ecological monitoring of flora and fauna from the forefield of an opencast-mine ("Neuer Lugteich"). Both dunes consisted of Quarternary, carbonate-free, siliceous sandy substrate. Utilization of the mineral substrate at early stages of microbiotic crust development was assessed using chlorophyll concentrations, scanning electron (SEM) and optical microscopy. Water repellency indices, which are an indication of surface polarity and wettability, were measured using the ethanol/water microinfiltrometer method, and steady state water flow was determined on the dry crusts and after 0, 300, 600, 1200 and 1800 seconds of wetting, thus allowing to follow pore clogging through swelling of extracellular polymeric substances (EPS). Chlorophyll concentrations indicated early stages of crust development at both sites. In crust type 1, dominating sand grains were physically stabilized in their contact zones by accumulated organic matter and by few filamentous cyanobacteria and filamentous green algae. The pore space was defined by the mineral matrix only. In crust type 2, filamentous cyanobacteria and algae partially filled in the matrix pores and enmeshed sand grains. In the dry sample, the pore space was dominated by crust organisms but still micropore channels, which are known to increase water infiltration, were left. Crust type 3 was characterized by intense growth of filamentous and coccoid algae and cyanobacteria, and by few mosses, which covered less than 5% of the surface. Crust organisms completely utilized the substrate and clogged the pores between

  14. Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants.

    Science.gov (United States)

    Pittmann, Timo; Steinmetz, Heidrun

    2017-06-06

    This work describes the production of polyhydroxyalkanoates (PHA) as a side stream process on a municipal waste water treatment plant (WWTP) and a subsequent analysis of the production potential in Germany and the European Union (EU). Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA) production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR) of 1913 mgVFA/(L×d) and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW) was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016) could be produced on European waste water treatment plants.

  15. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari

    2017-08-01

    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  16. Pressurized hot water extraction of β-glucans from Cantharellus tubaeformis.

    Science.gov (United States)

    Rodríguez-Seoane, Paula; González-Muñoz, María Jesús; Falqué, Elena; Domínguez, Herminia

    2018-02-20

    Cantharellus tubaeformis was processed by pressurized hot water extraction (80-240 °C) with the aim of maximizing the extraction of oligomeric fractions, β-glucans and the in vitro antioxidant properties of the extracts. Increased severity of treatment enhanced the extraction yields above 62% at temperatures of 210 ºC or higher, corresponding to the maximum β-glucan yields. The highest antioxidant capacity was obtained at 170 ºC, although the highest content of phenolic compounds was obtained at the highest severity studied. This hydrothermal treatment can be considered a suitable process to obtain extracts with antioxidant properties and rich in β-glucans. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Pressurized Hot Water Extraction of anthocyanins from red onion: A study on extraction and degradation rates.

    Science.gov (United States)

    Petersson, Erik V; Liu, Jiayin; Sjöberg, Per J R; Danielsson, Rolf; Turner, Charlotta

    2010-03-17

    Pressurized Hot Water Extraction (PHWE) is a quick, efficient and environmentally friendly technique for extractions. However, when using PHWE to extract thermally unstable analytes, extraction and degradation effects occur at the same time, and thereby compete. At first, the extraction effect dominates, but degradation effects soon take over. In this paper, extraction and degradation rates of anthocyanins from red onion were studied with experiments in a static batch reactor at 110 degrees C. A total extraction curve was calculated with data from the actual extraction and degradation curves, showing that more anthocyanins, 21-36% depending on the species, could be extracted if no degradation occurred, but then longer extraction times would be required than those needed to reach the peak level in the apparent extraction curves. The results give information about the different kinetic processes competing during an extraction procedure. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Luminescence of mesoporous silicon powders treated by high-pressure water vapor annealing

    Science.gov (United States)

    Gelloz, Bernard; Loni, Armando; Canham, Leigh; Koshida, Nobuyoshi

    2012-07-01

    We have studied the photoluminescence of nanocrystalline silicon microparticle powders fabricated by fragmentation of PSi membranes. Several porosities were studied. Some powders have been subjected to further chemical etching in HF in order to reduce the size of the silicon skeleton and reach quantum sizes. High-pressure water vapor annealing was then used to enhance both the luminescence efficiency and stability. Two visible emission bands were observed. A red band characteristic of the emission of Si nanocrystals and a blue band related to localized centers in oxidized powders. The blue band included a long-lived component, with a lifetime exceeding 1 sec. Both emission bands depended strongly on the PSi initial porosity. The colors of the processed powders were tunable from brown to off-white, depending on the level of oxidation. The surface area and pore volume of some powders were also measured and discussed. The targeted applications are in cosmetics and medicine.

  19. Power level effects on thorium-based fuels in pressure-tube heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, B.P.; Edwards, G.W.R., E-mail: blair.bromley@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Sambavalingam, P. [Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2016-06-15

    Lattice and core physics modeling and calculations have been performed to quantify the impact of power/flux levels on the reactivity and achievable burnup for 35-element fuel bundles made with Pu/Th or U-233/Th. The fissile content in these bundles has been adjusted to produce on the order of 20 MWd/kg burnup in homogeneous cores in a 700 MWe-class pressure-tube heavy water reactor, operating on a once-through thorium cycle. Results demonstrate that the impact of the power/flux level is modest for Pu/Th fuels but significant for U-233/Th fuels. In particular, high power/flux reduces the breeding and burnup potential of U-233/Th fuels. Thus, there may be an incentive to operate reactors with U-233/Th fuels at a lower power density or to develop alternative refueling schemes that will lower the time-average specific power, thereby increasing burnup.(author)

  20. Fipronil and two of its transformation products in water and European eel from the river Elbe.

    Science.gov (United States)

    Michel, N; Freese, M; Brinkmann, M; Pohlmann, J-D; Hollert, H; Kammann, U; Haarich, M; Theobald, N; Gerwinski, W; Rotard, W; Hanel, R

    2016-10-15

    Fipronil is an insecticide which, based on its mode of action, is intended to be predominantly toxic towards insects. Fipronil bioaccumulates and some of its transformation products were reported to be similar or even more stable in the environment and to show an enhanced toxicity against non-target organisms compared to the parent compound. The current study investigated the occurrence of Fipronil and two of its transformation products, Fipronil-desulfinyl and Fipronil-sulfone, in water as well as muscle and liver samples of eels from the river Elbe (Germany). In water samples total concentrations of FIP, FIP-d and FIP-s ranged between 0.5-1.6ngL(-1) with FIP being the main component in all water samples followed by FIP-s and FIP-d. In contrast, FIP-s was the main component in muscle and liver tissues of eels with concentrations of 4.05±3.73ngg(-1) ww and 19.91±9.96ngg(-1) ww, respectively. Using a physiologically based toxicokinetic (PBTK) model for moderately hydrophobic organic chemicals, the different distributions of FIP, FIP-d and FIP-s in water and related tissue samples could be attributed to metabolic processes of eels. The measured concentrations in water of all analytes and their fractional distribution did not reflect the assumed seasonal application of FIP and it seems that the water was constantly contaminated with FIP, FIP-d and FIP-s. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Pressure effect on the amide I frequency of the solvated {alpha}-helical structure in water

    Energy Technology Data Exchange (ETDEWEB)

    Takekiyo, T [Department of Applied Chemistry, National Defence Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa, 239-8686 (Japan); Yoshimura, Y [Department of Applied Chemistry, National Defence Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa, 239-8686 (Japan); Shimizu, A [Department of Environmental Engineering for Symbiosis Factory of Engineering, Soka University, 1-326 Tanjincho, Hachioji, Tokyo, 192-8577 (Japan); Koizumi, T [Department of Applied Chemistry, National Defence Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa, 239-8686 (Japan); Kato, M [Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577 (Japan); Taniguchi, Y [Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577 (Japan)

    2007-10-24

    As a model system of the pressure dependence of the amide I mode of the solvated {alpha}-helical structure in a helical peptide, we have calculated the frequency shifts of the amide I modes as a function of the distance between trans-N-methylacetamide (t-NMA) dimer and a water molecule (d{sub C=O{center_dot}}{sub {center_dot}}{sub {center_dot}}{sub H-O}) by the density-functional theory (DFT) method at the B3LYP/6-31G++(d,p) level. Two amide I frequencies at 1652 and 1700 cm{sup -1} were observed under this calculation. The former is ascribed to the amide I mode forming the intermolecular hydrogen bond (H-bond) between t-NMA and H{sub 2}O in addition to the intermolecular H-bond in the t-NMA dimer. The latter is due to the amide I mode forming only the intermolecular H-bond in the t-NMA dimer. We have found that the amide I frequency at 1652 cm{sup -1} shifts to a lower frequency with decreasing d{sub C=O{center_dot}}{sub {center_dot}}{sub {center_dot}}{sub H-O}) (i.e., increasing pressure), whereas that at 1700 cm{sup -1} shifts to a higher frequency. The amide I frequency shift of 1652 cm{sup -1} is larger than that of 1700 cm{sup -1} by the intermolecular H-bond. Thus, our results clearly indicate that the pressure-induced amide I frequency shift of the solvated {alpha}-helical structure correlates with the change in d{sub C=O{center_dot}}{sub {center_dot}}{sub {center_dot}}{sub H-O})

  2. Effect Of Cuo-Distilled Water Based Nanofluids On Heat Transfer Characteristics And Pressure Drop Characteristics.

    Directory of Open Access Journals (Sweden)

    SANDEEP KUMAR

    2014-09-01

    Full Text Available In this paper, the heat transfer and pressure drop characteristics of the distilled water and the copper oxide-distilled water based nanofluid flowing in a horizontal circular pipe under constant heat flux condition are studied. Copper oxide nanoparticles of 40nm size are dispersed in distilled water using sodium dodecyl sulphate as surfactant and sonicated the nanofluid for three hour. Both surfactant and sonication increases the stability of the nanofluid. The nanofluids are made in three different concentration i.e. 0.1 Vol. %, 0.25 Vol. % and 0.50 Vol. %. The thermal conductivity is measured by KD2 PRO, density with pycnometer, viscosity with Brookfield LVDV-III rheometer. The results show that the thermal conductivity increases with both temperature and concentration. The viscosity and density increases with concentration but decreases with temperature. The specific heat is calculated by model and it decreases with concentration. The experimental local Nusselt number of distilled water is compared with local Nusselt number obtained by the well known shah equation for laminar flow under constant heat flux condition for validation of the experimental set up. The relative error is 4.48 % for the Reynolds number 750.9. The heat transfer coefficient increases with increase in both flow rate and concentration. It increases from 14.33 % to 46.1 % when the concentration is increased from 0.1 Vol. % to 0.5 Vol. % at 20 LPH flow rate. Friction factor decreases with increase in flow rate. It decreases 66.54 % when the flow rate increases from 10 LPH to 30 LPH for 0.1 Vol. %.

  3. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju

    2017-11-15

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  4. In-Vessel Melt Retention of Pressurized Water Reactors: Historical Review and Future Research Needs

    Directory of Open Access Journals (Sweden)

    Weimin Ma

    2016-03-01

    Full Text Available A historical review of in-vessel melt retention (IVR is given, which is a severe accident mitigation measure extensively applied in Generation III pressurized water reactors (PWRs. The idea of IVR actually originated from the back-fitting of the Generation II reactor Loviisa VVER-440 in order to cope with the core-melt risk. It was then employed in the new deigns such as Westinghouse AP1000, the Korean APR1400 as well as Chinese advanced PWR designs HPR1000 and CAP1400. The most influential phenomena on the IVR strategy are in-vessel core melt evolution, the heat fluxes imposed on the vessel by the molten core, and the external cooling of the reactor pressure vessel (RPV. For in-vessel melt evolution, past focus has only been placed on the melt pool convection in the lower plenum of the RPV; however, through our review and analysis, we believe that other in-vessel phenomena, including core degradation and relocation, debris formation, and coolability and melt pool formation, may all contribute to the final state of the melt pool and its thermal loads on the lower head. By looking into previous research on relevant topics, we aim to identify the missing pieces in the picture. Based on the state of the art, we conclude by proposing future research needs.

  5. The simulation of thermohydraulic phenomena in a pressurized water reactor primary loop

    Energy Technology Data Exchange (ETDEWEB)

    Popp, M

    1987-01-01

    Several important fluid flow and heat transfer phenomena essential to nuclear power reactor safety were investigated. Scaling and modeling laws for pressurized water reactors are reviewed and a new scaling approach focusing on the overall loop behavior is presented. Scaling criteria for one- and two-phase natural circulation are developed, as well as a simplified model describing the first phase of a small break loss of coolant accident. Reactor vessel vent valve effects are included in the analysis of steady one-phase natural circulation flow. Two new dimensionless numbers, which uniquely describe one-phase flow in natural circulation loops, were deduced and are discussed. A scaled model of the primary loop of a typical Babcock and Wilcox reactor was designed, built, and tested. The particular prototype modeled was the TMI unit 2 reactor. The electrically heated, stainless steel model operates at a maximum pressure of 300 psig and has a maximum heat input of 188 kW. The model is about 4 times smaller in height than the prototype reactor, with a nominal volume scale of 1:500. Experiments were conducted establishing subcooled natural circulation in the model loop. Both steady flow and power transients were investigated.

  6. Standard Master Matrix for Light-Water Reactor Pressure Vessel Surveillance Standards, E706(0)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This master matrix standard describes a series of standard practices, guides, and methods for the prediction of neutron-induced changes in light-water reactor (LWR) pressure vessel (PV) and support structure steels throughout a pressure vessel's service life (Fig. 1). Some of these are existing ASTM standards, some are ASTM standards that have been modified, and some are proposed ASTM standards. General requirements of content and consistency are discussed in Section 6 . More detailed writers' and users' information, justification, and specific requirements for the nine practices, ten guides, and three methods are provided in Sections 3-5. Referenced documents are discussed in Section 2. The summary-type information that is provided in Sections 3 and 4 is essential for establishing proper understanding and communications between the writers and users of this set of matrix standards. It was extracted from the referenced documents, Section 2 and references (1-106) for use by individual writers and users. 1...

  7. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jayalal, M.L., E-mail: jayalal@igcar.gov.in [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Ramachandran, Suja [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Rathakrishnan, S. [Reactor Physics Section, Madras Atomic Power Station (MAPS), Kalpakkam, Tamil Nadu (India); Satya Murty, S.A.V. [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Sai Baba, M. [Resources Management Group (RMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India)

    2015-01-15

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  8. Drinking Water Sodium and Elevated Blood Pressure of Healthy Pregnant Women in Salinity-Affected Coastal Areas.

    Science.gov (United States)

    Scheelbeek, Pauline F D; Khan, Aneire E; Mojumder, Sontosh; Elliott, Paul; Vineis, Paolo

    2016-08-01

    Coastal areas in Southeast Asia are experiencing high sodium concentrations in drinking water sources that are commonly consumed by local populations. Salinity problems caused by episodic cyclones and subsequent seawater inundations are likely (partly) related to climate change and further exacerbated by changes in upstream river flow and local land-use activities. Dietary (food) sodium plays an important role in the global burden of hypertensive disease. It remains unknown, however, if sodium in drinking water-rather than food-has similar effects on blood pressure and disease risk. In this study, we examined the effect of drinking water sodium on blood pressure of pregnant women: increases in blood pressure in this group could severely affect maternal and fetal health. Data on blood pressure, drinking water source, and personal, lifestyle, and environmental confounders was obtained from 701 normotensive pregnant women residing in coastal Bangladesh. Generalized linear mixed regression models were used to investigate association of systolic and diastolic blood pressure of these-otherwise healthy-women with their water source. After adjustment for confounders, drinkers of tube well and pond water (high saline sources) were found to have significantly higher average systolic (+4.85 and +3.62 mm Hg) and diastolic (+2.30 and +1.72 mm Hg) blood pressures than rainwater drinkers. Drinking water salinity problems are expected to exacerbate in the future, putting millions of coastal people-including pregnant women-at increased risk of hypertension and associated diseases. There is an urgent need to further explore the health risks associated to this understudied environmental health problem and feasibility of possible adaptation strategies. © 2016 American Heart Association, Inc.

  9. Untangling the effects of multiple human stressors and their impacts on fish assemblages in European running waters.

    Science.gov (United States)

    Schinegger, Rafaela; Palt, Martin; Segurado, Pedro; Schmutz, Stefan

    2016-12-15

    This work addresses human stressors and their impacts on fish assemblages at pan-European scale by analysing single and multiple stressors and their interactions. Based on an extensive dataset with 3105 fish sampling sites, patterns of stressors, their combination and nature of interactions, i.e. synergistic, antagonistic and additive were investigated. Geographical distribution and patterns of seven human stressor variables, belonging to four stressor groups (hydrological-, morphological-, water quality- and connectivity stressors), were examined, considering both single and multiple stressor combinations. To quantify the stressors' ecological impact, a set of 22 fish metrics for various fish assemblage types (headwaters, medium gradient rivers, lowland rivers and Mediterranean streams) was analysed by comparing their observed and expected response to different stressors, both acting individually and in combination. Overall, investigated fish sampling sites are affected by 15 different stressor combinations, including 4 stressors acting individually and 11 combinations of two or more stressors; up to 4 stressor groups per fish sampling site occur. Stressor-response analysis shows divergent results among different stressor categories, even though a general trend of decreasing ecological integrity with increasing stressor quantity can be observed. Fish metrics based on density of species 'intolerant to water quality degradation' and 'intolerant to oxygen depletion" responded best to single and multiple stressors and their interactions. Interactions of stressors were additive (40%), synergistic (30%) or antagonistic (30%), emphasizing the importance to consider interactions in multi-stressor analyses. While antagonistic effects are only observed in headwaters and medium-gradient rivers, synergistic effects increase from headwaters over medium gradient rivers and Mediterranean streams to large lowland rivers. The knowledge gained in this work provides a basis for

  10. Respiratory water loss during rest and flight in European Starlings (Sturnus vulgaris)

    NARCIS (Netherlands)

    Engel, Sophia; Suthers, Roderick A.; Biebach, Herbert; Visser, G. Henk

    2006-01-01

    Respiratory water loss in Starlings (Sturnus vulgaris) at rest and during flight at ambient temperatures (T-amb) between 6 and 25 degrees C was calculated from respiratory airflow and exhaled air temperature. At rest, breathing frequency f(1.4 +/- 0.3 Hz) and tidal volume V-t (1.9 +/- 0.4 ml) were

  11. GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Seneviratne, S.I.; Hinderer, J.

    2005-01-01

    water storage depletion observed from GRACE can be related to the record-breaking heat wave that occurred in central Europe in 2003. We validate the measurements from GRACE using two independent hydrological estimates and direct gravity observations from superconducting gravimeters in Europe. All...

  12. Application of the European water framework directive in a Western Mediterranean basin (Málaga, Spain)

    Science.gov (United States)

    Carrasco, F.; Sánchez, D.; Vadillo, I.; Andreo, B.; Martínez, C.; Fernández, L.

    2008-04-01

    The water framework directive (WFD) is applied within the Guadalhorce river basin, a Western Mediterranean basin in the Málaga province (South Spain). Criteria defining different surface and groundwater bodies are described. The basic hydrographic network is constituted of low-mountain and low-altitude Mediterranean mineralized rivers. Heavily modified surface water bodies correspond (1) to areas where dams regulate the main watercourses, (2) to areas downstream of reservoirs, where river flow is reduced, and (3) to the coastal sector of the river where artificial channelling has caused morphological variations. Groundwater bodies are related to carbonate and porous aquifers and, locally, to aquifers influenced by dissolution of evaporites. The main impacts to water bodies are irrigated lands and livestock farming. There are also point sources of pollution, such as wastewater, landfills, golf courses, industrial zones, quarries and petrol stations. In addition, groundwater is frequently pumped for human supply and irrigation. Qualitative status of groundwater bodies was done by chemical analysis of samples from a monitoring network and the quantitative status by examining variations in piezometric levels. Both revealed the existence of water bodies at risk of not meeting the environmental objectives of the WFD. The main indicators of pollution are nitrates related to agricultural activities, and total organic carbon (TOC), PO{4/3-} and NH{4/+} in relation to wastewater.

  13. Mean force potential of interaction between Na+ and Cl- ions in planar nanopores in contact with water under pressure

    Science.gov (United States)

    Shevkunov, S. V.

    2017-11-01

    The mean force potential (MFP) of interaction between counterions Na+ and Cl- in a planar nanopore with structureless hydrophobic walls is calculated via computer simulation under the condition that the nanopore is in contact with water at an external pressure that exceeds the saturation pressure but remains insufficient to fill the nanopore with water. For a nanopore with a liquid phase, the MFP dependence on the interionic distance indicates the dissociation of an ion pair into two hydrated ions in a nanopore that is not completely filled with water. Fluctuations in the number of water molecules drawn into the interionic space decisively influence the dissociation. The attraction between counterions, averaged over thermal fluctuations, depends largely on the pore width and grows as the shielding of the ions' electric field by water molecules in a narrow pore diminishes. The contributions from energy and entropy to the free energy of hydration are analyzed.

  14. Pressure field induced in the water column by acoustic-gravity waves generated from sea bottom motion

    Science.gov (United States)

    Oliveira, Tiago C. A.; Kadri, Usama

    2016-10-01

    An uplift of the ocean bottom caused by a submarine earthquake can trigger acoustic-gravity waves that travel at near the speed of sound in water and thus may act as early tsunami precursors. We study the spatiotemporal evolution of the pressure field induced by acoustic-gravity modes during submarine earthquakes, analytically. We show that these modes may all induce comparable temporal variations in pressure at different water depths in regions far from the epicenter, though the pressure field depends on the presence of a leading acoustic-gravity wave mode. Practically, this can assist in the implementation of an early tsunami detection system by identifying the pressure and frequency ranges of measurement equipment and appropriate installation locations.

  15. Using ERS-2 SAR images for routine observation of marine pollution in European coastal waters.

    Science.gov (United States)

    Gade, M; Alpers, W

    1999-09-30

    More than 660 synthetic aperture radar (SAR) images acquired over the southern Baltic Sea, the North Sea, and the Gulf of Lion in the Mediterranean Sea by the Second European Remote Sensing Satellite (ERS-2) have been analyzed since December 1996 with respect to radar signatures of marine pollution and other phenomena causing similar signatures. First results of our analysis reveal that the seas are most polluted along the main shipping routes. The sizes of the detected oil spills vary between 56 km2. SAR images acquired during descending (morning) and ascending (evening) satellite passes show different percentages of oil pollution, because most of this pollution occurs during night time and is still visible on the SAR images acquired in the morning time. Moreover, we found a higher amount of oil spills on SAR images acquired during summer (April-September) than on SAR images acquired during winter (October-March). We attribute this finding to the higher mean wind speed encountered in all three test areas during winter. By using an ERS-2 SAR image of the North Sea test area we show how the reduction of the normalized radar backscattering cross section (NRCS) by an oil spill depends on wind speed.

  16. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs.

    Science.gov (United States)

    Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

    2014-01-01

    Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply.

  17. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs

    Science.gov (United States)

    Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

    2014-01-01

    Background Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. Conclusions In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply. PMID:25210438

  18. Synergetic effect of temperature and pressure on energetic and structural characteristics of {ZIF-8 + water} molecular spring

    Science.gov (United States)

    Grosu, Ya.; Renaudin, G.; Eroshenko, V.; Nedelec, J.-M.; Grolier, J.-P. E.

    2015-05-01

    Metal-organic frameworks (MOFs) and particularly their subclass - Zeolite Imidazolate Frameworks (ZIFs) - are used for a variety of applications including particularly energy storage. Highly porous MOFs mixed with non-wetting liquids can be used to form molecular springs (MS) for efficient mechanical and thermal energy storage/transformation. In this paper by means of high-pressure calorimetry the energetic characteristics of {ZIF-8 + water} MS were investigated in wide temperature and pressure ranges. Unexpectedly XRD measurements show that the concomitant effects of temperature and pressure on {ZIF-8 + water} MS leads to an irreversible change of the ZIF-8 structure, transforming its symmetry from cubic to orthorhombic. Whereas, previous studies have demonstrated the stability of ZIF-8 under either high pressure or high temperature.Metal-organic frameworks (MOFs) and particularly their subclass - Zeolite Imidazolate Frameworks (ZIFs) - are used for a variety of applications including particularly energy storage. Highly porous MOFs mixed with non-wetting liquids can be used to form molecular springs (MS) for efficient mechanical and thermal energy storage/transformation. In this paper by means of high-pressure calorimetry the energetic characteristics of {ZIF-8 + water} MS were investigated in wide temperature and pressure ranges. Unexpectedly XRD measurements show that the concomitant effects of temperature and pressure on {ZIF-8 + water} MS leads to an irreversible change of the ZIF-8 structure, transforming its symmetry from cubic to orthorhombic. Whereas, previous studies have demonstrated the stability of ZIF-8 under either high pressure or high temperature. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01340b

  19. Characterization of the physicochemical properties of phospholipid vesicles prepared in CO2/water systems at high pressure.

    Science.gov (United States)

    Nakamura, Hidemi; Taguchi, Shogo; Suga, Keishi; Hayashi, Keita; Jung, Ho-Sup; Umakoshi, Hiroshi

    2015-09-21

    Phospholipid vesicles were prepared by the nonsolvent method using high-pressure CO2/water systems. The membrane properties of vesicles prepared at different pressures and temperatures were mainly characterized based on analysis of the membrane fluidity and membrane polarity, using the fluorescent probes 1,6-diphenyl-1,3,5-hexatriene and 6-dodecanoyl-N,N-dimethyl-2-naphthylamine, respectively. The CO2(liquid)/water(liquid) and the CO2(supercritical)/water(liquid) two-phase (heterogeneous) systems resulted in the formation of vesicles with high yield (ca. 85%-88%). The membrane fluidity and polarity of the vesicles were similar to those of liposomes prepared by the conventional method. It is suggested that high-pressure CO2 can be used to form an appropriate hydrophobic-hydrophilic interface where phospholipid molecules as a self-assembled membrane.

  20. Experimental study on the influence of clamping pressure on proton exchange membrane water electrolyzer (PEMWE) cell’s characteristics

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Cui, Xiaoti; Kær, Søren Knudsen

    at lower clamping pressure values at the same temperature and current density. Furthermore, early results have not shown any significant change in the amount of hydrogen crossing-over from cathode to anode and water from anode to cathode. This might be attributed to the membrane properties which might....... PEMWE cell splits water into hydrogen and oxygen when an electric current is passed through it. Electrical current forces the positively charged ions to migrate to negatively charged cathode, where hydrogen is reduced. Meanwhile, oxygen is produced at the anode side electrode and escapes as a gas...... with the circulating water. In the recent few years, PEMWE’s R&D has inched towards; operating conditions; such as increased operating temperature and cathode-anode high differential pressure operation, flow field design, stack development, and numerical modelling [2,3]. In this work the effect of clamping pressure...

  1. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout Caused by External Flooding Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impact of these factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the application of a RISMC detailed demonstration case study for an emergent issue using the RAVEN and RELAP-7 tools. This case study looks at the impact of a couple of challenges to a hypothetical pressurized water reactor, including: (1) a power uprate, (2) a potential loss of off-site power followed by the possible loss of all diesel generators (i.e., a station black-out event), (3) and earthquake induces station-blackout, and (4) a potential earthquake induced tsunami flood. The analysis is performed by using a set of codes: a thermal-hydraulic code (RELAP-7), a flooding simulation tool (NEUTRINO) and a stochastic analysis tool (RAVEN) – these are currently under development at the Idaho National Laboratory.

  2. A numerical and experimental study of oblique impact of ultra-high pressure abrasive water jet

    Directory of Open Access Journals (Sweden)

    Can Kang

    2016-03-01

    Full Text Available An investigation of the abrasive water jet with an emphasis on the oblique impact of abrasive particles on the target plate is performed. Ultra-high jet pressure necessitates a close examination of the phenomena featured by small spatial and temporal scales. The effect of oblique impact is assessed from both numerical and practical aspects. Numerical simulation, implemented using the commercial code LS-DYNA, allows a detailed inspection of transient stress wave propagation inside the target plate. And impact experiments facilitate a qualitative description of resultant footprints of oblique water jet. Different incident angles of abrasive particles are adopted and a comparison is thereby unfolded. The results indicate that rebound, embedding, and penetration of single abrasive particle are three representative final operation states. Adjacent to the abrasive particle, the response of the target plate to oblique impact is reflected by von Mises stress distribution and plate deformation as well. Oblique impact arouses non-symmetrical stress wave distributions and distinct unbalanced node displacements at the two sides of the abrasive particle. As for the target plate, global surface morphology is in accordance with predicted effects. The most favorable surface roughness is not associated with vertical impact, and it hinges upon the selection of standoff distance. Furthermore, variation of surface roughness with incident angle is not monotonous.

  3. Spectrochemical analysis of Cs in water and soil using low pressure laser induced breakdown spectroscopy

    Science.gov (United States)

    Ramli, Muliadi; Khumaeni, Ali; Kurniawan, Koo Hendrik; Tjia, May On; Kagawa, Kiichiro

    2017-06-01

    An experimental study has been conducted for the practical and in situ application of laser-induced breakdown spectroscopy (LIBS) for the detection of Cs pollutant in water and soil in the nearby area of Fukushima Nuclear Power Station. The spectrochemical measurements were carried out by means of 355 nm Nd-YAG laser with N2 and He ambient gases at atmospheric and low pressures. The soil samples were prepared by pelletizing the mixtures of 80% soil and 20% KBr while the aqueous samples were prepared as thin films electro deposited on indium tin oxide (ITO) glass. The resulted emission spectra using 0.5 kPa N2 ambient gas shows the minimum detectable Cs concentration of 0.2 ppm and 0.3 ppm in the water and soil samples, respectively. The result of this experiment has thus demonstrated the viability of the LIBS equipment employed here as a more practical, in-situ and even mobile alternative to the standard use of gamma-ray spectroscopy using germanium detector.

  4. Modeling of a Flooding Induced Station Blackout for a Pressurized Water Reactor Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, Diego; Prescott, Steven R; Smith, Curtis L; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J; Kinoshita, Robert A

    2011-07-01

    In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.

  5. A Tilt, Soil Moisture, and Pore Water Pressure Sensor System for Slope Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Rosanno de Dios

    2009-06-01

    Full Text Available This paper describes the design, implementation and characterization of a sensor network intended for monitoring of slope deformation and potential failures. The sensor network system consists of a tilt and moisture sensor column, a pore water pressure sensor column and a personal computer for data storage and processing. The tilt sensor column consists of several pipe segments containing tri-axial accelerometers and signal processing electronics. Each segment is joined together by flexible joints to allow for the column to deform and subsequently track underground movement. Capacitive-type sensors for soil moisture measurement are also included in the sensor column, which are used to measure the soil moisture at different depths. The measurements at each segment are transferred via a Controller Area Network (CAN bus, where the CAN master node is located at the top of the column above ground. The CAN master node transmits the collected data from the slave nodes via a wireless connection to a personal computer that performs data storage, processing and display via a Python-based graphical user interface (GUI. The entire system was deployed and characterized on a small-scale slope model. Slope failure was induced via water seepage and the system was demonstrated to ably measure the inclination and soil moisture content throughout the landslide event.

  6. Impact of continuous positive airway pressure on the pulmonary changes promoted by immersion in water

    Science.gov (United States)

    Rizzetti, Danize Aparecida; Quadros, Janayna Rodembuch Borba; Ribeiro, Bruna Esmerio; Callegaro, Letícia; Veppo, Aline Arebalo; Wiggers, Giulia Alessandra; Peçanha, Franck Maciel

    2017-01-01

    ABSTRACT Objective: To determine whether different levels of CPAP improve the lung volumes and capacities of healthy subjects immersed in water. Methods: This was a randomized clinical trial, conducted between April and June of 2016, involving healthy female volunteers who were using oral contraceptives. Three 20-min immersion protocols were applied: control (no CPAP); CPAP5 (CPAP at 5 cmH2O); and CPAP10 (CPAP at 10 cmH2O). We evaluated HR, SpO2, FVC, FEV1, the FEV1/FVC ratio, peak expiratory flow rate (PEFR), and FEF25-75%) at three time points: pre-immersion; 10 min after immersion; and 10 min after the end of each protocol. Results: We evaluated 13 healthy volunteers. The CPAP10 protocol reversed the restrictive pattern of lung function induced by immersion in water, maintaining pulmonary volumes and capacities for a longer period than did the CPAP5 protocol. Conclusions: When the hemodynamic change causing a persistent lung disorder, only the application of higher positive pressures is effective in maintaining long-term improvements in the pulmonary profile. PMID:29340488

  7. Flow patterns and pressure drop in air/water two-phase flow in horizontal helicoidal pipes

    Energy Technology Data Exchange (ETDEWEB)

    Awwad, A.; Xin, R.C.; Dong, Z.F.; Ebadian, M.A. [Florida International Univ., Miami, FL (United States). Dept. of Mechanical Engineering; Soliman, H.M. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Dept. of Mechanical Engineering

    1995-12-01

    An experimental investigation is conducted for air/water two-phase flow in horizontal helicoidal pipes. The helicoidal pipes are constructed of 25.4 mm I.D. Tygon tubing wrapped around cylindrical concrete forms with outside diameters of 62 cm and 124 cm. The helix angles of the helicoidal pipes vary from 1 to 20 deg. The experiments are performed for superficial water velocity in a range of U{sub L} = 0.008 {approximately} 2.2 m/s and for superficial air velocity in a range of U{sub G} = 0.2 {approximately} 50 m/s. The flow patterns are discerned and recorded photographically. The pressure drop of the air/water two-phase flow in the coils is measured and the Lockhart-Martinelli approach is used to analyze the data. The results are presented in the form of frictional pressure drop multipliers versus the Lockhart-Martinelli parameter. It was found that the flow patterns differ greatly from those of the straight pipe, and that the frictional pressure drop multipliers depend on both the Lockhart-Martinelli parameter and the flow rates. The correlation of the frictional pressure drop has been provided based on the current data. Furthermore, it was also found that the helix angle of the helicoidal pipe had almost no effect on the air/water two-phase flow pressure drop in the present experimental ranges.

  8. Effect of tender coconut water on systolic and diastolic blood pressure in prehypertensive women

    Directory of Open Access Journals (Sweden)

    Farapti Farapti

    2014-02-01

    . Dietary intakes of high potassium will decrease blood pressure (BP. Tender coconut water (TCW is a typical drink high in potassium. This study aimed to investigate the effect of TCW on BP in female teachers and employees prehypertension. Methods: The research was a parallel single blind randomized clinical trial. A total of 32 female prehypertension subjects aged 25-44 years. The subjects were selected using certain criteria and randomly allocated to one of two groups using block randomized, 16 subjects each. The treatment group received TCW 300 ml twice daily for 14 days and nutritional counseling, and the control group received water 300 ml twice daily for 14 days and nutritional counseling. Assessment of BP was done on day 0, day 8, and day 15. Statistical analysis were done using t-test and Mann-Whitney test. Results: Mean dietary intakes of potassium were 1420.28±405.54 mg/day or 30.22±8.63% compared to Recommended Dietary Allowance (RDA. During treatment period, potassium intake increased significantly in the treatment group. There were decreased BP in both groups, which were greater in the treatment group, but not statistically significant different (P > 0.05. The mean decrease of systolic BP was significant in treatment group (P = 0.031, meanwhile the mean decrease of diastolic BP was not significant (P=0.134. Conclusion: Tender coconut water 300 ml twice daily for 14 consecutive days has tendency to decrease systolic BP, but not diastolic blood pressure. (Health Science Indones 2013;2: 64-8Key words: coconut water, systolic and diastolic blood pressure

  9. Evaluation of Very Low Pressure Sprinkler Irrigation and Reservoir Tillage for Efficient Use of Water and Energy : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, Dennis C.

    1987-03-01

    Two types of very low pressure devices were tested, spray nozzles and furrow drops (bubblers). For minimizing spray loss and maintaining uniformity, optimum conditions for spray heads are elevation about 6 feet, spacing 8 to 9 feet and pressure 15 to 20 psi. Use of furrow bubblers is not recommended for most regional conditions. Reservoir tillage with very low pressure systems reduces runoff on sloping fields while maintaining or slightly increasing yield. The total amount of water applied is slightly less because of reduction in spray loss. Effectiveness of reservoir tillage depends on the reservoir storing water until it infiltrates. Failure of the reservoirs during the season may result in increased runoff and erosion. Pressure regulators tested are adequate for their intended use. The uniformity of application using low pressure components was comparable to that of high pressure systems. Energy saving scan result from both low operating pressure and better application efficiency, but the relative importance of these two factors depends on individual circumstances. Payback times for some example systems are four years or less.

  10. DEVELOPMENT OF A SIPHON SYSTEM WITH POROUS TUBES FOR MAINTAINING A CONSTANT NEGATIVE WATER PRESSURE IN A ROOTING MATRIX

    OpenAIRE

    Tibbitts, T. W.; Frank, T.

    1995-01-01

    A reliable and effective water and nutrient delivery system with porous tubes has been developed for growing plants at a controllable, constant, negative water pressure. Multiple porous stainless steel tubes were positioned 4cm apart in a shallow tray (44cm long, 32cm wide and 8cm deep), and then covered with a 4cm layer of fine medium (≤1mm in diameter). Nutrient solution was recirculated through the porous tubes under a negative pressure maintained with a siphoning procedure. A range of ...

  11. Pressure monitoring and characterization of external sources of contamination at the site of the payment drinking water epidemiological studies.

    Science.gov (United States)

    Besner, Marie-Claude; Broséus, Romain; Lavoie, Jean; Giovanni, George Di; Payment, Pierre; Prévost, Michèle

    2010-01-01

    The 1990s epidemiological studies by Payment and colleagues suggested that an increase in gastrointestinal illnesses observed in the population consuming tap water from a system meeting all water quality regulations might be associated with distribution system deficiencies. In the current study, the vulnerability of this distribution system to microbial intrusion was assessed by characterizing potential sources of contamination near pipelines and monitoring the frequency and magnitude of negative pressures. Bacterial indicators of fecal contamination were recovered more frequently in the water from flooded air-valve vaults than in the soil or water from pipe trenches. The level of fecal contamination in these various sources was more similar to levels from river water rather than wastewater. Because of its configuration, this distribution system is vulnerable to negative pressures when pressure values out of the treatment plant reach or drop below 172 kPa (25 psi), which occurred nine times during a monitoring period of 17 months. The results from this investigation suggest that this distribution system is vulnerable to contamination by intrusion. Comparison of the frequency of occurrence of negative pressure events and repair rates with data from other distribution systems suggests that the system studied by Payment and colleagues is not atypical.

  12. Multiple-pressure-tapped core holder combined with X-ray computed tomography scanning for gas-water permeability measurements of methane-hydrate-bearing sediments.

    Science.gov (United States)

    Konno, Yoshihiro; Jin, Yusuke; Uchiumi, Takashi; Nagao, Jiro

    2013-06-01

    We present a novel setup for measuring the effective gas-water permeability of methane-hydrate-bearing sediments. We developed a core holder with multiple pressure taps for measuring the pressure gradient of the gas and water phases. The gas-water flooding process was simultaneously detected using an X-ray computed tomography scanner. We successfully measured the effective gas-water permeability of an artificial sandy core with methane hydrate during the gas-water flooding test.

  13. Elemental Composition of Natural Nanoparticles and Fine Colloids in European Forest Stream Waters and Their Role as Phosphorus Carriers

    Science.gov (United States)

    Gottselig, N.; Amelung, W.; Kirchner, J. W.; Bol, R.; Eugster, W.; Granger, S. J.; Hernández-Crespo, C.; Herrmann, F.; Keizer, J. J.; Korkiakoski, M.; Laudon, H.; Lehner, I.; Löfgren, S.; Lohila, A.; Macleod, C. J. A.; Mölder, M.; Müller, C.; Nasta, P.; Nischwitz, V.; Paul-Limoges, E.; Pierret, M. C.; Pilegaard, K.; Romano, N.; Sebastià, M. T.; Stähli, M.; Voltz, M.; Vereecken, H.; Siemens, J.; Klumpp, E.

    2017-10-01

    Biogeochemical cycling of elements largely occurs in dissolved state, but many elements may also be bound to natural nanoparticles (NNP, 1-100 nm) and fine colloids (100-450 nm). We examined the hypothesis that the size and composition of stream water NNP and colloids vary systematically across Europe. To test this hypothesis, 96 stream water samples were simultaneously collected in 26 forested headwater catchments along two transects across Europe. Three size fractions ( 1-20 nm, >20-60 nm, and >60 nm) of NNP and fine colloids were identified with Field Flow Fractionation coupled to inductively coupled plasma mass spectrometry and an organic carbon detector. The results showed that NNP and fine colloids constituted between 2 ± 5% (Si) and 53 ± 21% (Fe; mean ± SD) of total element concentrations, indicating a substantial contribution of particles to element transport in these European streams, especially for P and Fe. The particulate contents of Fe, Al, and organic C were correlated to their total element concentrations, but those of particulate Si, Mn, P, and Ca were not. The fine colloidal fractions >60 nm were dominated by clay minerals across all sites. The resulting element patterns of NNP <60 nm changed from North to South Europe from Fe- to Ca-dominated particles, along with associated changes in acidity, forest type, and dominant lithology.

  14. Role of six European tree species and land-use legacy for nitrogen and water budgets in forests

    DEFF Research Database (Denmark)

    Riis Christiansen, Jesper; Vesterdal, Lars; Callesen, Ingeborg

    2010-01-01

    Water and nutrient fluxes for single stands of different tree species have been reported in numerous studies, but comparative studies of nutrient and hydrological budgets of common European deciduous tree species are rare. Annual fluxes of water and inorganic nitrogen (N) were established in a 30...... in Denmark, Mattrup and Vallø during 2 years. Mean annual percolation below the root zone (mm yr−1±SE, n=4) ranked in the following order: maple (351±38)>lime (284±32), oak (271±25), beech (257±30), ash (307±69)≫ spruce (75±24). There were few significant tree species effects on N fluxes. However, the annual...... mean N throughfall flux (kg N ha−1 yr−1±SE, n=4) for spruce (28±2) was significantly larger than for maple (12±1), beech (11±1) and oak (9±1) stands but not different from that of lime (15±3). Ash had a low mean annual inorganic N throughfall deposition of 9.1 kg ha−1, but was only present at Mattrup...

  15. Climate Change Influence on Agriculture and the Water-Energy-Food Nexus in Central and Eastern European Countries

    Directory of Open Access Journals (Sweden)

    Camelia KANTOR

    2017-12-01

    Full Text Available The Water-Energy-Food (WEF Nexus concept has great potential for understanding a region’s vulnerability to climate change. This paper examines individual components that form the supporting pillars of the nexus in Central and Eastern European (CEE countries. An overview of specific CEE political environments that govern economic and environmental policies are examined to select several domains representing higher risks to society, environment and economies of selected countries, together with evaluation of extant interlinkages between climate change, agriculture and the WEF nexus. While a variety of studies quantify and analyze climate change impacts on water availability, crop yields, yield variability, or alternative energy needed to mitigate global warming effects, this paper shows there is no clear evidence of a nexus-based integration to help manage or mitigate extreme future climate change-related events in the region. The study provides a model for supporting WEF pillars and advances recommendations for consideration of the nexus approach in relation to climate adaptation.

  16. Delimitation of areas under the real pressure from agricultural activities due to nitrate water pollution in Poland

    Science.gov (United States)

    Wozniak, E.; Nasilowska, S.; Jarocinska, A.; Igras, J.; Stolarska, M.; Bernoussi, A. S.; Karaczun, Z.

    2012-04-01

    The aim of the performed research was to determine catchments under the nitrogen pressure in Poland in period of 2007-2010. National Water Management Authority in Poland uses the elaborated methodology to fulfil requirements of Nitrate Directive and Water Framework Directive. Multicriteria GIS analysis was conducted on the base on various types of environmental data, maps and remote sensing products. Final model of real agricultural pressure was made using two components: (i) potential pressure connected with agriculture (ii) the vulnerability of the area. The agricultural pressure was calculated using the amount of nitrogen in fertilizers and the amount of nitrogen produced by animal breeding. The animal pressure was based on the information about the number of bred animals of each species for communes in Poland. The spatial distribution of vegetation pressure was calculated using kriging for the whole country base on the information about 5000 points with the amount of nitrogen dose in fertilizers. The vulnerability model was elaborated only for arable lands. It was based on the probability of the precipitation penetration to the ground water and runoff to surface waters. Catchment, Hydrogeological, Soil, Relief or Land Cover maps allowed taking into account constant environmental conditions. Additionally information about precipitation for each day of analysis and evapotranspiration for every 16-day period (calculated from satellite images) were used to present influence of meteorological condition on vulnerability of the terrain. The risk model is the sum of the vulnerability model and the agricultural pressure model. In order to check the accuracy of the elaborated model, the authors compared the results with the eutrophication measurements. The model accuracy is from 85,3% to 91,3%.

  17. Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure.

    Science.gov (United States)

    Mayser, Matthias J; Barthlott, Wilhelm

    2014-12-01

    Superhydrophobic, hierarchically structured, technical surfaces (Lotus-effect) are of high scientific and economic interest because of their remarkable properties. Recently, the immense potential of air-retaining superhydrophobic surfaces, for example, for low-friction transport of fluids and drag-reducing coatings of ships has begun to be explored. A major problem of superhydrophobic surfaces mimicking the Lotus-effect is the limited persistence of the air retained, especially under rough conditions of flow. However, there are a variety of floating or diving plant and animal species that possess air-retaining surfaces optimized for durable water-repellency (Salvinia-effect). Especially floating ferns of the genus Salvinia have evolved superhydrophobic surfaces capable of maintaining layers of air for months. Apart from maintaining stability under water, the layer of air has to withstand the stresses of water pressure (up to 2.5 bars). Both of these aspects have an application to create permanent air layers on ships' hulls. We investigated the effect of pressure on air layers in a pressure cell and exposed the air layer to pressures of up to 6 bars. We investigated the suppression of the air layer at increasing pressures as well as its restoration during decreases in pressure. Three of the four examined Salvinia species are capable of maintaining air layers at pressures relevant to the conditions applying to ships' hulls. High volumes of air per surface area are advantageous for retaining at least a partial Cassie-Baxter-state under pressure, which also helps in restoring the air layer after depressurization. Closed-loop structures such as the baskets at the top of the "egg-beater hairs" (see main text) also help return the air layer to its original level at the tip of the hairs by trapping air bubbles. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions

  18. Computational fluid dynamics (CFD) round robin benchmark for a pressurized water reactor (PWR) rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Shin K., E-mail: paengki1@tamu.edu; Hassan, Yassin A.

    2016-05-15

    Highlights: • The capabilities of steady RANS models were directly assessed for full axial scale experiment. • The importance of mesh and conjugate heat transfer was reaffirmed. • The rod inner-surface temperature was directly compared. • The steady RANS calculations showed a limitation in the prediction of circumferential distribution of the rod surface temperature. - Abstract: This study examined the capabilities and limitations of steady Reynolds-Averaged Navier–Stokes (RANS) approach for pressurized water reactor (PWR) rod bundle problems, based on the round robin benchmark of computational fluid dynamics (CFD) codes against the NESTOR experiment for a 5 × 5 rod bundle with typical split-type mixing vane grids (MVGs). The round robin exercise against the high-fidelity, broad-range (covering multi-spans and entire lateral domain) NESTOR experimental data for both the flow field and the rod temperatures enabled us to obtain important insights into CFD prediction and validation for the split-type MVG PWR rod bundle problem. It was found that the steady RANS turbulence models with wall function could reasonably predict two key variables for a rod bundle problem – grid span pressure loss and the rod surface temperature – once mesh (type, resolution, and configuration) was suitable and conjugate heat transfer was properly considered. However, they over-predicted the magnitude of the circumferential variation of the rod surface temperature and could not capture its peak azimuthal locations for a central rod in the wake of the MVG. These discrepancies in the rod surface temperature were probably because the steady RANS approach could not capture unsteady, large-scale cross-flow fluctuations and qualitative cross-flow pattern change due to the laterally confined test section. Based on this benchmarking study, lessons and recommendations about experimental methods as well as CFD methods were also provided for the future research.

  19. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Kryk, Holger, E-mail: h.kryk@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hoffmann, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany)

    2014-12-15

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products.

  20. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs

    Directory of Open Access Journals (Sweden)

    Charton A

    2014-08-01

    Full Text Available Antoine Charton,1 François Péronnet,2 Stephane Doutreleau,3 Evelyne Lonsdorfer,3 Alexis Klein,4 Liliana Jimenez,4 Bernard Geny,3 Pierre Diemunsch,1 Ruddy Richard5 1Department of Anesthesia and Critical Care, and EA 3072, Hôpital de Hautepierre; University of Strasbourg, Strasbourg, France; 2Department of Kinesiology, Université de Montréal, Montreal, QC, Canada; 3CHRU of Strasbourg, Physiology and Functional Explorations Department, New Civil Hospital, Strasbourg, France and University of Strasbourg, Faculty of Medicine, Physiology Department, Strasbourg, France; 4Danone Research, Palaiseau, France; 5Department of Sport Medicine and Functional Explorations, CHU Clermont-Ferrand and INRA UMR 1019, CRNH-Auvergne, Clermont-Ferrand, France Background: Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2 supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods: Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach. Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2, skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2 were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results: Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in

  1. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins.

    Science.gov (United States)

    Gampe, David; Nikulin, Grigory; Ludwig, Ralf

    2016-12-15

    Climate change will likely increase pressure on the water balances of Mediterranean basins due to decreasing precipitation and rising temperatures. To overcome the issue of data scarcity the hydrological relevant variables total runoff, surface evaporation, precipitation and air temperature are taken from climate model simulations. The ensemble applied in this study consists of 22 simulations, derived from different combinations of four General Circulation Models (GCMs) forcing different Regional Climate Models (RCMs) and two Representative Concentration Pathways (RCPs) at ~12km horizontal resolution provided through the EURO-CORDEX initiative. Four river basins (Adige, Ebro, Evrotas and Sava) are selected and climate change signals for the future period 2035-2065 as compared to the reference period 1981-2010 are investigated. Decreased runoff and evaporation indicate increased water scarcity over the Ebro and the Evrotas, as well as the southern parts of the Adige and the Sava, resulting from a temperature increase of 1-3° and precipitation decrease of up to 30%. Most severe changes are projected for the summer months indicating further pressure on the river basins already at least partly characterized by flow intermittency. The widely used Falkenmark indicator is presented and confirms this tendency and shows the necessity for spatially distributed analysis and high resolution projections. Related uncertainties are addressed by the means of a variance decomposition and model agreement to determine the robustness of the projections. The study highlights the importance of high resolution climate projections and represents a feasible approach to assess climate impacts on water scarcity also in regions that suffer from data scarcity. Copyright © 2016. Published by Elsevier B.V.

  2. The development of a neutralizing amines based reagent for maintaining the water chemistry for medium and high pressures steam boilers

    Science.gov (United States)

    Butakova, M. V.; Orlov, K. A.; Guseva, O. V.

    2017-11-01

    An overview of the development for neutralizing amine based reagent for water chemistry of steam boilers for medium and high pressures was given. Total values of the neutralization constants and the distribution coefficients of the compositions selected as a main criteria for reagent composition. Experimental results of using this new reagent for water chemistry in HRSG of power plant in oil-production company are discussed.

  3. Lake Surface Water Temperature of European Lakes retrieved from AVHRR Data - Time Series and Quality Assessment

    Science.gov (United States)

    Wunderle, S.; Lieberherr, G.; Riffler, M.

    2016-12-01

    Data analysis of the recent years showed an increase of lake surface water temperature for many lakes around the world. But due to sparse in-situ measurements, which are often not well documented, only satellite data can provide the needed information of the last decades. The importance of lakes for climate research was also highlighted by the Global Climate Observing System (GCOS) defining lakes as Essential Climate Variables (ECVs). Within the frame of a research project funded by the Swiss National Science Foundation a procedure was developed to retrieve lake surface water temperature with high accuracy based on our archived AVHRR data at the University of Bern, Switzerland. The data archive starts in 1985 and is continuously filled with NOAA-/MetOp-AVHRR data received by our antenna resulting in a time series of more than 30 years (WMO definition of a climate period). The data set covering Europe is also used by other teams for climate related studies resulting in improved pre-processing to guarantee precise calibration and geocoding. The first part of our presentation will be dedicated to the quality of the LSWT retrieval comparing various in-situ measurements from lakes in Switzerland with varying sizes (150km2 - 9km2). The quality of the used split-window approach is sensitive to the derived split-window coefficients. The influence of water vapor, view angle, temporal and spatial validity and day vs. night data will be shown. In addition, some information will be presented about the influence of topography and climatic regions (e.g. Scandinavia vs. Greece) on the quality of the LSWT product. Based on these findings