WorldWideScience

Sample records for european energy crops

  1. Miscanthus: A Review of European Experience with a Novel Energy Crop

    Energy Technology Data Exchange (ETDEWEB)

    Scurlock, J.M.O.

    1999-02-01

    Miscanthus is a tall perennial grass which has been evaluated in Europe over the past 5-10 years as a new bioenergy crop. The sustained European interest in miscanthus suggests that this novel energy crop deserves serious investigation as a possible candidate biofuel crop for the US alongside switchgrass. To date, no agronomic trials or trial results for miscanthus are known from the conterminous US, so its performance under US conditions is virtually unknown. Speculating from European data, under typical agricultural practices over large areas, an average of about 8t/ha (3t/acre dry weight) may be expected at harvest time. As with most of the new bioenergy crops, there seems to be a steep ''learning curve.'' Establishment costs appear to be fairly high at present (a wide range is reported from different European countries), although these may be expected to fall as improved management techniques are developed.

  2. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  3. European Home Energy

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.

    2009-01-01

    An important aim of the european energy performance of buildings directive is to improve the overall energy efficiency of new homes......An important aim of the european energy performance of buildings directive is to improve the overall energy efficiency of new homes...

  4. Energy crops in rotation. A review

    Energy Technology Data Exchange (ETDEWEB)

    Zegada-Lizarazu, Walter; Monti, Andrea [Department of Agroenvironmental Science and Technology, University of Bologna, Viale G. Fanin, 44 - 40127, Bologna (Italy)

    2011-01-15

    The area under energy crops has increased tenfold over the last 10 years, and there is large consensus that the demand for energy crops will further increase rapidly to cover several millions of hectares in the near future. Information about rotational systems and effects of energy crops should be therefore given top priority. Literature is poor and fragmentary on this topic, especially about rotations in which all crops are exclusively dedicated to energy end uses. Well-planned crop rotations, as compared to continuous monoculture systems, can be expected to reduce the dependence on external inputs through promoting nutrient cycling efficiency, effective use of natural resources, especially water, maintenance of the long-term productivity of the land, control of diseases and pests, and consequently increasing crop yields and sustainability of production systems. The result of all these advantages is widely known as crop sequencing effect, which is due to the additional and positive consequences on soil physical-chemical and biological properties arising from specific crops grown in the same field year after year. In this context, the present review discusses the potential of several rotations with energy crops and their possibilities of being included alongside traditional agriculture systems across different agro-climatic zones within the European Union. Possible rotations dedicated exclusively to the production of biomass for bioenergy are also discussed, as rotations including only energy crops could become common around bio-refineries or power plants. Such rotations, however, show some limitations related to the control of diseases and to the narrow range of available species with high production potential that could be included in a rotation of such characteristics. The information on best-known energy crops such as rapeseed (Brassica napus) and sunflower (Helianthus annuus) suggests that conventional crops can benefit from the introduction of energy crops in

  5. Crop rotation modelling - A European model intercomparison

    DEFF Research Database (Denmark)

    Kollas, Chris; Kersebaum, Kurt C; Nendel, Claas

    2015-01-01

    , tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less...

  6. Transportation fuels from energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, V.K.; Kulsrestha, G.N.; Padmaja, K.V.; Kamra, S.; Bhagat, S.D. (Indian Inst. of Petroleum, Dehra Dun (India))

    1993-01-01

    Biomass constituents in the form of energy crops can be used as starting materials in the production of transportation fuels. The potential of biocrudes obtained from laticiferous species belonging to the families of Euphorbiaceae, Asclepiadaceae, Apocynaceae, Moraceae and Convolvulaceae for the production of hydrocarbon fuels has been explored. Results of studies carried out on upgrading these biocrudes by catalytic cracking using a commercial catalyst are presented. (author)

  7. Transgenic Crops and Sustainable Agriculture in the European Context

    Science.gov (United States)

    Ponti, Luigi

    2005-01-01

    The rapid adoption of transgenic crops in the United States, Argentina, and Canada stands in strong contrast to the situation in the European Union (EU), where a de facto moratorium has been in place since 1998. This article reviews recent scientific literature relevant to the problematic introduction of transgenic crops in the EU to assess if…

  8. Switchgrass a valuable biomass crop for energy

    CERN Document Server

    2012-01-01

    The demand of renewable energies is growing steadily both from policy and from industry which seeks environmentally friendly feed stocks. The recent policies enacted by the EU, USA and other industrialized countries foresee an increased interest in the cultivation of energy crops; there is clear evidence that switchgrass is one of the most promising biomass crop for energy production and bio-based economy and compounds. Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to  switchgrass in terms of agricultural practices, potential use and markets, and environmental and social benefits. Considering this potential energy source from its biology, breed and crop physiology to its growth and management to the economical, social and environmental impacts, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a ...

  9. Cassava as an energy crop

    DEFF Research Database (Denmark)

    Kristensen, Søren Bech Pilgaard; Birch-Thomsen, Torben; Rasmussen, Kjeld

    2014-01-01

    of the Attieké cassava variety. Little competition with food crops is likely, as cassava most likely would replace cotton as primary cash crop, following the decline of cotton production since 2005 and hence food security concerns appear not to be an issue. Stated price levels to motivate an expansion of cassava...

  10. Attitudes of European farmers towards GM crop adoption.

    Science.gov (United States)

    Areal, Francisco J; Riesgo, Laura; Rodríguez-Cerezo, Emilio

    2011-12-01

    This article analyses European Union (EU) farmers' attitudes towards adoption of genetically modified crops by identifying and classifying groups of farmers. Cluster analysis provided two groups of farmers allowing us to classify farmers into potential adopters or rejecters of genetically modified herbicide-tolerant (GMHT) crops. Results showed that economic issues such as the guarantee of a higher income and the reduction of weed control costs are the most encouraging reasons for potential adopters and rejecters of GMHT crops. This article also examines how putting in place measures to ensure coexistence between GM and non-GM crops may influence farmers' attitudes towards GMHT crop adoption. Results show that the implementation of a coexistence policy would have a negative impact on farmers' attitudes on adoption and consequently may hamper GMHT adoption in the EU. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  11. 1. European Hydrogen Energy Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    This conference is the first of a series of EHA (European Hydrogen Association) conferences that will take place every two years in Europe with the collaboration of the national European Hydrogen Associations. EHEC 2003 takes place within the context of the debates on long term energy strategies organized by the international authorities and the governments of many countries. Under the patronage of the European Commission and the French government, the conference will aim at providing a comprehensive picture of the research work and demonstrations on hydrogen and fuel cells that the currently being carried out all over the globe. EHEC 2003 will provide an opportunity to define the role that hydrogen will have in tomorrow's energy landscape and, in particular, the benefits with regard to: 1)sustainable development of energy 2)control of climate change 3)development of renewable energy 4)increase demand for ground transport. (O.M.)

  12. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  13. European Union Energy Saving Policy

    Directory of Open Access Journals (Sweden)

    Nikolay Y. Kaveshnikov

    2014-01-01

    Full Text Available This article analyses methods of energy efficiency stimulation in the European Union. The author investigates basic areas of the EU activity; in particular, the author estimates results of implementation of the Energy Star program, new provisions of labeling of energy-using products, measures to increase energy efficiency in buildings. The paper also analyzes the provisions of the Directive 2012/27 that is the first EU document, providing for a comprehensive approach to energy saving at all stages: production, transformation and consumption. Today EU policy includes: 7 a general political and regulatory framework laid down by the European action plan on energy efficiency and Directive 2012/27; 2 national action plans on energy efficiency, which should be in line with indicative targets set at the EU level; 3 special EU documents in key areas of energy efficiency (buildings, energy-consuming equipment etc.; 4 accompanying instruments, such as target funding, information dissemination, support of specialized networks. The paper gives a comprehensive analysis of the key methods of implementation of EU policy in the area of energy saving. The author concludes that EU operates within the framework of the open method of coordination. The system of mandatory/voluntary technical standards has allowed to achieve significant success, but indicative planning and monitoring of national actions are not completely effective. In the long term EU policy in the area of energy efficiency is restrained by member states unwillingness to delegate to the European Union a more detailed powers in this field and to give the EU bodies facilities to execute more strict control. In the short term - in conditions of economic crisis, the EU countries are not ready to invest significant budget funds in projects with long payback period.

  14. Woody biomass from short rotation energy crops

    Science.gov (United States)

    R.S. Zalesny; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; John Stanturf; T.A. Volk

    2011-01-01

    Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...

  15. Nitrate leaching and pesticide use in energy crops

    DEFF Research Database (Denmark)

    Jørgensen, Uffe

    2006-01-01

    Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well.......Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well....

  16. Pesticide runoff from energy crops: A threat to aquatic invertebrates?

    Science.gov (United States)

    Bunzel, Katja; Schäfer, Ralf B; Thrän, Daniela; Kattwinkel, Mira

    2015-12-15

    The European Union aims to reach a 10% share of biofuels in the transport sector by 2020. The major burden is most likely to fall on already established annual energy crops such as rapeseed and cereals for the production of biodiesel and bioethanol, respectively. Annual energy crops are typically cultivated in intensive agricultural production systems, which require the application of pesticides. Agricultural pesticides can have adverse effects on aquatic invertebrates in adjacent streams. We assessed the relative ecological risk to aquatic invertebrates associated with the chemical pest management from six energy crops (maize, potato, sugar beet, winter barley, winter rapeseed, and winter wheat) as well as from mixed cultivation scenarios. The pesticide exposure related to energy crops and cultivation scenarios was estimated as surface runoff for 253 small stream sites in Central Germany using a GIS-based runoff potential model. The ecological risk for aquatic invertebrates, an important organism group for the functioning of stream ecosystems, was assessed using acute toxicity data (48-h LC50 values) of the crustacean Daphnia magna. We calculated the Ecological Risk from potential Pesticide Runoff (ERPR) for all three main groups of pesticides (herbicides, fungicides, and insecticides). Our findings suggest that the crops potato, sugar beet, and rapeseed pose a higher ecological risk to aquatic invertebrates than maize, barley, and wheat. As maize had by far the lowest ERPR values, from the perspective of pesticide pollution, its cultivation as substrate for the production of the gaseous biofuel biomethane may be preferable compared to the production of, for example, biodiesel from rapeseed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Coastal eutrophication in Europe caused by production of energy crops.

    Science.gov (United States)

    van Wijnen, Jikke; Ivens, Wilfried P M F; Kroeze, Carolien; Löhr, Ansje J

    2015-04-01

    In Europe, the use of biodiesel may increase rapidly in the coming decades as a result of policies aiming to increase the use of renewable fuels. Therefore, the production of biofuels from energy crops is expected to increase as well as the use of fertilisers to grow these crops. Since fertilisers are an important cause of eutrophication, the use of biodiesel may have an effect on the water quality in rivers and coastal seas. In this study we explored the possible effects of increased biodiesel use on coastal eutrophication in European seas in the year 2050. To this end, we defined a number of illustrative scenarios in which the biodiesel production increases to about 10-30% of the current diesel use. The scenarios differ with respect to the assumptions on where the energy crops are cultivated: either on land that is currently used for agriculture, or on land used for other purposes. We analysed these scenarios with the Global NEWS (Nutrient Export from WaterSheds) model. We used an existing Millennium Ecosystem Assessment Scenario for 2050, Global Orchestration (GO2050), as a baseline. In this baseline scenario the amount of nitrogen (N) and phosphorus (P) exported by European rivers to coastal seas decreases between 2000 and 2050 as a result of environmental and agricultural policies. In our scenarios with increased biodiesel production the river export of N and P increases between 2000 and 2050, indicating that energy crop production may more than counterbalance this decrease. Largest increases in nutrient export were calculated for the Mediterranean Sea and the Black Sea. Differences in nutrient export among river basins are large. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Assessment of energy recovery from fibrous crops

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    Silsoe Agricultural College (SAC), Robin Appel (RA) and their commercial partners have worked with MAFF and DTI in development of a decortication plant for processing natural fibres. The plant has export potential in its application to flax, hemp and similar fibre/energy crops. The process residues are shiv (flax straw) and dust. Lucas Furnaces (LF Ltd) has reviewed with SACE and RA the use of advanced, high temperature combustion to use the shiv and dust as the energy source for the plant, notably for an export package where energy costs are high or where disposal of the dust is regulated and costly. This report assesses the combustion characteristics of flax shiv and dust in the Lucas Furnaces cyclone combustion unit. The trials have provided the basic information to develop and present to the market a package of sustainable fibre crops and energy resources. The energy derived from the waste has been assessed and balanced against all the energy uses at the decorticator including electricity, compressed air and drying. Alternative uses for surplus energy have been examined. Lucas Furnaces tested the flax in the laboratory for its full range of combustion characteristics and environmental chemistry, including the fusion properties of the ash and heat values. The results are tabulated in the report, and show a fuel with characteristics seen in wood and straw. (Author)

  19. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Giuseppina M. D’Agosta

    2008-06-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  20. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Giuseppina M. D’Agosta

    2011-02-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  1. Crop protection in European maize-based cropping systems: Current practices and recommendations for innovative Integrated Pest Management

    NARCIS (Netherlands)

    Vasileiadisa, V.P.; Sattin, M.; Weide, van der R.Y.

    2011-01-01

    Maize-based cropping systems (MBCSs), with different frequency of maize in the crop sequence, are common in European arable systems. Pesticide use differs according to the type of active ingredients and target organisms in different regions. Within the EU Network of Excellence ENDURE, two

  2. European energy security : Challenges and green opportunities

    OpenAIRE

    Heshmati, Almas; Abolhosseini, Shahrouz

    2017-01-01

    This research reviews relevant literature on the current state and effectiveness of developing renewable energy on energy security in general, and on energy security in the European Union in particular. The paper elaborates on primary energy import sources, possible alternatives, and how energy security is affected by the sources of supply. It also gives an analysis of the effects of the Ukrainian crisis, the isolation of Iran on diversification sources, and on European energy security. It ex...

  3. Agronomic aspects of future energy crops in Europe

    NARCIS (Netherlands)

    Zegada-Lizarazu, W.E.; Elbersen, H.W.; Cosentino, S.L.; Zatta, A.; Alexopoulou, E.; Monti, A.

    2010-01-01

    The recent policies enacted by the EU foresee an increased interest in the cultivation of energy crops. Hence systematized information on new energy crops and cropping strategies is necessary to optimize their production quantitatively and qualitatively and to integrate them into traditional

  4. ENERGY POLICY IN THE EUROPEAN UNION

    OpenAIRE

    Pazderníková, Kamila

    2006-01-01

    This work focuses on the reasons and beginnings of creation of European energy policy, the role of environment in this policy and different kinds of energy sources with special focus on the renewable ones. The hot topic of liberalization of European energy policy is also discussed. Powered by TCPDF (www.tcpdf.org)

  5. PHA bioplastics, biochemicals, and energy from crops.

    Science.gov (United States)

    Somleva, Maria N; Peoples, Oliver P; Snell, Kristi D

    2013-02-01

    Large scale production of polyhydroxyalkanoates (PHAs) in plants can provide a sustainable supply of bioplastics, biochemicals, and energy from sunlight and atmospheric CO(2). PHAs are a class of polymers with various chain lengths that are naturally produced by some microorganisms as storage materials. The properties of these polyesters make them functionally equivalent to many of the petroleum-based plastics that are currently in the market place. However, unlike most petroleum-derived plastics, PHAs can be produced from renewable feedstocks and easily degrade in most biologically active environments. This review highlights research efforts over the last 20 years to engineer the production of PHAs in plants with a focus on polyhydroxybutryrate (PHB) production in bioenergy crops with C(4) photosynthesis. PHB has the potential to be a high volume commercial product with uses not only in the plastics and materials markets, but also in renewable chemicals and feed. The major challenges of improving product yield and plant fitness in high biomass yielding C(4) crops are discussed in detail. Plant Biotechnology Journal © 2013 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  6. Energy crops for biogas plants. Bavaria; Energiepflanzen fuer Biogasanlagen. Bayern

    Energy Technology Data Exchange (ETDEWEB)

    Aigner, A.; Biertuempel, A.; Conrad, M. (and others)

    2012-08-15

    For agriculturists in Bavaria (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  7. EU Energy Policy and Future European Energy Markets: Consequences for the Central and East European States

    OpenAIRE

    Margarita M. Balmaceda

    2002-01-01

    This working paper explores the European Union vector in the Central and East European (CEE) energy situation, in particular in terms of the CEE countries' energy relationship with Russia. Attention is paid not only to concrete EU energy policies but also to the larger question of European energy markets. EU policies impact the CEE states' energy relationship with Russia through specific EU requirements vis-à-vis the candidate countries, through the side-effects of other EU policies, through ...

  8. Evaluation of triticale as energy crop in Italy.

    Science.gov (United States)

    Cantale, Cristina; Correnti, Angelo; Farneti, Anna; Felici, Fabio; Mentuccia, Luciano; Pignatelli, Vito; Sprocati, Anna Rosa; Ammar, Karim; Galeffi, Patrizia

    2014-01-01

    The promotion of renewable energy represents a target of the European 2020 strategy for economical growth and sustainable competitiveness. Cereals are considered a promising biomass producing crop in temperate regions of Europe to be used for both fuel alcohol and biogas production. Among cereals, triticale represents a good candidate for this kind of application, showing a number of advantages such as high grain yield even in marginal environments, tolerance to drought, tolerance to more acid soils, lower production costs and lower susceptibility to biotic stresses. The aim of this study was to compare yield and quality of eight triticale lines grown in marginal areas in a two-year experiment. Italian variety, Magistral, and a bread wheat variety (EW9) were selected for comparison. Data from fields, chemical analyses and preliminary results from fermentation are reported.

  9. RENEWABLE ENERGY STRATEGIES: WHERE EUROPEAN UNION HEADED?

    Directory of Open Access Journals (Sweden)

    RADULESCU IRINA GABRIELA

    2015-06-01

    Full Text Available The states from European Union must take advantage from renewable energy sources in order to revive the economy. Climate change creates new jobs and could reduce energy imports which would stimulate the economy of those states. The European Union should support research in the field, apply more efficient policies in energy, and create economies of scale to get an integrated European energy market in which the main actors can reduce the cost of production of renewable energy. In addition, it is possible to use the comparative advantages of the Member States and not only, like Greece, through solar energy, Southern Mediterranean, through distribution networks interconnections with EU, Russia and Ukraine, through biomass and the North Sea, through wind energy. This paper refers to the evolution and trends of the renewable energy sources and presents some scenarios of it.

  10. A quality assessment of the MARS crop yield forecasting system for the European Union

    Science.gov (United States)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  11. A modelling approach to estimate the European biofuel production: from crops to biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Clodic, Melissa [Institute National de la Recherche Agronomique (IFP/INRA), Paris (France). Instituto Frances do Petroleo

    2008-07-01

    Today, in the context of energy competition and climate change, biofuels are promoted as a renewable resource to diversify the energy supply. However, biofuel development remains controversial. Here, we will present a way to make an environmental and economic cost and benefit analysis of European biofuels, from the crops until the marketed products, by using a linear programming optimization modelling approach. To make this European biofuel production model, named AGRAF, possible, we decided to use different independent linear programming optimization models which represent the separate parts of the process: European agricultural production, production of transforming industries and refinery production. To model the agricultural and the refining sections, we have chosen to improve existing and experimented models by adding a biofuel production part. For the transforming industry, we will create a new partial equilibrium model which will represent stake holders such as Sofiproteol, Stereos, etc. Data will then be exchanged between the models to coordinate all the biofuel production steps. Here, we will also focus on spatialization in order to meet certain of our requirements, such as the exchange flux analysis or the determination of transport costs, usually important in an industrial optimization model. (author)

  12. Future energy crop production costs in the EU

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, K.; Rosenqvist, H.; Nilsson, L.J.

    2007-05-15

    This paper presents an analysis of energy crop production costs from the perspective of the farmer. The objective of the study presented in this paper was to calculate indicative cost ranges on a regional level for a number of promising energy crops and to analyse the structure of production costs. The analysis was made for three cases, two of which refer to the knowledge and technical level in 2005, and one of which refers to that in 2020.The production cost consists of three main components: the costs of cultivation, land and risk. The cost of land was estimated using the opportunity cost based on the net gross margin for grain production. The energy crop production costs were estimated to be consistently lowest for the SRC crops and highest for annual straw crops. The production cost of the SRC crops was estimated to about 4-5/GJ under present conditions and 3-4/GJ for the 2020 scenario.

  13. POTENTIAL FOR WASTEWATER MANAGEMENT USING ENERGY CROPS

    Directory of Open Access Journals (Sweden)

    Alistair R. McCRACKEN

    2015-04-01

    Full Text Available In most countries within Europe there are numerous small rural Waste Water Treatment Works (WWTWs often serving a small number of people equivalents (PEs. It is usually impractical and expensive to upgrade such WWTWs and yet they are often delivering potentially highly polluting effluent into streams and rivers. Short Rotation Coppice (SRC willow, grown as an energy source, may be an ideal crop for the bioremediation of a variety of effluents and wastewater streams. As part of an EU funded (INTERREG IVA project called ANSWER (Agricultural Need for Sustainable Willow Effluent Recycling four Proof of Concept irrigation schemes were established ranging in size from 5 to 15 ha. One of the larger of these at Bridgend, Co. Donegal, Republic of Ireland was planted in spring 2013 and has been irrigated with municipal effluent since June 2014. Over 19,000 m3 of effluent has been applied to the willow thus preventing 617 kg N and 28.5 kg P from being discharged to a neighbouring stream. Using SRC willow for the bioremediation of effluent from small rural WWWTs offers a sustainable, cost-effective and practical solution to wastewater management in many countries. There may be also potential to use willow for the bioremediation of landfill leachates, within the footprint of the landfill site.

  14. Barriers to and drivers of the adpotion of energy crops by Swedish farmers: An empirical approach

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Anna C.; Ostwald, Madelene; Asplund, Therese; Wibeck, Victoria (Linkoeping Univ., Linkoeping (Sweden). The Tema Inst., Centre for Climate Science and Policy Research)

    2011-06-15

    Since the Swedish government and the EU intend to encourage farmers to expand energy crop production, knowledge of the factors motivating adoption decisions is vital to policy success. Earlier studies have demonstrated that important barriers to farmer adoption of energy crops include converting from annual to perennial crops and from traditional crops or production systems to new ones. Economic motivations for changing production systems are strong, but factors such as values (e.g., aesthetics), knowledge (e.g., habits and knowledge of production methods), and legal conditions (e.g., cultivation licenses) are crucial for the change to energy crops. This paper helps fill gaps in the literature regarding why farmers decide to keep or change a production system. Based on a series of focus group interviews with Swedish farmers, the paper explores how farmers frame crop change decisions and what factors they consider most important. The main drivers of and barriers to growing energy crops, according to interviewees, are grouped and discussed in relation to four broad groups of motivational factors identified in the literature, i.e., values, legal conditions, knowledge, and economic factors. The paper ends by discussing whether some barriers could be overcome by policy changes at the national and European levels

  15. Energy costs form European wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Milborrow, D. [Windpower Monthly, Knebel (Denmark)

    1995-12-31

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  16. European Energy Security amid Ukrainian Crisis

    Directory of Open Access Journals (Sweden)

    Kumar Vijay

    2016-01-01

    Full Text Available On the basis of overall analysis of the European dependence on Russia for its energy needs (mainly gas and oil this paper tries to argue that economic sanction against Russia will have limited success. It will hurt the region badly, but it has more potential to jeopardize the European energy security aspect – a long cherished goal of the European nations. So, the best means to solve the Ukraine crisis is political and diplomatic tools, not the economic ones.

  17. Renewable Energy in European Regions

    NARCIS (Netherlands)

    Krozer, Yoram

    2012-01-01

    The regional dynamics of energy innovation, in particular the shift from fossil fuels to renewable energy in the EU, is discussed within the framework of neo-Schumpeterian theory. The EU’s 4.2% average annual growth in renewable energy production in the last decade has been accompanied by diverging

  18. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced -Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, Bo; Munier-Jolain, Nicolas; Charles, Raphaël

    2013-01-01

    to allow for more diversification of the crop rotations to combat these weed problems with less herbicide input. Cover crops, stubble management strategies and tactics that strengthen crop growth relative to weed growth are also seen as important components in future IPM systems but their impact in non...... tillage systems. European agriculture is asked to become less dependent on pesticides and promote crop protection programmes based on integrated pest management (IPM) principles. Conventional non-inversion tillage systems rely entirely on the availability of glyphosate products, and herbicide consumption...... is mostly higher as compared to plough-based cropping systems. Annual grass weeds and catchweed bedstraw often constitute the principal weed problems in non-inversion tillage systems and crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign cropping systems...

  19. The Giant Reed as an energy crop: assessing the energy requirements within its supply chain

    DEFF Research Database (Denmark)

    Rodias, Efthymis; Busato, P.; Bochtis, Dionysis

    2013-01-01

    Biomass energy is one form of renewable energy sources that are in the core of interesting for many researchers. There many different biomass sources that can be exploited for energy production, such as crop residues, waste materials, forestry residues and energy crops. Regarding energy crops......, there are many different types of crops significantly varies in terms of energy potential yields, production and provision methods, etc. To this end, a thoroughly assessment of the energy inputs and outputs of each potential energy crop is necessary. In this paper, the Giant Reed is evaluated energetically...... as a potential energy crop. The assessment regards a 10 year period. The considered energy elements include direct inputs (e.g. fuel consumption) as well as indirect inputs (e.g. embodied energy of materials and machinery). According to the results, the balance between the estimated total energy input...

  20. Pea-barley intercropping and short-term subsequent crop effects across European organic cropping conditions

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Gooding, M.; Ambus, Per

    2009-01-01

    ) to asses the effect of intercropping pea and barley on the N supply to subsequent wheat in organic cropping systems. Pea and barley were grown either as sole crops at the recommended plant density (P100 and B100, respectively) or in replacement (P50B50) or additive (P100B50) intercropping designs....... In the replacement design the total relative plant density is kept constant, while the additive design uses the optimal sole crop density for pea supplementing with ‘extra’ barley plants. The pea and barley crops were followed by winter wheat with and without N application. Additional experiments in Denmark......) to grain N yield with 25–30% using the Land Equivalent ratio. In terms of absolute quantities, sole cropped pea accumulated more N in the grains as compared to the additive design followed by the replacement design and then sole cropped barley. The post harvest soil mineral N content was unaffected...

  1. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, Indrajeet [Purdue Univ., West Lafayette, IN (United States); Cibin, Raj [Purdue Univ., West Lafayette, IN (United States); Bowling, Laura [Purdue Univ., West Lafayette, IN (United States); Brouder, Sylvie [Purdue Univ., West Lafayette, IN (United States); Cherkauer, Keith [Purdue Univ., West Lafayette, IN (United States); Engel, Bernard [Purdue Univ., West Lafayette, IN (United States); Frankenberger, Jane [Purdue Univ., West Lafayette, IN (United States); Goforth, Reuben [Purdue Univ., West Lafayette, IN (United States); Gramig, Benjamin [Purdue Univ., West Lafayette, IN (United States); Volenec, Jeffrey [Purdue Univ., West Lafayette, IN (United States)

    2017-03-24

    The overall goal of this project was to conduct a watershed-scale sustainability assessment of multiple species of energy crops and removal of crop residues within two watersheds (Wildcat Creek, and St. Joseph River) representative of conditions in the Upper Midwest. The sustainability assessment included bioenergy feedstock production impacts on environmental quality, economic costs of production, and ecosystem services.

  2. Coastal eutrophication in Europe caused by production of energy crops

    NARCIS (Netherlands)

    Wijnen, van J.; Ivens, W.P.M.F.; Kroeze, C.; Löhr, A.J.

    2015-01-01

    In Europe, the use of biodiesel may increase rapidly in the coming decades as a result of policies aiming to increase the use of renewable fuels. Therefore, the production of biofuels from energy crops is expected to increase as well as the use of fertilisers to grow these crops. Since fertilisers

  3. Energy crops for biogas plants. Brandenburg; Energiepflanzen fuer Biogasanlagen. Brandenburg

    Energy Technology Data Exchange (ETDEWEB)

    Adam, L.; Barthelmes, G.; Biertuempfel, A. (and others)

    2012-06-15

    In the brochure under consideration, the Agency for Renewable Resources (Guelzen-Pruezen, Federal Republic of Germany) reported on recommendations on alternative cropping systems for energy crop rotations in order to achieve high yields in combination with high diversity, risk spreading and sustainability. In particular, the natural site conditions in the Federal State of Brandenburg (Federal Republic of Germany) are determined.

  4. Report of the European Energy Law seminar 2011; Verslag European Energy Law seminar 2011

    Energy Technology Data Exchange (ETDEWEB)

    Holwerda, J.M.; Mueller, H.K. [Groningen Centre of Energy Law, Rijksuniversiteit Groningen RUG, Groningen (Netherlands); Mutsaers, A. [De Brauw Blackstone Westbroek, Amsterdam (Netherlands)

    2011-10-15

    The 24th European Energy Law Seminar was held in Noordwijk aan Zee, Netherlands, 11-12 April 2011. The first day attention was paid to the liberalization of the energy markets, the climate and energy. The second day was dedicated to energy security, the upstream sector and development of energy infrastructure. [Dutch] Op 11 en 12 april 2011 vond te Noordwijk aan Zee wederom het jaarlijkse - 24ste - European Energy Law Seminar plaats. De eerste dag stond in het teken van de liberalisering van de energiemarkten en klimaat- en energie, terwijl de tweede dag gewijd was aan energievoorzieningszekerheid, de upstream sector en ontwikkeling van de energie-infrastructuur.

  5. Research fields, challenges and opportunities in European oilseed crops breeding

    Directory of Open Access Journals (Sweden)

    Vincourt Patrick

    2014-11-01

    Full Text Available Due to the geographical specialization in oilseed world production, Europe has a major role to play in winter oilseed rape and sunflower breeding. Mainly based on the most recen t results, this review aims to identify the main research and breeding targets for these two crops, as seen through publications, with an attempt to suggest what are opportunities and challenges in these research fields. Growing a healthy and yielding crop remains the key driver for agronomic production. However sustainability and environmental profiles of the cultivar are now entering the field of play: The sustainability concern invested the field of resistance to diseases. Nitrogen use efficiency became an important target for Brassica napus, and crop resilience toward drought stresses is the way chosen in Helianthus annuus breeding for yield improvement. Significant advances are underway for quality traits, but the uncertainty on nutritional and industrial demand may explain why the product diversification remains low.

  6. Energy embodiment in Brazilian agriculture: an overview of 23 crops

    Directory of Open Access Journals (Sweden)

    João Paulo Soto Veiga

    2015-12-01

    Full Text Available The amount of energy required to produce a commodity or to supply a service varies from one production system to another and consequently giving rise to differing levels of environmental efficiency. Moreover, since energy prices have been continuously increasing over time, this energy amount may be a factor that has economic worth. Biomass production has a variety of end-products such as food, energy, and fiber; thus, taking into account the similarity in end-product of different crops (e.g.: sunflower, peanuts, or soybean for oil it is possible to evaluate which crops require less energy per functional unit, such as starch, oil, and protein. This information can be used in decision-making about policies for food safety or bioenergy. In this study, 23 crops were evaluated allowing for a comparison in terms of energy embodied per functional unit. Crops were grouped as follows: starch, oil, horticultural, perennial and fiber, to provide for a deeper analysis of alternatives for the groups, and subsidize further studies comparing conventional and alternative production systems such as organic or genetically modified organisms, in terms of energy. The best energy balance observed was whole sugarcane (juice, bagasse and straw with a surplus of 268 GJ ha−1 yr−1; palm shows the highest energy return on investment with a ratio of approximately 30:1. For carbohydrates and protein production, cassava and soybean, respectively, emerged as the crops offering the greatest energy savings in the production of these functional foods.

  7. An Assessment of the Quality of Crop Yield Predictions under Different Degrees of Water Limitation in European Crop Producing Countries

    Science.gov (United States)

    Vogel, E.

    2015-12-01

    The Fifth IPCC Assessment Report on climate change shows that the frequency and/or intensity of different types of weather extreme events is likely to increase in a number of regions across the globe. The agricultural sector, which plays a crucial role for the livelihood of a large fraction of the world's population, is particularly vulnerable to extreme events due to its dependency on climate conditions.Process-based crop models play an important role for translating climate and weather information into agricultural forecasts, both at decadal time scales as part of climate impact assessments and shorter time scales, for examples for seasonal yield predictions as part of early warning systems for harvest failures. A variety of crop models exist, with different degrees of complexity, spatial and temporal resolutions, incorporated chemical, physical and biological processes and mathematical formulations of these processes. Furthermore, crop models differ with regard to the agro-climatic zones and crop types for which they were calibrated and validated. For these reasons, crop models can vary significantly with respect to their suitability for yield forecasts under different climate conditions, geographical regions and crop types.In this study, we assess the quality of crop yield predictions of the vegetation model LPJmL for four major crops (maize, rice, wheat, soy) under a range of water limitation conditions in Europe, using a high-resolution regional climate data set (0.1 ° x 0.1 °) covering the period 1989-2008. The aim of the study is to examine the degree of uncertainty of yield predictions for different agro-climatic zones and to identify the factors that influence the goodness-of-fit of model predictions. By this, we hope to provide input into further model improvements and to provide guidance for decision-makers on the suitability of yield predictions for different climatic regions within the European continent.

  8. Biogas Production from Energy Crops and Agriculture Residues

    DEFF Research Database (Denmark)

    Wang, Guangtao

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their suitabi...... in term of ml CH4 produced per g of VS-added and (b) the amount of methane produced per m3 of reactor volume.......In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according...... to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling...

  9. The European Energy Performance of Buildings Directive

    DEFF Research Database (Denmark)

    Petersen, Steffen; Hviid, Christian Anker

    This paper investigates the actual energy use for building operation with the calculated energy use according to the Danish implementation of the European Energy Performance of Buildings Directive (EPBD). This is important to various stakeholders in the building industry as the calculated energy ...... calculated energy use. More buildings should be investigated in the same manner before any sound conclusion can be made regarding whether the implementation of EPBD in a wide context leads to truly energy-efficient buildings.......This paper investigates the actual energy use for building operation with the calculated energy use according to the Danish implementation of the European Energy Performance of Buildings Directive (EPBD). This is important to various stakeholders in the building industry as the calculated energy...... performance is used for estimating investment security, operating budgets and for policy making. A case study shows that the actual and calculated energy use is practically the same in an average scenario. In the worst-case uncertainty scenario, the actual energy use is 20 % higher than the corrected...

  10. VT Renewable Energy Sites - Oilseed Crop Biodiesel

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Renewable Energy Atlas of Vermont and this dataset were created to assist town energy committees, the Clean Energy Development Fund and other...

  11. Combined production of free-range pigs and energy crops – animal behaviour and crop damages

    DEFF Research Database (Denmark)

    Horsted, Klaus; Kongsted, Anne Grete; Jørgensen, Uffe

    2012-01-01

    Intensive free-range pig production on open grasslands has disadvantages in that it creates nutrient hotspots and little opportunity for pigs to seek shelter from the sun. Combining a perennial energy crop and pig production might benefit the environment and animal welfare because perennial energy...

  12. Sustainability, overall and process efficiency of energy crops

    OpenAIRE

    Schäfer, Winfried

    2008-01-01

    A method to calculate efficiency of energy crop production including sun energy, direct and indirect energy for cultivation, processing, and conversion into fuel is demonstrated using rape and derived fuels as an example. Every production and conversion step is a process and calculated separately. The overall efficiency includes energy input and output of all processes. The process efficiency of rape cultivation reaches in Finland up to 1100 %. However, the overall energy effic...

  13. Energy saving: From engineering to crop management

    NARCIS (Netherlands)

    Dieleman, J.A.; Hemming, S.

    2011-01-01

    In greenhouse horticulture, energy costs form an increasingly larger part of the total production costs. Energy is primarily used for temperature control, reduction of air humidity, increase of light intensity and CO2 supply. Use of fossil energy can be reduced by limiting the energy demand of the

  14. European School of High-Energy Physics

    CERN Document Server

    2007-01-01

    The European School of High-Energy Physics is intended to give young experimental and phenomenological physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, Monte Carlo generators, relativistic heavy-ion physics, the flavour dynamics and CP violation in the Standard Model, cosmology, and high-energy neutrino astronomy with IceCube.

  15. Economic assessment and comparison of acacia energy crop with annual traditional crops in Southern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Gasol, Carles M.; Rieradevall, Joan; Gabarrell, Xavier [SosteniPrA UAB-IRTA, Institut de Ciencia i Tecnologia Ambientals ICTA, Universitat Autonoma de Barcelona UAB, 08193 Bellaterra, Barcelona (Spain); Brun, Filippo; Mosso, Angela [Dipartimento di Economia e Ingegneria Agraria Forestale e Ambientale, University of Torino (Italy)

    2010-01-15

    In several policy documents bioenergy is recognized as an important renewable energy source in Italy. The increase in energy prices represents an opportunity for lignocellulosic energy crops such as acacia and poplar. However, for Short Rotation Coppice (SRC) and Short Rotation Forestry (SRF) to be adopted by farmers, these crops must be perceived to be at least as profitable as crops that normally compete with these plantations for land use. The purpose of this paper is to evaluate the economic feasibility of acacia (Robinia pseudoacacia) as an energy crop in a low input production regime in Italy and, in particular, to consider its competitiveness with wheat. Our results show that neither SRC and SRF techniques using assumed production costs (EUR3820 and EUR5285 ha{sup -1} yr{sup -1}) nor biomass productions are able to obtain a positive profit (-EUR184 and -EUR172 ha{sup -1} yr{sup -1}) that can convince farmers to invest in biomass plantations on their land. The results demonstrate that wheat is a more economically secure option than SRC or SRF. The viability of local biomass production in Italy and Southern Europe depends on the active support of the governments; without them, biomass is not economically competitive for the farmers when compared to crops such as wheat. (author)

  16. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    Science.gov (United States)

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. IEA energy policies review: the European Union

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-09-04

    For the first time, the IEA has reviewed the energy policies of the European Union which shape the energy use of almost 500 million citizens in 27 EU member countries. A unique entity governed under complex and almost constantly evolving structures, the EU constitutes a challenge for energy policy makers. Its energy policy has a global impact, not only because of its 16% share of world energy demand, but also because of the EU leadership in addressing climate change. Strong policy drives are underway in the EU to achieve the completion of the internal energy market, increase renewable energy supply, reduce CO2 emissions and make the EU more energy-efficient. Concerns about security of supply have also led to a greater focus on improved energy relations with supplier countries, and new institutional structures are being put in place. How much progress has been made in the field of security, internal market and external energy policies? And in which of these areas has the EU already implemented a fully integrated policy? This publication addresses these questions and also analyses the impact of the most recent major EU policy measures, in particular the Energy and Climate Package of January 2008 and the 3rd Liberalisation Package of September 2007. This book finds that both of these proposals are highly ambitious. But implementing them and reviewing both volume and allocation of energy R and D will be necessary to achieve a sustainable energy future in a fully competitive integrated EU energy market.

  18. ORGANOFINERY: FROM GREEN CROPS TO PROTEINS, ENERGY AND FERTILISER

    DEFF Research Database (Denmark)

    Salces, Beatriz Molinuevo; Fernandez, Maria Santamaria; Kiel, P.

    Difficulties with the supply of organic protein feed; low crop yields and low value of leguminous forage crops and a lack of organic fertilisers are nowadays some of the major challenges faced in organic farming with monogastric animals. Thus, organic farmers are forced to import feed and manure ...... from conventional farms. In order to overcome these challenges, the OrganoFinery project targets to develop a green biorefinery concept where organic crops are utilised for animal feed, fertiliser and energy production by producing biogas....

  19. Energy crops for biogas plants. Thuringia; Energiepflanzen fuer Biogasanlagen. Thueringen

    Energy Technology Data Exchange (ETDEWEB)

    Biertuempfel, A.; Bischof, R.; Conrad, M. (and others)

    2012-06-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Thuringia. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  20. Energy crops for biogas plants. Saxony; Energiepflanzen fuer Biogasanlagen. Sachsen

    Energy Technology Data Exchange (ETDEWEB)

    Biertuempfel, A.; Buttlar, C. von; Conrad, M. [and others

    2012-08-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Saxony. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  1. European energy and transport - trends to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Mantzos, L.; Capros, P.; Kouvaritakis, N.; Zeka-Paschou, M.

    2003-07-01

    The publication extends the analysis presented in previous editions of the 'Annual energy review'. In addition to a statistical analysis of the past 10 years, this publication gives detailed projections on energy and transport for the current EU and the enlarged Union of 25, for the next three decades. It also addresses wider European and world developments. The projections presented in this outlook to 2030 are built upon an integrated approach encompassing both energy supply and demand and show how the future may develop and which policy-makers will have to act in order to contribute towards sustainable development. 23 refs., 46 figs., 91 tabs., 2 apps.

  2. Biogas production from energy crops and agriculture residues

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.

    2010-12-15

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential in term of ml CH4 produced per g of VS-added and (b) the amount of methane produced per m3 of reactor volume. (Author)

  3. Management effects on net ecosystem carbon and GHG budgets at European crop sites

    NARCIS (Netherlands)

    Ceschia, E.; Beziat, P.; Dejoux, J.F.; Elbers, J.A.; Jacobs, C.M.J.; Jans, W.W.P.

    2010-01-01

    The greenhouse gas budgets of 15 European crop sites covering a large climatic gradient and corresponding to 41 site-years were estimated. The sites included a wide range of management practices (organic and/or mineral fertilisation, tillage or ploughing, with or without straw removal, with or

  4. Herbaceous energy crop development: recent progress and future prospects.

    Science.gov (United States)

    Heaton, Emily A; Flavell, Richard B; Mascia, Peter N; Thomas, Steven R; Dohleman, Frank G; Long, Stephen P

    2008-06-01

    Oil prices and government mandates have catalyzed rapid growth of nonfossil transportation fuels in recent years, with a large focus on ethanol from energy crops, but the food crops used as first-generation energy crops today are not optimized for this purpose. We show that the theoretical efficiency of conversion of whole spectrum solar energy into biomass is 4.6-6%, depending on plant type, and the best year-long efficiencies realized are about 3%. The average leaf is as effective as the best PV solar cells in transducing solar energy to charge separation (ca. 37%). In photosynthesis, most of the energy that is lost is dissipated as heat during synthesis of biomass. Unlike photovoltaic (PV) cells this energetic cost supports the construction, maintenance, and replacement of the system, which is achieved autonomously as the plant grows and re-grows. Advances in plant genomics are being applied to plant breeding, thereby enabling rapid development of next-generation energy crops that capitalize on theoretical efficiencies while maintaining environmental and economic integrity.

  5. Selection of herbaceous energy crops for the western corn belt

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.C.; Buxton, D.R.; Hallam, J.A. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

    1994-05-01

    The ultimate economic feasibility of biomass depends on its cost of production and on the cost of competing fuels. The purpose of this research project is to evaluate the production costs of several combinations of species and management systems for producing herbaceous biomass for energy use in Iowa. Herbaceous biomass production systems have costs similar to other crop production systems, such as corn, soybean, and forages. Thus, the factors influencing the costs of producing dedicated biomass energy crops include technological factors such as the cultivation system, species, treatments, soil type, and site and economic factors such as input prices and use of fixed resources. In order to investigate how these production alternatives are influenced by soil resources, and climate conditions, two locations in Iowa, Ames and Chariton, with different soil types and slightly different weather patterns were selected for both the agronomic and economic analyses. Nine crops in thirteen cropping systems were grown at the two sites for five years, from 1988 to 1992. Some of the systems had multiple cropping or interplanting, using combinations of cool-season species and warm-season species, in order to meet multiple objectives of maximum biomass, minimal soil loss, reduced nitrogen fertilization or diminished pesticide inputs. Six of the systems use continuous monocropping of herbaceous crops with an emphasis on production. The seven other systems consist of similar crops, but with crop rotation and soil conservation considerations. While the erosion and other off-site effects of these systems is an important consideration in their overall evaluation, this report will concentrate on direct production costs only.

  6. Education in Sustainable Energy by European Projects

    Science.gov (United States)

    Stanescu, Corina; Stefureac, Crina

    2010-05-01

    Our schools have been involved in several European projects having with the primary objective of educating the young generation to find ways for saving energy and for using the renewable energy. Small changes in our behaviour can lead to significant energy savings and a major reduction in emissions. In our presentation we will refer to three of them: - The Comenius 1 project "Energy in the Consumers' Hands" tried to improve the quality of education for democratic citizenship in all participant schools by creating a model of curricula concerning the integrative teaching of democratic citizenship using the topic approaches based on key concept - energy as important element of the community welfare. The students studied on the following topics: • Sources of energy • The clean use of fossil based resources; • The rational use of energyEnergy and the environment - The project "Solar Schools Forum" (SSF) focuses on environmental education in schools, in particular addressing the topics of Renewable Energy (RE) and Energy Efficiency (EE). The youth need to become more aware of energy-related problems, and how they can change their own lifestyles to limit environmental damage caused by the daily use of energy. As the decision-makers of tomorrow we need to empower them to make the right choices. The SSF is aimed at improving knowledge about RE and EE among children and young people, using a fun approach and aimed at generating greater enthusiasm for clean energy. The youth will also be encouraged to help raise awareness and so act as multipliers in their own communities, starting with their families and friends. As a result of this project we involved in developing and implementing an optional course for high school students within the Solar Schools Forum project. The optional course entitled "Sustainable energy and the environment" had a great deal of success, proof of this success being the fact that it is still taught even today, three years after its

  7. Joint research on Arundo donax as an energy crop

    Energy Technology Data Exchange (ETDEWEB)

    Arnoux, M.; Davenel, A.; Long, M.

    1985-01-01

    This research afforded a possibility of improving the previous management and process of Arundo donax when cropped as a raw material for pulp and paper. A new larger row spacing cropping system (screen type) allows another simultaneous crop in the same field, increases the real dry matter yield of the reed and finally improves the energy and financial balance in saving inputs. Moreover the mechanisation of the crop and the processing of the biomass harvested are now being improved by: a new and simpler harvesting technique allowing a preliminary natural drying of the stalks in the field and avoiding a further dehydratation; an original stripping system of the chopped stalks associated to a granulation system of the ground leaves and a new energetic transformation of the biomass by gasification instead of the previous direct combustion. A study of the areas suitable for Arundo donax in south of France is now being achieved showing that 25,000 hectares could be utilised for this crop. Finally, the price of the therm for every kind of cropping system and process is now being estimated.

  8. Woody biomass from short rotation energy crops. Chapter 2

    Science.gov (United States)

    R.S., Jr. Zalesny Jr.; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; J.A. Stanturf; T.A. Volk

    2011-01-01

    Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...

  9. Computing energy budget within a crop canopy from Penmann's ...

    Indian Academy of Sciences (India)

    R. Narasimhan, Krishtel eMaging Solutions

    Computing energy budget within a crop canopy from. Penmann's formulae. Mahendra Mohan∗ and K K Srivastava∗∗. ∗Radio and Atmospheric Science Division, National Physical Laboratory, New Delhi 110012, India. ∗∗Department of Chemical Engineering, Institute of Technology, Banaras Hindu University, Varanasi.

  10. Modelling farmer uptake of perennial energy crops in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Sherrington, Chris; Moran, Dominic [Scottish Agricultural College, West Mains Road, Edinburgh EH9 3JG (United Kingdom)

    2010-07-15

    The UK Biomass Strategy suggests that to reach the technical potential of perennial energy crops such as short rotation coppice (SRC) willow and miscanthus by 2020 requires 350,000 hectares of land. This represents a more than 20-fold increase on the current 15,546 hectares. Previous research has identified several barriers to adoption, including concerns over security of income from contracts. In addition, farmers perceive returns from these crops to be lower than for conventional crops. This paper uses a farm-level linear programming model to investigate theoretical uptake of energy crops at different gross margins under the assumption of a profit-maximising decision maker, and in the absence of known barriers to adoption. The findings suggest that while SRC willow, at current prices, remains less competitive, returns to miscanthus should have encouraged adoption on a wider scale than at present. This highlights the importance of the barriers to adoption. Recently announced contracts for miscanthus appear to offer a significant premium to farmers in order to encourage them to grow the crops. This raises the question of whether a more cost-effective approach would be for government to provide guarantees addressing farmers concerns including security of income from the contracts. Such an approach should encourage adoption at lower gross margins. (author)

  11. Miscanthus for Renewable Energy Generation. European Union Experience and Projections for Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, E.A.; Long, S.P. [Crop Sciences and Plant Biology, University of Illinois, Urbana Champaign, IL (United States); Clifton-Brown, J.; Jones, M.B. [School of Botany, Trinity College, University of Dublin, Dublin (Ireland); Voigt, T.B. [Natural Resources and Environmental Sciences, University of Illinois, Urbana Champaign, IL (United States)

    2004-10-01

    When considering renewable energy from plants, corn ethanol and reforestation have been widely promoted. Herbaceous perennials, which produce an annual crop of above ground shoots, may have some important advantages over both of these systems. Herbaceous perennials require far fewer energy and financial inputs than annual arable crops. They can be higher yielding than forestry crops and utilize existing farm equipment. Perennial energy crops can sequester carbon into soil previously under annual arable crops, providing potential additional income in carbon credits. The advantages and disadvantages of different plant types are explained to show herbaceous perennials hold special promise as bioenergy crops. C4 photosynthesis allows greater efficiencies in the conversion of sunlight energy to biomass energy, and of nitrogen and water use. However, few plants in temperate climates use this more efficient process. One exception is the rhizomatous perennial grass Miscanthus, which is a C4 plant and exceptionally cold tolerant. Miscanthus is now being grown commercially in the European Union (EU) for direct combustion in local-area power stations. It may also have longer-term potential as a feedstock for other bio-based industry. The lessons learned from trials of this crop in the EU are summarized, potential yields in Illinois predicted and a tentative comparison of the economics of growing Miscanthus versus traditional row crops developed. Overall, the results suggest that Miscanthus could yield an average of 33 t of dry matter per hectare in Illinois. At current energy prices the crop would be profitable, if grown for 4 or more years, even without subsidy.

  12. Maximizing Utilization of Energy from Crop By-products

    Directory of Open Access Journals (Sweden)

    Budi Haryanto

    2014-03-01

    Full Text Available The availability of crop by-products is huge during harvesting times as related to the vast agricultural land area; however, their utilization is still limited due to lack of knowledge and handling problem. Seasonal effect is obvious especially during wet season when high rainfall hinders proper management of crop by-products. Crop by-products are energy rich feedstuffs in the form of chemical substance such as cellulose and hemicellulose. The utilization of cellulose and hemicellulose as sources of energy can be maximized by the application of technologies to increase the digestibility. Cellulose is polymer of glucose while hemicellulose is polymer of xylose which both can be converted to volatile fatty acids by rumen microbial enzyme activities and subsequently used by the host animal as source of energy. In addition, cellulose and hemicellulose can also be used as substrates for bioethanol production leaving behind residual matter with higher concentration of protein which is also appropriate for ruminant feeds. The fat content of crop by-products such as those in rice bran and corn germ can be extracted for oil production that can be used for human consumption with concomitant production of high nutritive value of residues for ruminant feeds. The oil extraction technologies are available; however the high cost of ethanol and oil production should obtain high attention to make the technologies more applicable at farmers’ level.

  13. Energy Cultures in the European Union

    OpenAIRE

    Rosicki, Remigiusz

    2016-01-01

    The main object of the analysis presented in the text was to point to and confirm the existence of special “energy cultures” in the European Union. In order to achieve this aim the use was made of research present in the literature, inter alia, in the publications containing statistical analyses by: (1) A. Pach-Gurgul, (2) P. Tapio and his research team – Banister, J. Luukkanen, J. Vehma i R. Willamo, also in a review, (3) Z. Łucki and W. Misiak. Compared with the invoked research, the timefr...

  14. Effect of pre-treatments on methane production potential of energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaki, A.; Ronkainen; Rintala, J.A. [Jyvaskla Univ. (Finland). Dept. of Biological and Environmental Sciences; Viinikainen, T.A. [Jyvaskla Univ. (Finland). Dept. of Chemistry

    2004-07-01

    Energy crops, that is, crops grown specifically for energy purposes are an alternative to food production in areas with sufficient agricultural land. Crop residues are also a potential source of energy. The anaerobic digestion of solid materials is limited by hydrolysis of complex polymeric substances such as lignocellulose. The methane producing potential of ligno cellulosic material is to pretreat the substrate in order to break up the polymer chains to more easily accessible soluble compounds. In this study, three different substrates were used: sugar beet tops, grass hay, and straw of oats. Biological pretreatments were the following: enzyme treatment, composting, white-rot fungi treatment. Also, pretreatment in water was tried. Chemical pretreatments included peracetic acid treatment, and treatment with two different alkalis. Alkaline pretreatments of hay and sugar beet tops have the potential to improve the methane yield. For instance, the yield of grass hay was increased 15 per cent by one particular alkaline treatment. Straw did not respond to any of the treatments tried. 18 refs., 1 tab., 2 figs.

  15. Variability in the Water Footprint of Arable Crop Production across European Regions

    Directory of Open Access Journals (Sweden)

    Anne Gobin

    2017-02-01

    Full Text Available Crop growth and yield are affected by water use during the season: the green water footprint (WF accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R2 = 0.64–0.80; d = 0.91–0.95. The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield ( c v ¯ = 45% and to a lesser extent to variability in crop water use ( c v ¯ = 21%. The WF variability between countries ( c v ¯ = 14% is lower than the variability between seasons ( c v ¯ = 22% and between crops ( c v ¯ = 46%. Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.

  16. The European Union and Russian energy politics. External energy relations and interdependency between the European Union and Russia

    Energy Technology Data Exchange (ETDEWEB)

    Akca Prill, Melek

    2012-07-01

    The European Union and Russia Energy Politics aims to analyse the energy relationships, energy foreign policy and energy dialogue between the European Union Member States and the Russian Federation. To understand the recent developments in Russian - European Union energy relations better, the study aims to assert the disciplines and approaches of international relations in the example of Russia and the European Union systems of government. The important question here, whether diversification of energy supplier or energy supply routes is possible. If there is a possibility to diversify the supplier, is this then too costly to build, operate and rely on new pipeline routes? More crucial issue is, whether Russia is a reliable energy supplier in terms of European Energy Security approach. Throughout these assumptions, the role and vision of European Union Member States, the possible energy exporter countries, their policies and contributions are going to be discussed.

  17. Sustainable Biofuel Project: Emergy Analysis of South Florida Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Amponsah, Nana Yaw [Intelligentsia International, Inc., LaBelle, FL (United States); Izursa, Jose-Luis [Intelligentsia International, Inc., LaBelle, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States). Soil and Water Sciences Dept.; Capece, John C. [Intelligentsia International, Inc., LaBelle, FL (United States)

    2012-11-15

    This study evaluates the sustainability of various farming systems, namely (1) sugarcane on organic and mineral soils and (2) energycane and sweet sorghum on mineral soils. The primary objective of the study is to compare the relative sustainability matrices of these energy crops and their respective farming systems. These matrices should guide decision and policy makers to determine the overall sustainability of an intended or proposed bioethanol project related to any of these studied crops. Several different methods of energy analysis have been proposed to assess the feasibility or sustainability of projects exploiting natural resources (such as (Life Cycle Analysis, Energy Analysis, Exergy Analysis, Cost Benefit Analysis, Ecological Footprint, etc.). This study primarily focused on the concept of Emergy Analysis, a quantitative analytical technique for determining the values of nonmonied and monied resources, services and commodities in common units of the solar energy it took to make them. With this Emergy Analysis study, the Hendry County Sustainable Biofuels Center intends to provide useful perspective for different stakeholder groups to (1) assess and compare the sustainability levels of above named crops cultivation on mineral soils and organic soils for ethanol production and (2) identify processes within the cultivation that could be targeted for improvements. The results provide as much insight into the assumptions inherent in the investigated approaches as they do into the farming systems in this study.

  18. 2. symposium energy crops 2009; 2. Symposium Energiepflanzen 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-27

    Within the meeting '2nd Symposium energy plants 2009', held at 17th to 18th November, 2009, in Berlin (Federal Republic of Germany), the following lectures were held: (1) The bio energy policy of the Federal Government in the area of attention between climatic protection, ecology and economy (Ilse Aigner); (2) Chances and threatens of cultivation of energy plants for a sustainable energy supply (Alois Heissenhuber); (3) Certification as a prerequisite of the global exploration of bio energy (Andreas Feige); (4) A project support in the field of cultivation of energy plants, a review (Andreas Schuette); (5) Results from the investigation of the crop rotation in the EVA network (Armin Vater); (6) Optimisation of the cultivation technology of sorghum millets (Christian Roehricht); (7) The two-culture utilization system - a comparison between ecologic and conventional cultivation (Reinhold Stuelpnagel); (8) Crop rotation with energy plants - Chances and threatens for the plant protection (Baerbel Gerowitt); (9) Efficiency of utilization of water for energy plants (Siegfried Schittenhelm); (10) Utilization of arable food grasses and permanent grassland as a substrate for biogas (Matthias Benke); (11) Economical evaluation of plant fermentation substrates (Dominik Reus); (12) Energy plants as a challenge for the agricultural engineering (Heiner Bruening); (13) Influence of the design of cultivation on the subsequent effects of the cultivation of energy plants (Michael Glemnitz); (14) Energy plants and waters protection - Key aspects and possible options of action (Heike Nitsch); (15) Neophytes as energy plants - Chances and threatens (Werner Kuhn); (16) Manifold in te landscape - extensive cultivation systems with renewable raw materials as an option for nature protection? (Peer Heck); (17) Ecologic aspects of agro forestry systems (Holger Gruenewald); (18) Enhancement of the potential of energy yield of winter wheat (Wolfgang Friedt); (19) Interspersed silphie

  19. Update of the review: Cultivation of energy crops in Poland against socio-demographic factors

    OpenAIRE

    Chodkowska-Miszczuk, Justyna; Szymańska, Daniela

    2011-01-01

    The article presents some of the socio-demographic factors conditioning the production of biomass in Poland. It considers urban-rural and rural gminas that grew energy crops for biomass production in the years 2007-2009 (836 gminas in 2007, 756 in 2008 and 618 in 2009). The article tries to answer the question whether there is a relation between the age of the inhabitants, their opinion on Poland's accession to the European Union and the education level of the local authorities and the area o...

  20. Closed Loop Short Rotation Woody Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael [CRC Development, LLC, Oakland, CA (United States)

    2012-09-30

    CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded in 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.

  1. Greenhouse Gas Emissions Associated With Establishing Energy Crops

    Science.gov (United States)

    NiChonchubhair, Orlaith; Osborne, Bruce; Krol, Dominika; Williams, Mike; Jones, Mike; Lanigan, Gary

    2013-04-01

    Land-use change to biomass crop production can contribute towards meeting both national and international renewable energy and emissions targets. As a carbon-neutral fuel stock, these crops have the capacity to mitigate GHG emissions through the substitution of fossil fuels. However, studies have also provided evidence of carbon sequestration in vegetative and soil reservoirs in these ecosystems. Realisation of this mitigation potential is, however, dependent on suitable crop selection and thorough assessment of the emissions and sinks associated with biomass crop cultivation. The aim of this research was to assess the GHG implications of land-use change to biomass crops by quantifying carbon dioxide (CO2) and nitrous oxide (N2O) emissions both during the initial land conversion phase and in the newly-established plantations. Field-scale stands of Miscanthus × giganteus and Reed Canary Grass (RCG; Phalaris arundinacea) were established on land previously under permanent pasture in 2009 and 2010 respectively in the south-east of Ireland. CO2 uptake and release was measured at the ecosystem scale by two open path eddy covariance systems, while N2O fluxes before and after cultivation were sampled using the static chamber technique. Short-term tillage-induced carbon emissions were found to be high immediately after ploughing but transient in nature, reducing to background levels within a matter of hours. Results suggest that longer term losses could be limited to approximately 2 t CO2 ha-1 provided the fallow period is minimised. A more sustained release of N2O was observed after soil cultivation, resulting from increased availability of organic N for mineralisation by soil microbes. Development was initially slow in the Miscanthus stand, however by the third year, the crop had begun to mature and had switched from a net GHG source in the first year of establishment to a net sink of over 10 t CO2 ha-1 yr-1. More rapid establishment of RCG facilitated the development

  2. Financing Renewable Energy in the European Energy Market

    Energy Technology Data Exchange (ETDEWEB)

    De Jager, D.; Klessmann, C.; Stricker, E.; Winkel, T.; De Visser, E.; Koper, M. [Ecofys, Utrecht (Netherlands); Ragwitz, M.; Held, A. [Fraunhofer ISI, Karlsruhe (Germany); Resch, G.; Busch, S.; Panzer, C. [Energy Economics Group EEG, Vienna University of Technology, Vienna (Austria); Gazzo, A.; Roulleau, T.; Gousseland, P.; Henriet, M.; Bouille, A. [Ernst and Young, London (United Kingdom)

    2011-01-15

    The Directive 2009/28/EC on the promotion of the use of energy from renewable sources (RES) sets the overall target to reach 20% renewable energy in gross final energy consumption in 2020. This target is broken down into binding individual Member State targets. Reaching these targets will require a huge mobilization of investments in renewable energies in the coming decade. In order to improve financing and coordination with a view to the achievement of the 20 % target, Article 23 (7) of the Directive requires the Commission to present an analysis and action plan with a view to: (a) The better use of structural funds and framework programmes; (b) The better and increased use of funds from the European Investment Bank and other public finance institutions; (c) Better access to risk capital; (d) The better coordination of Community and national funding and other forms of support; (e) The better coordination in support of renewable energy initiatives whose success depends on action by actors in several Member States. This report presents the results of the title project. The study provides an up to date and thorough assessment of the costs of renewable energy and the support and financing instruments available for renewable energy R and D, demonstration projects and large-scale deployment. This includes details of each Member State's expenditure (via grants, support schemes, loans etc.) and use of Community funds, including loans of the EIB (European Investment Bank) and the EBRD (European Bank for Reconstruction and Development). It also explores the possible instruments for use in the future and constraints in the capital market, which hinder the development of renewable energy. Finally, it develops recommendations for improving financing and support instruments, improving the sector's access to capital, and closing the financing gap for reaching the 2020 targets. The chapters of the report represent separate tasks: (1) Costs of renewable energy

  3. N{sub 2}O Emission from energy crop fields

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, B.J. [The Royal Veterinary and Agricultural Univ., Dept. of Agricultural Sciences, Section of Soil, Water and Plant Nutrition (Denmark); Nyholm Joergensen, R. [Research Centre Foulum, The Danish Inst. of Plant and Soil Science, Dept. of Soil Science (Denmark)

    1996-03-01

    The interest in N{sub 2}O emissions from soils with energy crops is a results of its properties as a greenhouse gas, since the global warming potential of N{sub 2}O per unit mass is about 320 times greater than CO{sub 2}. The contribution of N{sub 2}O from the soil to the atmosphere may increase due to agricultural management. Consequently, large N{sub 2}O emissions can lower the reduction of the greenhouse effect achieved by the substitution of fossil fuels by energy crops. For this reason it is crucial to find the crops for combustion with the lowest potential for emission of N{sub 2}O from the soil per produced energy unit. The aims of this study were to assess the annual N{sub 2}O flux from a Miscanthus `Giganteus` (M. `Giganteus`) and winter rye (Secale cereale) field, and to investigate the factors affecting the N{sub 2}O emission. To obtain these aims a method was developed for measurements in tall crops. The thesis contains a literature review on the N{sub 2}O emission from the soils, a section with development of the technique for N{sub 2}O flux measurements, and an experimental section. Finally, the thesis contains a section where the results are discussed in relation to the use of energy crops. In all the filed studies, the N{sub 2}O emission was measured by using a new developed closed-chamber technique. The main advantages of the chamber method were the ability to contain growing plants up to a height of 3 m, and the relatively large area (2X2m) covered by each other. Soils with annual and perennial crops can be expected to emit less then 3 kg N{sub 2}O ha{sup -1} yr{sup -1}. This amount corresponds to 960 kg CO{sub 2} ha{sup -1} yr{sup -1} compared to a total CO{sub 2} reduction of 10 to 19 tons CO{sub 2} ha{sup -1} yr{sup -1} using the energy crops as substituion for fossil fuels. An efficient way to reduce the N{sub 2}O emission is to exclude use of fertiliser but this also reduces the dry matter yield and consequently also the CO{sub 2} reduction

  4. Dedicated energy crops and crop residues for bioenergy feedstocks in the Central and Eastern U.S.A.

    Science.gov (United States)

    Dedicated energy crops and crop residues will meet herbaceous feedstock demands for the new bioeconomy in the Central and Eastern USA. Perennial warm-season grasses and corn stover are well-suited to the eastern half of the USA and provide opportunities for expanding agricultural operations in the r...

  5. Energy crops for biofuel feedstocks: facts and recent patents on genetic manipulation to improve biofuel crops.

    Science.gov (United States)

    Kumar, Suresh

    2013-12-01

    Burning fossil-fuels to meet the global energy requirements by human being has intensified the concerns of increasing concentrations of greenhouse gases. Therefore, serious efforts are required to develop nonfossil-based renewable energy sources. Plants are more efficient in utilizing solar energy to convert it into biomass which can be used as feedstocks for biofuel production. Hence with the increasing demands of energy and the needs of cost-effective, sustainable production of fuels, it has become necessary to switch over to plant biomass as a renewable source of energy. Biofuels derived from more sustainable biological materials such as lignocellulosic plant residues, considered as second generation biofuels, are more dependable. However, there are technical challenges such as pretreatment and hydrolysis of lignocellulosic biomass to convert it into fermentable sugars. Plant genetic engineering has already proven its potential in modifying cell wall composition of plants for enhancing the efficiency of biofuel production. Interest and potential in the area are very much evident from the growing number of patents in the recent years on the subject. In this review, recent trends in genetic engineering of energy crops for biofuel production have been introduced, and strategies for the future developments have been discussed.

  6. European Uunion Energy Security and Russia

    Directory of Open Access Journals (Sweden)

    Nodari A. Simonia

    2015-01-01

    Full Text Available The article deals with the retrospective of relations between Russia, USA and EU in the sphere of energy security, as well as their interaction regarding the current political crisis in the Ukraine. Particular attention is paid to the evolution of the key actors'positions and the development of their relations within the framework of the regulatory regimes established by the most significant agreements in the energy sphere. In conclusion the authors claim that what they say in their article not only does substantially reinforce the arguments set forth by Professor Giuseppe Guarino, who argues about the negative consequences caused by the dictatorship of the Brussels's bureaucracy within the EU, but also inflicts another blow on the Maastricht Treaty and the Treaty of Lisbon in terms of external policy and trade, since the both Treaties were designed to convert the EU in a real competitor of the United States in the then forming multipolar World. The Brussel's bureaucracy, having turned into a dutiful instrument of the US geopolitical strategy, hindered the movement of the EU in that direction, while its dictatorship in energy security aggravates the crisis situation of the EU, almost pushing the EU to the brink of collapse and disintegration. We have lately witnessed an evolving and growing phenomenon of the so called "Euroscepticism". The results of the Europarliament elections in late May, 2014, were a graphic demonstration of the symptoms of this alarming for the EU disease, when the anti-EU parties in the four out 22 EU countries won the elections (France, United Kingdom, Denmark, and Greece Those results, regardless of the panic headlines in mass media and statements like "shocking" or "earthquake" made by some politicians, were not able to significantly affect the nature of the European Parliament, though they can significantly complicate its work. This is so far the first "alarming bell" tolling for the EU.

  7. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Wang, Guangtao; Møller, H.B.

    2008-01-01

    . The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet......Perennial crops need far less energy to plant, require less fertilizer and pesticides, and show a lower negative environmental impact compared with annual crops like for example corn. This makes the cultivation of perennial crops as energy crops more sustainable than the use of annual crops...... oxidation to the perennial crops, however, the specific methane yield increases significantly and the ratio of energy output to input and of costs to benefit for the whole chain of biomass supply and conversion into biogas becomes higher than for corn. This will make the use of perennial crops as energy...

  8. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Wang, Guangtao; Møller, Henrik B.

    2008-01-01

    Perennial crops need far less energy to plant, require less fertilizer and pesticides, and show a lower negative environmental impact compared with annual crops like for example corn. This makes the cultivation of perennial crops as energy crops more sustainable than the use of annual crops....... The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet...... oxidation to the perennial crops, however, the specific methane yield increases significantly and the ratio of energy output to input and of costs to benefit for the whole chain of biomass supply and conversion into biogas becomes higher than for corn. This will make the use of perennial crops as energy...

  9. Biomass for energy in the European Union - a review of bioenergy resource assessments

    Directory of Open Access Journals (Sweden)

    Bentsen Niclas

    2012-04-01

    Full Text Available Abstract This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor.

  10. Energy and emergy analysis of mixed crop-livestock farming

    Science.gov (United States)

    Kuczuk, Anna; Pospolita, Janusz; Wacław, Stefan

    2017-10-01

    This paper contains substance and energy balances of mixed crop-livestock farming. The analysis involves the period between 2012 and 2015. The structure of the presentation in the paper includes: crops and their structure, details of the use of plants with a beneficial effect on soil and stocking density per 1ha of agricultural land. Cumulative energy intensity of agricultural animal and plant production was determined, which is coupled the discussion of the energy input in the production of a grain unit obtained from plant and animal production. This data was compared with the data from the literature containing examples derived from intensive and organic production systems. The environmental impact of a farm was performed on the basis of emergy analysis. Emergy fluxes were determined on the basis of renewable and non-renewable sources. As a consequence, several performance indicators were established: Emergy Yield Ratio EYR, Environmental Loading Ratio ELR and ratio of emergy from renewable sources R! . Their values were compared with the parameters characterizing other production patterns followed in agricultural production. As a consequence, conclusions were derived, in particular the ones concerning environmental sustainability of production systems in the analyzed farm.

  11. Soil and water quality implications of production of herbaceous and woody energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, V.R. [Oak Ridge National Lab., TN (United States); Lindberg, J.E. [Oak Ridge Inst. of Science and Education, TN (United States); Green, T.H. [Alabama A and M Univ., Normal, AL (United States). Dept. of Plant and Soil Science] [and others

    1997-10-01

    Field-scale studies in three physiographic regions of the Tennessee Valley in the Southeastern US are being used to address the environmental effects of producing biomass energy crops on former agricultural lands. Comparison of erosion, surface water quality and quantity, and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops began with crop establishment in 1994. Nutrient cycling, soil physical changes, and productivity of the different crops are also being monitored at the three sites.

  12. Energy Performance of Buildings - The European Approach to Sustainability

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2006-01-01

    This paper presents the European approach to improve sustainability in the building sector, which has a very high potential for considerable reduction of energy consumption in the coming years. By approving the Energy Performance in Buildings Directive the European Union has taken a strong...

  13. Danish and European plans for wind energy deployment

    DEFF Research Database (Denmark)

    Jensen, Peter Hjuler; Knudsen, Søren; Morthorst, Poul Erik

    2014-01-01

    In this chapter we outline European policies directed towards the ambitious target of large-scale use of wind energy in the European electricity supply system, and the scenarios that foresee up to 34% of Europe’s electricity coming from wind by 2030. First, however, we address Danish energy policy...

  14. European approaches to changing patterns of energy consumption and supply

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, P. [Centre Francais sur les Etats-Unis, 75 - Paris (France)

    2001-07-01

    In the case of the broad debate on the security of energy supply, launched by the european commission on november 2000, this document presents the historical european facts and figures, stress the dramatic changes since 1990 and discussed the policy opinions (nuclear energy, tax policy, further progress in opening market and promoting international trade and investment). (A.L.B.)

  15. Social Science Studies on European and African Agriculture Compared: Bringing Together Different Strands of Academic Debate on GM Crops

    Directory of Open Access Journals (Sweden)

    Klara Fischer

    2016-08-01

    Full Text Available This study explored the social science-orientated literature on genetically modified (GM crops in Europe and compared it with the corresponding literature on GM crops in African contexts, in order to determine the nature and extent of north-south cross-fertilisation in the literature. A total of 1625 papers on GM crops and agriculture falling within the ‘social science and humanities’ subject area in the Scopus abstract and citation database of peer-reviewed literature were analysed for major trends relating to geographical areas. More detailed analysis was performed on papers discussing African (56 papers and European (127 papers contexts. The analysis revealed that studies on policy and politics were common in both strands of the literature, frequently focusing on effects of the relatively restrictive European Union regulations on GM crops. There were also clear differences, however. For example, papers focusing on Africa frequently examined farm-level impacts and production, while this theme was almost non-existent in the Europe literature. It focused instead on policy impacts on trade and consumer attitudes to GM products. The lack of farm-level studies and of empirical studies in general in the European literature indicates a need for empirical research on GM crops in European farming. Social science research on GM crop production in Europe could draw lessons from the African literature.

  16. The interplay between societal concerns and the regulatory frame on GM crops in the European Union.

    Science.gov (United States)

    Devos, Yann; Reheul, Dirk; De Waele, Danny; Van Speybroeck, Linda

    2006-01-01

    Recapitulating how genetic modification technology and its agro-food products aroused strong societal opposition in the European Union, this paper demonstrates how this opposition contributed to shape the European regulatory frame on GM crops. More specifically, it describes how this opposition contributed to a de facto moratorium on the commercialization of new GM crop events in the end of the nineties. From this period onwards, the regulatory frame has been continuously revised in order to slow down further erosion of public and market confidence. Various scientific and technical reforms were made to meet societal concerns relating to the safety of GM crops. In this context, the precautionary principle, environmental post-market monitoring and traceability were adopted as ways to cope with scientific uncertainties. Labeling, traceability, co-existence and public information were installed in an attempt to meet the general public request for more information about GM agro-food products, and the specific demand to respect the consumers' and farmers' freedom of choice. Despite these efforts, today, the explicit role of public participation and/or ethical consultation during authorization procedures is at best minimal. Moreover, no legal room was created to progress to an integral sustainability evaluation during market procedures. It remains to be seen whether the recent policy shift towards greater transparency about value judgments, plural viewpoints and scientific uncertainties will be one step forward in integrating ethical concerns more explicitly in risk analysis. As such, the regulatory frame stands open for further interpretation, reflecting in various degrees a continued interplay with societal concerns relating to GM agro-food products. In this regard, both societal concerns and diversely interpreted regulatory criteria can be inferred as signaling a request - and even a quest - to render more explicit the broader-than-scientific dimension of the actual

  17. Crop based climate regimes for energy saving in greenhouse cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, O.

    2003-06-16

    Sustainability is one of the major aims in greenhouse horticulture. According to agreements between the Dutch grower association and the government, energy consumption and the use of chemical biocides have to be reduced. More advanced greenhouse technique is being developed to reach the target to decrease the energy efficiency-index by 65% between 1980 and 2010. However, this could also be achieved with existing technology by using more advanced climate regimes. The present thesis aimed at that, through designing and analysing climate regimes while employing existing climate control possibilities. Theoretical temperature and humidity regimes were designed to decrease energy consumption and a photosynthesis maximisation procedure was implemented to maximise growth. The basis for a crop gross photosynthesis model for control purposes was created. Crop photosynthesis models were evaluated at conditions expected to occur with more sustainable climate regimes. It was shown with experimental evidence that theoretical assumptions on the temperature - CO2 effects in a crop that are based on theoretically models scaling up leaf photosynthesis to the crop level are valid and that simplified existing models could be applied up to 28C. With higher temperatures new designs are needed and this can probably be achieved with an improved stomata-resistance model. The well known temperature integration principle was modified with two nested time-frames (24-hour and six days) and a temperature dose-response function. In a year round tomato cultivation, energy consumption was predicted to decrease with up to 9 % compared to regular temperature integration. The potential for energy saving with temperature integration is limited by humidity control when as usual fixed set points are maintained, because it counteracts temperature integration. Vents open at lower temperatures and heating is switched on at higher temperatures than required for optimal effects of temperature integration. A

  18. Energy balance of chosen crops and their potential to saturate energy consumption in Slovakia

    Directory of Open Access Journals (Sweden)

    Katarína Hrčková

    2016-06-01

    Full Text Available The aim of the present work was to assess and compare energy inputs and outputs of various crop managements in 2011–2012. Two main crops on arable land and three permanent grasslands were investigated. Silage maize (Zea mays L. and winter wheat (Triticum aestivum L. were grown on lowland, whilst two semi-natural grasslands and grassland infested by tufted hair-grass (Deschampsia caespitose (L. P. Beauv were located in mountainous regions of Slovakia. In these crops and grasslands the dry matter yield was measured and subsequently the supplementary energy, energy gain and unifying energy value – tonne of oil equivalent (TOE – were calculated. Silage maize with 233.37 GJ*ha-1 has provided the highest energy gain. In the group of grasslands, grassland infested by tufted hair-grass has offered the highest energy gain (59.77 GJ*ha-1. And this grassland had the lowest requirement on the supplementary energy (3.66 GJ*ha-1, contrary to silage maize with highest one (12.37 GJ*ha-1. The total energy potential of the crop biomasses was confronted with energy consumption in Slovakia. Winter wheat has the biggest energy potential, but it could cover only 19.6% and 11.3% total consumption of electricity or natural gas, respectively. Large area of permanent grasslands and their spatial location make them an important energy reservoir for bioenergy production. But, it is not possible to replace all consumed fossil fuels by bioenergy from these tested renewable energy sources.

  19. Assessment of energy return on energy investment (EROEI of oil bearing crops for renewable fuel production

    Directory of Open Access Journals (Sweden)

    A. Restuccia

    2013-09-01

    Full Text Available As reported in literature the production of biodiesel should lead to a lower energy consumption than those obtainable with its use. So, to justify its consumption, a sustainable and “low input” production should be carried out. In order to assess the sustainability of Linum usitatissimum, Camelina sativa and Brassica carinata cultivation for biodiesel production in terms of energy used compared to that obtained, the index EROEI (Energy Return On Energy Invested has been used. At this aim, an experimental field was realised in the south-eastern Sicilian land. During the autumn-winter crop cycle, no irrigation was carried out and some suitable agricultural practices have been carried out taking into account the peculiarity of each type of used seeds. The total energy consumed for the cultivation of oil bearing crops from sowing to the production of biodiesel represents the Input of the process. In particular, this concerned the energy embodied in machinery and tools utilized, in seed, chemical fertilizer and herbicide but also the energy embodied in diesel fuels and lubricant oils. In addition, the energy consumption relating to machines and reagents required for the processes of extraction and transesterification of the vegetable oil into biodiesel have been calculated for each crops. The energy obtainable from biodiesel production, taking into account the energy used for seed pressing and for vegetable oil transesterification into biodiesel, represents the Output of the process. The ratio Output/Input gets the EROEI index which in the case of Camelina sativa and Linum usatissimum is greater than one. These results show that the cultivation of these crops for biofuels production is convenient in terms of energy return on energy investment. The EROEI index for Brassica carinata is lower than one. This could means that some factors, concerning mechanisation and climatic

  20. European Union energy policy integration: A case of European Commission policy entrepreneurship and increasing supranationalism

    OpenAIRE

    Maltby, Tomas

    2013-01-01

    Focusing on gas, this article explores the role of the European Commission in the process of European Union energy security policy development, and the extent to which the policy area is becoming increasingly supranational. Situating the article within the literature on agenda-setting and framing, it is argued that a policy window was opened as a result of: enlargement to include more energy import dependent states, a trend of increasing energy imports and prices, and gas supply disruptions. ...

  1. ENERGY IMPORT DEPENDENCY AND SEEKING FOR NEW ENERGY TECHNOLOGIES EUROPEAN UNION CASE

    OpenAIRE

    Özkan Nesimioglu, Serife

    2016-01-01

    In this paper, energy poverty and as a result of this energy import dependency and its possible negative results have been examined by taking European Union (EU) into consideration. This analysis has two aims: the first one is questioning the European Unions’ energy security from supply perspective and the second one is investigating the solutions produced by European Union to get away or at least to reduce its energy import dependency. To guarantee its energy supply security at affordable pr...

  2. Renewable energies and European landscapes lessons from Southern European cases

    CERN Document Server

    Frolova, Marina; Nadaï, Alain

    2015-01-01

    This book provides timely, multidisciplinary cross-national comparison of the institutional and social processes through which renewable energy landscapes have emerged in Southern Europe. On the basis of case studies in these countries, it analyzes the way in which and the extent to which the development of renewable energies has affected landscape forms and whether or not it has contributed to a reformulation of landscape practices and values in these countries. Landscape is conceived broadly, as a material, social, political and historical process embedded into the local realm, going beyond

  3. Convergence to the European Energy Policy in European countries: case studies and comparison

    Directory of Open Access Journals (Sweden)

    César Teixeira

    2014-10-01

    Full Text Available Purpose – Our paper aims at analyzing how different European countries cope with the European Energy Policy, which proposes a set of measures (free energy market, smart meters, energy certificates to improve energy utilization and management in Europe.Design/methodology/approach – The paper first reports the general vision, regulations and goals set up by Europe to implement the European Energy Policy. Later on, it performs an analysis of how some European countries are coping with the goals, with financial, legal, economical and regulatory measures. Finally, the paper draws a comparison between the countries to present a view on how Europe is responding to the emerging energy emergency of the modern world.Findings – Our analysis on different use cases (countries showed that European countries are converging to a common energy policy, even though some countries appear to be later than others In particular, Southern European countries were slowed down by the world financial and economical crisis. Still, it appears that contingency plans were put into action, and Europe as a whole is proceeding steadily towards the common vision.Research limitations/implications – European countries are applying yet more cuts to financing green technologies, and it is not possible to predict clearly how each country will evolve its support to the European energy policy.Practical implications – Different countries applied the concepts and measures in different ways. The implementation of the European energy policy has to cope with the resulting plethora of regulations, and a company proposing enhancement regarding energy management still has to possess robust knowledge of the single country, before being able to export experience and know-how between European countries.Originality/Value – Even though a few surveys on energy measures in Europe are already part of the state-of-the-art, organic analysis diagonal to the different topics of the European

  4. Initial study - compilation and synthesis of knowledge about energy crops from field to energy production

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Magnus; Bubholz, Monika; Forsberg, Maya; Myringer, Aase; Palm, Ola; Roennbaeck, Marie; Tullin, Claes

    2007-11-15

    Energy crops constitute an yet not fully utilised potential as fuel for heating and power production. As competition for biomass increases interest in agricultural fuels such as straw, energy grain, willow, reed canary grass and hemp is increasing. Exploiting the potential for energy crops as fuels will demand that cultivation and harvest be coordinated with transportation, storage and combustion of the crops. Together, Vaermeforsk and the Swedish Farmers' Foundation for Agricultural Research (SLF), have taken the initiative to a common research programme. The long-term aim of the programme is to increase production and utilisation of bioenergy from agriculture to combustion for heat and power production in Sweden. The vision is that during the course of the 2006 - 2009 programme, decisive steps will be taken towards a functioning market for biofuels for bioenergy from agriculture. This survey has compiled and synthesised available knowledge and experiences about energy crops from field to energy production. The aim has been to provide a snapshot of knowledge today, to identify knowledge gaps and to synthesise knowledge we have today into future research needs. A research plan proposal has been developed for the research programme

  5. Reuse of constructed wetland effluents for irrigation of energy crops.

    Science.gov (United States)

    Barbagallo, S; Barbera, A C; Cirelli, G L; Milani, M; Toscano, A

    2014-01-01

    The aim of this study was to evaluate biomass production of promising 'no-food' energy crops, Vetiveria zizanoides (L.) Nash, Miscanthus × giganteus Greef et Deu. and Arundo donax (L.), irrigated with low quality water at different evapotranspiration restitutions. Two horizontal subsurface flow (H-SSF) constructed wetland (CW) beds, with different operation life (12 and 6 years), were used to treat secondary municipal wastewaters for crop irrigation. Water chemical, physical and microbiological parameters as well as plant bio-agronomic characters were evaluated. The results confirm the high reliability of CWs for tertiary wastewater treatment given that the H-SSF1 treatment capacity remained largely unchanged after 12 years of operation. Average total suspended solids, chemical oxygen demand and total nitrogen removal for CWs were about 68, 58 and 71%, respectively. The Escherichia coli removal was satisfactory, about 3.3 log unit for both CW beds on average, but caution should be taken as this parameter did not achieve the restrictive Italian law limits for wastewater reuse. The average above-ground dry matter productions were 7 t ha⁻¹ for Vetiveria zizanoides, 24 t ha⁻¹ for Miscanthus × giganteus and 50 t ha⁻¹ for Arundo donax. These results highlight attractive biomass yield by using treated wastewater for irrigation with a complete restitution of evapotranspiration losses.

  6. Enhanced biogas yield from energy crops with rumen anaerobic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, Jindrich; Zabranska, Jana; Dohanyos, Michal [Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, Institute of Chemical Technology in Prague, Prague (Czech Republic); Mrazek, Jakub; Strosova, Lenka; Fliegerova, Katerina [Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, v.v.i., Prague (Czech Republic)

    2012-06-15

    Anaerobic fungi (AF) are able to degrade crop substrates with higher efficiency than commonly used anaerobic bacteria. The aim of this study was to investigate ways of use of rumen AF to improve biogas production from energy crops under laboratory conditions. In this study, strains of AF isolated from feces or rumen fluid of cows and deer were tested for their ability to integrate into the anaerobic bacterial ecosystem used for biogas production, in order to improve degradation of substrate polysaccharides and consequently the biogas yield. Batch culture, fed batch culture, and semicontinuous experiments have been performed using anaerobic sludge from pig slurry fermentation and different kinds of substrates (celluloses, maize, and grass silage) inoculated by different genera of AF. All experiments showed a positive effect of AF on the biogas yield and quality. AF improved the biogas production by 4-22%, depending on the substrate and AF species used. However, all the cultivation experiments indicated that rumen fungi do not show long-term survival in fermenters with digestate from pig slurry. The best results were achieved during fed batch experiment with fungal culture Anaeromyces (KF8), in which biogas production was enhanced during the whole experimental period of 140 days. This result has not been achieved in semicontinuous experiment, where increment in biogas production in fungal enriched reactor was only 4% after 42 days. (copyright 2012 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad.

    Science.gov (United States)

    Lamichhane, Jay Ram; Devos, Yann; Beckie, Hugh J; Owen, Micheal D K; Tillie, Pascal; Messéan, Antoine; Kudsk, Per

    2017-06-01

    Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM systems. Based on the experience gained in countries where CHT or GMHT crops are widely grown and the increased familiarity with their management, we propose five actions to facilitate the integration of HT crops in IWM systems within the European Union.

  8. French perspectives in the emerging European Union energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Meritet, Sophie [CGEMP, Paris Dauphine University (France)

    2007-10-15

    The debate over a common European energy policy, its necessity and its establishment has been going on for a number of decades. The discussions have been recently brought back into the spotlight by the evolution of energy market fundamentals and the taking into account of environmental protection. In spite of the energy diversity of the European Union (EU), a common vision has always been shared by all over energy development for the future. The achievements of the internal market, the fight against climate change and supply security are the common energy battles that call for a solution in common. This policy remains the responsibility of the States, but decisions vary from one country to the next. To move from a shared vision to a European energy policy, large steps are necessary. The European construction is making evolve the 'typically French vision' of energy policy. France was often characterized as the 'black sheep' in the EU. In the political context of president elections, the energy debate in French is of a high interest. This paper discusses the main issues with the French energy policy in the emerging European energy policy. (author)

  9. Wind energy. Energy technologies in national, European and global perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Bjerregaard, E.T.D. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark)

    2002-10-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind

  10. Low Energy Technology. A Unit of Instruction on Energy Conservation in Field Crop Production.

    Science.gov (United States)

    Davis, George; Scanlon, Dennis C.

    This unit of instruction on energy conservation in field crop production was designed for use by agribusiness and natural resources teachers in Florida high schools and by agricultural extension agents as they work with adults and students. It is one of a series of 11 instructional units (see note) written to help teachers and agents to educate…

  11. Energy crops for biogas plants. Saxony-Anhalt; Energiepflanzen fuer Biogasanlagen. Sachsen-Anhalt

    Energy Technology Data Exchange (ETDEWEB)

    Boese, L.; Buttlar, C. von; Boettcher, K. (and others)

    2012-07-15

    For agriculturists in Saxony-Anhalt (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  12. Energy crops for biogas plants. Baden-Wuerttemberg; Energiepflanzen fuer Biogasanlagen. Baden-Wuerttemberg

    Energy Technology Data Exchange (ETDEWEB)

    Butz, A.; Heiermann, M.; Herrmann, C. [and others

    2013-05-01

    For agriculturists in Baden-Wuerttemberg (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  13. Energy crops for biogas plants. Mecklenburg-Western Pomerania; Energiepflanzen fuer Biogasanlagen. Mecklenburg-Vorpommern

    Energy Technology Data Exchange (ETDEWEB)

    Aurbacher, J.; Bull, I.; Formowitz, B. (and others)

    2012-06-15

    For agriculturists in Mecklenburg-Western Pomerania (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  14. Policies and practices for an energy efficient European housing stock

    NARCIS (Netherlands)

    Visscher, H.J.

    2015-01-01

    The housing stock has a major energy saving potential and is mostly considered to be the sector in which energy efficiency most cost effectively could be achieved. 30% of all energy use is consumed in the housing stock. The European union has formulated targets for a reduction of CO2 emissions to be

  15. European energy law in Germany; Europaeisiertes Energierecht in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Allwardt, C.

    2006-07-01

    The book focuses on deregulation and unbundling of the European electricity market. The structure of the European power supply industry is described, with the focus on Germany. European and German boundary conditions are outlined, and the German Erneuerbare-Energien-Gesetz (Renewables Act) and its amendments is discussed in detail. The author discusses if the mechanism claimed in this Act for funding of renewable energy sources is compatible with European law, especially as regards competition and free trading as well as financial aids. It is found that there should be no doubts on a European level as any obstacles set by the Act are justified by European environmental policy. The case is different on a national scale as the mechanism concerning exceptions form the rule is incompatible with the equality principle laid down in the German constitution. (orig.)

  16. European greenhouse gas fluxes from land use: the impact of expanding the use of dedicated bioenergy crops.

    Science.gov (United States)

    Hastings, Astley; Böttcher, Hannes; Clifton-Brown, John; Fuchs, Richard; Hillier, Jon; Jones, Ed; Obersteiner, Michael; Pogson, Mark; Richards, Mark; Smith, Pete

    2013-04-01

    Bioenergy derived from vegetation cycles carbon to and from the atmosphere using the chemical energy fixed by the plants by photosynthesis using solar energy. However bioenergy is not carbon neutral as energy is used and greenhouse gasses (GHG) are emitted in the process of growing bioenergy feeedstocks and processing them into a usable fuel, whether it is biomass or liquid fuel such as biodiesel or bioethanol. Using bio instead of fossil fuels replaces greenhouse gas emissions from coal, oil and gas by those of the biofuel. To estimate the impact on European greenhouse gas fluxes of expanding the use of bioenergy, it is necessary to quantify the difference between the GHG emissions associated with producing and using the biofuel and the fossil fuel it replaces, and to take into account any emissions associated with the change from the original land use to that of growing the bioenergy feedstock. This involves estimating any displacement of food, fibre and timber production to other geographical areas. Here we report on a study of the GHG emissions from the potential increasing use of a variety of biofuels produced from feedstocks grown in the EU countries. The GHG emissions of the historical land use of EU27 have been modelled using ECOSSE on a 1 km grid to estimate the impact the agriculture intensification and land use change of the last 50 years and the associated crop yield gains. The excess land made available from the yield gains is considered to be available for use for bioenergy, and the yields of potential bioenergy feedstocks are estimated from EUROSTAT data or modelled using the bioenergy crop growth model MISCANFOR. These yields are used to calculate the energy used and GHG emissions associated with the use of the resulting biofuel using a life cycle analysis, and to estimate the organic matter input into the soil. The ECOSSE model is then used to estimate the soil carbon change and GHG emissions associated with the land use change to growing the

  17. The potential of cassava as an energy crop. [NONE

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, R.K.; Kutianawala, S.M.

    1979-09-01

    Cassava (Manihot esculenta) is today the most widely grown of all root crops. Production figures suggest a world output of some 100 million tons per annum and around 70% of this production comes from Brazil, Indonesia, Zaire, Nigeria and India. Nevertheless many other countries have outputs running into thousands of tons. The bulk of this harvested material is consumed directly as human food. The use of cassava as a source of starch, or as an animal feedstuff, has long been of industrial interest, but the prediction that the world could face an energy crisis long before food supplies become critical, has caused a number of countries to assess cassava in an entirely new light. Thus, the starch content of cassava can, by fermentation, be turned into ethanol, a product that, apart from its value as a chemical feedstock, can be used directly as a liquid fuel. The standard automobile engine can run on a mixture of 90% petroleum: 10% ethanol with little difficulty, and with modification, the inclusion rate of alcohol can go even higher. This realization has led a number of tropical countries to consider seriously the potential of cassava as an industrial base, for even a 10% reduction in demand for imported oil represents a massive saving of foreign exchange. The fact that industrialized countries like Australia and New Zealand are moving in the same direction suggests that the carbohydrate-liquid fuel process is becoming attractive economically, as well as representing a method of conserving available fossil fuels. It would seem, therefore, an appropriate point in time to consider the potential of cassava as industrial crop. This paper aims to determine just how realistic are the aspirations of those seeking to further exploit this carbohydrate source. 24 references

  18. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    DEFF Research Database (Denmark)

    Bøgh, Eva; Houborg, R; Bienkowski, J

    2013-01-01

    . Field data measured in 93 fields within crop- and grasslands of five European landscapes showed strong vertical CHLl gradient profiles in 20% of fields. This affected the predictability of SVIs and REGFLEC. However, selecting only homogeneous canopies with uniform CHLl distributions as reference data...

  19. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity.

    Science.gov (United States)

    De Block, Marc; Van Lijsebettens, Mieke

    2011-06-01

    The importance of energy metabolism in plant performance and plant productivity is conceptually well recognized. In the eighties, several independent studies in Lolium perenne (ryegrass), Zea mays (maize), and Festuca arundinacea (tall fescue) correlated low respiration rates with high yields. Similar reports in the nineties largely confirmed this correlation in Solanum lycopersicum (tomato) and Cucumis sativus (cucumber). However, selection for reduced respiration does not always result in high-yielding cultivars. Indeed, the ratio between energy content and respiration, defined here as energy efficiency, rather than respiration on its own, has a major impact on the yield potential of a crop. Besides energy efficiency, energy homeostasis, representing the balance between energy production and consumption in a changing environment, also contributes to an enhanced plant performance and this happens mainly through an increased stress tolerance. Although a few single gene approaches look promising, probably whole interacting networks have to be modulated, as is done by classical breeding, to improve the energy status of plants. Recent developments show that both energy efficiency and energy homeostasis have an epigenetic component that can be directed and stabilized by artificial selection (i.e. selective breeding). This novel approach offers new opportunities to improve yield potential and stress tolerance in a wide variety of crops. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Carbon balance and energy fluxes of a Mediterranean crop

    Directory of Open Access Journals (Sweden)

    Simona Consoli

    2013-09-01

    Full Text Available This paper is based on the analysis of a long-term mass (carbon dioxide, water vapour and energy (solar radiation balance monitoring programme carried out during years 2010 and 2012 in an irrigated orange orchard in Sicily, using the Eddy Covariance (EC method. Orange (Citrus sinensis L. is one of the main fruit crops worldwide and its evergreen orchard may have a great potential for carbon sequestration, but few data are currently available. In the study, the role of the orchard system in sequestering atmospheric CO2 was analyzed, thus contributing to assess the carbon balance of the specie in the specific environment.Vertical energy fluxes of net radiation, soil heat, sensible heat and latent heat fluxes were measured at orchard scale by EC. Evapotranspiration (ET values were compared with upscaled transpiration data determined by the sap flow heat pulse technique, evidencing the degree of correspondence between instantaneous transpirational flux at tree level and the micrometeorological measurement of ET at orchard level.

  1. A Computational Tool for Comparative Energy Cost Analysis of Multiple-Crop Production Systems

    Directory of Open Access Journals (Sweden)

    Efthymios Rodias

    2017-06-01

    Full Text Available Various crops can be considered as potential bioenergy and biofuel production feedstocks. The selection of the crops to be cultivated for that purpose is based on several factors. For an objective comparison between different crops, a common framework is required to assess their economic or energetic performance. In this paper, a computational tool for the energy cost evaluation of multiple-crop production systems is presented. All the in-field and transport operations are considered, providing a detailed analysis of the energy requirements of the components that contribute to the overall energy consumption. A demonstration scenario is also described. The scenario is based on three selected energy crops, namely Miscanthus, Arundo donax and Switchgrass. The tool can be used as a decision support system for the evaluation of different agronomical practices (such as fertilization and agrochemicals application, machinery systems, and management practices that can be applied in each one of the individual crops within the production system.

  2. Genotypic variation in energy efficiency in greenhouse crops: underlying physiological and morphological parameters

    NARCIS (Netherlands)

    Ploeg, van der A.

    2007-01-01

    Greenhouse horticulture in The Netherlands is a highly sophisticated form of crop production, resulting in high production levels and good product quality. However, it also requires high energy inputs, representing 15 to 20% of the production costs in most crops. It is important that energy

  3. Characterization of the southwest United States for the production of biomass energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Salk, M.S.; Folger, A.G.

    1987-03-01

    The southwest United States, an area of diverse climate, topography, terrain, soils, and vegetation, is characterized to determine the feasibility of growing terrestrial energy crops there. The emphasis in the study is on delineating general zones of relative resource and environmental suitability, which are then evaluated to estimate the potential of the region for energy crop production. 100 refs., 25 figs., 24 tabs.

  4. Comparing annual and perennial crops for bioenergy production - influence on nitrate leaching and energy balance

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Schelde, Kirsten; Ugilt Larsen, Søren

    2015-01-01

    Production of energy crops is promoted as a means to mitigate global warming by decreasing dependency on fossil energy. However, agricultural production of bioenergy can have various environmental effects depending on the crop and production system. In a field trial initiated in 2008, nitrate...

  5. Energy saving in greenhouses: optimal use of climate conditions and crop management

    NARCIS (Netherlands)

    Dieleman, J.A.; Marcelis, L.F.M.; Elings, A.; Dueck, T.A.; Meinen, E.

    2006-01-01

    In the last few years, energy consumption in greenhouses has gained increased interest, due to the liberalisation of the energy market and the increasing prices of natural gas. In this paper, the effects of a series of adaptations in greenhouse climate and cropping systems on crop production and

  6. Energy and Water Use Related to the Cultivation of Energy Crops: a Case Study in the Tuscany Region

    Directory of Open Access Journals (Sweden)

    Anna Dalla Marta

    2011-06-01

    Full Text Available The contribution of agrobiomasses, as a source of energy, to the reduction of greenhouse gas emissions was confirmed by several studies. Biomass from agriculture represents one of the larger and more diverse sources to exploit and in particular ethanol and diesel have the potential to be a sustainable replacement for fossil fuels, mainly for transport purposes. However, the cultivation of energy crops dedicated to the production of biofuels presents some potential problems, e.g., competitiveness with food crops, water needs, use of fertilizers, etc., and the economic, energy, and environmental convenience of such activity depends on accurate evaluations about the global efficiency of the production system. In this study, the processes related to the cultivation of energy crops were analyzed from an energy and water cost perspective. The crops studied, maize (Zea mais and sunflower (Helianthus annuus, were identified for their different water requirements and cultivation management, which in turns induces different energy costs. A 50-year climatic series of meteorological data from 19 weather stations scattered in the Tuscany region was used to feed the crop model CropSyst for the simulation of crop production, water requirement, and cultivation techniques. Obtained results were analyzed to define the real costs of energy crop cultivation, depending on energy and water balances. In the energy crop cultivation, the only positive energy balance was obtained with the more efficient system of irrigation whereas all the other cases provided negative balances. Concerning water, the results demonstrated that more than 1.000 liters of water are required for producing 1 liter of bioethanol. As a consequence, the cultivation of energy crops in the reserved areas of the region will almost double the actual water requirement of the agricultural sector in Tuscany.

  7. Farm wood fuel and energy project - crop performance monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.; Buckland, M.

    1997-10-01

    ADAS carried out work within the overall framework of the Farm Wood Fuel and Energy Project (FWFEP) over a period from September 1991 to February 1997. The FWFEP was set up with the principal aim of showing farmers how Short Rotation Coppice (SRC) could be grown as a commercial crop within a variety of farming systems in circumstances which were likely to make it both environmentally acceptable to others and commercially viable for the farmers. Five project sites were selected on the basis of criteria agreed between the various parties involved in the project. Subsequent investigations revealed that the majority of farms were atypical of farming businesses in their locality. So, whilst the chosen growers and sites were ideal in terms of interest of growers, site location, and access, and because they were each located on different types of farm, with different soils and climates, and because each had different market development opportunities, using the five farms to monitor the impact of SRC over the whole farm business, in a meaningful way, was not feasible. Instead, the effects were modelled, and a number of model farms were considered. (Author)

  8. Policy Instruments for an Increased Supply of Energy Crops; Styrmedel foer ett utoekat utbud av biobraensle

    Energy Technology Data Exchange (ETDEWEB)

    Stenkvist, Maria; Widmark, Annika; Wiklund, Sven-Erik; Liljeblad, Anna

    2009-05-15

    At present, energy crops are not commonly used as fuel for heat and power production in Sweden, but as a result of increased competition for biomass, the interest for agricultural fuels such as willow, straw, reed canary grass and hemp increases. The purpose of this study is through a qualitative study that includes a literature study as well as case studies carried out by interviews, with respondents in the agriculture- and energy sectors highlight the conditions for increased production and use of energy crops. The main objective is to propose relevant policy instruments that could increase the production and use of energy crops. The purpose with the proposed policy instruments is that they should serve as a basis for discussions with politicians and authorities regarding the supply of bio fuels through the use of energy crops. The result of the study indicates that the main obstacle for increasing the production and use of energy crops is that the cultivation of energy crops today is unprofitable. To reduce the production costs it is necessary to improve the competitiveness of energy crops, primarily in relation to wood chips. The study shows that there is a potential for reduction of production costs through development of the logistics chain. Policy measures promoting the use of bio fuels exists today, but are not fully used to increase the share of energy crops in the bio fuel energy mix. The reason for this is that they are generally not as cost efficient as alternative bio fuels. It is important that competition issues are addressed, both regarding competition issues between different bio fuels, but also competition issues between various energy crops that exists today. Further obstacles to accelerate the introduction of energy crops at the market are high investment costs for establishment of some of the energy crops. From the analysis in this study, the following policy instruments are suggested in order to increase the production and the use of energy

  9. Energy Policies of IEA Countries: European Union 2008 Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    For the first time, the IEA has reviewed the energy policies of the European Union which shape the energy use of almost 500 million citizens in 27 EU member countries. A unique entity governed under complex and almost constantly evolving structures, the EU constitutes a challenge for energy policy makers. Its energy policy has a global impact, not only because of its 16% share of world energy demand, but also because of the EU leadership in addressing climate change. Strong policy drives are underway in the EU to achieve the completion of the internal energy market, increase renewable energy supply, reduce CO2 emissions and make the EU more energy-efficient. Concerns about security of supply have also led to a greater focus on improved energy relations with supplier countries, and new institutional structures are being put in place. How much progress has been made in the field of security, internal market and external energy policies? And in which of these areas has the EU already implemented a fully integrated policy? IEA Energy Policies Review: The European Union - 2008 addresses these questions and also analyses the impact of the most recent major EU policy measures, in particular the Energy & Climate Package of January 2008 and the 3rd Liberalisation Package of September 2007. This book finds that both of these proposals are highly ambitious. But implementing them and reviewing both volume and allocation of energy R&D will be necessary to achieve a sustainable energy future in a fully competitive integrated EU energy market.

  10. Network Codes – European Energy Law in the Making

    Directory of Open Access Journals (Sweden)

    Grzegorz Błajszczak

    2015-06-01

    Full Text Available The European Union is preparing a series of regulations governing in detail various aspects of grid operation and free-market trade in electricity and gas, the so-called network codes. The paper reviews this process of European energy legislation development. Also discussed are the European Union bodies and major stakeholders in this process, as well as the national law making and enforcing agencies. In the past, law in Poland was created by Polish citizens. After joining the European Union the law in effect is largely created elsewhere by someone else, even if with significant participation of Polish representatives. The law on energy is not only important for producers, distributors and trading companies, but it strongly effects industrial competitiveness and hence the quality of life of the population.

  11. Potential Implications of Climate Change on Aegilops Species Distribution: Sympatry of These Crop Wild Relatives with the Major European Crop Triticum aestivum and Conservation Issues.

    Science.gov (United States)

    Ostrowski, Marie-France; Prosperi, Jean-Marie; David, Jacques

    2016-01-01

    Gene flow from crop to wild relatives is a common phenomenon which can lead to reduced adaptation of the wild relatives to natural ecosystems and/or increased adaptation to agrosystems (weediness). With global warming, wild relative distributions will likely change, thus modifying the width and/or location of co-occurrence zones where crop-wild hybridization events could occur (sympatry). This study investigates current and 2050 projected changes in sympatry levels between cultivated wheat and six of the most common Aegilops species in Europe. Projections were generated using MaxEnt on presence-only data, bioclimatic variables, and considering two migration hypotheses and two 2050 climate scenarios (RCP4.5 and RCP8.5). Overall, a general decline in suitable climatic conditions for Aegilops species outside the European zone and a parallel increase in Europe were predicted. If no migration could occur, the decline was predicted to be more acute outside than within the European zone. The potential sympatry level in Europe by 2050 was predicted to increase at a higher rate than species richness, and most expansions were predicted to occur in three countries, which are currently among the top four wheat producers in Europe: Russia, France and Ukraine. The results are also discussed with regard to conservation issues of these crop wild relatives.

  12. European Union energy policy integration: A case of European Commission policy entrepreneurship and increasing supranationalism.

    Science.gov (United States)

    Maltby, Tomas

    2013-04-01

    Focusing on gas, this article explores the role of the European Commission in the process of European Union energy security policy development, and the extent to which the policy area is becoming increasingly supranational. Situating the article within the literature on agenda-setting and framing, it is argued that a policy window was opened as a result of: enlargement to include more energy import dependent states, a trend of increasing energy imports and prices, and gas supply disruptions. From the mid-2000s, the Commission contributed to a shift in political norms, successfully framing import dependency as a problem requiring an EU-level solution, based on the institution's pre-existing preferences for a diversified energy supply and internal energy market. Whilst Member States retain significant sovereignty, the Commission has achieved since 2006 creeping competencies in the internal, and to a lesser extent external, dimensions of EU energy policy.

  13. Renewable energy utilization in 3 european cities. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    Energy production based on fossil fuels produces CO2, SO2 and NOx, which are harmful to the environment. It is agreed, both nationally and internationally, that it is necessary to considerably reduce the energy consumption. The difference between different European countries politically, financially, culturally, and socially needs to be acknowledged when energy initiatives are considered for implementation on a local as well as an international scale. This was the basis for the initiation of the project `Renewable Energy Utilization in 3 European Cities`. Three very different cities with different problems and thus different interests got together and joined efforts to develop action plans to increase renewable energy use to reduce the burden on the environment from energy consumption in the urban and regional areas. The work has been undertaken by the working group presented in appendix 3. (EG) ALTENER. 25 refs.

  14. Promotion of Renewable Energy Sources in the European Union

    Directory of Open Access Journals (Sweden)

    Roland Menges

    2015-10-01

    Full Text Available One of the important goals of European energy policy is to increase the share of renewable energy resources in the energy supply. The instruments used in the member states are not fully compatible with the rules of the European internal market. In a theoretical section, this paper analyses possible different instruments for promoting renewable energy. Some countries use feed in tariffs - using fixed prices to increase incentives for producers to invest into renewable energy, other countries use quantity-based systems like quotas that lead to a premium above the market price. In an institutional analysis we show that on the basis of effectiveness and efficiency considerations for the European Union, in the long-term quantity oriented systems of promotion are preferable if combined with elements of a capacity market. The main reason for this conclusion is that price-based systems cannot give enough incentives for backup capacities necessary to cope with intermittent production of renewable sources. In addition price-based systems violate the basic rules of the open internal European market because feed in tariffs are a considerable barrier for trade of renewable energy products.

  15. Energy Crop-Based Biogas as Vehicle Fuel—The Impact of Crop Selection on Energy Efficiency and Greenhouse Gas Performance

    Directory of Open Access Journals (Sweden)

    Pål Börjesson

    2015-06-01

    Full Text Available The production of biogas from six agricultural crops was analysed regarding energy efficiency and greenhouse gas (GHG performance for vehicle fuel from a field-to-tank perspective, with focus on critical parameters and on calculation methods. The energy efficiency varied from 35% to 44%, expressed as primary energy input per energy unit vehicle gas produced. The GHG reduction varied from 70% to 120%, compared with fossil liquid fuels, when the GHG credit of the digestate produced was included through system expansion according to the calculation methodology in the ISO 14044 standard of life cycle assessment. Ley crop-based biogas systems led to the highest GHG reduction, due to the significant soil carbon accumulation, followed by maize, wheat, hemp, triticale and sugar beet. Critical parameters are biogenic nitrous oxide emissions from crop cultivation, for which specific emission factors for digestate are missing today, and methane leakage from biogas production. The GHG benefits were reduced and the interrelation between the crops changed, when the GHG calculations were instead based on the methodology stated in the EU Renewable Energy Directive, where crop contribution to soil carbon accumulation is disregarded. All systems could still reach a 60% GHG reduction, due to the improved agricultural management when digestate replaces mineral fertilisers.

  16. Aboveground dendromass allometry of hybrid black poplars for energy crops

    Directory of Open Access Journals (Sweden)

    Tatiana Stankova

    2016-06-01

    Full Text Available Cultivation of energy crops is concerned with estimation of the total lignified biomass (dendromass production, which is based on the plantation density and individual plant dendromass. The main objective of this study was to investigate the allometry of aboveground leafless biomass of juvenile black poplar hybrids (Populus deltoides x P. nigra , traditionally used for timber and cellulose production, and to derive generic allometric models for dendromass prediction, relevant to energy crop cultivation in Bulgaria. The study material comprised a variety of growth sites, tree ages and clones, specific to poplar plantings in Bulgaria. We used three principal quantitative predictors: diameter at breast height, total tree height and mean stand (stock height. The models were not differentiated by clone, because the black poplar hybrids tested were not equally represented in the data, and the inclusion of tree age as a predictor variable seemed unreliable, because of the significant, up to 3 years, variation, which was possible within the narrow age range investigated. We defined the mean stand (stock height as a composite quantitative variable, which reflected the interaction between the time since planting (age, site quality and the intrinsic growth potential. Stepwise and backward multiple regression analyses were applied to these quantitative variables and their products and sets of adequacy and goodnessof-fit criteria were used to derive individual biomass models for stem and branches. Then we developed compatible additive systems of models for stem, branch and total lignified biomass in log-transformed form. Finally, the prediction data were back-transformed, applying correction for bias, and were cross-validated. Three systems of generic equations were derived to enable flexible model implementation. Equation system M1 proposes a stem biomass model based on tree and stand heights and stem diameter, and a model for

  17. European energy and transport - scenarios on key drivers

    Energy Technology Data Exchange (ETDEWEB)

    Mantzos, L.; Capros, P.; Kouvaritakis, N.; Zeka-Paschou, M.

    2004-09-01

    'Scenarios on key drivers' investigates alternative energy futures as distinct from the baseline development that shows the effects of current trends and policies. The key drivers concern either different framework conditions for energy and transport policies, such as higher world energy prices, higher or lower economic growth, or they are about different policy approaches on, for example, energy efficiency, renewables, nuclear energy, modal split in transport and climate change. The analysis covers the European Union of 25 Member States and extends to the year 2030. 79 figs., 90 tabs., 8 apps.

  18. Impacts and adaptation of European crop production systems to climate change

    DEFF Research Database (Denmark)

    Olesen, Jørgen E; Trnka, M; Kersebaum, K C

    2011-01-01

    on the: (1) main vulnerabilities of crops and cropping systems under present climate; (2) estimates of climate change impacts on the production of nine selected crops; (3) possible adaptation options as well as (4) adaptation observed so far. In addition we focused on the overall awareness and presence...

  19. Effect of crop residue incorporation on soil organic carbon (SOC) and greenhouse gas (GHG) emissions in European agricultural soils

    Science.gov (United States)

    Lehtinen, Taru; Schlatter, Norman; Baumgarten, Andreas; Bechini, Luca; Krüger, Janine; Grignani, Carlo; Zavattaro, Laura; Costamagna, Chiara; Spiegel, Heide

    2014-05-01

    Soil organic matter (SOM) improves soil physical (e.g. increased aggregate stability), chemical (e.g. cation exchange capacity) and biological (e.g. biodiversity, earthworms) properties. The sequestration of soil organic carbon (SOC) may mitigate climate change. However, as much as 25-75% of the initial SOC in world agricultural soils may have been lost due to intensive agriculture (Lal, 2013). The European Commission has described the decline of organic matter (OM) as one of the major threats to soils (COM(2006) 231). Incorporation of crop residues may be a sustainable and cost-efficient management practice to maintain the SOC levels and to increase soil fertility in European agricultural soils. Especially Mediterranean soils that have low initial SOC concentrations, and areas where stockless croplands predominate may be suitable for crop residue incorporation. In this study, we aim to quantify the effects of crop residue incorporation on SOC and GHG emissions (CO2 and N2O) in different environmental zones (ENZs, Metzger et al., 2005) in Europe. Response ratios for SOC and GHG emissions were calculated from pairwise comparisons between crop residue incorporation and removal. Specifically, we investigated whether ENZs, clay content and experiment duration influence the response ratios. In addition, we studied how response ratios of SOM and crop yields were correlated. A total of 718 response ratios (RR) were derived from a total of 39 publications, representing 50 experiments (46 field and 4 laboratory) and 15 countries. The SOC concentrations and stocks increased by approximately 10% following crop residue incorporation. In contrast, CO2 emissions were approximately six times and N2O emissions 12 times higher following crop residue incorporation. The effect of ENZ on the response ratios was not significant. For SOC concentration, the >35% clay content had significantly approximately 8% higher response ratios compared to 18-35% clay content. As the duration of the

  20. EUROPEAN ENERGY INTERCONNECTION EFFECTS ON THE ROMANIAN ECONOMY

    Directory of Open Access Journals (Sweden)

    Ionescu Mihaela

    2014-07-01

    Full Text Available In this paper the author wants to exemplify the extent to which economic growth in Romania is influenced by the current power system infrastructure investments in Europe. Electricity transmission infrastructure in Romania is at a turning point. The high level of security of supply, delivery efficiency in a competitive internal market are dependent on significant investment, both within the country and across borders. Since the economic crisis makes investment financing is increasingly difficult, it is necessary that they be targeted as well. The European Union has initiated the “Connecting Europe” through which investments are allocated to European energy network interconnection of energy. The action plan for this strategy will put a greater emphasis on investments that require hundreds of billions of euro in new technologies, infrastructure, improve energy intensity, low carbon energy technologies. Romania's energy challenge will depend on the new interconnection modern and smart, both within the country and other European countries, energy saving practices and technologies. This challenge is particularly important as Romania has recovered severe gaps in the level of economic performance compared to developed countries. Such investment will have a significant impact on transmission costs, especially electricity, while network tariffs will rise slightly. Some costs will be higher due to support programs in renewable energy nationwide.Measures are more economically sustainable to maintain or even reinforce the electricity market, which system can be flexible in order to address any issues of adequacy. These measures include investments in border infrastructure (the higher the network, so it is easier to evenly distribute energy from renewable sources, to measure demand response and energy storage solutions.An integrated European infrastructure will ensure economic growth in countries interconnected and thus Romania. Huge energy potential of

  1. INSPIRE Harmonisation of existing Energy Performance Certificate datasets: European Union Location Framework Energy Pilot

    OpenAIRE

    MARTIRANO GIACOMO; Pignatelli, Francesco

    2016-01-01

    The European Union is giving more and more emphasis to its energy policies, whose strategy and actions are included in the Energy Union Package and the 2030 Framework for Climate and Energy. Buildings in which people live and work are responsible for an important portion of the energy consumption in Europe (approximately 40% of the primary energy consumption) and there are several policies and initiatives that are aiming at improving their energy performance. In particular, the Energy Perf...

  2. Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops.

    Science.gov (United States)

    Lübken, Manfred; Wichern, Marc; Schlattmann, Markus; Gronauer, Andreas; Horn, Harald

    2007-10-01

    Knowledge of the net energy production of anaerobic fermenters is important for reliable modelling of the efficiency of anaerobic digestion processes. By using the Anaerobic Digestion Model No. 1 (ADM1) the simulation of biogas production and composition is possible. This paper shows the application and modification of ADM1 to simulate energy production of the digestion of cattle manure and renewable energy crops. The paper additionally presents an energy balance model, which enables the dynamic calculation of the net energy production. The model was applied to a pilot-scale biogas reactor. It was found in a simulation study that a continuous feeding and splitting of the reactor feed into smaller heaps do not generally have a positive effect on the net energy yield. The simulation study showed that the ratio of co-substrate to liquid manure in the inflow determines the net energy production when the inflow load is split into smaller heaps. Mathematical equations are presented to calculate the increase of biogas and methane yield for the digestion of liquid manure and lipids for different feeding intervals. Calculations of different kinds of energy losses for the pilot-scale digester showed high dynamic variations, demonstrating the significance of using a dynamic energy balance model.

  3. Greenhouse gas emissions from cultivation of energy crops may affect the sustainability of biofuels

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggaard-Nielsen, Henrik; Heiske, Stefan

    2011-01-01

    Agro‐biofuels are expected to reduce the emissions of greenhouse gases because CO2 emitted during the combustion of the biofuels has recently been taken from the atmosphere by the energy crop. Thus, when replacing fossil fuels with biofuels we reduce the emission of fossil fuel‐derived CO2...... or incorporation of crop residues. In this study we relate measured field emissions of N2O to the reduction in fossil fuel‐derived CO2, which is obtained when energy crops are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye‐vetch, vetch and grass......‐clover) and three scenarios for conversion of biomass to biofuel. The scenarios are 1) bioethanol production, 2) biogas production and 3) co‐production of bioethanol and biogas, where the energy crops are first used for bioethanol fermentation and subsequently the residues from this process are utilized for biogas...

  4. Greenhouse gas emissions from cultivation of energy crops may affect the sustainability of biofuels

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggaard-Nielsen, Henrik; Heiske, Stefan

    2011-01-01

    Agro-biofuels are expected to reduce the emissions of greenhouse gases because CO2 emitted during the combustion of the biofuels has recently been taken from the atmosphere by the energy crop. Thus, when replacing fossil fuels with biofuels we reduce the emission of fossil fuel-derived CO2...... or incorporation of crop residues. In this study we relate measured field emissions of N2O to the reduction in fossil fuel-derived CO2, which is obtained when energy crops are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye-vetch, vetch and grass......-clover) and three scenarios for conversion of biomass to biofuel. The scenarios are 1) bioethanol production, 2) biogas production and 3) co-production of bioethanol and biogas, where the energy crops are first used for bioethanol fermentation and subsequently the residues from this process are utilized for biogas...

  5. Comparative performance of annual and perennial energy cropping systems under different management regimes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmel, Ute Constanze

    2007-07-18

    The theme of this thesis was chosen against the background of the necessary substitution of fossil fuels and the need to reduce greenhouse gas emissions. One major solution for these topics may be the energy generation from domestically produced biomass. The overall aim of this thesis was the identification of one or more efficient energy cropping systems for Central Europe. The existence of diverse production environments necessitates further diversification and the identification of several energy crops and the development of energy cropping systems suited to those diverse environments. This thesis starts with an introductory essay (chapter 1), which provides the background for renewable energy production, its features, demands and potentials, and the scientific basis of this thesis. Chapters 2 to 6 consist of five manuscripts to be published in reviewed journals (Papers I, II, IV and V) or in a multi-author book (Paper III). Subsequently, the results from all papers are discussed in a general setting (chapter 7), from which a general conclusion is formulated (chapter 8). The basis of the research formed four field experiments, which were conducted at the experimental sites Ihinger Hof, Oberer Lindenhof and Goldener Acker of the University of Hohenheim, in south-western Germany. Paper I addresses the overall objective of this thesis. Selected cropping systems for this experiment were short rotation willow, miscanthus, switchgrass, energy maize and two different crop rotation systems including winter oilseed rape, winter wheat and winter triticale with either conventional tillage or no-till. The systems were cultivated with three different nitrogen fertilizer applications. An energy balance was calculated to evaluate the biomass and energy yields of the different cropping systems. Results indicate that perennial lignocellulosic crops combine high biomass and net energy yields with low input and potential ecological impacts. Switchgrass, which produced low yields

  6. Energy Choices. A North European Energy Map; Vaegval Energi. Nordeuropeisk Energikarta

    Energy Technology Data Exchange (ETDEWEB)

    Groenkvist, Stefan; Stenkvist, Maria; Paradis, Hanna

    2008-11-15

    Oil, coal and natural gas dominate the energy consumption in Northern Europe, as well as in the world at large. The energy supply mix varies between the countries of the region. For example, a large proportion of biomass and waste in Finland and Latvia (Norway) and Sweden use a high proportion of hydroelectric power, while Poland has a very high proportion of coal in their energy mix. Energy use per person in Northern Europe is more than twice as high compared with the average global - but lower than the average in the OECD. In Northern Europe, there are three separate networks for energy transfer: natural gas, electricity and heating. The expansion of the natural gas network has been strong since 1970. Gas pipelines today covers large parts of Europe and new pipelines are planned. The electricity grids and their transmission capacity has grown. Electricity began to be transferred between the Nordic countries during the 1960s. Today, the North European countries are linked with a number of high capacity cables. While the networks for district heating has grown, these systems are separate for individual cities. In recent years, the region's net imports of oil rose, as (Norway's oil production has declined since the early 2000s. On the other hand, the North European countries in 2007 became, for the first time, net exporters of natural gas. As the energy systems expand, trade in energy increases - both within the region and with the rest of Europe and the rest of the world. Several new energy projects are planned in Northern Europe for expanded capacity in oil refineries and new pipelines for natural gas and transmission lines for electricity. The energy integration in the region is therefore expected to increase further. In the long term, climate policy will be of greater importance, both for the region's use of primary energy and for the look of the region's future energy map

  7. Energy crops for biofuel production: Analysis of the potential in Tuscany

    Energy Technology Data Exchange (ETDEWEB)

    Marta, A. Dalla; Mancini, M.; Ferrise, R.; Bindi, M.; Orlandini, S. [Department of Plant, Soil and Environmental Science, University of Florence, Piazzale delle Cascine 18 - 50144 Firenze (Italy)

    2010-07-15

    The possibility of using biomass as a source of energy in reducing green-house gas emissions is a matter of great interest. In particular, biomasse from agriculture represent one of the largest and most diversified sources to be exploited and more specifically, ethanol and diesel deriving from biomass have the potential to be a sustainable means of replacing fossil fuels for transportation. Nevertheless, the cultivation of dedicated energy crops does meet with some criticism (competitiveness with food crop cultivation, water requirements, use of fertilizers, etc.) and the economical and environmental advantages of this activity depend on accurate evaluations of the total efficiency of the production system. This paper illustrates the production potential of two energy crops, sunflower (Helianthus annuus) and maize (Zea mais), cultivated with different water and fertilization supplies in the region of Tuscany, in central Italy. A 50-year climatic series of 19 weather stations scattered around Tuscany was used to run the crop model CropSyst for obtaining crop biomass predictions. The effect of climate change and variability was analyzed and the potential production of bioenergy was investigated in terms of pure vegetable oil (sunflower) and bioethanol (maize). The results demonstrated that despite a reduction in crop yields and an increase of their variability due to climate change, the cultivation of maize in the regional set-aside areas would be capable of supplying approximately 50% of the energy requirements in terms of biofuel for transportation obtained, while the cultivation of a sunflower crops would supply less than 10%. (author)

  8. Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields

    Science.gov (United States)

    Zscheischler, Jakob; Orth, Rene; Seneviratne, Sonia I.

    2017-07-01

    Crops are vital for human society. Crop yields vary with climate and it is important to understand how climate and crop yields are linked to ensure future food security. Temperature and precipitation are among the key driving factors of crop yield variability. Previous studies have investigated mostly linear relationships between temperature and precipitation and crop yield variability. Other research has highlighted the adverse impacts of climate extremes, such as drought and heat waves, on crop yields. Impacts are, however, often non-linearly related to multivariate climate conditions. Here we derive bivariate return periods of climate conditions as indicators for climate variability along different temperature-precipitation gradients. We show that in Europe, linear models based on bivariate return periods of specific climate conditions explain on average significantly more crop yield variability (42 %) than models relying directly on temperature and precipitation as predictors (36 %). Our results demonstrate that most often crop yields increase along a gradient from hot and dry to cold and wet conditions, with lower yields associated with hot and dry periods. The majority of crops are most sensitive to climate conditions in summer and to maximum temperatures. The use of bivariate return periods allows the integration of non-linear impacts into climate-crop yield analysis. This offers new avenues to study the link between climate and crop yield variability and suggests that they are possibly more strongly related than what is inferred from conventional linear models.

  9. Roadmap towards a competitive European energy market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    With the financial crisis evolving into a severe, global economic recession, there have been growing doubts over whether energy markets can continue to operate efficiently under present conditions or whether the shift to non-market mechanisms would be a better choice. This question remains an ongoing source of debate in the recently liberalised electricity sector. Textbook wisdom says that the market is the most efficient place to allocate financial means for investments. Therefore, during a period of a crisis, it should follow that we actually need more market mechanisms, not fewer, if we want to stimulate investments in an economically efficient way. Regulated electricity prices and nationalistic thinking will not help to solve Europe's electricity challenges with regards to either the generation or the transportation of electricity.

  10. TOWARDS A COMMON ENERGY POLICY IN THE EUROPEAN UNION?

    Directory of Open Access Journals (Sweden)

    András Inotai

    2008-09-01

    Full Text Available Energy policy issues have got increasing relevance in the strategic orientation of the European Union (EU in general, and in identifying specific economic policy tasks, in particular. Steadily high energy (oil and gas prices in the last years constitute one factor. However, global political and security issues of growing degree of uncertainty, the level of dependence on imported energy and, not less importantly, the forecasts of growing external dependence of the EU in this field have substantially contributed to the upgrading of the energy question. Finally, the liberalization of the single market, not least in the crucial area of energy supply and the enlargement of the EU by 12 new members, with specific composition of production and not less specific pattern of imports of energy, enhanced the importance of energy in the enlarged EU, with a view to shape and implement a common energy policy.

  11. Towards food, feed and energy crops mitigating climate change.

    Science.gov (United States)

    Philippot, Laurent; Hallin, Sara

    2011-09-01

    Agriculture is an important source of anthropogenic emissions of the greenhouse gases (GHG), methane (CH(4)) and nitrous oxide (N(2)O), and crops can affect the microbial processes controlling these emissions in many ways. Here, we summarize the current knowledge of plant-microbe interactions in relation to the CH(4) and N(2)O budgets and show how this is promoting new generations of crop cultivars that have the potential to mitigate GHG emissions for future agricultural use. The possibility of breeding low GHG-emitting cultivars is a paradigm shift towards sustainable agriculture that balances climate change and food and bioenergy security. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. A Web-Based Tool for Energy Balance Estimation in Multiple-Crops Production Systems

    National Research Council Canada - National Science Library

    Patrizia Busato; Alessandro Sopegno; Remigio Berruto; Dionysis Bochtis; Angela Calvo

    2017-01-01

    ...., for a whole farm in terms of energy and cost requirements. This paper is the continuation of previous work, which presents a web-based tool for cost estimation of biomass production and transportation of multiple-crop production...

  13. Comparing biobased products from oil crops versus sugar crops with regard to non-renewable energy use, GHG emissions and land use

    NARCIS (Netherlands)

    Bos, Harriëtte L.; Meesters, Koen P.H.; Conijn, Sjaak G.; Corré, Wim J.; Patel, Martin K.

    2016-01-01

    Non-renewable energy use, greenhouse gas emissions and land use of two biobased products and biofuel from oil crops is investigated and compared with products from sugar crops. In a bio-based economy chemicals, materials and energy carriers will be produced from biomass. Next to side streams,

  14. Computing energy budget within a crop canopy from Penmann's ...

    Indian Academy of Sciences (India)

    layer model, is rede-fined as a function of micrometeorological and physiological profiles of crop canopy. The sources and sinks of sensible and latent heat uxes are assumed to lie on a fictitious plane called zero-displacement plane. Algorithms ...

  15. Developing Sugar Cane as a Dedicated Energy Crop

    Science.gov (United States)

    High yield with low inputs, resistance to diseases, insects, and drought, adaptation to a wide range of soils and climates, and biomass composition that is optimized for end use are identified as important traits for cellulosic biomass crops. Sugarcane is one of the most efficient grass species in c...

  16. Climate protection and energy crops. Potential for greenhouse gas emission reduction through crop rotation and crop planning; Klimaschutz und Energiepflanzenanbau. Potenziale zur Treibhausgasemissionsminderung durch Fruchtfolge- und Anbauplanung

    Energy Technology Data Exchange (ETDEWEB)

    Eckner, Jens [Thueringer Landesanstalt fuer Landwirtschaft (Germany); Peter, Christiane; Vetter, Armin

    2015-07-01

    The EVA project compares nationwide energy crops and crop rotations on site-specific productivity. In addition to agronomic suitability for cultivation economic and environmental benefits and consequences are analyzed and evaluated. As part of sustainability assessment of the tested cultivation options LCAs are established. The model MiLA developed in the project uses empirical test data and site parameters to prepare the inventory balances. At selected locations different cultivation and fertilization regimes are examined comparatively. In the comparison of individual crops and crop rotation combinations cultivation of W.Triticale-GPS at the cereals favor location Dornburg causes the lowest productrelated GHG-emissions. Due to the efficient implementation of nitrogen and the substrate properties of maize is the cultivation despite high area-related emissions and N-expenses at a low level of emissions. Because of the intensity the two culture systems offer lower emissions savings potentials with high area efficiency. Extensification with perennial alfalfagrass at low nitrogen effort and adequate yield performance show low product-related emissions. Closing the nutrient cycles through a recirculation of digestates instead of using mineral fertilization has a climate-friendly effect. Adapted intensifies of processing or reduced tillage decrease diesel consumption and their related emissions.

  17. European Physical Society Conference on High Energy Physics 2015

    CERN Document Server

    2015-01-01

    The European Physical Society Conference on High Energy Physics, organized by the High Energy and Particle Physics Division of the European Physical Society, is a major international conference that reviews biennially since 1971 the state of our knowledge of the fundamental constituents of matter and their interactions. The latest conferences in this series were held in Stockholm, Grenoble, Krakow, Manchester, Lisbon, and Aachen. Jointly organized by the Institute of High Energy Physics of the Austrian Academy of Sciences, the University of Vienna, the Vienna University of Technology, and the Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, the 23rd edition of this conference took place in Vienna, Austria. Among the topics covered were Accelerators, Astroparticle Physics, Cosmology and Gravitation, Detector R&D; and Data Handling, Education and Outreach, Flavour Physics and Fundamental Symmetries, Heavy Ion Physics, Higgs and New Physics, Neutrino Physics, Non-Perturbative...

  18. Traits to ecosystems: The ecological sustainability challenge when developing future energy crops

    Directory of Open Access Journals (Sweden)

    Martin eWeih

    2014-05-01

    Full Text Available Today we are undertaking great efforts to improve biomass production and quality traits of energy crops. Major motivation for developing those crops is based on environmental and ecological sustainability considerations, which however often are de-coupled from the trait-based crop improvement programs. It is now time to develop appropriate methods to link crop traits to production system characteristics set by the plant and the biotic communities influencing it; and to the ecosystem processes affecting ecological sustainability. The relevant ecosystem processes involve the net productivity in terms of biomass and energy yields, the depletion of energy-demanding resources (e.g. nitrogen, N, the carbon dynamics in soil and atmosphere, and the resilience and temporal stability of the production system. In a case study, we compared aspects of N use efficiency in various varieties of an annual (spring wheat and perennial (Salix energy crop grown under two nutrient regimes in Sweden. For example, we found considerable variation among crops, varieties and nutrient regimes in the energy yield per plant-internal N (MJ g-1 yr-1, which would result in different N resource depletion per unit energy produced.

  19. Energy Relations between the European Union and North Africa

    Directory of Open Access Journals (Sweden)

    Sarah Kilpeläinen

    2013-06-01

    Full Text Available This article discusses European Union (EU-North Africa energy relations with a special focus on renewables in North Africa, arguing that the research so far has not taken due account of North African perceptions of EU external energy policy. It is argued that current research on EU-North African relations has not taken sufficient note of the multidimensionality of energy or addressed the inconsistent nature of EU policy making. However, addressing these issues is vital in approaching EU-North Africa energy relations and EU policy towards North Africa in general. The study of perceptions is introduced as one way to develop research further, to give further impetus on understanding how EU-North African energy relations develop and to understand energy relations in their complexity.

  20. Fertilizer consumption and energy input for 16 crops in the United States

    Science.gov (United States)

    Amenumey, Sheila E.; Capel, Paul D.

    2014-01-01

    Fertilizer use by U.S. agriculture has increased over the past few decades. The production and transportation of fertilizers (nitrogen, N; phosphorus, P; potassium, K) are energy intensive. In general, about a third of the total energy input to crop production goes to the production of fertilizers, one-third to mechanization, and one-third to other inputs including labor, transportation, pesticides, and electricity. For some crops, fertilizer is the largest proportion of total energy inputs. Energy required for the production and transportation of fertilizers, as a percentage of total energy input, was determined for 16 crops in the U.S. to be: 19–60% for seven grains, 10–41% for two oilseeds, 25% for potatoes, 12–30% for three vegetables, 2–23% for two fruits, and 3% for dry beans. The harvested-area weighted-average of the fraction of crop fertilizer energy to the total input energy was 28%. The current sources of fertilizers for U.S. agriculture are dependent on imports, availability of natural gas, or limited mineral resources. Given these dependencies plus the high energy costs for fertilizers, an integrated approach for their efficient and sustainable use is needed that will simultaneously maintain or increase crop yields and food quality while decreasing adverse impacts on the environment.

  1. Biological control of weeds in European crops: recent achievements and future work

    NARCIS (Netherlands)

    Müllerer-Schärer, H.; Greaves, M.P.

    2000-01-01

    Approaches to the biological control of weeds in arable crops and integration of biological weed control with other methods of weed management are broadly discussed. Various types of integrative approaches to biological control of weeds in crops have been studied within the framework of a concerted

  2. Variability in the water footprint of arable crop production across European regions

    NARCIS (Netherlands)

    Gobin, Anne; Kersebaum, Kurt Christian; Eitzinger, Josef; Trnka, Miroslav; Hlavinka, Petr; Takáč, Jozef; Kroes, Joop; Ventrella, Domenico; Marta, Dalla Anna; Deelstra, Johannes

    2017-01-01

    Crop growth and yield are affected by water use during the season: the green water footprint (WF) accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO's water balance model "Aquacrop" at field level. We collected

  3. Energy self-reliance, net-energy production and GHG emissions in Danish organic cash crop farms

    DEFF Research Database (Denmark)

    Halberg, Niels; Dalgaard, Randi; Olesen, Jørgen E

    2008-01-01

    -energy production were modeled. Growing rapeseed on 10% of the land could produce bio-diesel to replace 50-60% of the tractor diesel used on the farm. Increasing grass-clover area to 20% of the land and using half of this yield for biogas production could change the cash crop farm to a net energy producer......Organic farming (OF) principles include the idea of reducing dependence of fossil fuels, but little has been achieved on this objective so far in Danish OF. Energy use and greenhouse gas (GHG) emissions from an average 39 ha cash crop farm were calculated and alternative crop rotations for bio......, and reduce GHG emissions while reducing the overall output of products only marginally. Increasing grass-clover area would improve the nutrient management on the farm and eliminate dependence on conventional pig slurry if the biogas residues were returned to cash crop fields...

  4. Sustainable introduction of GM crops into european agriculture: a summary report of the FP6 SIGMEA research project*

    Directory of Open Access Journals (Sweden)

    Messéan Antoine

    2009-01-01

    Full Text Available In 2003, the European Commission established the principle of coexistence which refers to “the ability of farmers to make a practical choice between conventional, organic and GM-crop production, in compliance with the legal obligations for labelling and/or purity standards” and laid down guidelines defining the context of this coexistence1. In order to determine what is needed for the sustainable introduction of GM crops in Europe, the cross-disciplinary SIGMEA Research Project was set up to create a science-based framework to inform decision-makers. SIGMEA has (i collated and analysed European data on gene flow and the environmental impacts of the major crop species which are likely to be transgenic in the future (maize, rapeseed, sugar beet, rice, and wheat, (ii designed predictive models of gene flow at the landscape level, (iii analysed the technical feasibility and economic impacts of coexistence in the principal farming regions of Europe, (iv developed novel GMO detection methods, (v addressed legal issues related to coexistence, and (vi proposed public and farm scale decisionmaking tools, as well as guidelines regarding management and governance. This publishable version of the final activity report of the FP6 SIGMEA research project, covers the fourteen major issues under investigation.

  5. Energy, Nutrient and Economic Cross Indicators of Cropping Systems in Northern Italy

    Directory of Open Access Journals (Sweden)

    Nicola Castoldi

    2010-03-01

    Full Text Available Agro-ecological indicators are useful tools to provide synthetic representations of agricultural systems. Simple indicators can be combined to calculate cross indicators, for example efficiencies, calculated as a ratio between two simple indicators. In sustainability studies, efficiency is frequently calculated in energy terms (energy output / energy input; however, other “output” and “input” terms can be used. In this study, we evaluated how the ranking of systems changes when different metrics of agricultural production (economic gross margin vs. energy output and resource use (nutrients inputs and surpluses, fossil energy inputs, economic costs are used. The calculations were carried out for a study area in northern Italy (Sud Milano Agricultural Park, characterised by intensively cultivated arable cropping systems (cereals and forage crops. Crop types were ranked differently when metrics changed. In general, maize (a highly productive crop had good performances when evaluated using the output / input energy ratio, while rice was good when we used the ratios based on gross margin. When energy or monetary outputs were divided by N surplus, all crop types had very similar median values, suggesting a common energetic and economic efficiency of N use. Overall, different cross indicators may provide a different representation of the system studied. This means that it is not possible to provide a unique synthetic evaluation of sustainability, which instead depends on the indicator(s chosen.We conclude that it is very important to clarify the objective of sustainability studies and to select accordingly the most adequate indicators.

  6. HiPER: The European path to laser energy

    Directory of Open Access Journals (Sweden)

    Edwards Chris

    2013-11-01

    Full Text Available While for decades, energy production relying on laser inertial fusion has been a strong motivation for the development in Europe of a few high-energy laser facilities and dedicated scientific programs, the HiPER initiative launched in 2004 fostered an ambitious large-scale coordinated European program toward inertial fusion energy. Anticipating the successful demonstration of fusion ignition and gain at the National Ignition Facility (NIF in the USA, scientists and engineers from across Europe are developing the case for a next generation laser fusion facility, HiPER, to be constructed in Europe. The single-facility build strategy of HiPER (High Power Laser Energy Research Facility aims at first demonstrating some key elements of a fusion reactor in a high rep-rate few-second cycle mode, before addressing energy production on a high rep-rate continuous mode in a second area.

  7. North European Understanding of Zero Energy/Emission Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Nieminen, Jyri

    2010-01-01

    countries are still to adopt a national definition for these types of buildings. This results often in more than one understanding of ZEBs in each country. This study provides a concise source of information on the north European understanding of zero energy/emission buildings. It puts forward a number......The worldwide CO2 emission mitigation efforts, the growing energy resource shortage and the fact that buildings are responsible for a large share of the world’s primary energy use drives research towards new building concepts, in particular Zero Energy/Emission Buildings (ZEBs). Unfortunately...... may observe a correlation between the zero energy/emission building approach adopted by a country and this particular country’s utility grid characteristics. Moreover, it is to be noted that the ZEB concept is not well defined at the national level in northern Europe and that all of the participating...

  8. Management effects on net ecosystem carbon and GHG budgets at European crop sites

    DEFF Research Database (Denmark)

    Ceschia, Eric; Bêziat, P; Dejoux, J.F.

    2010-01-01

    , with or without irrigation, etc.) and were cultivated with 15 representative crop species common to Europe. At all sites, carbon inputs (organic fertilisation and seeds), carbon exports (harvest or fire) and net ecosystem production (NEP), measured with the eddy covariance technique, were calculated...... were estimated from the literature for the rice crop site only. At the other sites, CH4 emissions/oxidation were assumed to be negligible compared to other contributions to the net GHGB. Finally, we evaluated crop efficiencies (CE) in relation to global warming potential as the ratio of C exported from...

  9. ENERGY ECONOMICS AND POLICY OF RENEWABLE ENERGY SOURCES IN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Wadim Strielkowski

    2013-10-01

    Full Text Available European Union adapted the policy of reducing its carbon footprint and embarked on the journey to shift to renewable energy sources in the early 1990s. The whole process started with implementations of binding rules that set up indicative targets for the EU Member States. However, this process had to go hand in hand with high energy costs charged to the consumers. This paper defines various types of renewable sources in the EU and analyses European legislation on renewable energy sources. In addition, it deals with the current situation regarding the energy policies in the European Union and outlines its main criticisms and prospects. The results and conclusions might be of some value for EU main energy providers as well as for the EU partners in the world.

  10. Feasibility of Energy Crops Grown on Army Lands

    Science.gov (United States)

    2012-03-01

    1,500–2,000 ≈ 30–35% Sunflower Spring 95–110 50 pounds of nitrogen /acre (150 units max.) 1,500–4,000 ≈ 35–45% Oilseed crops can be farmed using...camelina (Camelina sativa), and dwarf sunflower (Helianthus annus). Oil can be extracted from the harvested seeds of these plants and refined to yield a...Yield (pounds/acre) Oil Content Canola (rapeseed) Spring and fall 110–140 50 pounds of nitrogen /acre (150 units max.) 1,500–4,000 ≈ 38–45

  11. estec2007 - 3rd European solar thermal energy conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-12-14

    The sessions of the 'estec2007 - 3{sup rd} European Solar Thermal Energy Conference held in Freiburg, Germany have the following titles: The solar thermal sector at a turning point; Cooling and Process Heat, Country reports Europe; Standards and Certification; Country reports outside Europe; Awareness raising and marketing; Domestic hot water and space heating; Domestic hot water and space heating; Quality Assurance and Solar Thermal Energy Service Companies; Collectors and other key technical issues; Policy - Financial incentives; Country Reports; Marketing and Awareness Raising; Quality Assurance Measures/Monistoring; Standards and Certification; Collectors; Domestic Hot Water and Space Heating; Industrial Process Heat; Storage; Solar Cooling. (AKF)

  12. Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India.

    Science.gov (United States)

    Singh, Raman Jeet; Meena, Roshan Lal; Sharma, N K; Kumar, Suresh; Kumar, Kuldeep; Kumar, Dileep

    2016-02-01

    Reducing the carbon footprint and increasing energy use efficiency of crop rotations are the two most important sustainability issues of the modern agriculture. Present study was undertaken to assess economics, energy, and environmental parameters of common diversified crop rotations (maize-tomato, and maize-toria-wheat) vis-a-vis traditional crop rotations like maize-wheat, maize + ginger and rice-wheat of the north-western Himalayan region of India. Results revealed that maize-tomato and maize + ginger crop rotations being on par with each other produced significantly higher system productivity in terms of maize equivalent yield (30.2-36.2 t/ha) than other crop rotations (5.04-7.68 t/ha). But interestingly in terms of energy efficiencies, traditional maize-wheat system (energy efficiency 7.9, human energy profitability of 177.8 and energy profitability of 6.9 MJ/ha) was significantly superior over other systems. Maize + ginger rotation showed greater competitive advantage over other rotations because of less consumption of non-renewable energy resources. Similarly, maize-tomato rotation had ability of the production process to exploit natural resources due to 14-38% less use of commercial or purchased energy sources over other crop rotations. Vegetable-based crop rotations (maize + ginger and maize-tomato) maintained significantly the least carbon footprint (0.008 and 0.019 kg CO2 eq./kg grain, respectively) and the highest profitability (154,322 and 274,161 Rs./ha net return, respectively) over other crop rotations. As the greatest inputs of energy and carbon across the five crop rotations were nitrogen fertilizer (15-29% and 17-28%, respectively), diesel (14-24% and 8-19%, respectively) and irrigation (10-27% and 11-44%, respectively), therefore, alternative sources like organic farming, conservation agriculture practices, soil and water conservation measures, rain water harvesting etc. should be encouraged to reduce dependency of direct energy and external

  13. Variability in the Water Footprint of Arable Crop Production across European Regions

    Czech Academy of Sciences Publication Activity Database

    Gobin, A.; Kersebaum, K. C.; Eitzinger, Josef; Trnka, Miroslav; Hlavinka, Petr; Takáč, J.; Kroes, J.; Ventrella, D.; Dalla Marta, A.; Deelstra, J.; Lalic, B.; Nejedlík, P.; Orlandini, S.; Peltonen-Sainio, P.; Rajala, A.; Saue, T.; Saylan, L.; Stricevic, R.; Vucetic, V.; Zoumides, C.

    2017-01-01

    Roč. 9, č. 2 (2017), č. článku 93. ISSN 2073-4441 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD13030 Institutional support: RVO:86652079 Keywords : simulate yield response * climate-change * virtual water * impact * green * model * blue * agriculture * irrigation * reduction * water footprint * arable crops * cereals * Europe * crop water use * yield Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Water resources Impact factor: 1.832, year: 2016

  14. European Union's renewable energy sources and energy efficiency policy review. The Spanish perspective

    Energy Technology Data Exchange (ETDEWEB)

    De Alegria Mancisidor, Itziar Martinez; Diaz de Basurto Uraga, Pablo; Ruiz de Arbulo Lopez, Patxi [Departamento de Organizacion de Empresas, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (Spain); Martinez de Alegria Mancisidor, Inigo [Departamento de Electronica y Telecomunicaciones, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (Spain)

    2009-01-15

    The European Union's (EU) energy objectives, legislation and programmes are determinant for the current strategy for the promotion of renewable energy sources (RES) and energy efficiency (EE) in Spain, which is becoming a key element for its international competitiveness. Firstly, this article explores the evolution of the EU's energy strategy, focusing on the adopted legislations and programmes to promote RES and EE. It concludes with an analysis of the impact of those measures in Spain. (author)

  15. University courses and opportunity for a European Master Program in Marine Renewable Energy

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Tetu, Amélie; Frigaard, Peter Bak

    This document presents an overview of the existing European educational programmes in the field of marine renewable energy. It also includes suggestion for a transnational European master program in marine renewable energy.......This document presents an overview of the existing European educational programmes in the field of marine renewable energy. It also includes suggestion for a transnational European master program in marine renewable energy....

  16. Energy crops for biogas plants. Lower Saxony; Energiepflanzen fuer Biogasanlagen. Niedersachsen

    Energy Technology Data Exchange (ETDEWEB)

    Aurbacher, J.; Benke, M.; Formowitz, B. (and others)

    2012-06-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Lower Saxony. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  17. Medium-term effect of perennial energy crops on soil organic carbon storage

    Directory of Open Access Journals (Sweden)

    Enrico Ceotto

    2011-11-01

    Full Text Available The scope of this study was to evaluate the effect of perennial energy crops on soil organic carbon (SOC storage. A field experiment was undertaken in 2002 at Anzola dell’Emilia in the lower Po Valley, Northern Italy. Five perennial energy crops were established on a land area which had been previously cultivated with arable crops for at least 20 years. The compared crops are: the herbaceous perennials giant reed and miscanthus, and the woody species poplar, willow and black locust, managed as short rotation coppice (SRC. SOC was measured in 2009, seven years after the start of the experiment, on an upper soil layer of 0.0-0.2 m and a lower soil layer of 0.2-0.4 m. The study aimed to compare the SOC storage of energy crops with alternative land use. Therefore, two adjacent areas were sampled in the same soil layers: i arable land in steady state, cultivated with rainfed annual crops; ii natural meadow established at the start of the experiment. The conversion of arable land into perennial energy crops resulted in SOC storage, in the upper soil layer (0.0-0.2 m ranging from 1150 to 1950 kg C ha-1 year-1 during the 7-year period. No significant differences were detected in SOC among crop species. We found no relationship between the harvested dry matter and the SOC storage. The conversion of arable land into perennial energy crops provides a substantial SOC sequestration benefit even when the hidden C cost of N industrial fertilizers is taken into account. While the SOC increased, the total N content in the soil remained fairly constant. This is probably due to the low rate of nitrogen applied to the perennial crops. However, our data are preliminary and the number of years in which the SOC continues to increase needs to be quantified, especially for the herbaceous species giant reed and miscanthus, with a supposedly long duration of the useful cropping cycle of 20 years or longer.

  18. Rapeseed is an efficient energy crop which can still improve

    Directory of Open Access Journals (Sweden)

    Flenet Francis

    2007-11-01

    Full Text Available The ability of biofuels to contribute efficiently to the replacement of fossil energy and to the reduction of greenhouse gas emissions has been a matter of debate. Hence, there is a need to assess accurately the energy balance of biofuels and their ability to reduce greenhouse gas emissions, in order to evaluate and to improve the benefit for society. In rapeseed, the energy ratio (energy produced per unit of non-renewable energy input is well above 2 whatever the method of calculation. In order to investigate the variability of energy ratios and to identify ways of improvement, a study was conducted in France in 2005 and 2006. The method of mass allocation of input energy was used for calculations, instead of the substitution method, because with this method the results do not depend on the utilization of co-products. Hence, this method is better adapted to follow improvements. A great variability in the energy ratio was observed in 2005 and 2006. Seed yields and energy cost of fertilizer N explained most of this variability. Hence, improvements should focus on increasing yield with little increase in energy cost, and on decreasing wasting of N fertilizer. However the farmer incomes, and the net production of energy per hectare, must also be a matter of concern. The inventories of greenhouse gas emissions of biofuels are still uncertain because of the great variability of soil emissions, due to environmental and management factors. Hence, in order to assess the effect of rapeseed on greenhouse gas emissions, methods based on process-oriented models accounting for these factors must be used. Such models give promising results, but further testing is still needed.

  19. Balancing Bio-energy Cropping Benefits and Water Quality Impacts

    NARCIS (Netherlands)

    Eiswerth, M.E.; Kooten, van G.C.

    2010-01-01

    The relationship between bio-energy feedstock production and water quality has received little attention from economists. Here, an optimal control model is used to determine the optimal amount of land to convert to the production of energy feedstocks, specifically ethanol corn, taking into account

  20. Shale gas. Opportunities and challenges for European energy markets

    Energy Technology Data Exchange (ETDEWEB)

    De Joode, J.; Plomp, A.J.; Ozdemir, O. [ECN Policy Studies, Petten (Netherlands)

    2013-02-15

    The outline of the presentation shows the following elements: Introduction (Shale gas revolution in US and the situation in the EU); What could be the impact of potential shale gas developments on the European gas market?; How may shale gas developments affect the role of gas in the transition of the power sector?; and Key messages. The key messages are (1) Prospects for European shale gas widely differ from US case (different reserve potential, different competition, different market dynamics); (2) Shale gas is unlikely to be a game changer in Europe; and (3) Impact of shale gas on energy transition in the medium and long term crucially depends on gas vs. coal prices and the 'penalty' on CO2 emissions.

  1. An european policy of the energy; Une politique europeenne de l'energie?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-15

    This report aims to precise the main dynamics which give structure to the public action in the domain of the energy in Europe. It shows: how the european initiatives which tend to integrate the different national policies, are poorly developed; a new european model of regulation to articulate the liberalization dynamic with the other objectives of national interest; scenari of global integration. (A.L.B.)

  2. Strengthening the European Union Climate and Energy Package to build a low carbon, competitive and energy secure european union

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, Emmanuel; Spencer, Thomas

    2011-10-11

    Immediate action to strengthen the European Union Climate and Energy Package (EU CEP) is needed to ensure Europe's sustained growth, competitiveness and energy security. Indeed, the current 20% emissions reduction target is too low to reach the European long-term goal of reducing emissions by at least 80% by 2050 at acceptable costs. But the EU CEP is also inefficient to address sustainable potential competitiveness losses and carbon leakages in some carbon intensive industries, and most importantly to boost fully the competitiveness of firms producing low-carbon products and services. Moving to 30% by 2020 could induce significant long-term GDP gains and only marginal GDP short-term costs, increase the competitiveness of European firms producing innovative low-carbon technologies, and reduce both final energy consumption and EU energy dependency. But for these objectives to be met, the contents of policies to reach this 30% target is as important as the target itself. There are three main areas in which the EU CEP needs strengthening: (1) Improvement of the energy efficiency of the existing building stocks, and limitation of the absolute level of energy consumption in the transport sector are needed to reach the 20% energy efficiency target. Binding targets should only be used when absolutely necessary and when helpful. (2) From an economic, environmental and political perspective, setting a stringent European Union Emission Trading System (EU ETS) 2030 cap between -45 and -50% from 2005 levels is probably the most relevant, efficient, and realistic option in the short term. It would increase the predictability of the carbon price signal, and therefore the credibility of the regulator. Banking would ensure that this stringent mid-term target translates into a short-term increase of the carbon price. (3) In some cases, direct public financial support is justified and efficient: to overcome market failures and non-market barriers; to support innovation in low

  3. Energy production study of crops with biofuel potential in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Donato, Lidia; Huerga, Ignacio; Hilbert, Jorge [Instituto Nacional de Tecnologia Agropecuaria (CIA/INTA), Buenos Aires (Argentina). Centro de Investigacion de Agroindustria. Inst. de Ingenieria Rural], Emails: ingdonato@cnia.inta.gov.ar, ihuerga@cnia.inta.gov.ar, hilbert@cnia.inta.gov.ar

    2008-07-01

    The present study is focus on the final energy balance of bioenergy production in Argentina using soybean, sunflower, rapeseed, corn and sorghum as feedstocks. The balance considers the difference between the energy contained per unit and the amount used for its generation in all the different steps from sowing to final destination. For direct energy consumption Costo Maq software was employed using local fuel consumption forecast for each field labor. Particular attention is paid to the energy consumption in the agricultural steps considering the distinctive no till system spread out in Argentina that has a very low energy input. Direct and indirect energy were considered in the different steps of bioethanol and biodiesel generation. Industrial conversion consumption was based on international literature data. Comparisons were made between tilled and no till practices and considering or not the energy contained in co products. Results indicate a balance ranging from 0.96 to 1.54 not considering the co products. If co products were introduced the balances ranged between 1.09 and 4.67. (author)

  4. Tradable CO2 permits in Danish and European energy policy

    DEFF Research Database (Denmark)

    Varming, S.; Eriksen, P.B.; Grohnheit, Poul Erik

    2000-01-01

    This report presents the results of the project "Tradable CO2 permits in Danish and European energy policy". The project was financed by a grant from the Danish Energy Research Programme 1998 (Grant 1753/98-0002). The project was conducted in co-operationbetween Elsamprojekt A/S (project manager......), Risø National Laboratory, Aarhus School of Business and I/S Eltra. The three major objectives of the project were: To identify and analyse the economical and political issues that are relevant with regard tothe construction of a tradable CO_2 permit market as well as proposing a suitable design...... for a tradable CO_2 permit market for the energy sector in the EU. Experience from the tradable SO_2 permit market in the US is taken into consideration as well. Topresent an overview of price estimates of CO_2 and greenhouse gas permits in different models as well as discussing the assumptions leading...

  5. SUSTAINABLE DEVELOPMENT, ENERGY AND CLIMATE CHANGE IN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Andrei ROTH

    2015-04-01

    Full Text Available Through sustainable development the needs of the current generation are fulfilled without jeopardizing the opportunities of future generations. The concept takes into account economic, social and environmental considerations. It has a wide range of applications from natural resources to population growth and biodiversity. One of its most important themes is energy. In this area, sustainable development relates with resource availability and green house gases emissions. Also it takes into account the needs of people without access to energy, and their legitimate quest for development. For the European Union, sustainable development represents an overarching objective. The present article analyzes the concept from a theoretical perspective, contrasting its strong points and weaknesses. It highlights the relation between sustainable development, energetic resources and climate change. The EU policies results in the field of energy are analyzed from the perspective of resources, energetic dependency and climate change efforts.

  6. Skilful seasonal predictions for the European energy industry

    Science.gov (United States)

    Clark, Robin T.; Bett, Philip E.; Thornton, Hazel E.; Scaife, Adam A.

    2017-02-01

    We assess the utility of seasonal forecasts for the energy industry by showing how recently-established predictability of the North Atlantic Oscillation (NAO) in winter allows predictability of near-surface wind speed and air temperature and therefore energy supply and demand respectively. Our seasonal prediction system (GloSea5) successfully reproduces the influence of the NAO on European climate, leading to skilful forecasts of wind speed and wind power and hence wind driven energy supply. Temperature is skilfully forecast using the observed temperature-NAO relationship and the NAO forecast. Using the correlation between forecast NAO and observed GB electricity demand, we demonstrate that skilful predictions of winter demand are also achievable on seasonal timescales well in advance of the season. Finally, good reliability of probabilistic forecasts of above/below-average wind speed and temperature is also demonstrated.

  7. Implications and Measurement of Energy Poverty across the European Union

    Directory of Open Access Journals (Sweden)

    Alexandru Maxim

    2016-05-01

    Full Text Available Energy poverty, or the inability of households to afford adequate access to energy services, is an issue that can have a significant effect on the quality of life and even the state of health of individuals and even the overall development of a nation. Since it was first brought into focus more than two decades ago in the UK, this topic has gradually gained the attention of academics and policy makers all across the EU and beyond. The current paper addresses the topic by providing not only a renewed discussion, but also an improved energy poverty indicator (with clear and relevant results at the EU level: the Compound Energy Poverty Indicator (CEPI. Moreover, knowing that the risk of poverty and social exclusion, efficiency of heating systems, total consumption of energy per household and rising energy prices tend to increase the severity of this problem in some countries, CEPI is then included into an econometric model so as to determine some possible factors that tend to put pressure on an already existing issue of energy poverty. The results of this research are expected to be relevant not only for academics (as it offers insights into the structure and severity of this topic within the European Union, but also for national and EU policymakers who are confronted in the field with the problem of sustainable development.

  8. Energy Planning in Selected European Regions - Methods for Evaluating the Potential of Renewable Energy Sources

    OpenAIRE

    Sliz-Szkliniarz, Beata

    2013-01-01

    Given their potentially positive impact on climate protection and the preservation of fossil resources, alternative energy sources have become increasingly important for the energy supply over the past years. However, the questions arises what economic and ecological impacts and potential conflicts over land use resources are associated with the promotion of renewable energy production. Using the examples of three selected European Regions in Poland, France and German, the dissertation discus...

  9. An alternative energy scenario for the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M. [Sustainable Environment Consultants Ltd. (SENCO), Colchester (United Kingdom)

    2000-07-01

    The proposed National Emissions Ceiling directive to control acidification and ozone will mean EU emissions of carbon dioxide will rise by 9%, contradictory to Kyoto commitments. Alternative energy strategies including demand management, energy efficiency and low carbon fuels are explored in this report. In addition to abating greenhouse gas emissions, these strategies can facilitate cheaper and greater abatement of other atmospheric pollutants as compared to 'official' scenarios. The given objective was to produce scenarios in which the total emission of carbon dioxide from the fifteen countries of the European Union is reduced by 15% over the period 1990 to 2010. To this end scenarios, called Carbon 15, have been produced for each of the fifteen EU countries taking into account recent historical data and assumed economic and population growth. It is concluded that the Carbon 15 scenarios are technically feasible. The level of demand management is such that, even though natural gas increases its market share, the total European Union consumption of natural gas does not increase very much. It is argued that the Carbon 15 scenarios are economically feasible in that the end use measures are cost effective as against conventional energy supply, and there is no requirement for a large expansion of the supply of any conventional primary fuel. 20 refs., 22 figs., 7 tabs.

  10. Climate change impacts on European crop yields: Do we need to consider nitrogen limitation?

    NARCIS (Netherlands)

    Webber, Heidi; Zhao, G.; Wolf, J.; Britz, W.; Vries, W.D.; Gaiser, T.; Hoffmann, H.; Ewert, F.

    2015-01-01

    Global climate impact studies with crop models suggest that including nitrogen and water limitation causes greater negative climate change impacts on actual yields compared to water-limitation only. We simulated water limited and nitrogen-water limited yields across the EU-27 to 2050 for six key

  11. On the role of soil organic matter for crop production in European arable farming

    NARCIS (Netherlands)

    Hijbeek, Renske

    2017-01-01

    The aim of this thesis was to improve understanding of the role of organic inputs and soil organic matter (SOM) for crop production in contemporary arable farming in Europe. For this purpose, long-term experiments were analysed on the additional yield effect of organic inputs and savings in mineral

  12. 2014 European School of High-Energy Physics

    CERN Multimedia

    Nick Ellis, on behalf of the Organising Committee

    2014-01-01

    Dear Colleagues, I would like to draw your attention to the 2014 European School of High-Energy Physics. Details can be found here. The School will be held in the Netherlands from 18 June to 1 July 2014. PLEASE NOTE THAT THE DEADLINE FOR APPLICATIONS IS 14 FEBRUARY 2014. The lectures will cover a broad range of HEP topics at a level suitable for students working towards a PhD in experimental particle physics. Note that, as indicated on the website, one or two students from developing countries could be considered for financial support.

  13. 2014 European School of High-Energy Physics

    CERN Multimedia

    Nick Ellis, on behalf of the Organising Committee

    2014-01-01

    Dear Colleagues, I would like to draw your attention to the 2014 European School of High-Energy Physics. Details can be found here. The School will be held in the Netherlands from 18 June to 1 July 2014. PLEASE NOTE THAT THE DEADLINE FOR APPLICATIONS HAS BEEN EXTENDED TO 21 FEBRUARY 2014. The lectures will cover a broad range of HEP topics at a level suitable for students working towards a PhD in experimental particle physics. Note that, as indicated on the website, one or two students from developing countries could be considered for financial support.

  14. IS A NEW EUROPEAN UNION ENERGY POLICY NEEDED?

    Directory of Open Access Journals (Sweden)

    Irina, PETRUCA

    2013-12-01

    Full Text Available In January 2009, because of a different between Russia and Ukraine, a major natural gas pipeline was closed, this being the worst gas cut-off of the decade. Eighteen countries have been interrupted from gas supplies and countries which had limited reserves and a shortage of alternative supply met a serious energy deficit, in the middle of an especially cold winter. After 22 days, the gas flows to all European countries were back to the normal level. A result of this, and of another similar dispute from 2006, was that the EU has put into question the confidence on the Russian gas supplies. The insecurity has led to a renewal of the political interest in energy security on EU level. The Russian cut-offs have been like a wake-up call to policy makers at a time when the EU faces significant energy security challenges as a result of the emerging world order. More than half of its energy, the EU buys from non-EU sources, while the demand for energy is always higher. In the meantime, the EU production levels of hydrocarbons are decreasing, leading to higher dependency on non-EU sources. Thereby, the energy security became a globally important topic and will raise important challenges for the EU in the future.

  15. The Relationship Between Renewable Energy Production and Energy Imports Among Countries in the European Economic Area

    Science.gov (United States)

    Unbehaun, Sarah J.

    Most European countries must import fossil fuels due to a lack of domestic supplies but, in the interest of having a secure energy supply that is not susceptible to disruptions, would like to decrease their dependence on imports. It is possible that increasing renewable energy production could achieve this objective, in addition to providing environmental benefits. This analysis examines whether there is a relationship between renewable energy production and non-renewable energy imports, using data on European Union member countries and Norway from 1990-2014. Previous literature on the relationship between renewables and imports is scarce but provides suggestive evidence that production of renewables could lower import dependence, even if it cannot fully substitute for fossil fuels. However, the results of this analysis provide no evidence to support this position. Instead, I find that as renewable energy production increases, fossil fuel imports also increase.

  16. Long-term perspectives of European energy policy - the Energy Roadmap 2050 of the European Union; Langfristperspektiven der europaeischen Energiepolitik. Die Energy Roadmap 2050 der Europaeischen Union

    Energy Technology Data Exchange (ETDEWEB)

    Matthes, Felix C. [Oeko Institut e.V., Berlin (Germany)

    2012-01-15

    Aside from diverse event-related or short or medium-term oriented activities, for the European Union the year 2011 was marked by fundamental work on the long-term perspectives of European energy and climate policy. In the course of the year the European Commission published three so-called roadmaps, all oriented to the time horizon of 2050 and dedicated, amongst other goals, to identifying possible paths of development for the energy markets. This is the first time that a consistent, even if in some points debatable, analysis framework for long-term energy and climate policy in the context of the EU has been presented, and it certainly creates a new basis in qualitative terms.

  17. Modelling the perennial energy crop market: the role of spatial diffusion.

    Science.gov (United States)

    Alexander, Peter; Moran, Dominic; Rounsevell, Mark D A; Smith, Pete

    2013-11-06

    Biomass produced from energy crops, such as Miscanthus and short rotation coppice is expected to contribute to renewable energy targets, but the slower than anticipated development of the UK market implies the need for greater understanding of the factors that govern adoption. Here, we apply an agent-based model of the UK perennial energy crop market, including the contingent interaction of supply and demand, to understand the spatial and temporal dynamics of energy crop adoption. Results indicate that perennial energy crop supply will be between six and nine times lower than previously published, because of time lags in adoption arising from a spatial diffusion process. The model simulates time lags of at least 20 years, which is supported empirically by the analogue of oilseed rape adoption in the UK from the 1970s. This implies the need to account for time lags arising from spatial diffusion in evaluating land-use change, climate change (mitigation or adaptation) or the adoption of novel technologies.

  18. Sorghum - An alternative energy crop for marginal lands and reclamation sites

    Science.gov (United States)

    Lukas, Stefan; Theiß, Markus; Jäkel, Kerstin

    2017-04-01

    The production of biogas and the associated cultivation of energy crops are still of great importance. Considering increasing restrictions for the cultivation of standard biogas crop maize regarding an environmentally friendly production of biomass, a wider range of energy crops is needed. The cultivation of sorghum can contribute to this. As maize, sorghum is a C4-plant and offers a high biomass yield potential. Originated in the semi-arid tropics, sorghum is well adapted to warm and dry climate and particularly noted for its drought tolerance compared to maize. It also makes few demands on soil quality and shows a good capability of nutrient acquisition. Therefore, particularly on marginal areas and reclamation sites with low soil nutrient and water content sorghum can contribute to secure crop yield and income of farmers. The applied research project aims at and reflects on the establishment of sorghum as a profitable and ecological friendly cropping alternative to maize, especially in the face of probable climate change with increasing risks for agriculture. For this purpose, site differentiated growing and cultivar trials with a standardized planting design as well as several practical on-farm field experiments were conducted. The agronomical and economic results will lead to scientifically based procedures and standards for agricultural practice with respect to cultivation methods (drilling, pest-management, fertilization), cropping sequence and technique, cropping period or position in crop rotation. Even by now there is a promising feedback from the agricultural practice linked with an increasing demand for information. Moreover, the specific cropping area is increasing continuously. Therefore, the leading signs for the establishment of sorghum as profitable alternative to maize biogas production are positive. Sorghum cultures perform best as main crops in the warm D locations in the middle and East German dry areas. Here, the contribution margin

  19. Market integration of local energy systems: Is local energy management compatible with European regulation for retail competition?

    NARCIS (Netherlands)

    Eid, C.; Bollinger, L.A.; Koirala, B.P.; Scholten, D.J.; Facchinetti, E.; Lilliestam, J.; Hakvoort, R.A.

    2016-01-01

    The growing penetration of distributed energy resources is opening up opportunities for local energy management (LEM) – the coordination of decentralized energy supply, storage, transport, conversion and consumption within a given geographical area. Because European electricity market liberalization

  20. Crop monitoring and yield forecasting at global level: The GLOBCAST project from the European Commission

    OpenAIRE

    LOPEZ LOZANO RAUL; Baruth, Bettina; El Aydam, Mohamed; WILLEMS Eric; GARCIA AZCARATE Tomas

    2015-01-01

    Recent trends in global agriculture prices have brought a new scenario for agricultural policies worldwide. Increased world demand for agricultural products combined with inter-annual fluctuations of global production mostly caused by climate variability have been an important cause for price volatility in agricultural markets, and social unrest in many parts of the world. In this context, crop monitoring and yield forecasting play a major role in anticipating supply anomalies, thus allowing ...

  1. Energy intake and sources of energy intake in the European Prospective Investigation into Cancer and Nutrition.

    Science.gov (United States)

    Ocké, M C; Larrañaga, N; Grioni, S; van den Berg, S W; Ferrari, P; Salvini, S; Benetou, V; Linseisen, J; Wirfält, E; Rinaldi, S; Jenab, M; Halkjaer, J; Jakobsen, M U; Niravong, M; Clavel-Chapelon, F; Kaaks, R; Bergmann, M; Moutsiou, E; Trichopoulou, A; Lauria, C; Sacerdote, C; Bueno-de-Mesquita, H B; Peeters, P H M; Hjartåker, A; Parr, C L; Tormo, M J; Sanchez, M J; Manjer, J; Hellstrom, V; Mulligan, A; Spencer, E A; Riboli, E; Bingham, S; Slimani, N

    2009-11-01

    To describe energy intake and its macronutrient and food sources among 27 regions in 10 countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Between 1995 and 2000, 36 034 subjects aged 35-74 years were administered a standardized 24-h dietary recall. Intakes of macronutrients (g/day) and energy (kcal/day) were estimated using standardized national nutrient databases. Mean intakes were weighted by season and day of the week and were adjusted for age, height and weight, after stratification by gender. Extreme low- and high-energy reporters were identified using Goldberg's cutoff points (ratio of energy intake and estimated basal metabolic rate 2.72), and their effects on macronutrient and energy intakes were studied. Low-energy reporting was more prevalent in women than in men. The exclusion of extreme-energy reporters substantially lowered the EPIC-wide range in mean energy intake from 2196-2877 to 2309-2866 kcal among men. For women, these ranges were 1659-2070 and 1873-2108 kcal. There was no north-south gradient in energy intake or in the prevalence of low-energy reporting. In most centres, cereals and cereal products were the largest contributors to energy intake. The food groups meat, dairy products and fats and oils were also important energy sources. In many centres, the highest mean energy intakes were observed on Saturdays. These data highlight and quantify the variations and similarities in energy intake and sources of energy intake among 10 European countries. The prevalence of low-energy reporting indicates that the study of energy intake is hampered by the problem of underreporting.

  2. Activated Carbon Derived from Fast Pyrolysis Liquids Production of Agricultural Residues and Energy Crops

    Science.gov (United States)

    Fast pyrolysis is a thermochemical method that can be used for processing energy crops such as switchgrass, alfalfa, soybean straw, corn stover as well as agricultural residuals (broiler litter) for bio-oil production. Researchers with the Agriculture Research Service (ARS) of the USDA developed a 2...

  3. Energy product options for Eucalyptus species grown as short rotation woody crops

    Science.gov (United States)

    Donald Rockwood; Alan W. Rudie; Sally A. Ralph; J.Y. Zhu; Jerrold E. Winandy

    2008-01-01

    Eucalyptus species are native to Australia but grown extensively worldwide as short rotation hardwoods for a variety of products and as ornamentals. We describe their general importance with specific emphasis on existing and emerging markets as energy products and the potential to maximize their productivity as short rotation woody crops. Using experience in Florida...

  4. Effects of climate change on yield potential of wheat and maize crops in the European Union

    NARCIS (Netherlands)

    Wolf, J.; Diepen, van C.A.

    1995-01-01

    Yields of winter wheat, silage maize and grain maize in the main arable areas of the European Union (EU) were calculated with a simulation model, WOFOST, using historical weather data and average soil characteristics. The sensitivity of the model to individual weather variables was determined.

  5. Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability

    Directory of Open Access Journals (Sweden)

    Ian J. Bonner

    2014-10-01

    Full Text Available Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while benefiting soil and water quality and increasing biodiversity. Despite these positive traits, energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study for Hardin County, Iowa, to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. Estimates of variability in row crop production at a subfield level are used to model the economic performance of corn (Zea mays L. grain and the environmental impacts of corn stover collection using the Landscape Environmental Analysis Framework (LEAF. The strategy used in the case study integrates switchgrass (Panicum virgatum L. into subfield landscape positions where corn grain is modeled to return a net economic loss. Results show that switchgrass integration has the potential to increase sustainable biomass production from 48% to 99% (depending on the rigor of conservation practices applied to corn stover collection, while also improving field level profitability of corn. Candidate land area is highly sensitive to grain price (0.18 to 0.26 $·kg−1 and dependent on the acceptable subfield net loss for corn production (ranging from 0 to −1000 $·ha−1 and the ability of switchgrass production to meet or exceed this return. This work presents the case that switchgrass may be economically incorporated into row crop landscapes when management decisions are applied at a subfield scale within field areas modeled to have a negative net profit with current management practices.

  6. Analysis of the impact of energy crops on water quality. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hatfield, J.L.; Gale, W.J.

    1993-04-16

    This report consists of two separate papers. The first, ``The potential use of agricultural simulation models in predicting the fate of nitrogen and pesticides applied to switchgrass and poplars,`` describes three models (CREAMS, GLEAMS, and EPIC) for the evaluation of the relationships which determine water quality in the agroecosystem. Case studies are presented which demonstrate the utility of these models in evaluating the potential impact of alternative crop management practices. The second paper, ``Energy crops as part of a sustainable landscape,`` discusses concepts of landscape management and the linkage among agricultural practices and environmental quality.

  7. Time-varying dependency in European energy markets: an analysis of Nord Pool, European Energy Exchange and Intercontinental Exchange energy commodities

    OpenAIRE

    Veka, Steinar; Lien, Gudbrand; Westgaard, Sjur; Higgs, Helen

    2012-01-01

    In this paper we investigate the extent to which the price of Nordic electricity derivatives correlates with European Energy Exchange (EEX) and Intercontinental Exchange (ICE) electricity contracts. We also include their price correlation with ICE gas, Brent crude oil, coal and carbon emission contracts. Using multivariate generalized autoregressive conditional heteroskedasticity models, we find significant time-varying relationships between all of the energy commodities included in the analy...

  8. Sustainable energy catalogue - for European decision-makers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gram, S.; Jacobsen, Soeren

    2006-10-15

    The Green paper - A European Strategy for Sustainable, Competitive and Secure Energy, 2006 states that Europe has a rising dependency on imported energy reserves, which are concentrated in a few countries. The Rising gas and oil prices along with demands on lower emissions of CO2 adds pressure on the need for a new energy future for Europe. EU has since 1990 planned to become world leader in the renewable energy field. Therefore the EU member states have agreed that by 2010 21% of the consumed electricity and 5,75% of the consumed gasoline and diesel should originate from renewable energy sources. If the EU countries are to reach their goals, a commitment on several levels to develop and install energy from sustainable energy sources is needed. The purpose of this catalogue is to offer planners and decision-makers in EU states an inspirational tool to be used during local or regional transition towards sustainable energy technologies. The catalogue can also be used by everyone else who needs an overview of the sustainable energy technologies and their current development level and future potential, among others educational use is relevant. The catalogue provides an introduction to the following technologies that are already or are estimated to become central to a development with renewable energy in EU: Technologies for wind energy, wave energy, geothermal energy, bioenergy, solar energy, hydropower and fuel cells. The catalogue also includes a section about energy systems, which also includes a part about technologies for efficient use of energy. The catalogue could have included a few other technologies as e.g. heating pumps, but due to the size of the catalogue a priority was necessary. The catalogue does not claim to give all answers or to be complete regarding all details about the individual technologies; even so it offers information, which cannot easily be looked up on the Internet. In the back of the catalogue, under 'References and links' there

  9. Biogas production from high-yielding energy crops in boreal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seppala, M.

    2013-11-01

    In this thesis, the methane production potential of traditional and novel energy crops was evaluated in boreal conditions. The highest methane yield per hectare was achieved with maize (4 000-9 200 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}) and the second highest with brown knapweed (2 700-6 100 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}). Recently, the most feasible energy crop, grass, produced 1 200-3 600 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}. The specific methane yields of traditional and novel energy crops varied from 170-500 l kg{sup -1} volatile solid (VS). The highest specific methane yields were obtained with maize, while the novel energy crops were at a lower range. The specific methane yields decreased in the later harvest time with maize and brown knapweed, and the specific methane yield of the grasses decreased from the 1st to 2nd harvests. Maize and brown knapweed produced the highest total solid (TS) yields per hectare 13-23 tTS ha{sup -1}, which were high when compared with the TS yields of grasses (6-13 tTS ha{sup -1}). The feasibility of maize and brown knapweed in co-digestion with liquid cow manure, in continuously stirred tank reactors (CSTR), was evaluated. According to the CSTR runs, maize and brown knapweed are suitable feeds and have stable processes, producing the highest methane yields (organic loading rate 2 kgVS m{sup -3}d{sup -1}), with maize at 259 l kgVS{sup -1} and brown knapweed at 254 l kgVS{sup -1}. The energy balance (input/output) of the cultivation of the grasses, maize and brown knapweed was calculated in boreal conditions, and it was better when the digestate was used as a fertilizer (1.8-4.8 %) than using chemical fertilizers (3.7-16.2 %), whose production is the most energy demanding process in cultivation. In conclusion, the methane production of maize, grasses and novel energy crops can produce high methane yields and are suitable feeds for anaerobic digestion. The cultivation managements of maize and novel energy crops for

  10. Essays on land use decisions for energy crop production and the effects of subsidies under uncertainty and costly reversibility

    Science.gov (United States)

    Song, Feng

    The U.S. Energy Independence and Security Act of 2007 mandates blending into transportation fuels of 16 billion gallons of cellulosic fuels annually by 2022. Dedicated energy crops are being explored to provide more efficient and environmental friendly feedstocks for cellulosic biofuel production. Devoting land to energy crops represents a long-term commitment, involves adjustment costs and great uncertainties. This research develops a dynamic land conversion model to take into account these factors. The model is applied to address two separate but related questions: under what conditions farmers are willing to convert production land to energy crops? Which subsidy policies encourage energy crop production most cost effectively? This dissertation is divided into two essays. The first essay studies a farmer's decision to convert a unit of traditional crop land into dedicated energy crops, taking into account sunk conversion costs, uncertainties of traditional and energy crop returns, and learning. The optimal decision rules differ significantly from the expected net present value rule, which ignores learning, and from real option models that allow only one way conversions into energy crops. These models also predict drastically different patterns of land conversions into and out of energy crops over time. Using corn-soybean rotation and switchgrass as examples, we show that the model predictions are sensitive to assumptions about stochastic processes of the returns. The second essay evaluates the cost-effectiveness of four types of governmental subsidies in encouraging energy crop production. We first present a land conversion model to show how the subsidies that are expected net present value (ENPV) equivalent can change a representative farmer's optimal land conversion rules differently for converting land into an alternative use as well as converting out of it. This is because these subsidies affect the land conversion costs, land return level and uncertainty

  11. Resistance evolution to Bt crops: predispersal mating of European corn borers.

    Directory of Open Access Journals (Sweden)

    Ambroise Dalecky

    2006-06-01

    Full Text Available Over the past decade, the high-dose refuge (HDR strategy, aimed at delaying the evolution of pest resistance to Bacillus thuringiensis (Bt toxins produced by transgenic crops, became mandatory in the United States and is being discussed for Europe. However, precopulatory dispersal and the mating rate between resident and immigrant individuals, two features influencing the efficiency of this strategy, have seldom been quantified in pests targeted by these toxins. We combined mark-recapture and biogeochemical marking over three breeding seasons to quantify these features directly in natural populations of Ostrinia nubilalis, a major lepidopteran corn pest. At the local scale, resident females mated regardless of males having dispersed beforehand or not, as assumed in the HDR strategy. Accordingly, 0-67% of resident females mating before dispersal did so with resident males, this percentage depending on the local proportion of resident males (0% to 67.2%. However, resident males rarely mated with immigrant females (which mostly arrived mated, the fraction of females mating before dispersal was variable and sometimes substantial (4.8% to 56.8%, and there was no evidence for male premating dispersal being higher. Hence, O. nubilalis probably mates at a more restricted spatial scale than previously assumed, a feature that may decrease the efficiency of the HDR strategy under certain circumstances, depending for example on crop rotation practices.

  12. Tillage and residue management effect on soil properties, crop performance and energy relations in greengram (Vigna radiata L. under maize-based cropping systems

    Directory of Open Access Journals (Sweden)

    J.R. Meena

    2015-12-01

    Full Text Available Effect of tillage and crop residue management on soil properties, crop performance, energy relations and economics in greengram (Vigna radiata L. was evaluated under four maize-based cropping systems in an Inceptisol of Delhi, India. Soil bulk density, hydraulic conductivity and aggregation at 0–15 cm layer were significantly affected both by tillage and cropping systems, while zero tillage significantly increased the soil organic carbon content. Yields of greengram were significantly higher in maize–chickpea and maize–mustard systems, more so with residue addition. When no residue was added, conventional tillage required 20% higher energy inputs than the zero tillage, while the residue addition increased the energy output in both tillage practices. Maize–wheat–greengram cropping system involved the maximum energy requirement and the cost of production. However, the largest net return was obtained from the maize–chickpea–greengram system under the conventional tillage with residue incorporation. Although zero tillage resulted in better aggregation, C content and N availability in soil, and reduced the energy inputs, cultivation of summer greengram appeared to be profitable under conventional tillage system with residue incorporation.

  13. Ecosustainable biomethane and fertilizerproduction through anaerobic co-digestionof animal manure and energy crops

    OpenAIRE

    Brizio, Enrico

    2012-01-01

    In Italy and many European countries energy production from biomass is encouraged by strong economic subsidies so that renewable energy plants, anaerobic digestion plant producing biogas in particular, are getting large diffusion. Nevertheless, it is necessary to define the environmental compatibility as well as technological and economic issues dealing with the emerging renewable energy scenario. This evaluation should take into account global parameters as well as environmental impacts at r...

  14. Modelling the carbon and nitrogen balances of direct land use changes from energy crops in Denmark

    DEFF Research Database (Denmark)

    Hamelin, Lorie; Jørgensen, Uffe; Petersen, Bjørn Molt

    2012-01-01

    and perennials), two soil types (sandy loam and sand), two climate types (wet and dry), three initial soil carbon level (high, average, low), two time horizons for soil carbon changes (20 and 100 years), two residues management practices (removal and incorporation into soil) as well as three soil carbon turnover......- and micronutrients are presented. The inventory results highlight Miscanthus as a promising energy crop, indicating it presents the lowest emissions of nitrogen compounds, the highest amount of carbon dioxide sequestrated from the atmosphere, a relatively high carbon turnover efficiency and allows to increase soil...... organic carbon. Results also show that the magnitude of these benefits depends on the harvest season, soil types and climatic conditions. Inventory results further highlight winter wheat as the only annual crop where straw removal for bioenergy may be sustainable, being the only annual crop not involving...

  15. 2015 European School of High-Energy Physics

    CERN Multimedia

    2015-01-01

    Dear colleagues, I would like to draw your attention to the 2015 European School of High-Energy Physics. Details can be found at: http://physicschool.web.cern.ch/PhysicSchool/ESHEP/ESHEP2015/default.html The School will be held in Bulgaria from 2-15 September 2015. PLEASE NOTE THAT THE DEADLINE FOR APPLICATIONS IS 8 May 2015. The lectures will cover a broad range of HEP topics at a level suitable for students working towards a PhD in experimental particle physics. Note that, as indicated on the website, one or two students from developing countries may be considered for the award of financial support. Nick Ellis (On behalf of the Organising Committee)

  16. 2015 European School of High-Energy Physics

    CERN Multimedia

    2015-01-01

    Dear colleagues, I would like to draw your attention to the 2015 European School of High-Energy Physics. Details can be found at:    http://physicschool.web.cern.ch/PhysicSchool/ESHEP/ESHEP2015/default.html   The School will be held in Bulgaria from 2-15 September 2015. PLEASE NOTE THAT THE DEADLINE FOR APPLICATIONS IS 8 May 2015 The lectures will cover a broad range of HEP topics at a level suitable for students working towards a PhD in experimental particle physics.  Note that, as indicated on the website, one or two students from developing countries may be considered for the award of financial support.   Nick Ellis (On behalf of the Organising Committee)

  17. Energy and economic analysis of traditional versus introduced crops cultivation in the mountains of the Indian Himalayas: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Nautiyal, Sunil; Kaechele, H. [Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Socioeconomics, Eberswalder Str. 84, 15374 Muencheberg (Germany); Rao, K.S. [Centre for Inter-disciplinary Studies of Mountain and Hill Environment, Academic Research Center, University of Delhi, Delhi 110007 (India); Maikhuri, R.K. [G.B. Pant Institute of Himalayan Environment and Development, Garhwal Unit, P.O. Box 92, Srinagar (Garhwal) 246174 (India); Saxena, K.G. [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2007-12-15

    This study analyzed the energy and economics associated with cultivation of traditional and introduced crops in the mountains of the Central Himalaya, India. The production cost in terms of energy for introduced crops such as tomato (Lycopersicon esculentum) and bell pepper (Capsicum annuum) cultivation was 90,358-320,516 MJ ha{sup -1} as compared to between 19,814 and 42,380 MJ ha{sup -1} for traditional crops within Himalayan agroecosystems. For the introduced crops, high energy and monetary input was associated with human labor, forest resources, chemical fertilizer and pesticides. However, energy threshold/projection for farmyard manure in traditional crop cultivation was 80-90% of the total energy cost, thus traditional crop cultivation was more efficient in energy and economics. During the study, the farm productivity of introduced crops cultivation declined with increasing years of cultivation. Consequently, the energy output from the system has been declining at the rate of -y20,598 to y20,748 MJ ha{sup -1} yr{sup -1} for tomato and y12,072 to y15,056 MJ ha{sup -1} yr{sup -1} for bell pepper under irrigated and rain-fed land use in the mountains, respectively. The comparative analysis on this paradigm shift indicates that more research is needed to support sustainable crop cultivation in the fragile Himalayan environment. (author)

  18. Fast-Growing Energy Crops Grown In Conditions Of Slovakia In The Context Of The EU Energy Policy

    Directory of Open Access Journals (Sweden)

    Jureková Zuzana

    2015-05-01

    Full Text Available The energy-efficient low-carbon EU economy (known as the 20-20-20 sets fundamental objectives in reducing greenhouse gas emissions (20%, increasing the share of renewable energy sources (20% and saving primary energy consumption (20%. The objectives are incorporated in the National Renewable Energy Action Plans (NREAPs. Slovakia has to increase the share of renewable energy sources (RES by 14% in its energy mix by 2020. Currently, the most widely used RES are water and solar energy, biomass and biogas. Our country has suitable ecological conditions for growing the so called energy crops in lowland and upland areas. So far, however, there is a lack of science-based information on the potential production of biomass in different soil-ecological and climatic conditions of the Slovak Republic. Our experimental research is focused on quantification of biomass production of various willow (genus Salix, poplar (genus Populus and silvergrass (Miscanthus sinensis varieties grown in ecological conditions of southern Slovakia. We evaluated the biomass production of the studied crops. The results were evaluated in terms of the EU call (2013: to obtain more energy while reducing inputs and negative environmental impacts.

  19. Water-Energy Nexus: the case of biogas production from energy crops evaluated by Water Footprint and LCA methods

    Science.gov (United States)

    Pacetti, Tommaso; Caporali, Enrica; Federici, Giorgio

    2015-04-01

    This study analyzes the production of biogas from aerobic digestion of energy crops. The production of biogas is an important case study because its spread, similar to other sources of bioenergy, creates questions about the environmental effects, the competition in the food market as well as the progressive change of land use. In particular is hereby analyzed the nexus between bioenergy production and water, which plays a key role because water resources are often the limiting factor in energy production from energy crops. The environmental performances of biogas production were analyzed through Water Footprint (WF) and Life cycle assessment (LCA): the integration of LCA and WF represents an attempt of taking advantage of their complementary strengths in environmental assessment, trying to give a comprehensive analysis of bioenergy production sustainability. Eighteen scenarios were considered, trying to figure out the performances of different combinations of locations (north, center, south Italy), crops (maize, sorghum, wheat) and treatments (anaerobic digestion with water dilution or manure co-digestion). WF assessment shows that cultivation phase is the most impacting on water resource use along the entire system life cycle. In particular, water requirements for crop growth shows that sorghum is the more water saver crop (in terms of consumptive water use to produce the amount of crop needed to produce 1 GJ of biogas energy content). Moreover WF investigates the kind of water use and shows that wheat, despite being the most intensive water user, exploits more green water than the other crops.WF was evaluated with respect to water stress indicators for the Italian territory, underlining the higher criticalities associated with water use in southern Italy and identifying consumptive blue water use, in this area, as the main hotspot. Therefore biogas production from energy crops in southern Italy is unsustainable from a water management perspective. At a basin

  20. Energy auditing of diversified rice-wheat cropping systems in Indo-gangetic plains

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, V.P.; Gangwar, B.; Pandey, D.K.; Gangwar, K.S. [Project Directorate for Cropping Systems Research, Modipuram, Meerut 250110 (U.P.) (India)

    2009-09-15

    The field investigations were carried out for energy use analysis in terms of different input requirements and outputs harvested under the diversified rice-wheat cropping systems at the research farm of Project Directorate for Cropping Systems Research, Modipuram, Meerut, India during the year 2000-2004. The experiments were conducted on rice (Oryza sativa L.)-wheat (Triticum aestivum L. emend. Fiori and Paol) system involving 8 sequences using diversification, furrow irrigated raised bed system (FIRB) of sowing wheat, use of summer period for deep ploughing or raising legume crops for seed or green manure to study the energy dynamics of different diversified cropping systems. Results revealed that total energy use was highest in rice-potato-wheat (i.e. 77,601 MJ/ha in flat bed and 75,697 MJ/ha in raised bed) followed by rice-wheat-sesbania (i.e. 48,770 MJ/ha in flat and 47,830 MJ/ha in raised bed) and rice-wheat-greengram (i.e. 48,414 MJ/ha in flat and 47,482 MJ/ha in raised bed). In overall, the raised bed sowing of wheat in the cropping system consumed 6-11% less fertilizer energy than flat bed while saved up to 4.2% energy through irrigation. The total output energy of the system was recorded significantly higher in rice-potato-wheat system (i.e. 222,836 MJ/ha in flat bed and 218,065 MJ/ha in raised bed) in comparison to rice-wheat-greengram (i.e. 177,477 MJ/ha in flat bed and 175,125 MJ/ha in raised bed), rice-wheat-sesbania (i.e. 172,000 MJ/ha in flat bed and 168,919 MJ/ha in raised bed) and rice-wheat system (i.e. 156,085 MJ/ha in flat bed and 151,862 MJ/ha in raised bed). The significantly higher net return of energy was obtained in rice-potato-wheat system as compared to other systems. This system required about 75% more input energy but provided about 42% more output energy compared to conventional rice-wheat system. About 10% higher output energy was obtained through growing greengram in summer for grain and foliage incorporation while 14% gain obtained

  1. Energy potential, energy ratios, and the amount of net energy in Finnish field crop production; Peltobioenergian tuotanto Suomessa. Potentiaali, energiasuhteet ja nettoenergia

    Energy Technology Data Exchange (ETDEWEB)

    Mikkola, H.

    2012-11-01

    Energy potential, energy ratios, and the amount of net energy in Finnish field crop production were studied in this thesis. Special attention was paid to indirect energy inputs and how to treat them in energy analysis. Manufacturing of machines and agrochemicals and production of seeds are examples of indirect energy inputs.The bioenergy potential of the Finnish field crop production could be as large as 12 - 22 TWh, or 3 - 5% of the total energy consumption in Finland in 2008. The major part of this energy would originate from straw and biomass like reed canary grass cultivated for energy use. However, only 0.5 TWh of the potential is utilized. The output/input energy ratios of the studied field crops varied from 3 to 18, being highest (18) for reed canary grass and second highest (7) for sugar beet and grass cultivated for silage. The energy ratio of cereals and oil seed crops varied from 3 to 5 if only the yield of seeds was considered. If the yield of straw and stems was also taken into account the energy ratios would have been almost twofold. The energy ratios for Finnish wheat and barley were as high as those gained in Italian and Spanish conditions, respectively. However, the energy ratios of maize, elephant grass and giant reed were even over 50 in Central and Southern Europe. Plants that use the C4 photosynthesis pathway and produce high biomass yields thrive best in warm and sunny climate conditions. They use nitrogen and water more sparingly than C3 plants typically thriving in the cooler part of the temperate zone. When evaluating energy ratios for field crops it should be kept in mind that the maximal energy potential of the energy crop is the heating value of the dry matter at the field gate. Transportation of the crop and production of liquid fuels and electricity from biomass lowers the energy ratio. A comparison of field energy crops to a reforested field suggested that fast growing trees, as hybrid aspen and silver birch, would yield almost as

  2. Appraisal of the European Commission's Energy Roadmap 2050

    Energy Technology Data Exchange (ETDEWEB)

    Meeus, L. [Florence School of Regulation, RSCAS, European University Institute, Florence (Italy)

    2012-04-15

    What is the European energy strategy for 2050? How different is it from the 2020 energy strategy? What are the technology options? What are the policy options? The European Commission provided a first answer to these questions in its Energy Roadmap 2050. This article gives an appraisal of that answer based on the recommendations we made during the preparation of the roadmap.

  3. Towards a European Smart Energy System - ICT innovation goals and considerations

    NARCIS (Netherlands)

    F.N. Claessen (Felix); J.A. La Poutré (Han)

    2014-01-01

    textabstractThe EU-driven integration of European energy systems and the development of a Smart Energy System involves many key players. The success of a European Smart Energy Systems relies heavily on the development of well-designed ICT solutions in all related sectors. Because such ICT solutions

  4. Fusion for Energy: A new European organization for the development of fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Gambier, Didier [Fusion for Energy, Torres Diagonal Litoral B3 (TDL-B3), Josep Pla 2, 08019 Barcelona (Spain)], E-mail: Didier.gambier@f4e.europa.eu

    2009-06-15

    The European Joint Undertaking for ITER and the Development of Fusion Energy or ('Fusion for Energy' of F4E for short) is a new organisation that has been established with the main objective of providing Europe's contribution to the ITER International Organisation (IO) as its Domestic Agency. Fusion for Energy is also the Implementing Agency for the Broader Approach projects being carried out with Japan and, in the longer term, will prepare a programme for the construction of demonstration fusion reactors (DEMO). The threefold mission of Fusion for Energy is consistent with the fast track strategy for the realisation of fusion energy. This paper aims to provide an overview of the current status of Fusion for Energy and highlight some of the opportunities available for research organisations and industry to participate.

  5. Low Emission Energy Scenarios for the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Mark (Complex Environment Systems Group, Bartlett School of Graduate Studies, Univ. College London (GB))

    2007-12-15

    Energy consumption is a major cause of carbon dioxide emission, and also largely determines the uncontrolled emissions of many other pollutants. In consequence, energy scenarios are key inputs to the projection of pollution emission, and the formulation of strategies to reduce pollution and achieve environmental objectives. Alternative energy strategies including behavioral change, demand management, energy efficiency, and low carbon fuels are explored in this report. In addition to abating greenhouse gas emissions, these strategies can facilitate cheaper and greater abatement of other atmospheric pollutants as compared to higher carbon scenarios. In general, achieving a given air pollution emission target costs less in a low carbon scenario than in a high carbon scenario. This work is aimed at producing policies that exploit the positive synergy between strategies to limit global warming, and strategies for reaching other environmental objectives such as reduced acidification and improved air quality. Low carbon energy scenarios can improve energy security by reducing the consumption if finite fuels and reducing import requirements. The given objective was to produce scenarios in which the total emission of carbon dioxide from the twenty-five countries of the European Union is reduced by at least 30% over the period 1990 to 2020. To this end scenarios have been produced for each of the twenty-five EU countries taking into account recent historical data and assumed economic and population growths taken from other studies, and selections of policies measures. The scenarios show that, as compared to 1990, CO{sub 2} reductions of more than 30% are feasible by 2020, and that larger reductions are possible, especially in the longer term as technologies with long lifetimes such as power stations, are replaced. Data from the energy scenarios were input to the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) model of IIASA (International Institute for

  6. Assessing the effect of soil management on soil functioning: a meta-regression analysis on European crop yields under conservation agriculture.

    Science.gov (United States)

    van den Putte, An; Govers, Gerard; Diels, Jan; Gillijns, Katleen; Demuzere, Matthias

    2010-05-01

    Many strategies exist to combat soil degradation through erosion and compaction on agricultural fields. One of these strategies is conservation agriculture (CA). Reduced or zero tillage techniques, together with crop residue management and crop rotation are the pillars of CA. The term reduced tillage covers a range of tillage practices but it never involves inverting the soil. In this way, soil disturbance is minimised and crop residues are left on the soil. As CA also requires less wheel traffic that can increase soil bulk density and reduces infiltration rates, CA has the potential to reduce degradation and improve soil functioning. Studies in many European countries have shown that CA can indeed be very effective in combating soil erosion. However, soil and water conservation do not appear as main drivers in farmers' decisions to shift or not to CA. Economic factors tend to be more important, but there are a lot of uncertainties on this domain. Studies show that production costs are mostly reduced, mainly by reduced fuel costs. However, on production outcome, i.e. crop yield, a lot of uncertainties exist. To ensure proper functioning of agricultural soils that are prone to degradation, it is clear that these uncertainties have to be quantified. Many European studies have investigated the effect of reduced soil tillage on crop yields. However, the anecdotic evidence is often contradictory and therefore difficult to interpret. Most of them only cover a small range of field experiments, in one region. We present a meta-regression analysis (47 European studies, 565 observations) that compares crop yields under conventional tillage (CT), reduced tillage (RT) and zero tillage (ZT) techniques. We analysed the possible influence on the relative yield ((RT or ZT)/CT) of crop type, tillage depth, climate, CT yield and length of application of RT/ZT. ZT reduces crop yield on average with 8.5%. However, RT leads to a reduction in crop yields for maize and winter cereals

  7. The energy divide: Integrating energy transitions, regional inequalities and poverty trends in the European Union

    Science.gov (United States)

    Bouzarovski, Stefan; Tirado Herrero, Sergio

    2016-01-01

    Energy poverty can be understood as the inability of a household to secure a socially and materially necessitated level of energy services in the home. While the condition is widespread across Europe, its spatial and social distribution is highly uneven. In this paper, the existence of a geographical energy poverty divide in the European Union (EU) provides a starting point for conceptualizing and exploring the relationship between energy transitions – commonly described as wide-ranging processes of socio-technical change – and existing patterns of regional economic inequality. We have undertaken a comprehensive analysis of spatial and temporal trends in the national-scale patterns of energy poverty, as well as gas and electricity prices. The results of our work indicate that the classic economic development distinction between the core and periphery also holds true in the case of energy poverty, as the incidence of this phenomenon is significantly higher in Southern and Eastern European EU Member States. The paper thus aims to provide the building blocks for a novel theoretical integration of questions of path-dependency, uneven development and material deprivation in existing interpretations of energy transitions. PMID:28690374

  8. The energy divide: Integrating energy transitions, regional inequalities and poverty trends in the European Union.

    Science.gov (United States)

    Bouzarovski, Stefan; Tirado Herrero, Sergio

    2017-01-01

    Energy poverty can be understood as the inability of a household to secure a socially and materially necessitated level of energy services in the home. While the condition is widespread across Europe, its spatial and social distribution is highly uneven. In this paper, the existence of a geographical energy poverty divide in the European Union (EU) provides a starting point for conceptualizing and exploring the relationship between energy transitions - commonly described as wide-ranging processes of socio-technical change - and existing patterns of regional economic inequality. We have undertaken a comprehensive analysis of spatial and temporal trends in the national-scale patterns of energy poverty, as well as gas and electricity prices. The results of our work indicate that the classic economic development distinction between the core and periphery also holds true in the case of energy poverty, as the incidence of this phenomenon is significantly higher in Southern and Eastern European EU Member States. The paper thus aims to provide the building blocks for a novel theoretical integration of questions of path-dependency, uneven development and material deprivation in existing interpretations of energy transitions.

  9. Energy crop (Sida hermaphrodita) fertilization using digestate under marginal soil conditions: A dose-response experiment

    Science.gov (United States)

    Nabel, Moritz; Bueno Piaz Barbosa, Daniela; Horsch, David; Jablonowski, Nicolai David

    2014-05-01

    The global demand for energy security and the mitigation of climate change are the main drivers pushing energy-plant production in Germany. However, the cultivation of these plants can cause land use conflicts since agricultural soil is mostly used for plant production. A sustainable alternative to the conventional cultivation of food-based energy-crops is the cultivation of special adopted energy-plants on marginal lands. To further increase the sustainability of energy-plant cultivation systems the dependency on synthetic fertilizers needs to be reduced via closed nutrient loops. In the presented study the energy-plant Sida hermaphrodita (Malvaceae) will be used to evaluate the potential to grow this high potential energy-crop on a marginal sandy soil in combination with fertilization via digestate from biogas production. With this dose-response experiment we will further identify an optimum dose, which will be compared to equivalent doses of NPK-fertilizer. Further, lethal doses and deficiency doses will be observed. Two weeks old Sida seedlings were transplanted to 1L pots and fertilized with six doses of digestate (equivalent to a field application of 5, 10, 20, 40, 80, 160t/ha) and three equivalent doses of NPK-fertilizer. Control plants were left untreated. Sida plants will grow for 45 days under greenhouse conditions. We hypothesize that the nutrient status of the marginal soil can be increased and maintained by defined digestate applications, compared to control plants suffering of nutrient deficiency due to the low nutrient status in the marginal substrate. The dose of 40t/ha is expected to give a maximum biomass yield without causing toxicity symptoms. Results shall be used as basis for further experiments on the field scale in a field trial that was set up to investigate sustainable production systems for energy crop production under marginal soil conditions.

  10. Energy: actions for the public. Good european practices; Energie: actions vers le grand public. Bonnes pratiques europeennes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    Many actions and programs are implemented in european towns relative to the energy control and the environmental quality in urban areas. They are often different in function of political, environmental, historical or cultural factors. The knowledge and the dissemination of these european experiences appear as an asset for the french energy policy. In this framework, the actions of the people awareness are fundamental. This document presents the subject approach and the obtained results for eight experiences of european towns. (A.L.B.)

  11. From European to Eurasian energy security: Russia needs and energy Perestroika

    Directory of Open Access Journals (Sweden)

    Pavel K. Baev

    2012-07-01

    Full Text Available Political attention in Europe and the US to the problem of energy security has significantly diminished, and there is more to this shift that just the impact of financial crisis in the EU and the effect of the ‘shale gas revolution’. In the middle of the past decade, some fundamental decisions were made in the European Commission regarding the liberalization and diversification of the energy supplies, but the economic underpinning of these decisions has vastly changed. The whole set of energy directive is now pointing in the wrong direction, but rethinking of past mistakes is lagging, so the energy policy is left in its bureaucratic ‘box’. Russia is set to remain locked in the European gas market but is very slow in adapting to the changes in it. Both Russia and the EU remain in denial that the time for their energy-geopolitical games is over as the nexus of energy flows is fast shifting to Asia-Pacific.

  12. Development of a farm-firm modelling system for evaluation of herbaceous energy crops

    Energy Technology Data Exchange (ETDEWEB)

    English, B.C.; Alexander, R.R.; Loewen, K.H.; Coady, S.A.; Cole, G.V.; Goodman, W.R. (Tennessee Univ., Knoxville, TN (United States). Dept. of Agricultural Economics and Rural Sociology)

    1992-01-01

    A complete analysis is performed to simulate biomass production incorporated into a realistic whole farm situation, including or replacing a typical crop mix. Representative farms are constructed to accommodate such simulation. Four management systems are simulated for each firm, with each simulation depicting a different crop mix and/or use of different farming technologies and production methods. The first simulation was a base farm plan in which the operator would maintain the historical crop mix for the area, participate in all price support programs, and not participate in either a conservative reserve or a biomass production program. In the second simulation, the operator would again maintain the historical crop mix, would not participate in a conservation reserve or biomass production program, and would be ineligible to participate in any price support system. The third simulation introduced the Conservation Reserve Program (CRP) and included participation in all price support programs. The fourth simulation introduced a biomass crop production enterprise (switchgrass) as an alternative to enrolling highly erodible cropland in the CRP and allowed participation in price support programs. Simulations were made for three farms, two in West Tennessee and on in South Georgia. Results indicate that erosion is likely to be reduced more by the diversion of cropland to permanent vegetative cover on farms similar to the more highly erodible West Tennessee farms than on the less erodible Tift County, Georgia farm. Equivalent reductions in erosion rates result from entering highly erodible cropland in the CRP and from production of switchgrass as a biomass energy crop. Both switchgrass and CRP farm plans result in decreased net returns from the base plan, although the biomass farm plans are, in general, more profitable than the CRP plans.

  13. Environmental impact assessment of energy crops cultivation in the Mediterranean Europe

    OpenAIRE

    Boléo, Sara Maria Tranquada

    2011-01-01

    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Para a obtenção do Grau de Mestre em Energia e Bioenergia Energy crops offer ecological advantages over fossil fuels by contributing to the reduction of greenhouse gases and acidifying emissions. However, there could be ecological shortcomings related to the intensity of agricultural production. There is a risk of polluting water and air, losing soil quality, enhancing erosion and reducing...

  14. REMOTE SENSING AND SURFACE ENERGY FLUX MODELS TO DERIVE EVAPOTRANSPIRATION AND CROP COEFFICIENT

    OpenAIRE

    Salvatore Barbagallo; Giuseppe Luigi Cirelli; Simona Consoli; Vincenzo Tamburino; Attilio Toscano

    2008-01-01

    Remote sensing techniques using high resolution satellite images provide opportunities to evaluate daily crop water use and its spatial and temporal distribution on a field by field basis. Mapping this indicator with pixels of few meters of size on extend areas allows to characterize different processes and parameters. Satellite data on vegetation reflectance, integrated with in field measurements of canopy coverage features and the monitoring of energy fluxes through the soil-plant-atmospher...

  15. Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass.

    Science.gov (United States)

    Falter, Christian; Zwikowics, Claudia; Eggert, Dennis; Blümke, Antje; Naumann, Marcel; Wolff, Kerstin; Ellinger, Dorothea; Reimer, Rudolph; Voigt, Christian A

    2015-09-01

    Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions.

  16. Energy technology impacts on agriculture with a bibliography of models for impact assessment on crop ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, E.M.; Luxmoore, R.J.; Parzyck, D.C.

    1979-09-01

    Possible impacts of energy technologies on agriculture are evaluated, and some of the available simulation models that can be used for predictive purposes are identified. An overview of energy technologies and impacts on the environment is presented to provide a framework for the commentary on the models. Coal combustion is shown to have major impacts on the environment and these will continue into the next century according to current Department of Energy projections. Air pollution effects will thus remain as the major impacts on crop ecosystems. Two hundred reports were evaluated, representing a wide range of models increasing in complexity from mathematical functions (fitted to data) through parametric models (which represent phenomena without describing the mechanisms) to mechanistic models (based on physical, chemical, and physiological principles). Many models were viewed as suitable for adaptation to technology assessment through the incorporation of representative dose-response relationships. It is clear that in many cases available models cannot be taken and directly applied in technology assessment. Very few models of air pollutant-crop interactions were identified, even though there is a considerable data base of pollutant effects on crops.

  17. REMOTE SENSING AND SURFACE ENERGY FLUX MODELS TO DERIVE EVAPOTRANSPIRATION AND CROP COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2008-06-01

    Full Text Available Remote sensing techniques using high resolution satellite images provide opportunities to evaluate daily crop water use and its spatial and temporal distribution on a field by field basis. Mapping this indicator with pixels of few meters of size on extend areas allows to characterize different processes and parameters. Satellite data on vegetation reflectance, integrated with in field measurements of canopy coverage features and the monitoring of energy fluxes through the soil-plant-atmosphere system, allow to estimate conventional irrigation components (ET, Kc thus improving irrigation strategies. In the study, satellite potential evapotranspiration (ETp and crop coefficient (Kc maps of orange orchards are derived using semi-empirical approaches between reflectance data from IKONOS imagery and ground measurements of vegetation features. The monitoring of energy fluxes through the orchard allows to estimate actual crop evapotranspiration (ETa using energy balance and the Surface Renewal theory. The approach indicates substantial promise as an efficient, accurate and relatively inexpensive procedure to predict actual ET fluxes and Kc from irrigated lands.

  18. Analysis of energy consumption in lowland rice-based cropping system of Malaysia

    Directory of Open Access Journals (Sweden)

    Chan Chee Wan

    2005-07-01

    Full Text Available Sufficient energy is needed in the right form and at the right time for adequate crop production. One way to optimize energy consumption in agriculture is to determine the efficiency of methods and techniques used. With the current increase in world population, energy consumption needs effective planning. That is, the input elements need to be identified in order to prescribe the most efficient methods for controlling them. This study was undertaken in order to determine the direct and indirect energy consumption of field operations in a lowland rice production system of Malaysia. Field time, fuel and other energy requirements were measured for the tillage, planting, fertilizing, spraying and harvesting operations performed. Energy analysis carried out revealed the highest average operational energy consumption was for tillage (1747.33 MJ ha-1 which accounted for about 48.6% of the total operational energy consumption (3595.87 MJ ha-1, followed by harvesting (1171.44 MJ ha-1, 32.6% and planting (562.91 MJ ha-1, 15.7%. Fertilizing and pesticide spraying did not make any significant contributions to the operational energy consumption. Based on energy sources, fuel was the main consumer of direct energy with 2717.82 MJha-1 (22.2%, and fertilizer recording the highest indirect energy consumption of 7721.03 MJha-1 (63.2%. Human labour, pesticides, seeds and indirect energy for machinery use had marginal importance, contributing only 0.2%, 0.6%, 6.8% and 6.9%, respectively to the total energy consumption (12225.97 MJha-1. Average grain yield was 6470.8 kg ha-1, representing energy output of 108321.75 MJha-1, that is, 96095.78 MJ net energy gain or 8.86 MJ output per MJ input. Energy input per kilogram grain yield was 1.89 MJkg-1. The results of the study indicate energy gain in the lowland rice production system of Malaysia.

  19. Report on the green paper on energy. Four years of European initiatives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    In December 2000, the European Commission adopted a Green Paper on European Union energy policy. This brochure takes stock of the action undertaken in the following areas over the last four years:managing demand, diversifying internal energy sources,developing the internal energy market and the security of external supply. It presents: the Green Paper stakes, the progress made, the four political challenges, managing demand, diversifying European sources, the streamlined internal energy market, controlling external supply, future prospects for the Union, legislative developments and ten possibilities for economical energy use. (A.L.B.)

  20. Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops

    Science.gov (United States)

    Farrar, Kerrie; Bryant, David; Cope-Selby, Naomi

    2014-01-01

    Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant–microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant–microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant–microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications. PMID:25431199

  1. European Energy Security: Wrestling the Russian Bear for Caspian Natural Gas

    National Research Council Canada - National Science Library

    Winchester, Robert F

    2007-01-01

    Natural gas, and its accessibility, is a growing component of national security. In its March 2006 Green Paper on Energy Security, the European Commission committed itself to promoting energy source diversification...

  2. Optimisation of fertiliser rates in crop production against energy use indicators

    DEFF Research Database (Denmark)

    Rossner, Helis; Ritz, Christian; Astover, Alar

    2014-01-01

    Optimising mineral nitrogen (N) use in crop production is inevitable target as mineral fertilisers reflectone of the highest inputs both in terms of economy and energy. The aim of the study was to comparethe relationship between the rate of N fertiliser application and different measures of energy.......05) optimisation. Both the new combined indices gave optimum N norms in between the rate ofER an EG. Composted cow manure background did not affect mineral N optimisation significantly. Wesuggest optimisation of mineral N according to bi-dimensional parameters as they capture important fea-tures of production...

  3. European project HOPE (Health Optimization Protocol for Energy-efficient Buildings)

    NARCIS (Netherlands)

    Bluyssen, P.M.; Cox, C.W.J.; Maroni, M.; Boschi, N.; Raw, G.; Roulet, C.A.; Foradini, F.

    2003-01-01

    In January 2002, a new European project named HOPE (Health Optimization Protocol for Energy-efficient Buildings) started with 14 participants from nine European countries. The final goal of the project is to provide the means to increase the number of energy-efficient buildings, i.e. buildings that

  4. European energy policy: the green book; Politique energetique europeenne: le livre vert

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2006-03-15

    Energy dependence, insecurity of supplies, rise of demand and prices, global warming: these are the characteristics of the energy situation of the 21. century. The new green book of the European Commission about 'a European strategy for a safe, competitive and durable energy' starts from this alarming status and proposes some suggestions for the building up of a new global European energy policy: realization of the European domestic energy markets (a European energy network, a priority interconnection plan for gas networks, a separation of transport and distribution activities for equitable rules, a reinforcement of the competitiveness of the European industry), a joint security of supplies between member states (redefining the EU position about strategic oil and gas reserves), a sustainable, efficient and diversified energy offer, an integrated approach to fight against global warming (improving energy efficiency, development of renewable energy sources, carbon sequestration), encouraging innovation, developing a consistent foreign policy of energy (a clear policy for the security and diversification of energy supplies, energy partnerships between producers, transit countries and other international actors). (J.S.)

  5. Efficient integration of renewable energy into future energy systems. Development of European energy infrastructures in the period 2030 to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Carolin; Uhlig, Jeanette; Zoch, Immo (eds.)

    2011-10-15

    In consideration of strategic climate mitigation, energy security and economic competitiveness goals, the EU passed the Directive 2009/28/EC, including a binding target of 20 per cent renewable energy consumption in the EU by 2020. This target is comprehensive and includes energy generation, transport, heating and cooling sectors. In 2008, renewable energy consumption in the EU was about 10 per cent. So meeting the 20 per cent renewable energy objective will require massive changes in energy production, transmission and consumption in the EU. Furthermore, it is obvious that the development of the energy system will not stop in 2020, but that it will continue towards 2050 and beyond. Over the past century, the European electricity system was developed in line with a national utilit y perspective which heavily emphasised large, centralised conventional power production. Investment decisions for new energy infrastructure and technology were typically made at the national level. In the future, much more energy production will be based on local or regional renewable energy sources (RES). Many consumers may also become energy producers feeding into the infrastructures. Transnational energy transfers will gain in importance. These changes will require very different electricity and gas infrastructures and decision-making processes from today. Lack of infrastructure capacity is already a barrier for the further deployment of RES-based energy production in some regions in Europe. (orig.)

  6. Towards a European renewable-based energy system enabled by smart grid: status and prospects

    DEFF Research Database (Denmark)

    Ding, Yi; Østergaard, Jacob; Wu, Qiuwei

    2011-01-01

    Renewable energy plays an important role in the future energy framework of the European Union. The European Union will reach a 20% share of renewable energy in total energy consumption and increase energy efficiency by 20% by 2020. Smart grids will be the backbone of the future electricity network...... for integrating the high penetration of renewable energy resources. The plans and status of renewable energy resources development and energy policy in Europe are introduced in this paper. The development of smart grid technologies in the European Union is also discussed. The role of Denmark, one of the leading...... countries for developing renewable energy technologies and using renewable energy resources has been emphasized in this paper. ©2011 State Grid Electric Power Research Institute Press....

  7. Spatial decision support system to evaluate crop residue energy potential by anaerobic digestion.

    Science.gov (United States)

    Escalante, Humberto; Castro, Liliana; Gauthier-Maradei, Paola; Rodríguez De La Vega, Reynel

    2016-11-01

    Implementing anaerobic digestion (AD) in energy production from crop residues requires development of decision tools to assess its feasibility and sustainability. A spatial decision support system (SDSS) was constructed to assist decision makers to select appropriate feedstock according to biomethanation potential, identify the most suitable location for biogas facilities, determine optimum plant capacity and supply chain, and evaluate associated risks and costs. SDSS involves a spatially explicit analysis, fuzzy multi-criteria analysis, and statistical and optimization models. The tool was validated on seven crop residues located in Santander, Colombia. For example, fique bagasse generates about 0.21millionm(3)CH4year(-1) (0.329m(3)CH4kg(-1) volatile solids) with a minimum profitable plant of about 2000tonyear(-1) and an internal rate of return of 10.5%. SDSS can be applied to evaluate other biomass resources, availability periods, and co-digestion potential. Copyright © 2016. Published by Elsevier Ltd.

  8. Security of Energy Supply in the New Europe: A Role for the European Atomic Energy Community in the European Union’s Neighbourhood Policy?

    OpenAIRE

    Barnes, Pamela M.

    2008-01-01

    External energy relations are essential components of both the European Union’s search for an overall energy strategy, an Energy Policy for Europe (EPE) and the development of the European Neighbourhood Policy (ENP). In this article questions are posed about the role for the use of nuclear technology as the means of meeting some of the objectives of both areas of policy. As both the EPE and the ENP are dependent on the negotiation of international agreements with third parties for their effec...

  9. PHYSICO-CHEMICAL PROPERTIES OF THE SOLID AND LIQUID WASTE PRODUCTS FROM THE HEAVY METAL CONTAMINATED ENERGY CROPS GASIFICATION PROCESS

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2017-02-01

    Full Text Available The paper presents the results of basic physico-chemical properties of solid (ash and liquid (tar waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Three types of energy crops: Miscanthus x giganteus, Sida hermaphrodita and Spartina Pectinata were used. The experimental plots were established on heavy metal contaminated arable land located in Bytom (southern part of Poland, Silesian Voivodship.

  10. Economic and environmental performance of oilseed cropping systems for biodiesel production : existing cultivation practices in the European Union

    NARCIS (Netherlands)

    Conijn, J.G.; Corre, W.J.; Ruijter, de F.J.

    2011-01-01

    The Ecodiesel project aims at a drastic improvement of the GHG emission of current biodiesel production in the EU. If the biodiesel is produced from crops, the way the crop is cultivated at the farm is very important because calculations have shown that the emission from crop cultivation have a

  11. European energy security. Analysing the EU-Russia energy security regime in terms of interdependence theory

    Energy Technology Data Exchange (ETDEWEB)

    Esakova, Nataliya

    2012-07-01

    Nataliya Esakova performs an analysis of the interdependencies and the nature of cooperation between energy producing, consuming and transit countries focusing on the gas sector. For the analysis the theoretical framework of the interdependence theory by Robert O. Keohane and Joseph S. Nye and the international regime theory are applied to the recent developments within the gas relationship between the European Union and Russia in the last decade. The objective of the analysis is to determine, whether a fundamental regime change in terms of international regime theory is taking place, and, if so, which regime change explanation model in terms of interdependence theory is likely to apply. (orig.)

  12. European energy security analysing the EU-Russia energy security regime in terms of interdependence theory

    CERN Document Server

    Esakova, Nataliya

    2012-01-01

    Nataliya Esakova performs an analysis of the interdependencies and the nature of cooperation between energy producing, consuming and transit countries focusing on the gas sector. For the analysis the theoretical framework of the interdependence theory by Robert O. Keohane and Joseph S. Nye and the international regime theory are applied to the recent developments within the gas relationship between the European Union and Russia in the last decade. The objective of the analysis is to determine, whether a fundamental regime change in terms of international regime theory is taking place, and, if so, which regime change explanation model in terms of interdependence theory is likely to apply.

  13. Energy farming in multiple land use : An opportunity for energy crop introduction in the Netherlands

    NARCIS (Netherlands)

    Londo, H.M.

    2002-01-01

    Concerns about climate change related to fossil fuel carbon dioxide emissions require the development of alternative energy resources. In most scenario studies on future energy supply, bio-energy is one of the dominant renewable alternatives foreseen. Apart from the use of residues and wastes, the

  14. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    Energy Technology Data Exchange (ETDEWEB)

    Ian Bonner; David Muth

    2013-09-01

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented

  15. Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value

    Energy Technology Data Exchange (ETDEWEB)

    Callejon-Ferre, A.J.; Lopez-Martinez, J.A.; Manzano-Agugliaro, F. [Departamento de Ingenieria Rural, Universidad de Almeria, Ctra. Sacramento s/n, La Canada de San Urbano, 04120 Almeria (Spain); Velazquez-Marti, B. [Departamento de Ingenieria Rural y Agroalimentaria, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2011-02-15

    Almeria, in southeastern Spain, generates some 1,086,261 t year{sup -1} (fresh weight) of greenhouse crop (Cucurbita pepo L., Cucumis sativus L., Solanum melongena L., Solanum lycopersicum L., Phaseoulus vulgaris L., Capsicum annuum L., Citrillus vulgaris Schrad. and Cucumis melo L.) residues. The energy potential of this biomass is unclear. The aim of the present work was to accurately quantify this variable, differentiating between crop species while taking into consideration the area they each occupy. This, however, required the direct analysis of the higher heating value (HHV) of these residues, involving very expensive and therefore not commonly available equipment. Thus, a further aim was to develop models for predicting the HHV of these residues, taking into account variables measured by elemental and/or proximate analysis, thus providing an economically attractive alternative to direct analysis. All the analyses in this work involved the use of worldwide-recognised standards and methods. The total energy potential for these plant residues, as determined by direct analysis, was 1,003,497.49 MW h year{sup -1}. Twenty univariate and multivariate equations were developed to predict the HHV. The R{sup 2} and adjusted R{sup 2} values obtained for the univariate and multivariate models were 0.909 and 0.946 or above respectively. In all cases, the mean absolute percentage error varied between 0.344 and 2.533. These results show that any of these 20 equations could be used to accurately predict the HHV of crop residues. The residues produced by the Almeria greenhouse industry would appear to be an interesting source of renewable energy. (author)

  16. Nuclear Energy and European Union; Energia nuclear y la Union Europea

    Energy Technology Data Exchange (ETDEWEB)

    Picamal, B.

    2010-07-01

    The interest shown by the European Institutions in the energy debates, in which the nuclear energy is included as a key component within the energy mix, is obvious. Climate change and energy supply have pushed some countries to publicly express their interest for developing the nuclear energy. These positions are however in contradiction with some others within the European Union which are a lot more critical towards this type of energy and where face-out policies still prevail. Despite the fact that the use of the nuclear energy will remain within the competence of each Member State, the European Union will continue to play a prominent role in the development of an energy strategy based on a low carbon economy. (Author)

  17. Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops.

    Science.gov (United States)

    Farrar, Kerrie; Bryant, David; Cope-Selby, Naomi

    2014-12-01

    Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant-microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant-microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant-microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Research, Education and Innovation Bundling Forces towards a Sustainable European Energy Future

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    New technologies and applied innovation in the field of sustainable energy are needed in order to achieve a competitive and climate neutral Europe. As one of the first three Knowledge and Innovation Communities (KIC) of the European Institute of Innovation and Technology (EIT), KIC InnoEnergy invests in innovation projects and new educational programmes and provides business creation service with the purpose of delivering the disruptive technologies and innovations that Europe requires to meet this ambitious goal. Its stakeholders are top European players in the industry, research institutes, universities and business schools. Six regionally bundled European hubs – Barcelona/Lisbon, Grenoble, Eindhoven, Karlsruhe, Stockholm and Krakow - lead one thematic field each in sustainable energy. The thematic fields addressed range from Intelligent “Energy-efficient Residential Buildings and Cities” over “Energy from Chemical Fuels”, “Renewable Energies”, “Clean Coal Technologies” to “European Smar...

  19. A Spatial-Dynamic Agent-based Model of Energy Crop Introduction in Jiangsu province, China

    Science.gov (United States)

    Shu, K.; Schneider, U. A.; Scheffran, J.

    2012-12-01

    Bioenergy, as one promising option to replace a fraction of conventional fossil fuels and lower net greenhouse gas emissions, has gained many countries', in particular developing ones' attention. Their focus is mainly on the design of efficient bioenergy utilization pathways which adapt to both local geographic features and economic conditions. The establishment of a biomass production sector would be the first and pivotal component in the whole industrial chain. Several existing studies have estimated the global biomass for energy potential but arrived at very different results. One reason for the large uncertainty of biomass potential may be ascribed to the diverse nature of biomass leading to different estimates in different circumstances. Therefore, specific research at the local level is essential. Following this thought, our research conducted in the Jiangsu province, a representative region in China, will explore the spatial distribution of biomass production. The employed methodology can also be applied to other locations both in China and similar developing countries if model parameters are adequately adjusted. In this study, we analyze the local situation in the Jiangsu province focusing on the selection of new energy crops, since the cultivation of dedicated crop for energy use is still in experimental phase. We also examine the land use conflict which is especially relevant to China with more than 1.3 billion people and a severe burden on food supply. We develop an agent-based model to find the optimal spatial distribution of biomass (SDA-SDB) in Jiangsu province. Compromising data accessibility and heterogeneity of environmental factors across the province, we resolve our model at county level and consider the aggregated farming community in one county as a single agent. The aim of SDA-SDB is to simulate farmers' decision process of allocating land to either food or energy crops facing limited resources and political targets for bioenergy development

  20. Water-food-energy nexus index: analysis of water-energy-food nexus of crop's production system applying the indicators approach

    Science.gov (United States)

    El-Gafy, Inas

    2017-10-01

    Analysis the water-food-energy nexus is the first step to assess the decision maker in developing and evaluating national strategies that take into account the nexus. The main objective of the current research is providing a method for the decision makers to analysis the water-food-energy nexus of the crop production system at the national level and carrying out a quantitative assessment of it. Through the proposed method, indicators considering the water and energy consumption, mass productivity, and economic productivity were suggested. Based on these indicators a water-food-energy nexus index (WFENI) was performed. The study showed that the calculated WFENI of the Egyptian summer crops have scores that range from 0.21 to 0.79. Comparing to onion (the highest scoring WFENI,i.e., the best score), rice has the lowest WFENI among the summer food crops. Analysis of the water-food-energy nexus of forty-two Egyptian crops in year 2010 was caried out (energy consumed for irrigation represent 7.4% of the total energy footprint). WFENI can be applied to developed strategies for the optimal cropping pattern that minimizing the water and energy consumption and maximizing their productivity. It can be applied as a holistic tool to evaluate the progress in the water and agricultural national strategies. Moreover, WFENI could be applied yearly to evaluate the performance of the water-food-energy nexus managmant.

  1. Predicting greenhouse gas emissions and soil carbon from changing pasture to an energy crop.

    Directory of Open Access Journals (Sweden)

    Benjamin D Duval

    Full Text Available Bioenergy related land use change would likely alter biogeochemical cycles and global greenhouse gas budgets. Energy cane (Saccharum officinarum L. is a sugarcane variety and an emerging biofuel feedstock for cellulosic bio-ethanol production. It has potential for high yields and can be grown on marginal land, which minimizes competition with grain and vegetable production. The DayCent biogeochemical model was parameterized to infer potential yields of energy cane and how changing land from grazed pasture to energy cane would affect greenhouse gas (CO2, CH4 and N2O fluxes and soil C pools. The model was used to simulate energy cane production on two soil types in central Florida, nutrient poor Spodosols and organic Histosols. Energy cane was productive on both soil types (yielding 46-76 Mg dry mass · ha(-1. Yields were maintained through three annual cropping cycles on Histosols but declined with each harvest on Spodosols. Overall, converting pasture to energy cane created a sink for GHGs on Spodosols and reduced the size of the GHG source on Histosols. This change was driven on both soil types by eliminating CH4 emissions from cattle and by the large increase in C uptake by greater biomass production in energy cane relative to pasture. However, the change from pasture to energy cane caused Histosols to lose 4493 g CO2 eq · m(-2 over 15 years of energy cane production. Cultivation of energy cane on former pasture on Spodosol soils in the southeast US has the potential for high biomass yield and the mitigation of GHG emissions.

  2. GEOTHERMAL ENERGY DEVELOPMENT STRATEGY IN REPUBLIC OF CROATIA DUE TO PROMOTION OF RENEWABLE ENERGY IN EUROPEAN UNION

    OpenAIRE

    Golub, Miroslav; Kurevija, Tomislav

    2007-01-01

    According to European Strategy for sustainable, competitive and secure energy, which guidelines are described in two documents: ‘’Green Paper: a European Strategy for Sustainable, Competitive and Secure Energy’’ and ‘’White Paper: Energy for the Future: Renewable Sources of Energy’’, it is predicted that share of renewable energy resources in total energy balance will raise from present 6% up to 15% until 2015. Croatia, as candidate country for EU admittance, with growing dependency upon impo...

  3. The phytoremediation potential of heavy metals from soil using Poaceae energy crops: A review

    Directory of Open Access Journals (Sweden)

    Melissa PRELAC

    2016-09-01

    Full Text Available Phytoremediation is a method that use plants which can remove or stabilize pollutants in the environment. The aim of the polluted area remediation is to return ecosystems into original condition. Phytoremediation is a green technology used for a wide range of pollutants as well as on various lands, low costs and reduced environment impacts. Energy crops are relatively new in this field of researches and insufficiently explored. However, the results so far show their potential in heavy metal removal. The aim of this research was to examine the available literature and determine the phytoremediation potential of cadmium, chromium, copper, lead, mercury, nickel and zinc from the soil using Arundo donax, Miscanthus x giganteus, Panicum virgatum, Pennisetum purpureum, Sida hermaphrodita and Sorghum x drummondii. According to the researches conditions, studied energy crops are reccomended in heavy metals phytoextraction, rhizofiltration, stabilization and accumulation. Still, those plants accumulate higher concentrations of heavy metals in the rhizosphere which makes them heavy metals excluders since heavy metals are not translocated into the plants' shoot system and favorable in the implementation of rhizofiltration as well.

  4. Energy efficiency in the European water industry. A compendium of best practices and case studies

    Energy Technology Data Exchange (ETDEWEB)

    Frijns, J. [Watercycle Research Institute KWR, Nieuwegein (Netherlands); Uijterlinde, C. [Foundation for Applied Water Research STOWA, Amersfoort (Netherlands)

    2010-02-15

    This European report on best practices of energy efficiency in the water industry showcases 23 energy efficiency initiatives which were collected as case studies from European water utilities. The 25 case studies presented in this report will be submitted to UKWIR and Black and Veatch, for potential inclusion in the Global Water Research Coalition (GWRC) global compendium of best practice case studies. The aim of the GWRC-compendium is to identify the promising developments and future opportunities to help deliver incremental improvements in energy efficiency through optimisation of existing assets and operations. But also more substantial improvements in energy efficiency from the adoption of novel (but proven at full scale) technologies. The European report describes case studies from: Belgium, Denmark, France, Germany, Hungary, Netherlands, Norway, Spain and Switzerland. Black and Veatch has gathered furthermore information on 47 cases from the UK. These are reported separately and are not included in this European overview.

  5. Perspectives and Problems of Harmonizing Energy Legislation of Ukraine with the European Union Standards

    Directory of Open Access Journals (Sweden)

    Volodymyrivna Komelina Olha

    2017-12-01

    Full Text Available Essence, features and components of the energy market was investigated in the article. Regulatory support of energy efficiency and energy saving in the European Union and Ukraine was analyzed. Ukraine obligations due to the harmonization of the energy legislation with the EU standards were defined. Problems in the housing and communal services (HCS as one of the largest consumers of energy resources were revealed.

  6. Calculation of the yearly energy performance of heating systems based on the European Building Energy Directive and related CEN Standards

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; de Carli, Michele

    2011-01-01

    According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting...... systems. This energy declaration must refer to the primary energy or CO2 emissions. The European Organization for Standardization (CEN) has prepared a series of standards for energy performance calculations for buildings and systems. This paper presents related standards for heating systems. The relevant......–20% of the building energy demand. The additional loss depends on the type of heat emitter, type of control, pump and boiler. Keywords: Heating systems; CEN standards; Energy performance; Calculation methods...

  7. Energy balances of bioenergy crops (Miscanthus, maize, rapeseed) and their CO2-mitigation potential on a regional farm scale

    Science.gov (United States)

    Felten, D.; Emmerling, C.

    2012-04-01

    Increasing cultivation of energy crops in agriculture reveals the progressive substitution of fossil fuels, such as crude oil or brown coal. For the future development of renewable resources, the efficiency of different cropping systems will be crucial, as energy crops differ in terms of the energy needed for crop cultivation and refinement and the respective energy yield, e.g. per area. Here, balancing is certainly the most suitable method for the assessment of cropping system efficiency, contrasting energy inputs with energy outputs and the related CO2 emissions with potential CO2 credits due to substitution of fossil fuels, respectively. The aim of the present study was to calculate both energy and CO2 balances for rapeseed and maize, representing the recently most often cultivated energy crops in Germany, on a regional farm scale. Furthermore, special emphasis was made on perennial Miscanthus x giganteus, which is commonly used as a solid fuel for combustion. This C4-grass is of increasing interest due to its high yield potential accompanied by low requirements for soil tillage, weed control, and fertilization as well as long cultivation periods up to 25 years. In contrast to more general approaches, balances were calculated with local data from commercial farms. The site-specific consumption of diesel fuel was calculated using an online-based calculator, developed by the German Association for Technology and Structures in Agriculture (KTBL). By balancing each of the aforementioned cropping systems, our research focused on (i) the quantification of energy gains and CO2 savings due to fossil fuel substitution and (ii) the assessment of energy efficiency, expressed as the ratio of energy output to input. The energy input was highest for maize sites (33.8 GJ ha-1 yr-1), followed by rapeseed (18.2 GJ ha-1 yr-1), and Miscanthus (1.1 GJ ha-1 yr-1); corresponding energy yields were 129.5 GJ ha-1 yr-1 (maize), 83.6 GJ ha-1 yr-1 (rapeseed), and 259.7 GJ ha-1 yr-1

  8. European Union energy handbook; Petit memento energetique de l'Union Europeenne

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    While providing graphs and data tables, this document presents and comments key figures about energy in the European Union. The first part gives an overview of the general energy accounting, outlines its traps, gives the main demographic and economic indicators for each of the 27 members, defines and describes the energy production and consumption indicators, and gives an energy appraisal for the European Union. Then, it more specifically deals with final energy consumption in the European Union (per energy source, per sector), with primary energy production and consumption per source (oil products, natural gas, coal, biomass, uranium), with electricity production and consumption, with heat production and consumption. After this overview on energy production and consumption, a set of sheets deals with greenhouse gases and nuclear wastes (climate change and greenhouse gases, carbon dioxide emissions, methane emissions, nitrogen oxide emissions, industrial gas emissions, nuclear wastes). The last part deals with the European policies in terms of energy and climate, of energy efficiency, of renewable energies, and of reduction of greenhouse gas emissions

  9. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production.

    Science.gov (United States)

    Coles, Graeme D; Wratten, Stephen D; Porter, John R

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.

  10. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production

    Directory of Open Access Journals (Sweden)

    Graeme D. Coles

    2016-07-01

    Full Text Available Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.

  11. European Energy Security and Nord Stream: A Case Study of the Nord Stream Pipeline, Its Opportunities and Risks for Europe, and Its Impact on European Energy Security

    Science.gov (United States)

    2011-06-01

    2010, 5.75% of all petrol -driven cars will run on bio- fuels. This target will not be achieved. 119 Ibid., 22–23. 120 Belkin, The European Union’s...ENERGY SECURITY .................................................................................. 10 1. Electricity and Transportation...OPPORTUNITIES VS . RISKS: IMPACTS ON EUROPE ...................... 96 VI. CONCLUSION

  12. European Perspectives on the Adoption of Non-Chemical Weed Management in Reduced Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, B.; Munier-Jolan, N.; Schwarz, J.

    2012-01-01

    Non-inversion tillage with tine or disc based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape (canola) and maize (corn) in Europe. However, new regulations on pesticide use may hinder further...

  13. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops

    NARCIS (Netherlands)

    Melander, B.; Munier-Jolain, N.M.; Charles, R.; Wirth, J.; Schwarz, J.; Weide, van der R.Y.; Bonin, L.; Jensen, P.K.; Kudsk, P.K.

    2013-01-01

    Noninversion tillage with tine- or disc-based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape, and maize in Europe. However, new regulations on pesticide use might hinder further expansion of

  14. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad

    DEFF Research Database (Denmark)

    Lamichhane, Jay Ram; Devos, Yann; Beckie, Hugh J.

    2017-01-01

    Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation...... of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops...... are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM...

  15. TAXATION OF ENERGY PRODUCTS AND ELECTRICITY TO THE EUROPEAN UNION LEVEL

    Directory of Open Access Journals (Sweden)

    PĂUNESCU ALBERTO NICOLAE

    2012-06-01

    Full Text Available U.E established to increase socio-economic stability and security of supply, the Energy Community has set a good example of regional cooperation in which the EU and the South-Eastern European countries can diversify their energy sources. It has created a functioning institutional framework and more legal certainty for investors. Next steps are to enhance market reforms and to boost investments in the energy sector. The final objective is that the regional market should be fully integrated in the European's internal energy market

  16. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Green, Pamela J. [Univ. of Delaware, Newark, DE (United States)

    2015-08-11

    MicroRNAs (miRNAs) contribute to the control of numerous biological processes through the regulation of specific target mRNAs. Although the identities of these targets are essential to elucidate miRNA function, the targets are much more difficult to identify than the small RNAs themselves. Before this work, we pioneered the genome-wide identification of the targets of Arabidopsis miRNAs using an approach called PARE (German et al., Nature Biotech. 2008; Nature Protocols, 2009). Under this project, we applied PARE to Brachypodium distachyon (Brachypodium), a model plant in the Poaceae family, which includes the major food grain and bioenergy crops. Through in-depth global analysis and examination of specific examples, this research greatly expanded our knowledge of miRNAs and target RNAs of Brachypodium. New regulation in response to environmental stress or tissue type was found, and many new miRNAs were discovered. More than 260 targets of new and known miRNAs with PARE sequences at the precise sites of miRNA-guided cleavage were identified and characterized. Combining PARE data with the small RNA data also identified the miRNAs responsible for initiating approximately 500 phased loci, including one of the novel miRNAs. PARE analysis also revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. The project included generation of small RNA and PARE resources for bioenergy crops, to facilitate ongoing discovery of conserved miRNA-target RNA regulation. By associating specific miRNA-target RNA pairs with known physiological functions, the research provides insights about gene regulation in different tissues and in response to environmental stress. This, and release of new PARE and small RNA data sets should contribute basic knowledge to enhance breeding and may suggest new strategies for improvement of biomass energy crops.

  17. Comparison of GHG fluxes from conventional and energy crop production from adjacent fields in the UK, using novel technologies

    Science.gov (United States)

    Keane, James Benjamin; Ineson, Phil; Toet, Sylvia; Stockdale, James; Vallack, Harry; Blei, Emanuel; Bentley, Mark; Howarth, Steve

    2016-04-01

    With combustion of fossil fuels driving anthropogenic climate change, allied to a diminishing global reserve of these resources it is vital for alternative sources of energy production to be investigated. One alternative is biomass; ethanol fermented from corn (Zea mays) or sugar cane (Saccharum spp.) has long been used as a petroleum substitute, and oilseed rape (OSR, Brassica napus) is the principal feedstock for biodiesel production in Germany, the third biggest producer of this fuel globally. Diverting food crops into energy production would seem counter-productive, given there exists genuine concern regarding our ability to meet future global food demand, thus attention has turned to utilising lignocellulosic material: woody tissue and non-food crop by-products such as corn stover. For this reason species such as the perennial grass Miscanthus (Miscanthus x giganteus) are being cultivated for energy production, and these are referred to as second generation energy crops. They are attractive since they do not deplete food supplies, have high yields, require less fertiliser input than annual arable crops, and can be grown on marginal agricultural land. To assess the effectiveness of a crop for bioenergy production, it is vital that accurate quantification of greenhouse gas (GHG) fluxes is obtained for their cultivation in the field. We will present data from a series of studies investigating the GHG fluxes from the energy crops OSR and Miscanthus under various nutrient additions in a comparison with conventional arable cropping at the same site in the United Kingdom (UK). A combination of methods were employed to measure fluxes of CO2, CH4 and N2O from both soil and vegetation, at various temporal and spatial scales. Conventional manual chambers were deployed on a monthly regime to quantify soil GHG fluxes, and were supplemented with automated soil flux chambers measuring soil respiration at an hourly frequency. Additionally, two novel automated chamber systems

  18. Quantitative modeling of the Water Footprint and Energy Content of Crop and Animal Products Consumption in Tanzania

    Directory of Open Access Journals (Sweden)

    felichesmi Selestine lyakurwa

    2014-05-01

    Full Text Available A comprehensive understanding of the link between water footprint and energy content of crop and animal products is vitally important for the sound management of water resources. In this study, we developed a mathematical relationship between water content, and energy content of many crops and animal products by using an improved LCA approach (water footprint. The standard values of the water and energy contents of crops and animal products were obtained from the databases of Agricultural Research Service, UNESCO Institute for water education and Food, and Agriculture Organization of the United Nations. The water footprint approach was applied to analyze the relationship between water requirement and energy of content of crop and animal products, in which the uncertainty and sensitivity was evaluated by Monte Carlo simulation technique that is contained in the Oracle Crystal Ball Fusion Edition v11.1.1.3.00. The results revealed significant water saving due to changes in food consumption pattern i.e. from consumption of more meat to vegetables. The production of 1kcal of crop and animal products requires about 98% of green, 4.8% blue water and 0.4% of gray water. In which changes in consumption pattern gave annual blue water saving of about 1605 Mm3 that is equivalent to 41.30m3/capita, extremely greater than the standard drinking water requirement for the whole population. Moreover, the projected results indicated, triple increase of dietary water requirement from 30.9 Mm3 in 2005 to 108 Mm3 by 2050. It was also inferred that, Tanzania has a positive virtual water balance of crop and animal products consumption with net virtual water import of 9.1 Mm3 that is the contribution margin to the water scarcity alleviation strategy. Therefore, developed relationship of water footprint and energy content of crops and animal products can be used by water resource experts for sustainable freshwater and food supply.

  19. Travelling energy systems: knowledge transfer for energy efficiency and conservation from European to Australian building projects

    Energy Technology Data Exchange (ETDEWEB)

    Glad, Wiktoria (Tema Technology and Social Change, Linkoeping Univ. (Sweden); Inst. for Sustainable Futures, Univ. of Technology, Sydney (Australia))

    2009-07-01

    Energy efficiency and conservation in the Australian built environment have not yet been implemented to any great extent. Despite favourable prerequisites, such as vast windswept unpopulated areas suitable for wind power and many hours of direct sunlight in most populated areas, electricity is mainly generated by burning brown coal and buildings are poorly equipped for hot summers and cool winters. Australia urgently needs to convert to alternative energy sources and implement energy efficiency measures, since its carbon dioxide emissions per capita are among the highest in the world. In a recent major redevelopment in Sydney, the Carlton and United Brewery (CUB) site knowledge of energy efficiency and conservation measures used in European buildings was transferred and implemented in local designs and infrastructure. This knowledge came mainly from urban planning and developments in London, but also from high-profile architectural firms based in Paris and Germany. The arrival of this knowledge in Australia led to phases when the knowledge was translated and enacted in local spaces and the constituent ideas were transformed into action. The present research is based on ten months of ethnographic fieldwork in which the planning and design of the CUB site was observed. The results of the study identify barriers to and opportunities for energy system knowledge transfer between different cultures and local spaces. Substantial time must be spent overcoming cultural barriers, so the involved parties can start talking the same language. This is not only true for stakeholders operating in different continents, but for stakeholders operating in different local arenas in the same country.

  20. European resource assessment for geothermal energy and CO2 storage

    NARCIS (Netherlands)

    Wees, J.D. van; Neele, F.

    2013-01-01

    Geothermal Energy and CO2 Capture and Storage (CCS) are both considered major contributors to the global energy transition. Their success critically depends on subsurface resource quality, which in turn depends on specific subsurface parameters. For CCS and Geothermal Energy these in some respect

  1. Mission Impossible? 100% Renewable Energy Society: The European Story - Denmark

    DEFF Research Database (Denmark)

    Europe and particularly Denmark has very ambitious renewable energy commitments for the coming decades. In this presentation the 2020 energy targets of Europe and the 2050 objectives are presented and discussed. This is followed by a detailed presentation and discussion of the 2050 Energy Strategy...

  2. Ecosystem-service tradeoffs associated with switching from annual to perennial energy crops in riparian zones of the US Midwest.

    Directory of Open Access Journals (Sweden)

    Timothy D Meehan

    Full Text Available Integration of energy crops into agricultural landscapes could promote sustainability if they are placed in ways that foster multiple ecosystem services and mitigate ecosystem disservices from existing crops. We conducted a modeling study to investigate how replacing annual energy crops with perennial energy crops along Wisconsin waterways could affect a variety of provisioning and regulating ecosystem services. We found that a switch from continuous corn production to perennial-grass production decreased annual income provisioning by 75%, although it increased annual energy provisioning by 33%, decreased annual phosphorous loading to surface water by 29%, increased below-ground carbon sequestration by 30%, decreased annual nitrous oxide emissions by 84%, increased an index of pollinator abundance by an average of 11%, and increased an index of biocontrol potential by an average of 6%. We expressed the tradeoffs between income provisioning and other ecosystem services as benefit-cost ratios. Benefit-cost ratios averaged 12.06 GJ of additional net energy, 0.84 kg of avoided phosphorus pollution, 18.97 Mg of sequestered carbon, and 1.99 kg of avoided nitrous oxide emissions for every $1,000 reduction in income. These ratios varied spatially, from 2- to 70-fold depending on the ecosystem service. Benefit-cost ratios for different ecosystem services were generally correlated within watersheds, suggesting the presence of hotspots--watersheds where increases in multiple ecosystem services would come at lower-than-average opportunity costs. When assessing the monetary value of ecosystem services relative to existing conservation programs and environmental markets, the overall value of enhanced services associated with adoption of perennial energy crops was far lower than the opportunity cost. However, when we monitized services using estimates for the social costs of pollution, the value of enhanced services far exceeded the opportunity cost. This

  3. Ecosystem-service tradeoffs associated with switching from annual to perennial energy crops in riparian zones of the US Midwest.

    Science.gov (United States)

    Meehan, Timothy D; Gratton, Claudio; Diehl, Erica; Hunt, Natalie D; Mooney, Daniel F; Ventura, Stephen J; Barham, Bradford L; Jackson, Randall D

    2013-01-01

    Integration of energy crops into agricultural landscapes could promote sustainability if they are placed in ways that foster multiple ecosystem services and mitigate ecosystem disservices from existing crops. We conducted a modeling study to investigate how replacing annual energy crops with perennial energy crops along Wisconsin waterways could affect a variety of provisioning and regulating ecosystem services. We found that a switch from continuous corn production to perennial-grass production decreased annual income provisioning by 75%, although it increased annual energy provisioning by 33%, decreased annual phosphorous loading to surface water by 29%, increased below-ground carbon sequestration by 30%, decreased annual nitrous oxide emissions by 84%, increased an index of pollinator abundance by an average of 11%, and increased an index of biocontrol potential by an average of 6%. We expressed the tradeoffs between income provisioning and other ecosystem services as benefit-cost ratios. Benefit-cost ratios averaged 12.06 GJ of additional net energy, 0.84 kg of avoided phosphorus pollution, 18.97 Mg of sequestered carbon, and 1.99 kg of avoided nitrous oxide emissions for every $1,000 reduction in income. These ratios varied spatially, from 2- to 70-fold depending on the ecosystem service. Benefit-cost ratios for different ecosystem services were generally correlated within watersheds, suggesting the presence of hotspots--watersheds where increases in multiple ecosystem services would come at lower-than-average opportunity costs. When assessing the monetary value of ecosystem services relative to existing conservation programs and environmental markets, the overall value of enhanced services associated with adoption of perennial energy crops was far lower than the opportunity cost. However, when we monitized services using estimates for the social costs of pollution, the value of enhanced services far exceeded the opportunity cost. This disparity between

  4. European Electricity Market and EU Members'Energy Policies

    OpenAIRE

    Veselý, Aleš

    2012-01-01

    The main focus of this thesis is to find out what factors have the biggest influence on the price of electricity for household consumers in the European Union in the context of creating the internal electricity market in the EU. By means of the cluster analysis six EU Member States have been selected according to the following criteria: electricity consumption, electricity production, and the price of electricity. As a result of that Belgium, the Czech Republic, Estonia, Hungary, Malta and Sw...

  5. International Rivalry In The Energy Sector: The Eastern European Market Of Atomic Energy In Focus

    Directory of Open Access Journals (Sweden)

    Y. V. Borovsky

    2017-01-01

    Full Text Available In the post-bipolar world nuclear power has become one of the areas of competition and rivalry betweenRussiaand the West. The comprehensive analysis of theoretical publications allows us to consider international competition as an abstract, depoliticized contest of states and other international actors (including companies for some limited (mainly economic benefits. International rivalry is more a political process, necessarily involving some rival pairs of states (or groups of states that compete with each other not only to get some benefits, but to expand their territory or power. The competition and rivalry betweenRussiaand the West in the sphere of nuclear power are especially apparent in the Eastern European region where the American, European and Japanese corporations, with the support of the Western foreign ministries and EU institutions, try to achieve two main goals. The first goal is to win the contracts to build new power units, especially in tenders where Rosatom participates. The second goal is to become suppliers of nuclear fuel for multiple Russian- or Soviet-made VVER-type reactors, which are functioning or will be run in a number of countries in the region (Slovakia,CzechRepublic,Hungary,Bulgaria, andUkraine. Such activities can involve high risks. The West’s efforts to curb the dominant position of "Rosatom" inEastern Europeare formally associated with the need to create a "competitive market" of nuclear services in the region and to ensure the European energy security. It is also noteworthy that the expansion of Rosatom (and its predecessors to foreign markets, including Eastern Europe, is actively supported by the Russian state which in the second half of the 1990s – after a failed attempt of following in the footsteps of the West – joined in the rivalry, mostly imposed by the U.S. and their allies. As shown by the analysis,Russiaand the West, primarily theUnited States, are involved in the nuclear power sector to

  6. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    Directory of Open Access Journals (Sweden)

    E. Boegh

    2013-10-01

    Full Text Available Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom, Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI and leaf chlorophyll (CHLl using remote sensing data. In this study, high spatial resolution (10–20 m remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC

  7. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    Science.gov (United States)

    Boegh, E.; Houborg, R.; Bienkowski, J.; Braban, C. F.; Dalgaard, T.; van Dijk, N.; Dragosits, U.; Holmes, E.; Magliulo, V.; Schelde, K.; Di Tommasi, P.; Vitale, L.; Theobald, M. R.; Cellier, P.; Sutton, M. A.

    2013-10-01

    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10-20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well

  8. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    KAUST Repository

    Boegh, E.

    2013-10-07

    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10-20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well

  9. Transformation of Polish Energy Policy in the Context of Changes in European Union Member States

    Directory of Open Access Journals (Sweden)

    Radosław Szczerbowski

    2015-09-01

    Full Text Available This paper presents the development of the Polish energy system in the context of the changes taking place in the energy systems of other European Union Member States. Power system development plans in selected European countries were analysed, as well as their impact on the development of the national energy system. To be effective, an energy policy must affect the investment decisions of business entities. Poland is at the time when it should create the optimal energy mix concept and consistently strive for its implementation. This paper aims to show the real direction of growth in the electricity generation assets in Poland, as well as to indicate the possible impact of trends in the policies of European Union Member States on the electricity market in Poland.

  10. Sustainable energy crop: An analysis of ethanol production from cassava in Thailand

    Science.gov (United States)

    Ubolsook, Aerwadee

    The first essay formulates a dynamic general equilibrium optimal control model of an energy crop as part of a country's planned resource use over a period of time. The model attempts to allocate consumption, production, and factors of production to achieve the country's sustainable development goal. A Cobb-Douglas specification is used for both utility and production functions in the model. We calibrate the model with Thailand data. The selected model is used to generate the stationary state solution and to simulate the optimal policy function and optimal time paths. Two methods are used: a linear approximation method and the Runke-Kutta reverse shooting method. The model provides numerical results that can be used as information for decision makers and stakeholders to devise an economic plan to achieve sustainable development goals. The second essay studies the effect of international trade and changes in labor supply, land supply, and the price of imported energy on energy crop production for bio fuel and food, as well as impacts on social welfare. We develop a dynamic general equilibrium model to describe two baseline scenarios, a closed economy and an open economy. We find that international trade increases welfare and decreases the energy price. Furthermore, resources are allocated to produce more food under the open economy scenario than the quantities produced under a closed economy assumption. An increase in labor supply and land supply result in an increase in social welfare. An increase in imported energy price leads to a welfare loss, higher energy production, and lower food production. The third essay develops a partial equilibrium econometric model to project the impacts of an increase in ethanol production on the Thai agriculture sector over the next ten years. The model is applied to three scenarios for analyzing the effect of government ethanol production targets. The results from the baseline model and scenario analysis indicate that an expansion

  11. Productivity of giant reed (Arundo donax L. and miscanthus (Miscanthus x giganteus Greef et Deuter as energy crops: growth analysis

    Directory of Open Access Journals (Sweden)

    Nicoletta Nassi o Di Nasso

    2011-07-01

    Full Text Available The growing interest in bioenergy crops is leading to the development of new research aims. In fact, there is a lack of knowledge of most of these crops in terms of suitability to specific environmental conditions and of biotic and abiotic influences. The objective of our study was to compare giant reed (Arundo donax L. and miscanthus (Miscanthus × giganteus Greef et Deuter, two promising lignocellulosic energy crops in Southern Europe, in terms of productivity, through growth analysis, in order to understand environmental and/or management constraints to crop development. Our research was carried out in 2009, in San Piero a Grado, Pisa (Central Italy; latitude 43°41’ N, longitude 10°21’ E, on a seven-year-old crop, in loam soil characterised by good nutrient and water availability. Results confirmed high yields in both species, about 40 t/ha/yr in miscanthus and 30 t/ha/yr in giant reed, achieved in the second half of October. Different growth strategies were noted as miscanthus developed a greater number of stems per square meter and higher stems, although it showed minor basal stem diameter and leaf area changes. In addition, the physiological difference between crop pathways (C3 in giant reed vs C4 in miscanthus in a non-limiting environment allowed miscanthus to perform better. As a result, the choice of the proper crop has to be made in order to obtain maximum yield levels, minimising external inputs and optimising the land use.

  12. Impacts of Renewable Energy on European Farmers. Creating benefits for farmers and society

    OpenAIRE

    Pedroli, G.B.M.; Langeveld, H.

    2011-01-01

    This report presents results of the project Impacts of Renewable Energy on European Farmers. It focuses on the (potential) role that on-farm generation of Renewable Energy in the EU-27 may play both in realisation of national and EU environmental targets as in (re)vitalising agriculture and rural economy in different regions of the Union. Renewable Energy (RE) in this respect includes the energy generated on farms by using wind, PV, solar thermal, hydro, geothermal or biomass resources.

  13. Modeling surface energy fluxes from a patchwork of fields with different soils and crops

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart

    2017-04-01

    Agroecosystems are a dominant terrestrial land-use on planet earth and cover about 36% of the ice-free surface (12% pasture, 26% agriculture) [Foley2011]. Within this land use type, management practices vary strongly due to climate, cultural preferences, degree of industrialization, soil properties, crop rotations, field sizes, degree of land use sustainability, water availability, sowing and harvest dates, tillage, etc. These management practices influence abiotic environmental factors like water flow and heat transport within the ecosystem leading to changes of land surface fluxes. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. Thus, the structure of turbulence and the albedo evolve during the cropping period and large variations of heat can be measured on the field scale [Aubinet2012]. One issue of local distributed mixture of different land use is the measurement process which makes it challenging to evaluate simulations. Unfortunately, for meteorological flux-measurements like the Flux-Gradient or the Eddy Covariance (EC) method, comparability with simulations only exists in the ideal case, where fields have to be completely uniform in land use and flat within the reach of the footprint. Then a model with one specific land use would have the same underlying source area as the measurement. An elegant method to avoid the shortcoming of grid cell resolution is the so called mixed approach, which was recently implemented into the ecosystem model framework Expert-N [Biernath et al. 2013]. The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the

  14. Energy efficiency in the European Union 1990-2000. Save-Odyssee project on energy efficiency indicators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The European Odyssee project on energy efficiency indicators was initiated in 1990. It benefits from the combined support of the SAVE programme of the European Commission, of Ademe and of 15 national Efficiency Agencies within the European network of energy efficiency agencies. The objective of the project is to develop and maintain indicators that enable to review progress in energy efficiency and CO{sub 2} emissions abatement, by sector, end-use, etc.. for each country and the EU as a whole. This report presents an assessment of energy efficiency progress in the European Union as a whole over the period 1990-2000. This evaluation is based on the indicators produced from the ODYSSEE database. This evaluation completes the assessments made by each country that are published separately in national reports. The report starts with an assessment of the overall energy efficiency trends in the EU. Then the trends are reviewed by sector, at different levels of aggregation, using the ODYSSEE indicators. A first annex presents the recent developments (2000-2001) in energy efficiency, CO{sub 2} and price policies in the EU countries and Norway. A second annex compiles selected graphs with the appropriate comments to summarize the energy efficiency trends, globally and by sector.

  15. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.

    Science.gov (United States)

    Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar

    2017-12-18

    The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Use of energy crops for domestic heating with a mural boiler

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Juan F.; Gonzalez-Garcia, Carmen M.; Ramiro, Antonio; Ganan, Jose [Dpto. de Ingenieria Quimica y Energetica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz (Spain); Ayuso, Antonio [Dpto. de Cultivos Intensivos, Servicio de Investigacion y Desarrollo Tecnologico de la Junta de Extremadura, Finca La Orden, 06187, Guadajira (Badajoz) (Spain); Turegano, Joao [Dpto. de Expresion Grafica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz (Spain)

    2006-08-15

    The combustion process of two residues from energy crops in a 12 kW mural boiler for domestic heating was studied. The fuels used were common reed (Arundo donax L.), sorghum (Sorghum bicolor L.) and forest pellet recommended by the boiler manufacturer. A comparison with the combustion process of two industrial residues (tomato residue and almond pruning) and other energy crop (Cynara cardunculus L.) has been established. The experimental tests carried out in 'La Orden' farm on common reed and sorghum cultivation revealed a production of dry biomass of 35 and 30 t/ha, respectively. Previously, the fuels were characterised by means of the higher heating value, proximate and ultimate analyses. The influence of the residue type, fuel mass flow, draught and residues mixture on the combustion parameters has been studied. A TESTO 300 M-I analyzer was employed to determinate the principal parameters of the combustion process (CO{sub 2}, CO, and O{sub 2} contents, fumes temperature, not-burnt gaseous and sensitive heat losses in the fumes, air excess coefficient, flow rate and velocity of the fumes, and efficiency). The behaviour shown by the two studied residues was similar to that of the forest pellet. The boiler efficiencies obtained with the maximum fuel mass flow (100%) and minimum draught (0%) were 84% and 85.3% for reed and sorghum pellets, respectively. The obtained efficiency with the forest pellet was 90.5%. The optimum residue mixture assayed was almond pruning (75%) and sorghum (25%), with a boiler efficiency of 87.2% for a mass flow and draught of 100% and 0%, respectively. (author)

  17. Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out?

    Science.gov (United States)

    Agostini, Francesco; Gregory, Andrew S; Richter, Goetz M

    Soil organic carbon (SOC) changes associated with land conversion to energy crops are central to the debate on bioenergy and their potential carbon neutrality. Here, the experimental evidence on SOC under perennial energy crops (PECs) is synthesised to parameterise a whole systems model and to identify uncertainties and knowledge gaps determining PECs being a sink or source of greenhouse gas (GHG). For Miscanthus and willow (Salix spp.) and their analogues (switchgrass, poplar), we examine carbon (C) allocation to above- and belowground residue inputs, turnover rates and retention in the soil. A meta-analysis showed that studies on dry matter partitioning and C inputs to soils are plentiful, whilst data on turnover are rare and rely on few isotopic C tracer studies. Comprehensive studies on SOC dynamics and GHG emissions under PECs are limited and subsoil processes and C losses through leaching remain unknown. Data showed dynamic changes of gross C inputs and SOC stocks depending on stand age. C inputs and turnover can now be specifically parameterised in whole PEC system models, whilst dependencies on soil texture, moisture and temperature remain empirical. In conclusion, the annual net SOC storage change exceeds the minimum mitigation requirement (0.25 Mg C ha-1 year-1) under herbaceous and woody perennials by far (1.14 to 1.88 and 0.63 to 0.72 Mg C ha-1 year-1, respectively). However, long-term time series of field data are needed to verify sustainable SOC enrichment, as the physical and chemical stabilities of SOC pools remain uncertain, although they are essential in defining the sustainability of C sequestration (half-life >25 years).

  18. Sustainability Begets Unsustainability?: The European Union's Drive ...

    African Journals Online (AJOL)

    The mandatory target for the European Union (EU) for the use of renewable energy in transport by the year 2020 has created a situation where the African continent has witnessed a number of European agricultural firms gaining access to large tracts of land in order to grow crops for the production of agrofuels. This article ...

  19. Particulate concentrations during on-farm combustion of energy crops of different shapes and harvest seasons

    Science.gov (United States)

    Fournel, S.; Palacios, J. H.; Morissette, R.; Villeneuve, J.; Godbout, S.; Heitz, M.; Savoie, P.

    2015-03-01

    The increasing energy costs and environmental concerns of farms have motivated the growing interest of agricultural producers in using farm-grown biomass as a substitute to fossil fuels for heat production. However, the use of non-woody biomass is facing challenges due to variability regarding chemical composition and fuel properties that may induce problems during combustion such as particulate matter (PM). The aim of this work was to measure and compare total PM concentrations during on-farm combustion of wood and four agricultural crops: short-rotation willow, switchgrass, miscanthus and reed canary grass. In order to study the influence of physicochemical properties, different shapes (pellets, chips and chopped grasses) and harvest seasons (fall and spring) were also evaluated. In this context, a representative small-scale (29 kW), multi-fuel boiler for light commercial use was utilized. The boiler was also non-catalytic so that the burning took place in a single combustion chamber. Overall, twelve different biomass fuels were tested and each product was burned three times. Mean PM concentration of wood (416 mg Nm-3 at 7 vol% O2) was lower than that of the four dedicated energy crops (505-1417 mg Nm-3 at 7 vol% O2). However, because of the high variability between the experiments, no statistical significance was observed at P > 0.1 level except in one case. The PM amounts were high compared to literature data and Quebec's environmental regulation mainly because of the boiler system used. Except for willow, pelletized products decreased PM levels by 22-52% compared to chopped materials. Bulky biomass of low density was unable to reach steady-state conditions and produced compounds associated with incomplete combustion including PM. Spring-harvested biomass fuels showed a PM reduction up to 48% compared to fall-harvested crops. This was likely due to a 20-60% decrease of several chemical elements in the biomass, namely S, Cl, K and P which are the main

  20. Policies for improving energy efficiency in the European housing stock

    NARCIS (Netherlands)

    Sunikka, M.M.

    2006-01-01

    According to EC forecasts, if energy efficiency could be increased 1% annually until 2010, two-thirds of the potential energy saving in the EU could be achieved. This would comply with 40% of the EU's Kyoto obligation to reduce greenhouse gas emissions by 8% on the 1990 level by 2010-12, by cutting

  1. European conferences. Integration of renewable energies in buildings; Conferences europeennes. Integration des energies renouvelables dans le batiment

    Energy Technology Data Exchange (ETDEWEB)

    Bal, J.L. [ADEME, Agence de l' Environnement et de la Maitrise de l' Energie, 75 - Paris (France); Letz, T. [Asder, 73 - Saint Alban Leysse (France); Tuille, F. [Observ' er, 75 - Paris (France)] [and others

    2001-07-01

    This document comprises 2 parts. First part is a detailed program of the exhibition with a press dossier which presents the different topics discussed during conferences and round tables, the market of renewable energies, and a list of agencies and companies involved in renewable energies development and products. The second part is the abstracts of the lectures presented during the European conferences on the integration of renewable energies in buildings (solar-thermal and photovoltaic systems, wood fuel and biomass). (J.S.)

  2. Energy key performance indicators : a european benchmark and assessment of meaningful indicators for the use of energy in large corporations

    OpenAIRE

    Friedrichs, Katja

    2013-01-01

    This study aims to identify and analyze energy key performance indicators among large European companies. Energy usage has become a very meaningful topic for both internal management as well as external stakeholders of a company. A review of current literature suggests that while environmental indicators in general have found broad attention and plenty of theories concerning good and meaningful indicators are published, no study investigating actually applied energy indicators ...

  3. European national strategies to move towards very low energy buildings

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    of official subsidies or via private investment organisations. Another possibility is lower taxes for low energy buildings or the introduction of CO2 taxes. Furthermore mandatory certification schemes are expected to promote very low energy buildings by introduction of grades restricted to buildings with very....... A strategy for improved energy efficiency of existing buildings is a necessity if the energy consumption is to be reduced significantly over a limited period of time. The life time of buildings ranges from 50 to 100 years and improvement of the existing building stock will thus have much higher impact than...... is an effective instrument to achieve highly energy efficient buildings, as well as a valuable tool and guideline for the construction sector....

  4. Amsterdam as a Sustainable European Metropolis : Integration of Water, Energy and Material Flows

    NARCIS (Netherlands)

    Van Der Hoek, J.P.; Struker, A.; Danschutter, J.E.M.

    2013-01-01

    Amsterdam has the ambition to develop as a competitive and sustainable European metropolis. The flows of energy, water and resources within the urban environment have a large potential to contribute to this ambition. The overall mass balances of phosphate, food, water, energy and material imports in

  5. Impacts of Renewable Energy on European Farmers. Creating benefits for farmers and society

    NARCIS (Netherlands)

    Pedroli, G.B.M.; Langeveld, H.

    2011-01-01

    This report presents results of the project Impacts of Renewable Energy on European Farmers. It focuses on the (potential) role that on-farm generation of Renewable Energy in the EU-27 may play both in realisation of national and EU environmental targets as in (re)vitalising agriculture and rural

  6. Innovation capabilities and challenges for energy smartdevelopment in medium sized European cities

    NARCIS (Netherlands)

    Lindhult, Erik; Campillo, J.; Dahlquist, E.; Read, S.A.

    2016-01-01

    Transition towards becoming Energy smart city integrating different areas of energy production, distribution and use in a community requires a spectrum of capabilities. The paper reports on findings from the EU planning project PLEEC, involving six medium sized European cities. The purpose of the

  7. Impact of Variable Renewable Energy on European Cross-Border Electricity Transmission

    NARCIS (Netherlands)

    Brancucci Martinez-Anido, C.; De Vries, L.J.; Fulli, G.

    2012-01-01

    The estimated growth of Europe’s electricity demand and the policy goals of mitigating climate change result in an expected increase in variable renewable energy. A high penetration of wind and solar energy will bring several new challenges to the European electricity transmission network. The

  8. Incorporating Root Crops under Agro-Forestry as the Newly Potential Source of Food, Feed and Renewable Energy

    Directory of Open Access Journals (Sweden)

    Yudi Widodo

    2014-12-01

    Full Text Available Entering the third millennium food and energy crisis is becoming more serious in line with water scarcity amid of climate change induced by global warming, that so called as FEWS (food energy and water scarcity.  In the last five decades Indonesian agricultural development of food crops had been emphasized on cereals and grains based. Conversion of forest into agricultural field in the form of upland and lowland facilitated by irrigation is prioritized for cereals such as rice, maize as well as grain legumes such as soybean, peanut etc. Unfortunately, root crops which their main yield underground are neglected. At the end of second millennium Indonesia was seriously suffered from multi-crisis economic trap, so Indonesia as part of countries under World Food Program to import the huge of food to cover domestic consumption such as rice, wheat, soybean, corn etc. On the other hand, consumption of energy was also increase significantly. These conditions triggering government to stimulate integrated agricultural enterprises for providing abundance of food as well as adequate renewable energy. Although root crops were neglected previously, however from its biological potential to produce biomass promotes root crops into an appropriate position. The variability of root crops which ecologically can be grown from upland in dry areas till swampy submergence condition. Forest conversion into agricultural land is not allowed due to forest is useful to prevent global warming. Therefore, food, feed and fuel (renewable energy production have to be able grown under agro-forestry. Fortunately the potential of root crops has competency to meet the current need to fulfil food, feed and fuel as well as fibre under future greener environment.

  9. Effects of different cropping systems and weed management methods on free energy and content of pigments in maize

    Directory of Open Access Journals (Sweden)

    Igor Spasojević

    2014-03-01

    Full Text Available Rotation is a cropping system that has many advantages and ensures better crop growth and yielding. Its combinination with other cropping measures can ensure optimal crop density for maximal growth and photosynthesis efficiency. The aim of this study was to investigate the influence of different cropping systems: monoculture and two rotations, including maize, wheat and soybean (MSW and MWS, and different weed management methods (weed removal by hoeing, application of a full recommended herbicide dose (RD and half that dose (0.5 RD, and weedy check on weed biomass and maize growth parameters - leaf area index (LAI, free energy, contents of chlorophyll and carotenoids, grain yield, and their possible relationships in two fields of the maize hybrids ZP 677 (H1 and ZP 606 (H2. The lowest LAI and grain yield were found in monoculture, particularly in weedy check, which had relatively high weed infestation. Higher weed biomass was also observed in herbicide treated plots in monoculture. Such high competition pressure indicates a stress reflected on reduced LAI and chlorophyll content, and increased free energy and content of carotenoids. On the other hand, rotation, particularly if it is combined with the application of herbicides or hoeing, had a positive impact on yielding potential by increasing LAI and the contents of chlorophyll and carotenoids, and decreasing free energy.

  10. Strengthening the European Union Climate and Energy Package. To build a low carbon, competitive and energy secure European Union

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, E.; Spencer, Th.

    2011-07-01

    As the EU's climate and energy goals defined in its Climate and Energy Package (CEP) are to protect the climate, to protect EU economic competitiveness, and to protect EU energy security, the authors first define these notions (time consistency, competitiveness, energy security) and stress the importance of strengthening the CEP, notably by fostering low carbon technology investment and low carbon products and services innovation. They discuss several policy recommendations for the development of a low carbon, competitive and energy secure EU. These recommendations are notably based on the strengthening of current instruments and on the implementation of new tools to reach the 20% energy efficiency target, on an increase stringency and predictability of the EU ETS, and on the use of direct public financial support to facilitate the transition towards a EU low carbon economy

  11. IS A NEW EUROPEAN UNION ENERGY POLICY NEEDED?

    National Research Council Canada - National Science Library

    Irina, PETRUCA

    2013-01-01

    .... Eighteen countries have been interrupted from gas supplies and countries which had limited reserves and a shortage of alternative supply met a serious energy deficit, in the middle of an especially cold winter...

  12. "European Energy Union? Caught Between Securitisation and Riskification"

    OpenAIRE

    Maltby, Tomas Frederick Rushcliffe; Judge, Andrew

    2017-01-01

    Fears about the security of supplies have been central to debates about the development of an integrated EU energy policy over the past decade, leading to claims that energy has been ‘securitised’. Previous analyses have found, however, that although shared security concerns are frequently used as justification for further integration, they can also serve as a rationale for Member States to resist sharing sovereignty. Transcending this apparent paradox would require not just agreement about w...

  13. Energy efficiency and performance indicators of European electricity market

    Directory of Open Access Journals (Sweden)

    Constantin DUGULEANĂ

    2015-06-01

    Full Text Available The electric power system plays a vital role in the development of every country, ensuring the “fuel” which feeds its economic motor. The efficient functioning of this motor is essential for economy. The efficiency and the performances of electric power systems are reflected on the living level of population, through the money spent and the satisfaction level of their needs. The continuity of power distribution process, the good communication between the suppliers and consumers, the promptitude of interventions, the environment protection - all these are aspects characterizing the performance level of power distribution systems. The paper analyzes the evolution of quality indicators of power distribution systems both for countries’ level and for population on European market of electricity.

  14. Evaluation of the European status towards the achievement of nearly zero energy buildings (nZEBs)

    OpenAIRE

    D'AGOSTINO DELIA; BERTOLDI PAOLO

    2014-01-01

    The European strategy aimed at the 2020 goals is mainly focused on the implementation of the nearly zero energy buildings (nZEBs) as the building target from 2018 afterwards. The aim of this paper is to provide an overview on the current European status of nZEBs categories, definitions, and calculation methodologies. Many open issues are presented and discussed to contribute to the clarification and the establishment of agreed definitions. The paper reports the progress towards the imp...

  15. Health, Well-Being and Energy Poverty in Europe: A Comparative Study of 32 European Countries.

    Science.gov (United States)

    Thomson, Harriet; Snell, Carolyn; Bouzarovski, Stefan

    2017-05-31

    Despite growing pan-European interest in and awareness of the wide-ranging health and well-being impacts of energy poverty-which is characterised by an inability to secure adequate levels of energy services in the home-the knowledge base is largely British-centric and dominated by single-country studies. In response, this paper investigates the relationship between energy poverty, health and well-being across 32 European countries, using 2012 data from the European Quality of Life Survey. We find an uneven concentration of energy poverty, poor health, and poor well-being across Europe, with Eastern and Central Europe worst affected. At the intersection of energy poverty and health, there is a higher incidence of poor health (both physical and mental) amongst the energy poor populations of most countries, compared to non-energy poor households. Interestingly, we find the largest disparities in health and well-being levels between energy poor and non-energy poor households occur within relatively equal societies, such as Sweden and Slovenia. As well as the unique challenges brought about by rapidly changing energy landscapes in these countries, we also suggest the relative deprivation theory and processes of social comparison hold some value in explaining these findings.

  16. Health, Well-Being and Energy Poverty in Europe: A Comparative Study of 32 European Countries

    Science.gov (United States)

    Thomson, Harriet; Snell, Carolyn; Bouzarovski, Stefan

    2017-01-01

    Despite growing pan-European interest in and awareness of the wide-ranging health and well-being impacts of energy poverty—which is characterised by an inability to secure adequate levels of energy services in the home—the knowledge base is largely British-centric and dominated by single-country studies. In response, this paper investigates the relationship between energy poverty, health and well-being across 32 European countries, using 2012 data from the European Quality of Life Survey. We find an uneven concentration of energy poverty, poor health, and poor well-being across Europe, with Eastern and Central Europe worst affected. At the intersection of energy poverty and health, there is a higher incidence of poor health (both physical and mental) amongst the energy poor populations of most countries, compared to non-energy poor households. Interestingly, we find the largest disparities in health and well-being levels between energy poor and non-energy poor households occur within relatively equal societies, such as Sweden and Slovenia. As well as the unique challenges brought about by rapidly changing energy landscapes in these countries, we also suggest the relative deprivation theory and processes of social comparison hold some value in explaining these findings. PMID:28561767

  17. Health, Well-Being and Energy Poverty in Europe: A Comparative Study of 32 European Countries

    Directory of Open Access Journals (Sweden)

    Harriet Thomson

    2017-05-01

    Full Text Available Despite growing pan-European interest in and awareness of the wide-ranging health and well-being impacts of energy poverty—which is characterised by an inability to secure adequate levels of energy services in the home—the knowledge base is largely British-centric and dominated by single-country studies. In response, this paper investigates the relationship between energy poverty, health and well-being across 32 European countries, using 2012 data from the European Quality of Life Survey. We find an uneven concentration of energy poverty, poor health, and poor well-being across Europe, with Eastern and Central Europe worst affected. At the intersection of energy poverty and health, there is a higher incidence of poor health (both physical and mental amongst the energy poor populations of most countries, compared to non-energy poor households. Interestingly, we find the largest disparities in health and well-being levels between energy poor and non-energy poor households occur within relatively equal societies, such as Sweden and Slovenia. As well as the unique challenges brought about by rapidly changing energy landscapes in these countries, we also suggest the relative deprivation theory and processes of social comparison hold some value in explaining these findings.

  18. European chemistry for growth. Unlocking a competitive, low carbon and energy efficient future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The long term role of the chemical industry as Europe progresses to an energy efficient and low GHG emission future, and the sector's potential to assist Europe in meeting its decarbonisation targets is investigated. The timeline for deploying existing and new technologies from 2020 to 2050 and their potential impact on energy efficiency and GHG emission levels, as well as the competitive position of the European chemical industry is assessed. Cefic commissioned Ecofys to perform analyses and bring forward key conclusions and recommendations from their independent viewpoint, in close collaboration with the sector. As a strategic orientation for this industry and a high level priority for Cefic's Board, this Roadmap meets the need for the European chemical industry to develop a new, longer term strategic approach to energy and climate policy and contributes to the debate on the post-2020 policy framework. This Roadmap has three main objectives: (1) Provide quantitative and more qualitative evidence on the options available to the European chemical industry to contribute to the EU's long term GHG emissions reduction goals. These options apply to technologies and product development for the sector itself and for other sectors of the EU economy; (2) Based on this evidence, define a long term vision for the European chemical industry within a European Union that progresses to a low GHG emission future by defining a number of plausible scenarios in the context of global market developments; (3) Formulate recommendations externally to policy makers and internally to the European chemical industry based on the scenarios studied. Chapter 2 provides an overview of the European chemical industry, while Chapter 3 describes the current policy landscape for the European chemical industry. Chapter 4 focuses on the European chemical industry as an enabler of energy efficiency and emissions reduction for sectors across the economy. In Chapter 5, the energy efficiency

  19. European emission trading, renewable energy law and the law of governmental environmental allowances; Europaeischer Emissionshandel, Erneuerbare-Energien-Gesetz und das Recht der Umweltbeihilfen. Plaedoyer fuer einen ''more environmental approach'' im EU-Wettbewerbsrecht

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Max

    2016-07-01

    The book on European emission trading, renewable energy law and the law of governmental environmental allowances covers the following issues: The European emission trading system and the European law on competition, the European emission trading system and competitive concerns; The European renewable energy law and the European law on competition, The European renewable energy law and competitive concerns; environmental protection the European competition policy.

  20. Carbon and energy balances for cellulosic biofuel crops in U.S. Midwest

    Science.gov (United States)

    Gerlfand, I.; Hamilton, S. K.; Robertson, G. P.

    2012-04-01

    Cellulosic biofuels produced on lands not used for food production have the potential to avoid competition for food and associated indirect land use costs. Understanding the carbon and energy balance implications for different cellulosic production systems is important for the development of decision making tools and policies. Here we present carbon and energy balances of alternative agricultural management. We use 20 years of data from KBS LTER experiments to produce farm level CO2 and energy balances for different management practices. Our analyses include four grain and four perrenial systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically-based (organic) practices; (5) continuous alfalfa (Medicago sativa); (6) Poplar; and (7,8) Successionnal fields, both fertilized and unfertilized. Measurements include fluxes of N2O and CH4, soil organic carbon change, agricultural yields, and agricultural inputs (e.g. fertilization and farm fuel use). Our results indicate that management decisions such as tillage and plant types have a great influence on the net carbon and energy balances and benefits of cellulosic biofuels production. Specifically, we show that cellulosic biofuels produced from an early successional, minimally managed system have a net C sequestration (i.e., negative C balance) of -841±46 gCO2e m-2 yr-1 vs. -594±93 gCO2e m-2 yr-1 for more productive and management intensive alfalfa, and vs. 232±157 gCO2e m-2 for poplar. The reference agricultural system (a conventionally tilled corn-soybean-wheat rotation) has net sequestration of -149±33 g CO2e m-2 yr-1. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha-1 for the organic system to 7.1 GJ ha-1 for the conventional; the no-till system was also low at 4.9 GJ ha-1 and the low-chemical input system

  1. The impact of extensive planting of Miscanthus as an energy crop on future CO2 atmospheric concentrations

    NARCIS (Netherlands)

    Hughes, J.K.; Lloyd, A.J.; Huntingford, C.; Finch, J.W.; Harding, R.J.

    2010-01-01

    A process-based model of the energy crop Miscanthus×giganteus is integrated into the global climate impact model IMOGEN, simulating the potential of large-scale Miscanthus plantation to offset fossil fuel emissions during the 21st century. This simulation produces spatially explicit, annual

  2. Cost and benefit of renewable energy in the European Union

    NARCIS (Netherlands)

    Krozer, Yoram

    2013-01-01

    An assessment is made as to whether renewable energy use for electricity generation in the EU was beneficial throughout the cycle of high and low oil prices. Costs and benefits are calculated with the EU statistics for the period of low oil prices 1998–2002 and high oil prices 2003–2009. The share

  3. Trends in Data Centre Energy Consumption under the European Code of Conduct for Data Centre Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Maria Avgerinou

    2017-09-01

    Full Text Available Climate change is recognised as one of the key challenges humankind is facing. The Information and Communication Technology (ICT sector including data centres generates up to 2% of the global CO2 emissions, a number on par to the aviation sector contribution, and data centres are estimated to have the fastest growing carbon footprint from across the whole ICT sector, mainly due to technological advances such as the cloud computing and the rapid growth of the use of Internet services. There are no recent estimations of the total energy consumption of the European data centre and of their energy efficiency. The aim of this paper is to evaluate, analyse and present the current trends in energy consumption and efficiency in data centres in the European Union using the data submitted by companies participating in the European Code of Conduct for Data Centre Energy Efficiency programme, a voluntary initiative created in 2008 in response to the increasing energy consumption in data centres and the need to reduce the related environmental, economic and energy supply security impacts. The analysis shows that the average Power Usage Effectiveness (PUE of the facilities participating in the programme is declining year after year. This confirms that voluntary approaches could be effective in addressing climate and energy issue.

  4. European Union energy policy for sustainable development Nonlinear distribution proposed for EUs 20-20-20 energy goals

    Energy Technology Data Exchange (ETDEWEB)

    Tolon Becerra, A.; Lastra Bravo, X.; Pinedo Contreras, F. J.; Fernandez Montero, S.

    2011-07-01

    There is worldwide concern for the high consumption of energy from fossil fuels, the limited fossil fuel resources, the climate change and global warming and their possible long-term consequences and the population growth. Even more when energy is the main intermediate good necessary for economic growth and development in any country. This usually translates into better quality of life, and thereby, higher primary energy consumption in all sectors, transport, industry, services, household, etc. In this context, the European Union (EU) seeks to reach a balance between sustainable development, competitiveness and secure supply. The current EU energy policy is based on three interrelated pillars or basic goals: the promotion of energy efficiency, the application of greenhouse gas mitigation policies and the increase of share of energy from renewable energy sources. In this paper, a methodology for nonlinear distribution of dynamic targets is proposed and applied to EU energy policy goals. (Author)

  5. The share of renewable energy in the EU. Country Profiles. Overview of Renewable Energy Sources in the Enlarged European Union

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The promotion of renewable energy has an important role to play in addressing the growing dependence on energy imports in Europe and in tackling climate change. Since 1997, the Union has been working towards the ambitious target of a 12% share of renewable energy in gross inland consumption by 2010. In 1997, the share of renewable energy was 5.4%; by 2001 it had reached 6%. This Staff Working Document gives an overview of the different situations of renewable energy sources in the European Union. It includes part of the formal report that the Commission is required to make under Article 3 of Directive 2001/77/EC on electricity from renewable energy sources, and it completes the overall picture with information at a country level on the heat produced from renewable energies and biofuels in the transport sector. This Staff Working Document complements the Communication on 'The share of Renewable Energy sources in the EU'. Data is based on different sources. Firstly, on the reports from Member States on national progress in achieving the targets on electricity from renewable energy sources. Secondly, on a study launched by the Commission on the evolution of renewable energy sources. And thirdly, on a variety of sources like the European Barometer of renewable energies, data from the industry, etc. With the enlargement of the European Union, the new Member States are required to adopt the RES-E Directive (renewable energy sources for electricity) by 1 May 2004. In the accession treaty, national indicative targets are set and the overall renewable electricity target for the enlarged Union will therefore be 21% of gross electricity consumption by 2010. The Commission has the legal obligation to report on the degree of achievement of new Member States' targets by 2006. Although it is too early to assess RES-policy in the new Member States due to very recently adopted regulations, this document also includes national information on the States now joining the

  6. The power of science economic research and European decision-making : the case of energy and environment policies

    CERN Document Server

    Rossetti di Valdalbero, Domenico

    2010-01-01

    This book highlights the interaction between science and politics and between research in economics and European Union policy-making. It focuses on the use of Quantitative tools, Top-down and Bottom-up models in up-stream European decision-making process through five EU policy case studies: energy taxation, climate change, energy efficiency, renewable energy, and internalisation of external costs.

  7. Local investment in renewable energies - European experiences; Investissement local dans les energies renouvelables - recueil d'experiences europeennes

    Energy Technology Data Exchange (ETDEWEB)

    Quantin, J.; Grepmeier, K.; Larsen, J.; Manolakaki, E.; Smith, M

    2004-01-01

    This booklet is realized within the framework of the european commission called PREDAC. This document have been conceived by a working group specialized on the local investment into renewable energies thematic. The objectives of this project are: to promote citizen participation in the financing of renewable energies projects in Europe; to make organizations, investor clubs and local government to be aware of this way of implication into renewable energies development; to examine more especially three renewable energy sources: biomass, photovoltaic and wind in Denmark, France, Germany, Greece and United Kingdom. (author)

  8. GEOTHERMAL ENERGY DEVELOPMENT STRATEGY IN REPUBLIC OF CROATIA DUE TO PROMOTION OF RENEWABLE ENERGY IN EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Miroslav Golub

    2007-12-01

    Full Text Available According to European Strategy for sustainable, competitive and secure energy, which guidelines are described in two documents: ‘’Green Paper: a European Strategy for Sustainable, Competitive and Secure Energy’’ and ‘’White Paper: Energy for the Future: Renewable Sources of Energy’’, it is predicted that share of renewable energy resources in total energy balance will raise from present 6% up to 15% until 2015. Croatia, as candidate country for EU admittance, with growing dependency upon imported energy because of continuous depletion of own energy resources, prior oil and gas, needs to follow EU strategic aims to achieve diversification of energy sources and implement and promote renewable energy resources. This paper presents strategy of geothermal resources development in Republic of Croatia for the period of 2007-2030 in cascade and cogeneration principle of energy utilization. These projections of geothermal energy development are part of comprehensive Strategy of Mineral Resources Development which is made by Faculty of Mining, Geology and Petroleum Engineering for Ministry of Economy, Labour and Entrepreneurship.

  9. European School of High-Energy Physics, Beatenberg, Switzerland, 26 August - 8 September 2001

    CERN Multimedia

    2000-01-01

    The 2001 European School of High-Energy Physics (formerly the CERN-JINR School of Physics) will be organized jointly by the European Organization for Nuclear Research (CERN), Geneva, Switzerland and the Joint Institute for Nuclear Research (JINR), Dubna, Russia, together with the University of Bern. The basic aim of the School is to teach various aspects of high-energy physics, but especially theoretical physics, to young experimental physicists, mainly from the Member States of CERN and of JINR. The Schools of Physics are designed to give a survey of up-to-date information, rather than to be a training course.

  10. Distributed Energy Systems in the Built Environment - European Legal Framework on Distributed Energy Systems in the Built Environment

    NARCIS (Netherlands)

    Pront-van Bommel, S.; Bregman, A.

    2013-01-01

    This paper aims to outline the stimuli provided by European law for promoting integrated planning of distributed renewable energy installations on the one hand and its limitations thereof on the other hand, also with regard to the role of local governments.

  11. Novel energy crops for Mediterranean contaminated lands: Valorization of Dittrichia viscosa and Silybum marianum biomass by pyrolysis.

    Science.gov (United States)

    Domínguez, María T; Madejón, Paula; Madejón, Engracia; Diaz, Manuel J

    2017-11-01

    Establishing energy crops could be a cost-efficient alternative towards the valorization of the plant biomass produced in contaminated lands, where they would not compete with food production for land use. Dittrichia viscosa and Silybum marianum are two native Mediterranean species recently identified as potential energy crops for degraded lands. Here, we present the first characterization of the decomposition of the biomass of these species during thermo-chemical conversion (pyrolysis). Using a greenhouse study we evaluated whether the quality of D. viscosa and S. marianum biomass for energy production through pyrolysis could be substantially influenced by the presence of high concentrations of soluble trace element concentrations in the growing substrate. For each species, biomass produced in two different soil types (with contrasted trace element concentrations and pH) had similar elemental composition. Behavior during thermal decomposition, activation energies and concentrations of pyrolysis gases were also similar between both types of soils. Average activation energy values were 295 and 300 kJ mol(-1) (for a conversion value of α = 0.5) for S. marianum and D. viscosa, respectively. Results suggest that there were no major effects of soil growing conditions on the properties of the biomass as raw material for pyrolysis, and confirm the interest of these species as energy crops for Mediterranean contaminated lands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Assessment of the GHG reduction potential from energy crops using a combined LCA and biogeochemical process models: a review.

    Science.gov (United States)

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed.

  13. Efficiency of Electricity Utilisation in Households in the Context of European Energy Policy

    Directory of Open Access Journals (Sweden)

    Marek Kott

    2015-12-01

    Full Text Available Efficient use of electricity in every sector of a national economy is becoming increasingly significant. Energy efficiency concerns climate and energy policy, but it is also a significant factor influencing manufacturing costs for enterprises (and thus their profits, as well as socio-economic development. Irrational energy consumption leads to excessive consumption of primary energy sources, problems attributable to environment pollution, and limited competitiveness of national companies in global markets. For an individual consumer, energy efficiency is one of the key methods of reducing the share of electricity costs in the household budget. In recent years, the European Commission has made a lot of effort aimed at reducing electricity consumption in households, by promoting energy-saving lighting, subsidising renewable microgeneration systems, enforcing labelling appliances for their energy consumption and liberalisation of the electricity market, among other things. This paper presents the results of a comparative study on electricity consumption in Polish households in reference to selected European Union member states, in the context of European energy policy.

  14. What energy policy for the European Union?; Quelle politique de l'energie pour l'Union europeenne?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The energy question is becoming ever more important. Proper management of energy resources is a strategic challenge that will determine our economic development and even the preservation of our way of life. Looking further into the future, failure to grasp energy-related problems could be seriously prejudicial to the future of our planet (global warming). Because of the rise in prices of fossil fuels resulting from the gradual exhaustion of resources and the political instability reigning in the principal production zones, the disputes over gas between Russia and certain former Soviet republics, massive electricity blackouts, etc, public opinion is now particularly sensitive to these new threats and is looking to decision-makers, at both national and European level, to draw up policies capable of responding to these concerns. Over the past two years, European institutions have in fact taken an increasing number of initiatives in the energy field. This work has, in particular, identified the following three major objectives: - combating global warming, which implies the definition of an energy mix compatible with environmental constraints (reduction in emissions of greenhouse gases), - ensuring security of supply, an ever-growing concern, given the growing dependency of EU Member States on imports of energy, and - safeguarding the competitiveness of the European economy. Despite this work, the only tangible achievement in the energy field in Europe, and one that is still incomplete, concerns the liberalisation of the gas and electricity markets. Apart from the fact that this policy is sometimes badly perceived by European populations, being regarded as responsible for the current rise in prices, Europe cannot be satisfied with tackling just this aspect of affairs. In this respect, energy provides an opportunity to re-launch the construction of Europe both internally (drawing up of a joint agreement regarding energy options, R and D programmes, energy saving, etc

  15. The future of small hydropower within the European union. An environmental policy study based on the European Water framework directive and the renewable energy directive

    NARCIS (Netherlands)

    Pabbruwee, Kees

    2006-01-01

    Small hydropower facilities according to European Union (EU) standards have an installed capacity of less than 10 MW. The Renewable Energy Directive has set targets for installed capacity and electricity produced by small hydropower facilities to be reach

  16. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production

    DEFF Research Database (Denmark)

    Coles, Graeme D; Wratten, Stephen D; Porter, John Roy

    2016-01-01

    and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.......Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively...... with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude...

  17. Biomass and multi-product crops for agricultural and energy production - an AGE analysis

    NARCIS (Netherlands)

    Ignaciuk, A.; Dellink, R.B.

    2006-01-01

    By-products from agriculture and forestry can contribute to production of clean and cheap (bio)electricity. To assess the role of such multi-product crops in the response to climate policies, we present an applied general equilibrium model with special attention to biomass and multi-product crops.

  18. Modeling the productivity of energy crops in different agro-ecological environments

    NARCIS (Netherlands)

    Jing, Q.; Conijn, J.G.; Jongschaap, R.E.E.; Bindraban, P.S.

    2012-01-01

    A relatively stable biomass productivity of perennial crop after plantation establishment makes it possible to calculate their total biomass yield through predicting the annual biomass yield. The generic model LINPAC (LINTUL model for Perennial and Annual Crops) is presented to predict annual

  19. Carbon balance at represenative agroecosystems of Central European Russia with different crops assessed by eddy covariance method

    Science.gov (United States)

    Yaroslavtsev, Alexis; Meshalkina, Joulia; Mazirov, Ilya

    2016-04-01

    Despite the fact that in Russia cropland's soils carbon loses 9 time higher than forest's soils ones (Stolbovoi, 2002), agroecosystems were not given sufficient attention and most of the papers are devoted to forestry and natural ecosystems. Carbon balance was calculated at the Precision Farming Experimental Fields of the Russian Timiryazev State Agricultural University, Moscow, Russia, for two agroecosystems with different crops from the same crop rotation studied for 2 years. The experimental site has a temperate and continental climate and situated in south taiga zone with Arable Sod-Podzoluvisols (Albeluvisols Umbric). Vertical fluxes of carbon dioxide were measured with eddy covariance technique, statistical method to measure and calculate turbulent fluxes within atmospheric boundary layers (Burba, 2013). Crop rotation included potato, winter wheat, barley and vetch and oat mix. Two fields of the same crop rotation were studied in 2013-2014. One of the fields (A) was used in 2013 for barley planting (Hordeum vulgare L.). The field B was in 2013 used for planting together vetch (Vicia sativa L.) and oats (Avena sativa L.). Inversely oats and vetch grass mixt was sown in 2014 on field A. Winter wheat was sown on field A in the very beginning of September. On the second field (B) in 2014 winter wheat occurred from under the snow in the phase of tillering, after harvesting it in mid of July, white mustard (Sinapis alba) was sown for green manure. Carbon uptake (NEE negative values) was registered only for the field with winter wheat and white mustard; perhaps because the two crops were cultivated on the field within one growing season. Three other cases showed CO2 emission. Great difference in 82 g C m-2 per year in NEE between two fields with vetch and oat mix was related to higher difference in grass yields. NEE for barley field was positive during the whole year; considering only the growing season, NEE for barley was 100 g C m-2 lower and was negative. Closed

  20. Energy balance with Landsat images in irrigated central pivots with corn crop in the São Paulo State, Brazil

    Science.gov (United States)

    Teixeira, Antônio H. d. C.; Hernandez, Fernando B. T.; Andrade, Ricardo G.; Leivas, Janice F.; Bolfe, Edson L.

    2014-10-01

    The energy balance (EB) components were quantified in a commercial farm with corn crop, irrigated by central pivots, in the Northwestern side of São Paulo state, Southeast Brazil. The SAFER (Simple Algorithm For Evapotranspiration Retrieving) was applied to retrieve the latent heat flux (λE), considering six pivots, covering irrigated areas from 74 to 108 ha. With λE quantified and considering soil heat flux (G) as a fraction of net radiation (Rn), the sensible heat flux (H) was acquired as a residual in the energy balance equation. Seven Landsat satellite images, covering all corn crop stages from 23 April 2010 to 29 August 2010, allowed relating the energy balance components according to the accumulated degree-days (DDac) from the planting to harvest dates. The average Rn values ranging from 5.2 to 7.2 MJ m-2 day-1, represented 30 to 45% of global solar radiation (RG). Considering the variation of the energy balance components along the corn crop growing seasons, the average ranges for λE, H and G were respectively 0.0 to 6.4 MJ m-2 day-1, -1.5 to 6.7 MJ m-2 day-1 and 0.1 to 0.6 MJ m-2 day-1. The fraction of the available energy (Rn - G) used as λE was from 0.0 to 1.3 indicated a good irrigation management, insuring that the water deficit could not be the reason of any yield reduction. Although Rn did not reflected well the crop stages, its partition strongly depended on these stages. λE higher than Rn and the negative H/Rn, happening sometimes along the corn growing seasons, occurred after the vegetative growth and before the harvest times, indicated heat advection from the surrounding areas to the irrigation pivots, which represented an additional energy source for the evaporative process. The models applied here with only the visible and infrared bands of the Landsat sensor are very useful for the energy balance analyses, considering the size of the corn crop irrigation pivots in Southeast Brazil, when subsidizing a rational irrigation water application

  1. INTERGEO - Central/East European Collaboration Network on direct application of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Popovski, K. [Central/East European Collaboration Network on Direct Application of Geothermal Energy, Bitola (Yugoslavia); Arpasi, M. [International Geothermal Association - European Branch, Budapest (Hungary)

    1997-12-01

    A proposal for organisation of a Network to be known as INTERGEO is presented, which should extend and reinforce the cooperation for the development of the direct application of geothermal energy between the developed EC countries and the ones of the so called Central/East European region. Unter the term `developed countries` for this particular energy source utilisation mainly Italy, France and Germany should be understood. The Central/East European region consists the following countries: Albania, Bosnia and Herzegovina, Bulgaria, Belarus, Croatia, Czech Republic, Estonia, Hungary, Latvia, Lituania, Macedonia, Moldova, Poland, Roumania, Slovenia, Slovakia, Turkey, Ukraine and Yugoslavia. The idea itself, the need and possibilities for organisation, possible plan of action and expected benefits for the EC and Central/East European countries are elaborated in order to come to the conclusions for the proposal justifiableness and feasibility for realisation. (orig.)

  2. Climate and energy targets of the European Union; De klimaat- en energiedoelstellingen van de EU

    Energy Technology Data Exchange (ETDEWEB)

    Stolwijk, H.; Veenendaal, P. [Centraal Planbureau CPB, Den Haag (Netherlands)

    2007-05-04

    Attention is paid to two important parts of the targets for climate and energy which were determined by the European Council in March 2007 for the year 2020: (1) the impact of the emission reduction target and the correlations with the sustainable development targets; and (2) the obstacles for the European Union on the way to thar 20% renewable energy target. [Dutch] Aandacht wordt besteed aan twee belangrijke onderdelen van de doelstellingen voor klimaat en energie die maart 2007 door de Europese Raad zijn vastgesteld voor 2020: (1) de betekenis van de emissiereductiedoelstelling en de wisselwerking met de duurzaamheidsdoelstellingen; en (2) de obstakels die de EU zal tegenkomen op de weg naar 20% hernieuwbare energie.

  3. Climate Change Influence on Agriculture and the Water-Energy-Food Nexus in Central and Eastern European Countries

    Directory of Open Access Journals (Sweden)

    Camelia KANTOR

    2017-12-01

    Full Text Available The Water-Energy-Food (WEF Nexus concept has great potential for understanding a region’s vulnerability to climate change. This paper examines individual components that form the supporting pillars of the nexus in Central and Eastern European (CEE countries. An overview of specific CEE political environments that govern economic and environmental policies are examined to select several domains representing higher risks to society, environment and economies of selected countries, together with evaluation of extant interlinkages between climate change, agriculture and the WEF nexus. While a variety of studies quantify and analyze climate change impacts on water availability, crop yields, yield variability, or alternative energy needed to mitigate global warming effects, this paper shows there is no clear evidence of a nexus-based integration to help manage or mitigate extreme future climate change-related events in the region. The study provides a model for supporting WEF pillars and advances recommendations for consideration of the nexus approach in relation to climate adaptation.

  4. The European Strategic Energy Technology (SET-Plan); PLan estrategico Europeo de Tecnologia energetica (Plan EETE)

    Energy Technology Data Exchange (ETDEWEB)

    Liberali, R.

    2010-07-01

    Rafael Liberal i was appointed Director for Energy within the Directorate-General Research of the European Commission in October 2006. He is in charge of the implementation of the Non-Nuclear Energy priority of the 7th Framework Programme, as well as the definition of political priorities and coordination with Member States and research/industrial stake holders in the field of non-nuclear energy technologies, including the definition and implementation of the Strategic Energy Technology Plan (SET-Plan). (Author)

  5. Energy policy responses to the climate change challenge: The consistency of European CHP, renewables and energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Grohnheit, P.E.

    1999-09-01

    This report is Volume 14 of individual reports of the Shared Analysis Project prepared for the European Commission, Directorate General for Energy. The three major objectives of the project were: to design a common framework of energy analysis that aimed to involve all Member States and the experts of industrial research groups (the shared approach to energy analysis); To analyse generic EU-wide issues important for energy policy and for future energy demand and production, putting particular emphasis on world energy market trends, strategic energy policy responses to the Kyoto process, and evaluation of response strategies to increasing energy import dependence and to climate change activities; to carry out quantitative analyses of energy trends and scenarios as an input for discussion. The present volume considers three main issues concerning energy policy responses to the climate change challenge: the penetration of CHP and renewables according to official objectives, focusing on infrastructure and institutions rather than technology; the consistency of promotion of CHP, renewables and energy savings at the same time; consumers' choices and priorities in a liberalised market. The volume describes examples of policies in several Member States for these technologies with emphasis on CHP for both large-scale and small-scale district heating systems. The penetration of CHP technologies is analysed quantitatively using a traditional optimisation model approach for stylised regions with heat markets suitable for CHP and facing a competitive European market for electricity. The Joint Final Report of the project, titled 'Economic Foundations for Energy Policy' is published as a Special Issue of Energy in Europe, December 1999. All reports are available on the Internet, www.shared-analysis.fhg.de/ The project started in January 1998, involving about 100 months of scientific labour. The project consortium consisted of nine member institutes co-ordinated by

  6. Strategies for the south european energy sector for the next 40 years

    OpenAIRE

    Salvador López, Gerard

    2013-01-01

    This paper discusses the development of an energy systems model for the southern countries of Europe. More precisely, for three main actors of the South of the European Union: Spain, Italy and Portugal. The three of them are currently facing economic difficulties due to the world financial crisis. To satisfy their energy demand at the less cost-effective price and following the EU policies in terms of greenhouse emissions requires a deep analysis of the current situation and an accurate forec...

  7. The impact of the crisis on the energy demand and energy intensity in Central and Eastern European countries

    Directory of Open Access Journals (Sweden)

    Attila HUGYECZ

    2011-12-01

    Full Text Available The purpose of our paper is to analyze the impact of the recent crisis on the oil and electricity demand and the energy intensity of different Central and Eastern European countries, namely the Czech Republic, Hungary, Poland and Slovakia. Furthermore, we would like to reveal whether there is a lag in the adjustment of energy consumption. In analyzing energy intensity, we use motor gasoline, diesel oil and electricity consumption data and ignore coal and natural gas data. By so doing, we avoid failures arising from changing coal/gas consumption due to changing weather conditions. Our results show that the crisis did impact energy consumption and reveal that the improvement of energy intensity halted in 2009, implying that the economic players did not immediately adjust their energy consumption according to their economic activity. The gasoline and diesel intensity, however, deteriorated (increased only in the Czech Republic and in Hungary. In Slovakia and Poland there were no significant changes.

  8. Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers.

    Science.gov (United States)

    Wilson, P; Glithero, N J; Ramsden, S J

    2014-11-01

    Second generation biofuels utilising agricultural by-products (e.g. straw), or dedicated energy crops (DECs) produced on 'marginal' land, have been called for. A structured telephone survey of 263 livestock farmers, predominantly located in the west or 'marginal' upland areas of England captured data on attitudes towards straw use and DECs. Combined with farm physical and business data, the survey results show that 7.2% and 6.3% of farmers would respectively consider growing SRC and miscanthus, producing respective maximum potential English crop areas of 54,603 ha and 43,859 ha. If higher market prices for straw occurred, most livestock farmers would continue to buy straw. Reasons for not being willing to consider growing DECs include concerns over land quality, committing land for a long time period, lack of appropriate machinery, profitability, and time to financial return; a range of moral, land quality, production conflict and lack of crop knowledge factors were also cited. Results demonstrate limited potential for the production of DECs on livestock farms in England. Changes in policy support to address farmer concerns with respect to DECs will be required to incentivise farmers to increase energy crop production. Policy support for DEC production must be cognisant of farm-level economic, tenancy and personal objectives.

  9. Green paper. Towards a European strategy for the security of energy supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This Green Paper is the response to an observable fact: Europe growing future energy dependence. Its aim is to initiate a debate on the security of energy supply, an issue that is still very much alive. Three main points emerge from the Green Paper: the European Union will become increasingly dependent on external energy sources; enlargement will not change the situation; based on current forecasts, dependence will reach 70 % in 2030; the European Union has very limited scope to influence energy supply conditions (it is essentially on the demand side that the EU can intervene, mainly by promoting energy saving in buildings and the transport sector); at present, the European Union is not in a position to respond to the challenge of climate change and to meet its commitments, notably under the Kyoto Protocol. In these circumstances, the Commission would like the debate on the future strategy to be structured around the following principal questions: 1. Can the European Union accept an increase in its dependence on external energy sources without compromising its security of supply and European competitiveness? 2. Does not Europe increasingly integrated internal market, where decisions taken in one country have an impact on the others, call for a consistent and coordinated policy at Community level? What should such a policy consist of and where should competition rules fit in? 3. Are tax and State aid policies in the energy sector an obstacle to competitiveness in the European Union or not? 4. In the framework of an ongoing dialogue with producer countries, what should supply and investment promotion agreements contain? Given the importance of a partnership with Russia in particular, how can stable quantities, prices and investments be guaranteed? 5. Should more reserves be stockpiled, as already done for oils, and should other energy sources be included, such as gas or coal? Does the risk of physical disruption to energy supplies justify more onerous measures for

  10. An exploratory study to improve the predictive capacity of the crop growth monitoring system as applied by the European Commission

    NARCIS (Netherlands)

    Supit, I.

    2000-01-01

    The European Union (EU), through its Common Agricultural Policy (CAP), attempts to regulate the common agricultural market to, among others, secure food supplies and provide consumers with food at reasonable prices. Implementation and control of these CAP regulations is executed by the

  11. Priority for import capacity. The fear of the European Union for a free European energy market; Voorrang aan importcapaciteit. Brussel vreest werking vrije Europese markt

    Energy Technology Data Exchange (ETDEWEB)

    Roggen, M. (ed.)

    2002-05-01

    Brussels (the seat of the European Union in Belgium) is worried about the performance of the liberalized European energy market. The natural gas and electricity networks are suffering from chronic congestion. Some areas are largely or even entirely cut off from the European energy infrastructure. Those problems must be addressed to realize the internal market. A package of reforms has been put forward by the European Commission the end of 2001 and 12 priority projects are identified and briefly discussed in this article. [Dutch] Brussel vreest dat een vrije Europese markt niet goed zal werken als grensoverschrijdende knelpunten met de transportcapaciteit voor aardgas en elektriciteit niet opgelost worden en geisoleerde landen geen adequate toegang krijgen met het buitenland. Eind 2001 heeft de Europese Commissie een pakket maatreglen voor de energie-infrastructuur voorgesteld. Twaalf projecten van Europees belang krijgen prioriteit.

  12. Short rotation woody crops: Using agroforestry technology for energy in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L L; Ranney, J W

    1991-01-01

    Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC's and environmental concerns are described.

  13. Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae.

    Science.gov (United States)

    Ndimba, Bongani Kaiser; Ndimba, Roya Janeen; Johnson, T Sudhakar; Waditee-Sirisattha, Rungaroon; Baba, Masato; Sirisattha, Sophon; Shiraiwa, Yoshihiro; Agrawal, Ganesh Kumar; Rakwal, Randeep

    2013-11-20

    Sustainable energy is the need of the 21st century, not because of the numerous environmental and political reasons but because it is necessary to human civilization's energy future. Sustainable energy is loosely grouped into renewable energy, energy conservation, and sustainable transport disciplines. In this review, we deal with the renewable energy aspect focusing on the biomass from bioenergy crops to microalgae to produce biofuels to the utilization of high-throughput omics technologies, in particular proteomics in advancing our understanding and increasing biofuel production. We look at biofuel production by plant- and algal-based sources, and the role proteomics has played therein. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The European Union and the Energy. Its repercussion in Spain; La Union Europea y la Energia. Su repercusion en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, J.

    2008-07-01

    This work focuses on the European dimension of energy. In particular, it examines the role that has corresponded so far to energy in the building of Europe and investigates the difficulties and obstacles to the existence of a genuine pan-European energy policy. Finally, it examines the influence that the entry into the EU in 1986 has taken on the Spanish energy policies. (Author)

  15. ENERGY IN THE CONTEXT OF THE PRESENT CHALLENGES TO THE EUROPEAN COMMON SECURITY AND DEFENCE POLICY

    Directory of Open Access Journals (Sweden)

    Gabriel ANDRUSEAC

    2014-10-01

    Full Text Available The Common Security and Defence Policy is a part of the European Union’s Common Foreign and Security Policy (CFSP and establishes the policy framework for the institutional structures and military instruments which have to deal with the security challenges in Europe’s geopolitical neighborhood. The article aims to identify and analyze the role of energy as one of the present challenges to the European Common Security and Defence Policy in the context of the recent events in the world economy.

  16. Energy consumption and CO2 emissions of the European glass industry

    OpenAIRE

    SCHMITZ ANDREAS; KAMINSKI Jacek; SCALET Bianca Maria; SORIA RAMIREZ Antonio

    2010-01-01

    An in-depth analysis of the energy consumption and CO2 emissions of the European glass industry is presented. The analysis is based on data of the EU ETS for the period 2005¿2007 (Phase I). The scope of this study comprises the European glass industry as a whole and its seven subsectors. The analysis is based on an assignment of the glass installations (ca. 450) within the EU ETS to the corresponding subsectors and an adequate matching of the respective production volumes. A result is the ass...

  17. Heavy metals in trees and energy crops - a literature review; Tungmetaller i traed och energigroedor - en litteraturstudie

    Energy Technology Data Exchange (ETDEWEB)

    Johnsson, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences

    1995-12-01

    This literature review deals with the use of energy crops for cleaning of soils from heavy metals. It also deals with the use of low accumulating energy crops to be used on strongly contaminated soils where a low uptake of heavy metals is preferred, for example on mining deposits. In addition to the efforts to reduce the sources for heavy metal contamination of soils (for example commercial fertilizers and atmospheric deposition) the uptake and removal of heavy metals from the soils by the use of energy crops have recently been discussed as a method for cleaning of soils. Species from the Salix family (willow) have a greater potential for accumulating heavy metals than cereals which makes them interesting for this purpose. The Salix family consists of species with a great genetic variation. This will probably make it possible to find or develop clones with different characteristics suitable for cleaning of contaminated soils as well as for plant covering of soils that are extremely contaminated by heavy metals. In the former case an accumulation of heavy metals in the harvested parts, the shoots, is preferred. In the later case clones that do not accumulate heavy metals and maybe also clones with only root accumulation are preferred. There are also Salix clones with a specific accumulation of heavy metals which makes it possible to clean soils from a toxic metal and at the same time avoid the risk for deficiency of essential metals, for example Zn. The greatest potential to clean soils by the use of energy crops, is when the contamination levels in the soils are low, the areas to clean are large and when the time needed for cleaning is of minor importance. The most suitable soils are those where the metal contamination is located in the top soil layer and where the heavy metal concentrations in the sub soil layer are still low. 58 refs, 8 tabs, 1 fig

  18. Integration of Wave and Offshore Wind Energy in a European Offshore Grid

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Sørensen, H. C.; Korpås, M.

    2010-01-01

    High wave and offshore wind energy potentials are located along the West and North coasts of Europe, respectively. In the near future, these resources should significantly contribute to the European electricity mix, but there is hardly any grid infrastructure available for large scale integration...... of offshore renewable energy sources. According to this, the paper covers i) public and private initiatives for offshore transmission networks, ii) the synergies between the wave and the offshore wind energy sector within an offshore grid, iii) power transmission options for offshore generation and iv...

  19. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    OpenAIRE

    Boegh, E.; Houborg, R.; Bienkowski, J.; Braban, C.F.; Dalgaard, T.; van Dijk, N.; Dragosits, U.; Holmes, E.; Magliulo, V.; Schelde, K.; Di Tommasi, P.; Vitale, L.; Theobald, M.R.; Cellier, P.; Sutton, M.A.

    2013-01-01

    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an...

  20. Cofermentation of energy crops and organic residues; Ergebnisse der Kovergaerung von Energiepflanzen und organischen Reststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Linke, B. [Institut fuer Agrartechnik Bornim e.V. (ATB), Potsdam-Bornim (Germany); Vollmer, G.R. [Biotechnologie Nordhausen (BTN) (Germany)

    2002-07-01

    There are currently more than 1500 agricultural biogas plans in Germany, most of which work by the liquid fermentation principle which is commercially available. At a mean hydraulic time of residue of 20 - 30 days and a charge of about 1.5 to 4 kg of organic matter m{sup -1}d{sup -1}, about 350 - 550 l of biogas can be produced per kg of organic matter (liquid or solid manure). Biogas yields are higher for cofermentation of liquid manure with energy crops and/or high-energy organic residues. Some figures are given: About 1000 l per kg{sup -1} for beetroot, pressed pellets of rape, sugarbeet, or rye, 600 - 700 l per kg{sup -1} for grass, malt residuum, sugar pulp, grape cake or potato pulp. In the case of silo-fermented corn, yields were higher than reported in earlier publications, i.e. about 800 instead of 200 l per kg{sup -1}. [German] Die Gewinnung von Biogas aus Guelle, Stallmist, pflanzlichen Biomassen oder organischen Reststoffen aus der Agro- oder Lebensmittelindustrie leistet heute durch das EEG in ueber 1500 Landwirtschaftsbetrieben Deutschlands einen Beitrag zur Sicherung des Einkommens. Die Landwirte nutzen hierfuer vorwiegend die Technik der Fluessigvergaerung, die von zahlreichen Firmen auf dem Markt angeboten werden. Bei mittleren hydraulischen Verweilzeiten von 20 bis 30 Tagen oder Faulraumbelastungen von etwa 1,5 bis 4 kg oS m{sup -3} d{sup -1} koennen aus Guelle oder Stallmist je kg zugefuehrte organische Substanz 350 bis 550 l Biogas gewonnen werden. Deutlich hoehere spezifische Biogasausbeuten erhaelt man durch die gemeinsame Vergaerung von Guelle mit Energiepflanzen und/oder energiereichen organischen Reststoffen (Kofermentation). Fuer Ruebensilage, Rapskuchen, Zuckerrueben-Pressschnitzel oder Roggen kann man oS-Biogasausbeuten von etwa 1000 l kg{sup -1} rechnen, waehrend sich der entsprechende Wert fuer Graeser, Schlempe, Melasse, Trester oder Kartoffelpuelpe im Bereich von 600 bis 700 l kg{sup -1} bewegt. Der in der Fachliteratur oft zu

  1. Development of a method for the control of an environmentally friendly cultivation of energy crops at provincial level using a differentiated premium payment; Entwicklung einer Methodik zur Steuerung eines umweltschonenden Energiepflanzenanbaus auf Landesebene durch eine differenzierte Praemienzahlung

    Energy Technology Data Exchange (ETDEWEB)

    Greiff, Kathrin Britta

    2012-07-01

    energy crops rape seed and corn lead to an increase of environmental impact on regional scale. Using the method developed in this work for a scenario for the year 2020 leads to a decrease of negative environmental impact. This result shows that the developed method suits for an environmental friendly support scheme. Developing a regional and crop specific premium based on the designed method leads to needed capital of about 128 Mio. Euro per year (338 Euro/ha) up to 146 Mio. Euro per year (445 Euro/ha). In contrast to this, the capital needed for the NaWaRo-Bonus in 2007 in Bavaria has been about 47 Mio Euro (605 Euro/ha). The disestablishment of the hitherto unspecific support system (NaWaRo-Bonus, biofuel Quota and tax exemption) is preconditioned for the new support system based on the regional and crop specific premium. This premium can be integrated in the second pillar of agricultural support in the EU. The integration is possible in the Annexes I or III of the European Agricultural Fund for Rural Development (EAFRD). Due to the simple appliance of the regional and crop specific premium the effort for controlling seems to be very low. In contrast, the needed governmental capital might be disadvantageous for implementing such a premium. Because of this, it should be considered to refinance the governmental costs by an energy crop fee rendered by energy companies. (orig.)

  2. A trial burn of rape straw and whole crops harvested for energy use to assess efficiency implications

    Energy Technology Data Exchange (ETDEWEB)

    Newman, R.

    2003-11-01

    Increased biomass utilisation and alternatives to cereal straw such as oil seed rape (OSR) straw will be necessary to achieve the Government's renewable energy targets. This report describes the results of a study to investigate the technical and economic feasibility of burning OSR straw and whole crops in an existing biomass power plant operated by EPR Ely Ltd in comparison with conventional cereal straw. Suitable quantities of bales of each fuel were provided for the combustion trials by Anglian Straw Ltd. Three trials were conducted: one using wheat-based cereal straw; one using 92% OSR; and one using 65% whole crop fuel. The availability of OSR straw and whole crop in Eastern England for use as fuel was also determined. Plant performance and stack emissions were evaluated and samples of delivered crop samples, bottom ash and fly ash from each trial were analysed. The parameters against which performance was assessed included: ease of handling and conveying; ease of chopping; ease of entry into the combustion chamber; furnace temperature profile; steam and electricity production rate; plant chimney emissions; ash collection and removal; operating stability; sustainability; and fuel availability.

  3. Estimating Crop Albedo in the Application of a Physical Model Based on the Law of Energy Conservation and Spectral Invariants

    Directory of Open Access Journals (Sweden)

    Jingjing Peng

    2015-11-01

    Full Text Available Albedo characterizes the radiometric interface of land surfaces, especially vegetation, and the atmosphere. Albedo is a critical input to many models, such as crop growth models, hydrological models and climate models. For the extensive attention to crop monitoring, a physical albedo model for crops is developed based on the law of energy conservation and spectral invariants, which is derived from a prior forest albedo model. The model inputs have been efficiently and physically parameterized, including the dependency of albedo on the solar zenith/azimuth angle, the fraction of diffuse skylight in the incident radiance, the canopy structure, the leaf reflectance/transmittance and the soil reflectance characteristics. Both the anisotropy of soil reflectance and the clumping effect of crop leaves at the canopy scale are considered, which contribute to the improvement of the model accuracy. The comparison between the model results and Monte Carlo simulation results indicates that the canopy albedo has high accuracy with an RMSE < 0.005. The validation using ground measurements has also demonstrated the reliability of the model and that it can reflect the interaction mechanism between radiation and the canopy-soil system.

  4. Recommended energy and nutrients intakes in the European Union: 2008-2016

    Science.gov (United States)

    García Gabarra, Antoni; Castellà Soley, Marta; Calleja Fernández, Alicia

    2017-03-30

    The aim of this document is to refl ect the changes happened in the European Union legislation and the opinions of the European Food Safety Authority in relation to the nutritional labeling on food, the reference values for energy, macronutrients and micronutrients, and the tolerable upper safe levels. The European legislation in force uses the labeling reference values established by the Scientific Committee on Food in 2003. There would be advisable an update of them from the reference values for vitamins and minerals established by the European Food Safety Authority. Equally, there would be good to include reference labeling values for polyunsaturated fatty acids, dietary fiber and choline, and specific reference labeling values for children from 6 to 36 months. For vitamins and minerals there would be desirable the revision of tolerable upper safe levels and the establishment of maximum amounts allowed in fortified food and food supplements in the European Union; its absence might represent a risk in some population groups for an excessive and unsafe intake of certain minerals and vitamins.

  5. Ensuring Security of Supply of Natural Gas in the European Union’s Common Energy Policy

    Directory of Open Access Journals (Sweden)

    Andrei Teofil Postolachi

    2013-08-01

    Full Text Available The problematic of energy policy is nowadays widely disputed in the European Union community. In a global context characterized by highly and raising dependency of the economic activity on the energetic resources, the European authorities had launched a strategy in this sector which regards the problems of access to secure and affordable energy products. The aim of this paper is linked to the natural gas field of the European energetic concerns, and it assumes the high dependency of internal consumption on imports, more than half of the natural gas that is used in the 27 states comes from abroad. Ensuring a higher level of security in the supply is one of the goals that European Union wants to achieve on medium and long term. In these circumstances, actual measurements take into account different type of actions: stabilize relations with existing partner gas exporters (Russia, Algeria, Norway; diversification of transport routes coming from these countries, especially in the idea of trying to avoid transit countries (mainly Ukraine and Belarus; and finally opening discussions and investing in alternative routes which should transport the gas from new suppliers placed in the Caspian Sea or Central Asia region.

  6. Mapping and Measuring European Local Governments’ Priorities for a Sustainable and Low-Carbon Energy Future

    Directory of Open Access Journals (Sweden)

    Stelios Grafakos

    2015-10-01

    Full Text Available The main objective of this article is to assess the priorities of local governments (LGs in Europe regarding climate change mitigation technologies evaluation in the electricity sector and to provide important insights for energy policy design. The study applies a hybrid weighting methodology to elicit LGs’ preferences in a constructive and iterative way regarding the evaluation criteria of low-carbon energy technologies. Furthermore, the study employs three data collection and preference elicitation methods, namely: survey, workshop, and webinar. The study was conducted across thirty one (31 European LGs that were categorized according to three variables: population size, geographical region and gross domestic product (GDP per capita. The analysis shows that “CO2 emissions” is the most important criterion among European LGs, followed by “mortality and morbidity” and “ecosystem damages”. The results illustrate the potential synergies of climate and energy policies for addressing both CO2 emissions and air pollution. It was also found, based on a correlation analysis, that LGs with higher GDP per capita tend to provide higher weights to criteria related to security of energy supply and technological innovation. The current study provides insights on the actual LGs’ priorities that are important to consider during low-carbon energy technologies evaluation and energy policy design. Interestingly, the results of the European LGs’ preferences clearly show that the EU climate policy objectives have reached different levels of governance—and at this particular case, the local level. Furthermore, the developed methodology could be applied at different geographical regions to map other regions’ LG priorities, but also at a group decision making context to elicit relevant stakeholders’ preferences regarding low-carbon energy technologies and policy objectives.

  7. Climate Change and Energy Sustainability. Which Innovations in European Strategies and Plans

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available In recent years, the effects of climate change on urban areas have pushed more and more policy-makers and urban planners to deal with the management of territorial transformations in a systemic and multi-sector perspective, due to the complexity of the issue. In order to enhance the urban governance of climate change and cope with environmental sustainability, the concept of resilience can be used. In this perspective, the present work has a double purpose: on the one hand to reflect on he need to adopt a new comprehension/interpretive approach to the study of the city, which embraces the concept of resilience, and on the other hand to perform a reading of European strategies and plans oriented to mitigate the effects of climate change and to achieve the goals of energy and environmental sustainability. This paper describes some of the results of the knowledge framework of the Project Smart Energy Master for the energy management of territory financed by PON 04A2_00120 R & C Axis II, from 2012 to 2015 aimed at supporting local authorities in the development of strategies for the reduction of energy consumption through actions designed to change behavior (in terms of use and energy consumption and to improve the energy efficiency of equipment and infrastructure. The paper is divided into three parts: the first is oriented to the definition of the new comprehension/interpretive approach; the second illustrates a series of recent innovations in planning tools of some European States due to the adoption of the concept of resilience; the third, finally, describes and compares the most innovative energy and environmental strategies aimed at contrasting and/or mitigate the effects of climate change, promoted in some European and Italian cities.

  8. Policy report. Contributions of energy efficiency measures to climate protection within the European Union until 2050

    Energy Technology Data Exchange (ETDEWEB)

    Bossmann, Tobias; Eichhammer, Wolfgang; Elsland, Rainer [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany)

    2012-06-15

    Given the risks associated with global warming and its potential consequences due to the emissions of greenhouse gases (GHG), the European Union (EU) has pledged to reduce its emissions by at least 20 percent until 2020 and by at least 80 percent until 2050 compared to 1990 levels. In this context, the energy sector plays a crucial role, since approximately 80 percent of European GHG emissions in 2009 originate from this sector. Moreover, this sector offers the chance of almost complete decarbonisation based on a variety of technologies ranging from carbon-neutral electricity generation through highly-efficient energy conversion processes to energy saving options. The political challenge consists of developing a set of technology options which will ensure the shift takes place towards a sustainable European energy system which still complies with the constraints imposed by competitiveness and the security of supply. Since energy efficiency represents a powerful option to tackle these objectives, the present study analyses in detail to what extent energy savings can contribute to GHG emission mitigation in the EU until the year 2050 and which technologies are required for the energy saving potentials identified. This policy report contains a summary of the main results. The accompanying scientific report provides much more detailed information on the potentials and the technologies behind. The technology-based, bottom-up approach distinguishes this study from most of the other existing reports. The study comparison clearly shows that most of the time energy efficiency options are not being considered to their full extent as a technology option for carbon mitigation in the various scenarios. Moreover, the level of detail regarding the deployment of efficiency measures is well below the accuracy usually applied to the analysis of the energy supply side, particularly the power sector. The analysis of the different sectors reveals the largest final energy saving

  9. EUROPEAN POLICY REGARDING ENERGETIC SECURITY IN THE FIELD OF RENEWABLE ENERGY

    Directory of Open Access Journals (Sweden)

    Maria POPESCU,

    2015-12-01

    Full Text Available In recent years the European Union has been working continually to promote green energy. Renewable energy presents certain social, economic and environmental benefits, has a low environmental impact, therefore, can support economic growth on a sustainable basis. Theme analyzes progress in the EU, trends and long-term scenarios in renewable resources. Renewables have a high potential to stimulate EU industrial competitiveness. Developing new energy sources with low carbon is very important to avoid high costs of climate change and pollution conditions. Renewable energy can use all our energy requirements: electricity production, transport and domestic heating. Hydropower and wind are exclusively used for generating electricity, while biomass, geothermal and solar can be used to produce electricity and heat.

  10. European School of High-Energy Physics, Caramulo. Portugal, 20 August- 2 September 2000

    CERN Multimedia

    2000-01-01

    The 2000 European School of High-Energy Physics (formerly the CERN-JINR School of Physics) will be organized jointly by the European Organization for Nuclear Research (CERN), Geneva, Switzerland and the Joint Institute for Nuclear Research (JINR), Dubna, Russia, together with LIP (Laboratório de Instrumentação e Física Experimental de Partículas) and the Faculty of Science and Technology of the University of Coimbra. The basic aim of the School is to teach various aspects of high-energy physics, but especially theoretical physics, to young experimental physicists, mainly from the Member States of CERN and of JINR. The Schools of Physics are designed to give a survey of up-to-date information, rather than to be a training course.

  11. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Capareda, Sergio [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; El-Halwagi, Mahmoud [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Hall, Kenneth R. [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Holtzapple, Mark [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Searcy, Royce [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; Thompson, Wayne H. [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Baltensperger, David [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Myatt, Robert [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Blumenthal, Jurg [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previous findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum bioenergy yields

  12. The political importance of energy cooperation between Germany and Denmark on the European Union energy market

    Directory of Open Access Journals (Sweden)

    Ruszel Mariusz

    2016-01-01

    Full Text Available Denmark and Germany have similar goals of energy transition. Both states are going to implement a policy that is aimed at the transition from a fossil fuel-based system towards a renewable energy system with variable renewables generation. The main objective of the German energy transition is to cover more than 80% of the energy consumption with renewables by 2050. For comparison, Denmark is going to build a fossil fuel-free system, which would be able to cover 100% of energy consumption with renewables by 2050. To this end, stronger cooperation between Germany and Denmark could enhance the position of both countries on the EU energy market. The main aim of this paper is to analyse the impact of the energy cooperation between Germany and Denmark. It is crucial to answer the question of how both states could build a stronger energy position and which tools would be useful in this regard. Denmark is the world’s leader in the deployment of wind power, which is also implemented in the northern part of Germany. For this reason, both states have similar challenges with respect to the stabilisation of electricity systems. The current and prospective integration of energy systems of both countries is also important for the improvement of energy security. It is also crucial to answer the questions whether the energy integration will have political implications for both countries, and whether stronger energy cooperation between Germany and Denmark will strengthen the competitive advantage of German economy in the EU.

  13. A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes.

    Science.gov (United States)

    Barbagallo, Salvatore; Consoli, Simona; Russo, Alfonso

    2009-01-01

    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (r(ah)) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (r(s)) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach "K(c) reflectance-based", which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations.

  14. Historical Perspective on How and Why Switchgrass was Selected as a "Model" High-Potential Energy Crop

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL

    2007-11-01

    A review of several publications of the Biofuels Feedstock Development Program, and final reports from the herbaceous crop screening trials suggests that there were several technical and non-technical factors that influenced the decision to focus on one herbaceous "model" crop species. The screening trials funded by the U.S. Department of Energy in the late 1980's to early 1990's assessed a wide range of about 34 species with trials being conducted on a wide range of soil types in 31 different sites spread over seven states in crop producing regions of the U.S. While several species, including sorghums, reed canarygrass and other crops, were identified as having merit for further development, the majority of institutions involved in the herbaceous species screening studies identified switchgrass as having high priority for further development. Six of the seven institutions included switchgrass among the species recommended for further development in their region and all institutions recommended that perennial grasses be given high research priority. Reasons for the selection of switchgrass included the demonstration of relatively high, reliable productivity across a wide geographical range, suitability for marginal quality land, low water and nutrient requirements, and positive environmental attributes. Economic and environmental assessments by Oak Ridge National Laboratory's Biofuels Feedstock Development Program staff together with the screening project results, and funding limitations lead to making the decision to further develop only switchgrass as a "model" or "prototype" species in about 1990. This paper describes the conditions under which the herbaceous species were screened, summarizes results from those trials, discusses the various factors which influenced the selection of switchgrass, and provides a brief evaluation of switchgrass with respect to criteria that should be considered when selecting and developing a crop for biofuels and

  15. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration

    Science.gov (United States)

    To, Jennifer PC; Zhu, Jinming; Benfey, Philip N

    2010-01-01

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration. PMID:21173868

  16. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  17. Requirement, balance and energy efficiency under two models of cropping systems in the center-south of Buenos Aires, Argentina.

    Science.gov (United States)

    Zamora, Martin; Barbera, Agustin; Hansson, Alejandro; Carrasco, Natalia; Domenech, Marisa

    2017-04-01

    In a natural ecosystem, the solar energy is the main source. However, in the agro ecosystem we should use others in order to sustain specific processes or to avoid some interactions. This energy is introduced in the agro-system not only as fossil fuel but also as inputs like fertilizers and pesticides or for agricultural machines. Since February 2011, two adjacent fields were set at Barrow Experimental Station (Lat:-38.322844, Lon:-60.25572): one of them adopting agro-ecology principles (AGROE), as biodiversity increase, polyculture with legumes, less use of agrochemicals; while the other one is based on industrial model of agriculture (ACTUAL). This model is defined by its capital intensity and dependence on massive inputs like seeds, fertilizer, and pesticides. In both fields, beef cattle and agriculture production have been implemented with different intensity. The aim of this study was to compare the demand, production, balance and energy efficiency between these two agro-systems. To do this, we use tables of energy associated with different processes and inputs. For both systems, we estimate the energetic demand used in seeds, pesticides, fertilizers and labor during the crop sequence from February 2011 to December 2015; the energy production according to grains and meat yield achieved; the energetic balance calculated as the difference between inputs and outputs of energy in the system and finally, the energy efficiency which is the ratio between the energy produced and consumed. Inputs-outputs ratios of energy were transformed into equivalent units = GJ (Gigajoules). After a sequence of seven crops, ACTUAL consumed 60 GJ, which represents 158% more energy than AGROE. Particularly, ACTUAL consumed a 72% more energy in cultivation labor, 372% more in herbicides and 10 times more energy used in fertilizers than AGROE. Even though ACTUAL produced 37% more energy than AGROE (187 GJ vs 127 GJ) in grain and meat, the energetic balance was only 12% higher. However

  18. Energy Yield Prediction of Offshore Wind Farm Clusters at the EERA-DTOC European Project

    OpenAIRE

    Cantero, E.; Hasager, C. B.; Réthoré, P.-E.; A. Peña; Hansen, K; J. Badger; Schepers, J.G.; Faiella, L.M.; Iuga, D.; Giebel, G.; Lozano, S; SANZ, J.; Sieros, G.; Stuart, P; Young, T.

    2014-01-01

    A new integrated design tool for optimization of offshore wind farm clusters is under development in the European Energy Research Alliance – Design Tools for Offshore wind farm Cluster project (EERA DTOC). The project builds on already established design tools from the project partners and possibly third-party models. Wake models have been benchmarked on the Horns Rev and, currently, on the Lilgrund wind farm test cases. Dedicated experiments from ‘BARD Offshore 1’ wind farm will using scanni...

  19. European Union and the formation of its initiative in energy minerals

    Energy Technology Data Exchange (ETDEWEB)

    Sivek, Martin [Institute of Geological Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, 17, Listopadu 15/2172, 708 33 Ostrava (Czech Republic); Kavina, Pavel [Department of Energy Security, Ministry of Industry and Trade of the Czech Republic (Czech Republic); Jirasek, Jakub, E-mail: jakub.jirasek@vsb.cz [Institute of Geological Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, 17, Listopadu 15/2172, 708 33 Ostrava (Czech Republic)

    2011-09-15

    In November 2008, the European Union adopted 'The raw materials initiative - meeting our critical needs for growth and jobs in Europe', dealing especially with ensuring the future needs of metallic and non-metallic raw materials for EU member state economies. After years of hesitation, this may undoubtedly be considered a very progressive step. The article lists the most relevant reasons why the EU should promptly proceed to the discussion and preparation of a similar material of higher legal force for energy minerals. Basic problem areas of forming a political platform for the preparation of the EU energy initiative include the exploitation of domestic energy raw material deposits, raw materials diplomacy, and the matter of renewable sources. - Highlights: > EU27 faces an essential problem of energy dependency. > Present EU policy is focused on renewable energy sources, energy markets, and networks. > Less attention is paid to domestic energy minerals deposits and energy diplomacy. > Authors call for a political platform for the EU energy initiative formulation. > Reliable, uninterrupted, and 'cheap' energy supply secure competitive ability.

  20. THE INFLUENCE OF MINIMUM TILLAGE SYSTEMS UPON THE SOIL PROPERTIES, YIELD AND ENERGY EFFICIENCY IN SOME ARABLE CROPS

    Directory of Open Access Journals (Sweden)

    Teodor RUSU

    2006-05-01

    Full Text Available The paper presents the influence of the conventional ploughing tillage technology in comparison with the minimum tillage, upon the soil properties, weed control, yield and energy efficiency in the case of maize (Zea mays L., soyabean (Glycine hispida L. and winter wheat (Triticum aestivum L. in a three years crop rotation. For all cultures within the crop rotation, the weed encroachment is maximum for the disc harrow and rotary harrow soil tillage, followed by the chisel and paraplow. The weed encroachment is minimum for the conventional ploughing tillage technology. The results of investigations showed that the yield is a conclusion soil tillage systems influence on soil properties, plant density assurance and on weed control.

  1. Security of energy supply under the laws of the European Union / European Community; Energieversorgungssicherheit im Recht der Europaeischen Union, Europaeischen Gemeinschaft

    Energy Technology Data Exchange (ETDEWEB)

    Proefrock, M.C.

    2007-07-01

    Security of supply is defined as the availability and reliability of energy supply at acceptable prices. By security of energy supply we mean a globally large supply of reliable, affordable, clean energy. By virtue of its nature security of supply in the energy sector primarily requires making provisions for the future through exploration, innovation, research, diversification and investments in technology. Energy politics takes place in a tension field defined by the goals of economic efficiency, sustainability and security of supply. In the past there have been repeated shifts within this triad of goals. The task for a rational energy policy is to reconciliate these goals in a meaningful way. European energy policy is understood to comprise all sovereign measures taken by the European Union in the energy sector, in particular measures that impact on the supply and demand for energy resources. Energy law serves, or should serve, to bring energy policy to realisation and therefore presupposes the existence of the latter. Energy policy means the figuration of an economy's energy sector in such a manner that the present and future demand of the economic region is covered.

  2. Future European biogas

    DEFF Research Database (Denmark)

    Meyer, A. K.P.; Ehimen, E. A.; Holm-Nielsen, J. B.

    2017-01-01

    Biogas is expected to play an important role in reaching the future energy policy targets of the European Union (EU). The sustainability of biogas substrates has however been recently critically discussed due to the increasing shares of agricultural land used for energy crop production.The aim...... were animal manure, straw by-products from cereal production, and excess grass from rotational and permanent grasslands and meadows. The biogas energy potential from the investigated biomass was projected to range from 1.2·103 to 2.3·103 PJ y-1 in year 2030 in the EU28, depending on the biomass...... availability. Alone the biogas energy potential projected in the scenario representing low substrate availability corresponds to a doubling of the European biogas production in 2015. The results shows that sustainable alternatives to the use of maize are present in all the member states of the EU28...

  3. Spatiotemporal land use modelling to assess land availability for energy crops – illustrated for Mozambique

    NARCIS (Netherlands)

    Hilst, F. van der; Verstegen, J.A.; Karssenberg, D.J.; Faaij, A.P.C.

    2012-01-01

    A method and tool have been developed to assess future developments in land availability for bioenergy crops in a spatially explicit way, while taking into account both the developments in other land use functions, such as land for food, livestock and material production, and the uncertainties in

  4. A New Wave of European Climate and Energy Policy: Towards a 2030 Framework

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Gina

    2013-06-11

    Against a complex, challenging, and often contradictory background, the EU is currently trying to decide what kind of climate and energy regime it wants and needs in the post-2020 period. Should it replicate the formula of the 2008 Climate and Energy Package to 2030 and beyond? Or are there other pathways that may prove more effective or politically palatable? The European Commission has recently published a consultation paper on a 2030 climate and energy framework and enormous efforts are being expended in Brussels and across the Member States as stakeholders work to shape to terms of the debate. This policy brief attempts to provide an understanding of the current debates and to illuminate the key challenges in designing a new wave of European climate policy. It first sets out the current EU energy and climate framework and discusses progress made to date, before going on to outline a range of key challenges in the design of a 2030 framework. This is the fourth in a series of Environment Nexus policy briefs by experts in the field of climate, energy, agriculture and water.

  5. Energy in transition: from the iron curtain to the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Urge-Vorsatz, D.; Miladinova, G. [Central European University, Budapest (Hungary). Center for Poicy Studies; Paizs, L. [Hungarian Academy of Sciences, Budapest (Hungary). Institute of Economics

    2006-10-15

    The fall of communism left some of the most polluting and wasteful energy sectors of the World in Central and Eastern Europe (CEE). After 15 years of restructuring, eight of these countries have joined the European Union (EU), closing an era of economic transitions. What progress has been made in these countries in the field of energy from the perspective of sustainability? Has the transition agenda been completed, or do any of the socialist energy sector legacies prevail? The purpose of this paper is to review the period of economic transition in the energy sector, focusing on sustainability, in three selected CEE countries, and to use Russia as a comparison. First, the paper argues that at the core of the unsustainability of energy sectors at the end of the communist era were among the highest energy intensities in the world. Then, we identify the legacies of the centrally planned economy that contributed to these high-energy intensities. We outline a policy agenda for the transitions which addresses the identified legacies. Next, we look at the energy landscape at the end of the restructuring, and review the developments in energy intensities during the period of economic transitions. We conclude that, while energy and economic restructuring is very important to bring down the high-energy intensities of former communist countries, a sizeable gap remains in intensity levels between CEE countries and the old EU states. Therefore, economic and energy system reforms alone will not close the gap, and targeted policies and measures are needed to improve energy efficiency levels. Beyond a more serious governmental commitment, a concerted effort is needed from regulators, corporations, utilities, consumer organisations and the civil sector to catalyse the remaining progress to be made in combating the socialist legacy in the field of energy efficiency. (author)

  6. Environmental assessment of two different crop systems in terms of biomethane potential production.

    Science.gov (United States)

    Bacenetti, Jacopo; Fusi, Alessandra; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. © 2013.

  7. Secure oil and alternative energy: the geopolitics of energy paths of China and the European Union

    NARCIS (Netherlands)

    Amineh, M.P.; Guang, Y.

    2012-01-01

    While intensive cooperation between China and the EU in the fields of energy use, environmental protection and sustainability is highly needed the question remains unanswered how this cooperation could be organized. This volume puts the geopolitical implementation of China's and the EU's energy

  8. Energy perspectives of the France by 2020-2050. European orientations; Perspectives energetiques de la France a l'horizon 2020-2050. Orientations europeennes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-15

    The authors recall the absence in 2007 of a real european energy policy and present the new energy Plan of the european commission, fight against the climatic change, reinforce the security of the energy supply, maintain the competitiveness of the european economy. This plan is then discussed. (A.L.B.)

  9. Mechanisms of stress, energy homeostasis and insulin resistance in European adolescents--the HELENA study.

    Science.gov (United States)

    Huybrechts, I; De Vriendt, T; Breidenassel, C; Rogiers, J; Vanaelst, B; Cuenca-García, M; Moreno, L A; González-Gross, M; Roccaldo, R; Kafatos, A; Clays, E; Bueno, G; Beghin, L; Sjöstrom, M; Manios, Y; Molnár, D; Pisa, P T; De Henauw, S

    2014-10-01

    Stress is hypothesized to facilitate the development of obesity, whose the foundations are already set during childhood and adolescence. We investigated the relationship between the stress-system, selected mechanisms of energy homeostasis and insulin resistance (IR) in a sample of European adolescents. Within HELENA-CSS, 723 adolescents (12.5-17.5 years) from 10 European cities provided all the necessary data for this study. Fasting blood samples were collected for cortisol, leptin, insulin and glucose analysis. HOMA-IR was calculated from insulin and glucose concentrations. Adolescents' body fat (BF) %, age and duration of exclusive breastfeeding were assessed. For boys and girls separately, the relationship of cortisol with leptin, insulin, glucose and HOMA-IR was examined by computing Pearson correlation coefficients and Hierarchical Linear Models (HLMs), with 'city' as cluster unit, adjusting for age, BF% and duration of exclusive breastfeeding. In boys, Pearson correlation coefficients illustrated positive correlations of cortisol with insulin (r = 0.144; p = 0.013), glucose (r = 0.315; p adolescents' age, BF% and duration of exclusive breastfeeding after computing HLMs. This study suggests that the stress-system is positively related to mechanisms of energy homeostasis and IR in European adolescents, and reveals a potential small gender difference in this relationship. The hypothesis that stress might facilitate the development of obesity during adolescence is supported. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Energy supplier obligations and white certificate schemes: Comparative analysis of experiences in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Bertoldi, Paolo, E-mail: paolo.bertoldi@ec.europa.e [European Commission, Joint Research Centre, Institute for Energy, Via E. Fermi 1, TP 450, 21027 Ispra (Vatican City State, Holy See) (Italy); Rezessy, Silvia, E-mail: silvia.rezessy@ec.europa.e [European Commission, Joint Research Centre, Institute for Energy, Via E. Fermi 1, TP 450, 21027 Ispra (Vatican City State, Holy See) (Italy); Lees, Eoin, E-mail: eoin@eoinleesenergy.co [Eoin Lees Energy, 4 Silver Lane, West Challow, Wantage, Oxon OX12 9TX (United Kingdom); Baudry, Paul, E-mail: paul.baudry@edf.f [EDF R and D, Centre des Renardieres, 77818 Moret sur Loing (France); Jeandel, Alexandre, E-mail: alexandre.jeandel@gdfsuez.co [GDF SUEZ, 16, rue Ville L' Eveque, 75008 Paris (France); Labanca, Nicola, E-mail: nicola.labanca@polimi.i [eERG, Politecnico di Milano, Via Lambruschini n. 4, 20156 Milano (Italy)

    2010-03-15

    A number of Member States of the European Union (EU) have introduced market-based policy portfolios based on quantified energy savings obligations on energy distributors or suppliers, possibly coupled with certification of project-based energy savings (via white certificates), and the option to trade the certificates or obligations. The paper provides an up-to-date review and analysis of results to date of white certificate schemes in the EU. In the EU supplier obligations and white certificate schemes have delivered larger savings than originally expected with obliged companies exceeding targets and, in some cases, at cost below what policy makers have anticipated. Supplier obligations foster the uptake of standardised energy efficiency actions often targeting smaller energy users (residential sector), lowering the transaction costs and contributing to market transformation. The role of certificate trading is more ambiguous. Trading can bring benefits where the target is set sufficiently high with respect to the energy-saving potential in the sectors covered. Theoretically trading may be better suited for broader systems with comprehensive coverage, but even in smaller schemes trading may reduce the transaction costs of compliance for obliged actors without sufficient expertise on end-use energy efficiency. Yet, trading increases the administrative cost ratio of energy-saving obligations.

  11. Russian gas and european energy security: Interdependence following the crisis with Georgia and the Ukraine

    Directory of Open Access Journals (Sweden)

    Domenico Gullo

    2009-12-01

    Full Text Available At the present time, gas represents one of the main energy raw materials that are used for producing electricity and other private uses. The dual political conflict between the Ukraine and the Russian Federation (winter 2005 and Christmas 2008 and 2009 has highlighted the EU’s position of structural weaknesses both in terms of the supply of its raw materials and as regards possible alternatives to Russia as an energy supplier. The European countries worst hit by Russian-Ukrainian tensions have been those with the greatest dependence on Russian gas. This crisis scenario has led governments to promote a common European energy policy with the aim of, in the future, being in a stronger position than Europe’s current one when negotiating with both Russia and all the other suppliers of energy sources. The article attempts to develop and analyse what has happened since 2005 between the two crises (also with particular references to the recent conflicts between Georgia and Russia in August 2008. The authors begin by analysing the main theoretical framework with respect to interdependence. They then go on to analyse the events, identifying and delimiting the movements of the actors so as to be able to understand both the present situation and the foreseeable consequences of same. In the last part, the authors attempt to analyse the different theoretical frameworks delimited at the beginning of the research by comparing them with the events that have taken place.

  12. Project of european directive on the renewable energies; Projet de directive europeenne sur les energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, P

    2008-01-15

    The project of directive is a legislative adaptation of the ''road map of the renewable energies'' presented by the Ministers Council Commission the 10 January 2007. Meanwhile, this approach does not take into account the final objectives, the reduction of the CO{sub 2} and the fuels importation. The author aims to discuss the project. He shows how the text is exclusively centered on the renewable energies, the lack of guarantee that the objectives will be reach, the lack of criteria to determine the % of renewable energies by country and the lack of an approach cost-benefit. (A.L.B.)

  13. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Directory of Open Access Journals (Sweden)

    Francisca Fernández-Tirado

    2017-04-01

    Full Text Available Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA. Two methods of calculation for Life Cycle Impact Assessment (LCIA and two functional units (FUs were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  14. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-09-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  15. Cross-sectional and longitudinal associations between energy intake and BMI z-score in European children

    National Research Council Canada - National Science Library

    Hebestreit, Antje; Barba, Gianvincenzo; De Henauw, Stefaan; Eiben, Gabriele; Hadjigeorgiou, Charalampos; Kovács, Éva; Krogh, Vittorio; Moreno, Luis A; Pala, Valeria; Veidebaum, Toomas; Wolters, Maike; Börnhorst, Claudia

    2016-01-01

    .... We aim to investigate cross-sectional and longitudinal effects of daily energy intake (EI) on BMI z-scores of European boys and girls considering growth-related height dependencies of EI using residual EI...

  16. The European energy industry on the way to cartelization; L'Europe energetique en voie de cartellisation

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, V

    2005-09-01

    The European energy groups, doped by the complete liberalization of the sector foreseen for 2007, are launching series of public offers. The prospects, attractive for them, lead to a price increase for end users. Short paper. (J.S.)

  17. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, I. [Universiteit Utrecht (Netherlands). Copernicus Institute for Sustainable Development and Innovation, Department of Science, Technology and Society; Scurlock, J.M.O. [Oak Ridge National Laboratory, TN (United States). Environmental Sciences Division; Lindvall, E. [Svaloef Weibull AB, Umeae (Sweden); Christou, M. [Center for Renewable Energy Sources, Pikermi-Attikis (Greece)

    2003-10-01

    Perennial grasses display many beneficial attributes as energy crops, and there has been increasing interest in their use in the US and Europe since the mid-1980s. In the US, the Herbaceous Energy Crops Research Program (HECP), funded by the US Department of Energy (DOE), was established in 1984. After evaluating 35 potential herbaceous crops of which 18 were perennial grasses it was concluded that switchgrass (Panicum virgatum) was the native perennial grass which showed the greatest potential. In 1991, the DOE's Bioenergy Feedstock Development Program (BFDP), which evolved from the HECP, decided to focus research on a 'model' crop system and to concentrate research resources on switchgrass, in order to rapidly attain its maximal output as a biomass crop. In Europe, about 20 perennial grasses have been tested and four perennial rhizomatous grasses (PRG), namely miscanthus (Miscanthus spp.), reed canarygrass (Phalaris arundinacea) giant reed (Arundo donax) and switchgrass (Panicum virgatum) were chosen for more extensive research programs. Reed canary grass and giant reed are grasses with the C{sub 3} photosynthetic pathway, and are native to Europe. Miscanthus, which originated in Southeast Asia, and switchgrass, native to North America, are both C{sub 4} grasses. These four grasses differ in their ecological/climatic demands, their yield potentials, biomass characteristics and crop management requirements. Efficient production of bioenergy from such perennial grasses requires the choice of the most appropriate grass species for the given ecological/climatic conditions. In temperate and warm regions, C{sub 4} grasses outyield C{sub 3} grasses due to their more efficient photosynthetic pathway. However, the further north perennial grasses are planted, the more likely cool season grasses are to yield more than warm season grasses. Low winter temperatures and short vegetation periods are major limits to the growth of C{sub 4} grasses in northern Europe

  18. Energy 2000. A reference projection and alternative outlooks for the European Community and the world to the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Guilmot, J.-F.; McGlue, D.; Valette, P.; Waeterloos, C.

    1986-01-01

    This book represents the first output from the energy systems analysis and modelling research programme funded by the Commission of the European Communities. It provides detailed and consistent energy projections on a country basis and at the level of the EC as a whole using the same methodological approach and harmonized energy data. Results are presented for each country in terms of primary energy source and energy demand by sector.

  19. Territorial energy planning tools. Good practices of european towns; Les outils de planification energetique territoriale. Bonne pratiques de villes europeennes

    Energy Technology Data Exchange (ETDEWEB)

    Lacassagne, S.; Schilken, P.

    2003-07-01

    Some european towns developed a specific energy and environmental policy, function of many factors. Policies are implemented to favorite the energy consumption and the pollutant emission control. The actions of local collectivities in the domain have been analyzed following three axis: the measure of the energy performance of local collectivities, the territorial energy management tools, the energy integration in sectoral policies. This report takes stock on the second axis analysis. (A.L.B.)

  20. Assessing energy efficiencies, economy, and global warming potential (GWP) effects of major crop production systems in Iran: a case study in East Azerbaijan province.

    Science.gov (United States)

    Mohammadzadeh, Arash; Mahdavi Damghani, Abdolmajid; Vafabakhsh, Javad; Deihimfard, Reza

    2017-07-01

    Efficient use of energy in farming systems is one of the most important implications for decreasing greenhouse gas (GHG) emissions and mitigating global warming (GW). This paper describes the energy use patterns, analyze the economics, and report global warming potential effects of major crop production systems in East Azerbaijan province, Iran. For this purpose, 110 farmers whose main activity was major crop production in the region, including wheat, barley, carrot, tomato, onion, potato, alfalfa, corn silage, canola, and saffron, were surveyed. Some other data was obtained from the Ministry of Agriculture Jihad of Iran. Results showed that, in terms of total energy input, onion (87,556 Mj ha -1 ) and potato (80,869 Mj ha -1 ) production systems were more energy-intensive than other crops. Among the studied crops, the highest values of net return (6563.8 $ ha -1 ) and benefit/cost ratio (1.95) were related to carrot and corn silage production systems, respectively. Studies have also shown that onion and saffron production systems emit the highest (5332.6 kg CO2eq ha -1 ) and lowest (646.24 kg CO 2 eq ha -1 ) CO 2 eq. emission, respectively. When it was averaged across crops, diesel fuel accounted for the greatest GHG contribution with 43% of the total, followed by electric power (28%) and nitrogen fertilizer (21%). In the present study, eco-efficiency was calculated as a ratio of the gross production value and global warming potential effect for the studied crops. Out of all the studied crops, the highest values of eco-efficiency were calculated to be 8.65 $ kg CO 2 eq -1 for the saffron production system followed by the carrot (3.65 $ kg CO 2 eq -1 ) production. Generally, from the aspect of energy balance and use efficiency, the alfalfa production system was the best; however, from an economical point of view, the carrot production system was better than the other crops.

  1. Energy service companies in European countries: Current status and a strategy to foster their development

    Energy Technology Data Exchange (ETDEWEB)

    Bertoldi, Paolo [European Commission, DG JRC, TP 450, I-21020 Ispra (Vatican City State, Holy See,) (Italy)]. E-mail: paolo.bertoldi@cec.eu.int; Rezessy, Silvia [Department of Environmental Sciences and Policy, Central European University, Nador u. 9, H-1051 Budapest (Hungary)]. E-mail: ephlas01@phd.ceu.hu; Vine, Edward [Lawrence Berkeley National Laboratory, Building 90-4000, Berkeley, CA 94720 (United States)]. E-mail: elvine@lbl.gov

    2006-09-15

    Although the European Commission and the Member States of the European Union (EU) have promoted a number of policy initiatives to foster the Energy Services Company (ESCO) industry, a recent survey of ESCO businesses in Europe has indicated that major differences exist in the development of the ESCO business among the various countries. In some countries a large number of ESCOs have been successfully operating for a number of years, while in other countries only a few ESCOs have recently started to operate. This difference could be explained by several factors, such as different levels of support offered to ESCOs by national and regional energy authorities, local market structures and rules, and variation in the definitions, roles and activities of ESCOs. This paper reviews and analyses the development and the current status of ESCO industries in the EU and the New Accession Countries. Based on the review and the analysis, a long-term strategy to foster the development of ESCOs in Europe is formulated. The strategic actions recommended build on successful experience in Europe and are proposed with an eye to existing and planned legislative measures, such as the proposed Energy Service Directive and the deployment of the Kyoto flexible mechanisms.

  2. RE-Shaping. Shaping an effective and efficient European renewable energy market. D23 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rathmann, M.; Klessmann, C.; Nabe, C.; De Jager, D.; De Lovinfosse, I. [Ecofys, Utrecht (Netherlands); Ragwitz, M.; Steinhilber, S.; Breitschopf, B. [Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe (Germany); Burgers, J.; Boots, M. [KEMA, Arnhem (Netherlands); Weoeres, B. [EnergoBanking, Budapest (Hungary); Resch, G.; Panzer, C.; Ortner, A.; Busch, S. [Vienna University of Technology, Institute of Energy Systems and Electric Drives, Energy Economics Group EEG, Vienna (Austria); Neuhoff, K.; Boyd, R. [Climate Policy Initiative, German Institute for Economic Research (DIW Berlin), Berlin (Germany); Junginger, M.; Hoefnagels, R. [Utrecht University, Utrecht (Netherlands); Cusumano, N.; Lorenzoni, A. [Bocconi University, Milan (Italy); Konstantinaviciute, I. [Lithuanian Energy Institute LEI, Kaunas (Lithuania)

    2012-02-15

    The core objective of the RE-Shaping project is to assist Member State governments in preparing for the implementation of Directive 2009/28/EC (on the promotion of the use of energy from renewable sources) and to guide a European policy for RES (renewable energy sources) in the mid- to long term. The past and present success of policies for renewable energies will be evaluated and recommendations derived to improve future RES support schemes. The core content of this collaborative research activity comprises: Developing a comprehensive policy background for RES support instruments; Providing the European Commission and Member States with scientifically based and statistically robust indicators to measure the success of currently implemented RES policies; Proposing innovative financing schemes for lower costs and better capital availability in RES financing; Initiation of National Policy Processes which attempt to stimulate debate and offer key stakeholders a meeting place to set and implement RES targets as well as options to improve the national policies fostering RES market penetration; Assessing options to coordinate or even gradually harmonize national RES policy approaches. This report marks the end of the research project RE-Shaping and summarizes its research activities, results, and recommendations.

  3. European renewable energy policy at crossroads-Focus on electricity support mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Doerte [Kuhbier Law Firm, Avenue de la Fauconnerie 73, B-1170 Brussels (Belgium)], E-mail: fouquet@kuhbier.com; Johansson, Thomas B. [International Institute for Industrial Environmental Economics, Lund University, P.O. Box 196, 221 00 Lund (Sweden)

    2008-11-15

    The European Union has adopted targets for the expanded use of renewable energies (REs) as one mean to achieve improved energy security, reduced greenhouse gas (GHG) emissions, and improved competitiveness of the European economies. Realising that rapid expansion of RE will not happen in the energy market place, as it now exists, various support mechanisms are under consideration, most prominently these may be grouped into two major categories, tradable green certificates (TGC) and feed-in tariffs (FiT). Experiences from a number of countries in Europe suggest that FiT deliver larger and faster penetration of RE than TGC, at lower cost. The two major systems are compared in overall terms. In a TGC system, a target for RE penetration is set by public authorities seeking to minimise cost for achieving this target. The certificate price is set by the market. In a FiT system, public authorities set an effective price but are not limiting the quantity installed. This has led to impressive growth rates, particularly in Denmark, Germany, and Spain. It is found that investor risks are much lower in a FiT system, and that innovation incentives are larger. Against this background, the European Commission proposal for an EU-wide TGC system is discussed. It is found that such a system is likely to be less effective and less efficient than maintaining national FiT systems, and that it also risks time-consuming legal processes during which investor uncertainties would risk a marked slow-down in investments. Given the underlying objective of addressing security, climate change and competitiveness, it therefore appears that, at least for the time being, continued reliance on national systems, especially FiT would be preferred.

  4. European renewable energy policy at crossroads. Focus on electricity support mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Doerte [Kuhbier Law Firm, Avenue de la Fauconnerie 73, B-1170 Brussels (Belgium); Johansson, Thomas B. [International Institute for Industrial Environmental Economics, Lund University, P.O. Box 196, 221 00 Lund (Sweden)

    2008-11-15

    The European Union has adopted targets for the expanded use of renewable energies (REs) as one mean to achieve improved energy security, reduced greenhouse gas (GHG) emissions, and improved competitiveness of the European economies. Realising that rapid expansion of RE will not happen in the energy market place, as it now exists, various support mechanisms are under consideration, most prominently these may be grouped into two major categories, tradable green certificates (TGC) and feed-in tariffs (FiT). Experiences from a number of countries in Europe suggest that FiT deliver larger and faster penetration of RE than TGC, at lower cost. The two major systems are compared in overall terms. In a TGC system, a target for RE penetration is set by public authorities seeking to minimise cost for achieving this target. The certificate price is set by the market. In a FiT system, public authorities set an effective price but are not limiting the quantity installed. This has led to impressive growth rates, particularly in Denmark, Germany, and Spain. It is found that investor risks are much lower in a FiT system, and that innovation incentives are larger. Against this background, the European Commission proposal for an EU-wide TGC system is discussed. It is found that such a system is likely to be less effective and less efficient than maintaining national FiT systems, and that it also risks time-consuming legal processes during which investor uncertainties would risk a marked slow-down in investments. Given the underlying objective of addressing security, climate change and competitiveness, it therefore appears that, at least for the time being, continued reliance on national systems, especially FiT would be preferred. (author)

  5. Geo-energy Test Beds: part of the European Plate Observing System

    Science.gov (United States)

    Stephenson, Michael; Schofield, David; Luton, Christopher; Haslinger, Florian; Henninges, Jan; Giardini, Domenico

    2016-04-01

    For 2020, the EU has committed to cutting its greenhouse gas emissions to 20% below 1990 levels and further cuts are being decided for 2050. This commitment is one of the headline targets of the Europe 2020 growth strategy and is being implemented through binding legislation. This decarbonisation of the EU economy is one dimension of an overall EU energy and climate framework that is mutually interlinked with the need to ensure energy security, promote a fully integrated energy market, promote energy efficiency and promote research innovation and competitiveness. Power generation will have to take a particularly large part in emissions reductions (-54 to -68% by 2030 and -93 to -99% by 2050), mainly by focussing on increasing surface renewables (wind, tidal and solar) but also on carbon capture and storage on fossil fuel and biofuel power plants, shale gas, nuclear and geothermal power. All the above generation technologies share common geological challenges around containment, safety and environmental sustainability. In a densely populated continent, this means that high levels of subsurface management are needed to fully realise the energy potential. In response to this need, across Europe, public and private sector funded, experimental test and monitoring facilities and infrastructures (Geo-energy Test Beds, GETB) are being developed. These GETB investigate the processes, technology and practices that facilitate the sustainable exploitation of Geo-energy resources and are of intense interest to the public and regulators alike. The vision of EPOS IP Work Package 17 (wp17) is to promote research and innovation in Geo-energy that reflects core European energy priorities through provision of virtual access to data and protocols and trans-national access to GETB experiments. This will be achieved through provision of access to continuous strategic observations, promotion of the integrated use of data and models from European GETB, development of underpinning research

  6. Quantifying the Effects of Biomass Market Conditions and Policy Incentives on Economically Feasible Sites to Establish Dedicated Energy Crops

    Directory of Open Access Journals (Sweden)

    Sandhya Nepal

    2015-11-01

    Full Text Available This study used a spatially-explicit model to identify the amount and spatial distribution of economically feasible sites for establishing dedicated energy crops under various market and policy scenarios. A sensitivity analysis was performed for a biomass market with different discount rates and biomass prices as well as policy scenarios including propriety tax exemption, carbon offset payments, and the inclusion of farmland for biomass production. The model was applied to a four-county study area in Kentucky representing conditions commonly found in the Ohio River Valley. Results showed that both biomass price and discount rate have a can strongly influence the amount of economically efficient sites. Rising the biomass price by 5 $·t−1 and lowering discount rate by 1% from the baseline scenario (40 $·t−1 and 5% resulted in an over fourteen fold increment. Property tax exemption resulted in a fourfold increase, a carbon payment on only 1 $·t−1 caused a twelve fold increase and extending the landbase from marginal land to farmland only slightly increase the economically efficient sites. These results provide an objective evaluation of market and policy scenarios in terms of their potential to increase land availability for establishing dedicated energy crops and to promote the bioenergy industry.

  7. 2016 CERN-JINR European School of High-Energy Physics

    CERN Multimedia

    2016-01-01

    The 2016 CERN-JINR European School of High-Energy Physics will take place in Skeikampen (near to Lillehammer), Norway, on 15-28 June 2016.   The School is targeted particularly at students in experimental HEP, who are in the final years of work towards their PhDs, although candidates at an earlier or later stage in their studies may be considered. ** The deadline for applications has been extended to 19 February 2016 ** Sponsorship may be available for a small number of students from developing countries. Further details are available here.

  8. Policy Evaluation of a New Approach to Wind Energy Implementation in the European Community. SIWERM

    Energy Technology Data Exchange (ETDEWEB)

    Urban, F.

    2004-12-15

    SIWERM stands for Successful Implementation of Wind Energy at Regional and Municipal level. It is a project of the European Union's ALTENER programme. This study aims to evaluate the SIWERM project by inspecting its wind policy. The research assesses if the method is successful in the Netherlands and what a successful wind energy policy is composed of. First of all, the Dutch national situation for wind energy development and corresponding policies will be analysed by extensive literature review. Secondly, an analysis of the procedures used in the SIWERM project will be made which also identifies its success factors. Furthermore, 5 comparisons will be made between successful and unsuccessful wind energy projects in the Netherlands and between those using the SIWERM wind policy and those using other methods. This research will be carried out in form of case studies and in form of interviews with relevant stakeholders such as municipal, provincial and national energy coordinators, consultants, developers, opposition groups, land owners, politicians, environmental agencies and energy companies. The policy will also be compared to a theoretical framework of public participation. Once the success of the approach has been proven an assessment of reasons for its success will be made in the national context of the Netherlands. Finally, factors will be identified which characterise a successful wind policy.

  9. Prospects of whole grain crops of wheat, rye and triticale under different fertilizer regimes for energy production

    DEFF Research Database (Denmark)

    Jørgensen, Johannes Ravn; Deleuran, Lise Christina; Wollenweber, Bernd

    2007-01-01

    Cereal grain yield and biomass production are affected by fertilizer application strategies. In order to quantify the performance of wheat, rye and triticale cultivars for use as energy crops, field experiments with either modified phosphorus-potassium or potassium applications were designed at two...... for biomass, ash and contents of nitrogen (N), K, Cl, sulphur (S) and Na. Dry matter yields varied between 11.5 and 15.9 t ha-1 at the two locations. Triticale and rye had a higher total dry matter yield than wheat, even at lower inputs of N fertilizer. Thus, the constant high yield of rye and triticale...... is an advantage for biomass for energy purposes. The mineral content of the grain fraction changed only little between years and locations. By contrast, large variations in the analysed ions in the straw fraction between years and locations were observed. The use of K fertilizers resulted in a significantly...

  10. Establishing perennial seed-based energy crops on reclaimed surface mine soils in the central Appalachians

    Science.gov (United States)

    Jamie L. Schuler; Shawn Grushecky; Jingxin. Wang

    2014-01-01

    Renewable energy has been at the forefront of the United States' energy policies. Cellulosic feedstocks have received considerable interest in the Appalachian region because of their abundance and availability, but cost competition from other energy sectors has limited their use in the region. Some other bioenergy feedstocks, such as corn and soybeans, are not a...

  11. Communication from the commission to the council and the European parliament. Final report on the green paper: towards a European strategy for the security of energy supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-15

    The Green Paper on the security of energy supply, adopted by the Commission more than a year ago, opened up a debate on energy policy unprecedented in 30 years. In most of the Member States this debate revived discussion on national options in the energy field. Looking ahead to the next twenty to thirty years, the Green Paper drew attention to the structural weaknesses and geopolitical, social and environmental shortcomings of the EU energy supply, notably as regards European commitments in the Kyoto Protocol. The European economy, steadily demanding more and more energy, is essentially based on fossil fuels. The Green Paper offers a clear strategy based on demand management. It has the merit of pointing out that the EU has little room for manoeuvre with regard to energy supply notably due to its low, or in certain cases less competitive (e.g. coal), energy resources. Therefore it is appropriate for the Union to concentrate on guiding and steering demand, unlike the United States which, in the energy plan it announced in May 2001, seeks to meet demand by constantly boosting supply. The Green Paper put 13 questions as a framework for the general debate. The conclusion is that there is virtually unanimous agreement on the strategic axis of demand management: energy consumption must be guided and steered. The conclusions of the Barcelona European Council, stressing in particular the need for better energy efficiency by 2010 and rapid adoption of energy taxation proposals, clearly give political backing to this priority. Without waiting for the debate to end, the Commission made some very well received proposals along these lines, involving actual legislation and not just encouraging words or exchange of good practice, some of which have already been adopted by the Council and the European Parliament. One of these proposals in particular was the Directive on electricity production from renewable sources, adopted in 2001. Another was the proposal for a Directive on

  12. Use of Energy Crop (Ricinus communis L.) for Phytoextraction of Heavy Metals Assisted with Citric Acid.

    Science.gov (United States)

    Zhang, Hui; Chen, Xueping; He, Chiquan; Liang, Xia; Oh, Kokyo; Liu, Xiaoyan; Lei, Yanru

    2015-01-01

    Ricinus communis L. is a bioenergetic crop with high-biomass production and tolerance to cadmium (Cd) and lead (Pb), thus, the plant is a candidate crop for phytoremediation. Pot experiments were performed to study the effects of citric acid in enhancing phytoextraction of Cd/Pb by Ricinus communis L. Citric acid increased Cd and Pb contents in plant shoots in all treatments by about 78% and 18-45%, respectively, at the dosage of 10 mM kg(-1) soil without affecting aboveground biomass production. Addition of citric acid reduced CEC, weakened soil adsorption of heavy metals and activated Cd and Pb in soil solutions. The acid-exchangeable fraction (BCR-1) of Pb remained lower than 7% and significantly increased with citric acid amendment. Respective increases in soil evaluation index induces by 14% and 19% under the Cd1Pb50 and Cd1Pb250 treatments upon addition of citric acid resulted in soil quality improvement. Ricinus communis L. has great potential in citric acid-assisted phytoextraction for Cd and Pb remediation.

  13. The Determinants of Farmer’s Intended Behaviour Towards the Adoption of Energy Crops in Southern Spain: an Application of the Classification Tree-Method

    Directory of Open Access Journals (Sweden)

    Giacomo Giannoccaro

    2012-11-01

    Full Text Available Despite growing interest in biomass over the last number of years, bio-energy derived from biomass currently contributes to a very small share of the total Spanish energy market. How individual farmers choose to respond to the opportunities presented by these relatively novel crops has still received scarce attention. In this paper, farmers’ intentions towards the adoption of energy crops are analyzed. A survey of 201 farm- households in Southern Spain is explored using a non-parametric approach based on classification tree algorithms. The main outcome of this analysis is that off-farm labour factor affects the adoption of energy crops on farm, together with farm specializations, size of owned land and farmer’s education. While the study confirms the relevance of the main determinants available from the literature, need for further research is emphasised.

  14. Estec2003: European solar thermal energy conference. Proceedings; Estec2003: Europaeische Solarthermie-Konferenz. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In December 2002 more than 40 solar thermal companies and associations joined forces in the European Solar Thermal Industry Federation (ESTIF), to strengthen support for this clean technology on the European level. ESTIF aims at building a close partnership between industry and public authorities in order to overcome the main barriers to growth. Over the last 6 months we have seen some positive developments, which we could build upon. Here are some examples: 1. Germany, the country with the largest demand for solar thermal technology, is back on track to repeat the growth rates we have witnessed in the 1990s. 2. The rules for the solar Keymark quality label were approved by CEN board in January 2003. 3. The city of Madrid became the first European capital to follow the example of Barcelona in requiring the use of solar thermal in new residential buildings. 4. The long awaited ''Sun in Action II - a solar thermal strategy for Europe was published last month. 5. Now, the first European Solar Thermal Energy Conference brings together decision makers from industry and politics to discuss the future of renewable heating and cooling in Europe. - Solar thermal has a great potential - 1.4 billion square meters in the 15 EU member states alone. 99% of this potential are still to be developed. ESTIF has made it its mission 'to achieve high priority and acceptance for solar thermal as a key element for sustainable heating and cooling in Europe and to work for the implementation, as soon as possible, of all steps necessary to realise the high potential of solar thermal'. With estec2003 we offer a platform to exchange information and opinions concerning how this goal can be achieved. The developments in different countries show that the use of solar thermal technologies does not depend on climatic conditions alone. (orig.)

  15. European emissions trading and the international competitiveness of energy-intensive industries: A legal and political evaluation of possible supporting measures

    NARCIS (Netherlands)

    van Asselt, H.D.; Biermann, F.

    2007-01-01

    The EU Emissions Trading Directive is expected by European energy-intensive industries to harm their competitiveness vis-à-vis non-European competitors. Many additional measures have thus been proposed to 'level the playing field' and to protect the competitiveness of European energy-intensive

  16. Energy yield prediction of offshore wind farm clusters at the EERA-DTOC European project

    DEFF Research Database (Denmark)

    Cantero, E.; Sanz, J.; Lorenzo, S.

    . A demonstration phase at the end of the project will assess the value of the integrated design tool with the help of potential end-users from industry. This abstracts summarizes the objectives and preliminary results of work package 3. In order to provide an accurate value of the expected net energy yield......A new integrated design tool for optimization of offshore wind farm clusters is under development in the European Energy Research Alliance – Design Tools for Offshore wind farm Cluster project (EERA DTOC). The project builds on already established design tools from the project partners and possibly...... third-party models. Wake models have been benchmarked on the Horns Rev and, currently, on the Lilgrund wind farm test cases. Dedicated experiments from ‘BARD Offshore 1’ wind farm will using scanning lidars will produce new data for the validation of wake models. Furthermore, the project includes power...

  17. Energy Yield prediction of offshore wind farm clusters at the EERA–DTOC European project

    DEFF Research Database (Denmark)

    Cantero, E.; Sanz, J.; Lozano, S.

    . A demonstration phase at the end of the project will assess the value of the integrated design tool with the help of potential end-users from industry. In order to provide an accurate value of the expected net energy yield, the offshore wind resource assessment process has been reviewed as well as the sources......A new integrated design tool for optimization of offshore wind farm clusters is under development in the European Energy Research Alliance – Design Tools for Offshore wind farm Cluster project (EERA DTOC). The project builds on already established design tools from the project partners and possibly...... third-party models. Wake models have been benchmarked on the Horns Rev-1 and, currently, on the Lillgrund wind farm test cases. Dedicated experiments from 'BARD Offshore 1' wind farm will using scanning lidars will produce new data for the validation of wake models. Furthermore, the project includes...

  18. Energy Yield Prediction of Offshore Wind Farm Clusters at the EERA-DTOC European Project

    DEFF Research Database (Denmark)

    Cantero, E.; Hasager, Charlotte Bay; Réthoré, Pierre-Elouan

    2014-01-01

    . A demonstration phase at the end of the project will assess the value of the integrated design tool with the help of potential end-users from industry.This abstracts summarizes the objectives and preliminary results of work package 3. In order to provide an accurate value of the expected net energy yield......A new integrated design tool for optimization of offshore wind farm clusters is under development in the European Energy Research Alliance – Design Tools for Offshore wind farm Cluster project (EERA DTOC). The project builds on already established design tools from the project partners and possibly...... third-party models. Wake models have been benchmarked on the Horns Rev and, currently, on the Lilgrund wind farm test cases. Dedicated experiments from ‘BARD Offshore 1’ wind farm will using scanning lidars will produce new data for the validation of wake models. Furthermore, the project includes power...

  19. Consequence of land use changes into energy crops in Campania region

    Directory of Open Access Journals (Sweden)

    Stefania Pindozzi

    2013-09-01

    Full Text Available Campania region is undergoing a new and important land use change (LUC. Large areas under tobacco are experiencing a severe economic crisis and cereal areas, especially in the hill, are cultivated with increasing difficulty, with poor economic results (yield value of 2.5 t/ha/year and under the risk of erosion. No-food crops suitable in these contexts are the perennial and in this case, the land use change would certainly lead to a positive impact on reducing erosion, but also on the reduction of nutrient requirement, on fuel consumption and perhaps it would also lead to an increase in profitability. The aim of this work is to identify the areas in which the land use change could be realistic and ecologically compatible and to evaluate the main consequence of the LUC. The study area includes the entire Campania region. It has been assumed that the areas that will undergo the LUC will be the hilly, not-irrigated cereal crop, with altitudes between 400 and 750 m a.s.l., not included in natural parks, in the Site of Community Importance and in the Special Protection Areas. Through the climate model, inferred from the Ground Water Protection Plan, the area to be examined was classified as ‘cold Lauretum’, which is a good area for the Arundo donax crops up to 750 m a.l.s., with recoverable biomass yield of about 12.6 t/year. The erosion has been estimated with RUSLE applied to the whole region. Using the ESRI ArcGis 10.0 software, seven large areas, partially convertible, were identified. The area that is realistic to convert amounted to approximately 500 km2. The value of the biomass production has been evaluated in the order of 25 million euro a year; actual wheat production would be 33 million euro a year but the production costs are far greater. With LUC there is a reduction in soil erosion in the order of 300000 t/year. This would lead a saving, on global scale, in the order of 10 million tonnes of CO2 per year.

  20. Gazprom, the Kremlin and the European energy security; Gazprom, het Kremlin en de Europese energieveiligheid

    Energy Technology Data Exchange (ETDEWEB)

    Kneppers, S.

    2011-04-15

    The author discusses possible consequences of the relationship between Gazprom and the Kremlin and its impact on European energy security. Under Vladimir Putin's presidency, Moscow reasserted control over the Russian gas sector. Since 2005 the Russian state owns a controlling stake in Gazprom. After the Russian-Ukrainian gas crises of 2006 and 2009 Europe's dependence on Russian gas supplies has become a source of concern to the EU member states. It was feared that Russia might use Gazprom and its gas supplies as political leverage in Europe. Additionally, concerns were raised about a shortfall in Russian gas production in the near future. Moreover, it was asserted that European energy security could be further endangered by the establishment of a gas cartel, in which Russia would play a leading role. However, the financial crisis of October 2008, the rapid growth in US production of unconventional gas, and an increase in supply of LNG have changed the global energy market. [Dutch] De auteur bespreekt de mogelijke gevolgen van de relatie tussen Gazprom en het Kremlin en de impact ervan op de Europese energieveiligheid. Onder voorzitterschap van Vladimir Poetin, bevestigde Moskou opnieuw haar controle over de Russische gassector. Sinds 2005 heeft de Russische staat een meerderheidsbelang in Gazprom. Na de Russisch-Oekraiense gascrisissen van 2006 en 2009 is de afhankelijkheid van Europa voor de levering van Russisch gas uitgegroeid tot een bron van zorg voor de EU-lidstaten. Gevreesd werd dat Rusland Gazprom en haar gasvoorziening zou gebruiken als politiek middel in Europa. Daarnaast werden zorgen geuit over een tekort in de Russisch gasproductie in de nabije toekomst. Bovendien werd beweerd dat de Europese energieveiligheid verder zou kunnen worden bedreigd door de oprichting van een gaskartel, waarin Rusland een leidende rol speelt. Echter, de financiele crisis van oktober 2008, de snelle groei in de VS van de productie van onconventioneel gas, en een

  1. The role of natural resource and environmental economics in determining the trade-offs in consumption and production of energy inputs: The case of biomass energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Downing, M.; Graham, R.L.

    1993-12-31

    Natural resource economics issues deal with flows and funds of renewable and nonrenewable resources over time. These issues include topics concerned with management of fisheries, forests, mineral, energy resources, the extinction of species and the irreversibility of development over time. Environmental economics issues deal with regulation of polluting activities and the valuation of environmental amenities. In this study we outline a framework for studying both natural resource and environmental economics issues for any renewable or nonrenewable resource. Valuation from both the cost and benefit sides are addressed as they relate to the valuation of environmental programs or policies. By using this top-down approach to analyze and determine the costs and benefits of using renewable or nonrenewable resources, policy-makers on the global, national and local scales may be better informed as to the probable nonmarket and market ramifications of their natural resource and environmental policy decisions. This general framework for analysis is then focused to address biomass energy crops and their usage as inputs to energy production. As with any energy technology, a complete analysis must include an examination of the entire fuel cycle; specifically both production and consumption sides. From a production standpoint, market valuation issues such as crop management techniques, inputs to production, and community economics issues must be addressed as well as nonmarket valuation issues such as soil erosion, ground water effects and carbon sequestration. On the consumption side, market valuation considerations such as energy fuel efficiency and quality, cost of conversion and employment of labor are important factors while the critical nonmarket valuation factors are ambient air visibility, greenhouse gas release, and disposal of the by-products of conversion and combustion.

  2. Biotechnological approaches to determine the impact of viruses in the energy crop plant Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Maghuly Fatemeh

    2011-08-01

    Full Text Available Abstract Background Geminiviruses infect a wide range of plant species including Jatropha and cassava both belonging to family Euphorbiaceae. Cassava is traditionally an important food crop in Sub - Saharan countries, while Jatropha is considered as valuable biofuel plant with great perspectives in the future. Results A total of 127 Jatropha samples from Ethiopia and Kenya and 124 cassava samples from Kenya were tested by Enzyme-Linked Immunosorbent Assay (ELISA for RNA viruses and polymerase chain reaction for geminiviruses. Jatropha samples from 4 different districts in Kenya and Ethiopia (analyzed by ELISA were negative for all three RNA viruses tested: Cassava brown streak virus (CBSV, Cassava common mosaic virus, Cucumber mosaic virus, Three cassava samples from Busia district (Kenya contained CBSV. Efforts to develop diagnostic approaches allowing reliable pathogen detection in Jatropha, involved the amplification and sequencing of the entire DNA A molecules of 40 Kenyan isolates belonging to African cassava mosaic virus (ACMV and East African cassava mosaic virus - Uganda. This information enabled the design of novel primers to address different questions: a primers amplifying longer sequences led to a phylogenetic tree of isolates, allowing some predictions on the evolutionary aspects of Begomoviruses in Jatrophia; b primers amplifying shorter sequences represent a reliable diagnostic tool. This is the first report of the two Begomoviruses in J. curcas. Two cassava samples were co - infected with cassava mosaic geminivirus and CBSV. A Defective DNA A of ACMV was found for the first time in Jatropha. Conclusion Cassava geminiviruses occurring in Jatropha might be spread wider than anticipated. If not taken care of, this virus infection might negatively impact large scale plantations for biofuel production. Being hosts for similar pathogens, the planting vicinity of the two crop plants needs to be handled carefully.

  3. Biotechnological approaches to determine the impact of viruses in the energy crop plant Jatropha curcas

    Science.gov (United States)

    2011-01-01

    Background Geminiviruses infect a wide range of plant species including Jatropha and cassava both belonging to family Euphorbiaceae. Cassava is traditionally an important food crop in Sub - Saharan countries, while Jatropha is considered as valuable biofuel plant with great perspectives in the future. Results A total of 127 Jatropha samples from Ethiopia and Kenya and 124 cassava samples from Kenya were tested by Enzyme-Linked Immunosorbent Assay (ELISA) for RNA viruses and polymerase chain reaction for geminiviruses. Jatropha samples from 4 different districts in Kenya and Ethiopia (analyzed by ELISA) were negative for all three RNA viruses tested: Cassava brown streak virus (CBSV), Cassava common mosaic virus, Cucumber mosaic virus, Three cassava samples from Busia district (Kenya) contained CBSV. Efforts to develop diagnostic approaches allowing reliable pathogen detection in Jatropha, involved the amplification and sequencing of the entire DNA A molecules of 40 Kenyan isolates belonging to African cassava mosaic virus (ACMV) and East African cassava mosaic virus - Uganda. This information enabled the design of novel primers to address different questions: a) primers amplifying longer sequences led to a phylogenetic tree of isolates, allowing some predictions on the evolutionary aspects of Begomoviruses in Jatrophia; b) primers amplifying shorter sequences represent a reliable diagnostic tool. This is the first report of the two Begomoviruses in J. curcas. Two cassava samples were co - infected with cassava mosaic geminivirus and CBSV. A Defective DNA A of ACMV was found for the first time in Jatropha. Conclusion Cassava geminiviruses occurring in Jatropha might be spread wider than anticipated. If not taken care of, this virus infection might negatively impact large scale plantations for biofuel production. Being hosts for similar pathogens, the planting vicinity of the two crop plants needs to be handled carefully. PMID:21812981

  4. The cultivation of energy crops for biogas production and the application of digestates are characterized by high variability of CO2 exchange and soil organic C stock changes

    Science.gov (United States)

    Augustin, Juergen; Fiedler, Sebastian; Heintze, Gawan; Rohwer, Marcus; Prescher, Anne-Katrin; Pohl, Madlen; Jurisch, Nicole; Hagemann, Ulrike

    2017-04-01

    In Germany, agricultural production accounts for approx. 15% of total anthropogenic greenhouse gas emissions. The cultivation of energy crops is thus considered an important option to reduce the climate impact and maintain or increase soil organic carbon (SOC) stocks. In particular, this applies to the continuously expanding cultivation of energy crops for biogas production and the associated use of residues from anaerobic digestion (digestates) as organic fertilizer. To date, there is only limited and contradicting evidence on the impacts of this management practice on the CO2 exchange as well as the change of SOC stocks. We will present results from a 4-year field study at 5 sites in Germany using identical methods to investigate the interacting effects of i) 3 N-fertilizer treatments including calcium ammonium nitrate and digestates and ii) a crop rotation of 7 energy crops like maize, sorghum, triticale, and wheat on net ecosystem CO2 exchange (NEE) and the change of SOC stocks. We used the manual chamber approach for measuring NEE as the difference between gross primary production and ecosystem respiration. The determination of SOC stock changes was based on a C budget approach, which includes the cumulated annual NEE, the C export by harvest, and the C import by application of anaerobic digestates. The CO2 exchange and the change of SOC stocks were influenced by multiple factors like crop, site, fertilization, and climate, as well as their complex interactions. A large proportion of the variability of the CO2 exchange can be attributed to interannual climatic variability. Productive crops like maize and sorghum generally feature the most intensive CO2 exchange, while less productive crops can compensate for this by means of longer cultivation times. Regardless of the extreme variability, pronounced and partly significant differences of NEE and C budgets between sites were observed. On average, SOC stocks declined over a full crop rotation, but with highly

  5. Editorial: Sustainable production of renewable energy from non-food crops.

    Science.gov (United States)

    Laimer, Margit; Maghuly, Fatemeh; Vollmann, Johann; Carels, Nicolas

    2015-04-01

    Since the world faced the petroleum crisis in the 1970s and people started to realize the limitation of fossil energy resources coupled with concerns over the effects of increasing carbon dioxide in the atmosphere, major efforts were devoted to the search for alternative energy sources. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Carbon sequestration potential of poplar energy crops in the Midwest, USA

    Science.gov (United States)

    R.S. Jr. Zalesny; W.L. Headlee; R.B. Hall; D.R. Coyle

    2010-01-01

    Energy use and climate change mitigation are closely linked via ecological, social, and economic factors, including carbon management. Energy supply is a key 21st century National security issue for the United States; identifying and developing woody feedstocks for transportation fuels and combined heat and power operations are a crucial component of the future...

  7. Impact of European Territorial Cooperation (ETC on the promotion and use of solar energy in the Mediterranean

    Directory of Open Access Journals (Sweden)

    J. Gomez Prieto

    2016-01-01

    Full Text Available The aim of this paper is to assess the contribution of European Territorial Cooperation (ETC programmes operating in the Mediterranean area as a supporting way to achieve the renewable energy objectives established in European Union Directive 2009/28/EC. It addresses a combination of impact and thematic assessment applied to projects tackling solar energy over the period 2007–13. Observations indicate that although not always measurable, ETC contributions to the use and promotion of solar energy in the Mediterranean represent a key step forward in higher deployment. The paper also suggest alternatives to improve projects’ outputs to be delivered in the new cycle 2014–20.

  8. Are shorter work hours good for the environment? A comparison of U.S. and European energy consumption.

    Science.gov (United States)

    Rosnick, David; Weisbrot, Mark

    2007-01-01

    European employees work fewer hours per year, and use less energy per person, than their American counterparts. This article compares the European and U.S. models of labor productivity, supply, and energy consumption. It finds that if employees in the EU-15 worked as many hours as those in the United States, they would consume at least 15 percent more energy. This aspect of the debate over Europe's economic model reaches globally. Over the coming decades, developing countries will decide how to make use of their increasing productivity. If, by 2050, the world works as do Americans, total energy consumption could be 15 to 30 percent higher than it would be if following a more European model. Translated directly into higher carbon emissions, this could mean an additional 1 to 2 degrees Celsius in global warming.

  9. Assessment of agricultural crops and natural vegetation in Scotland for energy production by anaerobic digestion and hydrothermal liquefaction

    DEFF Research Database (Denmark)

    Biller, Patrick; Lawson, David; Madsen, René Bjerregaard

    2017-01-01

    The current paper investigates the use of natural vegetation and agricultural crops commonly found in Scotland as a source of bioenergy. Such biomass is shown to have a high moisture content upon harvest (∼80%) which renders them suitable for wet conversion technologies such as anaerobic digestion...... conversion efficiencies of HTL and AD for different biomass feedstocks are also shown to be an important factor on the overall energy potential. AD averages a mass to energy conversion of 9.1 GJ/t compared to 7.2 GJ/t for HTL. A combination of AD and HTL is investigated by liquefying digestate from rye...... upon harvesting from 1.1 t/ha (dry matter) for bracken to a maximum of 17.5 t/ha for winter rye. These area specific yields are the most influential factor in the final energy yield per area. Area specific energy yields are found to average at 67 GJ/ha for AD and 53 GJ/ha for HTL. The respective...

  10. Estimation of actual evapotranspiration of Mediterranean perennial crops by means of remote-sensing based surface energy balance models

    Directory of Open Access Journals (Sweden)

    G. Rallo

    2009-07-01

    Full Text Available Actual evapotranspiration from typical Mediterranean crops has been assessed in a Sicilian study area by using surface energy balance (SEB and soil-water balance models. Both modelling approaches use remotely sensed data to estimate evapotranspiration fluxes in a spatially distributed way. The first approach exploits visible (VIS, near-infrared (NIR and thermal (TIR observations to solve the surface energy balance equation whereas the soil-water balance model uses only VIS-NIR data to detect the spatial variability of crop parameters. Considering that the study area is characterized by typical spatially sparse Mediterranean vegetation, i.e. olive, citrus and vineyards, alternating bare soil and canopy, we focused the attention on the main conceptual differences between one-source and two-sources energy balance models. Two different models have been tested: the widely used one-source SEBAL model, where soil and vegetation are considered as the sole source (mostly appropriate in the case of uniform vegetation coverage and the two-sources TSEB model, where soil and vegetation components of the surface energy balance are treated separately. Actual evapotranspiration estimates by means of the two surface energy balance models have been compared vs. the outputs of the agro-hydrological SWAP model, which was applied in a spatially distributed way to simulate one-dimensional water flow in the soil-plant-atmosphere continuum. Remote sensing data in the VIS and NIR spectral ranges have been used to infer spatially distributed vegetation parameters needed to set up the upper boundary condition of SWAP. Actual evapotranspiration values obtained from the application of the soil water balance model SWAP have been considered as the reference to be used for energy balance models accuracy assessment.

    Airborne hyperspectral data acquired during a NERC (Natural Environment Research Council, UK campaign in 2005 have been used. The results of this

  11. Europe's fragile energy security. Supply crises and their significance for European energy policy; Europas fragile Energiesicherheit. Versorgungskrisen und ihre Bedeutung fuer die europaeische Energiepolitik

    Energy Technology Data Exchange (ETDEWEB)

    Kurze, Kristina

    2009-07-01

    The author compares the way the EC responded to the 1973/74 oil crisis with developments following the Russian/Ukrainian gas conflict in 2005/2006. She then uses this as a basis for analysing the situation underlying the current dynamic changes in cooperation in the area of European energy policy. One major difference to the 1970s that becomes apparent from the viewpoint of constructivist securitisation is that energy supply issues today are regarded as a shared security problem. This makes it easier to overcome national reservations against an integrated European energy policy.

  12. European large-scale farmland investments and the land-water-energy-food nexus

    Science.gov (United States)

    Siciliano, Giuseppina; Rulli, Maria Cristina; D'Odorico, Paolo

    2017-12-01

    The escalating human demand for food, water, energy, fibres and minerals have resulted in increasing commercial pressures on land and water resources, which are partly reflected by the recent increase in transnational land investments. Studies have shown that many of the land-water issues associated with land acquisitions are directly related to the areas of energy and food production. This paper explores the land-water-energy-food nexus in relation to large-scale farmland investments pursued by investors from European countries. The analysis is based on a "resource assessment approach" which evaluates the linkages between land acquisitions for agricultural (including both energy and food production) and forestry purposes, and the availability of land and water in the target countries. To that end, the water appropriated by agricultural and forestry productions is quantitatively assessed and its impact on water resource availability is analysed. The analysis is meant to provide useful information to investors from EU countries and policy makers on aspects of resource acquisition, scarcity, and access to promote responsible land investments in the target countries.

  13. An Improvement to Calculation of Lighting Energy Requirement in the European Standard EN 15193:2007

    Directory of Open Access Journals (Sweden)

    Meng Tian

    2014-12-01

    Full Text Available Daylighting has a recognized potential for electric energy savings when is used as a complement for artificial lighting. This study reviews the comprehensive calculation method for lighting energy requirement in non-residential buildings introduced by the European Standard EN 15193: 2007 and investigates its feasibility in China. The location of building influences the intensity and duration of daylight. In EN 15193 calculation method, the daylight supply factor, which represents the effect of daylighting on usage of artificial lighting, is the only factor related to location and calculated according to latitude, however the current method (EN15193: 2007 limits the latitude range from 38° to 60° north in Europe, for which the relationship between daylight supply factor and latitude is approximately linear. This study shows that a quadratic relationship needs to be used for a wider range of latitudes. The coefficients of the proposed quadratic relationship are determined for the classified daylight penetration and maintained illuminance level. Various control types are also considered. Prediction of energy requirement for lighting is obtained through building simulation tool EnergyPlus and the effects of some setting factors are discussed.

  14. Comparison of domestic olivine and European magnesite for electrically charged thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Laster, W.R.; Gay, B.M.; Palmour, H.; Schoenhals, R.J.

    1982-01-01

    Electrically charged thermal energy storage (TES) heaters employing high heat capacity ceramic refractories for sensible heat storage have been in use in Europe for several years. With these devices, low cost off-peak electrical energy is stored by heating a storage core composed of ceramic material to approximately 800/sup 0/C. During the peak period, no electrical energy is used as the building heating needs are supplied by extracting the stored energy from the core by forced air circulation. The recent increase in use of off-peak TES units in the U.S. has led to the search for a domestic supply of high heat capacity ceramic refractory material. North Carolina's extensive but underutilized supply of refractory grade olivine has been proposed as a source of storage material for these units. In this paper the suitability of North Carolina olivine for heat storage applications is assessed by comparing its thermal performance with that of European materials. Using the method of ASHRAE Standard 94.2, the thermal performance of two commercially available room-size TES units was determined experimentally with two different storage materials, North Carolina olivine and German magnesite. Comparisons are made and conclusions are drawn.

  15. Environmental performance of crop residues as an energy source for electricity production

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik; Mogensen, Lisbeth

    2013-01-01

    or for natural gas reduces global warming, non-renewable energy use, human toxicity and ecotoxicity, but increases eutrophication, respiratory inorganics, acidification and photochemical ozone. The results at the aggregate level show that the use of straw biomass for conversion to energy scores better than...... in emissions of nitrogen oxides (NOx) by implementing selective catalytic reduction technology and the second is a potential increase in power generation efficiency. The results of the scenario analysis show that both approaches are effective in enhancing the competitiveness of straw as an alternative energy...

  16. Renewable energy and CCS in German and European power sector decarbonization scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ludig, Sylvie

    2013-11-06

    system costs are lower when transmission and storage are available. Restrictions on transmission expansion induce high amounts of storage since high local shares of solar PV lead to large output variations. In contrast, a highly interconnected European power grid allows for optimized renewable power generation siting in regions with highest potentials, which requires large-scale transmission expansions but limits total power system costs. Results from a detailed study for Germany show that the level of power demand is strongly relevant for the realization of high renewable shares and ambitious decarbonization targets. A broad technology portfolio allows to hedge against the failure to meet efficiency goals for electricity demand. CCS is necessary to reach ambitious government targets if power demand is not sufficiently decreased by efficiency measures, as is offshore wind energy. Even in case of decreasing demand, at least one of both technologies needs to be available. The choice of transmission expansion corridors is strongly influenced by technology availability: in scenarios without offshore wind energy, north-south interconnections, which are crucial in all other scenarios, only play a minor role. The studies in this thesis show that a large-scale decarbonization of the German and European power sectors is achievable through large shares of renewable energy technologies for electricity generation. CCS is not a prerequisite for successful CO{sub 2} emission strategies, but allows reaching mitigation targets at a lower cost. A portfolio of renewable energy integration options is essential to manage temporal and spatial fluctuations; the optimal technology mix is determined by the underlying power system.

  17. Performance and sustainability of short-rotation energy crops treated with municipal and industrial residues

    OpenAIRE

    Dimitriou, Ioannis

    2005-01-01

    The sustainability of short-rotation willow coppice (SRWC) as a multifunctional system for phytoremediation—the use of plants for treatment of contaminated air, soil or water—and for producing energy biomass, was studied. SRWC is grown commercially in Sweden to produce energy biomass, nutrient-rich residues being applied as cost-efficient fertiliser to increase production. The principal residues used are municipal wastewater, landfill leachate, industrial wastewater (e.g. log-yard runoff), se...

  18. Herbaceous crops for energy in Italy: Present status of the research program promoted by ENEL (Italian Electric Company)

    Energy Technology Data Exchange (ETDEWEB)

    Schenone, G. [ENEL CRAM, Milan (Italy)

    1996-12-31

    The paper presents a synthesis of the main results of the research program promoted by ENEL (Italian Electric Company) on herbaceous energy crops. The objective of the program is to evaluate the potentials of different species and cultivars for biomass fuel production in Italy. For the most promising species, all the links of the chain from cultivation to delivery at the plant gate at the lowest possible cost have to be organized. So far the following species gave annual productivities above 20 dry tons/ha: fiber sorghum (Sorghum sp.); miscanthus (Miscanthus sinensis); and giant reed (Arundo donax). The highest biomass yields, well above 40 dry tons/ha in several trials, were given by giant reed.

  19. Evaluation of surface energy and carbon fluxes within a large wind farm during the CWEX-10/11 Crop Wind-energy EXperiments

    Science.gov (United States)

    Rajewski, D. A.; Takle, E. S.; Prueger, J. H.; Oncley, S.; Horst, T. W.; Pfeiffer, R.; Hatfield, J.; Spoth, K. K.; Doorenbos, R.

    2012-12-01

    The Crop Wind-energy EXperiment conducted in summer 2010 (very moist conditions) and summer 2011 (abnormally dry) included measurements of wind speed, temperature, relative humidity, turbulence kinetic energy, H2O, and CO2 at stations north and south of a line of turbines at the southwest edge of a large-scale 200-turbine wind farm (prevailing wind from the south). In contrast to previous studies that have reported turbine influences on surface wind speed and temperature, this report focuses on scalar fluxes of heat, H2O, and CO2. From previous measurements in agricultural fields we recognize the importance of non-turbine factors in analysis of the flux differences: variability of soil characteristics, moisture content, crop cultivar, management practices, planting dates, etc., which can create differences in what looks like a uniform field of maize (corn). We conceptualize the influences of turbines at canopy height at a given location in the field to arise from (1) wakes of reduced wind speed and turbulence conditions different from ambient that intersect the surface, (2) wakes that are passing overhead and interrupt the ambient turbulence that scales with height, or (3) changes in static pressure upwind and downwind of lines of turbines that create small-scale pressure gradients, localized flows, and changes to the vertical exchange of scalar variables. The turbine SCADA wind speed and wind direction provided by the wind farm operator facilitated our comparison of surface fluxes upwind and downwind as wakes moved laterally throughout the day and night. We report multiple levels of evidence that wind turbines increase vertical exchange of carbon dioxide and water vapor over the canopy. Latent heat and carbon fluxes are responsive to slight changes in the turbine wake position, and the flux differences are maximized when the periphery of the wake edge is above the station. The flux stations north of the turbine line report a larger net ecosystem exchange

  20. Microbial community structure in a biogas digester utilizing the marine energy crop Saccharina latissima.

    Science.gov (United States)

    Pope, Phillip B; Vivekanand, Vivekanand; Eijsink, Vincent G H; Horn, Svein J

    2013-10-01

    Seaweed is a highly attractive marine crop for the production of biofuels, due to its rapid growth rate as well as high polysaccharide and low lignin content. One appealing exploitation route is the production of biogas by anaerobic digestion. Interestingly, despite the compositional differences between seaweed and lignocellulosic biomass, available data indicate that conditions and inocula traditionally used for the latter may work well for seaweed. To gain more insight into the underlying microbial processes, we have generated 16S rRNA gene amplicon pyrosequencing data to comparatively describe microbial communities in biogas digesters containing either the seaweed Saccharina latissima or wheat straw. The seaweed digesters gave better biogas yield and a higher relative abundance of core group Methanosaeta-affiliated Archaea. Conversely, variation in biomass had only minor abundance effects towards dominant bacterial lineages and influenced only low-abundant bacterial OTUs. Affiliations between dominant archaeal and bacterial phylotypes described here and previously identified anaerobic digestion core groups indicate that trends are beginning to emerge within these newly explored microbial ecosystems, the understanding of which is currently impeded by limited published datasets.

  1. Differences in energy balance-related behaviours in European preschool children: the ToyBox-study.

    Directory of Open Access Journals (Sweden)

    Marieke De Craemer

    Full Text Available The aim of the current study was to compare levels of energy balance-related behaviours (physical activity, sedentary behaviour, and dietary behaviours (more specifically water consumption, sugar-sweetened beverage consumption and unhealthy snacking in four- to six-year-old preschoolers from six European countries (Belgium, Bulgaria, Germany, Greece, Poland, and Spain within the ToyBox cross-sectional study.A sample of 4,045 preschoolers (4.77 ± 0.43 years; 52.2% boys had valid physical activity data (steps per day, parents of 8,117 preschoolers (4.78 ± 0.46 years; 53.0% boys completed a parental questionnaire with questions on sedentary behaviours (television viewing, computer use, and quiet play, and parents of 7,244 preschoolers (4.77 ± 0.44 years; 52.0% boys completed a food frequency questionnaire with questions on water consumption, sugar-sweetened beverage consumption and unhealthy snacking.The highest levels of physical activity were found in Spain (12,669 steps/day on weekdays, while the lowest levels were found in Bulgaria and Greece (9,777 and 9,656 steps/day on weekdays, respectively. German preschoolers spent the least amount of time in television viewing (43.3 min/day on weekdays, while Greek preschoolers spent the most time in television viewing (88.5 min/day on weekdays. A considerable amount of time was spent in quiet play in all countries, with the highest levels in Poland (104.9 min/day on weekdays, and the lowest levels in Spain (60.4 min/day on weekdays. Belgian, German, and Polish preschoolers had the lowest intakes of water and the highest intakes of sugar-sweetened beverages. The intake of snacks was the highest in Belgian preschoolers (73.1 g/day and the lowest in Greek preschoolers (53.3 g/day.Across six European countries, differences in preschoolers' energy balance-related behaviours were found. Future interventions should target European preschoolers' energy balance-related behaviours simultaneously, but should

  2. Beverage Consumption Habits among the European Population: Association with Total Water and Energy Intakes

    Science.gov (United States)

    Nissensohn, Mariela; Sánchez-Villegas, Almudena; Galan, Pilar; Turrini, Aida; Arnault, Nathalie; Mistura, Lorenza; Ortiz-Andrellucchi, Adriana; Szabo de Edelenyi, Fabien; D’Addezio, Laura; Serra-Majem, Lluis

    2017-01-01

    Background: Fluid and water intake have received limited attention in epidemiological studies. The aim of this study was to compare the average daily consumption of foods and beverages in adults of selective samples of the European Union (EU) population in order to understand the contribution of these to the total water intake (TWI), evaluate if the EU adult population consumes adequate amounts of total water (TW) according to the current guidelines, and to illustrate the real water intake in Europe. Methods: Three national European dietary surveys have been selected: Spain used the Anthropometry, Intake, and Energy Balance Study (ANIBES) population database, Italy analyzed data from the Italian National Food Consumption Survey (INRAN-SCAI 2005-06), and French data came from the NutriNet-Santé database. Mean daily consumption was used to compare between individuals. TWI was compared with European Food Safety Authority (EFSA) reference values for adult men and women. Results: On average, in Spain, TWI was 1.7 L (SE 22.9) for men and 1.6 L (SE 19.4) for women; Italy recorded 1.7 L (SE 16.9) for men and 1.7 L (SE 14.1) for women; and France recorded 2.3 L (SE 4.7) for men and 2.1 L (SE 2.4) for women. With the exception of women in France, neither men nor women consumed sufficient amounts of water according to EFSA reference values. Conclusions: This study highlights the need to formulate appropriate health and nutrition policies to increase TWI in the EU population. The future of beverage intake assessment requires the use of new instruments, techniques, and the application of the new available technologies. PMID:28406441

  3. Beverage Consumption Habits among the European Population: Association with Total Water and Energy Intakes.

    Science.gov (United States)

    Nissensohn, Mariela; Sánchez-Villegas, Almudena; Galan, Pilar; Turrini, Aida; Arnault, Nathalie; Mistura, Lorenza; Ortiz-Andrellucchi, Adriana; Edelenyi, Fabien Szabo de; D'Addezio, Laura; Serra-Majem, Lluis

    2017-04-13

    Fluid and water intake have received limited attention in epidemiological studies. The aim of this study was to compare the average daily consumption of foods and beverages in adults of selective samples of the European Union (EU) population in order to understand the contribution of these to the total water intake (TWI), evaluate if the EU adult population consumes adequate amounts of total water (TW) according to the current guidelines, and to illustrate the real water intake in Europe. Three national European dietary surveys have been selected: Spain used the Anthropometry, Intake, and Energy Balance Study (ANIBES) population database, Italy analyzed data from the Italian National Food Consumption Survey (INRAN-SCAI 2005-06), and French data came from the NutriNet-Santé database. Mean daily consumption was used to compare between individuals. TWI was compared with European Food Safety Authority (EFSA) reference values for adult men and women. On average, in Spain, TWI was 1.7 L (SE 22.9) for men and 1.6 L (SE 19.4) for women; Italy recorded 1.7 L (SE 16.9) for men and 1.7 L (SE 14.1) for women; and France recorded 2.3 L (SE 4.7) for men and 2.1 L (SE 2.4) for women. With the exception of women in France, neither men nor women consumed sufficient amounts of water according to EFSA reference values. This study highlights the need to formulate appropriate health and nutrition policies to increase TWI in the EU population. The future of beverage intake assessment requires the use of new instruments, techniques, and the application of the new available technologies.

  4. Heavy metal leaching and environmental risk from the use of compost-like output as an energy crop growth substrate.

    Science.gov (United States)

    Page, K; Harbottle, M J; Cleall, P J; Hutchings, T R

    2014-07-15

    Conversion of productive agricultural land towards growth of energy crops has become increasingly controversial. Closed landfill sites represent significant areas of brownfield land, which have potential for the establishment of energy crops. Increasingly composts are now being produced from the degradable fraction of mixed municipal solid waste (MSW) and are commonly referred to as Compost-Like-Output (CLO). However, leaching of heavy metal and other elements due to the use of CLO as soil amendment has the potential to pose a risk to the wider environment as a diffuse pollution source if not managed correctly. Salix viminalis and Eucalyptus nitens were grown at 5 different CLO application rates (equivalent to 250, 1000, 3000, 6000, 1,0000 kg N/Ha) with weekly leachate analysis to assess the solubility of heavy metals and the potential release into the environment. The change in plant total dry mass suggested 3,000 kgN/Ha as the optimum application rate for both species. Weekly leachate analysis identified excess soluble ions within the first 4 weeks, with heavy metals concentrations exceeding water quality limits at the higher application rates (>3,000 kg N/Ha). Heavy metal uptake and accumulation within each species was also investigated; S. viminalis accumulated greater levels of heavy metals than E. nitens with a general trend of metal accumulation in root>stem>leaf material. Heavy metal leaching from soils amended with CLO has the potential to occur at neutral and slightly alkaline pH levels as a result of the high buffering capacity of CLO. The use of CLO at application rates of greater than 250 kg N/Ha may be limited to sites with leachate collection and containment systems, not solely for the heavy metal leaching but also excess nitrogen leaching. Alternatively lower application rates are required but will also limit biomass production. Copyright © 2014. Published by Elsevier B.V.

  5. The energy and climate policy of the European Union. Review and perspectives; Die Energie- und Klimapolitik der Europaeischen Union. Bestandsaufnahme und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Geden, O.; Fischer, S.

    2008-07-01

    This study was compiled and published in the context of the research project ''Ein Europa der Buerger - Verfassung und effiziente Politik'', carried out between 2005 and 2007 as a cooperative project of the Institute of European Policy and ASKO EUROPA-STIFTUNG. It is the first study to present a systematic introduction to the emerging energy and climate policy of the European Union. Central fields of action and instruments are analyzed, taking account not only of the interests and positions of the main groups of actors but also of the institutional boundary conditions of European policy making. (orig.)

  6. Energetic conversion of European semi-natural grassland silages through the integrated generation of solid fuel and biogas from biomass: energy yields and the fate of organic compounds.

    Science.gov (United States)

    Hensgen, Frank; Bühle, Lutz; Donnison, Iain; Heinsoo, Katrin; Wachendorf, Michael

    2014-02-01

    Twelve European habitat types were investigated to determine the influence of the IFBB technique (integrated generation of biogas and solid fuel from biomass) on the fate of organic compounds and energy yields of semi-natural grassland biomass. Concentration of organic compounds in silage and IFBB press cake (PC), mass flows within that system and methane yields of IFBB press fluids (PF) were determined. The gross energy yield of the IFBB technique was calculated in comparison to hay combustion (HC) and whole crop digestion (WCD). The IFBB treatment increased fibre and organic matter (OM) concentrations and lowered non-fibre carbohydrates and crude protein concentrations. The PF was highly digestible irrespective of habitat types, showing mean methane yields between 312.1 and 405.0 LN CH4 kg(-1) VS. Gross energy yields for the IFBB system (9.75-30.19MWh ha(-1)) were in the range of HC, outperformed WCD and were influenced by the habitat type. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Energy consumption in mixed crop-sheep farming systems: what factors of variation and how to decrease?

    Science.gov (United States)

    Benoit, M; Laignel, G

    2010-09-01

    Prompted by current concerns about energy resources and greenhouse gas emissions, we sought to assess the impact of certain key factors on energy efficiency in sheep-for-meat production and to evaluate the main directions for improvement. We used a modelling approach to simulate the functioning and performances of sheep-for-meat production systems integrating an energy balance calculation module. In the first step of this study, we reconstructed system functions and technical and economic results of four typological groups of farms in plainland areas. This served as a basis for calculating their energy efficiency in order to focus on the main factors of energy efficiency, such as high levels of fodder self-sufficiency (low concentrate consumption) and high ewe productivity. The Graze system presented the highest energy efficiency (EE) for sheep unit (EEs = 0.62) with the lowest consumption of equivalent fuel litres requirements (FuReq) per kilogram of lamb carcass produced (1.47), while the 'sheep and cash crop' system had the lowest EEs (0.36) and the highest FuReq per kg carcass (2.54). We then took the 'mixed-farming system' (a 130 ha farm, including 610 ewes and 40 ha of cropland) and studied three adaptations designed to increase the EEs: improvement of feed self-sufficiency (increased proportion of concentrate produced on-farm), introduction of legumes into the rotation (removal of bought-in nitrogen fertilisers), and production of fuel-oil (from rapeseed) with the flock using oil cakes. The most effective adaptation was the removal of the nitrogen fertilisers. The successive adaptations make it possible to cut energy consumption from 2.2 FuReq/kg carcass down to 0.98 after the optimisations, thereby increasing EEs from 0.42 to 0.93. Finally, we went on to study the energy impact of four factors influencing flock functioning and farm structure, i.e. ewe productivity, lamb weight, distances between plots, and flock size. Ewe productivity and lamb weight had a

  8. Renewable energy and greenhouse gas emissions from the waste sectors of European Union member states: a panel data analysis.

    Science.gov (United States)

    Domingos, Hélde Araujo; De Melo Faria, Alexandre Magno; Fuinhas, José Alberto; Marques, António Cardoso

    2017-08-01

    In the last two decades, there has been a rich debate about the environmental degradation that results from exposure to solid urban waste. Growing public concern with environmental issues has led to the implementation of various strategic plans for waste management in several developed countries, especially in the European Union. In this paper, the relationships were assessed between economic growth, renewable energy extraction and greenhouse gas (GHG) emissions in the waste sector. The Environmental Kuznets Curve hypothesis was analysed for the member states of the European Union, in the presence of electricity generation, landfill and GHG emissions for the period 1995 to 2012. The results revealed that there is no inverted-U-shaped relationship between income and GHG emissions in European Union countries. The renewable fuel extracted from waste contributes to a reduction in GHG, and although the electricity produced also increases emissions somewhat, they would be far greater if the waste-based generation of renewable energy did not take place. The waste sector needs to strengthen its political, economic, institutional and social communication instruments to meet its aims for mitigating the levels of pollutants generated by European economies. To achieve the objectives of the Horizon 2020 programme, currently in force in the countries of the European Union, it will be necessary to increase the share of renewable energy in the energy mix.

  9. Dual-cropping loblolly pine for biomass energy and conventional wood products

    Science.gov (United States)

    D. Andrew Scott; Allan Tiarks

    2008-01-01

    Southern pine stands have the potential to provide significant feedstocks for the growing biomass energy and biofuel markets. Although initial feedstocks likely will come from low-value small-diameter trees, understory vegetation, and slash, a sustainable and continuous supply of biomass is necessary to support and grow a wood bioenergy market. As long as solidwood...

  10. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland

    Science.gov (United States)

    Grain and biomass yields and composition, soil carbon changes, and production input data from a long-term continuous corn and switchgrass replicated field trial in the western Corn Belt USA were used to estimate energy yields and greenhouse gas (GHG) emissions. Corn was produced without tillage wi...

  11. Food, Feed, and Fuel: Integrating Energy Double Crops in Conventional Farming Systems

    Science.gov (United States)

    The increasing demand for renewable energy, coupled with global demand for agricultural products and a range of environmental constraints, requires a re-thinking of current agricultural practices. Growing markets for cellulosic and other biomass feedstocks create new opportunities for farmers to div...

  12. Effects of irrigating poplar energy crops with landfill leachate on soil micro- and meso-fauna

    Science.gov (United States)

    Jill A. Zalesny; David R. Coyle; Ronald S. Jr. Zalesny; Adam H. Wiese

    2009-01-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization for the trees. Populus species and hybrids (i.e., poplars) are ideal for such systems given their fast...

  13. Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna

    Science.gov (United States)

    David R. Coyle; Jill A. Zalesny; Ronald S. Zalesny Jr.; Adam H. Wiese

    2011-01-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high...

  14. Reduced tillage systems for irrigated cotton: Energy requirements and crop response

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W.; Thacker, G. [Univ. of Arizona, Tucson, AZ (United States)

    1997-09-01

    Arizona law mandates that plant material left in the field following cotton harvest be buried to reduce overwintering sites for insects. Conventional operations which accomplish this are energy-intensive. Reduced tillage systems offer significant energy savings over conventional systems, however growers have expressed concerns that compaction will increase over time, with resultant yield reduction. To address this concern, two reduced tillage systems were compared to a conventional system over six reasons at one site, while at another site, four reduced tillage systems were compared to the same conventional system over three seasons. The reduced tillage systems required significantly indicates that growers can reduce the inputs required to produce irrigated cotton, without negatively impacting yield, at least over the time intervals examined.

  15. Calculation methodology for economic comparison between different land uses. With focus on comparisons between energy crops and traditional crops; Kalkylmetodik foer loensamhetsjaemfoerelser mellan olika markanvaendning. Med fokus paa jaemfoerelser mellan energigroedor och traditionella groedor

    Energy Technology Data Exchange (ETDEWEB)

    Rosenqvist, Haakan

    2010-02-15

    There are two main objectives to this report. The first is to describe a calculation method for both short- and long-term analysis of crops, as well as present the basis and reasoning around it. Another objective is to create an approach that lay-people can use to compare energy crops with traditional crops in a sufficiently straight-forward and believable manner. The report describes, discusses and develops the technical aspects to the calculation questions around the analysis of crops that are grown only on small area of land today, but have the potential to be grown on much larger areas in the future. The variable costing calculation approach is used in agriculture as decision-support for what should be produced. The present variable costing calculation approach has been reworked and redeveloped in order to be more applicable as a decision-support tool. This includes its use to decide which crop should be grown in both short- and long-term perspectives, as well as for perennial energy crops. A number of items that impact growing economy and how they can be interpreted in the growing calculations are discussed. Some of the examples are: Fertilization effects; Sales commissions/product prices; Storage/reestablishment; Fertilization of P and K; Crop insurance; Labor costs; Machine costs; Timeliness costs; New production chains and unutilized resources; Interest rates; Land costs; Over overhead costs; and Costs which not are annual. The main objective of this report is a methodological question and not to show the absolute profitability for each particular land use alternative. But even though the calculations have been improved for different land uses, there is material that that can even be used for profitability analyses. This has been performed to a smaller degree in this report. The profitability of Salix growing has been studied for a variety of different conditions. For part of the studies have used the entire growing period of 22 years, part with

  16. Tradable CO{sub 2} permits in Danish and European energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Varming, S.; Vesterdal, M. [ELSAMPROJEKT A/S (Denmark); Boerre Eriksen, P. [Eltra I/S (Denmark); Grohnheit, P.E.; Nielsen, L. [RISOe (Denmark); Tinggaard Svendsen, G. [Handelshoejskolen i Aarhus (Denmark)

    2000-08-01

    This report presents the results of the project 'Tradable CO{sub 2} permits in Danish and European energy policy'. The project was financed by a grant from the Danish Energy Research Programme 1998 (Grant 1753/98-0002). The project was conducted in co-operation between Elsamprojekt A/S (project manager), Risoe National Laboratory, Aarhus School of Business and I/S Eltra. The three major objectives of the project were: To identify and analyse the economical and political issues that are relevant with regard to the construction of a tradable CO{sub 2} permit market as well as proposing a suitable design for a tradable CO{sub 2} permit market for the energy sector in the EU. Experience from the tradable S{sub O}2 permit market in the US is taken into consideration as well. To present an overview of price estimates of CO{sub 2} and greenhouse gas permits in different models as well as discussing the assumptions leading to the different outcomes. Furthermore, the special role of backstop technologies in relation to permit prices is analysed. To analyse the connection between CO{sub 2} permit prices and technology choice in the energy sector in the medium and longer term (i.e., 2010 and 2020) with a special emphasis on combined heat and power and renewables. In addition, the short-term effects on CO{sub 2} emissions and electricity trade of introducing tradable CO{sub 2} permit with limited coverage (i.e. a national system) as well as complete coverage (i.e. including all the countries) in the Nordic electricity system are analysed. (au)

  17. Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation.

    Science.gov (United States)

    Sheng, Xiafang; Sun, Leni; Huang, Zhi; He, Linyan; Zhang, Wenhui; Chen, Zhaojin

    2012-07-30

    Three metal-resistant and plant growth-promoting bacteria (Burkholderia sp. GL12, Bacillus megaterium JL35 and Sphingomonas sp. YM22) were evaluated for their potential to solubilize Cu(2) (OH)(2)CO(3) in solution culture and their plant growth promotion and Cu uptake in maize (Zea mays, an energy crop) grown in a natural highly Cu-contaminated soil. The impacts of the bacteria on the Cu availability and the bacterial community in rhizosphere soils of maize were also investigated. Inductively coupled-plasma optical emission spectrometer analysis showed variable amounts of water-soluble Cu (ranging from 20.5 to 227 mgL(-1)) released by the bacteria from Cu(2) (OH)(2)CO(3) in solution culture. Inoculation with the bacteria was found to significantly increase root (ranging from 48% to 83%) and above-ground tissue (ranging from 33% to 56%) dry weights of maize compared to the uninoculated controls. Increases in Cu contents of roots and above-ground tissues varied from 69% to 107% and from 16% to 86% in the bacterial-inoculated plants compared to the uninoculated controls, respectively. Inoculation with the bacteria was also found to significantly increase the water-extractive Cu concentrations (ranging from 63 to 94%) in the rhizosphere soils of the maize plants compared to the uninoculated controls in pot experiments. Denaturing gradient gel electrophoresis and sequence analyses showed that the bacteria could colonize the rhizosphere soils and significantly change the bacterial community compositions in the rhizosphere soils. These results suggest that the metal-resistant and plant growth-promoting bacteria may be exploited for promoting the maize (energy crop) biomass production and Cu phytoremediation in a natural highly Cu-contaminated soil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Simulation of the Agro-Energy Farm with the X-Farm Model: Calibration of the Crop Module for Sorghum Yield

    Directory of Open Access Journals (Sweden)

    Francesco Danuso

    2010-09-01

    Full Text Available This paper presents the X-farm model, a dynamic farm simulation model created to manage sustainable farming systems and to improve the planning capability of farms. X-farm considers an “agro-energy farm” where energy self-sufficiency results from the production, transformation and use of biomass obtained from the farm crops. The X-farm model is formed by different modules, integrated to describe the components of the agro-energy farm and grouped into management, production, soil and accountability (in terms of energy, environment and economy sections. The main farm productions are the field crop yields. The model simulates a farm in which cereal and forage yield, oil seeds, milk and meat can be sold or reused. A preliminary calibration of the crop module of X-farm has been performed using experimental data from Sorghum bicolor L. (Moench trials. X-farm has been implemented and calibrated using the SEMoLa language and simulation framework. Simulations of different cropping scenarios have been performed to test the X-farm capabilities to simulate complex farming systems, in order to be used as a decision-support tool.

  19. Energy system modelling – interactions and synergies in a highly renewable Pan-European power system

    Directory of Open Access Journals (Sweden)

    Weitemeyer Stefan

    2014-01-01

    Full Text Available It is very likely that the European power supply system will be transformed in the next decades to a low carbon system based almost entirely on Renewable Energy Sources (RES. However, due to the natural fluctuations of the most powerful RES (wind and solar energy, it is also very likely that a significant amount of balancing and controllable backup power capacities will be required to ensure a stable grid operation. This implies high additional investments and operating costs. Therefore this work provides an overview of potential options and possibly more cost-effective alternatives to the installation of costly storage capacities, namely grid expansion, demand side management, an optimised mix between different RES as well as the use of overcapacities. Furthermore, the paper provides an approximation of the maximum RES penetration of the German electricity system in the absence of significant storage capacities. Our calculations show that from a numerical perspective on average approximately half of the load can be met by RES if flexible conventional power stations would provide the remaining electricity demand. However, in a 100% RES scenario a significant amount of storage capacities as well as limited overcapacities are required to ensure a reliable electricity supply.

  20. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    Science.gov (United States)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  1. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland.

    Directory of Open Access Journals (Sweden)

    Marty R Schmer

    Full Text Available Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L. and switchgrass (Panicum virgatum L. field trial under differing harvest strategies and nitrogen (N fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG reductions of -29 to -396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates. Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha-1 of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels.

  2. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland.

    Science.gov (United States)

    Schmer, Marty R; Vogel, Kenneth P; Varvel, Gary E; Follett, Ronald F; Mitchell, Robert B; Jin, Virginia L

    2014-01-01

    Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of -29 to -396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha-1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels.

  3. Energy efficiency for establishment and management of cover crops; Eficiencia energetica na implantacao e manejo de plantas de cobertura do solo

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, R.; Gamero, C.A.; Boller, W.

    2000-07-01

    An experiment was conducted in Botucatu, SP, Brazil to evaluate the energy balance involved in the establishment and management of cover crops and also to determine specific heating seeds and biomass of different species of cover crops. Black oat (Avena strigosa Schreb), forage radish (Raphanus sativus L. var. oleiferus Metzg) and lupinus (Lupinus angustifolius L.) were grown in a randomized block design, in twelve replicates. Oat showed higher energy production as compared to lupinus, while higher specific heat were determined for forage radish seeds and also for lupinus and oat biomass. While fuel and fertilizers were the most important energy inputs for the establishment and management of oat and forage radish, seeds and fuel were the most used energy input for lupinus. (author)

  4. Energy Saving Fonds and guarantee of efficiency. An integrative concept for the implemention of the European energy efficiency regulation. Brief study; Energiesparfonds und Effizienzgarantie. Ein integratives Konzept zur Umsetzung der europaeischen Energieeffizienz-Richtlinie. Kurzstudie

    Energy Technology Data Exchange (ETDEWEB)

    Pehnt, Martin; Brischke, Lars-Arvid

    2013-04-15

    The authors of the contribution under consideration report on Energy Saving Fonds and guarantee of efficiency as an integrative concept for the implementation of the European Energy Efficiency Directive. The authors sum up thirteen thesis for this energy efficiency strategy.

  5. The 'Great Diversification Game': Russia’s Vision of the European Union’s Energy Projects in the Shared Neighbourhood

    Directory of Open Access Journals (Sweden)

    Valentina Feklyunina

    2008-07-01

    Full Text Available This article examines Russia’s vision of the European Union’s energy diversification projects that focus on their ‘shared neighbourhood’. It argues that although the European Union (EU, unlike the USA, is not yet seen as a serious threat to Russian interests in the area, this situation is rapidly changing, with the Kremlin becoming increasingly sensitive about the EU’s plans to diversify energy supply sources and transportation routes by increasing cooperation with other former Soviet Republics within the Commonwealth of Independent States (CIS. The article highlights how the EU’s energy diversification projects are viewed by Moscow as anti-Russian and details the way in which Russia is responding to this perceived threat, including plans to diversify its own energy exports.

  6. Calculation of the yearly energy performance of heating systems based on the European Building Directive and related CEN Standards

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; Langkilde, Gunnar

    2009-01-01

    and cost-effectiveness. For new and existing buildings this requires a calculation of the energy performance of the building including heating, ventilation, cooling and lighting systems, based on primary energy. Each building must have an energy certificate and regular inspections of heating, cooling......In 2003 the European Commission (EC) issued a directive, 2002/91/EC [1]. The objective of this directive is to promote the improvement of the energy performance of buildings within the community, taking into account outdoor climatic and local conditions, as well as indoor climate requirements...

  7. Removal of arsenic from Janghang smelter site and energy crops-grown soil with soil washing using magnetic iron oxide

    Science.gov (United States)

    Han, Jaemaro; Zhao, Xin; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Arsenic compounds are considered carcinogen and easily enter drinking water supplies with their natural abundance. US Environmental Protection Agency is finalizing a regulation to reduce the public health risks from arsenic in drinking water by revising the current drinking water standard for arsenic from 50 ppb to 10 ppb in 2001 (USEPA, 2001). Therefore, soil remediation is also growing field to prevent contamination of groundwater as well as crop cultivation. Soil washing is adjusted as ex-situ soil remediation technique which reduces volume of the contaminated soil. The technique is composed of physical separation and chemical extraction to extract target metal contamination in the soil. Chemical extraction methods have been developed solubilizing contaminants containing reagents such as acids or chelating agents. And acid extraction is proven as the most commonly used technology to treat heavy metals in soil, sediment, and sludge (FRTR, 2007). Due to the unique physical and chemical properties, magnetic iron oxide have been used in diverse areas including information technology and biomedicine. Magnetic iron oxides also can be used as adsorbent to heavy metal enhancing removal efficiency of arsenic concentration. In this study, magnetite is used as the washing agent with acid extraction condition so that the injected oxide can be separated by magnetic field. Soil samples were collected from three separate areas in the Janghang smelter site and energy crops-grown soil to have synergy effect with phytoremediation. Each sample was air-dried and sieved (2mm). Soil washing condition was adjusted on pH in the range of 0-12 with hydrogen chloride and sodium hydroxide. After performing soil washing procedure, arsenic-extracted samples were analyzed for arsenic concentration by inductively coupled plasma optical emission spectrometer (ICP-OES). All the soils have exceeded worrisome level of soil contamination for region 1 (25mg/kg) so the soil remediation techniques are

  8. International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union

    NARCIS (Netherlands)

    Hoefnagels, Ric; Resch, Gustav; Junginger, Martin; Faaij, André

    2014-01-01

    This article describes the development of a geographic information systems (GIS) based biomass transport analysis tool BIT-UU used in combination with the European renewable energy model Green-X. BIT-UU calculates cost and GHG emissions from lowest cost routes, using intermodal transport (by road,

  9. The energy policy of the European Union: Green book; Por una politica energetica de la Union Europea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This book is based in the document con(94) 659 final, 11.1.1995. It is analyzing the evolution of the energetic policy, the objective of the future energetic policy and the priorities of the European Community. The main aspects are: energetic market, supply, international cooperation, environmental protection, energy efficiency and the Technology.

  10. State of the art and perspectives of the cultivation of energy crops in Hesse. Significance, procedure of cultivation, sustainability; Stand und Perspektiven des Energiepflanzenanbaus in Hessen. Bedeutung, Anbauverfahren, Nachhaltigkeit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    In line with the further increase in the use of renewable energy sources, the expansion of biomass utilization in Hesse increasingly becomes important. In light of the increasing criticism of the cultivation of energy crops, it is important to learn about the situation in the Federal State Hessen (Federal Republic of Germany). Under this aspect, the booklet under consideration contributes to proper information and creating acceptance in the current discussion on the development of bioenergy in Hessen. In particular, the brochure reports on the following topics: (1) What is the advantage of the bioenergy in Hessen?; (2) Scope of the cultivation of energy crops in the Hessian agriculture?; (3) Economic aspects of the cultivation of energy crops for biogas plants; (4) Cultivation of oil crops for the production of biodiesel oil and vegetable oil; (5) Cultivation of cereals and sugar beet for bioethanol production; (6) One-year-old energy crops; (7) Perennial energy crops; (8) Aspects of sustainability in the cultivation of energy crops; (9) Areas of conflict in the cultivation of energy crops.

  11. Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna.

    Science.gov (United States)

    Coyle, David R; Zalesny, Jill A; Zalesny, Ronald S; Wiese, Adam H

    2011-10-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high water usage rates. Maintaining ecological sustainability (i.e., the capacity for an ecosystem to maintain its function and retain its biodiversity over time) during tree establishment and development is an important component of plantation success, especially for belowground faunal populations. To determine the impact of solid waste leachate on soil micro- and meso-fauna, we compared soilfrom eight different Populus clones receiving municipal solid waste landfill leachate irrigation with clones receiving fertilized (N, P K) well water irrigation. Microfauna (i.e., nematodes) communities were more diverse in control soils. Mesofauna (i.e., insects) were associated with all clones; however, they were four times more abundant around trees found within the control plot than those that received leachate treatments. Nematode and insect abundance varied among Populus clones yet insect diversity was greater in the leachate-treated soils. Phytotechnologies must allow for soil faunal sustainability, as upsetting this balance could lead to great reductions in phytotechnology efficacy.

  12. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils.

    Science.gov (United States)

    Ruttens, Ann; Boulet, Jana; Weyens, Nele; Smeets, Karen; Adriaensen, Kristin; Meers, Erik; Van Slycken, Stijn; Tack, Filip; Meiresonne, Linda; Thewys, Theo; Witters, Nele; Carleer, Robert; Dupae, Joke; Vangronsveld, Jaco

    2011-01-01

    Phytoremediation, more precisely phytoextraction, has been placed forward as an environmental friendly remediation technique, that can gradually reduce increased soil metal concentrations, in particular the bioavailable fractions. The aim of this study was to investigate the possibilities of growing willows and poplars under short rotation coppice (SRC) on an acid, poor, sandy metal contaminated soil, to combine in this way soil remediation by phytoextraction on one hand, and production of biomass for energy purposes on the other. Above ground biomass productivities were low for poplars to moderate for willows, which was not surprising, taking into account the soil conditions that are not very favorable for growth of these trees. Calculated phytoextraction efficiency was much longer for poplars than these for willows. We calculated that for phytoextraction in this particular case it would take at least 36 years to reach the legal threshold values for cadmium, but in combination with production of feedstock for bioenergy processes, this type of land use can offer an alternative income for local farmers. Based on the data of the first growing cycle, for this particular case, SRC of willows should be recommended.

  13. EuropeaN Energy balance Research to prevent excessive weight Gain among Youth (ENERGY project: Design and methodology of the ENERGY cross-sectional survey

    Directory of Open Access Journals (Sweden)

    Moreno Luis

    2011-01-01

    Full Text Available Abstract Background Obesity treatment is by large ineffective long term, and more emphasis on the prevention of excessive weight gain in childhood and adolescence is warranted. To inform energy balance related behaviour (EBRB change interventions, insight in the potential personal, family and school environmental correlates of these behaviours is needed. Studies on such multilevel correlates of EBRB among schoolchildren in Europe are lacking. The ENERGY survey aims to (1 provide up-to-date prevalence rates of measured overweight, obesity, self-reported engagement in EBRBs, and objective accelerometer-based assessment of physical activity and sedentary behaviour and blood-sample biomarkers of metabolic function in countries in different regions of Europe, (2 to identify personal, family and school environmental correlates of these EBRBs. This paper describes the design, methodology and protocol of the survey. Method/Design A school-based cross-sectional survey was carried out in 2010 in seven different European countries; Belgium, Greece, Hungary, the Netherlands, Norway, Slovenia, and Spain. The survey included measurements of anthropometrics, child, parent and school-staff questionnaires, and school observations to measure and assess outcomes (i.e. height, weight, and waist circumference, EBRBs and potential personal, family and school environmental correlates of these behaviours including the social-cultural, physical, political, and economic environmental factors. In addition, a selection of countries conducted accelerometer measurements to objectively assess physical activity and sedentary behaviour, and collected blood samples to assess several biomarkers of metabolic function. Discussion The ENERGY survey is a comprehensive cross-sectional study measuring anthropometrics and biomarkers as well as assessing a range of EBRBs and their potential correlates at the personal, family and school level, among 10-12 year old children in seven

  14. Developing an Agro-Ecological Zoning Model for Tumbleweed (Salsola kali), as Energy Crop in Drylands of Argentina

    Science.gov (United States)

    Falasca, Silvia; Pitta-Alvarez, Sandra; Ulberich, Ana

    2016-12-01

    Salsola kali is considered extremely valuable as an energy crop worldwide because it adapts easily to environments with strong abiotic stresses (hydric, saline and alkaline) and produces large amounts of biomass in drylands. This species is categorized as an important weed in Argentina. The aim of this work was to design an agro-ecological zoning model for tumbleweed in Argentina, employing a Geography Information System. Based on the bioclimatic requirements for the species and the climatic data for Argentina (1981-2010 period), an agro-climatic suitability map was drawn. This map was superimposed on the saline and alkaline soil maps delineated by the Food and Agriculture Organization for dry climates, generating the agro-ecological zoning on a scale of 1 : 500 000. This zoning revealed very suitable and suitable cultivation areas on halomorphic soils. The potential growing areas extend from N of the Salta province (approximately 22° S) to the Santa Cruz province (50° S). The use of tumbleweed on halomorphic soils under semi-arid to arid conditions, for the dual purpose of forage use and source of lignocellulosic material for bioenergy, could improve agricultural productivity in these lands. Furthermore, it could also contribute to their environmental sustainability, since the species can be used to reclaim saline soils over the years. Based on international bibliography, the authors outlined an agro-ecological zoning model. This model may be applied to any part of the world, using the agro-ecological limits presented here.

  15. Agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate via photofermentation.

    Science.gov (United States)

    Corneli, Elisa; Adessi, Alessandra; Dragoni, Federico; Ragaglini, Giorgio; Bonari, Enrico; De Philippis, Roberto

    2016-09-01

    The present study was aimed at assessing the biotransformation of dark fermented agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate (PHB), in lab-scale photofermentation. The investigation on novel substrates for photofermentation is needed in order to enlarge the range of sustainable feedstocks. Dark fermentation effluents of ensiled maize, ensiled giant reed, ensiled olive pomace, and wheat bran were inoculated with Rhodopseudomonas palustris CGA676, a mutant strain suitable for hydrogen production in ammonium-rich media. The highest hydrogen producing performances were observed in wheat bran and maize effluents (648.6 and 320.3mLL(-1), respectively), both characterized by high initial volatile fatty acids (VFAs) concentrations. Giant reed and olive pomace effluents led to poor hydrogen production due to low initial VFAs concentrations, as the original substrates are rich in fiber. The highest PHB content was accumulated in olive pomace effluent (11.53%TS), ascribable to magnesium deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Crop Protection in Medieval Agriculture

    NARCIS (Netherlands)

    Zadoks, J.C.

    2013-01-01

    Mediterranean and West European pre-modern agriculture (agriculture before 1600) was by necessity ‘organic agriculture’. Crop protection is part and parcel of this agriculture, with weed control in the forefront. Crop protection is embedded in the medieval agronomy text books but specialised

  17. Improved design of proton source and low energy beam transport line for European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  18. Improved design of proton source and low energy beam transport line for European Spallation Source.

    Science.gov (United States)

    Neri, L; Celona, L; Gammino, S; Mascali, D; Castro, G; Torrisi, G; Cheymol, B; Ponton, A; Galatà, A; Patti, G; Gozzo, A; Lega, L; Ciavola, G

    2014-02-01

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  19. The political economy of energy use and pollution: the environmental effects of East-European transition to market economy

    Energy Technology Data Exchange (ETDEWEB)

    Midttun, A.; Chander, I. [Norwegian School of Management, Sandvicka (Norway)

    1998-11-01

    The transition of Eastern Europe to Western-type liberal capitalism has been interpreted as an important step towards a more ecologically sustainable Europe. The main argument has been that the energy efficiency of the West-European economy will be imported to Eastern Europe and lead to lower energy consumption and lower pollution. This line of argumentation seems sound as far as the industrial sector is concerned. However, it does not take into consideration the energy and pollution bill of the lavish lifestyle of modern consumer-oriented societies. A shift away from the moderate private consumption of East-European Communism, towards the Western consumerist lifestyle may diminish or even abolish the positive ecological effects of the East-European transition to a competitive market economy. The article explores energy consumption and pollution patterns of Eastern and Western Europe both as far as industrial and domestic end-user consumption is concerned. The article argues that these patterns are related to basic characteristics of the communist and capitalist systems and that pollution and energy use are fundamentally conditioned by the overall political economy. 18 refs., 14 figs., 1 tab., 1 app.

  20. Future yields assessment of bioenergy crops in relation to climate change and technological development in Europe

    Directory of Open Access Journals (Sweden)

    Salvatore L. Cosentino

    2012-05-01

    Full Text Available Bioenergy crops are expected to play an important role in reducing CO2 emission, in energy supply and in European energy policy. However, a sustainable bioenergy supply must be resilient to climate change and the impacts on agriculture at both global and regional scale. The purpose of this study was to forecast the potential distribution of several bioenergy crops based on agronomic and environmental constrains under current conditions and future scenarios (2020 and 2030 in European Union. Potential biomass yield, according to the category end use product achievable in each environmental zone of Europe at present and in the future available land have been also studied. Future yields were assessed according to two factors: technological development and climate change: the former was based on prospect of DG-Agriculture for conventional crops and expert judgments for bioenergy crops, while the latter based on relevant research papers and literature reviews which used site-specific crop growth models. Yields are expected to increase in northern Europe due to climate change and technological development, while in southerneastern Europe the negative effect of climate change will be mitigated by the technological development. The estimated total biomass production in Europe, on the basis of future yields and surplus land made available for energy crops, may not be sufficient to meet the needs of bioenergy supply as claimed in the European directive 2009/28/EC.

  1. Pea-barley intercropping for efficient symbiotic N-2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Gooding, M.; Ambus, Per

    2009-01-01

    plant density (P100 and B100, respectively) or in replacement (P50B50) or additive (P100B50) intercropping designs, in each of three cropping seasons (2003-2005). Irrespective of site and intercrop design, Land Equivalent Ratios (LER) between 1.4 at flowering and 1.3 at maturity showed that total N......Complementarity in acquisition of nitrogen (N) from soil and N-2-fixation within pea and barley intercrops was studied in organic field experiments across Western Europe (Denmark, United Kingdom, France, Germany and Italy). Spring pea and barley were sown either as sole crops, at the recommended...... recovery was greater in the pea-barley intercrops than in the sole Crops Suggesting a high degree of complementarity over a wide range of growing conditions. Complementarity was partly attributed to greater soil mineral N acquisition by barley, forcing pea to rely more on N-2-fixation. At all sites...

  2. Pre-study - compilation and synthesis of knowledge about energy crops from cultivation to energy production; Foerstudie - sammanstaellning och syntes av kunskap och erfarenheter om groedor fraan aaker till energiproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Magnus; Bubholz, Monika; Forsberg, Maya; Myringer, Aase; Palm, Ola; Roennbaeck, Marie; Tullin, Claes

    2007-06-15

    Energy crops constitute a yet not fully utilized potential as fuel for heating and power production. As competition for biomass hardens the interest for agricultural fuels such as straw, energy grain, willow, reed canary grass and hemp increases. Utilization of the potential for energy crops as fuels demands that cultivation and harvest are coordinated with transportation, storage and combustion of the crops. Together, Vaermeforsk and Swedish Farmers' Foundation for Agricultural Research (SLF), have taken the initiative to a common research programme. The long-term aim of the programme is to increase production and utilization of bioenergy from agriculture to combustion for heat and power production in Sweden. The vision is that during the programme, 2006 - 2009, decisive steps will be taken towards a working market for biofuels for bioenergy from agriculture. This survey has compiled and synthesized available knowledge and experiences about energy crops from the field to energy production. The aim has been to give a picture of knowledge today, to identify knowledge gaps and to synthesize knowledge of today into future research needs. A proposal of a research plan has been developed for the research programme.

  3. Educational actions of energy control. Good practices of european towns; Les actions educatives de maitrise de l'energie. Bonnes pratiques de villes europeennes

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Ch.

    2001-07-01

    In the framework of an energy policy against the greenhouse effect, the young people awareness to the energy conservation and the environment protection, is essential because they will be the citizens of tomorrow and in a first step, they can have influence on their parents attitude. This study presents and analyzes ten experiences of european towns concerning: the utilization or the creation of educational tools as CD-Rom, Internet, documents; operations associating teachers and students at energy control actions in their school; operations associating external interveners of the school. (A.L.B.)

  4. Rethinking Pumped Storage Hydropower in the European Alps: A Call for New Integrated Assessment Tools to Support the Energy Transition

    Directory of Open Access Journals (Sweden)

    Astrid Björnsen Gurung

    2016-05-01

    Full Text Available The European Alps are well positioned to contribute significantly to the energy transition. In addition to sites with above-average potential for wind and solar power, the “water towers” of Europe provide flexible, low-carbon power generation as well as energy storage. In the future, hydropower systems are expected to become more than mere electricity generators, serving a key role as flexible complements to intermittent power generators and as providers of large-scale seasonal and daily energy storage. Energy transition on national and European scales can be facilitated by expanding the capacity of pumped storage hydropower (PSHP plants. Yet the extension of hydropower production, in particular PSHP, remains controversial, primarily due to environmental concerns. Focusing on 2 Alpine countries, Austria and Switzerland, this paper provides a system view of hydropower production and energy storage in the Alps. It discusses advantages and drawbacks of various assessment tools and identifies gaps and needs for the integrated assessment of PSHP plants. It concludes that instruments that evaluate the impacts and sustainability of PSHP projects need to be developed, elaborated, and applied in a participatory manner, in order to promote public dialogue, increase social acceptance, and, ideally, encourage energy consumers to become advocates of a sustainable energy future.

  5. Growth potential of energy sector reforms: new evidence on EU and Southeast European countries by exploring impact on electricity generation

    Directory of Open Access Journals (Sweden)

    Nela Vlahinić Lenz

    2015-12-01

    Full Text Available The aim of this research is to investigate the impact of energy sector reforms on electricity generation and thus economic growth in EU and Southeast European countries. The paper aims at clarifying whether the impact of energy sector reforms on generation efficiency differs among countries according to their level of development and regional characteristics. Our hypothesis is that the EU reform model is not appropriate for all Member States and Southeast European countries since it does not improve efficiency in electricity generation in all countries and therefore, it can hamper economic growth. For testing the defined hypothesis the panel regression model with fixed effects has been used. The research results show that unlike in the EU-15 (old Member States, energy sector reforms in the EU-12 (new Member States, and selected Southeast European countries (Energy Community contracting parties have no significant impact on electricity transmission and distribution losses. These evidences imply that the uniform EU reform model does not improve efficiency of electricity generation in less developed countries. On the contrary it can even hamper economic growth and therefore it cannot be appropriate for all Member States. The reason lies in the fact that successful reform model requires adequate level of institutional resources that are missing in most transition and post-transition countries.

  6. Sustainability of European winter wheat- and maize-based cropping systems: Economic, environmental and social ex-post assessment of conventional and IPM-based systems

    NARCIS (Netherlands)

    Vasileiadis, V.P.; Dachbrodt-saaydeh, S.; Kudsk, P.; Colnenne-David, C.; Leprince, F.; Holb, I.J.; Kierzek, R.; Furlan, L.; Loddo, D.; Melander, B.; Jørgensen, L.N.; Newton, A.C.; Toque, C.; Dijk, van W.; Lefebvre, M.; Benezit, M.; Sattin, M.

    2017-01-01

    In order to ensure higher sustainability of winter wheat and maize production in Europe, cropping systems featuring different levels of Integrated Pest Management (IPM) need to be tested in the field and validated for their sustainability before being adopted by farmers. However, the sustainability

  7. Socio-economic evaluation of energy crops as a means for a better environment; Samfundsoekonomisk vurdering af energiafgroeder som virkemiddel for et bedre miljoe

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Brian H.; Dubgaard, A.

    2012-10-15

    The purpose of the economic analysis is to describe the economy by growing willow compared to alternative rotations in order to assess whether there would be an economic interest, to grow willow on selected soil types. The goal of the socio-economic analysis is to assess whether the price to reduce N leaching or emissions of greenhouse gases is cost-effective compared to other instruments. The analysis shows that it is economically attractive to grow energy crops on moist marginal soils (+1.800 Kr. / hectare / year) and in some cases also on sandy soil (600 kr. / hectare / year). A low grain prices will make energy crops attractive to all soil types, while a high grain prices would mean that it is only economically viable on marginal soils. There is some uncertainty about yields and prices for energy crops. Generally, a decrease in yield of two tonnes per year per hectare means a reduction in the contribution margin of almost 1,200 Kr. per hectare. Conversely, an increase in price from 42 to 45 Kr. per GJ will mean an increase in the contribution margin of DKK 400 per hectare. The welfare economic analyses show that there are negative costs (= gain) associated with energy crops, both in relation to the reduction of greenhouse gases and compared to N leaching from agricultural land. The assessment also includes the effect of reduced ammonia volatilization. It is estimated that willow cultivation reduces pesticide use calculated as the frequency of treatment of 50-97% and the load index of 19-89% compared to cereals cultivation. There is therefore a significant reduction of pesticide use. Compared to the cost of alternative measures, 23 DKK. per. kg N or 140 DKK per. tonnes of CO{sub 2}, it is therefore a cost-effective instrument under specified conditions. (LN)

  8. Energy supply structures and strategies for the reduction of emissions in selected Central and Eastern European countries

    Energy Technology Data Exchange (ETDEWEB)

    Jattke, A.; Haasis, H.-D.; Oder, C.; Russ, P.; Rentz, O. (University of Karlsruhe, Karlsruhe (Germany). Institute for Industrial Production)

    1993-01-01

    This article sets out to analyse strategies for the reduction of SO[sub 2] and NO[sub x] emissions applied by a selection of Central and Eastern European countries, together with the impact of these strategies upon national energy supply structure. Hungary, Lithuania and the European sector of Russia are used as representative examples of the wide variety of energy industry structures and future developments in Eastern Europe. Current energy supply, transformation and consumer demand conditions in the various economic sectors (industry, transport, the domestic sector, etc.) have been used as a basis for the establishment of the national cost of emission reduction strategies, together with preferred national structure for emission reduction measures. Calculated cost functions are based upon a technical and economic assessment of available energy transformation and emission reduction technologies. The potential of various options for emission reduction, such as the substitution of fuels or technologies, secondary emission reduction techniques and energy conservation measures have also been quantified. This process has been used as a means of identifying and assessing the interdependence of strategies for the reduction of various atmospheric pollutants. The EFOM-ENV Energy/Emission Model has been used as a methodological tool. 15 refs., 13 figs., 1 tab.

  9. Energy security and European Union. Proposals for the French presidency; Securite energetique et Union Europeenne. Propositions pour la presidence francaise

    Energy Technology Data Exchange (ETDEWEB)

    Mandil, C

    2008-04-15

    This report treats of energy security and of the two related topics which are the fight against climatic change and the economic growth. The first chapter analyses the energy risks that we will have to face. It makes a difference between the long-term risks (depletion of energy resources) and the short-term risks (supply disruption). Concerning the short-term risks, it is recalled that most of the supply incidents have an internal cause and that imports can have advantages and not only drawbacks. The second chapter approaches the delicate problem of European harmonization between the speech and the action when the energy security is in concern. A conclusion of this chapter is that the 'speaking with a single voice' goal can be reached only if improvements are made in the domain of solidarity between member states. The completion of the internal energy market is therefore a priority and the mission of regulators must include the security aspect. The third chapter treats of the particular case of the relation with the Russian supplier. It suggests to work for a lower energy dependence with respect to Russia, by developing the energy efficiency, the LNG industry, the renewable energies and the nuclear energy. The fourth chapter deals with the relations with the Caspian sea surrounding countries in the perspective of gas exports towards Europe. Here again, the cooperation with Russia is of prime importance. It approaches also the problem of the gas negotiation with Turkey which requires a significant improvement of the consistency of European diplomacy in this area. The last chapter treats of the role of international organisations and of the dialogue in the domain of energy. It suggests some paths to develop the confidence between the different intervening parties. It stresses on the lack of transparency which disturbs the markets and weakens the security. (J.S.)

  10. Energy and mass balance observations on La Mare Glacier (Ortles-Cevedale, European Alps)

    Science.gov (United States)

    Carturan, L.; Cazorzi, F.; Dalla Fontana, G.

    2009-04-01

    distinct diurnal cycle of cloud cover was found to control the actual radiation received by the surface, with a minimum coverage at morning and a maximum at late afternoon, due to thermal convection. In addition, the energy available for melt is affected by the glacier cooling effect, which produces a persistent katabatic wind and lead to a reduced climatic sensitivity with respect to the "free atmosphere". The magnitude of the cooling effect has proved to be comparable with the findings of similar studies conducted in other European glaciers. Finally, the data of the first winter highlighted a very low accumulation on the AWS site, due to strong wind erosion of freshly fallen dry and cold snow. Accumulation became significant only in spring, with the deposition of snow in higher temperature conditions and absence of post-event strong northerly winds.

  11. Nurse crop

    Science.gov (United States)

    Wayne D. Shepperd; John R. Jones

    1985-01-01

    In forestry, a nurse crop generally is a crop of trees or shrubs that fosters the development of another tree species, usually by protecting the second species, during its youth, from frost, insolation, or wind (Ford-Robertson 1971). Aspen may be a nurse crop for shade-tolerant tree species that do not become established in full sunlight (e.g., Engelmann spruce)....

  12. Competition between the various fossil-fuel energy resources on the European and World markets in the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, G.

    1980-05-01

    This paper looks at probable developments between now and the year 2000 in the role played by each of the major primary energy sources : Oil (still occupies a dominant position but is partially on the decline); natural gas (uncertainty over cost prices); coal (substantial developments in international trade due in the main to the increase in European requirements); and nuclear energy (competition with coal over electricity generation). Also looks at other fossil fuels - where production is limited on the grounds of cost and environmental problems. (In French)

  13. Demand and energy efficiency in the soybean crop in no tillage; Demanda e eficiencia energetica no cultivo da soja em plantio direto

    Energy Technology Data Exchange (ETDEWEB)

    Riquetti, Neilor Bugoni; Seki, Andre Satoshi [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Programa Energia na Agricultura], E-mail: neilor@fca.unesp.br; Sousa, Saulo Fernando Gomes de [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Fazenda de Ensino Pesquisa e Producao; Silva, Paulo Roberto Arbex; Benez, Sergio Hugo [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas

    2010-07-01

    The increase in energy use in agriculture, combined with rising costs and possible stores for the future have led to the need for farming systems more efficient in the use of non-renewable resource. Based on this work was undertaken to determine the efficiency of cultivation of soybean in no-till system. For the calculations were quantified all operations that involve expenditure of energy from the drying up of the harvest, including depreciation of machinery energy, calculated in accordance with its life, weight, and the days of actual use. Energy efficiency was calculated by dividing the total energy produced by the grain and dry matter divided by the total input energy. The highest spending power in this culture system were due to the use of pesticides and fertilizers. The demand for energy was 7956.54 MJ.ha{sup 1} from the harvest desiccation. Energy efficiency was calculated at 5.95, ie for each unit of energy used was taken from 5.95 units in the form of grain. When calculated the energy of matter left by the crop after harvest coupled with the energy of the grains, the efficiency was 7.94. (author)

  14. Seasonal nutrient dynamics and biomass quality of giant reed (Arundo donax L. and miscanthus (Miscanthus x giganteus Greef et Deuter as energy crops

    Directory of Open Access Journals (Sweden)

    Nicoletta Nassi o Di Nasso

    2011-08-01

    Full Text Available The importance of energy crops in displacing fossil fuels within the energy sector in Europe is growing. Among energy crops, the use of perennial rhizomatous grasses (PRGs seems promising owing to their high productivity and their nutrient recycling that occurs during senescence. In particular, nutrient requirements and biomass quality have a fundamental relevance to biomass systems efficiency. The objective of our study was to compare giant reed (Arundo donax L. and miscanthus (Miscanthus × giganteus Greef et Deuter in terms of nutrient requirements and cellulose, hemicelluloses and lignin content. This aim was to identify, in the Mediterranean environment, the optimal harvest time that may combine, beside a high biomass yield, high nutrient use efficiency and a good biomass quality for second generation biofuel production. The research was carried out in 2009, in San Piero a Grado, Pisa (Central Italy; latitude 43°41’ N, longitude 10°21’ E, on seven-year-old crops in a loam soil characterised by good water availability. Maximum above-ground nutrient contents were generally found in summer. Subsequently, a decrease was recorded; this suggested a nutrient remobilisation from above-ground biomass to rhizomes. In addition, miscanthus showed the highest N, P, and K use efficiency, probably related to its higher yield and its C4 pathway. Regarding biomass quality, stable values of cellulose (38%, hemicelluloses (25% and lignin (8% were reported from July onwards in both crops. Hence, these components appear not to be discriminative parameters in the choice of the harvest time in the Mediterranean environment. In conclusion, our results highlighted that, in our environment, a broad harvest period (from late autumn to winter seems suitable for these PRGs. However, further research is required to evaluate the role of rhizomes in nutrient storage and supply during the growing season, as well as ecological and productive performances in marginal

  15. Self-(in)compatibility genotypes of Moroccan apricots indicate differences and similarities in the crop history of European and North African apricot germplasm

    OpenAIRE

    Kodad, Ossama; Hegedüs, Attila; Socias i Company, Rafel; Halász, Julia

    2013-01-01

    Background Allelic diversity of the S-locus is attributed to the genetic relationships among genotypes and sexual reproduction strategy. In otherwise self-incompatible Prunus species, the emergence of loss-of-function in S-haplotypes has resulted in self-compatibility. This information may allow following major stages of crop history. The genetic diversity in the S-locus of local apricots (Prunus armeniaca L.) from different oasis ecosystems in Morocco and the comparison of the occurrence and...

  16. Safety assessment, detection and traceability, and societal aspects of genetically modified foods. European Network on Safety Assessment of Genetically Modified Food Crops (ENTRANSFOOD). Concluding remarks.

    Science.gov (United States)

    Kuiper, H A; König, A; Kleter, G A; Hammes, W P; Knudsen, I

    2004-07-01

    The most important results from the EU-sponsored ENTRANSFOOD Thematic Network project are reviewed, including the design of a detailed step-wise procedure for the risk assessment of foods derived from genetically modified crops based on the latest scientific developments, evaluation of topical risk assessment issues, and the formulation of proposals for improved risk management and public involvement in the risk analysis process. Copyright 2004 Elsevier Ltd.

  17. Scientific support in the Preparation of Proposals for an EU energy roadmap. Concrete paths of the European Union to the 2 C scenario. Achieving the climate protection targets of the EU by 2050 through structural change, energy savings and energy efficiency technologies. Accompanying scientific report - Contribution of energy efficiency measures to climate protection within the European Union until 2050

    Energy Technology Data Exchange (ETDEWEB)

    Bossmann, Tobias; Eichhammer, Wolfgang; Elsland, Rainer

    2012-03-20

    Given the risks associated with global warming and its potential consequences due to the uncontrolled emissions of greenhouse gases (GHG), the European Union (EU) has pledged to reduce its emissions by 20% until 2020 and by at least 80% until 2050 compared to 1990 levels. In this context, the energy sector plays a crucial a role, since approximately 80% of European GHG emissions in 2009 were from this sector. Moreover, this sector offers the chance of almost complete decarbonisation based on a variety of technologies ranging from carbon-neutral electricity generation through highly-efficient energy conversion processes to energy-saving options. The political challenge here consists of developing a set of technology options which will ensure the shift takes place towards a sustainable European energy system which still complies with the constraints imposed by competitiveness and the security of supply. Since energy efficiency represents a powerful tool to tackle these objectives, the present study analyses in detail to what extent energy savings can contribute to GHG emission mitigation in the EU until the year 2050 and which technologies are required for the energy saving potentials identified. This report provides detailed information. The policy report gives an overview of the main insights. The technology-based, bottom-up approach also sets this study apart from most of the other existing reports. The study comparison carried out clearly shows that most of the time energy efficiency options are not being considered to their full extent as a technology option for carbon mitigation in the various scenarios. Moreover, the level of detail regarding the deployment of efficiency measures is well below the accuracy usually applied to the analysis of the energy supply side, particularly the power sector. The analysis of the different sectors reveals the largest final energy saving potential to be in the buildings sector, whereas the highest financial benefits can be

  18. Opportunities for an India-European Union Partnership on energy and climate security

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, C. [Institut du Developpement Durable et des Relations Internationales, 75 - Paris (France); Mathur, R. [TERI, New Delhi (India)

    2008-07-01</