WorldWideScience

Sample records for eurisol multi-mw spallation

  1. ENGINEERING DESIGN OF THE EURISOL MULTI-MW SPALLATION TARGET

    CERN Document Server

    Adonai Herrera-Martinez*, Yacine Kadi, Morteza Ashrafi-Nik, Karel Samec, Janis Freibergs, Ernests Platacis

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order ...

  2. Engineering design of the EURISOL multi-MW spallation target

    CERN Document Server

    Herrera-Martínez, A; Ashrafi-Nik, M; Samec, K; Freibergs, J; Platacis, E

    2007-01-01

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order of 1...

  3. EURISOL Multi-MW Target: Preliminary Study

    CERN Document Server

    A.Herrera-Martínez and Y.Kadi

    This technical note summarises the design calculations performed within Task #2 of the EURopean Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL DS).A preliminary study was carried out in order to determine the optimum value of relevant parameters in the target design. Different scenarios were simulated using the Monte Carlo code FLUKA. Namely, sensitivity studies were performed to assess the impact of the projectile particle energy on the neutronics and energy deposition in the spallation target. The optimum target dimension was also studied for every case as well as the proper target material for the liquid metal proton-to-neutron converter, since mercury and lead-bismuth eutectic are reasonable options. The effect of the beam width on the power densities was also evaluated, taking into account the geometrical limitations of the facility. Finally, a comparison between protons and deuterons as primary particles was performed, acknowledging the limitations of using FLUKA for thes...

  4. EURISOL-DS Multi-MW Target: Design of the EURISOL Liquid metal loop

    CERN Document Server

    K. Samec (PSI)

    A Mercury loop capable of evacuating 2.7 MW of the 4 MW deposited in the Eurisol liquid metal neutron spallation target is described in the present design study.The study takes into account the effects on the loop of temperature, pressure, irradiation, liquid metal corrosion, including both steady state operations and normal transients. Accidental conditions are only briefly alluded to in the form of a description of the protection barriers and envisaged mitigation strategies.

  5. EURISOL-DS MULTI-MW TARGET ISSUES: BEAM WINDOW AND TRANSVERSE FILM TARGET

    CERN Document Server

    Adonai Herrera-Martínez, Yacine Kadi

    The analysis of the EURISOL-DS Multi_MW target precise geometry (Fig.1) has proved that large fission yields can be achieved with a 4 MW, providing a technically feasible design to evacuate the power deposited in the liquid mercury. Different designs for the mercury flow have been proposed, which maintain its temperature below the boiling point with moderate flow speeds (maximum 4 m/s).

  6. Design of the EURISOL multi-MW target assembly radiation and safety issues

    CERN Document Server

    Felcini, Marta; Kadi, Yacine; Otto, Thomas; Tecchio, L

    2006-01-01

    The multi-MW target proposed for the EURISOL facility will be based on fission of uranium (or thorium) compounds to produce rare isotopes far from stability. A two-step process is used for the isotope production. First, neutrons are generated in a liquid mercury target, irradiated by the 1 GeV proton or deuteron beam, provided by the EURISOL linac driver. Then, the neutrons induce fission in a surrounding assembly of uranium carbide. R&D projects on several aspects of the target assembly are ongoing. Key criteria for the target design are a maximum beam power capability of 4 MW, a remote handling system with minimum downtime and maximum reliability, as well as radiation safety, minimization of hazards and the classification of the facility. In the framework of the ongoing radiation characterization and safety studies, radiation transport simulations have been performed to calculate the prompt radiation dose in the target and surrounding materials, as well as to determine shielding material and angle-depen...

  7. The EURISOL Multi Megawatt Target Station, a liquid metal target for a High Power spallation source.

    CERN Document Server

    Kharoua, C; Blumenfeld, L; Milenkovich, R; Wagner, W; Thomsen, K; Dementjevs, S; Platacis, E; Kravalis, K; Zik, A

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research in nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2013.In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW liquid metal proton-to-neutron converter, all driven by a high-power particle accelerator. In the aforementioned multi-MW target assembly, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source.This presentation summarises the work carried out for the Multi Megawatt target station of the EURISOL Design Study with particular attention to the coupled neutronic of the liquid converter and the overall performance of the facility, which will sustain fast neutr...

  8. EURISOL Multi-MW Target: First thermal-hydraulic studies for the EURISOL high-power liquid-metal target using Computational Fluid Dynamics

    CERN Document Server

    Trevor V. Dury

    A scoping study of a mercury target for the Multi-Megawatt Proton-to-Neutron Converter of theEURISOL Project has been made at PSI using the Computational Fluid Dynamics (CFD) codeCFX-4. A mesh model of a horizontal target with forced circulation was used which had beenoriginally proposed for the European Spallation Source (ESS). The heat deposition profilewhich was applied produced a total of 4 MW of heat in the fluid and 13.4 kW in the window,

  9. EURISOL-DS Multi-MW Target: Experimental program associated to validation of CFD simulations of the mercury loop

    CERN Document Server

    Blumenfeld, Laure; Kadi, Yacine; Samec, Karel; Lindroos, Mats

    At the core of the Eurisol project facility, the neutron source produces spallation neutrons from a proton beam impacting dense liquid. The liquid circulates at high speed inside the source, a closed vessel with beam windows.This technical note summarises the needed of the hydraulic METEX 1 and METEX 2 data tests to contribute to validate CFD turbulent simulation of liquid metal with the LES model and FEM structural model as well as a-dimensional analysis of Laser Dopplet Velocimetry for cavitation measurements.

  10. EURISOL-DS Multi-MW Target: Cost Analysis for a Proposed Development Phase

    CERN Document Server

    Karel, Samec; Kadi, Yacine; Noah, Etam; Lettry, Jacques; Wagner, Werner; Thomsen, Knud; Patorski, Jacek; Dementevjs, Sergej; Zik, Anatoli; Platacis, Erik

    The EURISOL Design Study has reached final completion and the three institutes, CERN, IPUL and PSI, participating in the development of the Multi-Megawatt target station have met the objective of a reliable, affordable and credible design. The costs involved in the full development of such a target are forecast to reach 200 million €, approximately 15% of the total costs of the EURISOL facility.A breakdown of the costs is presented as well as an outline of future possible R&D efforts aimed at improving reliability and safety of the facility. Another important goal of the proposed R&D is to minimise development risk by focusing resources, early on in the project, on areas identified as presenting a particular risk. An example clearly identified in the study would be the conditioning of the contaminated Mercury, both during the lifetime of the facility and after decommissioning.

  11. EURISOL-DS Multi-MW Target: Cavitations detection by the a Laser Doppler Vibrometer

    CERN Document Server

    Cyril Kharoua, Yacine Kadi, Jacques Lettry, Laure Blumenfeld, Karel Samec (CERN)Knud Thomsen, Sergej Dementevjs, Rade Milenkovich (PSI)Anatoli Zik, Erik Platacis (IPUL)

    This technical note summarises the innovative measurement devices used within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) to detect the occurrence of cavitation in liquid metal flowing inside the CGS target mock-up.During the METEX hydraulic experiment carried out at IPUL (Institute of Physics of the University of Latvia), a Laser Doppler Vibrometer was used to characterize the wall vibrations of the beam window at different flow regimes. A series of tests proved the high sensitivity of the LDV to detect the occurrence of cavitation in the liquid metal flowing inside the target. In this context, a dedicated test procedure was developed to establish the validity of using LDV for detecting the onset of cavitation.

  12. Innovative Waste Management in the Mercury Loop of the EURISOL Multi-MW Converter Target

    CERN Document Server

    PSI: Jörg Neuhausen, Dorothea Schumann, Rugard Dressler, Susanne Horn, Sabrina Lüthi, Stephan Heinitz, Suresh ChirikiCERN: Thierry Stora, Martin Eller

    The choice of mercury as target material imposes various questions concerning the safe operation of such a system that are related to the physical and chemical properties of the target material itself and the nuclear reaction products produced within the target during its life time of several decades. Therefore, a subtask was created within the EURISOL-DS project that is concerned with studying an innovative waste management for the generated radioactivity by chemical means. Such a study strongly depends on the radioactive inventory and its distribution throughout the target and loop system. Radioactive inventory calculations were performed within task 5 [6]. The distribution of nuclear reaction products and their chemical state that can be expected within the target and loop system is one of the topics covered in this report. Based on the results obtained by theoretical studies as well as laboratory scale experiments, the feasibility of waste reduction using chemical methods, both conventional (e.g. leaching...

  13. EURISOL-DS Multi-MW Target Preliminary Study of the Liquid Metal Proton-to-Neutron Converter

    CERN Document Server

    Herrera-Martínez, A; CERN. Geneva. AB Department

    2006-01-01

    This technical note summarises the design calculations performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) [1]. A preliminary study was carried out in order to determine the optimum value of relevant parameters in the target design. Different scenarios were simulated using the Monte Carlo code FLUKA [2]. Namely, sensitivity studies were performed to assess the impact of the projectile particle energy on the neutronics and energy deposition in the spallation target. The optimal target dimensions were also studied for every case as well as the proper target material for the liquid metal proton-to-neutron converter, since mercury and lead-bismuth eutectic are reasonable options. The effect of the beam width on the power densities was also evaluated, taking into account the geometrical limitations of the facility. Finally, a comparison between protons and deuterons as primary particles was performed, acknowledging the limitations of using FLU...

  14. EURISOL-DS Multi-MW Target: Thermal Behaviour of the fission target disk arrangement inspired by the MAFF project

    CERN Document Server

    Cyril Kharoua, Yacine Kadi and the EURISOL-DS Task#2 collaboration

    This technical note summarises the design calculations performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) [1] for the thermal behaviour of the fission target.A preliminary study was carried out in order to determine the heat deposition within the fissile material and estimate the temperature rise. This new solution takes into account the problems related to effusion/diffusion of radioactive isotopes inside a thick target. To enhance the extraction rates and the thermal behaviour it is proposed to study a solution where the fissile material is split into an arrangement of disks.

  15. Mercury purification in the megawatt liquid metal spallation target of EURISOL-DS

    CERN Document Server

    Neuhausen, Joerg; Eller, Martin; Schumann, Dorothea; Eichler, Bernd; Horn, Susanne

    High power spallation targets are going to be used extensively in future research and technical facilities such as spallation neutron sources, neutrino factories, radioactive beam facilities or accelerator driven systems for the transmutation of long-lived nuclear waste. Within EURISOL-DS, a 4 MW liquid metal spallation target is designed to provide neutrons for a fission target, where neutron rich radionuclides will be produced. For the spallation target, mercury is planned to be used as target material. A large amount of radionuclides ranging from atomic number Z=1 to 81 will be produced in the liquid metal during long term irradiation. It is planned to remove those radionuclides by chemical or physicochemical methods to reduce its radioactivity. For the development of a purification procedure, knowledge about the chemical state of the different elements present in the mixture is required. We present a general concept of applicable separation techniques in a target system and show some results of experiment...

  16. EURISOL-DS Multi-MW Target: Study of the WTF Liquid Metal Proton-to-Neutron Converter

    CERN Document Server

    Cyril Kharoua, Yacine Kadi (CERN)Erik Platacis, Kalvis Kravalis (IPUL)

    This technical note summarises the design calculations and experiments performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) for the WTF (Windowless Transverse Film) mercury converter.A preliminary study was carried out in order to determine the heat deposition within the mercury and estimate the flow velocity needed in the film. The geometry used is based on previous analysis simulated using the Monte Carlo code FLUKA.Many experiments have been performed at IPUL to optimise an inlet nozzle capable to create a stable film. The experimental program followed to design the film former will be detailed in this report.The results of these calculations are addressing the baseline parameters. Particularly, a 1 GeV proton beam with a sigma ~2 mm Gaussian distribution impacting on a 4x30x40cm long target. The very high power density requires about 5m/s velocity in the region where the heat deposition is maximum.

  17. EURISOL-DS multi-MW target unit: Neutronics performance and shielding assessment, dose rate and material activation calculations for the MAFF configuration

    CERN Document Server

    Romanets, Y; Kadi, Y; Luis, R; Goncalves, I F; Tecchio, L; Kharoua, C; Vaz, P; Ene, D; David, J C; Rocca, R; Negoita, F

    2010-01-01

    One of the objectives of the EURISOL (EURopean Isotope Separation On-Line Radioactive Ion Beam) Design Study consisted of providing a safe and reliable facility layout and design for the following operational parameters and characteristics: (a) a 4 MW proton beam of 1 GeV energy impinging on a mercury target (the converter); (b) high neutron fluxes (similar to 3 x 10(16) neutrons/s) generated by spallation reactions of the protons impinging in the converter and (c) fission rate on fissile U-235 targets in excess of 10(15) fissions/s. In this work, the state-of-the-art Monte Carlo codes MCNPX (Pelowitz, 2005) and FLUKA (Vlachoudis, 2009; Ferrari et al., 2008) were used to characterize the neutronics performance and to perform the shielding assessment (Herrera-Martinez and Kadi, 2006; Cornell, 2003) of the EURISOLTarget Unit and to provide estimations of dose rate and activation of different components, in view of the radiation safety assessment of the facility. Dosimetry and activation calculations were perfor...

  18. EURISOL-DS Multi-MW Target Unit: Neutronics and shielding performance, dose rate and material activation calculations for the MAFF configuration

    CERN Document Server

    Luis, R; Goncalves, I. F; Vaz, P; Kadi, Y; Kharoua, C; Rocca, R; Tecchio, L; Negoita, F; Ene, D; David, J.C

    One of the EURISOL-DS (The EURopean Isotope Separation On-Line Radioactive Ion Beam – Design Study) objectives is to provide a safe and reliable facility layout meeting the following operational parameters:1.

  19. EURISOL-DS Multi-MW Target-Comparative Neutronic Performance of the Baseline-Configuration vs. the Hg-Jet Option

    CERN Document Server

    Adonai Herrera-Martínez, Yacine Kadi,and the EURISOL-DS Task#2 collaboration

    This technical report summarises the comparative study between several design options for the Multi-MW target station performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study.

  20. EURISOL-DS Multi-MW Target Preliminary Study of the Thermal Behaviour of the fission target inspired by the MAFF project

    CERN Document Server

    Cyril Kharoua, Yacine Kadi

    This technical note summarises the design calculations performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) [1] for the thermal behaviour of the fission target. A preliminary study was carried out in order to determine the heat deposition within the fissile material and estimate the temperature raise.

  1. EURISOL-DS Multi-MW Target Preliminary Study of the WTF(Windowless Transverse Film) Liquid Metal Proton-to-Neutron Converter

    CERN Document Server

    Cyril Kharoua, Yacine Kadi, Karel Samec, Roberto Rocca

    This technical note summarises the design calculations performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) [1] for the WTF (Windowless Transverse Film) mercury converter. A preliminary study was carried out in order to determine the heat deposition within the mercury and estimate the mercury velocity needed in the film. The geometry used is based on previous analysis simulated using the Monte Carlo code FLUKA [2]. The results of these calculations show the baseline parameters, which will be used for the detailed design. Particularly, with a 1 GeV proton beam with a ~2 mm Gaussian distribution on a 4x30x40cm long target and with a 5m/s velocity at the peak power density region seems a suitable solution.

  2. Eurisol-DS Multi MW Target Preliminary Study of the Windlowless Transverse Film (WTF) Liquid Metal Proton-to Neutron Converter

    CERN Document Server

    Kadi, Y; Rocca, R; Samec, K

    2008-01-01

    This technical note summarises the design calculations performed within Task#2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) for the WTF (Windowless Transverse Film) mercur converter. A preliminary study was carried out in order to determine the heat deposition within the mercury and estimate the mercury velocity needed in the film. The geometry used is based on previous analysis simulated using the Monte Carlo code FLUKA. The results of these calculations show the baseline parameters, which will be used for the detailed design. Particularly, with a 1 GeV proton beam with a $\\sigma$ ~2 mm Gaussian distribution on a 4x30x40cm long target and with a 5m/s velocity at the peak power density region seems a suitable solution.

  3. Measurement and analysis of turbulent liquid metal flow in a high-power spallation neutron source-EURISOL

    CERN Document Server

    Samec, K; Blumenfeld, L; Kharoua, C; Dementjevs, S; Milenkovic, R Z

    2011-01-01

    The European Isotope Separation On-Line (EURISOL) design study completed in 2009 examined means of producing exotic nuclei for fundamental research. One of the critical components identified in the study was a high-power neutron spallation source in which a target material is impacted by a proton beam producing neutrons by a process known as spallation. Due to the high heat power deposition, liquid metal, in this case mercury, is the only viable choice as target material. Complex issues arise from the use of liquid metal. It is characterised by an unusually low Prandtl number and a higher thermal expansivity than conventional fluids. The turbulence structure in LM is thereby affected and still an object of intense research, hampered in part by measurement difficulties. The use of Computational Fluid Dynamics (CFD) allowed a satisfactory design for the neutron source to be found rapidly with little iteration. However it was feared that the development of the boundary layer and associated turbulence would not b...

  4. Radiation safety with high power operation of EURISOL

    CERN Document Server

    Ridikas, D

    2007-01-01

    The European Community has launched the design study for a next generation RIB facility able to increase by a few orders of magnitude, the exotic beam intensity and availability in Europe. Forty institutes and laboratories within Europe, North America and Asia are taking part in this consortium, named EURISOL DS project (European Isotope Separation On Line Design Study). In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW (MMW) target assembly, all driven by a high-power particle accelerator. In this MMW station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. The envisaged increase in RIB intensities at EURISOL means a drastic increase of the radioactive inventory and corresponding radioprotection related issues. Safety aspects of the future RIB production targets (aiming at a few ~1015 fissions/s) will become decisive in li...

  5. EURISOL High Power Targets

    CERN Document Server

    Kadi, Y; Lindroos, M; Ridikas, D; Stora, T; Tecchio, L; CERN. Geneva. BE Department

    2009-01-01

    Modern Nuclear Physics requires access to higher yields of rare isotopes, that relies on further development of the In-flight and Isotope Separation On-Line (ISOL) production methods. The limits of the In-Flight method will be applied via the next generation facilities FAIR in Germany, RIKEN in Japan and RIBF in the USA. The ISOL method will be explored at facilities including ISAC-TRIUMF in Canada, SPIRAL-2 in France, SPES in Italy, ISOLDE at CERN and eventually at the very ambitious multi-MW EURISOL facility. ISOL and in-flight facilities are complementary entities. While in-flight facilities excel in the production of very short lived radioisotopes independently of their chemical nature, ISOL facilities provide high Radioisotope Beam (RIB) intensities and excellent beam quality for 70 elements. Both production schemes are opening vast and rich fields of nuclear physics research. In this article we will introduce the targets planned for the EURISOL facility and highlight some of the technical and safety cha...

  6. Multi-MW target station: Beam Window Issues and Transverse Film Target

    CERN Document Server

    Herrera-Martinez, A

    The analysis of the EURISOL-DS Multi_MW target precise geometry has proved that large fission yields can be achieved with a 4 MW, providing a technically feasible design to evacuate the power deposited in the liquid mercury. Different designs for the mercury flow have been proposed, which maintain its temperature below the boiling point with moderate flow speeds (maximum 4 m/s).

  7. High Power CW Superconducting Linacs for EURISOL and XADS

    CERN Document Server

    Biarrotte, J L

    2004-01-01

    A multi-MW superconducting proton linac is proposed as the baseline solution for the EURISOL and the XADS driver accelerators. In the EURISOL project, which studies the design of the next-generation European ISOL facility, it is used to produce both neutron-deficient and neutron-rich exotic nuclei far from the valley of stability. In the PDS-XADS project, which aims to the demonstration of the feasibility of an ADS system for nuclear waste transmutation, it is used to produce the neutron flux required by the associated sub-critical reactor. In this paper, we report the main results and conclusions reached within these preliminary design studies. A special emphasis is given on the on-going and future R&D to be done to accomplish the demonstration of the full technology.

  8. EURISOL Multi-MW Target: Investigation of the hydrodynamics of liquid metal (Hg) jet

    CERN Document Server

    Freibergs, J

    In order to develop a windowless target it is necessary to investigate the hydrodynamics of liquid metal (Hg) jet. On the basis of the schematic layout of a high-power target module presented in Ref. [2], and the parameters of the windowless target (speed of the mercury jet up to 30 m/s, diameter of jet 10-20 mm and length of jet about 1 m), a first estimation of the parameters of the main components of a Hg-loop has been obtained by the Institute of Physics, University of Latvia. A preliminary engineering design of a functional Hg-loop to be constructed soon is also proposed. A simplified water stand has been developed with the ability of testing different Hg-nozzle configurations. The tests carried out showed that the kinetic energy of the jet is so high that the coaxial water flow at contact point is transformed into small bubbles (spray). The characteristics of the jet were shown to depend on the pressure of the stand.

  9. EURISOL Multimegawatt Target Unit - MAFF Configuration: Dosimetry and Activation Studies

    CERN Document Server

    Luis, R; Kadi, Y; Tecchio, L; Kharoua, C; Vaz, P; Ene, D; David, J C; Goncalves, I F; Rocca, R; Romanets, Y; Negoita, F

    2011-01-01

    The EURopean Isotope Separation On-Line Radioactive Ion Beam (EURISOL) project aims at building a facility to produce radioactive ion beams with intensities two to three orders of magnitude higher than those presently available. A 4-MW (1-GeV, 4-mA) proton beam hits a liquid mercury converter, generating, by spallation reactions, high neutron fluxes that induce fission in surrounding fissile targets. In this work, Monte Carlo calculations of dose rate and activation were carried out to identify the necessary shielding and access restrictions for each section of the facility, including maintenance, storage, and remote control spaces. These calculations allowed an optimization of the materials chosen for the assembly, based on the radioprotection issues, while taking into account the desired performance of the system. The results of the design studies indicate that the intended performance parameters (namely neutron fluxes, fission rates, and easy fission target manipulation) of the EURISOL multimegawatt target...

  10. Driver beam-led EURISOL target design constraints

    CERN Document Server

    Noah, Etam; Catherall, Richard; Kadi, Yacine; Kharoua, Cyril; Lettry, Jacques

    2008-01-01

    The EURISOL (European Isotope Separation Online) Design Study is addressing new high power target design challenges. A three-step method [1] was proposed to split the high power linac proton driver beam into one $H^{-}$ branch for the 4 $MW_{b}$ [2] mercury target that produces radioactive ion beams (RIB) via spallation neutroninduced fission in a secondary actinide target and three 100 $kW_{b}$ $H^{+}$ branches for the direct targets producing RIBs via fragmentation and spallation reactions. This scheme minimises transient thermo-mechanical stresses on targets and preserves the cw nature of the driver beam in the four branches. The heat load for oxides, carbides, refractory metal foils and liquid metals is driven by the incident proton driver beam while for actinides, exothermic fission reactions are an additional contribution. This paper discusses the constraints that are specific to each class of material and the target design strategies.

  11. In-target rare nuclei production rates with EURISOL single-stage configuration

    CERN Document Server

    Chabod, S P; Ene, D; Doré, D; Blideanu, V; David, J.-Ch; Ridikas, D

    2010-01-01

    We conducted calculations of exotic nuclei production rates for 320 configurations of EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility) direct spallation targets. The nuclei yields were evaluated using neutron generation-transport codes, completed with evolution calculations to account for nuclei decays and low energy neutron interactions. The yields were optimized for 11 selected elements (Li, Be, Ne, Mg, Ar, Ni, Ga, Kr, Sn, Hg, Fr) and 23 of their isotopes, as function of the target compositions and geometries as well as the incident proton beam energies. For the considered elements, we evaluated the yield distributions as functions of the charge and mass numbers using two different spallation models.

  12. Evaluation of charge breeding options for EURISOL

    CERN Document Server

    Delahaye, P; Lamy, T; Marie-Jeanne, M; Kester, O; Wenander, F

    2010-01-01

    A comprehensive study of charge breeding techniques for the most ambitious ISOL-facility project, EURISOL, is presented here. It is based on results obtained during the past years at CERN-ISOLDE and LPSC Grenoble with charge breeders of both ECR and EBIS types.

  13. Spallation reactions; Reactions de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Cugon, J.

    1996-12-31

    Spallation reactions dominate the interactions of hadrons with nuclei in the GeV range (from {approx} 0.1 to {approx} 10 GeV). They correspond to a sometimes important ejection of light particles leaving most of the time a residue of mass commensurate with the target mass. The main features of the experimental data are briefly reviewed. The most successful theoretical model, namely the intranuclear cascade + evaporation model, is presented. Its physical content, results and possible improvements are critically discussed. Alternative approaches are shortly reviewed. (author). 84 refs.

  14. EURISOL-DS Multi-MWatt Hg Target: Neutron flux and fission rate calculations for the MAFF configuration

    CERN Document Server

    Romanets, Y; Vaz, P; Herrera-Martinez, A; Kadi, Y; Kharoua, C; Lettry, J; Lindroos, M

    The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims at producing high intensity radioactive ion beams produced by neutron induced fission on a fissile target (235U) surrounding a liquid mercury converter. A proton beam of 1 GeV and 4 MW impinges on the Hg converter generating by spallation reactions high neutron fluxes. In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess the neutronics performance of the system which geometry, inspired from the MAFF concept, allows a versatile manipulation of the fission targets. The objective of the study was to optimize the geometry of the system and the materials used in the fuel and reflector elements of the system, in order to achieve the highest possible fission rate.

  15. Thermal behavior optimization in multi-MW wind power converter by reactive power circulation

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2013-01-01

    In the paper, an actively controlled reactive power influence to the thermal behavior of multi-MW wind power converter with Doubly-Fed Induction Generator (DFIG) is investigated. The allowable range of internal reactive power circulation is firstly mapped depending on the DC-link voltage as well ...... in the conditions of constant wind speed and during wind gust. It is concluded that the thermal performance will be improved by injecting proper reactive power circulation in the wind turbine system and thereby be able to reduce the thermal cycling and enhance the reliability.......In the paper, an actively controlled reactive power influence to the thermal behavior of multi-MW wind power converter with Doubly-Fed Induction Generator (DFIG) is investigated. The allowable range of internal reactive power circulation is firstly mapped depending on the DC-link voltage as well...... as the induction generator and power device capacity. Then the effects of reactive power circulation towards current characteristic and thermal distribution of the two-level back-to-back power converter is analyzed and compared. Finally the thermal-oriented reactive power is introduced to the system...

  16. Thermal analysis of multi-MW two-level wind power converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Mogens, Lau

    2012-01-01

    In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature...... in the power device in the whole range of wind speed are presented and analyzed. It is concluded that in both partial-scale and full-scale power converter the most thermal stressed power device in the generator-side converter will have higher mean junction temperature and larger junction temperature...... fluctuation compared to grid-side converter at the rated wind speed. Moreover, the thermal performance of the generator-side converter in the partial-scale power converter becomes crucial around the synchronous operating point and should be considered carefully....

  17. Thermal Behavior Optimization in Multi-MW Wind Power Converter by Reactive Power Circulation

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2014-01-01

    for the conditions of constant wind speed and during wind gust. It is concluded that the thermal performance will be improved by injecting proper reactive power circulation within the wind turbine system, thereby being able to reduce the thermal cycling and enhance the reliability of the power converter.......The influence of actively controlled reactive power on the thermal behavior of multi-MW wind power converter with a Doubly-Fed Induction Generator (DFIG) is investigated. First, the allowable range of internal reactive power circulation is mapped depending on the DC-link voltage as well...... as the induction generator and power device capacity. Then, the effects of reactive power circulation on current characteristic and thermal distribution of the two-level back-to-back power converter are analyzed and compared. Finally, the thermal-oriented reactive power control method is introduced to the system...

  18. Beam dynamics studies on the EURISOL driver accelerator

    CERN Document Server

    Facco, A; Paparella, R; Zenere, D; Biarrotte, J. L; Bousson, S; Ponton, A; Berkovits, D; Rodnizki, J; Duperrier, R; Uriot, D; Zvyagintsev, V

    A 1 GeV, 5 mA cw superconducting proton/H- linac, with the capability of supplying cw primary beam to up to four targets simultaneously by means of a new beam splitting scheme, is under study in the framework of the EURISOL DS project which aims to produce an engineering-oriented design of a next generation European Radioactive beam facility. The EURISOL driver accelerator would be able to accelerate also a 100 μA, 3He beam up to 2.2 GeV, and a 5 mA deuteron beam up to 264 MeV. The linac characteristics and the status of the beam dynamics studies will be presented.

  19. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  20. Decommissioning and safety issues of liquid-mercury waste generated from high power spallation sources with particle accelerators

    CERN Document Server

    Chiriki, S; Odoj, R; Moormann, R; Hinssen, H. K; Bukaemskiy, A

    2009-01-01

    Large spallation sources are intended to be constructed in Europe (EURISOL nuclear physics facility and ESS-European Spallation Source). These facilities accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Because solids are the only appropriate (immobile) form for this radiotoxic and toxic type of waste solidification is required for irradiated mercury. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in assumed accidents with water ingress in a repository compared to amalgams. For preparation of mercury sulfide a wet process is more suitable than a dry one. It is easier to perform under hot cell conditions and allows complete Hg-conversion. Embedding HgS in a cementitious matrix increases its stability.

  1. EURISOL 100 kW Target Stations Operation and Implications for its Proton Driver Beam

    CERN Document Server

    Noah, Etam; Lettry, Jacques; Lindroos, Mats; Stora, Thierry

    EURISOL, the next European radioactive ion beam (RIB) facility calls for the development of target and ion source assemblies to dissipate deposited heat and to extract and ionize isotopes of interest efficiently. The EURISOL 100 kW direct targets should be designed for a goal lifetime of up to three weeks. Target operation from the moment it is installed on a target station until its exhaustion involves several phases with specific proton beam intensity requirements. This paper discusses operation of the 100 kW targets within the ongoing EURISOL Design Study, with an emphasis on the requirements for the proton driver beam.

  2. Disposal strategy of proton irradiated mercury from high power spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Chiriki, Suresh

    2010-07-01

    Large spallation sources are intended to be constructed in Europe (EURISOL: nuclear physics research facility and ESS: European Spallation Source). These facilities would accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Liquid waste cannot be tolerated in European repositories. As part of this work on safety/decommissioning of high-power spallation sources, our investigations were focused mainly to study experimentally and theoretically the solidification of liquid mercury waste (selection of an adequate solid mercury form and of an immobilization matrix, chemical engineering process studies on solidification/stabilization and on encapsulating in a matrix). Based on experimental results and supported by literature Hg-chalcogens (HgS, HgSe) will be more stable in repositories than amalgams. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in possible accidents with water ingress in a repository. Additionally immobilization of mercury in a cement matrix and polysiloxane matrix were tested. HgS formation from liquid target mercury by a wet process is identified as a suitable formation procedure. These investigations reveal that an almost 99.9% elementary Hg conversion can be achieved and that wet process can be reasonably handled under hot cell conditions. (orig.)

  3. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  4. EURISOL-DS METEX: CERN SAFETY COMMISSION RECOMMENDATIONS

    CERN Document Server

    J.Gulley (CERN: SC/GS)

    Following a request from M. Lindroos (CERN, AB Department) a visit to the EURISOL mercury target experiment atIPUL (Institute of Physics of University of Latvia) outside Riga in Latvia was organized for 17th September 2008 with J.Gulley (CERN Safety Commission, chemical safety expert) accompanied by K. Samec (CERN, AB Department) and K.Thomsen (Paul Scherrer Institute, PSI). The aim of the visit was to provide general recommendations to IPUL on healthand safety issues related to the use of mercury, with the objective being to reduce exposure to acceptable levels, sofar as is reasonably practicable. An in‐depth process safety study using a systematic risk assessment/hazardidentification technique was outside the scope of the study.

  5. Multi-MW 22.8 GHz Harmonic Multiplier - RF Power Source for High-Gradient Accelerator R&D

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-07-26

    Electrodynamic and particle simulation studies have been carried out to optimize design of a two-cavity harmonic frequency multiplier, in which a linear electron beam is energized by rotating fields near cyclotron resonance in a TE111 cavity in a uniform magnetic field, and in which the beam then radiates coherently at the nth harmonic into a TEn11 output cavity. Examples are worked out in detail for 7th and 2nd harmonic converters, showing RF-to-RF conversion efficiencies of 45% and 88%, respectively at 19.992 GHz (K-band) and 5.712 GHz (C-band), for a drive frequency of 2.856 GHz. Details are shown of RF infrastructure (S-band klystron, modulator) and harmonic converter components (drive cavity, output cavities, electron beam source and modulator, beam collector) for the two harmonic converters to be tested. Details are also given for the two-frequency (S- and C-band) coherent multi-MW test stand for RF breakdown and RF gun studies.

  6. Detailed thermal stress analysis of EURISOL Fission target-First concept

    CERN Document Server

    Emeric Brun

    A first concept for the fission boxes of the planned EURISOL facility is analysed from a thermal and structural point of view. The fission boxes in this facility consists in stacks of uranium carbide sheets surrounded by tantalum blanket which are all cooled through radiative heat exchange with a convectively cooled outer stainless steel container.

  7. Materials for spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, W.F.; Daemen, L.L. [comps.

    1996-03-01

    The Workshop on Materials for Spallation Neutron Sources at the Los Alamos Neutron Science Center, February 6 to 10, 1995, gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss areas in which work is needed, successful designs and use of materials, and opportunities for further studies. During the first day of the workshop, speakers presented overviews of current spallation neutron sources. During the next 3 days, seven panels allowed speakers to present information on a variety of topics ranging from experimental and theoretical considerations on radiation damage to materials safety issues. An attempt was made to identify specific problems that require attention within the context of spallation neutron sources. This proceedings is a collection of summaries from the overview sessions and the panel presentations.

  8. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  9. FISSION TARGET DESIGN AND INTEGRATION OF NEUTRON CONVERTER FOR EURISOL-DS PROJECT

    CERN Document Server

    J. Bermudez, O. Alyakrinskiy, M. Barbui, F. Negoita, L. Serbina, L.B. Tecchio, E. Udup

    A study of a new fission target for EURISOL-DS is presented with a detailed description of the target. Calculations of several configurations were done using Monte Carlo code FLUKA aimed to obtaining 1015 fissions/s on single target. In Eurisol, neutrons inducing the fission reactions are produced by a proton beam 1GeV-4mA interacting with a mercury converter. The target configuration was customized to gain fission yield from the large amount of low energy neutrons produced by the Hg converter. To this purpose, the fissile material is composed by discs of 238-Uranium carbide enriched with 15 g of 235-U. Studies of several geometries were done in order to define the shape and composition of uranium target, taking into account the mechanical and space constraints

  10. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL.

    Science.gov (United States)

    Delahaye, P; Galata, A; Angot, J; Ban, G; Celona, L; Choinski, J; Gmaj, P; Jakubowski, A; Jardin, P; Kalvas, T; Koivisto, H; Kolhinen, V; Lamy, T; Lunney, D; Maunoury, L; Porcellato, A M; Prete, G F; Steckiewicz, O; Sortais, P; Thuillier, T; Tarvainen, O; Traykov, E; Varenne, F; Wenander, F

    2012-02-01

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R&D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R&D.

  11. Spallation radiation effects in materials

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L.K.; Farrell, K.; Wechsler, M.S. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    Spallation refers to the process whereby particles (chiefly neutrons) are ejected from nuclei upon bombardment by high-energy protons. Spallation neutron sources (SNS`s) use these neutrons for neutron scattering and diffraction research, and SNS`s are proposed as the basis for systems for tritium production and transmutation of nuclear waste. Materials in SNS`s are exposed to the incident proton beam (energies typically about 1000 MeV) and to the spallation neutrons (spectrum of energies extending up to about 1000 MeV). By contrast the fission neutrons in nuclear reactors have an average energy of only about 2 MeV, and the neutrons in fusion reactors would have energies below about 14 MeV. Furthermore, the protons and neutrons in SNS`s for scattering and diffraction research are pulsed at frequencies of about 10 to 60 Hz, from which significant changes in the kinetics of point and extended defects may be expected. In addition, much higher transmutation rates occur in SNS-irradiated materials, On the whole, then, significant differences in microstructural development and macroscopic properties may result upon exposure in SNS systems, as compared with fission and fusion irradiations. In a more general sense, subjecting materials to new radiation environments has almost routinely led to new discoveries. To the extent that data are avaiable, however, the spallation environment appears to increase the degree of damage without introducing totally new effects. The first part of this presentation is an overview of radiation effects in materials, outlining essential concepts and property changes and their physical bases. This background is followed by a description of SNS irradiation environments and the effects on materials of exposure to these environments. A special discussion is given of the selection of target (e.g., liquid mercury), container (e.g., austenitic stainless steel or ferritic/martensitic steel), and structural materials in SNS systems.

  12. Status of ionization by radial electron neat adaptation ion source research and development for SPIRAL2 and EURISOL-DS

    CERN Document Server

    Lau, C; Cheikh-Mhamed, M; 10.1063/1.2834316

    2008-01-01

    To take up the most challenging issue of supplying plasma ion source able to produce radioactive beams under extreme SPIRAL-2 and EURISOL irradiation conditions, an R&D program has been initiated to work out IRENA (Ionization by Radial Electrons Neat Adaptation) ion source. Using EBGP (Electron Beam Generated Plasma) concept, the ion source is specifically adapted for thick target and intense irradiation. A validation prototype has been designed, constructed and tested. Results obtained will be presented and commented and IRENA potential discussed, particularly in the framework of the multi-megawatts EURISOL.

  13. BEAM DYNAMICS SIMULATIONS OF SARAF ACCELERATOR INCLUDING ERROR PROPAGATION AND IMPLICATIONS FOR THE EURISOL DRIVER

    CERN Document Server

    J. Rodnizki, D. Berkovits, K. Lavie, I. Mardor, A. Shor and Y. Yanay (Soreq NRC, Yavne), K. Dunkel, C. Piel (ACCEL, Bergisch Gladbach), A. Facco (INFN/LNL, Legnaro, Padova), V. Zviagintsev (TRIUMF, Vancouver)

    AbstractBeam dynamics simulations of SARAF (Soreq Applied Research Accelerator Facility) superconducting RF linear accelerator have been performed in order to establish the accelerator design. The multi-particle simulation includes 3D realistic electromagnetic field distributions, space charge forces and fabrication, misalignment and operation errors. A 4 mA proton or deuteron beam is accelerated up to 40 MeV with a moderated rms emittance growth and a high real-estate gradient of 2 MeV/m. An envelope of 40,000 macro-particles is kept under a radius of 1.1 cm, well below the beam pipe bore radius. The accelerator design of SARAF is proposed as an injector for the EURISOL driver accelerator. The Accel 176 MHZ β0=0.09 and β0=0.15 HWR lattice was extended to 90 MeV based on the LNL 352 MHZ β0=0.31 HWR. The matching between both lattices ensures smooth transition and the possibility to extend the accelerator to the required EURISOL ion energy.

  14. Overview of Spallation Neutron Source Physics

    Science.gov (United States)

    Russell, G. J.; Pitcher, E. J.; Muhrer, G.; Mezei, F.; Ferguson, P. D.

    In December 1971 , the world's most advanced steady-state research reactor, the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble, France, reached full power operation. The reactor has recently undergone an extensive renovation, is equipped with hot and cold sources, and has a complement of word class instruments. As such, the ILL reactor is the worldwide center for neutron research at a reactor installation. With present technology, the constraints of heat removal and fuel cost place a limit on the available flux of a steadystate research reactor at levels not much higher than that of the ILL reactor. There has been extensive progress worldwide to realize new high-flux neutron facilities using the technology of spallation. When coupled with the spallation process in appropriate target materials, highpower accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation technology has recently become increasingly focussed on pulsed spallation neutron sources. Pulsed spallation neutron sources avoid the limitations of high time-average heat removal by producing neutrons for only a small fraction of the time. Also, the amount of energy deposited per useful neutron produced from spallation is less than that from fission. During the pulse, the available neutron flux from a pulsed spallation source can be much more intense than that obtainable in a steady-state reactor. Furthermore, pulsed neutron sources have certain unique features, which open up qualitatively new areas of science, which are not accessible to steady-state reactors. We discuss here the spallation process and spallation neutron sources. We compare the qualitative differences between fission and spallation and provide absolute neutron intensities for cold neutron production from a liquid H2, moderator at the Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) short-pulse pulsed spallation

  15. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  16. Development of the EURISOL Multi-Megawatt Target Station (2005-2009): Executive Summary

    CERN Document Server

    Karel Samec et al. (CERN, IPUL, ITN and PSI)

    Advances in nano-technology, bio-technology, nuclear medicine and the fundamental sciences require a facility to continue improving current capabilities in Europe beyond the year 2010. European competitiveness could benefit greatly from a unique research facility, flexible enough to satisfy users from many different fields of science and technology. The facility would be a valuable asset enabling economies of scale and giving Europe access to cutting-edge technology at the heart of future technological advances of major economic importance. Specialised facilities already operating at full capacity such as SINQ in Switzerland, ILL in France, have demonstrated the benefits of bringing together users from different scientific backgrounds and different countries. Such a research policy may be reinforced by the improved performance and greater reach of the EURISOL project which is aimed at a larger research community. Beneficiaries include the medical sciences such as oncology, medical imagery or studies of protei...

  17. EURISOL Desktop Assistant Toolkit (EDAT): A modeling, simulation and visualization support to the preliminary radiological assessment of RIB projects

    Science.gov (United States)

    Vamanu, D.; Vamanu, B.; Acasandrei, V.; Maceika, E.; Plukis, A.

    2010-04-01

    The paper describes an approach taken within the EURISOL-DS project (European Isotope Separation Online Radioactive Ion Beam Facility) to a number of safety and radioprotection issues raised by the advent of radioactive ion beam facilities in the cutting edge area of particle accelerators. The ensuing solution emerged from a collaborative effort of the investigating team-in-charge, affiliated with the Horia Hulubei National Institute of Physics and Nuclear Engineering in Bucharest, with expert colleagues at the Physics Institute in Vilnius, and at CERN, within the participation in the EURISOL-DS project, Sub-Task B: Radiation, Activation, Shielding and Doses of the Safety and Radioprotection, Task 5. The work was primarily geared towards the identification of knowledge and data in line with validated, accepted and nationally/internationally recommended methods and models of radiological assessment applied within the nuclear power fuel cycle, deemed to be suitable for assessing health and environmental impact of accelerator operations as well. As a result, a computer software platform code-named “EURISOL Desktop Assistant Toolkit” was developed. The software is, inter alia, capable to assess radiation doses from pure or isotopically mixed open or shielded point sources; emergency response-relevant doses; critical group doses via complex pathways, including the air, the water, and the food chain and derived release limits for the normal, routine operations of nuclear facilities. Dedicated data libraries and GIS (Geographic Information System) facilities assist the input/output operations.

  18. Heavy density liquid metal spallation target studies for Indian ADS ...

    Indian Academy of Sciences (India)

    energy heavy particles (incoming proton beam, high energy spallation neutrons and spallation products), to the extent of DPA~100 or more per year). The spallation module design should be based on optimization between neutron yield, material properties and thermal-hydraulic performance while meeting the required ...

  19. Quantum molecular dynamics approach to estimate spallation yield ...

    Indian Academy of Sciences (India)

    Keywords. Spallation reaction; neutron emission; spallation products; quantum molecular dynamics. PACS Nos 25.40.Sc; 25.40.-h; 28.20.-v. 1. Introduction. In recent years, spallation neutron sources are used extensively for material science stud- ies. Additionally, they provide an important link between the accelerator and ...

  20. New science at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Finney, J.L. [University Coll., London (United Kingdom). Dept. of Physics and Astronomy

    1996-05-01

    The European Spallation Source is a trans-European project aimed at the ultimate construction of a next-generation pulsed spallation neutron source that will deliver 30 times the beam power of ISIS. The reference design for the proposed source has been set, and work is in progress to develop an updated scientific case for the construction of the source early in the next century. Together with improvements in instrumentation, effective flux gains of over two orders of magnitude are likely in some areas, opening up major new opportunities for the exploitation of neutron studies in fundamental, strategic, and applied science. (author)

  1. SUPERCONDUCTING LINAC FOR THE SPALLATION NEUTRON SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    J. STOVALL; S. NATH; ET AL

    2000-10-01

    The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance.

  2. Studies on the benefit of extended capabilities of the driver accelerator for EURISOL

    CERN Document Server

    Schmidt, K.-H; Lukic, S; Ricciardi, M. V; Veselsky, M

    Possibilities are studied for the optimization of EURISOL rare nuclide yields in specific regions of the nuclear chart by building the driver accelerator in a way that enables accelerating several additional beam species, to specific energies, besides the baseline 1 GeV proton beam. Nuclide production rates with these driver beams are compared to the production rates expected with the 1 GeV proton beam in the direct-production and the high-power-converter scenarios. Arguments are presented to show that several additional driver-beam scenarios could provide substantial benefit for the production of nuclides in specific regions of the nuclear chart. The quantitative values in this report are preliminary in the sense that they depend on assumptions on the values of some key parameters which are subject to technical development, e.g. maximum beam intensities or limits on the target heat load. The different scenarios are compared from the aspect of nuclide yields. The arguments presented here, when complemented by...

  3. Design of a compact high-power neutron source—The EURISOL converter target

    Science.gov (United States)

    Samec, K.; Milenković, R. Ž.; Dementjevs, S.; Ashrafi-Nik, M.; Kalt, A.

    2009-07-01

    The EURISOL project, a multi-lateral initiative supported by the EU, aims to develop a facility to achieve high yields of isotopes in radioactive beams and extend the variety of these isotopes towards more exotic types. The neutron source at the heart of the projected facility is designed to generate isotopes by fissioning uranium carbide (UC) targets arranged around a 4 MW neutron source. For reasons of efficiency, it is essential that the neutron source be as compact as possible, to avoid losing neutrons by absorption whilst maximising the escaping neutron flux, thus increasing the number of fissions in the UC targets. The resulting configuration presents a challenge in terms of absorbing heat deposition rates of up to 8 kW/cm3 in the neutron source; it has led to the selection of liquid metal for the target material. The current paper presents the design of a compact high-power liquid-metal neutron source comprising a specially optimised beam window concept. The design is based on two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics (CFD) numerical simulations for thermal hydraulics and hydraulic aspects, as well as finite-element method (FEM) for assessing thermo-mechanical stability. The resulting optimised design was validated by a dedicated hydraulic test under realistic flow conditions. A full-scale mock-up was built at the Paul Scherrer Institute (PSI) and was tested at the Institute of Physics of the University of Latvia (IPUL).

  4. Design of a compact high-power neutron source-The EURISOL converter target

    Energy Technology Data Exchange (ETDEWEB)

    Samec, K. [Paul Scherrer Institut, Villigen, 5232 Villigen (Switzerland)], E-mail: karel.samec@psi.ch; Milenkovic, R.Z.; Dementjevs, S.; Ashrafi-Nik, M.; Kalt, A. [Paul Scherrer Institut, Villigen, 5232 Villigen (Switzerland)

    2009-07-21

    The EURISOL project, a multi-lateral initiative supported by the EU, aims to develop a facility to achieve high yields of isotopes in radioactive beams and extend the variety of these isotopes towards more exotic types. The neutron source at the heart of the projected facility is designed to generate isotopes by fissioning uranium carbide (UC) targets arranged around a 4 MW neutron source. For reasons of efficiency, it is essential that the neutron source be as compact as possible, to avoid losing neutrons by absorption whilst maximising the escaping neutron flux, thus increasing the number of fissions in the UC targets. The resulting configuration presents a challenge in terms of absorbing heat deposition rates of up to 8 kW/cm{sup 3} in the neutron source; it has led to the selection of liquid metal for the target material. The current paper presents the design of a compact high-power liquid-metal neutron source comprising a specially optimised beam window concept. The design is based on two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics (CFD) numerical simulations for thermal hydraulics and hydraulic aspects, as well as finite-element method (FEM) for assessing thermo-mechanical stability. The resulting optimised design was validated by a dedicated hydraulic test under realistic flow conditions. A full-scale mock-up was built at the Paul Scherrer Institute (PSI) and was tested at the Institute of Physics of the University of Latvia (IPUL)

  5. The multi megawatt target station integration of the MAFF/PIAFE fission target design

    CERN Document Server

    Kharoua, C; Herrera-Martinez, A; Lettry, J; Ashrafi-Nik, M; Groeschel, F; Samec, K; Zanini, L; Alyakriskiy, O; Barbui, M; Tecchio, Luigi; Freibergs, J; Gross, M; Nebel, F; Thirolf, P; Negoita, F; Serbina, L; Romanets, Y; Vaz, P; Lindroos, M; Kadi, Y

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010.In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW liquid metal proton-to-neutron converter, all driven by a high-power particle accelerator. In the aforementioned multi-MW target assembly, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source.This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the liquid converter and fission target (MAFF/PIAFE design like) and the overall performance of the facility, which will sust...

  6. The Eurisol report. A feasibility study for a European isotope-separation-on-line radioactive ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-01

    The Eurisol project aims at a preliminary design study of the next-generation European isotope separation on-line (ISOL) radioactive ion beam (RIB) facility. In this document, the scientific case of high-intensity RIBs using the ISOL method is first summarised, more details being given in appendix A. It includes: 1) the study of atomic nuclei under extreme and so-far unexplored conditions of composition (i.e. as a function of the numbers of protons and neutrons, or the so-called isospin), rotational angular velocity (or spin), density and temperature, 2) the investigation of the nucleosynthesis of heavy elements in the Universe, an important part of nuclear astrophysics, 3) a study of the properties of the fundamental interactions which govern the properties of the universe, and in particular of the violation of some of their symmetries, 4) potential applications of RIBs in solid-state physics and in nuclear medicine, for example, where completely new fields could be opened up by the availability of high-intensity RIBs produced by the ISOL method. The proposed Eurisol facility is then presented, with particular emphasis on its main components: the driver accelerator, the target/ion-source assembly, the mass-selection system and post-accelerator, and the required scientific instrumentation. Special details of these components are given in appendices B to E, respectively. The estimates of the costs of the Eurisol, construction and running costs, have been performed in as much details as is presently possible. The total capital cost (installation manpower cost included) of the project is estimated to be of the order of 630 million Euros within 20%. In general, experience has shown that operational costs per annum for large accelerator facilities are about 10% of the capital cost. (A.C.)

  7. 'EURISOL Desktop Assistant Toolkit' (EDAT): a modeling, simulation and visualization support to the preliminary radiological assessment of RIB projects

    CERN Document Server

    Vamanu, D; Acasandrei, V; Plukis, A; Maceika, E

    The paper describes an approach taken within EURISOL-DS project (European Isotope Separation On-Line Radioactive Ion Beam Facility) to a number of safety and radioprotection issues raised by the advent of radioactive ion beam facilities in the cutting edge area of particle accelerators. The ensuing solution emerged from a collaborative effort of the investigating team-in-charge, affiliated with ‘Horia Hulubei’ National Institute of Physics and Nuclear Engineering in Bucharest, with expert colleagues at the Physics Institute in Vilnius, and at CERN.

  8. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  9. Management of Tritium in European Spallation Source

    DEFF Research Database (Denmark)

    Ene, Daniela; Andersson, Kasper Grann; Jensen, Mikael

    2015-01-01

    The European Spallation Source (ESS) will produce tritium via spallation and activation processes during operational activities. Within the location of ESS facility in Lund, Sweden site it is mandatory to demonstrate that the management strategy of the produced tritium ensures the compliance...... with the country regulation criteria. The aim of this paper is to give an overview of the different aspects of the tritium management in ESS facility. Besides the design parameter study of the helium coolant purification system of the target the consequences of the tritium releasing into the environment were also...... analyzed. Calculations shown that the annual release of tritium during the normal operations represents a small fraction from the estimated total dose. However, more refined calculations of migration of activated-groundwater should be performed for higher hydraulic conductivities, with the availability...

  10. Outline of spallation neutron source engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noboru [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-01-01

    Slow neutrons such as cold and thermal neutrons are unique probes which can determine structures and dynamics of condensed matter in atomic scale. The neutron scattering technique is indispensable not only for basic sciences such as condensed matter research and life science, but also for basic industrial technology in 21 century. It is believed that to survive in the science-technology competition in 21 century would be almost impossible without neutron scattering. However, the intensity of neutrons presently available is much lower than synchrotron radiation sources, etc. Thus, R and D of intense neutron sources become most important. The High-Intensity Proton Accelerator Project is now being promoted jointly by Japan Atomic Energy Research Institute and High Energy Accelerator Research Organization, but there has so far been no good text which covers all the aspects of pulsed spallation neutron sources. The present review was prepare aiming at giving a better understanding on pulsed spallation neutron sources not only to neutron source researchers but also more widely to neutron scattering researchers and accelerator scientists in this field. The contents involve, starting from what is neutron scattering and what neutrons are necessary for neutron scattering, what is the spallation reaction, how to produce neutrons required for neutron scattering more efficiently, target-moderator-reflector neutronics and its engineering, shielding, target station, material issues, etc. The author have engaged in R and D of pulsed apallation neutron sources and neutron scattering research using them over 30 years. The present review is prepared based on the author's experiences with useful information obtained through ICANS collaboration and recent data from the JSNS (Japanese Spallation Neutron Source) design team. (author)

  11. INJECTION CHOICE FOR SPALLATION NEUTRON SOURCE RING.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; BRODOWSKI,J.; FEDOTOV,A.; GARDNER,C.; LEE,Y.Y.; RAPARIA,D.; DANILOV,V.; HOLMES,J.; PRIOR,C.; REES,G.; MACHIDA,S.

    2001-06-18

    Injection is key in the low-loss design of high-intensity proton facilities like the Spallation Neutron Source (SNS). During the design of both the accumulator and the rapid-cycling-synchrotron version of the SNS, extensive comparison has been made to select injection scenarios that satisfy SNS's low-loss design criteria. This paper presents issues and considerations pertaining to the final choice of the SNS injection systems.

  12. Gas Production in the MEGAPIE Spallation Target

    OpenAIRE

    Thiollière, Nicolas; Zanini, Luca; David, Jean-Christophe; Eikenberg, Jost; Guertin, Arnaud; Konobeyev, Alexander Yu.; Lemaire, Sébastien; Panebianco, Stefano

    2011-01-01

    International audience; The MEGAwatt PIlot Experiment (MEGAPIE) project was started in 2000 to design, build, and operate a liquid lead-bismuth eutectic (LBE) spallation neutron target at the power level of 1 MW. The target was irradiated for 4 months in 2006 at the Paul Scherrer Institute in Switzerland. Gas samples wereextracted in various phases of operation and analyzed by g spectroscopy, leading to the determination of the main radioactive isotopes released from the LBE. Comparison with ...

  13. Decommissioning Plan for European Spallation Source

    Science.gov (United States)

    Ene, Daniela

    2017-09-01

    This paper is a survey of the European Spallation Source initial decommissioning plan developed in compliance with Swedish Regulatory Authority requirements. The report outlines the decommissioning strategy selected and the baseline plan for decommissioning. Types and quantities of radioactive waste estimated to be generated at the final shut-down of the facility are further provided. The paper ends up with the analysis of the key elements of the decommissioning plan and the recommendations to the ESS management team..

  14. Decommissioning Plan for European Spallation Source

    Directory of Open Access Journals (Sweden)

    Ene Daniela

    2017-01-01

    Full Text Available This paper is a survey of the European Spallation Source initial decommissioning plan developed in compliance with Swedish Regulatory Authority requirements. The report outlines the decommissioning strategy selected and the baseline plan for decommissioning. Types and quantities of radioactive waste estimated to be generated at the final shut-down of the facility are further provided. The paper ends up with the analysis of the key elements of the decommissioning plan and the recommendations to the ESS management team..

  15. A comparison between short pulse spallation source and long pulse spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Kazuya; Watanabe, Noboru; Suzuki, Jun-ichi; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Osakabe, Toyotaka; Teshigawara, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Mezei, F.

    1997-11-01

    The performance for a 5 MW short pulse spallation source (SPSS) and a 4.5 MW long pulse spallation source (LPSS) in a JAERI program which is based on the availability of a 1.5 GeV superconducting linac with a 30 mA peak current for both proton and H{sup -} beams is discussed. We have examined the superiority of SPSS to LPSS. While a LPSS facility is a second option, we propose an SPSS facility as a first option. (author)

  16. Fundamental physics possibilities at the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Soldner, Torsten

    2016-01-01

    The construction of the European Spallation Source ESS is ongoing in Lund, Sweden. This new high power spallation source with its long-pulse structure opens up new possibilities for fundamental physics experiments. This paper focusses on two proposals for fundamental physics at the ESS: The ANNI...

  17. Multi-criteria comparative evaluation of spallation reaction models

    Science.gov (United States)

    Andrianov, Andrey; Andrianova, Olga; Konobeev, Alexandr; Korovin, Yury; Kuptsov, Ilya

    2017-09-01

    This paper presents an approach to a comparative evaluation of the predictive ability of spallation reaction models based on widely used, well-proven multiple-criteria decision analysis methods (MAVT/MAUT, AHP, TOPSIS, PROMETHEE) and the results of such a comparison for 17 spallation reaction models in the presence of the interaction of high-energy protons with natPb.

  18. The national spallation neutron source target station: A general overview

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A. [and others

    1997-06-01

    The technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the National Spallation Neutron Source (NSNS), are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis and the planned hardware research and development program are also described.

  19. Surface modification to prevent oxide scale spallation

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A

    2013-07-16

    A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.

  20. Neutron moderators for the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Zanini, L.; Batkov, K.

    to have access to cold and thermal neutrons with highest possible source brightness. Different design and configuration options were evaluated. The final configuration accepted for construction foresees two moderators with identical para-hydrogen (so-called "butterfly") shape, but different heights......The design of the neutron moderators for the European Spallation Source, intended to be installed at the start of operations of the facility in 2019 has now been finalized and the moderators are being fabricated. Among the driving principles in the design have been flexibility for instruments...

  1. Spallation studies on shock loaded uranium

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, D.L.; Hixson, R.; Gustavsen, R.L.; Vorthman, J.E.; Kelly, A.; Zurek, A.K.; Thissel, W.R. [Los Alamos National Lab., NM (United States)

    1997-12-31

    Uranium samples at two different purity levels were used for spall strength measurements at three different stress levels. A 50 mm single-stage gas-gun was used to produce planar impact conditions using Z-cut quartz impactors. Samples of depleted uranium were taken from very high purity material and from material that had 300 ppm of carbon added. A pair of shots was done for each impact strength, one member of the pair with VISAR diagnostics and the second with soft recovery for metallographical examination. A series of increasing final stress states were chosen to effectively freeze the microstructural damage at three places in the development to full spall separation. This allowed determination of the dependence of spall mechanisms on stress level and sample purity. This report will discuss both the results of the metallurgical examination of soft recovered samples and the modeling of the free surface VISAR data. The micrographs taken from the recovered samples show brittle cracking as the spallation failure mechanism. Deformation induced twins are plentiful and obviously play a role in the spallation process. The twins are produced in the initial shock loading and, so, are present already before the fracture process begins. The 1 d characteristics code CHARADE has been used to model the free surface VISAR data.

  2. Estimation of thermochemical behavior of spallation products in mercury target

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H{sub 2}O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH{sup +}, BeO{sup +} and Be{sup 2+} under the condition of less than 10{sup -8} of the Be mole fraction in the cooling water. (author)

  3. Determination of spallation neutron flux through spectral adjustment techniques

    Science.gov (United States)

    Mosby, M. A.; Engle, J. W.; Jackman, K. R.; Nortier, F. M.; Birnbaum, E. R.

    2016-08-01

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed. However, the energy distribution and magnitude of the flux is not well understood. A modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  4. Determination of spallation neutron flux through spectral adjustment techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, M.A., E-mail: mosbym@lanl.gov; Engle, J.W.; Jackman, K.R.; Nortier, F.M.; Birnbaum, E.R.

    2016-08-15

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed. However, the energy distribution and magnitude of the flux is not well understood. A modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  5. Radiochemical aspects of liquid mercury spallation targets

    CERN Document Server

    Neuhausen, Joerg; Eichler, Bernd; Eller, Martin; Horn, Susanne; Schumann, Dorothea; Stora, Thierry

    2012-01-01

    Liquid metal spallation targets using mercury as target material are used in state-of-the-art high power pulsed neutron sources that have been constructed in the USA and Japan within the last decade. Similar target concepts were also proposed for next generation ISOL, beta-beam and neutrino facilities. A large amount of radioactivity will be induced in the liquid metal during operation caused by the interaction of the target material with the intense proton beam. This radioactivity - carried by a wide range of radioisotopes of all the elements of the periodic table from hydrogen up to thallium - must be considered for the assessment of safe operation and maintenance procedures as well as for a final disposal of the used target material and components. This report presents an overview on chemical investigations performed in our laboratory that deal with the behavior of radionuclides in proton irradiated mercury samples. The solubility of elements in mercury was calculated using thermodynamical data obtained by...

  6. Measurements of neutron spallation cross section. 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.

    1997-03-01

    Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)

  7. Spallation neutron source target station issues

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A. [and others

    1996-10-01

    In many areas of physics, materials and nuclear engineering, it is extremely valuable to have a very intense source of neutrons so that the structure and function of materials can be studied. One facility proposed for this purpose is the National Spallation Neutron Source (NSNS). This facility will consist of two parts: (1) a high-energy ({approximately}1 GeV) and high powered ({approximately} 1 MW) proton accelerator, and (2) a target station which converts the protons to low-energy ({le} 2 eV) neutrons and delivers them to the neutron scattering instruments. This paper deals with the second part, i.e., the design and development of the NSNS target station and the scientifically challenging issues. Many scientific and technical disciplines are required to produce a successful target station. These include engineering, remote handling, neutronics, materials, thermal hydraulics, and instrumentation. Some of these areas will be discussed.

  8. Self-healing effect of spallation damageability

    Science.gov (United States)

    Buravova, S. N.

    2017-10-01

    The self-healing effect has been found in a study of the microstructure of the bands of localized deformation. It has been shown that interstitial elements (O, C) and the particles of a doping phase migrate to the zone of growing spallation damageability from the matrix material. When considering the wave pattern of the process of localization, it has been ascertained that the formation of bands of localized deformation is accompanied by the process of reverberation which is characterized by the formation of periodically repeated compression-extension cycles. A weak attenuation of the reverberation has led to an increase in the duration of the deformation pulse of the sample by two to three orders of magnitude compared with the time of the initial compression pulse.

  9. Strain rate effects for spallation of concrete

    Directory of Open Access Journals (Sweden)

    Häussler-Combe Ulrich

    2015-01-01

    Full Text Available Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property – which can be covered by rate dependent stress strain relations – or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  10. The European scene regarding spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Institut, Villigen (Austria)

    1996-06-01

    In Europe, a short pulse spallation neutron source, ISIS, has been operating for over 10 years, working its way up to a beam power level of 200 kW. A continuous source, SINQ, designed for a beam power of up to 1 MW, is scheduled to start operating at the end of 1996, and a detailed feasibility study has been completed for a 410 kW short pulse source, AUSTRON. Each of these sources seems to have settled for a target concept which is at or near the limits of its feasibility: The ISIS depleted uranium plate targets, heavy water cooled and Zircaloy clad, have so far not shown satisfactory service time and operation is likely to continue with a Ta-plate target, which, in the past has been used successfully for the equivalent of one full-beam-year before it was taken out of service due to degrading thermal properties. SINQ will initially use a rod target, made of Zircaloy only, but plans exist to move on to clad lead rods as quickly as possible. Apart from the not yet explored effect of hydrogen and helium production, there are also concerns about the generation of 7-Be in the cooling water from the spallation of oxygen, which might result in undesirably high radioactivity in the cooling plant room. A Liquid metal target, also under investigation for SINQ, would not only reduce this problem to a level of about 10 %, but would also minimize the risk of radiolytic corrosion in the beam interaction zone. Base on similar arguments, AUSTRON has been designed for edge cooled targets, but thermal and stress analyses show, that this concept is not feasible at higher power levels.

  11. PREFACE: Neutrino physics at spallation neutron sources

    Science.gov (United States)

    Avignone, F. T.; Chatterjee, L.; Efremenko, Y. V.; Strayer, M.

    2003-11-01

    Unique because of their super-light masses and tiny interaction cross sections, neutrinos combine fundamental physics on the scale of the miniscule with macroscopic physics on the scale of the cosmos. Starting from the ignition of the primal p-p chain of stellar and solar fusion reactions that signal star-birth, these elementary leptons (neutrinos) are also critical players in the life-cycles and explosive deaths of massive stars and the production and disbursement of heavy elements. Stepping beyond their importance in solar, stellar and supernova astrophysics, neutrino interactions and properties influence the evolution, dynamics and symmetries of the cosmos as a whole. Further, they serve as valuable probes of its material content at various levels of structure from atoms and nuclei to valence and sea quarks. In the light of the multitude of physics phenomena that neutrinos influence, it is imperative to enhance our understanding of neutrino interactions and properties to the maximum. This is accentuated by the recent evidence of finite neutrino mass and flavour mixing between generations that reverberates on the plethora of physics that neutrinos influence. Laboratory experiments using intense neutrino fluxes would allow precision measurements and determination of important neutrino reaction rates. These can then complement atmospheric, solar and reactor experiments that have enriched so valuably our understanding of the neutrino and its repertoire of physics applications. In particular, intermediate energy neutrino experiments can provide critical information on stellar and solar astrophysical processes, along with advancing our knowledge of nuclear structure, sub-nuclear physics and fundamental symmetries. So where should we look for such intense neutrino sources? Spallation neutron facilities by their design are sources of intense neutrino pulses that are produced as a by-product of neutron spallation. These neutrino sources could serve as unique laboratories

  12. Proceedings of the international workshop on spallation materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L.K.; Ullmaier, H. [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  13. New method for determination of temperature in spallation reactions

    Directory of Open Access Journals (Sweden)

    Jordanov Dragana J.

    2011-01-01

    Full Text Available We propose a new method for determination of temperature in spallation events. It is shown that temperature can be determined by applying the friction model of energy dissipation in participant-spectator model of a spallation process. First order estimate of temperature dependence of the participant zone on reaction Q-value is obtained from the Fermi gas model considerations. The heat diffusion process is also discussed.

  14. Overview of target systems for the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Tony A.; Barnes, John M.; Charlton, Lowell A. [and others; DiStefano, James; Farrell, Ken; Haines, John; Johnson, Jeffrey O.; Mansur, Louis K.; Pawel, Steve J.; Siman-Tov, Moshe; Taleyarkhan, Rusi; Wendel, Mark W.; McManamy, Thomas J.; Rennich, Mark J.

    1997-01-01

    The purpose and requirements of target systems as well as the technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the Spallation Neutron Source (SNS), are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis, and the planned hardware research and development program are also described.

  15. The Spallation Neutron Source accelerator system design

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, S., E-mail: stuarth@fnal.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Abraham, W. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Aleksandrov, A. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Allen, C. [Techsource, Inc., 1475 Central Avenue, Suite 250, Los Alamos, NM 87544-3291 (United States); Alonso, J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Anderson, D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Arenius, D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Arthur, T. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Assadi, S. [Techsource, Inc., 1475 Central Avenue, Suite 250, Los Alamos, NM 87544-3291 (United States); Ayers, J.; Bach, P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Badea, V. [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (United States); Battle, R. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Beebe-Wang, J. [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (United States); Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); and others

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ∼100 high-power RF power systems, a 2 K cryogenic plant, ∼400 DC and pulsed power supply systems, ∼400 beam diagnostic devices and a distributed control system handling ∼100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  16. The Spallation Neutron Source accelerator system design

    Science.gov (United States)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  17. Development of nuclear design criteria for neutron spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Sordo, F.; Abanades, A. [E.T.S. Industriales, Madrid Polytechnic University, UPM, J.Gutierrez Abascal, 2 -28006 Madrid (Spain)

    2008-07-01

    Spallation neutron sources allow obtaining high neutronic flux for many scientific and industrial applications. In recent years, several proposals have been made about its use, notably the European Spallation Source (ESS), the Japanese Spallation Source (JSNS) and the projects of Accelerator-Driven Subcritical reactors (ADS), particularly in the framework of EURATOM programs. Given their interest, it seems necessary to establish adequate design basis for guiding the engineering analysis and construction projects of this kind of installations. In this sense, all works done so far seek to obtain particular solutions to a particular design, but there has not been any general development to set up an engineering methodology in this field. In the integral design of a spallation source, all relevant physical processes that may influence its behaviour must be taken into account. Neutronic aspects (emitted neutrons and their spectrum, generation performance..), thermomechanical (energy deposition, cooling conditions, stress distribution..), radiological (spallation waste activity, activation reactions and residual heat) and material properties alteration due to irradiation (atomic displacements and gas generation) must all be considered. After analysing in a systematic manner the different options available in scientific literature, the main objective of this thesis was established as making a significant contribution to determine the limiting factors of the main aspects of spallation sources, its application range and the criteria for choosing optimal materials. To achieve this goal, a series of general simulations have been completed, covering all the relevant physical processes in the neutronic and thermal-mechanical field. Finally, the obtained criteria have been applied to the particular case of the design of the spallation source of subcritical reactors PDX-ADS and XT-ADS. These two designs, developed under the European R and D Framework Program, represent nowadays

  18. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  19. Monte Carlo modeling of spallation targets containing uranium and americium

    Science.gov (United States)

    Malyshkin, Yury; Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2014-09-01

    Neutron production and transport in spallation targets made of uranium and americium are studied with a Geant4-based code MCADS (Monte Carlo model for Accelerator Driven Systems). A good agreement of MCADS results with experimental data on neutron- and proton-induced reactions on 241Am and 243Am nuclei allows to use this model for simulations with extended Am targets. It was demonstrated that MCADS model can be used for calculating the values of critical mass for 233,235U, 237Np, 239Pu and 241Am. Several geometry options and material compositions (U, U + Am, Am, Am2O3) are considered for spallation targets to be used in Accelerator Driven Systems. All considered options operate as deep subcritical targets having neutron multiplication factor of k∼0.5. It is found that more than 4 kg of Am can be burned in one spallation target during the first year of operation.

  20. On the role of secondary pions in spallation targets

    CERN Document Server

    Mancusi, Davide; Colonna, Nicola; Boudard, Alain; Cortés-Giraldo, Miguel Antonio; Cugnon, Joseph; David, Jean-Christophe; Leray, Sylvie; Lerendegui-Marco, Jorge; Massimi, Cristian; Vlachoudis, Vasilis

    2017-01-01

    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from thick spallation targets. In particular, for the n_TOF lead spallation target, irradiated with 20-GeV/c protons, neutral pions are involved in the production of ~90% of the high-energy photons; charged pions participate in ~40% of the integral neutron yield. Nevertheless, photon and neutron yields are shown to be relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets.

  1. On the role of secondary pions in spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Mancusi, Davide [Paris-Saclay Univ., Gif-sur-Yvette (France). Den-Service d' Etude des Reacteurs et de Mathematiques Appliquees (SERMA); Lo Meo, Sergio [ENEA, Research Centre ' ' Ezio Clementel' ' , Bologna (Italy); INFN, Bologna (Italy); Colonna, Nicola [INFN, Bari (Italy); Boudard, Alain; David, Jean-Christophe; Leray, Sylvie [Paris-Saclay Univ., Gif-sur-Yvette (France). IRFU, CEA; Cortes-Giraldo, Miguel Antonio; Lerendegui-Marco, Jorge [Sevilla Univ. (Spain). Facultad de Fisica; Cugnon, Joseph [Liege Univ. (Belgium). AGO Dept.; Massimi, Cristian [INFN, Bologna (Italy); Bologna Univ. (Italy). Physics and Astronomy Dept.; Vlachoudis, Vasilis [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2017-05-15

    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from thick spallation targets. In particular, for the nTOF lead spallation target, irradiated with 20 GeV/c protons, neutral pions are involved in the production of ∝ 90% of the high-energy photons; charged pions participate in ∝ 40% of the integral neutron yield. Nevertheless, photon and neutron yields are shown to be relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets. (orig.)

  2. Neutron scattering instrumentation for biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  3. Fundamental physics possibilities at the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Batkov, Konstantin; Mezei, Ferenc

    2016-01-01

    The construction of the European Spallation has recently started in Lund, Sweden.In addition to the neutron scattering instruments the ESS is designed to serve, the constructionof a new spallation source opens up new possibilities for fundamental physics experiments. Inthis paper some...... of the possibilities for in-pile experiments are discussed, i.e. experiments thatimpacts the target-moderator-reector systems and that can best be constructed if they areconsidered already in the design phase of a new facility. The main focus of the work reportedhere is put on possible changes to the baseline target...

  4. EURISOL-DS METEX: Post-processing of the experimental data: Test matrix, Pre-calculations, Data Recording and Mining, Statistical and Advance Data Analysis

    CERN Document Server

    R. Milenkovic and S. DemetjevsE. Manfrin, F. Barbagallo, S. Joray, J. Patorski, F. Groeschel

    At its first stage, the hydraulic and structural test of the EURISOL target mock-up, named METEX1 (MErcury Target EXperiment 1), accompanied by extended thermal-hydraulic and structural computational studies, have been carefully planned and prepared at PSI (PaulScherrer Institut). The experiment will be performed by PSI on the adopted IPUL-loop in June, 2008 at IPUL, Riga, Latvia.The main objective of this document is to give a brief overview of the following: the test matrixaccompanied by computational results, the procedures and methods, which are to be used fordata acquisition, signal post-processing and validation of the computational methods.

  5. Towards the construction of the European spallation source – The ...

    Indian Academy of Sciences (India)

    Abstract. The possible realization of the European spallation source has been a long and winding story. However, thanks to the conjunction of a number of events it now looks highly probable that in 2008 there will indeed be a decision on the site and on a funding partnership of European countries who will together build ...

  6. Fission, spallation or fusion-based neutron sources

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... In this paper the most promising technology for high power neutron sources is briefly discussed. The conclusion is that the route to high power neutron sources in the foreseeable future is spallation – short or long pulse or even CW – all of these sources will have areas in which they excel.

  7. Thermal-hydraulic analysis of LBE spallation target for accelerator ...

    Indian Academy of Sciences (India)

    In an accelerator-driven subcritical system (ADS), a high-performance spallation neutron source is used to feed the subcritical reactor. Neutron generation depends on the proton beam intensity. If the beam intensity is increased by a given factor, the number of generated neutrons will increase. The mechanism yielding a ...

  8. Heavy density liquid metal spallation target studies for Indian ADS ...

    Indian Academy of Sciences (India)

    An R&D programme has been initiated to address various physics and technology issues of ADS target. Under this programme, mercury and LBE experimental facilities are presently being set up. Along with these facilities, computational tools related to spallation physics (FLUKA) and CFD are being developed, and the ...

  9. Towards the construction of the European spallation source–The ...

    Indian Academy of Sciences (India)

    The possible realization of the European spallation source has been a long and winding story. However, thanks to the conjunction of a number of events it now looks highly probable that in 2008 there will indeed be a decision on the site and on a funding partnership of European countries who will together build and ...

  10. Fission, spallation or fusion-based neutron sources

    Indian Academy of Sciences (India)

    The development of the brightness of X-ray facilities (compilation from Friso van der Veen Paul Scherrer Institut, Villigen, CH). neutron flux of a spallation source will increase markedly at each step, when going from short pulse to long pulse as in the extreme case to CW operation). Of the tremendous progress in science ...

  11. Analytic model of heat deposition in spallation neutron target

    Science.gov (United States)

    Findlay, D. J. S.

    2015-12-01

    A simple analytic model for estimating deposition of heat in a spallation neutron target is presented-a model that can readily be realised in an unambitious spreadsheet. The model is based on simple representations of the principal underlying physical processes, and is intended largely as a 'sanity check' on results from Monte Carlo codes such as FLUKA or MCNPX.

  12. LATIS modeling of laser induced midplane and backplane spallation

    Energy Technology Data Exchange (ETDEWEB)

    Glinksky, M.E.; Bailey, D.S.; London, R.A.

    1997-03-05

    The computer code LATIS is used to simulate midplane and backplane spallation resulting from short pulsed laser absorption. A 1-D planar geometry is simulated with an exponential laser absorption profile. The laser pulse length is assumed to be much shorter than the sound transit time across the laser absorption length. The boundary conditions are a fixed front plane and free backplane (backplane spall) and a free front plane and a fixed midplane (midplane spall). The NBS/NRC equation of state for water is used with a self- consistent yet empirical material strength and failure model. The failure model includes the effects of void nucleation, growth and coalescence. Definite signatures of the nucleation and coalescence thresholds are found in the back surface motion for backplane spallation.

  13. Overcoming High Energy Backgrounds at Pulsed Spallation Sources

    CERN Document Server

    Cherkashyna, Nataliia; DiJulio, Douglas D.; Khaplanov, Anton; Pfeiffer, Dorothea; Scherzinger, Julius; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Ansell, Stuart; Iverson, Erik B.; Ehlers, Georg; Gallmeier, Franz X.; Panzner, Tobias; Rantsiou, Emmanouela; Kanaki, Kalliopi; Filges, Uwe; Kittelmann, Thomas; Extegarai, Maddi; Santoro, Valentina; Kirstein, Oliver; Bentley, Phillip M.

    2015-01-01

    Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument pe...

  14. A non-equilibrium microscopic description of spallation

    Science.gov (United States)

    Napolitani, P.; Colonna, M.

    2017-11-01

    We investigate the prompt emission of few intermediate-mass fragments in spallation reactions induced by protons and deuterons in the 1GeV range. Such emission has a minor contribution to the total reaction cross section, but it may overcome evaporation and fission channels in the formation of light nuclides. The role of mean-field dynamics and phase-space fluctuations in these reactions is investigated through the Boltzmann-Langevin transport equation. We found that a process of frustrated fragmentation and re-aggregation is a prominent mechanism of production of IMFs which can not be assimilated to the statistical decay of a compound nucleus. Very interestingly, this process may yield a small number of IMF in the exit channel, which may even reduce to two, and be wrongly confused with ordinary asymmetric fission. This interpretation, inspired by nuclear-spallation experiments, can be generalised to heavy-ion collisions approaching the fragmentation threshold.

  15. Spallation neutron source and other high intensity froton sources

    Energy Technology Data Exchange (ETDEWEB)

    Weiren Chou

    2003-02-06

    This lecture is an introduction to the design of a spallation neutron source and other high intensity proton sources. It discusses two different approaches: linac-based and synchrotron-based. The requirements and design concepts of each approach are presented. The advantages and disadvantages are compared. A brief review of existing machines and those under construction and proposed is also given. An R&D program is included in an appendix.

  16. Irradiation facilities at the spallation neutron source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Ledermann, J.; Aebersold, H.; Kuehne, G.; Kohlik, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Four independent experiments for sample irradiation are under construction and in preparation for operational tests at the spallation source SINQ. Three of them are located inside a thermal beam port with end positions inside or near the moderator tank. The other experiment will be established at the end position of a super mirror lined neutron guide for applications with cold neutrons. (author) 3 figs., 1 tab., 6 refs.

  17. Spallation and fracture resulting from reflected and intersecting stress waves.

    Science.gov (United States)

    Kinslow, R.

    1973-01-01

    Discussion of the effects of stress waves produced in solid by explosions or high-velocity impacts. These waves rebound from free surfaces in the form of tensile waves that are capable of causing internal fractures or spallation of the material. The high-speed framing camera is shown to be an important tool for observing the stress waves and fracture in transparent targets, and its photographs provide valuable information on the mechanics of fracture.

  18. Monte Carlo simulation of NSE at reactor and spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Zsigmond, G.; Wechsler, D.; Mezei, F. [Hahn-Meitner-Institut Berlin, Berlin (Germany)

    2001-03-01

    A MC (Monte Carlo) computation study of NSE (Neutron Spin Echo) has been performed by means of VITESS investigating the classic and TOF-NSE options at spallation sources. The use of white beams in TOF-NSE makes the flipper efficiency in function of the neutron wavelength an important issue. The emphasis was put on exact evaluation of flipper efficiencies for wide wavelength-band instruments. (author)

  19. Astrophysical Li-7 as a product of big bang nucleosynthesis and galactic cosmic-ray spallation

    Science.gov (United States)

    Olive, Keith A.; Schramm, David N.

    1992-01-01

    The astrophysical Li-7 abundance is considered to be largely primordial, while the Be and B abundances are thought to be due to galactic cosmic ray (GCR) spallation reactions on top of a much smaller big bang component. But GCR spallation should also produce Li-7. As a consistency check on the combination of big bang nucleosynthesis and GCR spallation, the Be and B data from a sample of hot population II stars is used to subtract from the measured Li-7 abundance an estimate of the amount generated by GCR spallation for each star in the sample, and then to add to this baseline an estimate of the metallicity-dependent augmentation of Li-7 due to spallation. The singly reduced primordial Li-7 abundance is still consistent with big bang nucleosynthesis, and a single GCR spallation model can fit the Be, B, and corrected Li-7 abundances for all the stars in the sample.

  20. Energy dependence of isotopic spectra from spallation residues; Dependance en energie des spectres isotopiques de residus de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Audouin, L

    2003-09-01

    Spallation reactions are collisions between heavy nuclei and light particle with an energy of a few hundreds MeV. The y are considered as a suitable way to create high- flux neutrons sources, which may used for example for the transmutation of nuclear wastes (hybrid reactors). The study of the residues from such reactions is both a way to understand the physics of the spallation and to provide information required for the design of industrial targets. The residues from the spallation of lead by proton at 500 MeV have been measured using the inverse kinematics technique in the FRS (fragments recoil separator). spectrometer from GSI (Barmstadt). This low energy required the use of new technique, for the experimental setup as well as during the analysis. The fragments were identified in-flight, prior to {beta} decay. Complete isotopic distributions are obtained with an accuracy ranging between 10 and 30%. Detailed information on the reaction kinematics are also obtained. Data are in excellent agreement with radio-chemical measurements, and bring new insights about the spallation process. The comparison with data measured on the same system with an incident energy of 1 GeV allows to discuss the influence of the projectile energy on the residues formation. It is concluded that the independence of the shape of the isobaric production cross sections regarding mass and energy of the projectile is preserved at low incident energies. The behaviour of Monte-Carlo codes is discussed with respect to those sets of data. The calculations show an improving agreement with decreasing energy, indicating that high-energy phenomena, for which some common assumptions become questionable, are the main reason for the observed discrepancies. (author)

  1. Integral measurements of neutron production in spallation targets; Mesure integrale de la production de neutrons dans des cibles de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Frehaut, J.; Deneuville, D.; Ledoux, X.; Lochard, J.P.; Longuet, J.L.; Petibon, E.; Alrick, K.; Bownan, D.; Cverna, F.; King, N.S.P.; Morgan, G.L. [Los Alamos National Lab., NM (United States); Greene, G.; Hanson, A.; Snead, L. [Brookhaven National Lab., Upton, NY (United States); Thompson, R. [Bechtel Nevada Corp., Las Vegas, NV (United States); Ward, T

    1998-12-31

    Measurements of neutron production for thick iron, tungsten and lead targets of different diameter prototypic for spallation systems have been made at SATURNE in an incident proton energy range from 400 MeV to 2 GeV. TIERCE code system calculations are in good agreement with experiment for iron and large diameter tungsten and lead targets. They overestimate the measured neutron production for tungsten and lead targets for diameter {<=}20 cm. (author) 10 refs.

  2. Research activities on structure materials of spallation neutron source at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.; Dai, Y. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    With the growing interests on powerful spallation neutron sources, especially with liquid metal targets, and accelerator driven energy systems, spallation materials science and technology have been received wide attention. At SINQ, material research activities are focused on: a) liquid metal corrosion; b) radiation damage; and c) interaction of corrosion and radiation damage. (author) 1 fig., refs.

  3. Overview of the national spallation neutron source with emphasis on the target station

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A. [and others

    1997-06-01

    The technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the National Spallation Neutron Source (NSNS), are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis and the planned hardware research and development program are also described.

  4. Workshop: Research and development plans for high power spallation neutron testing at BNL

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-05

    This report consists of vugraphs from presentations at the meeting. The papers covered the following topics: (1) APS as a proton source; (2) target status for NSNS (National Spallation Neutron Source); (3) spallation neutron source in Japan; (4) liquid LiBi flow loop; and (5) research and development plans for high power tests at the AGS.

  5. Comparison between calculations and experimental results on spallation reactions of interest for hybrid systems

    Science.gov (United States)

    Volant, C.; Boudard, A.; Legrain, R.; Leray, S.; Wlazlo, W.

    1999-11-01

    Data on proton induced spallation reactions concerning the production of neutrons obtained at SATURNE and of spallation residues at GSI have been compared with two-step models including different Intra-Nuclear Cascades (INC) followed by different evaporation codes. Results and improvements of the codes are discussed.

  6. Studies on physical characteristics of spallation neutron target

    CERN Document Server

    Wan Jun Sheng; Xia Hai Hong; Zhang Li; Zhang Ying

    2002-01-01

    The spallation target of ADS was studied using DCM/CEM program. The simulation of the lead target of 0.6 m length and 0.2 m in diameter bombarded with 0.1 - 1.6 GeV proton beams was carried out. The neutron spectra, neutron fluence distribution over the lead target, energy deposition and neutron production in the lead target were studied. Some former experimental results can be explained very well with the calculated results. The simulation results agree very well with the former theoretical and experimental results

  7. Nondiffractive applications of neutrons at the spallation source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    The paper delivers an overview about experiments with neutrons from the spallation source SINQ which are not especially devoted to neutron scattering. A total of six experimental facilities are under construction using thermal as well as cold neutrons. Starting with some general considerations about the interaction of neutrons with matter, the principles, boundary conditions and the experimental set up of these experiments are described briefly. Some more details are given for the neutron radiography facility NEUTRA as the author`s special interest and research field. (author) 7 figs., 2 tabs., 9 refs.

  8. VESPA: The vibrational spectrometer for the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Fedrigo, Anna, E-mail: anna.fedrigo@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø (Denmark); Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 50019 Sesto Fiorentino (Italy); European Spallation Source ESS AB, SE-221 00 Lund (Sweden); Colognesi, Daniele; Grazzi, Francesco; Zoppi, Marco [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 50019 Sesto Fiorentino (Italy); Bertelsen, Mads; Strobl, Markus [Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø (Denmark); European Spallation Source ESS AB, SE-221 00 Lund (Sweden); Hartl, Monika; Deen, Pascale P. [European Spallation Source ESS AB, SE-221 00 Lund (Sweden); Lefmann, Kim [Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø (Denmark)

    2016-06-15

    VESPA, Vibrational Excitation Spectrometer with Pyrolytic-graphite Analysers, aims to probe molecular excitations via inelastic neutron scattering. It is a thermal high resolution inverted geometry time-of-flight instrument designed to maximise the use of the long pulse of the European Spallation Source. The wavelength frame multiplication technique was applied to provide simultaneously a broad dynamic range (about 0-500 meV) while a system of optical blind choppers allows to trade flux for energy resolution. Thanks to its high flux, VESPA will allow the investigation of dynamical and in situ experiments in physical chemistry. Here we describe the design parameters and the corresponding McStas simulations.

  9. Oak Ridge Spallation Neutron Source (ORSNS) target station design integration

    Energy Technology Data Exchange (ETDEWEB)

    McManamy, T.; Booth, R.; Cleaves, J.; Gabriel, T. [and others

    1996-06-01

    The conceptual design for a 1- to 3-MW short pulse spallation source with a liquid mercury target has been started recently. The design tools and methods being developed to define requirements, integrate the work, and provide early cost guidance will be presented with a summary of the current target station design status. The initial design point was selected with performance and cost estimate projections by a systems code. This code was developed recently using cost estimates from the Brookhaven Pulsed Spallation Neutron Source study and experience from the Advanced Neutron Source Project`s conceptual design. It will be updated and improved as the design develops. Performance was characterized by a simplified figure of merit based on a ratio of neutron production to costs. A work breakdown structure was developed, with simplified systems diagrams used to define interfaces and system responsibilities. A risk assessment method was used to identify potential problems, to identify required research and development (R&D), and to aid contingency development. Preliminary 3-D models of the target station are being used to develop remote maintenance concepts and to estimate costs.

  10. EURAC: A liquid target neutron spallation source using cyclotron technology

    Science.gov (United States)

    Perlado, J. M.; Mínguez, E.; Sanz, J.; Piera, M.

    1995-09-01

    Euratom/JRC Ispra led some years ago the design of an accelerator based neutron spallation source EURAC, with special emphasis as a fusion material testing device. DENIM was involved in the development of the last version of this source. EURAC proposes to use a beam of 600 MeV or 1.5 GeV protons, produced by an effective and low cost ring cyclotron with a current of 6 mA impinging in a liquid lead, or lead-bismuth, target. It will use an advanced cyclotron technology which can be implemented in the next future, in the line of the actual technology of the upgraded SIN-type cyclotron. The adjacent rows to the target correspond to the lead, or Li17Pb83, cooled channels where the samples will be located. The available volumes there were shown enough for material testing purposes. Here, proposal of using those experimental areas to introduce small masses of radioactive wastes for testing of transmutation in spallation source is made. In addition, extrapolation of present conceptual design to make available larger volumes under flexible conditions seems to be possible. Neutrons leaking from the test zone drive a subcritical booster (hidrogen moderator in the center.

  11. EXPERIMENTAL ANALYSES OF SPALLATION NEUTRONS GENERATED BY 100 MEV PROTONS AT THE KYOTO UNIVERSITY CRITICAL ASSEMBLY

    Directory of Open Access Journals (Sweden)

    CHEOL HO PYEON

    2013-02-01

    Full Text Available Neutron spectrum analyses of spallation neutrons are conducted in the accelerator-driven system (ADS facility at the Kyoto University Critical Assembly (KUCA. High-energy protons (100 MeV obtained from the fixed field alternating gradient accelerator are injected onto a tungsten target, whereby the spallation neutrons are generated. For neutronic characteristics of spallation neutrons, the reaction rates and the continuous energy distribution of spallation neutrons are measured by the foil activation method and by an organic liquid scintillator, respectively. Numerical calculations are executed by MCNPX with JENDL/HE-2007 and ENDF/B-VI libraries to evaluate the reaction rates of activation foils (bismuth and indium set at the target and the continuous energy distribution of spallation neutrons set in front of the target. For the reaction rates by the foil activation method, the C/E values between the experiments and the calculations are found around a relative difference of 10%, except for some reactions. For continuous energy distribution by the organic liquid scintillator, the spallation neutrons are observed up to 45 MeV. From these results, the neutron spectrum information on the spallation neutrons generated at the target are attained successfully in injecting 100 MeV protons onto the tungsten target.

  12. The Spallation Neutron Source Beam Commissioning and Initial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Stuart [Argonne National Lab. (ANL), Argonne, IL (United States); Aleksandrov, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Assadi, Saeed [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bartoski, Dirk [University of Texas, Houston, TX (United States). Anderson Cancer Center; Blokland, Willem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Casagrande, F. [Michigan State Univ., East Lansing, MI (United States); Campisi, I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chu, C. [Michigan State Univ., East Lansing, MI (United States); Cousineau, Sarah M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crofford, Mark T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Danilov, Viatcheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deibele, Craig E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dodson, George W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feshenko, A. [Inst. for Nuclear Research (INR), Moscow (Russian Federation); Galambos, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Han, Baoxi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hardek, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holmes, Jeffrey A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Howell, Matthew P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jeon, D. [Inst. for Basic Science, Daejeon (Korea); Kang, Yoon W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kasemir, Kay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kravchuk, L. [Institute for Nuclear Research (INR), Moscow (Russian Federation); Long, Cary D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamy, T. [McManamy Consulting, Inc., Middlesex, MA (United States); Pelaia, II, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Piller, Chip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Plum, Michael A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pogge, James R. [Tennessee Technological Univ., Cookeville, TN (United States); Purcell, John David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shea, T. [European Spallation Source, Lund (Sweden); Shishlo, Andrei P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sibley, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stockli, Martin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stout, D. [Michigan State Univ., East Lansing, MI (United States); Tanke, E. [European Spallation Source, Lund (Sweden); Welton, Robert F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Y. [Michigan State Univ., East Lansing, MI (United States); Zhukov, Alexander P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  13. Impedance measurements of the Spallation Neutron Source extraction kicker system

    Science.gov (United States)

    Hahn, H.

    2004-10-01

    Transverse coupling impedance measurements of the Spallation Neutron Source (SNS) beam extraction system were performed and the results are here reported. The SNS beam extraction system is composed from 14 subsystems, each of which consists of a vertical kicker magnet plus a pulse forming network (PFN). Impedance bench measurements were performed on one large and one small aperture magnet, stand-alone as well as assembled with the first-article production PFN. The impedance measuring methods to cover the interesting frequency range from below 1 to 100MHz are described in considerable detail. The upper frequency range is properly covered by the conventional twin-wire method but it had to be supplemented at the low-frequency end by a direct input impedance measurement at the magnet busbar. Required modifications of the PFN to maintain the impedance budget are discussed. The total impedance estimate was finally obtained by quadratic scaling with vertical aperture from the two tested kicker subsystems.

  14. BEAM INSTRUMENTATION FOR THE SPALLATION NEUTRON SOURCE RING.

    Energy Technology Data Exchange (ETDEWEB)

    WITKOVER,R.L.; CAMERON,P.R.; SHEA,T.J.; CONNOLLY,R.C.; KESSELMAN,M.

    1999-03-29

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. [1] The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10{sup -4}. A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring.

  15. Thermal shock analysis of liquid-mercury spallation target

    CERN Document Server

    Ishikura, S; Futakawa, M; Hino, R; Date, H

    2002-01-01

    The developments of the neutron scattering facilities are carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. To estimate the structural integrity of the heavy liquid-metal (Hg) target used as a spallation neutron source in a MW-class neutron scattering facility, dynamic stress behavior due to the incident of a 1 MW-pulsed proton beam was analyzed by using FEM code. Two-type target containers with semi-cylindrical type and flat-plate type window were used as models for analyses. As a result, it is confirmed that the stress (pressure wave) generated by dynamic thermal shock becomes the largest at the center of window, and the flat-plate type window is more advantageous from the structural viewpoint than the semi-cylindrical type window. It has been understood that the stress generated in the window by the pressure wave can be treated as the secondary stress. (author)

  16. Transmission Bragg edge spectroscopy measurements at ORNL Spallation Neutron Source

    Science.gov (United States)

    Tremsin, A. S.; McPhate, J. B.; Vallerga, J. V.; Siegmund, O. H. W.; Feller, W. B.; Bilheux, H. Z.; Molaison, J. J.; Tulk, C. A.; Crow, L.; Cooper, R. G.; Penumadu, D.

    2010-11-01

    Results of neutron transmission Bragg edge spectroscopic experiments performed at the SNAP beamline of the Spallation Neutron Source are presented. A high resolution neutron counting detector with a neutron sensitive microchannel plate and Timepix ASIC readout is capable of energy resolved two dimensional mapping of neutron transmission with spatial accuracy of ~55 μm, limited by the readout pixel size, and energy resolution limited by the duration of the initial neutron pulse. A two dimensional map of the Fe 110 Bragg edge position was obtained for a bent steel screw sample. Although the neutron pulse duration corresponded to ~30 mÅ energy resolution for 15.3 m flight path, the accuracy of the Bragg edge position in our measurements was improved by analytical fitting to a few mÅ level. A two dimensional strain map was calculated from measured Bragg edge values with an accuracy of ~few hundreds μistrain for 300s of data acquisition time.

  17. Electron Cloud Mitigation in the Spallation Neutron Source Ring

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J.; Blaskiewicz, Michael; Brodowski, J.; Cameron, P.; Davino, Daniele; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Ludewig, H.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Catalan-Lasheras, N.; Macek, R.J.; Furman, Miguel A.; Aleksandrov, A.; Cousineau, S.; Danilov, V.; Henderson, S.; /Brookhaven /CERN /LANL, Ctr. for Nonlinear Studies /LBL, Berkeley /Oak Ridge /SLAC

    2008-03-17

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H{sup -} injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron-cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation.

  18. A multitask neutron beam line for spallation neutron sources

    Science.gov (United States)

    Pietropaolo, A.; Festa, G.; Grazzi, F.; Barzagli, E.; Scherillo, A.; Schooneveld, E. M.; Civita, F.

    2011-08-01

    Here we present a new concept for a time-of-flight neutron scattering instrument allowing for simultaneous application of three different techniques: time-of-flight neutron diffraction, neutron resonance capture analysis and Bragg edge transmission analysis. The instrument can provide average resolution neutron radiography too. The potential of the proposed concept was explored by implementing the necessary equipment on INES (Italian Neutron Experimental Station) at the ISIS spallation neutron source (UK). The results obtained show the effectiveness of the proposed instrument to acquire relevant quantitative information in a non-invasive way on a historical metallurgical sample, namely a Japanese hand guard (tsuba). The aforementioned neutron techniques simultaneously exploited the extended neutron energy range available from 10 meV to 1 keV. This allowed a fully satisfactory characterization of the sample in terms of metal components and their combination in different phases, and forging and assembling methods.

  19. Spallation RI beam facility and heavy element nuclear chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nagame, Yuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    An outline of the spallation RI (Radioactive Ion) beam facility is presented. Neutron-rich nuclides are produced in the reaction of high intensity (10-1000 {mu}A) protons with energy of 1.5 GeV and an uranium carbide target. Produced nuclides are ionized in an isotope separator on-line (ISOL) and accelerated by the JAERI tandem and the booster linac. Current progress and a future project on the development of the RI beam facility are given. Studies of transactinide elements, including the synthesis of superheavy elements, nuclear structure far from stability, and RI-probed material science are planned with RI beams. An outlook of the transactinide nuclear chemistry studies using neutron-rich RI beams is described. (author)

  20. The concept of a European spallation neutron source (ESS)

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-11-01

    The next generation neutron source in Europe, which was studied by a collaboration between twelve laboratories, has been conceived as a 5 MW short pulse spallation source because of the superior overall scientific potential attributed to such a facility relative to all other options considered. While the accelerator side can use essentially established technology with some extensions in performance, a novel target concept based on the use of Mercury as a flowing liquid metal target was developed, which is not only expected to lead the way further into the future, but which was also found to give the best neutronic performance of all known choices. Close permanent interaction with a large user community yielded important input for the concept in general and for the upcoming R and D and design phases in particular. (author)

  1. MEGAPIE spallation target: Design, manufacturing and preliminary tests of the first pro-typical spallation target for future ADS

    Energy Technology Data Exchange (ETDEWEB)

    Latge, Ch.; Laffont, G. [CEA Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Groeschel, F.; Thomsen, K.; Wagner, W. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Agostini, P. [Centro Ricerche ENEA - Brasimone, c.p. no.1 - 40035 Castiglione dei Pepoli (Italy); Dierckx, M. [SCK-CEN, Boeretang 200, BR1 Building, B-2400 Mol (Belgium); Fazio, C. [Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz, 1, 76344 Eggenstein-Leopoldshafen (Germany); Kirchner, T. [SUBATECH, Ecole des Mines de Nantes, 4 rue Alfred Kastler, La Chantrerie - BP 20722, 44307 Nantes cedex (France); Kurata, Y. [JAERI, Meijiyasuda-seimei Kahiwa Fames, 14-1 Suehiro-cho, Kashiwa-shi, Chiba-ken 277-0842 (Japan); Song, T. [Korea Atomic Energy Research Institute, PO Box 7, Daedok Science Town, Daejun 302-353 (Korea, Republic of); Woloshun, K. [DOE-LANL, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2006-07-01

    Partitioning and Transmutation (P and T) techniques could contribute to reduce the radioactive inventory and its associated radiotoxicity. Sub-critical Accelerator Driven Systems (ADS) are potential candidates as dedicated transmutation systems, and thus their development is a relevant R and D topic in Europe. Following a first phase focused on the understanding of the basic principles of ADS (e.g. the programme MUSE), the R and D has been streamlined and focused on practical demonstration key issues. These demonstrations cover high intensity proton accelerators (beam current in the range 1 to 20 mA), spallation targets of high power and their effective coupling with a subcritical core. Presently there is general consensus that up to 1 MW of beam power solid targets are feasible from a heat removal point of view. For higher power levels liquid metal targets are the option of choice because of their higher heat removal capability, higher spallation material density in the volume and lower specific radioactivity, Therefore, a key experiment in the ADS road map, the Megawatt Pilot Experiment (MEGAPIE) (1 MW) was initiated in 1999 in order to design and build a liquid lead-bismuth spallation target, then to operate it into the Swiss spallation neutron facility SINQ at Paul Scherrer Institute (PSI). It has to be equipped to provide the largest possible amount of scientific and technical information without jeopardizing its safe operation. The minimum design service life has been fixed at 1 year (6000 mAh). Whereas the interest of the partner institutes is driven by the development needs of ADS, PSI interest lies also in the potential use of a LM target as a SINQ standard target providing a higher neutron flux than the current solid targets. Calculations of the radial distribution of the undisturbed thermal neutron flux for the LBE target in comparison to the former Zircaloy and current steel-clad solid lead target were done with different nuclear codes; nevertheless

  2. Technology and science at a high-power spallation source: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    These proceedings cover many aspects of the usefulness of spallation neutrons. Nine different areas are considered: surfaces and interfaces, engineering, materials science, polymers and complex fluids, chemistry, structural biology, nuclear engineering and radiation effects, condensed matter physics and fundamental physics.

  3. Electron cloud instabilities in the Proton Storage Ring and Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    M. Blaskiewicz

    2003-01-01

    Full Text Available Electron cloud instabilities in the Los Alamos Proton Storage Ring and those foreseen for the Oak Ridge Spallation Neutron Source are examined theoretically, numerically, and experimentally.

  4. Spallation Reactions: A Tool for RNB Production and a Neutron Source for Nuclear Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Benlliure, J.; Armbruster, P.; Bernas, M.; Boudard, A.; Casarejos, E.; Czajkowski, S.; Enqvist, T.; Farget, F.; Legrain, R.; Leray, S.; Pravikoff, M.; Schmidt, K.-H.; Stephan, C.; Taieb, J.; Tassan-Got, L.; Volant, C.

    1999-12-31

    A large experimental program was initiated at GSI to study in detail the spallation reactions. The use of the inverse kinematics allows to determine the production cross section and recoil momentum of the spallation residues with high accuracy. The comparison of the experimental data with model calculation gives valuable information about the reaction mechanism and the application of these reactions to RNB production and to the problematic of nuclear waste transmutation.

  5. Cooperative effort between Consorcio European Spallation Source--Bilbao and Oak Ridge National Laboratory spallation neutron source for manufacturing and testing of the JEMA-designed modulator system

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, David E [ORNL

    2017-01-02

    The JEMA modulator was originally developed for the European Spallation Source (ESS) when Spain was under consideration as a location for the ESS facility. Discussions ensued and the Spallation Neutron Source Research Accelerator Division agreed to form a collaboration with ESS-Bilbao (ESS-B) consortium to provide services for specifying the requirements for a version of the modulator capable of operating twelve 550 kW klystrons, monitoring the technical progress on the contract with JEMA, installing and commissioning the modulator at SNS, and performing a 30 day full power test. This work was recently completed, and this report discusses those activities with primary emphasis on the installation and testing activities.

  6. Impedance measurements of the Spallation Neutron Source extraction kicker system

    Directory of Open Access Journals (Sweden)

    H. Hahn

    2004-10-01

    Full Text Available Transverse coupling impedance measurements of the Spallation Neutron Source (SNS beam extraction system were performed and the results are here reported. The SNS beam extraction system is composed from 14 subsystems, each of which consists of a vertical kicker magnet plus a pulse forming network (PFN. Impedance bench measurements were performed on one large and one small aperture magnet, stand-alone as well as assembled with the first-article production PFN. The impedance measuring methods to cover the interesting frequency range from below 1 to 100 MHz are described in considerable detail. The upper frequency range is properly covered by the conventional twin-wire method but it had to be supplemented at the low-frequency end by a direct input impedance measurement at the magnet busbar. Required modifications of the PFN to maintain the impedance budget are discussed. The total impedance estimate was finally obtained by quadratic scaling with vertical aperture from the two tested kicker subsystems.

  7. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  8. Spallation Neutron Source Accident Terms for Environmental Impact Statement Input

    Energy Technology Data Exchange (ETDEWEB)

    Devore, J.R.; Harrington, R.M.

    1998-08-01

    This report is about accidents with the potential to release radioactive materials into the environment surrounding the Spallation Neutron Source (SNS). As shown in Chap. 2, the inventories of radioactivity at the SNS are dominated by the target facility. Source terms for a wide range of target facility accidents, from anticipated events to worst-case beyond-design-basis events, are provided in Chaps. 3 and 4. The most important criterion applied to these accident source terms is that they should not underestimate potential release. Therefore, conservative methodology was employed for the release estimates. Although the source terms are very conservative, excessive conservatism has been avoided by basing the releases on physical principles. Since it is envisioned that the SNS facility may eventually (after about 10 years) be expanded and modified to support a 4-MW proton beam operational capability, the source terms estimated in this report are applicable to a 4-MW operating proton beam power unless otherwise specified. This is bounding with regard to the 1-MW facility that will be built and operated initially. See further discussion below in Sect. 1.2.

  9. Neutron diffractometers for structural biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B.P.; Pitcher, E. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical {sup 3}He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5{Angstrom} with a flight path length of 10m and an energy resolution of 0.25{Angstrom}. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux.

  10. Spallation Neutron Source High Power RF Installation and Commissioning Progress

    CERN Document Server

    McCarthy, Michael P; Bradley, Joseph T; Fuja, Ray E; Gurd, Pamela; Hardek, Thomas; Kang, Yoon W; Rees, Daniel; Roybal, William; Young, Karen A

    2005-01-01

    The Spallation Neutron Source (SNS) linac will provide a 1 GeV proton beam for injection into the accumulator ring. In the normal conducting (NC) section of this linac, the Radio Frequency Quadupole (RFQ) and six drift tube linac (DTL) tanks are powered by seven 2.5 MW, 402.5 MHz klystrons and the four coupled cavity linac (CCL) cavities are powered by four 5.0 MW, 805 MHz klystrons. Eighty-one 550 kW, 805 MHz klystrons each drive a single cavity in the superconducting (SC) section of the linac. The high power radio frequency (HPRF) equipment was specified and procured by LANL and tested before delivery to ensure a smooth transition from installation to commissioning. Installation of RF equipment to support klystron operation in the 350-meter long klystron gallery started in June 2002. The final klystron was set in place in September 2004. Presently, all RF stations have been installed and high power testing has been completed. This paper reviews the progression of the installation and testing of the HPRF Sys...

  11. Ion source antenna development for the Spallation Neutron Source

    Science.gov (United States)

    Welton, R. F.; Stockli, M. P.; Kang, Y.; Janney, M.; Keller, R.; Thomae, R. W.; Schenkel, T.; Shukla, S.

    2002-02-01

    The operational lifetime of a radio-frequency (rf) ion source is generally governed by the length of time the insulating structure protecting the antenna survives during exposure to the plasma. Coating the antenna with a thin layer of insulating material is a common means of extending the life of such antennas. When low-power/low-duty factor rf excitation is employed, antenna lifetimes of several hundred hours are typical. When high-power, >30 kW, and high-duty cycles, ˜6%, are employed, as is the case of the Spallation Neutron Source (SNS) ion source, antenna lifetime becomes unacceptably short. This work addresses this problem by first showing the results of microanalysis of failed antennas from the SNS ion source, developing a model of the damage mechanism based on plasma-insulator interaction, using the model to determine the dimensional and material properties of an ideal coating, and describing several approaches currently under way to develop a long-lived antenna for the SNS accelerator. These approaches include thermal spray coatings, optimized porcelain enamel coatings, refractory enamel coatings, and novel antenna geometries designed to operate with low rf electric fields.

  12. The front-end systems for the Spallation Neutron Source

    CERN Document Server

    Keller, R

    2001-01-01

    The front-end systems (FES) of the Spallation Neutron Source (SNS) project are being built by Berkeley Lab and will deliver a 52-mA H /sup -/ ion beam at 2.5 MeV energy to the subsequent drift-tube linac, to be built by Los Alamos National Laboratory. The FES comprise a volume-production, cesium-enhanced ion source, an electrostatic low-energy beam transport (LEBT), an RFQ accelerator, and a medium-energy beam transport (MEBT) that includes rebuncher cavities, magnetic quadrupoles, and beam diagnostics. The macro-pulse duty factor is 6%, and the macro pulses have to be chopped into a minipulse structure with a time scale of hundreds of ns, to reduce beam losses and component activation during extraction from the SNS Accumulator Ring. Delivery of the entire FES to the main SNS facility in Oak Ridge is planned for April 2002. This paper discusses the design features and status of the major FES subsystems with special emphasis on ion source and LEBT for which first experimental results have been obtained. After ...

  13. Preparation and testing of corrosion and spallation-resistant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, John P. [Univ. of North Dakota, Grand Forks, ND (United States); Cavalli, Matthew N. [Univ. of North Dakota, Grand Forks, ND (United States)

    2016-06-30

    its standard oxidation, spallation, and corrosion testing, which was scheduled for completion in the spring of 2016. However, because of commercial demands, the tests were not completed by the time of this report except some initial spallation tests at 1150°C. In those tests, several of the APMT plates separated from the CM247LC, likely because of the remaining aluminum oxide scale on the surface of the CM247LC. This implies that surface preparation may need to include machining to remove the oxide scale before bonding rather than just sandblasting. In previous tensile testing at 950°C, the breaks in the tensile samples always occurred in the APMT and not at the joints. Gasifier sampling was completed to determine what types of trace contaminants may occur in cleaned and combusted syngas and that could lead to corrosion or deposition in turbines firing coal syngas. The sampling was done from a pressurized fluidized-bed gasifier and a pressurized entrained-flow gasifier. The particles captured on a filter from syngas were typically 0.2 to 0.5 μm in diameter, whereas those captured from the combusted syngas were slightly larger and more spherical. X-ray photoelectron spectroscopy done at Oak Ridge National Laboratory showed that the particles do not contain any metals and have an atomic composition almost identical to that of the polycarbonate filter. This indicates that the particles are primarily soot-based and not formed from volatilization of metals in the gasifiers.

  14. 5 MW pulsed spallation neutron source, Preconceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  15. The COHERENT Experiment at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Steven Ray [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-30

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino- nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the N=2 dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  16. H- radio frequency source development at the Spallation Neutron Sourcea)

    Science.gov (United States)

    Welton, R. F.; Dudnikov, V. G.; Gawne, K. R.; Han, B. X.; Murray, S. N.; Pennisi, T. R.; Roseberry, R. T.; Santana, M.; Stockli, M. P.; Turvey, M. W.

    2012-02-01

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent ˜38 mA peak current in the linac and an availability of ˜90%. H- beam pulses (˜1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, ˜60 kW) of a copper antenna that has been encased with a thickness of ˜0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of ˜99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of ˜75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance/installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to ˜100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  17. Observation of fs-laser spallative ablation using soft X-ray laser probe

    Science.gov (United States)

    Nishikino, Masaharu; Hasegawa, Noboru; Tomita, Takuro; Minami, Yasuo; Eyama, Takashi; Kakimoto, Naoya; Izutsu, Rui; Baba, Motoyoshi; Kawachi, Tetsuya; Suemoto, Tohru

    2017-03-01

    The initial stages of femtosecond laser ablation of gold were observed by single-shot soft X-ray laser interferometer and reflectometer. The ablation front surface and the spallation shell dome structure were observed from the results of the soft X-ray interferogram, reflective image, and shadowgraph. The formation and evolution of soft X-ray Newton's rings (NRs) were found by reflective imaging at the early stages of the ablation dynamics. The soft X-ray NRs are caused by the interference between the bulk ablated surface and nanometer-scale thin spallation layer. The spallation layer was kept at the late timing of the ablation dynamics, and the height of that reached over 100 μm. The temporal evolution of the bulk ablated surface was observed in the ablation dynamics. From these results, we have succeeded in obtaining the temporal evolution of the ablation front exfoliated from the gold surface.

  18. Oxidation Kinetics and Spallation Model of Oxide Scale during Cooling Process of Low Carbon Microalloyed Steel

    Science.gov (United States)

    Cao, Guangming; Li, Zhifeng; Tang, Junjian; Sun, Xianzhen; Liu, Zhenyu

    2017-09-01

    The spallation behavior of oxide scale on the surface of low carbon microalloyed steel (510L) is investigated during the laminar cooling of hot rolling strip. Surface, cross-section morphology and phase composition of oxide scale in different laminar cooling rate are observed by scanning electron microscopy (SEM) and X-Ray Diffraction (XRD). Moreover, a spallation mathematic model is established based on empirical formula to predict the critical thickness of oxide scale and the test of high temperature oxidation kinetics at different temperatures between 500 °C to 900 °C provides oxidation rate constant for the model calculation. The results of heat-treatment test and model calculation reveal that laminar cooling rate plays an important role in controlling the thickness of oxide scale and suppressing spallation behavior.

  19. An empirical formula for isotopic yield in Fe + p spallation reactions

    Science.gov (United States)

    Ma, Chun-Wang; Xu, Jing-Li

    2017-12-01

    An empirical formula is proposed for predicting the cross sections of fragments in a spallation reaction. The cross sections of fragments measured in the 300, 500, 750, 1000 and 1500 MeV u‑1 56Fe + p spallation reactions are analysed. The mass and incident energy dependence of the isotopic yield have been considered in the empirical formula. The cross sections of fragments predicted by the proposed empirical formula and the spallation residue cross section (spacs) parameterizations have been compared to the experimental results, showing that both of them can predict the results well. The cross sections of fragments in the 1000 MeV u‑1 136Xe + p reactions can also be predicted by the proposed formula, while the spacs parameterizations significantly underestimate the measured results. The empirical formula is useful for predicting the yield of radioactive nuclei produced in proton therapy.

  20. Detection of the multiple spallation parameters and the internal structure of a particle cloud during shock-wave loading of a metal

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A. V., E-mail: fedorovsarov@mail.ru; Mikhailov, A. L.; Finyushin, S. A.; Kalashnikov, D. A.; Chudakov, E. A.; Butusov, E. I.; Gnutov, I. S. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (VNIIEF) (Russian Federation)

    2016-04-15

    The results of experiments on studying spallation and the ejection of particles from the surfaces of copper and lead samples are presented. A laser interferometry method is used to detect the particle cloud velocity and the multiple spallation parameters. Angular detectors are used to detect the depth profile of the particle cloud velocity dispersion and the structure of metal spallation.

  1. Ultra-cold neutron production with superfluid helium and spallation neutrons

    CERN Document Server

    Masuda, Y

    2000-01-01

    Ultra-cold neutrons (UCN) production in superfluid helium with spallation neutrons is discussed. A source is described, where superfluid helium is located in a cold moderator of deuterium at 20 K surrounded by a thermal moderator of heavy water at 300 K. A lead target is installed in the thermal moderator for neutron production via a medium energy proton induced spallation reaction. A Monte Carlo simulation showed that a UCN density of the order of 10 sup 5 n/cm sup 3 is achievable with an acceptable heat load for the helium cryostat.

  2. The spallation in reverse kinematics: what for a coincidence measurement?; La spallation en cinematique inverse: pourquoi faire une mesure en coincidence?

    Energy Technology Data Exchange (ETDEWEB)

    Ducret, J.E

    2006-07-15

    The Spaladin installation has been designed to study spallation reactions in reverse kinematics. Furthermore, the heavy and light fragments are detected by coincidence which allows us to get an instantaneous picture of the reaction at a level of accuracy better than that obtained through inclusive measurement. The first part is dedicated to the theoretical description of the different mechanisms involved in the spallation reactions. In the second part we describe the Spaladin installation and report some results on the reaction: Fe{sup 56} + p at an energy of 1 GeV/nucleon. In the third part we expose the performance of the installation through its simulation with the Geant-IV model. We present a study about the sensitivity of the Spaladin installation to theoretical predictions. The fourth part is dedicated to the future experiments that will be performed with the Spaladin installation. (A.C.)

  3. Preparation and Testing of Corrosion and Spallation-Resistant Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, John

    2015-11-01

    with the Rene 80. One-inch-diameter buttons were machined from each of the bonded blocks and sent to Siemens for standard oxidation, spallation, and corrosion testing, which should be complete in the spring of 2016.

  4. Dissertation: Precompound Emission of Energetic Light Fragments in Spallation Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-04

    Emission of light fragments (LF) from nuclear reactions is an open question. Different reaction mechanisms contribute to their production; the relative roles of each, and how they change with incident energy, mass number of the target, and the type and emission energy of the fragments is not completely understood. None of the available models are able to accurately predict emission of LF from arbitrary reactions. However, the ability to describe production of LF (especially at energies ≳ 30 MeV) from many reactions is important for different applications, such as cosmic-ray-induced Single Event Upsets (SEUs), radiation protection, and cancer therapy with proton and heavy-ion beams, to name just a few. The Cascade-Exciton Model (CEM) version 03.03 and the Los Alamos version of the Quark-Gluon String Model (LAQGSM) version 03.03 event generators in Monte Carlo N-Particle Transport Code version 6 (MCNP6) describe quite well the spectra of fragments with sizes up to ⁴He across a broad range of target masses and incident energies (up to ~ 5 GeV for CEM and up to ~ 1 TeV/A for LAQGSM). However, they do not predict the high energy tails of LF spectra heavier than ⁴He well. Most LF with energies above several tens of MeV are emitted during the precompound stage of a reaction. The current versions of the CEM and LAQGSM event generators do not account for precompound emission of LF larger than ⁴He. The aim of our work is to extend the precompound model in them to include such processes, leading to an increase of predictive power of LF-production in MCNP6. This entails upgrading the Modified Exciton Model currently used at the preequilibrium stage in CEM and LAQGSM. It also includes expansion and examination of the coalescence and Fermi break-up models used in the precompound stages of spallation reactions within CEM and LAQGSM. Extending our models to include emission of fragments heavier than ⁴He at the precompound stage has indeed provided results that have much

  5. Thermal hydraulic studies of spallation target for one-way coupled ...

    Indian Academy of Sciences (India)

    pp. 355–363. Thermal hydraulic studies of spallation target for one-way coupled Indian accelerator driven systems with low energy proton beam. V MANTHA1, A K MOHANTY2 and P SATYAMURTHY1. 1Laser and Plasma Technology Division; 2Nuclear Physics Division, Bhabha Atomic. Research Centre, Mumbai 400 085, ...

  6. Exploration of the Challenges of Neutron Optics and Instrumentation at Long Pulsed Spallation Sources

    DEFF Research Database (Denmark)

    Klenø, Kaspar Hewitt

    In this thesis I have explored the challenges of long guides and instrumentation for the long pulsed European Spallation Source. I have derived the theory needed for quantifying the performance of a guide using brilliance transfer. With this tool it is easier to objectively compare how well...

  7. Study of particle transport in a high power spallation target for an accelerator-driven transmutation system

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Nikhil Vittal

    2013-01-31

    AGATE is a project envisaged to demonstrate the feasibility of transmutation in a gas (helium) cooled accelerator-driven system using solid spallation target. Development of the spallation target module and assessing its safety aspects are studied in this work. According to the AGATE concept parameters, 600 MeV protons are delivered on to the segmented tungsten spallation target. The Monte Carlo toolkit Geant4 has been used in the simulation of particle transport. Binary cascade is used to simulate intra-nuclear cascades, along with the G4NDL neutron data library for low energy neutrons (<20 MeV).

  8. Spallation Neutron Spectrum on a Massive Lead/Paraffin Target Irradiated with 1 GeV Protons

    CERN Document Server

    Adam, J; Barashenkov, V S; Brandt, R; Golovatiouk, V M; Kalinnikov, V G; Katovsky, K; Krivopustov, M I; Kumar, V; Kumawat, H; Odoj, R; Pronskikh, V S; Solnyshkin, A A; Stegailov, V I; Tsoupko-Sitnikov, V M; Westmeier, W

    2004-01-01

    The spectra of gamma-ray emitted by decaying residual nuclei, produced by spallation neutrons with (n, xn), (n,xnyp), (n,p), (n,gamma) reactions in activation threshold detectors - namely, ^{209}Bi, ^{197}Au, ^{59}Co, ^{115}In, ^{232}Th, were measured in the Laboratory of Nuclear Problems (LNP), JINR, Dubna, Russia. Spallation neutrons were generated by bombarding a 20 cm long cylindrical lead target, 8 cm in diameter, surrounded by a 6 cm thick layer of paraffin moderator, with a 1 GeV proton beam from the Nuclotron accelerator. Reaction rates and spallation neutron spectrum were measured and compared with CASCADE code calculations.

  9. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren

    energy and an increase in the loading of the wind turbine structure and components. This dissertation examines the hypothesis that there are advantages of basing a yaw system on hydraulic components instead of normal electrical components. This is done through a state of the art analysis followed...... in the wind turbine yaw system along with minor reductions in the blades and main shaft. Optimization of the damping and stiffness of the hydraulic soft yaw system have been conducted and an optimum found for load reduction. Linear control algorithms for control of damping pressure peaks have been developed...... and tested in simulations with success. To verify the results of the new hydraulic soft yaw concept a novel friction model for including coulomb in the yaw system is developed and implemented in the FAST aeroelastic code from NREL in order to include friction phenomena. A cosimulation interface between...

  10. Power Electronic System for Multi-MW PV sites

    DEFF Research Database (Denmark)

    Paasch, Kasper

    in Sønderborg (DK) was implemented. A total of 17 PV-inverters have been monitored during a period exceeding one year and the recorded data constitutes the basis of this investigation. A part of the 2.1 MW PV plant was reconfigured to emulate the behavior of a central-inverter and solar panels distributed over...... a distance of 160 m. In parallel a string based inverter configuration was established with solar panels at the same locations. An analysis of irradiation data recorded during the test period showed that non-uniform irradiance due to moving clouds is expected to influence the PV plants for less than 4.......4%. A portable IV-scanning instrument for the fast long term characterization of solar panels was developed as part of the project. Each second a sweep of the IV-characteristics of a solar panel is performed and the result stored for later analysis. The instrument is based on an active load, is optimized...

  11. Spallation recoil II: Xenon evidence for young SiC grains

    Science.gov (United States)

    Ott, U.; Altmaier, M.; Herpers, U.; Kuhnhenn, J.; Merchel, S.; Michel, R.; Mohapatra, R. K.

    2005-11-01

    We have determined the recoil range of spallation xenon produced by irradiation of Ba glass targets with ˜1190 and ˜268 MeV protons, using a catcher technique, where spallation products are measured in target and catcher foils. The inferred range for 126Xe produced in silicon carbide is ˜0.19 μm, which implies retention of ˜70% for 126Xe produced in "typical" presolar silicon carbide grains of 1 μm size. Recoil loss of spallation xenon poses a significantly smaller problem than loss of the spallation neon from SiC grains. Ranges differ for the various Xe isotopes and scale approximately linearly as function of the mass difference between the target element, Ba, and the product. As a consequence, SiC grains of various sizes will have differences in spallation Xe composition. In an additional experiment at ˜66 MeV, where the recoil ranges of 22Na and 127Xe produced on Ba glass were determined using γ-spectrometry, we found no evidence for recoil ranges being systematically different at this lower energy. We have used the new data to put constraints on the possible presolar age of the SiC grains analyzed for Xe by Lewis et al. (1994). Uncertainties in the composition of the approximately normal Xe component in SiC (Xe-N) constitute the most serious problem in determining an age, surpassing remaining uncertainties in Xe retention and production rate. A possible interpretation is that spallation contributions are negligible and that trapped 124Xe/126Xe is ˜5% lower in Xe-N than in Q-Xe. But also for other reasonable assumptions for the 124Xe/126Xe ratio in Xe-N (e.g., as in Q-Xe), inferred exposure ages are considerably shorter than theoretically expected lifetimes for interstellar grains. A short presolar age is in line with observations by others (appearance, grain size distribution) that indicate little processing in the interstellar medium (ISM) of surviving (crystalline) SiC. This may be due to amorphization of SiC in the ISM on a much shorter time scale

  12. Studies of short-lived products of spallation fission reactions at TRIUMF

    CERN Document Server

    Bischoff, G; D'Auria, J M; Dautet, H; Lee, J K P; Pate, B D; Wiesehahn, W

    1976-01-01

    The gas-jet recoil transport technique has been used to transport products from spallation and fission reactions from a target chamber to a shielded location for nuclear spectroscopic studies. These involve X- beta - gamma coincidence measurements and (shortly) time- of-flight mass spectroscopy. It has been deduced that the proton beam at present intensities has no appreciable effect on the ability of ethylene and other cluster-producing gases to transport radioactivity. Preliminary results will be presented for shortlived fission products from uranium, and for spallation products of iodine and argon. The latter were obtained from the bombardment of gas and aerosol targets mixed with the transporting gas in the target chamber, which appears to be a generally useful technique.

  13. Low-loss design for the high-intensity accumulator ring of the Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    J. Wei

    2000-08-01

    Full Text Available This paper summarizes the low-loss design for the Spallation Neutron Source accumulator ring [“Spallation Neutron Source Design Manual” (unpublished]. A hybrid lattice consisting of FODO arcs and doublet straights provides optimum matching and flexibility for injection and collimation. For this lattice, optimization focuses on six design goals: a space-charge tune shift low enough (below 0.15 to avoid strong resonances, adequate transverse and momentum acceptance for efficient beam collimation, injection optimized for desired target beam shape and minimal halo development, compensation of magnet field errors, control of impedance and instability, and prevention against accidental system malfunction. With an expected collimation efficiency of more than 90%, the uncontrolled fractional beam loss is expected to be at the 10^{-4} level.

  14. Studies Performed in Preparation for the Spallation Neutron Source Accumulator Ring Commissioning

    CERN Document Server

    Cousineau, Sarah M; Henderson, Stuart; Holmes, Jeffrey Alan; Plum, Michael

    2005-01-01

    The Spallation Neutron Source accumulator ring will compress 1.5?1014, 1 GeV protons from a 1 ms bunch train to a single 695 ns proton bunch for use in neutron spallation. Due to the high beam power, unprecedented control of beam loss will be required in order to control radiation and allow for hands-on maintenance in most areas of the ring. A number of detailed investigations have been performed to understand the primary sources of beam loss and to predict and mitigate problems associated with radiation hot spots in the ring. The ORBIT particle tracking code is used to perform realistic simulations of the beam accumulation in the ring, including detailed modeling of the injection system, transport through the measured magnet fields including higher order multipoles, and beam loss and collimation. In this paper we present the results of a number of studies performed in preparation for the 2006 commissioning of the accumulator ring.

  15. Radioprotection and Shielding Aspects of the nTOF Spallation Source

    CERN Document Server

    Vlachoudis, V; Buono, S; Cennini, P; Dahlfors, M; Ferrari, A; Kadi, Y; Herrera-Martínez, A; Lacoste, V; Radermacher, E; Rubbia, Carlo; Zanini, L

    2002-01-01

    The neutron Time of Flight (nTOF) facility at CERN is a high flux neutron source obtained by the spallation of 20 GeV/c protons onto a solid lead target. The first experimental measurements performed in Apr. 2001 have revealed an important neutron background, 50 to 100 times higher than expected, along with some secondary effects like air activation, with a strong presence of 7Be and 41Ar. In a subsequent study this neutron background was accounted to the strong presence of charged particles and especially negative muons, resulting from the interaction of the high-energy proton beam with the lead target. The present paper reports the study and solutions to the radioprotection and shielding aspects related to the nTOF spallation source.

  16. Synthesis of neutron-rich transuranic nuclei in fissile spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Mishustin, Igor, E-mail: mishustin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); “Kurchatov Institute”, National Research Center, 123182 Moscow (Russian Federation); Malyshkin, Yury, E-mail: malyshkin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Pshenichnov, Igor, E-mail: pshenich@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Greiner, Walter [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany)

    2015-04-15

    A possibility of synthesizing neutron-rich superheavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to {sup 249}Bk can be produced in multiple neutron capture reactions in macroscopic quantities. However, the neutron flux achievable in a spallation target is still insufficient to overcome the so-called fermium gap. Further optimization of the target design, in particular, by including moderating material and covering it by a reflector could turn ADS into an alternative source of transuranic elements in addition to nuclear fission reactors.

  17. Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves.

    Science.gov (United States)

    Stan, Claudiu A; Willmott, Philip R; Stone, Howard A; Koglin, Jason E; Liang, Mengning; Aquila, Andrew L; Robinson, Joseph S; Gumerlock, Karl L; Blaj, Gabriel; Sierra, Raymond G; Boutet, Sébastien; Guillet, Serge A H; Curtis, Robin H; Vetter, Sharon L; Loos, Henrik; Turner, James L; Decker, Franz-Josef

    2016-06-02

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below -100 MPa were reached in the drops. We model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

  18. Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments

    Science.gov (United States)

    Kosmas, T. S.; Papoulias, D. K.; Tórtola, M.; Valle, J. W. F.

    2017-09-01

    We investigate the impact of a fourth sterile neutrino at reactor and Spallation Neutron Source neutrino detectors. Specifically, we explore the discovery potential of the TEXONO and COHERENT experiments to subleading sterile neutrino effects through the measurement of the coherent elastic neutrino-nucleus scattering event rate. Our dedicated χ2-sensitivity analysis employs realistic nuclear structure calculations adequate for high purity sub-keV threshold Germanium detectors.

  19. Behavior of structural and target materials irradiated in spallation neutron environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, J.F. [Univ. of Illinois, Urbana, IL (United States). Dept. of Nuclear Engineering; Wechsler, M. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Borden, M.; Sommer, W.F. [Los Alamos National Lab., NM (United States)

    1995-05-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources.

  20. Process technology and effects of spallation products: Circuit components, maintenance, and handling

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, B.; Haines, S.J.; Dressler, R.; McManamy, T.

    1996-06-01

    Working Session D included an assessment of the status of the technology and components required to: (1) remove impurities from the liquid metal (mercury or Pb-Bi) target flow loop including the effects of spallation products, (2) provide the flow parameters necessary for target operations, and (3) maintain the target system. A series of brief presentations were made to focus the discussion on these issues. The subjects of these presentations, and presenters were: (1) Spallation products and solubilities - R. Dressler; (2) Spallation products for Pb-Bi - Y. Orlov; (3) Clean/up/impurity removal components - B. Sigg; (4) {open_quotes}Road-Map{close_quotes} and remote handling needs - T. McManamy; (5) Remote handling issues and development - M. Holding. The overall conclusion of this session was that, with the exception of (i) spallation product related processing issues, (ii) helium injection and clean-up, and (iii) specialized remote handling equipment, the technology for all other circuit components (excluding the target itself) exists. Operating systems at the Institute of Physics in Riga, Latvia (O. Lielausis) and at Ben-Gurion University in Beer Shiva, Israel (S. Lesin) have demonstrated that other liquid metal circuit components including pumps, heat exchangers, valves, seals, and piping are readily available and have been reliably used for many years. In the three areas listed above, the designs and analysis are not judged to be mature enough to determine whether and what types of technology development are required. Further design and analysis of the liquid metal target system is therefore needed to define flow circuit processing and remote handling equipment requirements and thereby identify any development needs.

  1. Spallation-based neutron target for direct studies of neutron-induced reactions in inverse kinematics

    Science.gov (United States)

    Reifarth, René; Göbel, Kathrin; Heftrich, Tanja; Weigand, Mario; Jurado, Beatriz; Käppeler, Franz; Litvinov, Yuri A.

    2017-04-01

    We discuss the possibility to build a neutron target for nuclear reaction studies in inverse kinematics utilizing a storage ring and radioactive ion beams. The proposed neutron target is a specially designed spallation target surrounded by a large moderator of heavy water (D2O ). We present the resulting neutron spectra and their properties as a target. We discuss possible realizations at different experimental facilities.

  2. The thermal triple-axis-spectrometer EIGER at the continuous spallation source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U., E-mail: uwe.stuhr@psi.ch [Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Roessli, B.; Gvasaliya, S. [Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Rønnow, H.M. [Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Féderale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Filges, U.; Graf, D.; Bollhalder, A.; Hohl, D.; Bürge, R.; Schild, M.; Holitzner, L.; Kaegi, C.; Keller, P.; Mühlebach, T. [Laboratory for Scientific Development and Novel Materials, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2017-05-01

    EIGER is the new thermal triple-axis-spectrometer at the continuous spallation SINQ at PSI. The shielding of the monochromator consists only of non- or low magnetizable materials, which allows the use of strong magnetic fields with the instrument. This shielding reduces the high energy neutron contamination to a comparable level of thermal spectrometers at reactor sources. The instrument design, the performance and first results of the spectrometer are presented.

  3. Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper

    CERN Document Server

    Akimov, D; Barbeau, P; Barton, P; Bolozdynya, A; Cabrera-Palmer, B; Cavanna, F; Cianciolo, V; Collar, J; Cooper, R J; Dean, D; Efremenko, Y; Etenko, A; Fields, N; Foxe, M; Figueroa-Feliciano, E; Fomin, N; Gallmeier, F; Garishvili, I; Gerling, M; Green, M; Greene, G; Hatzikoutelis, A; Henning, R; Hix, R; Hogan, D; Hornback, D; Jovanovic, I; Hossbach, T; Iverson, E; Klein, S R; Khromov, A; Link, J; Louis, W; Lu, W; Mauger, C; Marleau, P; Markoff, D; Martin, R D; Mueller, P; Newby, J; Orrell, J; O'Shaughnessy, C; Pentilla, S; Patton, K; Poon, A W; Radford, D; Reyna, D; Ray, H; Scholberg, K; Sosnovtsev, V; Tayloe, R; Vetter, K; Virtue, C; Wilkerson, J; Yoo, J; Yu, C H

    2013-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white paper, we describe how the SNS source can be used for a measurement of coherent elastic neutrino-nucleus scattering (CENNS), and the physics reach of different phases of such an experimental program (CSI: Coherent Scattering Investigations at the SNS).

  4. The Spallator and APEX Nuclear Fuel Cycle a New Option for Nuclear Power

    Science.gov (United States)

    Steinberg, M.

    1983-02-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high energy (1 to 2 GeV) protons on a heavy metal target. The neutrons are absorbed in a surrounding natural uranium or thorium blanket in which fissile Pu-239 or U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high beam current continuous wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of the short-lived fission products external to the fuel cycle eliminates the need for long-term geological age storage of fission product waste.

  5. Design specification for the European Spallation Source neutron generating target element

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, A. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Sordo, F., E-mail: fernando.sordo@essbilbao.org [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Mora, T. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Mena, L. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Magan, M.; Vivanco, R. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Jimenez-Villacorta, F. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Sjogreen, K.; Oden, U. [European Spallation Source ERIC, P.O Box 176, SE-221 00 Lund (Sweden); Perlado, J.M. [Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); and others

    2017-06-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  6. Experimental Study of the Phenomenology of Spallation Neutrons in a Large Lead Block

    CERN Multimedia

    Galvez Altamirano, J; Lopez, C; Perlado, J M; Perez-Navarro, A

    2002-01-01

    %PS211 %title \\\\ \\\\The purpose of PS211 is to determine how neutrons, produced by spallation inside a large Lead volume are slowed down by undergoing a very large number of scatterings, losing each time a small fraction ($\\sim$ 1\\%) of their kinetic energy. The focus is in determining the probability for a spallation neutron produced at an energy of several MeV or more, to survive capture on Lead resonances and to reach resonance energies of materials to be transmuted, such as 5.6 eV for $^{99}$Tc. This process, of Adiabatic Resonance Crossing, involves a subtle interplay between the capture resonances of the Lead medium and of selected impurities. This phenomenology of spallation neutrons in a large Lead volume, is the physics foundation of the Fast Energy Amplifier proposed by C. Rubbia, and could open up new possibilities in the incineration of long-lived nuclear waste such as Actinides or Fission Fragments (e.g. $^{99}$Tc, $^{129}$I, etc.).\\\\ \\\\334 tons of high purity Lead, installed in t7, are exposed to...

  7. Technical concepts for a long-wavelength target station for the Spallation Neutron Source.

    CERN Document Server

    Carpenter, J M

    2002-01-01

    The Spallation Neutron Source (SNS), a major new user facility for materials research funded by the U.S. Department of Energy (DOE), is under construction at Oak Ridge National Laboratory (ORNL), see the Spallation Neutron Source web site at: www.sns.gov/aboutsns/source/htm. The SNS will operate at a proton beam power of 1.4 MW delivered in short pulses at 60 Hz; this power level is an order of magnitude higher than that of the current most intense pulsed spallation neutron facility in the world, ISIS at the Rutherford-Appleton Laboratory in the United Kingdom: 160 kW at 50 Hz. When completed in 2006, the SNS will supply the research community with neutron beams of unprecedented intensity and a powerful, diverse instrument suite with exceptional capabilities. Together, these will enable a new generation of experimental studies of interest to chemists, condensed matter physicists, biologists, materials scientists, and engineers, in an ever-increasing range of applications. The Long-Wavelength Target Station (L...

  8. The Effect of Beam Intensity on Temperature Distribution in ADS Windowless Lead-Bismuth Eutectic Spallation Target

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-01-01

    Full Text Available The spallation target is the component coupling the accelerator and the reactor and is regarded as the “heart” of the accelerator driven system (ADS. Heavy liquid metal lead-bismuth eutectic (LBE is served as core coolant and spallation material to carry away heat deposition of spallation reaction and produce high flux neutron. So it is very important to study the heat transfer process in the target. In this paper, the steady-state flow pattern has been numerically obtained and taken as the input for the nuclear physics calculation, and then the distribution of the extreme large power density of the heat load is imported back to the computational fluid dynamics as the source term in the energy equation. Through the coupling, the transient and steady-state temperature distribution in the windowless spallation target is obtained and analyzed based on the flow process and heat transfer. Comparison of the temperature distribution with the different beam intensity shows that its shape is the same as broken wing of the butterfly. Nevertheless, the maximum temperature as well as the temperature gradient is different. The results play an important role and can be applied to the further design and optimization of the ADS windowless spallation target.

  9. Modelling of the spallation reaction: analysis and testing of nuclear models; Simulation de la spallation: analyse et test des modeles nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Toccoli, C

    2000-04-03

    The spallation reaction is considered as a 2-step process. First a very quick stage (10{sup -22}, 10{sup -29} s) which corresponds to the individual interaction between the incident projectile and nucleons, this interaction is followed by a series of nucleon-nucleon collisions (intranuclear cascade) during which fast particles are emitted, the nucleus is left in a strongly excited level. Secondly a slower stage (10{sup -18}, 10{sup -19} s) during which the nucleus is expected to de-excite completely. This de-excitation is performed by evaporation of light particles (n, p, d, t, {sup 3}He, {sup 4}He) or/and fission or/and fragmentation. The HETC code has been designed to simulate spallation reactions, this simulation is based on the 2-steps process and on several models of intranuclear cascades (Bertini model, Cugnon model, Helder Duarte model), the evaporation model relies on the statistical theory of Weiskopf-Ewing. The purpose of this work is to evaluate the ability of the HETC code to predict experimental results. A methodology about the comparison of relevant experimental data with results of calculation is presented and a preliminary estimation of the systematic error of the HETC code is proposed. The main problem of cascade models originates in the difficulty of simulating inelastic nucleon-nucleon collisions, the emission of pions is over-estimated and corresponding differential spectra are badly reproduced. The inaccuracy of cascade models has a great impact to determine the excited level of the nucleus at the end of the first step and indirectly on the distribution of final residual nuclei. The test of the evaporation model has shown that the emission of high energy light particles is under-estimated. (A.C.)

  10. Theoretic programs related to spallation neutron source for ADS. Pt.2: Thick target simulations The ADS is stated for Accelector Driven System

    CERN Document Server

    Fan Sheng; Shen Qing Biao; Zhao Zhi Xiang

    2002-01-01

    The spallation neutron target for intermediate energy proton incident is an important link for accelerator and subcritical reactor of accelerator driven system (ADS). The theoretic programs and Monte-Carlo codes are a useful approach for solving the physics of spallation neutron source. The authors discuss those codes at present work and introduce the application and development of SHIELD code

  11. On the significance of the energy correlations of spallation neutrons on the neutron fluctuations in accelerator-driven subcritical systems

    CERN Document Server

    Pázsit, I; Fhager, V

    2000-01-01

    Studies of neutron fluctuations in spallation-driven subcritical systems require the use of energy-dependent master equations. In particular, calculation of the second moment of the neutron distribution requires knowledge on the energy correlations (two-point distributions) of the source particles. It is shown here that such correlations will exist even if the energies of all neutrons, generated in any single spallation event, are independent, provided that the energy distribution of the neutrons for separate spallation events is dependent on the number of neutrons generated. A simple model of number dependence of the energy spectrum is constructed, and the arising energy correlations are calculated. The error in calculating the second moment of the neutron distribution, arising when assuming zero correlations (i.e. using only one-particle energy spectra), is estimated in a simple model of neutron slowing down.

  12. "Innovation and Intellectual Property Policies in European Research Infrastructure Consortia - PART I: The Case of the European Spallation Source ERIC"

    DEFF Research Database (Denmark)

    Yu, Helen; Wested, Jakob; Minssen, Timo

    2017-01-01

    of the problems society is facing today. To facilitate the creation and operation of such RIs, the EU adopted legal frameworks for European Research Infrastructure Consortia (ERIC). On August 31, 2015, the European Spallation Source (ESS) was established as an ERIC. Under the ERIC Regulations and ESS Statutes......, the European Spallation Source ERIC is required to adopt various policy documents relating to the operation and management of the facility. These cover a wide variety of issues such as user access, public procurement, intellectual property rights (IPR), data management, and dissemination. One of the main goals...... international research collaborations? The complex relationship between scientific excellence, innovation, and IPRs must be carefully considered. Taking the European Spallation Source ERIC as an example, this article investigates ERIC Regulations and EU policies and discusses what issues and perspectives ERICs...

  13. Spallation Neutrons and Pressure SNAP DE-FG02-03ER46085 CLOSE-OUT MAY 2009

    Energy Technology Data Exchange (ETDEWEB)

    Parise, John B

    2009-05-22

    The purpose of the grant was to build a community of scientist and to draw upon their expertise to design and build the world's first dedicated high pressure beamline at a spallation source - the so called Spallation Neutron And Pressure (SNAP) beamline at the Spallation Neutron Source (SNS) at OAk Ridge NAtional LAboratory. . Key to this endeavor was an annual meeting attended by the instrument design team and the executive committee. The discussions at those meeting set an ambitious agenda for beamline design and construction and highlighted key science areas of interest for the community. This report documents in 4 appendices the deliberations at the annual SNAP meetings and the evolution of the beamline optics from concept to construction. The appendices also contain key science opportunities for extreme conditions research.

  14. Mitigation and Prediction of Spallation of Oxide Scales on Ferritic Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Y. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephens, Elizabeth V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Zhijie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-04

    This report summarizes results from experimental and modeling studies performed by researchers at Pacific Northwest National Laboratory on behalf of the Solid-State Energy Conversion Alliance (SECA) Core Technology Program. The results indicate that application of physical surface modifications, such as surface blasting, prior to application of protective surface coatings can substantially increase oxide scale spallation resistance during long-term exposure to elevated temperatures (e.g., 800-850ºC). To better understand and predict the benefits of surface modification, an integrated modeling framework was developed and applied to the obtained experimental results.

  15. Stabilized operation of the Spallation Neutron Source radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    Sang-ho Kim

    2010-07-01

    Full Text Available The Spallation Neutron Source (SNS radio-frequency quadrupole (RFQ had resonance control instabilities at duty factors higher than approximately 4%. Systematic investigations have been carried out to understand the cause of the instability and to ensure the operational stability of the RFQ. The most critical source of the instability is revealed to be an interaction between hydrogen released by beam bombardments and the RFQ rf field resulting in a discharge, which consumes additional rf power and could cause the RFQ to operate in an unstable region. This paper reports improvement of the SNS RFQ operational stability based on the findings during the SNS operation.

  16. Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper

    CERN Document Server

    Bolozdynya, A; Efremenko, Y; Garvey, G T; Gudkov, V; Hatzikoutelis, A; Hix, W R; Louis, W C; Link, J M; Markoff, D M; Mills, G B; Patton, K; Ray, H; Scholberg, K; Van de Water, R G; Virtue, C; White, D H; Yen, S; Yoo, J

    2012-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this document, the product of a workshop at the SNS in May 2012, we describe this free, high-quality stopped-pion neutrino source and outline various physics that could be done using it. We describe without prioritization some specific experimental configurations that could address these physics topics.

  17. The spallation neutron source SINQ. A new large facility for research at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.; Crawford, J.F.

    1994-12-31

    This document is intended to familiarize the non-specialist with the principles of neutron scattering and some of its applications. It presents an overview of the foundations of neutron scattering, the basic types of instruments used, and their principles of operation. The design concept and some technical details of the spallation neutron source are described for the benefit of the scientifically or technically interested reader. In future this source will form the heart of the instruments available to PSI`s wide community of neutron scattering researchers. (author) 32 figs., 1 tab.

  18. Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Bolozdynya, A. [Moscow Phys. Eng. Inst.; Cavanna, F. [INFN, Aquila; Efremenko, Y. [Tennessee U.; Garvey, G. T. [Los Alamos; Gudkov, V. [South Carolina U.; Hatzikoutelis, A. [Tennessee U.; Hix, W. R. [Oak Ridge; Louis, W. C. [Los Alamos; Link, J. M. [Virginia Tech.; Markoff, D. M. [North Carolina Central U.; Mills, G. B. [Los Alamos; Patton, K. [North Carolina State U.; Ray, H. [Florida U.; Scholberg, K. [Duke U.; Van de Water, R. G. [Los Alamos; Virtue, C. [Laurentian U.; White, D. H. [Los Alamos; Yen, S. [TRIUMF; Yoo, J. [Fermilab

    2012-11-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this document, the product of a workshop at the SNS in May 2012, we describe this free, high-quality stopped-pion neutrino source and outline various physics that could be done using it. We describe without prioritization some specific experimental configurations that could address these physics topics.

  19. SEE cross section calibration and application to quasi-monoenergetic and spallation facilities

    Directory of Open Access Journals (Sweden)

    Alía Rubén García

    2017-01-01

    Full Text Available We describe an approach to calibrate SEE-based detectors in monoenergetic fields and apply the resulting semi-empiric responses to more general mixed-field cases in which a broad variety of particle species and energy spectra are involved. The calibration of the response functions is based both on experimental proton and neutron data and considerations derived from Monte Carlo simulations using the FLUKA code. The application environments include the quasi-monoenergetic neutrons at RCNP, the atmospheric-like VESUVIO spallation spectrum and the CHARM high-energy accelerator test facility.

  20. First results of the new n-TOF spallation target commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Berthoumieux, E.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Becares, V.; Becvar, F.; Belloni, F.; Berthier, B.; Brugger, M.; Calviani, M.; Calvino, F.; Cano-Ott, D.; Carrapico, C.; Cennini, P.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortes, G.; Cortes-Giraldo, M.A.; Dillmann, I.; Domingo-Pardo, C.; Duran, I.; Fernandez-Ordonez, M.; Ferrari, A.; Ganesan, S.; Giubrone, G.; Gomez-Hornillos, M.B.; Goncalves, I.F.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Harrisopulos, S.; Heil, M.; Ioannides, K.; Jericha, E.; Kadi, Y.; Kappeler, F.; Karadimos, D.; Krticka, M.; Lebbos, E.; Lederer, C.; Leeb, H.; Losito, R.; Lozano, M.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.F.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P.M.; Mosconi, M.; Nolte, R.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plag, R.; Praena, J.; Quesada, J.M.; Rauscher, T.; Reifarth, R.; Roman, F.; Rubbia, C.; Sarmento, R.; Tagliente, G.; Tain, J.L.; Tarrio, D.; Tassan-Got, L.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Vykydal, Z.; Wallner, A.; Weib, C.

    2009-07-01

    The Neutron Time of Flight facility n-TOF located at CERN started to take data in 2001. Due to an increase of radioactivity released in the cooling water the experiment was stopped by end of 2004. In 2008 a new spallation target has been installed. In 2009 the collaboration has performed the full commissioning of the facility, consisting in the determination of the fluence, the beam profile, and the energy resolution of the neutron beam. After a brief description of the new target assembly, very preliminary results concerning the shape of the neutron fluence and its absolute value will be given. Measurements of the neutron beam profile will also be shown. (authors)

  1. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    Science.gov (United States)

    Kim, S.-H.; Afanador, R.; Barnhart, D. L.; Crofford, M.; Degraff, B. D.; Doleans, M.; Galambos, J.; Gold, S. W.; Howell, M. P.; Mammosser, J.; McMahan, C. J.; Neustadt, T. S.; Peters, C.; Saunders, J. W.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.

    2017-04-01

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenance activities for cryomodules are introduced.

  2. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual

  3. Spallation study with proton beams around 1 GeV: neutron production

    CERN Document Server

    Boudard, A; Brochard, F; Crespin, S; Drake, D; Duchazeaubeneix, J C; Durand, D; Durand, J M; Frehaut, J; Hanappe, F; Kowalski, L A; Lebrun, C; Lecolley, F R; Lecolley, J F; Ledoux, X; Lefèbvres, F; Legrain, R; Leray, S; Louvel, M; Martínez, E; Meigo, S I; Ménard, S; Milleret, G; Patin, Y; Petibon, E; Plouin, F; Pras, P; Schapira, J P; Stuttgé, L; Terrien, Y; Thun, J; Uematsu, M; Varignon, C; Volant, C; Whittal, D M; Wlazlo, W

    2000-01-01

    Experiments performed at Lab. Nat. SATURNE on neutron produced by spallation from proton beams in the range 0.8 - 1.6 GeV are presented. Experimental data compared with codes show a significant improvement of the recent intra-nuclear cascade (J. Cugnon). This is also true in the same way for the neutron production from thick targets. However the model underestimates the energetic neutrons produced in the backward direction and other quantities as residual nuclei cross sections are not accurately predicted.

  4. Pressure and stress waves in a spallation neutron source mercury target generated by high-power proton pulses

    CERN Document Server

    Futakawa, M; Conrad, H; Stechemesser, H

    2000-01-01

    The international ASTE collaboration has performed a first series of measurements on a spallation neutron source target at the Alternating Gradient Synchrotron (AGS) in Brookhaven. The dynamic response of a liquid mercury target hit by high-power proton pulses of about 40 ns duration has been measured by a laser Doppler technique and compared with finite elements calculations using the ABAQUS code. It is shown that the calculation can describe the experimental results for at least the time interval up to 100 mu s after the pulse injection. Furthermore, it has been observed that piezoelectric pressure transducers cannot be applied in the high gamma-radiation field of a spallation target.

  5. Baseline Design of a Solid Neutron Converter Driven by 160 MeV Protons

    CERN Document Server

    Herrera-Martínez, A

    2006-01-01

    The European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL DS) aims at the design of several spallation and fission targets for the production of radioactive isotopes. Namely, direct targets, where high-energy protons interact directly with the fission targets, as well as the design of a Multi-MW proton-to-neutron converter coupled with a fission target. For the later, several options have been proposed, including the use of a relatively low energy (in the hundreds of MeV) high intensity proton beam. In this scope, the neutronic characteristics of a tantalum n-converter/fission-target system have been established (although not yet optimised) for a reference proton energy of 160 MeV. A set of simulations has been carried out for different design requirements and different characteristics of the proton beam. An extensive comparison of the main physical parameters has also been carried out, in order to allow the optimal engineering design of the whole target station.

  6. HIE-ISOLDE: Baseline Design of a Solid Neutron Converter Driven by 160 MeV Protons

    CERN Document Server

    Kadi, Yacine

    The European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL DS) aims at the design of several spallation and fission targets for the production of radioactive isotopes. Namely, direct targets, where high-energy protons interact directly with the fission targets, as well as the design of a Multi-MW proton-to-neutron converter coupled with a fission target. For the later, several options have been proposed, including the use of a relatively low energy (in the hundreds of MeV) high intensity proton beam. In this scope, the neutronic characteristics of a tantalum n-converter/fission-target system have been established (although not yet optimised) for a reference proton energy of 160 MeV. A set of simulations has been carried out for different design requirements and different characteristics of the proton beam. An extensive comparison of the main physical parameters has also been carried out, in order to allow the optimal engineering design of the whole target station.

  7. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Institut, Spallation Neutron Source Division, Villigen-PSI (Switzerland); Salvatores, M. [CEA Cadarache, Direction des Reacteurs Nucleaires, Saint-Paul-lez-Durance Cedex (France); Heusener, G. [Forschungszentrum Karlsruhe, Projekt Nukleare Sicherheitsforschung, Karlsruhe (Germany)

    2001-03-01

    MEGAPIE (Megawatt Pilot Target Experiment) is an initiative launched by Commissariat a l'Energie Atomique, Cadarache (France) and Forschungszentrum Karlsruhe (Germany) in collaboration with Paul Scherrer Institut (Switzerland), to demonstrate, in an international collaboration, the feasibility of a liquid lead bismuth target for spallation facilities at a beam power level of 1 MW. Such a target is under consideration for various concepts of accelerator driven systems (ADS) to be used in transmutation of nuclear waste and other applications world-wide. It also has the potential of increasing significantly the thermal neutron flux available at the spallation neutron source (SINQ) for neutron scattering. SINQ's beam power being close to 1 MW already, this facility offers a unique opportunity to realize such an experiment with a reasonably small number of new ancillary systems. The paper describes the basic features of the experiment and its boundary conditions, the technical concept of the target and underlying research carried out at participating laboratories. (author)

  8. The test beamline of the European Spallation Source – Instrumentation development and wavelength frame multiplication

    Energy Technology Data Exchange (ETDEWEB)

    Woracek, R., E-mail: robin.woracek@esss.se [European Spallation Source ESS ERIC, P.O. Box 176, SE-22100 Lund (Sweden); Hofmann, T.; Bulat, M. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Sales, M. [Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby (Denmark); Habicht, K. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Andersen, K. [European Spallation Source ESS ERIC, P.O. Box 176, SE-22100 Lund (Sweden); Strobl, M. [European Spallation Source ESS ERIC, P.O. Box 176, SE-22100 Lund (Sweden); Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby (Denmark)

    2016-12-11

    The European Spallation Source (ESS), scheduled to start operation in 2020, is aiming to deliver the most intense neutron beams for experimental research of any facility worldwide. Its long pulse time structure implies significant differences for instrumentation compared to other spallation sources which, in contrast, are all providing short neutron pulses. In order to enable the development of methods and technology adapted to this novel type of source well in advance of the first instruments being constructed at ESS, a test beamline (TBL) was designed and built at the BER II research reactor at Helmholtz-Zentrum Berlin (HZB). Operating the TBL shall provide valuable experience in order to allow for a smooth start of operations at ESS. The beamline is capable of mimicking the ESS pulse structure by a double chopper system and provides variable wavelength resolution as low as 0.5% over a wide wavelength band between 1.6 Å and 10 Å by a dedicated wavelength frame multiplication (WFM) chopper system. WFM is proposed for several ESS instruments to allow for flexible time-of-flight resolution. Hence, ESS will benefit from the TBL which offers unique possibilities for testing methods and components. This article describes the main capabilities of the instrument, its performance as experimentally verified during the commissioning, and its relevance to currently starting ESS instrumentation projects.

  9. Assessment of the neutron cross section database for mercury for the ORNL spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Leal, L.C.; Spencer, R.R.; Ingersoll, D.T.; Gabriel, T.A. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    Neutron source generation based on a high energy particle accelerator has been considered as an alternative to the canceled Advanced Neutron Source project at Oak Ridge National Laboratory. The proposed technique consists of a spallation neutron source in which neutrons are produced via the interaction of high-energy charged particles in a heavy metal target. Preliminary studies indicate that liquid mercury bombarded with GeV protons provides an excellent neutron source. Accordingly, a survey has been made of the available neutron cross-section data. Since it is expected that spectral modifiers, specifically moderators, will also be incorporated into the source design, the survey included thermal energy, resonance region, and high energy data. It was found that data of individual isotopes were almost non-existent and that the only evaluation found for the natural element had regions of missing data or discrepant data. Therefore, it appears that to achieve the desired degree of accuracy in the spallation source design it is necessary to re-evaluate the mercury database including making new measurements. During the presentation the currently available data will be presented and experiments proposed which can lead to design quality cross sections.

  10. Spallation reactions in shock waves at supernova explosions and related problems

    Science.gov (United States)

    Ustinova, G. K.

    2013-05-01

    The isotopic anomalies of some extinct radionuclides testify to the outburst of a nearby supernova just before the collapse of the protosolar nebula, and to the fact that the supernova was Sn Ia, i.e. the carbon-detonation supernova. A key role of spallation reactions in the formation of isotopic anomalies in the primordial matter of the Solar System is revealed. It is conditioned by the diffusive acceleration of particles in the explosive shock waves, which leads to the amplification of rigidity of the energy spectrum of particles and its enrichment with heavier ions. The quantitative calculations of such isotopic anomalies of many elements are presented. It is well-grounded that the anomalous Xe- HL in meteoritic nanodiamonds was formed simultaneously with nanodiamonds themselves during the shock wave propagation at the Sn Ia explosion. The possible effects of shock wave fractionation of noble gases in the atmosphere of planets are considered. The origin of light elements Li, Be and B in spallation reactions, predicted by Fowler in the middle of the last century, is argued. All the investigated isotopic anomalies give the evidence for the extremely high magneto- hydrodynamics (MHD) conditions at the initial stage of free expansion of the explosive shock wave from Sn Ia, which can be essential in solution of the problem of origin of cosmic rays. The specific iron-enriched matter of Sn Ia and its MHD-separation in turbulent processes must be taking into account in the models of origin of the Solar System.

  11. A neutron booster for spallation sources--application to accelerator driven systems and isotope production

    CERN Document Server

    Galy, J; Van Dam, H; Valko, J

    2002-01-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the mu m-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology--for example in the design neutron amplifiers for medical applications and 'fast' islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module cou...

  12. X-ray quantitative analysis on spallation response in high purity copper under sweeping detonation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang, E-mail: yangyanggroup@163.com [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); National Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Key Laboratory of Nonferrous Metals Material Science and Engineering of Ministry of Education, Central South University, Changsha 410083 (China); Chen, Jixiong; Peng, Zhiqiang [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Guo, Zhaoliang; Tang, Tiegang; Hu, Haibo [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); Hu, Yanan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-06-14

    The 3-D quantitative investigation of spall behavior in high purity copper plants with different heat treatment histories was characterized using X-ray computer tomography (XRCT). The effect of shock stress and grain size on the spatial distribution and morphology of incipient spall samples were discussed. The results revealed that, in samples with similar microstructure, the ranges of void distribution decrease with the increasing of shock stress. The characteristic parameters (such as mean elongation, mean flatness and mean sphericity of voids) determined using XRCT herein as a function of shock stress and grain size. The quantitative analyses of spallation datasets render functional relationships between the microscopic parameters (like volume, frequency) of spallation voids and the microstructure. The XRCT observations show that voids are prone to coalescence in thermo-mechanical treatments (TMT) sample, while the final maximum and mean volume of void were smaller than that of annealed sample. This is due to the smaller grain size of TMT sample, which means more nucleation sites of voids, this made the voids get closer and easier to coalescence, and flat voids formed ultimately.

  13. Neutronic performance of the MEGAPIE spallation target under high power proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Michel-Sendis, F. [CEA - Saclay, Irfu/Service de Physique Nucleaire, F91191 Gif-sur-Yvette (France); Chabod, S. [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, 38000 Grenoble (France); Letourneau, A. [CEA - Saclay, Irfu/Service de Physique Nucleaire, F91191 Gif-sur-Yvette (France); Panebianco, S., E-mail: stefano.panebianco@cea.f [CEA - Saclay, Irfu/Service de Physique Nucleaire, F91191 Gif-sur-Yvette (France); Zanini, L. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2010-07-01

    The MEGAPIE project, aiming at the construction and operation of a megawatt liquid lead-bismuth spallation target, constitutes the first step in demonstrating the feasibility of liquid heavy metal target technologies as spallation neutron sources. In particular, MEGAPIE is meant to assess the coupling of a high power proton beam with a window-concept heavy liquid metal target. The experiment has been set at the Paul Scherrer Institute (PSI) in Switzerland and, after a 4-month long irradiation, has provided unique data for a better understanding of the behavior of such a target under realistic irradiation conditions. A complex neutron detector has been developed to provide an on-line measurement of the neutron fluency inside the target and close to the proton beam. The detector is based on micrometric fission chambers and activation foils. These two complementary detection techniques have provided a characterization of the neutron flux inside the target for different positions along its axis. Measurements and simulation results presented in this paper aim to provide important recommendations for future accelerator driven systems (ADS) and neutron source developments.

  14. Surface Laser Scanning Measurements for the n_TOF spallation target

    CERN Document Server

    Vlachoudis, V; Cennini, P; Lebbos, E; Lettry, J

    2010-01-01

    The n_TOF spallation target is made of pure lead immersed into cooling water. The target was operating normally from 2001 until august 2004, when an increased transfer of radioactive products from the spallation target to the cooling circuit has been observed. The target was considered damaged by the safety commission (SC/RP), and an investigation campaign started to verify the actual status of the target. According to FLUKA and Ansys calculations the target was working in the elastoplastic regime of the lead material, therefore a deformation might be expected. The present paper describes a laser photographic method and the results of a possible such deformation. The target had a surface activity of the order of 20 mSv/h, therefore we were forced to perform the measurement from distance. The used method, is based on a linelaser and a high resolution digital camera for retrieving the 3D position of the surface of the lead target. Similar methods are used in the film industry and animation studios for scanning ...

  15. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    Energy Technology Data Exchange (ETDEWEB)

    Jurns, John M. [European Spallation Source ESS AB, P.O. Box 176, 221 00 Lund (Sweden); Bäck, Harald [Sweco Industry AB, P.O. Box 286, 201 22 Malmö (Sweden); Gierow, Martin [Lunds Energikoncernen AB, P.O. Box 25, 221 00 Lund (Sweden)

    2014-01-29

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  16. Spallation radiation damage and dosimetry for accelerator transmutation of waste applications

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, M.S.; Lin, C. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Ferguson, P.D. [Missouri Univ., Rolla, MO (United States). Dept. of Nuclear Engineering; Sommer, W.F. [Los Alamos National Lab., NM (United States)

    1993-10-01

    Proposals are currently being made for systems to treat radioactive waste based on the use of accelerator-driven neutron sources. A linear proton accelerator with energies as high as 1600 MeV and currents up to 250 ma are anticipated for the driver. The neutron fluxes may reach up to 10{sup 20} neutrons/m{sup 2}s as generated by the spallation reactions that occur when the protons strike target materials. Calculations are described to determine radiation fluxes and flux spectra inherent in such systems and to estimate likely radiation effects on system components. The calculations use LAHET, a Monte Carlo high-energy transport code, and MCNP, a generalized-geometry, coupled neutron-photon Monte Carlo transport code. Cross sections for displacement and helium production are presented for spallation neutrons of energies from 21 MeV to 1600 MeV for Inconel 718 (Ni plus 18.5, 18.5, 5.1, and 3 wt % of Cr, Fe, Nb, and Mo, respectively), an alloy that is used for the proton beam entry window in several accelerators. In addition, results for this alloy are presented for the primary knocked-on atom (PKA) spectrum and the transmutation yield for 1600 MeV incident neutrons.

  17. A Drabkin energy filter for experiments at a spallation neutron source.

    Energy Technology Data Exchange (ETDEWEB)

    Parizzi, A. A.; Felcher, G. P.; Klose, F.

    2000-11-21

    We present a new approach for dynamic monochromatization of neutrons suitable for time-of-flight experiments at spallation neutron sources. The method requires polarized neutrons and is based on the Drabkin energy filter. In its initial application, this magnetic resonator device, consisting of a polarizer/analyzer system and a wavelength-dependent spin flipper, was proposed for extracting a narrow bandwidth from a broad bandwidth polarized neutron beam. At a spallation neutron source, wavelength is determined by time-of-flight (TOF) from the source to the detector. However, at each instant a spread of wavelengths is recorded due to the non-zero emission time of the source/moderator system. Particularly, high-intensity moderators for cold neutrons produce long ''tails'' in the intensity/time distribution for all wavelengths, degrading the resolution of the experiments. The Drabkin energy filter can be used to cut the neutron tails for all wavelengths, by drifting the resonance condition in synchronization with the TOF. Calculations show that the method is viable, and that substantial resolution gains are obtained by application to a TOF neutron reflectometer.

  18. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O' Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  19. Study of the spallation residues in the reaction Au (800 MeV/nucleon) + p; Etude des residus de spallation dans la reaction Au (800 MeV par nucleon) + p

    Energy Technology Data Exchange (ETDEWEB)

    Mustapha, Brahim [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-09-09

    As a neutron source, the spallation reaction is of importance for different fields of research and for a possible hybrid reactor. The study of spallation residues, their cross sections and their energetic properties, is necessary for such applications and for a better understanding of this process. Several studies of spallation products were done using spectroscopic methods. Only radioactive nuclides were detected. Aiming at a more precise measurement, covering the whole range of spallation residues, this study was done using the reverse kinematics method. A liquid hydrogen target was irradiated by an 800 MeV/nucleon gold beam. The produced nuclei were detected in flight before any radioactive decay with about 10% precision. Independent cross section were then obtained. Velocity distributions were completely reconstructed. In their present forms, the theoretical calculations based upon the two-step model, 'intra-nuclear cascade' + 'evaporation', are unable to reproduce the whole set of experimental aspects. An inter-comparison using different INC/EVA combinations permitted to identify the more significant points in these calculations. The important behaviour of this codes were examined. Due to compensation effects between both steps, cascade and evaporation, this study did not lead to a definite conclusion. (author)

  20. "Innovation and Intellectual Property Policies in European Research Infrastructure Consortia - PART I: The Case of the European Spallation Source ERIC"

    DEFF Research Database (Denmark)

    Yu, Helen; Wested, Jakob; Minssen, Timo

    2017-01-01

    , the European Spallation Source ERIC is required to adopt various policy documents relating to the operation and management of the facility. These cover a wide variety of issues such as user access, public procurement, intellectual property rights (IPR), data management, and dissemination. One of the main goals...

  1. Formation of x-ray Newton’s rings from nano-scale spallation shells of metals in laser ablation

    National Research Council Canada - National Science Library

    Nishikino, Masaharu; Hasegawa, Noboru; Tomita, Takuro; Minami, Yasuo; Eyama, Takashi; Kakimoto, Naoya; Izutsu, Rui; Baba, Motoyoshi; Kawachi, Tetsuya; Suemoto, Tohru

    2017-01-01

    .... The formation and evolution of soft x-ray Newton’s rings (NRs) were found for the first time. The soft x-ray NRs are caused by the interference between the bulk ablated surface and nanometer-scale thin spallation layer...

  2. A spallation-based irradiation test facility for fusion and future fission materials

    CERN Document Server

    Samec, K; Kadi, Y; Luis, R; Romanets, Y; Behzad, M; Aleksan, R; Bousson, S

    2014-01-01

    The EU’s FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the DEMO fusion reactor for ITER, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550°C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum. The entire “TMIF” facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility.

  3. Comparisons of the simulation results using different codes for ADS spallation target

    CERN Document Server

    Yu Hong Wei; Shen Qing Biao; Wan Jun Sheng; Zhao Zhi Xiang

    2002-01-01

    The calculations to the standard thick target were made by using different codes. The simulation of the thick Pb target with length of 60 cm, diameter of 20 cm bombarded with 800, 1000, 1500 and 2000 MeV energetic proton beam was carried out. The yields and the spectra of emitted neutron were studied. The spallation target was simulated by SNSP, SHIELD, DCM/CEM (Dubna Cascade Model /Cascade Evaporation Mode) and LAHET codes. The Simulation Results were compared with experiments. The comparisons show good agreement between the experiments and the SNSP simulated leakage neutron yield. The SHIELD simulated leakage neutron spectra are in good agreement with the LAHET and the DCM/CEM simulated leakage neutron spectra

  4. Conceptual design of a cold methane moderator system for the European Spallation Source (ESS)

    CERN Document Server

    Barnert-Wiemer, H

    2002-01-01

    As part of the work for the target station of the planned European spallation source (ESS) the Central Department of Technology at the Forschungszentrum Juelich GmbH is also concerned with the moderators, particular attention being given to the development of cold methane moderators. This report discusses the technical feasibility of solid methane moderators. Methods to tailor the neutron output by adding absorption materials (decouplers or poisons) are not considered here, neither are composite moderators. Based on the given target-moderator-reflector assembly of the ESS project a concept for the ESS cold methane moderators has been developed and is being examined at the Forschungszentrum Juelich. According to this moderator concept the moderator is a fixed bed of small spheres, which makes moderator container filling homogeneous and reproducible. Since spheres form a defined packed bed, cooling of the moderator bed by H sub 2 is reliable. The process of filling the moderator container and of removing the pe...

  5. Thermal-hydraulic design concept of the solid-target system of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, F.; Hibiki, T.; Saito, Y.; Takeda, T.; Mishima, K. [Kyoto Univ., Research Reactor Institute (Japan)

    2001-07-01

    In relation to thermal-hydraulic design of the N-Arena solid-target system of the JHF project, heat transfer experiments were performed to obtain experimental data systematically on heat transfer coefficient and CHF for vertical upward and horizontal flows in a thin rectangular channel simulating a coolant channel of the proposed spallation neutron source. Thermal-hydraulic correlations which can be used for design calculations were proposed based on the obtained data. Finally tentative results of feasibility study on maximum beam power which could be attained with a solid target were presented. The result indicated that the condition for the onset of nucleate boiling is the most significant limiting factor to the maximum beam power. (author)

  6. Experiment Automation with a Robot Arm using the Liquids Reflectometer Instrument at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Zolnierczuk, Piotr A [ORNL; Vacaliuc, Bogdan [ORNL; Sundaram, Madhan [ORNL; Parizzi, Andre A [ORNL; Halbert, Candice E [ORNL; Hoffmann, Michael C [ORNL; Greene, Gayle C [ORNL; Browning, Jim [ORNL; Ankner, John Francis [ORNL

    2013-01-01

    The Liquids Reflectometer instrument installed at the Spallation Neutron Source (SNS) enables observations of chemical kinetics, solid-state reactions and phase-transitions of thin film materials at both solid and liquid surfaces. Effective measurement of these behaviors requires each sample to be calibrated dynamically using the neutron beam and the data acquisition system in a feedback loop. Since the SNS is an intense neutron source, the time needed to perform the measurement can be the same as the alignment process, leading to a labor-intensive operation that is exhausting to users. An update to the instrument control system, completed in March 2013, implemented the key features of automated sample alignment and robot-driven sample management, allowing for unattended operation over extended periods, lasting as long as 20 hours. We present a case study of the effort, detailing the mechanical, electrical and software modifications that were made as well as the lessons learned during the integration, verification and testing process.

  7. Transverse beam resonance in the superconducting linac of the Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2010-04-01

    Full Text Available A weak transverse resonance in the Spallation Neutron Source (SNS superconducting linac is identified in computer simulations, and is believed to be one of the mechanisms behind measured beam losses. This weak resonance is induced by the nonlinear dodecapole component of the linac quadrupole magnets. It occurs when the linac focusing lattice has a transverse phase advance close to 60°. By reducing the phase advance to approximately 50° to avoid the resonance, we observe significant reduction in beam loss in the SNS superconducting linac. We present theory and computer simulation results supporting the notion that a suppression of the 60° resonance may contribute to reduction in the beam loss.

  8. Results from the Commissioning of the n-TOF Spallation Neutron Source at CERN

    CERN Document Server

    Borcea, C; Dahlfors, M; Ferrari, A; García-Muñoz, G; Haefner, P; Herrera-Martínez, A; Kadi, Y; Lacoste, V; Radermacher, E; Saldaña, F; Vlachoudis, V; Zanini, L; Rubbia, Carlo; Buoni, S; Dangendorf, V; Nolte, R; Weierganz, M

    2003-01-01

    The new neutron time-of-flight facility (n_TOF) has been built at CERN and is now operational. The facility is intended for the measurement of neutron induced cross sections of relevance to Accelerator Driven Systems (ADS) and to fundamental physics. Neutrons are produced by spallation of the 20 GeV/c proton beam, delivered by the Proton Synchrotron (PS), on a massive target of pure lead. A measuring station is placed at about 185 m from the neutron producing target, allowing high-resolution measurements. The facility was successfully commissioned with two campaigns of measurements, in Nov. 2000 and Apr. 2001. The main interest was concentrated in the physical parameters of the installation (neutron flux and resolution function), along with the target behavior and various safety-related aspects. These measurements confirmed the expectations from Monte Carlo simulations of the facility, thus allowing to initiate the foreseen physics program.

  9. Low-level rf control of Spallation Neutron Source: System and characterization

    Directory of Open Access Journals (Sweden)

    Hengjie Ma

    2006-03-01

    Full Text Available The low-level rf control system currently commissioned throughout the Spallation Neutron Source (SNS LINAC evolved from three design iterations over 1 yr intensive research and development. Its digital hardware implementation is efficient, and has succeeded in achieving a minimum latency of less than 150 ns which is the key for accomplishing an all-digital feedback control for the full bandwidth. The control bandwidth is analyzed in frequency domain and characterized by testing its transient response. The hardware implementation also includes the provision of a time-shared input channel for a superior phase differential measurement between the cavity field and the reference. A companion cosimulation system for the digital hardware was developed to ensure a reliable long-term supportability. A large effort has also been made in the operation software development for the practical issues such as the process automations, cavity filling, beam loading compensation, and the cavity mechanical resonance suppression.

  10. Numerical calculation of transverse coupling impedances: Comparison to Spallation Neutron Source extraction kicker measurements

    Directory of Open Access Journals (Sweden)

    B. Doliwa

    2007-10-01

    Full Text Available The study of beam dynamics and the localization of potential sources of instabilities are important tasks in the design of modern, high-intensity particle accelerators. In the case of synchrotrons and storage rings, coupling impedance data are needed to characterize the parasitic interaction of critical components with the beam. In this article we demonstrate the application of numerical field simulations to the computation of transverse kicker coupling impedances. Based on the 3D simulation results, a parametrized model is developed to incorporate the impedance of an arbitrary pulse-forming network attached to the kicker. Detailed comparisons of numerical results with twin-wire and direct measurements are discussed at the example of the Spallation Neutron Source extraction kicker.

  11. Numerical calculation of transverse coupling impedances: Comparison to Spallation Neutron Source extraction kicker measurements

    Science.gov (United States)

    Doliwa, B.; Arévalo, E.; Weiland, T.

    2007-10-01

    The study of beam dynamics and the localization of potential sources of instabilities are important tasks in the design of modern, high-intensity particle accelerators. In the case of synchrotrons and storage rings, coupling impedance data are needed to characterize the parasitic interaction of critical components with the beam. In this article we demonstrate the application of numerical field simulations to the computation of transverse kicker coupling impedances. Based on the 3D simulation results, a parametrized model is developed to incorporate the impedance of an arbitrary pulse-forming network attached to the kicker. Detailed comparisons of numerical results with twin-wire and direct measurements are discussed at the example of the Spallation Neutron Source extraction kicker.

  12. EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.

    Energy Technology Data Exchange (ETDEWEB)

    HOFF, L.T.

    2005-10-10

    Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

  13. Migration of radionuclides in a gas cooled solid state spallation target

    DEFF Research Database (Denmark)

    Jørgensen, Thomas; Severin, Gregory; Jensen, Mikael

    2015-01-01

    The current design of the ESS (European Spallation Source) program proposes a rotating solid tungsten target cooled by helium gas and a pulsed beam of protons. For safety reasons any design has to address whether or not the induced radionuclidic isotopes in the target migrate. In this paper we have...... investigated the diffusion of (primarily) tritium in solid tungsten to see if a pulse driven short-term variation in temperature (temperature peaks separated by one turn of the wheel(2.36 s)) could possibly give rise to wave-like migration of the radionuclides, possibly accelerating the overall release....... In order to calculate the diffusion in the solid tungsten target two approaches have been used. One neglecting the time structure of the beam and thermal cycling of the target, and one numerical, discrete time step simulation to capture the effects of the thermal cycling on the diffusion behavior. We found...

  14. Single Event Effect cross section calibration and application to quasi-monoenergetic and spallation facilities

    Directory of Open Access Journals (Sweden)

    Alía Rubén García

    2018-01-01

    Full Text Available We describe an approach to calibrate Single Event Effect (SEE-based detectors in monoenergetic fields and apply the resulting semi-empiric responses to more general mixed-field cases in which a broad variety of particle species and energy spectra are present. The calibration of the response functions is based both on experimental proton (30–200 MeV and neutron (5–300 MeV data and considerations derived from Monte Carlo simulations using the FLUKA Monte Carlo code. The application environments include the quasi-monoenergetic neutrons at RCNP, the atmospheric-like VESUVIO spallation spectrum and the CHARM high-energy accelerator test facility. The agreement between the mixed-field response and that predicted through the mono-energetic calibration is within ±30% for the broad variety of cases considered and thus regarded as highly successful for mixed-field monitoring applications.

  15. Geant4 simulations of the neutron production and transport in the n_TOF spallation target

    CERN Document Server

    Lerendegui-Marco, J; Guerrero, C; Quesada,, J , M

    2016-01-01

    The neutron production and transport in the spallation target of the n TOF facility at CERN has been simulated with Geant4. The results obtained with the different hadronic Physics Lists provided by Geant4 have been compared with the experimental neutron flux in n TOF-EAR1. The best overall agreement in both the absolute value and the energy dependence of the flux from thermal to 1 GeV, is obtained with the INCL++ model coupled with the Fritiof Model(FTFP). This Physics List has been thus used to simulate and study the main features of the new n TOF-EAR2 beam line, currently in its commissioning phase.

  16. VSI@ESS: Case study for a vibrational spectroscopy instrument at the european spallation source

    Directory of Open Access Journals (Sweden)

    Zoppi Marco

    2015-01-01

    Full Text Available Neutron Vibrational Spectroscopy is a well-established experimental technique where elementary excitations at relatively high frequency are detected via inelastic neutron scattering. This technique attracts a high interest in a large fraction of the scientific community in the fields of chemistry, materials science, physics, and biology, since one of its main applications exploits the large incoherent scattering cross section of the proton with respect to all the other elements, whose dynamics can be spectroscopically detected, even if dissolved in very low concentration in materials composed of much heavier atoms. We have proposed a feasibility study for a Vibrational Spectroscopy Instrument (VSI at the European Spallation Source ESS. Here, we will summarize the preliminary design calculations and the corresponding McStas simulation results for a possible ToF, Inverted Geometry, VSI beamline.

  17. Thermal-hydraulic simulation of mercury target concepts for a pulsed spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Siman-Tov, M.; Wendel, M.; Haines, J. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    The Oak Ridge Spallation Neutron Source (ORSNS) is a high-power, accelerator-based pulsed spallation neutron source being designed by a multi-laboratory team led by Oak Ridge National Laboratory to achieve very high fluxes of neutrons for scientific experiments. The ORSNS is projected to have a 1 MW proton beam upgradable to 5 MW. About 60% of the beam power (1-5 MW, 17-83 kJ/pulse in 0.5 microsec at 60 cps) is deposited in the liquid metal (mercury) target having the dimensions of 65x30x10 cm (about 19.5 liter). Peak steady state power density is about 150 and 785 MW/m{sup 3} for 1 MW and 5 MW beam respectively, whereas peak pulsed power density is as high as 5.2 and 26.1 GW/m{sup 3}, respectively. The peak pulse temperature rise rate is 14 million C/s (for 5 MW beam) whereas the total pulse temperature rise is only 7 C. In addition to thermal shock and materials compatibility, key feasibility issues for the target are related to its thermal-hydraulic performance. This includes proper flow distribution, flow reversals, possible {open_quotes}hot spots{close_quotes} and the challenge of mitigating the effects of thermal shock through possible injection of helium bubbles throughout the mercury volume or other concepts. The general computational fluid dynamics (CFD) code CFDS-FLOW3D was used to simulate the thermal and flow distribution in three preliminary concepts of the mercury target. Very initial CFD simulation of He bubbles injection demonstrates some potential for simulating behavior of He bubbles in flowing mercury. Much study and development will be required to be able to `predict`, even in a crude way, such a complex phenomena. Future direction in both design and R&D is outlined.

  18. Flowing lead spallation target design for use in an ADTT experimental facility located at LAMPF

    Science.gov (United States)

    Beard, C. A.; Bracht, R. R.; Buksa, J. J.; Chaves, W.; DeVolder, B. G.; O'Brien, H.; Park, J. J.; Parker, R. B.; Pillai, C.; Potter, R. C.; Reid, R. S.; Trujillo, D. A.; Vela, O. A.; Venneri, F.; Weinacht, D. J.; Wender, S. A.; Wilson, W. B.; Woloshun, K. A.

    1995-09-01

    A conceptual design has been initiated for a flowing lead spallation target for use in an ADTT experimental facility located at LAMPF. The lead is contained using Nb-1Zr as the structural material. This material was selected based on its favorable material properties as well as its compatibility with the flowing lead. Heat deposited in the lead and the Nb-1Zr container by the 800-MeV, 1-mA beam is removed by the flowing lead and transferred to helium via a conventional heat exchanger. The neutronic, thermal hydraulic, and stress characteristics of the system have been determined. In addition, a module to control the thaw and freeze of the lead has been developed and incorporated into the target system design. The entire primary target system (spallation target, thaw/freeze system, and intermediate heat exchanger) has been designed to be built as a contained module to allow easy insertion into an experimental ADTT blanket assembly and to provide multiple levels of containment for the lead. For the 800-MeV LAMPF beam, the target delivers a source of approximately 18 neutrons/proton. A total of 540 kW are deposited in the target. The lead temperature ranges from 400 to 500 C. The peak structural heating occurs at the beam interface, and the target is designed to maximize cooling at this point. An innovative thin-window structure has been incorporated that allows direct, convective cooling of the window by the inlet flowing lead. Safe and reliable operation of the target has been maximized through simple, robust engineering.

  19. Spallation reaction study for fission products in nuclear waste: Cross section measurements for {sup 137}Cs and {sup 90}Sr on proton and deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H., E-mail: wanghe@ribf.riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otsu, H.; Sakurai, H.; Ahn, D.S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aikawa, M. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Doornenbal, P.; Fukuda, N.; Isobe, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawakami, S. [Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192 (Japan); Koyama, S. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kubo, T.; Kubono, S.; Lorusso, G. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Maeda, Y. [Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192 (Japan); Makinaga, A. [Graduate School of Medicine, Hokkaido University, North-14, West-5, Kita-ku, Sapporo 060-8648 (Japan); Momiyama, S. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakano, K. [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Niikura, M. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Shiga, Y. [Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501 (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Söderström, P.-A. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); and others

    2016-03-10

    We have studied spallation reactions for the fission products {sup 137}Cs and {sup 90}Sr for the purpose of nuclear waste transmutation. The spallation cross sections on the proton and deuteron were obtained in inverse kinematics for the first time using secondary beams of {sup 137}Cs and {sup 90}Sr at 185 MeV/nucleon at the RIKEN Radioactive Isotope Beam Factory. The target dependence has been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter spallation products. The experimental data are compared with the PHITS calculation, which includes cascade and evaporation processes. Our results suggest that both proton- and deuteron-induced spallation reactions are promising mechanisms for the transmutation of radioactive fission products.

  20. "Innovation and Intellectual Property Policies in European Research Infrastructure Consortia - PART I: The Case of the European Spallation Source ERIC"

    DEFF Research Database (Denmark)

    Yu, Helen; Wested, Jakob; Minssen, Timo

    2017-01-01

    Research and innovation are key pillars of the EU’s strategy to create sustainable growth and prosperity in Europe. Research infrastructures (RIs) are central instruments to implement this strategy. They bring together a wide diversity of expertise and interests to look for solutions to many...... of the problems society is facing today. To facilitate the creation and operation of such RIs, the EU adopted legal frameworks for European Research Infrastructure Consortia (ERIC). On August 31, 2015, the European Spallation Source (ESS) was established as an ERIC. Under the ERIC Regulations and ESS Statutes......, the European Spallation Source ERIC is required to adopt various policy documents relating to the operation and management of the facility. These cover a wide variety of issues such as user access, public procurement, intellectual property rights (IPR), data management, and dissemination. One of the main goals...

  1. Thermal-hydraulic performance of a water-cooled tungsten-rod target for a spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Poston, D.I.

    1997-08-01

    A thermal-hydraulic (T-H) analysis is conducted to determine the feasibility and limitations of a water-cooled tungsten-rod target at powers of 1 MW and above. The target evaluated has a 10-cm x 10-cm cross section perpendicular to the beam axis, which is typical of an experimental spallation neutron source - both for a short-pulse spallation source and long-pulse spallation source. This report describes the T-H model and assumptions that are used to evaluate the target. A 1-MW baseline target is examined, and the results indicate that this target should easily handle the T-H requirements. The possibility of operating at powers >1 MW is also examined. The T-H design is limited by the condition that the coolant does not boil (actual limits are on surface subcooling and wall heat flux); material temperature limits are not approached. Three possible methods of enhancing the target power capability are presented: reducing peak power density, altering pin dimensions, and improving coolant conditions (pressure and temperature). Based on simple calculations, it appears that this target concept should have little trouble reaching the 2-MW range (from a purely T-H standpoint), and possibly much higher powers. However, one must keep in mind that these conclusions are based solely on thermal-hydraulics. It is possible, and perhaps likely, that target performance could be limited by structural issues at higher powers, particularly for a short-pulse spallation source because of thermal shock issues.

  2. Final design, fluid dynamic and structural mechanical analysis of a liquid hydrogen Moderator for the European Spallation Source

    Science.gov (United States)

    Bessler, Y.; Henkes, C.; Hanusch, F.; Schumacher, P.; Natour, G.; Butzek, M.; Klaus, M.; Lyngh, D.; Kickulies, M.

    2017-02-01

    The European Spallation Source (ESS) is currently in the construction phase and should have first beam on Target in 2019. ESS, located in Sweden, will be the most powerful spallation neutron source worldwide, with the goal to produce neutrons for research. As an in-kind partner the Forschungszentrum Juelich will among others, design and manufacture the four liquid hydrogen Moderators, which are located above and below the Target. Those vessels are confining the cold hydrogen used to reduce the energy level of the fast neutrons, produced by spallation in the Target, in order to make the neutrons usable for neutron scattering instruments. Due to the requirements [1], a fluid dynamic analysis with pressure and temperature depended hydrogen data, taking into account the pseudo critical phenomena and the pulsed neutronic heating (pressure waves) is necessary. With the fluid dynamic results, a structure mechanical analysis including radiation damage investigation (RCC-MRx code [5]), low temperature properties as well as strength reduction by welding can be realized. Finally, the manufacturing and welding completes the design process.

  3. Gadolinium-148 And Other Spallation Production Cross Section Measurements For Accelerator Target Facilities

    CERN Document Server

    Kelley, K C

    2004-01-01

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as “nuclear facilities.” Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is t...

  4. Particle identification technique using grid ionization chamber at China Spallation Neutron Source

    Science.gov (United States)

    Zhao, Yingtan; Fan, Ruirui; Zhang, Qingmin; He, Yuefeng; Sun, Zhijia; Zhou, Liang; Tang, Jingyu; Bai, Huaiyong; Jiang, Haoyu; Zhang, Guohui

    2017-11-01

    Back-n white neutron source at China Spallation Neutron Source facility requires a detector with charged-particle identification ability for measuring nuclear cross sections. Therefore, a grid ionization chamber (GIC) with an adjustable distance between the cathode and grid was designed and built. Moreover, a corresponding particle identification algorithm is proposed in order to use the signals of the anode (QA) and cathode (QC), or the signal (QA) of the anode and the time difference (Δ t) between the cathode and anode signals, based on the interactive behaviors of charged particles and the GIC's working principle. First, the GIC performance was measured using a 241Am α source for preliminary performance testing, which provided an energy resolution of 5.25%. Its good particle identification performance was demonstrated by identifying 3H and 4He from neutron reactions with 6Li using a 2D QC-QA plot and Δ t-QA plot. Furthermore, 3H and 4He can be completely distinguished from the updated 2D QC-QA plot and Δ t-QA plot, in which 3H with a small incident angle is selected. Finally, it was concluded that our GIC with the proposed particle identification algorithm could identify charged particles effectively for the future measurement of nuclear cross sections.

  5. General-purpose readout electronics for white neutron source at China Spallation Neutron Source

    Science.gov (United States)

    Wang, Q.; Cao, P.; Qi, X.; Yu, T.; Ji, X.; Xie, L.; An, Q.

    2018-01-01

    The under-construction White Neutron Source (WNS) at China Spallation Neutron Source is a facility for accurate measurements of neutron-induced cross section. Seven spectrometers are planned at WNS. As the physical objectives of each spectrometer are different, the requirements for readout electronics are not the same. In order to simplify the development of the readout electronics, this paper presents a general method for detector signal readout. This method has advantages of expansibility and flexibility, which makes it adaptable to most detectors at WNS. In the WNS general-purpose readout electronics, signals from any kinds of detectors are conditioned by a dedicated signal conditioning module corresponding to this detector, and then digitized by a common waveform digitizer with high speed and high precision (1 GSPS at 12-bit) to obtain the full waveform data. The waveform digitizer uses a field programmable gate array chip to process the data stream and trigger information in real time. PXI Express platform is used to support the functionalities of data readout, clock distribution, and trigger information exchange between digitizers and trigger modules. Test results show that the performance of the WNS general-purpose readout electronics can meet the requirements of the WNS spectrometers.

  6. Structural design study of a proton beam window for a 1-MW spallation neutron source

    CERN Document Server

    Teraoku, T; Ishikura, S; Kaminaga, M; Maekawa, F; Meigo, S I; Terada, A

    2003-01-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to m...

  7. Mercury target R&D for the Oak Ridge spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R.; DiStefano, J.; Farrell, K.; Gabriel, T.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-06-01

    The conceptual design for the Oak Ridge Spallation Neutron Source (ORSNS) incorporates liquid mercury as its reference target material. A flowing liquid target was selected mainly because of the increased power handling capability possible with the convective transport process. The major reasons for choosing mercury as the liquid target material are because it: (1) is a liquid at room temperature, (2) has good heat transport properties, and (3) has a high atomic number and mass density resulting in high neutron yield and source brightness. Since liquid targets are not widely utilized in presently operating accelerator targets and because of the challenges posed by the intense, pulsed thermal energy deposition ({approximately}20-100 kJ deposited during each 1-10 {mu}s pulse), considerable R&D is planned for the mercury target concept. The key feasibility issue that will be addressed in early R&D efforts are the effects of the thermal shock environment, which will include development and testing of approaches to mitigate these effects. Materials compatiblity and ES&H issues associated with the use of liquid mercury are also of major importance in early R&D efforts. A brief description of the mercury target design concept, results of initial evaluations of its performance characteristics, identification of its critical issues, and an outline of the R&D program aimed at addressing these issues will be presented.

  8. Thermohydraulic behavior of the liquid metal target of a spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y.

    1996-06-01

    The author presents work done on three main problems. (1) Natural circulation in double coaxial cylindircal container: The thermohydraulic behaviour of the liquid metal target of the spallation neutron source at PSI has been investigated. The configuration is a natural-circulation loop in a concentric double-tube-type container. The results show that the natural-circulation loop concept is valid for the design phase of the target construction, and the current specified design criteria will be fulfilled with the proposed parameter values. (2) Flow around the window: Water experiments were performed for geometry optimisation of the window shape of the SINQ container for avoiding generating recirculation zones at peripheral area and the optimal cooling of the central part of the beam entrance window. Flow visualisation technique was mainly used for various window shapes, gap distance between the window and the guide tube edge. (3) Flow in window cooling channels: Flows in narrow gaps of cooling channels of two different types of windows were studied by flow visualisation techniques. One type is a slightly curved round cooling channel and the other is hemispherical shape, both of which have only 2 mm gap distance and the water inlet is located on one side and flows out from the opposite side. In both cases, the central part of the flow area has lower velocity than peripheral area.

  9. Ranking and validation of spallation models for isotopic production cross sections of heavy residua

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sushil K.; Kamys, Boguslaw [Jagiellonian University, The Marian Smoluchowski Institute of Physics, Krakow (Poland); Goldenbaum, Frank; Filges, Detlef [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany)

    2017-07-15

    The production cross sections of isotopically identified residual nuclei of spallation reactions induced by {sup 136}Xe projectiles at 500 AMeV on hydrogen target were analyzed in a two-step model. The first stage of the reaction was described by the INCL4.6 model of an intranuclear cascade of nucleon-nucleon and pion-nucleon collisions whereas the second stage was analyzed by means of four different models; ABLA07, GEM2, GEMINI++ and SMM. The quality of the data description was judged quantitatively using two statistical deviation factors; the H-factor and the M-factor. It was found that the present analysis leads to a different ranking of models as compared to that obtained from the qualitative inspection of the data reproduction. The disagreement was caused by sensitivity of the deviation factors to large statistical errors present in some of the data. A new deviation factor, the A factor, was proposed, that is not sensitive to the statistical errors of the cross sections. The quantitative ranking of models performed using the A-factor agreed well with the qualitative analysis of the data. It was concluded that using the deviation factors weighted by statistical errors may lead to erroneous conclusions in the case when the data cover a large range of values. The quality of data reproduction by the theoretical models is discussed. Some systematic deviations of the theoretical predictions from the experimental results are observed. (orig.)

  10. Cumulative beam break-up study of the spallation neutron source superconducting linac

    CERN Document Server

    Jeon, D; Krafft, G A; Yunn, B; Sundelin, R; Delayen, J; Kim, S; Doleans, M

    2002-01-01

    Beam instabilities due to High Order Modes (HOMs) are a concern to superconducting (SC) linacs such as the Spallation Neutron Source (SNS) linac. The effects of pulsed mode operation on transverse and longitudinal beam breakup instability are studied for H sup - beam in a consistent manner for the first time. Numerical simulation indicates that cumulative transverse beam breakup instabilities are not a concern in the SNS SC linac, primarily due to the heavy mass of H sup - beam and the HOM frequency spread resulting from manufacturing tolerances. As little as +-0.1 MHz HOM frequency spread stabilizes all the instabilities from both transverse HOMs, and also acts to stabilize the longitudinal HOMs. Such an assumed frequency spread of +-0.1 MHz HOM is small, and hence conservative compared with measured values of sigma=0.00109(f sub H sub O sub M -f sub 0)/f sub 0 obtained from Cornell and the Jefferson Lab Free Electron Laser cavities. However, a few cavities may hit resonance lines and generate a high heat lo...

  11. New controller for high voltage converter modulator at spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Wezensky, Mark W [ORNL; Brown, David L [ORNL; Lee, Sung-Woo [ORNL; Zhukov, Alexander P [ORNL; Geng, Xiaosong [ORNL

    2017-01-01

    The Spallation Neutron Source (SNS) has developed a new control system for the High Voltage Convertor Modulator (HVCM) at the SNS to replace the original control system which is approaching obsolescence. The original system was based on controllers for similar high voltage systems that were already in use [1]. The new controller, based on National Instruments PXI/FlexRIO Field Programmable Gate Array (FPGA) platform, offers enhancements such as modular construction, flexibility and non-proprietary software. The new controller also provides new capabilities like various methods for modulator pulse flattening, waveform capture, and first fault detection. This paper will discuss the design of the system, including the human machine interface, based on lessons learned at the SNS and other projects. It will also discuss performance and other issues related to its operation in an accelerator facility which requires high availability. To date, 73% of the operational HVCMs have been upgraded to with the new controller, and the remainder are scheduled for completion by mid-2017.

  12. Background Studies at the Spallation Neutron Source for the COHERENT Experiment

    Science.gov (United States)

    Heath, Matthew; Coherent Collaboration

    2016-09-01

    The COHERENT experiment is attempting a first measurement of coherent elastic neutrino-nucleus scattering (CEvNS) at the Spallation Neutron Source (SNS) at Oak Ridge National Lab. CEvNS is a standard model process that is important in understanding supernova neutrinos, the structure of the weak interaction, and as a background for dark matter searches. COHERENT is placing a suite of four detector technologies in a basement location at the SNS: point contact germanium detectors, CsI[Na] crystals, NaI[Tl] crystals, and single phase liquid argon. Previous attempts to measure the CEvNS process have grappled with very high rates of backgrounds due to the low energy thresholds required. Accelerator-correlated neutrons are the most troublesome background for COHERENT because a simple accelerator on/off background subtraction procedure fails to remove them. To understand these backgrounds, COHERENT features measurements from the SciBath detector and the Sandia Neutron Scatter Camera (NSC). Important neutron measurements from both SciBath and the NSC, as well as gamma measurements from the SNS basement location where the four detector technologies for COHERENT will be placed will be discussed. COHERENT collaborators are supported by the U. S. Department of Energy Office of Science, the National Science Foundation, NASA, and the Sloan Foundation.

  13. Overview of the conceptual design of the future VENUS beamline at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Bilheux, Hassina Z [ORNL; Herwig, Kenneth W [ORNL; Keener, Wylie S [ORNL; Davis, Larry E [ORNL

    2015-01-01

    VENUS will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to m). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beamline 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS

  14. A 0.5 MW/10 Hz option of the spallation source AUSTRON

    CERN Document Server

    Bryant, P J; Jericha, E; Rauch, H; Regler, Meinhard; Schönauer, Horst Otto

    1999-01-01

    In 1993-94 a feasibility study for AUSTRON, a neutron spallation source, was made on behalf of the Austrian Ministry of Science and Research. At that time, the machine was synchrotron cycling at 25 Hz and delivering an average beam power of 205 kW at 1.6 GeV. An option to double the power by doubling the frequency was foreseen. Now a more ambitious development of the original concept is proposed that aims at 0.5 MW at 1.6 GeV, pulsed at either 50 Hz or 10 Hz. The slow repetition rate is achieved by the addition of a storage ring holding four consecutive (single bunch) pulses from the 50 Hz synchrotron until a fifth pulse is accelerated and transferred to the target with the four stored ones. In this way, an energy per pulse of 50 kJ (one half of the pulse energy of the 5 MW ESS) is obtained, yielding about 3.5*10/sup 16/ thermal neutrons/(s cm/sup 2/). This peak flux matches well a number of innovative instruments and allows unprecedented resolution for some more conventional ones. On August 20, 1998, the Aus...

  15. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    Science.gov (United States)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-01

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  16. Low-Power RF Tuning of the Spallation Neutron Source Warm LINAC Structures

    CERN Document Server

    Deibele, C

    2004-01-01

    The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built at Oak Ridge National Laboratory. A conventional 402.5 MHz drift-tube linac (DTL) accelerates the beam from 2.5 to 86 MeV, and the 805 MHz coupled-cavity linac (CCL) continues acceleration to 186 MeV. Tuning the six DTL tanks involves adjusting post-coupler lengths and slug tuners to achieve the design resonant frequency and stabilized field distribution. A 2.5 MW klystron feeds RF power into each DTL tank through a ridge-loaded waveguide that does not perturb either the frequency or field distribution in the tank. The CCL consists of 4 RF modules operating in the βλ/2 mode. Each module contains 96 accelerating cavities in 12 segments of 8 cavities each, 11 active bridge coupler cavities, and 106 nominally unexcited coupling cavities. For each RF module, power from a single 5 MW klystron splits once and drives bridge couplers 3 and 9. We will discuss the special tools and measurement techniques developed f...

  17. On the nucleon effective mass role to the high energy proton spallation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Santos, B.M., E-mail: biank_ce@if.uff.br [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, 24210-346 Niterói, RJ (Brazil); Instituto Militar de Engenharia, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, RJ (Brazil); Pinheiro, A.R.C. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil); Universidade Federal do Acre, BR 364 km 04, 69920-900 Rio Branco, AC (Brazil); Gonçalves, M. [Comissão Nacional de Energia Nuclear, Rua General Severiano 90, 22290-901 Rio de Janeiro, RJ (Brazil); Duarte, S.B. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil); Cabral, R.G. [Instituto Militar de Engenharia, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, RJ (Brazil)

    2016-04-15

    We explore the effect of the nucleon effective mass to the dynamic evolution of the rapid phase of proton–nucleus spallation reactions. The analysis of the relaxation time for the non-equilibrium phase is studied by variations in the effective mass parameter. We determine the final excitation energy of the hot residual nucleus at the end of cascade phase and the de-excitation of the nuclear system is carried out considering the competition of particle evaporation and fission processes. It was shown that the excitation energy depends of the hot compound residual nucleus at the end of the rapid phase on the changing effective mass. The multiplicity of particles was also analyzed in cascade and evaporation phase of the reaction. The use of nucleon effective mass during cascade phase can be considered as an effect of the many-body nuclear interactions not included explicitly in a treatment to the nucleon–nucleon interaction inside the nucleus. This procedure represents a more realistic scenario to obtain the neutron multiplicity generated in this reaction, which is a benchmark for the calculation of the neutronic in the ADS reactors.

  18. Improved design of proton source and low energy beam transport line for European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  19. Ranking and validation of spallation models for isotopic production cross sections of heavy residua

    Science.gov (United States)

    Sharma, Sushil K.; Kamys, Bogusław; Goldenbaum, Frank; Filges, Detlef

    2017-07-01

    The production cross sections of isotopically identified residual nuclei of spallation reactions induced by 136Xe projectiles at 500AMeV on hydrogen target were analyzed in a two-step model. The first stage of the reaction was described by the INCL4.6 model of an intranuclear cascade of nucleon-nucleon and pion-nucleon collisions whereas the second stage was analyzed by means of four different models; ABLA07, GEM2, GEMINI++ and SMM. The quality of the data description was judged quantitatively using two statistical deviation factors; the H-factor and the M-factor. It was found that the present analysis leads to a different ranking of models as compared to that obtained from the qualitative inspection of the data reproduction. The disagreement was caused by sensitivity of the deviation factors to large statistical errors present in some of the data. A new deviation factor, the A factor, was proposed, that is not sensitive to the statistical errors of the cross sections. The quantitative ranking of models performed using the A-factor agreed well with the qualitative analysis of the data. It was concluded that using the deviation factors weighted by statistical errors may lead to erroneous conclusions in the case when the data cover a large range of values. The quality of data reproduction by the theoretical models is discussed. Some systematic deviations of the theoretical predictions from the experimental results are observed.

  20. Improved design of proton source and low energy beam transport line for European Spallation Source.

    Science.gov (United States)

    Neri, L; Celona, L; Gammino, S; Mascali, D; Castro, G; Torrisi, G; Cheymol, B; Ponton, A; Galatà, A; Patti, G; Gozzo, A; Lega, L; Ciavola, G

    2014-02-01

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  1. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, James T.; Nolen, Jerry; Vandergrift, George; Gomes, Itacil; Kroc, Tom; Horwitz, Phil; McAlister, Dan; Bowers, Del; Sullivan, Vivian; Greene, John

    2011-12-30

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces {approx}100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 Ge

  2. Migration of radionuclides in a gas cooled solid state spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Jørgensen, Thomas; Severin, Gregory; Jensen, Mikael, E-mail: kmje@dtu.dk

    2015-02-15

    Highlights: • We have investigated diffusion of (primarily) tritium in solid tungsten. • We have used an analytical and a numerical approach. • The temperature of tungsten changes with a short-term pulse driven proton beam. • The time structure of the temperature has a negligible impact on the diffusion. • Radioactive release at the surface can be found by solving the differential equation. - Abstract: The current design of the ESS (European Spallation Source) program proposes a rotating solid tungsten target cooled by helium gas and a pulsed beam of protons. For safety reasons any design has to address whether or not the induced radionuclidic isotopes in the target migrate. In this paper we have investigated the diffusion of (primarily) tritium in solid tungsten to see if a pulse driven short-term variation in temperature (temperature peaks separated by one turn of the wheel (2.36 s)) could possibly give rise to wave-like migration of the radionuclides, possibly accelerating the overall release. In order to calculate the diffusion in the solid tungsten target two approaches have been used. One neglecting the time structure of the beam and thermal cycling of the target, and one numerical, discrete time step simulation to capture the effects of the thermal cycling on the diffusion behavior. We found that the time structure of the of the temperature has a negligible impact on the diffusion, and that the radioactive release at the surface can be calculated safely by solving the differential equation (Fick's law) using an appropriate temperature to calculate the diffusion constant.

  3. The performance of neutron scattering spectrometers at a long-pulse spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R.

    1997-06-01

    In this document the author considers the performance of a long pulse spallation source for those neutron scattering experiments that are usually performed with a monochromatic beam at a continuous wave (CW) source such as a nuclear reactor. The first conclusion drawn is that comparison of the performance of neutron scattering spectrometers at CW and pulsed sources is simpler for long-pulsed sources than it is for the short-pulse variety. Even though detailed instrument design and assessment will require Monte Carlo simulations (which have already been performed at Los Alamos for SANS and reflectometry), simple arguments are sufficient to assess the approximate performance of spectrometers at an LPSS and to support the contention that a 1 MW long-pulse source can provide attractive performance, especially for instrumentation designed for soft-condensed-matter science. Because coupled moderators can be exploited at such a source, its time average cold flux is equivalent to that of a research reactor with a power of about 15 MW, so only a factor of 4 gain from source pulsing is necessary to obtain performance that is comparable with the ILL. In favorable cases, the gain from pulsing can be even more than this, approaching the limit set by the peak flux, giving about 4 times the performance of the ILL. Because of its low duty factor, an LPSS provides the greatest performance gains for relatively low resolution experiments with cold neutrons. It should thus be considered complementary to short pulse sources which are most effective for high resolution experiments using thermal or epithermal neutrons.

  4. Analysis of radiation environmental safety for China's Spallation Neutron Source (CSNS)

    Science.gov (United States)

    Wang, Qing-Bin; Wu, Qing-Biao; Ma, Zhong-Jian; Zhang, Qing-Jiang; Li, Nan; Wu, Jing-Min; Liu, Jian; Zhang, Gang

    2010-07-01

    The China Spallation Neutron Source (CSNS) is going to be located in Dalang Town, Dongguan City in the Guangdong Province. In this paper we report the results of the parameters related with environment safety based on experiential calculations and Monte Carlo simulations. The main project of the accelerator is an under ground construction. On top there is a 0.5 m concrete and 5.0 m soil covering for shielding, which can reduce the dose out of the tunnel's top down to 0.2 μSv/h. For the residents on the boundary of the CSNS, the dose produced by skyshine, which is caused by the penetrated radiation leaking from the top of the accelerator, is no more than 0.68 μSv/a. When CSNS is operating normally, the maximal annual effective dose due to the emission of gas from the tunnel is 2.40×10-3 mSv/a to the public adult, and 2.29×10-3 mSv/a to a child, both values are two orders of magnitude less than the limiting value for control and management. CSNS may give rise to an activation of the soil and groundwater in the nearest tunnels, where the main productions are 3H, 7Be, 22Na, 54Mn, etc. But the specific activity is less than the exempt specific activity in the national standard GB13376-92. So it is safe to say that the environmental impact caused by the activation of soil and groundwater is insignificant. To sum up, for CSNS, as a powerful neutron source device, driven by a high-energy high-current proton accelerator, a lot of potential factors affecting the environment exist. However, as long as effective shieldings for protection are adopted and strict rules are drafted, the environmental impact can be kept under control within the limits of the national standard.

  5. Design, status and first operations of the spallation neutron source polyphase resonant converter modulator system

    Energy Technology Data Exchange (ETDEWEB)

    Reass, W. A. (William A.); Apgar, S. E. (Sean E.); Baca, D. M. (David M.); Doss, James D.; Gonzales, J. (Jacqueline); Gribble, R. F. (Robert F.); Hardek, T. W. (Thomas W.); Lynch, M. T. (Michael T.); Rees, D. E. (Daniel E.); Tallerico, P. J. (Paul J.); Trujillo, P. B. (Pete B.); Anderson, D. E. (David E.); Heidenreich, D. A. (Dale A.); Hicks, J. D. (Jim D.); Leontiev, V. N.

    2003-01-01

    The Spallation Neutron Source (SNS) is a new 1.4 MW average power beam, 1 GeV accelerator being built at Oak Ridge National Laboratory. The accelerator requires 15 converter-modulator stations each providing between 9 and 11 MW pulses with up to a 1 .I MW average power. The converter-modulator can be described as a resonant 20 kHz polyphase boost inverter. Each converter modulator derives its buss voltage from a standard substation cast-core transformer. Each substation is followed by an SCR pre-regulator to accommodate voltage changes from no load to full load, in addition to providing a soft-start function. Energy storage is provided by self-clearing metallized hazy polypropylene traction capacitors. These capacitors do not fail short, but clear any internal anomaly. Three 'H-Bridge' IGBT transistor networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are time-gated to generate the desired klystron pulse width. Pulse width modulation of the individual 20 lcHz pulses is utilized to provide regulated output waveforms with DSP based adaptive feedforward and feedback techniques. The boost transformer design utilizes nanocrystalline alloy that provides low core loss at design flux levels and switching frequencies. Capacitors are used on the transformer secondary networks to resonate the leakage inductance. The transformers are wound for a specific leakage inductance, not turns ratio. This design technique generates multiple secondary volts per turn as compared to the primary. With the appropriate tuning conditions, switching losses are minimized. The resonant topology has the added benefit of being deQed in a klystron fault condition, with little energy deposited in the arc. This obviates the need of crowbars or other related networks. A review of these design parameters, operational performance, production status, and OWL installation and performance to date will be presented.

  6. Structural design study of a proton beam window for a 1-MW spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Terada, Atsuhiko; Maekawa, Fujio; Meigo, Shin-ichiro; Kaminaga, Masanori; Ishikura, Syuichi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to manufacture, and the other, curved-type that has high stress resistivity. As a part of design study for the windows, evaluation of strength of structure and thermal hydraulic analysis were conducted. As a result, it was found that sufficient heat removal was assured with uniform water flow at the window, and stress caused by internal water pressure and thermal stress could be maintained below allowable stress values. Accordingly, it was confirmed that the proton beam window designs were feasible. (author)

  7. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    Energy Technology Data Exchange (ETDEWEB)

    Gallmeier, F. X., E-mail: gallmeierfz@ornl.gov; Lu, W.; Riemer, B. W.; Zhao, J. K.; Herwig, K. W.; Robertson, J. L. [Instrument and Source Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6466, Oak Ridge, Tennessee 37831 (United States)

    2016-06-15

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm{sup 2} to 20 × 20 mm{sup 2}. This increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.

  8. Study of proton- and deuteron-induced spallation reactions on the long-lived fission product 93Zr at 105 MeV/nucleon in inverse kinematics

    Science.gov (United States)

    Kawase, Shoichiro; Nakano, Keita; Watanabe, Yukinobu; Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Ahn, Deuk Soon; Aikawa, Masayuki; Ando, Takashi; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Isobe, Tadaaki; Kawakami, Shunsuke; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shunpei; Kubono, Shigeru; Maeda, Yukie; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shin'ichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakamura, Takashi; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Takeuchi, Satoshi; Taniuchi, Ryo; Togano, Yasuhiro; Tsubota, Jun'ichi; Uesaka, Meiko; Watanabe, Yasushi; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-09-01

    Spallation reactions for the long-lived fission product ^{93}Zr have been studied in order to provide basic data necessary for nuclear waste transmutation. Isotopic-production cross sections via proton- and deuteron-induced spallation reactions on ^{93}Zr at 105 MeV/nucleon were measured in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Remarkable jumps in isotopic production originating from the neutron magic number N=50 were observed in Zr and Y isotopes. The experimental results were compared to the PHITS calculations considering both the intranuclear cascade and evaporation processes, and the calculations greatly overestimated the measured production yield, corresponding to few-nucleon-removal reactions. The present data suggest that the spallation reaction is a potential candidate for the treatment of ^{93}Zr in spent nuclear fuel.

  9. Preliminary assessment of the nuclide migration from the activation zone around the proposed Spallation Neutron Source facility

    Energy Technology Data Exchange (ETDEWEB)

    Dole, L.R.

    1998-09-01

    The purpose of this study is to investigate the potential impacts of migrating radionuclides from the activation zone around the proposed Spallation Neutron Source (SNS). Using conservatively high estimates of the potential inventory of radioactive activation products that could form in the proposed compacted-soil shield berm around an SNS facility on the Oak Ridge Reservation (ORR), a conservative, simplified transport model was used to estimate the potential worst-case concentrations of the 12 long-lived isotopes in the groundwater under a site with the hydrologic characteristics of the ORR.

  10. Formation of x-ray Newton's rings from nano-scale spallation shells of metals in laser ablation

    Science.gov (United States)

    Nishikino, Masaharu; Hasegawa, Noboru; Tomita, Takuro; Minami, Yasuo; Eyama, Takashi; Kakimoto, Naoya; Izutsu, Rui; Baba, Motoyoshi; Kawachi, Tetsuya; Suemoto, Tohru

    2017-01-01

    The initial stages of the femtosecond (fs) laser ablation process of gold, platinum, and tungsten were observed by single-shot soft x-ray imaging technique. The formation and evolution of soft x-ray Newton's rings (NRs) were found for the first time. The soft x-ray NRs are caused by the interference between the bulk ablated surface and nanometer-scale thin spallation layer; they originate from the metal surface at pump energy fluence of around 1 J/cm2 and work as a flying soft x-ray beam splitter.

  11. Formation of x-ray Newton’s rings from nano-scale spallation shells of metals in laser ablation

    Directory of Open Access Journals (Sweden)

    Masaharu Nishikino

    2017-01-01

    Full Text Available The initial stages of the femtosecond (fs laser ablation process of gold, platinum, and tungsten were observed by single-shot soft x-ray imaging technique. The formation and evolution of soft x-ray Newton’s rings (NRs were found for the first time. The soft x-ray NRs are caused by the interference between the bulk ablated surface and nanometer-scale thin spallation layer; they originate from the metal surface at pump energy fluence of around 1 J/cm2 and work as a flying soft x-ray beam splitter.

  12. Experimental and numerical study on the flow pattern of the ADS windowless spallation target with a second free surface downstream using model fluid water

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Zhenqin, E-mail: zqxiong@sjtu.edu.cn; Gu, Hanyang; Gong, Shenjie

    2015-09-15

    Highlights: • A windowless spallation target with a buffer tank is tested. • Shape of the main free surface is recorded. • Streamline is obtained with the planar laser induced fluorescence method. • Stability of free surface is improved by the buffer tank. • Flow structure is simulated using RNG k-e turbulence model and VOF model. - Abstract: The windowless spallation targets are a promising design solution for accelerator driven system (ADS) due to their extended life compared to the spallation targets with a window. Keeping the stability of the free surface and reducing the recirculation zone is one of the key tasks for the design of a windowless spallation target. A windowless spallation target with a second free surface downstream (which is a buffer used to stabilize the main free surface of the flow) is studied experimentally and numerically using water at atmospheric pressure. By using planar laser induced fluorescence technique (LIF), the flow pattern inside the target zone is visualized for Reynolds numbers varying between 3.5 × 10{sup 4} and 7.0 × 10{sup 4} and pressure differences from 100 to 804 Pa. The experimental results reveal that the stability of the free surface is improved by adding a buffer in the downstream thus making it easier to control the height of the surface. The effect of the pressure difference between the void above the second free surface (high pressure side) and beam pipe (low pressure side) on the flow pattern is analyzed, as well as the inlet flow rate. The height of the surface length decreases with an increase in the pressure difference. The formation of the spallation zone is simulated with Fluent using the LES turbulence model and VOF model. The interface predicted agrees well with the experimental results.

  13. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs, 90Sr and 107Pd on proton and deuteron

    Directory of Open Access Journals (Sweden)

    Wang He

    2017-01-01

    Full Text Available Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes.

  14. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs, 90Sr and 107Pd on proton and deuteron

    Science.gov (United States)

    Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Ahn, DeukSoon; Aikawa, Masayuki; Ando, Takashi; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Isobe, Tadaaki; Kawakami, Shunsuke; Kawase, Shoichiro; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shupei; Kubono, Shigeru; Maeda, Yukie; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shinichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakamura, Takashi; Nakano, Keita; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Takeuchi, Satoshi; Taniuchi, Ryo; Togano, Yasuhiro; Tsubota, Junichi; Uesaka, Meiko; Watanabe, Yasushi; Watanabe, Yukinobu; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-09-01

    Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes.

  15. R&D-needs and opportunities to broaden the data base on materials and technology for liquid metal spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.

    1996-06-01

    Liquid metals have so far only been used to a very limited extent as spallation targets, notably at the ISOLDE-facility at CERN (Pb and La) to produce radioactive isotopes. Virtually no systematic studies have been carried out so far. The available data base is by no means sufficient to answer conclusively very important questions such as predicting reliably the service time of medium-to-high power target systems or determining precisely what technological measures are required and appropriate to maintain an optimum coolant quality, to mitigate the effects of pressure waves in short pulse sources and others. During the workshop several areas have been identified, where there exists an urgent need for improved knowledge and reliable data, and opportunities have been presented to acquire such knowledge and to generate such data. Opportunities to do such research and pertinent know-how, although scarce, are spread over institutions in several countries, and efforts to use these opportunities often require substantial resources both in man power and money. The workshop participants therefore unanimously supported the view that a coordinated and internationally concerted effort should be undertaken to make the best possible use of existing opportunities and available resources in order to develop the knowledge and technology necessary for the deployment and safe operation of target systems suitable for pulsed spallation neutron sources in the multi-megawatt range of beam power.

  16. Results from the TARC experiment: spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing.

    CERN Document Server

    Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; Lèpez, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifenecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, A; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, J A; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin; CERN. Geneva. SPS and LEP Division

    2000-01-01

    The results of the TARC experiment are summarized herewith, whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons, produced by spallation at relatively high energy (En * 1 MeV), slow down quasi adiabatically, with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 GeV/c and 3.5 GeV/c protons) slowing down in a 3.3 m x 3.3 m x 3 m lead volume and of neutron capture rates on LLFFs 99Tc, 129I, and several other elements were performed. An appropriate formalism and appropriate computational t...

  17. Study on bulk shielding for a spallation neutron source facility in the high-intensity proton accelerator project

    CERN Document Server

    Maekawa, F; Takada, H; Teshigawara, M; Watanabe, N

    2002-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project, a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed in a main part of the Materials and Life Science Facility. This report describes results of a study on bulk shielding performance of a biological shield for the spallation neutron source by means of a Monte Carlo calculation method, that is important in terms of radiation safety and cost reduction. A shielding configuration was determined as a reference case by considering preliminary studies and interaction with other components, then shielding thickness that was required to achieve a target dose rate of 1 mu Sv/h was derived. Effects of calculation conditions such as shielding materials and dimensions on the shielding performance was investigated by changing those parameters. By taking all the results and design margins into account, a shielding configuration that was identified as the most appropriate was finally determined as follows. An iron shield regi...

  18. In pursuit of a promise perspectives on the political process to establish the European Spallation Source (ESS) in Lund, Sweden

    CERN Document Server

    2012-01-01

    On 28 May 2009, at a closed meeting in Brussels, ministers and state secretaries of education and science from several EU countries decided to build the European Spallation Source (ESS) in Lund, Sweden. Or did they? It is common for big European science projects to be surrounded by secrecy and political deceit, but the ESS is extraordinary in its elusiveness. There is a remarkable lack of concrete economic, political, technical and scientific underpinnings to the project - but a boasting certainty in the promises of future paybacks. The ESS is an accelerator-based neutron spallation facility that will cost billions of Euros to build and run. It is expected to bring new knowledge in several fields including materials science, energy research, and the life sciences. But its financing is not yet certain, and future returns hard to predict. How then could the decision to build ESS occur? Why was there so little organized resistance? This book places the ESS project in its political and scientific context. It link...

  19. Experimental and numerical investigation of liquid-metal free-surface flows in spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Batta, A., E-mail: batta@kit.edu [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Class, A.G.; Litfin, K.; Wetzel, Th. [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Moreau, V.; Massidda, L. [CRS4 Centre for Advanced Studies, Research and Development in Sardinia, Polaris, Edificio 1, 09010 Pula, CA (Italy); Thomas, S.; Lakehal, D. [ASCOMP GmbH Zurich, Zurich (Switzerland); Angeli, D.; Losi, G. [DIEF – Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Mooney, K.G. [University of Massachusetts Amherst, Department of Mechanical and Industrial Engineering, Amherst (United States); Van Tichelen, K. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium)

    2015-08-15

    Highlights: • Experimental study of free surface for lead bismuth eutectic target. • Numerical investigation of free surface of a liquid metal target. • Advanced free surface modelling. - Abstract: Accelerator Driven Systems (ADS) are extensively investigated for the transmutation of high-level nuclear waste within many worldwide research programs. The first advanced design of an ADS system is currently developed in SCK• CEN, Mol, Belgium: the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA). Many European research programs support the design of MYRRHA. In the framework of the Euratom project ‘Thermal Hydraulics of Innovative nuclear Systems (THINS)’ a liquid-metal free-surface experiment is performed at the Karlsruhe Liquid Metal Laboratory (KALLA) of Karlsruhe Institute of Technology (KIT). The experiment investigates a full-scale model of the concentric free-surface spallation target of MYRRHA using Lead Bismuth Eutectic (LBE) as coolant. In parallel, numerical free surface models are developed and tested which are reviewed in the article. A volume-of-fluid method, a moving mesh model, a free surface model combining the Level-Set method with Large-Eddy Simulation model and a smoothed-particle hydrodynamics approach are investigated. Verification of the tested models is based on the experimental results obtained within the THINS project and on previous water experiments performed at the University Catholic de Louvain (UCL) within the Euratom project ‘EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in Accelerator Driven System (EUROTRANS)’. The design of the target enables a high fluid velocity and a stable surface at the beam entry. The purpose of this paper is to present an overview of both experimental and numerical results obtained for free surface target characterization. Without entering in technical details, the status, the major achievements and lessons for the future with respect to

  20. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  1. Vacuum seals design and testing for a linear accelerator of the National Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Z. Chen; C. Gautier; F. Hemez; N. K. Bultman

    2000-02-01

    Vacuum seals are very important to ensure that the Spallation Neutron Source (SNS) Linac has an optimum vacuum system. The vacuum joints between flanges must have reliable seals to minimize the leak rate and meet vacuum and electrical requirements. In addition, it is desirable to simplify the installation and thereby also simplify the maintenance required. This report summarizes an investigation of the metal vacuum seals that include the metal C-seal, Energized Spring seal, Helcoflex Copper Delta seal, Aluminum Delta seal, delta seal with limiting ring, and the prototype of the copper diamond seals. The report also contains the material certifications, design, finite element analysis, and testing for all of these seals. It is a valuable reference for any vacuum system design. To evaluate the suitability of several types of metal seals for use in the SNS Linac and to determine the torque applied on the bolts, a series of vacuum leak rate tests on the metal seals have been completed at Los Alamos Laboratory. A copper plated flange, using the same type of delta seal that was used for testing with the stainless steel flange, has also been studied and tested. A vacuum seal is desired that requires significantly less loading than a standard ConFlat flange with a copper gasket for the coupling cavity assembly. To save the intersegment space the authors use thinner flanges in the design. The leak rate of the thin ConFlat flange with a copper gasket is a baseline for the vacuum test on all seals and thin flanges. A finite element analysis of a long coupling cavity flange with a copper delta seal has been performed in order to confirm the design of the long coupling cavity flange and the welded area of a cavity body with the flange. This analysis is also necessary to predict a potential deformation of the cavity under the combined force of atmospheric pressure and the seating load of the seal. Modeling of this assembly has been achieved using both HKS/Abaqus and COSMOS

  2. EURISOL MERCURY TARGET EXPERIMENT: CERN SAFETY REPORT

    CERN Document Server

    J. Gulley (CERN SC/GS)

    Report on a visit to the mercury-handling lab at IPUL. The aim was to provide recommendations to IPUL on general health and safety issues relatring to the handling of mercury, the objective being to reduce exposure to acceptable levels, so far as is reasonably practical.

  3. The effects of shockwave profile shape and shock obliquity on spallation in Cu and Ta: kinetic and stress-state effects on damage evolution(u)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, George T [Los Alamos National Laboratory

    2010-12-14

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure, and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals

  4. European Neutrons form Parasitic Research to Global Strategy: Realizing Plans for a Transnational European Spallation Source in the Wake of the Cold War

    Science.gov (United States)

    Kaiserfeld, Thomas

    2016-03-01

    Studies of Big Science have early on focused on instrumentation and scientific co-operation in large organizations, later on to take into account symbolic values and specific research styles while more recently also involving the relevance of commercial interests and economic development as well as the assimilation of research traditions. In accordance with these transformed practices, this presentation will analyze how an organization with the purpose of realizing a Big-Science facility, The European Spallation Source, has successfully managed to present the project as relevant to different national and international policy-makers, to the community of European neutron researchers as well as to different industrial interests. All this has been achieved in a research-policy environment, which has been the subject to drastic transformations, from calls to engage researchers from the former eastern bloc in the early 1990s via competition with American and Asian researchers at the turn of the century 2000 to intensified demands on business applications. During this process, there has also been fierce competition between different potential sites in the U.K., Germany, Spain, Hungary and Sweden, not once, but twice. The project has in addition been plagued by withdrawals of key actors as well as challenging problems in the field of spallation-source construction. Nevertheless, the European Spallation Source has survived from the early 1990s until today, now initiating the construction process at Lund in southern Sweden. In this presentation, the different measures taken and arguments raised by the European Spallation Source project in order to realize the facility will be analysed. Especially the different designs of the European Spallation Source will be analysed as responses to external demands and threats.

  5. Comparison between measurements, simulations, and theoretical predictions of the extraction kicker transverse dipole instability in the Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    J. A. Holmes

    2011-07-01

    Full Text Available Occasionally, it is possible to bring together experiment, theory, and simulation in detail. Such an occasion occurred during a high intensity beam physics study in the Spallation Neutron Source (SNS. A transverse dipole instability in the vertical direction has been observed in the accumulator ring for a coasting beam that was stored for 10 000 turns. This instability was observed at a beam intensity of about 12   μC and was characterized by a frequency spectrum peaking at about 6 MHz. The probable cause of the instability is the impedance of the ring extraction kickers. We carry out here a detailed benchmark of the observed instability, uniting an analysis of the experimental data, a precise ORBIT code tracking simulation, and a theoretical estimate of the observed beam instability.

  6. Beam commission of the high intensity proton source developed at INFN-LNS for the European Spallation Source

    Science.gov (United States)

    Neri, L.; Celona, L.; Gammino, S.; Miraglia, A.; Leonardi, O.; Castro, G.; Torrisi, G.; Mascali, D.; Mazzaglia, M.; Allegra, L.; Amato, A.; Calabrese, G.; Caruso, A.; Chines, F.; Gallo, G.; Longhitano, A.; Manno, G.; Marletta, S.; Maugeri, A.; Passarello, S.; Pastore, G.; Seminara, A.; Spartà, A.; Vinciguerra, S.

    2017-07-01

    At the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS) the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started in November 2016. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Promising results were obtained since the first source start with a 6 mm diameter extraction hole. The increase of the extraction hole to 8 mm allowed improving PS-ESS performances and obtaining the values required by the ESS accelerator. In this work, extracted beam current characteristics together with Doppler shift and emittance measurements are presented, as well as the description of the next phases before the installation at ESS in Lund.

  7. Calculation Package: Derivation of Facility-Specific Derived Air Concentration (DAC) Values in Support of Spallation Neutron Source Operations

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, David A [ORNL

    2009-12-01

    Derived air concentration (DAC) values for 175 radionuclides* produced at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS), but not listed in Appendix A of 10 CFR 835 (01/01/2009 version), are presented. The proposed DAC values, ranging between 1 E-07 {micro}Ci/mL and 2 E-03 {micro}Ci/mL, were calculated in accordance with the recommendations of the International Commission on Radiological Protection (ICRP), and are intended to support an exemption request seeking regulatory relief from the 10 CFR 835, Appendix A, requirement to apply restrictive DACs of 2E-13 {micro}Ci/mL and 4E-11 {micro}Ci/mL and for non-listed alpha and non-alpha-emitting radionuclides, respectively.

  8. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    CERN Document Server

    Yoshida, K; Takada, H

    2003-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated.

  9. Light nuclides produced in the proton-induced spallation of {sup 238}U at 1 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, M.V.; Armbruster, P. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Benlliure, J. [Universidad de Santiago de Compostela (ES)] [and others

    2005-09-01

    The production of light and intermediate-mass nuclides formed in the reaction {sup 1}H+{sup 238}U at 1 GeV was measured at the fragment separator (FRS) at GSI, Darmstadt. The experiment was performed in inverse kinematics, shooting a 1 A GeV {sup 238}U beam on a thin liquid-hydrogen target. 254 isotopes of all elements in the range 7{<=}Z{<=}37 were unambiguously identified, and the velocity distributions of the produced nuclides were determined with high precision. The results show that the nuclides are produced in a very asymmetric binary decay of heavy nuclei originating from the spallation of uranium. All the features of the produced nuclides merge with the characteristics of the fission products as their mass increases. (orig.)

  10. CAMEA ESS – The continuous angle multi-energy analysis indirect geometry spectrometer for the European Spallation Source

    Directory of Open Access Journals (Sweden)

    Freeman P.G.

    2015-01-01

    Full Text Available The CAMEA ESS neutron spectrometer is designed to achieve a high detection efficiency in the horizontal scattering plane, and to maximize the use of the long pulse European Spallation Source. It is an indirect geometry time-of-flight spectrometer that uses crystal analysers to determine the final energy of neutrons scattered from the sample. Unlike other indirect geometry spectrometers CAMEA will use ten concentric arcs of analysers to analyse scattered neutrons at ten different final energies, which can be increased to 30 final energies by use of prismatic analysis. In this report we will outline the CAMEA instrument concept, the large performance gain, and the potential scientific advancements that can be made with this instrument.

  11. Cross section measurements of the yield of spallation reactions related to the study of hybrid reactor systems; Measures de sections efficaces de production de produits de reactions en rapport avec l`etude de systemes de reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Bernas, M.; Mustapha, B.; Stephan, C. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)] [and others

    1999-11-01

    Studies presently developed on the design of hybrid systems need the knowledge of spallation products and their production rate. To obtain this information we have performed cross-section measurements using the inverse kinematical method. (authors) 2 figs.

  12. ALARA Review of the Spallation Neutron Source Accumulator Ring and Transfer Lines

    Energy Technology Data Exchange (ETDEWEB)

    Haire, M.J.

    2003-06-30

    The Spallation Neutron Source (SNS) is designed to meet the growing need for new tools that will deepen our understanding in materials science, life science, chemistry, fundamental and nuclear physics, earth and environmental sciences, and engineering sciences. The SNS is an accelerator-based neutron-scattering facility that when operational will produce an average beam power of 2 MW at a repetition rate of 60 Hz. The accelerator complex consists of the front-end systems, which will include an ion source; a 1-GeV full-energy linear accelerator; a single accumulator ring and its transfer lines; and a liquid mercury target. This report documents an as-low-as-reasonably-achievable (ALARA) review of the accumulator ring and transfer lines at their early design stage. An ALARA working group was formed and conducted a review of the SNS ring and transfer lines at the {approx}25% complete design stage to help ensure that ALARA principles are being incorporated into the design. The radiological aspects of the SNS design criteria were reviewed against regulatory requirements and ALARA principles. Proposed features and measures were then reviewed against the SNS design criteria. As part of the overall review, the working group reviewed the design manual; design drawings and process and instrumentation diagrams; the environment, safety, and health manual; and other related reports and literature. The group also talked with SNS design engineers to obtain explanations of pertinent subject matter. The ALARA group found that ALARA principles are indeed being incorporated into the early design stage. Radiation fields have been characterized, and shielding calculations have been performed. Radiological issues are being adequately addressed with regard to equipment selection, access control, confinement structure and ventilation, and contamination control. Radiation monitoring instrumentation for worker and environment protection are also being considered--a good practice at this

  13. Radiological considerations on multi-MW targets Part I Induced radioactivity

    CERN Document Server

    Agosteo, S; Silari, M

    2005-01-01

    CERN is designing a Superconducting Proton Linac (SPL) to provide a 2.2GeV, 4MW proton beam to feed facilities like, for example, a future Neutrino Factory or a Neutrino SuperBeam. The material activation in such facilities is an important aspect that has to be taken into account at an early design stage. In particular, the choice of the target has consequences on the induced radioactivity and dose rates in the target itself and in its surroundings. In the present work, the radiological aspects of a stationary target made up of small tantalum pellets are compared to those of a free-surface jet of mercury. An estimation of the hadronic inelastic interactions and the production of residual nuclei in the target, the magnetic horn, the decay tunnel, the surrounding rock and a downstream dump were performed for both targets by the Monte Carlo hadronic cascade code FLUKA. The aim was to assess the dose equivalent rate to be expected during maintenance work and to evaluate the amount of residual radioactivity, which...

  14. Design and Experimental Validation of Hydraulic Yaw System for Multi MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    market. A hydraulic yaw system is such a new technology, and so a mathematical model of the full scale system and test rig system is derived and compared to measurements from the system. This is done in order to have a validated model, which wind turbine manufacturers may use for test in their simulation...... environment. The model and the test rig are tested up against different design load cases and the results are compared. The experiments show that the model is valid for comparing the overall dynamics of the hydraulic yaw system. Based on the results it is concluded that the model derived is suitable...

  15. Specification of Instrumentation of Multi MW Wave Dragon Offshore Wave Energy Converter

    DEFF Research Database (Denmark)

    Gilling, Lasse; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter of the overtopping type and is described e.g. in Tedd et. al. (2006). The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based...

  16. Reactive power influence on the thermal cycling of multi-MW wind power inverter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    In this paper the reactive power influence on the thermal cycling of power devices in grid-connected inverter for 10 MW wind turbines is investigated. Restrained by the grid codes, the allowable reactive power ranges in relation to amplitude and phase angle of the load current for a single...... converter system are first presented at different wind speeds. Furthermore, the interaction between paralleled converter systems in a wind park is also considered and analyzed. By controlling the reactive power circulated among paralleled converters, a new concept is then proposed to stabilize the thermal...... fluctuation of the power devices during wind gusts. It is concluded that the reactive power may change the thermal distribution of power devices. By properly controlling the reactive power, it is possible to achieve a more stable junction temperature in the power devices during the fluctuation of wind speed...

  17. Reactive power influence on the thermal cycling of multi-MW wind power inverter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    In this paper the reactive power influence on the thermal cycling of power devices in grid-connected inverter for 10 MW wind turbines is investigated. Restrained by the grid codes, the allowable reactive power ranges in relation to amplitude and phase angle of the load current for a single...... converter system are first presented at different wind speeds. Furthermore, the interaction between paralleled converter systems in a wind park is also considered and analyzed. By controlling the reactive power circulated among paralleled converters, a new concept is then proposed to stabilize the thermal...... fluctuation of the power devices during wind gusts. It is concluded that the reactive power may change the thermal distribution of power devices. By properly controlling the reactive power, it is possible to achieve a more stable junction temperature in the power devices during the fluctuation of wind speed...

  18. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma

    Science.gov (United States)

    Litchford, Ron J.; Harada, Nobuhiro

    2011-01-01

    Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.

  19. Comparison of multi-MW converters considering the determining factors in wind power application

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    converters are normally targeted to the industrial drive applications, and they did not take into account the special requirements in the case of wind power. This paper tries to unify and compare several promising wind power converters by a series new model and perspective. The evaluation criteria...... to be unified for comparison. And the two-level low-voltage converter solution still shows cost advantage regarding power semiconductors, while some multi-level medium-voltage converter solutions can show better performance when complying with the grid codes....

  20. Analysis of the spallation residues and the associated particles in the reaction Fe+p at 1 GeV per nucleon; Analyse des residus de spallation et des particules associees dans la reaction Fe+p a 1 GeV par nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Le Gentil, E

    2006-09-15

    SPALADIN is a new type of spallation experiment that has been carried out at the GSI accelerator facility (Germany) in order to improve the modelling of the spallation reaction. This experiment is based on the coincidence measurement in inverse kinematics of the spallation residues and the de-excitation fragments. This work presents the analysis of Fe{sup 56} + p reaction at 1 GeV per nucleon. Results on cross-sections and heavy residue velocity spectra are compared to previous data and enabled us to characterize the setup. Most of the element production cross-sections have been obtained with an uncertainty below 10 per cent. In the particular case of helium, its production cross-section has been measured to be {sigma}(1 GeV) = (598 {+-} 67) mb. The knowledge of this cross-section is important to assess the irradiation damage undergone by the window separating the accelerator from the target. The study of the de-excitation of the pre-fragment shows that the evaporation of light particles (Z {<=} 2) is the main way of de-excitation whatever the collision centrality. However, the de-excitation through the emission of intermediate mass fragments is observed in 5% of the events and most of these events correspond to a very asymmetric binary breaking. The velocity distributions of light residues (with regards to the mass of the projectile) show a significant disagreement with the average velocities predicted by spallation codes. (A.C.)

  1. Measurement of the spallation reaction {sup 56}Fe+p in inverse kinematics; Messung der Spallationsreaktion {sup 56}Fe+p in inverser Kinematik

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, M.

    2006-09-25

    In this work the spallation reaction {sup 56}Fe+p was investigated in inverse kinematics with regard to complete identification of the heavy residues. A ring imaging Cerenkov counter was used for velocity measurements in the experimental setup located at GSI in Darmstadt. A new fast readout electronic was developed and has been operated successfully in the experiment. Momentum reconstruction was carried out with the ALADiN spectrometer and a new software package written for this purpose. Cross sections and velocity distributions for more than 100 mass separated isotopes could be extracted from the dataset and compared with empirical models and other spallation experiments. The experiences gained in this experiment will be used for systematic improvements in the setup of the new spectrometer R3B at FAIR. (orig.)

  2. Isotopic production cross-sections and recoil velocities of spallation-fission fragments in the reaction 238U(1A GeV)+e

    CERN Document Server

    Pereira, J; Wlazlo, W; Benlliure, J; Casarejos, E; Armbruster, P; Bernas, M; Enqvist, T; Legrain, R; Leray, S; Rejmund, F; Mustapha, B; Schmidt, K.-H; Stéphan, C; Taïeb, J; Tassan-Got, L; Volant, C; Boudard, A; Czajkowski, S; 10.1103/PhysRevC.75.014602

    2007-01-01

    Fission fragments of 1A GeV 238U nuclei interacting with a deuterium target have been investigatedwith the Fragment Separator (FRS) at GSI (Darmstadt) by measuring their isotopicproduction cross-sections and recoil velocities. The results, along with those obtained recently forspallation-evaporation fragments, provide a comprehensive analysis of the spallation nuclear productionsin the reaction 238U(1A GeV)+d. Details about experiment performance, data reductionand results will be presented.

  3. A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper

    CERN Document Server

    Baussan, E; Bogomilov, M.; Bouquerel, E.; Cederkäll, J.; Christiansen, P.; Coloma, P.; Cupial, P.; Danared, H.; Densham, C.; Dracos, M.; Ekelöf, T.; Eshraqi, M.; Fernandez Martinez, E.; Gaudiot, G.; Hall-Wilton, R.; Koutchouk, J.P.; Lindroos, M.; Matev, R.; McGinnis, D.; Mezzetto, M.; Miyamoto, R.; Mosca, L.; Ohlsson, T.; Öhman, H.; Osswald, F.; Peggs, S.; Poussot, P.; Ruber, R.; Tang, J.Y.; Tsenov, R.; Vankova-Kirilova, G.; Vassilopoulos, N.; Wildner, E.; Wurtz, J.

    2014-01-01

    Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few $\\mu$s with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground ...

  4. Optimization of $^{178m2}$/Hf isomer production in spallation reactions at projectile energies up to 100 MeV using STAPRE and ALICE code simulations

    CERN Document Server

    Kirischuk, V I; Khomenkov, V P; Strilchuk, N V; Zheltonozhskij, V A

    2004-01-01

    /sup 178m2/Hf isomer production in different spallation reactions with protons, alpha particles and neutrons at projectile energies up to 100 MeV has been analyzed using both STAPRE and ALICE code simulations. The STAPRE code was used to calculate the isomeric ratios, while the ALICE code was used to simulate the excitation functions of the respective ground states. A number of spallation reactions have been compared taking into account not only /sup 178m2 /Hf isomer productivity but also, first, the isomeric ratios calculated by the STAPRE code; second, the accumulation of the most undesirable Hf isotopes and isomers, such as /sup 172/Hf, /sup 175 /Hf, and /sup 179m/Hf; and, third, the production of other admixtures and by-products that could degrade the quality of the produced /sup 178m2/Hf isomer sources, including all stable Hf isotopes as well. Possibilities and ways of optimizing /sup 178m2/Hf isomer production in spallation reactions at projectile energies up to 100 MeV are discussed. This can be consi...

  5. Accumulation of the $^{178m2}Hf$ Isomeric Nuclei Through Spallation with Intermediate-Energy Protons of Tantalum and Rhenium Targets

    CERN Document Server

    Karamian, S A; Adam, J; Filossofov, D V; Henzlova, D; Henzl, V; Kalinnikov, V G; Lebedev, N A; Novgorodov, A F; Collins, C B; Popescu, I I; Ur, C A

    2001-01-01

    The productivity of the spallation reactions at proton energies of 100-660 MeV for accumulation of the radioactive isotopes and isomers has been studied experimentally. Spectra of Ta and Re targets activated at Dubna synchrocyclotron were measured using the methods of radiochemistry and gamma-spectroscopy. Many radioactive products of the spallation and fission reactions are identified, and their yields are compared with the LAHET code simulations. Cross sections, \\sigma_m and isomer-to-ground state ratios, \\sigma_m/\\sigma_g are deduced for nuclear isomers, in particular, for high-spin isomers, as ^{179m2}Hf, ^{179m2}Hf and ^{177m2}Lu. Spin distributions for the spallation-residue nuclei are estimated to understand the \\sigma_m/\\sigma_g ratios. Possibilities to optimize the methods for the long-lived isomers production are discussed, and it would be a necessary step on the way to accumulate such exotic radionuclides in milligram amount under reasonable cost and radiation safety conditions.

  6. Influence of Shock-Wave Profile Shape (``Taylor-Wave'' versus Square-Topped) on the Shock-Hardening and Spallation Response of 316L Stainless Steel

    Science.gov (United States)

    Gray, G. T.; Bourne, N. K.; Millett, J. C. F.; Lopez, M. F.

    2004-07-01

    While much has been learned over the past five decades concerning shock hardening and the spallation response of materials shock-loaded using "square-topped" shock profiles, achieved via flyer plate loading, considerably less quantitative information is known concerning direct in-contact HE-driven or triangular-wave loading profile shock prestraining on metals and alloys. In this paper the influence of shock-wave profile, using both "square-topped" and triangular-wave pulses, on the shock hardening and spallation response of 316L stainless steel is presented. The shock hardening in 316L SS, using a triangular-shaped pulse and square-topped pulse (pulse duration of 0.75 μsec) to a peak shock pressure of 6.6 GPa was found to be reasonably similar. Square-wave loading at 6.6 GPa is observed to result in incipient spallation in 316L SS while triangular-wave loading to an equivalent peak stress is quantified to exhibit no wave-profile "pull-back" nor damage evolution.

  7. Design of an experimental device dedicated to the measurement of spallation reactions; Mise au point d'un dispositif experimental pour des mesures exclusives des reactions de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Lafriakh, A

    2005-12-15

    Spallation mechanisms are not yet completely understood, especially because of the difficulty of experimentally disentangling the effects of the different steps of the reaction. In order to understand these mechanisms, we have developed a new experimental device able to perform inclusive measurements. We propose a detection system based on a combination of ionization chambers and proportional counters and on a wall of plastic scintillators to measure light charged particles. In particular the detection of light charged particles is described in detail. In order to validate our device, we have compared our preliminary results obtained on the Fe{sup 56} + p system at 1 GeV/u with inclusive measurements previously obtained at the FRS spectrometer of the GSI facility. A comparison of charge differential cross section shows reasonable agreement. However, our new device allowed extension of those measurements down to Z = 1 and Z = 2. These cross sections are important for material damage studies. Taking into account our error brackets, the evolution of mean longitudinal velocities with respect to residue masses is comparable to that obtained at the FRS. These first results, although preliminary, allow us to validate our experimental device. It is now possible to exploit the strong points of our exclusive measurements, namely correlations between different measured observables. Finally, experimental problems encountered will be taken into account in the future experimental programs, in order to ensure the best measurements conditions.

  8. Preliminary Assessment of the Nuclide Migration from the Activation Zone Around the Proposed Spallation Neutron Source Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dole, L.R.

    1998-09-01

    The purpose of this study is to investigate the potential impacts of migrating radionuclides from the activation zone around the proposed Spallation Neutron Source (SNS). Using conservatively high estimates of the potential inventory of radioactive activation products that could form in the proposed compacted-soil shield berm around an SNS facility on the Oak Ridge Reservation (ORR), a conservative, simplified transport model was used to estimate the potential worst-case concentrations of the 12 long-lived isotopes in the groundwater under a site with the hydrologic characteristics of the ORR. Of the 12, only 3 isotopes showed any potential to exceed the U.S. Nuclear Regulatory Commission (NRC) 10 Code of Federal Regulations (CFR) Part 20 Drinking Water Limits (DWLs). These isotopes were 14C, 22Na, and 54Mn. The latter two activation products have very short half-lives of 2.6 years and 0.854 year, respectively. Therefore, these will decay before reaching an off-site receptor, and they cannot pose off-site hazards. However, for this extremely conservative model, which overestimates the mobility of the contaminant, 14C, which has a 5,730-year half-life, was shown to represent a potential concern in the context of this study's conservative assumptions. This study examines alternative modifications to the SNS shield berm and makes recommendations.

  9. Simulation of a high energy neutron irradiation facility at beamline 11 of the China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Tairan, Liang [School of Physics and Electronic Information Inner Mongolia University for the Nationalities, Tongliao 028043 (China); Zhiduo, Li [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Wen, Yin, E-mail: wenyin@aphy.iphy.ac.cn [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Fei, Shen [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Quanzhi, Yu [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Tianjiao, Liang [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China)

    2017-07-11

    The China Spallation Neutron Source (CSNS) will accommodate 20 neutron beamlines at its first target station. These beamlines serve different purposes, and beamline 11 is designed to analyze the degraded models and damage mechanisms, such as Single Event Effects in electronic components and devices for aerospace electronic systems. This paper gives a preliminary discussion on the scheme of a high energy neutron irradiation experiment at the beamline 11 shutter based on the Monte Carlo simulation method. The neutron source term is generated by calculating the neutrons scattering into beamline 11 with a model that includes the target-moderator-reflector area. Then, the neutron spectrum at the sample position is obtained. The intensity of neutrons with energy of hundreds of MeV is approximately 1E8 neutron/cm{sup 2}/s, which is useful for experiments. The displacement production rate and gas productions are calculated for common materials such as tungsten, tantalum and SS316. The results indicate that the experiment can provide irradiation dose rate ranges from 1E-5 to 1E-4 dpa per operating year. The residual radioactivity is also calculated for regular maintenance work. These results give the basic reference for the experimental design.

  10. Recent advances in high pressure neutron scattering at the Spallation Neutron Source at Oak Ridge National Laboratory

    Science.gov (United States)

    Tulk, C.; dos Santos, A.; Klug, D.; Guthrie, M.; Machida, S.; Molaison, J.

    2012-12-01

    There have been significant improvements in the operation of the high pressure diffractometer, SNAP, at the Spallation Neutron Source over the past two years. This talk will highlight the current capacities which include low temperature systems, high temperature systems, and the introduction of new pressure cell technology that is based on supported diamond anvils and, with advances in software, is particularly suited for powder diffraction. Specific examples of our recent research will focus on high pressure transitions in hydrogen bonded systems such as methane and CO2 hydrate. The high pressure hexagonal phase of methane hydrate is studied to determine the nature of the hydrate cage loading, this provides detailed experimental data that will lead to better intermolecular potentials for methane - methane interactions, particularly when methane molecules are in close contact and strongly repelling. The high pressure structural systematics of carbon dioxide hydrate is reported. While the structural transformation sequence of most hydrates progress from sI (or sII) to the hexagonal form then to a flied ice structure, CO2 hydrate is an example of a system that skips the hexagonal phase and transforms directly into the filled ice structure. Finally examples of using SNAP to study disorder in amorphous systems will be given. Particularly amorphous vapor co-deposits of water, known as amorphous solid water, and clathrate forming molecules such as CO2, and the structural response of these systems to increased pressure at low temperature.

  11. Development of the DCHAIN-SP code for analyzing decay and build-up characteristics of spallation products

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kosako, Kazuaki

    1999-03-01

    For analyzing the decay and build-up characteristics of spallation products, the DCHAIN-SP code has been developed on the basis of the DCHAIN-2 code by revising the decay data and implementing the neutron cross section data. The decay data are newly processed from the data libraries of EAF 3.1, FENDL/D-1 and ENSDF. The neutron cross section data taken from FENDL/A-2 data library are also prepared to take account of the transmutation of nuclides by the neutron field at the produced position. The DCHAIN-SP code solves the time evolution of decay and build-up of nuclides in every decay chain by the Beteman method. The code can estimate the following physical quantities of produced nuclides: inventory, activity, decay heat by the emission of {alpha}, {beta} and {gamma}-rays, and {gamma}-ray energy spectrum, where the nuclide production rate estimated by the nucleon-meson transport code such as NMTC/JAERI97 is used as an input data. This paper describes about the function, the solution model and the database adopted in the code and explains how to use the code. (author)

  12. Monte carlo simulations of the n_TOF lead spallation target with the Geant4 toolkit: A benchmark study

    Directory of Open Access Journals (Sweden)

    Lerendegui-Marco J.

    2017-01-01

    Full Text Available Monte Carlo (MC simulations are an essential tool to determine fundamental features of a neutron beam, such as the neutron flux or the γ-ray background, that sometimes can not be measured or at least not in every position or energy range. Until recently, the most widely used MC codes in this field had been MCNPX and FLUKA. However, the Geant4 toolkit has also become a competitive code for the transport of neutrons after the development of the native Geant4 format for neutron data libraries, G4NDL. In this context, we present the Geant4 simulations of the neutron spallation target of the n_TOF facility at CERN, done with version 10.1.1 of the toolkit. The first goal was the validation of the intra-nuclear cascade models implemented in the code using, as benchmark, the characteristics of the neutron beam measured at the first experimental area (EAR1, especially the neutron flux and energy distribution, and the time distribution of neutrons of equal kinetic energy, the so-called Resolution Function. The second goal was the development of a Monte Carlo tool aimed to provide useful calculations for both the analysis and planning of the upcoming measurements at the new experimental area (EAR2 of the facility.

  13. 3-dimensional shielding design for a spallation neutron source facility in the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaya; Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Evaluation of shielding performance for a 1 MW spallation neutron source facility in the Materials and Life Science Facility being constructed in the High-Intensity Proton Accelerator Project (J-PARC) is important from a viewpoint of radiation safety and optimization of arrangement of components. This report describes evaluated results for the shielding performance with modeling three-dimensionally whole structural components including gaps between them in detail. A Monte Carlo calculation method with MCNPX2.2.6 code and LA-150 library was adopted. Streaming and void effects, optimization of shield for cost reduction and optimization of arrangement of structures such as shutters were investigated. The streaming effects were investigated quantitatively by changing the detailed structure of components and gap widths built into the calculation model. Horizontal required shield thicknesses were ranged from about 6.5 m to 7.5 m as a function of neutron beam line angles. A shutter mechanism for a horizontal neutron reflectometer that was directed downward was devised, and it was shown that the shielding performance of the shutter was acceptable. An optimal biological shield configuration was finally determined according to the calculated results. (author)

  14. Simulation of a high energy neutron irradiation facility at beamline 11 of the China Spallation Neutron Source

    Science.gov (United States)

    Tairan, Liang; Zhiduo, Li; Wen, Yin; Fei, Shen; Quanzhi, Yu; Tianjiao, Liang

    2017-07-01

    The China Spallation Neutron Source (CSNS) will accommodate 20 neutron beamlines at its first target station. These beamlines serve different purposes, and beamline 11 is designed to analyze the degraded models and damage mechanisms, such as Single Event Effects in electronic components and devices for aerospace electronic systems. This paper gives a preliminary discussion on the scheme of a high energy neutron irradiation experiment at the beamline 11 shutter based on the Monte Carlo simulation method. The neutron source term is generated by calculating the neutrons scattering into beamline 11 with a model that includes the target-moderator-reflector area. Then, the neutron spectrum at the sample position is obtained. The intensity of neutrons with energy of hundreds of MeV is approximately 1E8 neutron/cm2/s, which is useful for experiments. The displacement production rate and gas productions are calculated for common materials such as tungsten, tantalum and SS316. The results indicate that the experiment can provide irradiation dose rate ranges from 1E-5 to 1E-4 dpa per operating year. The residual radioactivity is also calculated for regular maintenance work. These results give the basic reference for the experimental design.

  15. A new 2.5 MeV injector and beam test facility for the spallation neutron source

    Science.gov (United States)

    Welton, R. F.; Aleksandrov, A.; Han, B. X.; Kang, Y. W.; Middendorf, M. M.; Murray, S. N.; Piller, M.; Pennisi, T. R.; Peplov, V.; Saethre, R.; Santana, M.; Stinson, C.; Stockli, M. P.

    2017-08-01

    The U.S. Spallation Neutron Source (SNS) now operates with 1.2 MW of beam power on target with the near-term goal of delivering 1.4 MW and a longer-term goal of delivering >2 MW to support a planned second target station. Presently, H- beam pulses (50-60 mA, 1 ms, 60 Hz) from an RF-driven, Cs-enhanced, multi-cusp ion source are first accelerated to 2.5 MeV by a Radio Frequency Quadrupole (RFQ) accelerator, injected into a ˜1 GeV linac, compressed to transmission, the initial applications of the BTF will be to conduct 6D beam dynamic studies, develop & demonstrate ion sources capable of meeting the current and future requirements of the SNS, and contribute to neutron moderator development. This report provides a facility update, description of the BTF ion source systems as well as a discussion of the first LEBT and RFQ beam current measurements performed at the BTF.

  16. High power operation of the polyphase resonant converter modulator system for the spallation neutron source linear accelerator

    CERN Document Server

    Reass, W A; Baca, D M; Doss, J D; Gonzáles, J M; Gribble, R F; Trujillo, P G

    2003-01-01

    The spallation neutron source (SNS) is a new 1.4 MW average power beam, 1 GeV accelerator being built at Oak Ridge national laboratory. The accelerator requires 15 "long-pulse" converter-modulator stations each providing a maximum of 11 MW pulses with a 1.1 MW average power. Two variants of the converter-modulator are utilized, an 80 kV and a 140 kV design, the voltage dependant on the type of klystron load. The converter-modulator can be described as a resonant zero-voltage- switching polyphase boost inverter. As noted in Figure 1, each converter modulator derives its buss voltage from a standard 13.8 kV to 2100 Y (1.5 MVA) substation cast-core transformer. The substation also contains harmonic traps and filters to accommodate IEEE 519 and 141 regulations. Each substation is followed by an SCR preregulator to accommodate system voltage changes from no load to full load, in addition to providing a soft-start function. Energy storage and filtering is provided by special low inductance self-clearing metallized ...

  17. Small Gas Bubble Experiment for Mitigation of Cavitation Damage and Pressure Waves in Short-pulse Mercury Spallation Targets

    Energy Technology Data Exchange (ETDEWEB)

    Wendel, Mark W [ORNL; Felde, David K [ORNL; Sangrey, Robert L [ORNL; Abdou, Ashraf A [ORNL; West, David L [ORNL; Shea, Thomas J [ORNL; Hasegawa, Shoichi [Japan Atomic Energy Agency (JAEA); Kogawa, Hiroyuki [Japan Atomic Energy Agency (JAEA); Naoe, Dr. Takashi [Japan Atomic Energy Agency (JAEA); Farny, Dr. Caleb H. [Boston University; Kaminsky, Andrew L [ORNL

    2014-01-01

    Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center - Weapons Neutron Research Center (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubbler provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 m in radius with achieved gas void fractions in the 10^-5 to 10^-4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was surface damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was between half and a quarter that of flow alone. Other data collected included surface motion tracking by three laser Doppler vibrometers (LDV), loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones.

  18. Correlation between simulations and cavitation-induced erosion damage in Spallation Neutron Source target modules after operation

    Energy Technology Data Exchange (ETDEWEB)

    Riemer, Bernie [ORNL; McClintock, David A [ORNL; Kaminskas, Saulius [ORNL; Abdou, Ashraf A [ORNL

    2014-01-01

    An explicit finite element (FE) technique developed for estimating dynamic strain in the Spallation Neutron Source (SNS) mercury target module vessel is now providing insight into cavitation damage patterns observed in used targets. The technique uses an empirically developed material model for the mercury that describes liquid-like volumetric stiffness combined with a tensile pressure cut-off limit that approximates cavitation. The longest period each point in the mercury is at the tensile cut-off threshold is denoted its saturation time. Now, the pattern of saturation time can be obtained from these simulations and is being positively correlated with observed damage patterns and is interpreted as a qualitative measure of damage potential. Saturation time has been advocated by collaborators at J-Parc as a factor in predicting bubble nuclei growth and collapse intensity. The larger the ratio of maximum bubble size to nucleus, the greater the bubble collapse intensity to be expected; longer saturation times result in greater ratios. With the recent development of a user subroutine for the FE solver saturation time is now provided over the entire mercury domain. Its pattern agrees with spots of damage seen above and below the beam axis on the SNS inner vessel beam window and elsewhere. The other simulation result being compared to observed damage patterns is mercury velocity at the wall. Related R&D has provided evidence for the damage mitigation that higher wall velocity provides. In comparison to observations in SNS targets, inverse correlation of high velocity to damage is seen. In effect, it is the combination of the patterns of saturation time and low velocity that seems to match actual damage patterns.

  19. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, N. A., E-mail: namauro@noctrl.edu [Department of Physics, North Central College, Naperville, Illinois 60540 (United States); Vogt, A. J. [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Derendorf, K. S. [Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri 63130 (United States); Johnson, M. L.; Kelton, K. F. [Department of Physics and Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130 (United States); Rustan, G. E.; Quirinale, D. G.; Goldman, A. I. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Kreyssig, A. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Division of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Lokshin, K. A. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Neuefeind, J. C.; An, Ke [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wang, Xun-Li [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Ave., Kowloon (Hong Kong); Egami, T. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Physics and Astronomy, Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2016-01-15

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)

  20. Coprecipitation experiment with Sm hydroxide using a multitracer produced by nuclear spallation reaction: A tool for chemical studies with superheavy elements.

    Science.gov (United States)

    Kasamatsu, Yoshitaka; Yokokita, Takuya; Toyomura, Keigo; Shigekawa, Yudai; Haba, Hiromitsu; Kanaya, Jumpei; Huang, Minghui; Ezaki, Yutaka; Yoshimura, Takashi; Morita, Kosuke; Shinohara, Atsushi

    2016-12-01

    To establish a new methodology for superheavy element chemistry, the coprecipitation behaviors of 34 elements with samarium hydroxide were investigated using multitracer produced by a spallation of Ta. The chemical reactions were rapidly equilibrated within 10s for many elements. In addition, these elements exhibited individual coprecipitation behaviors, and the behaviors were qualitatively related to their hydroxide precipitation behaviors. It was demonstrated that the ammine and hydroxide complex formations of superheavy elements could be investigated using the established method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Influence of sweeping detonation-wave loading on damage evolution during spallation loading of tantalum in both a planar and curved geometry

    Energy Technology Data Exchange (ETDEWEB)

    Gray, George Thompson III [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hull, Lawrence Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Livescu, Veronica [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Faulkner, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Briggs, Matthew E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meyer, Ross Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andrews, Heather Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hare, Steven John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jakulewicz, Micah Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shinas, Michael A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-30

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress, the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research

  2. Time-of-Flight Bragg Scattering from Aligned Stacks of Lipid Bilayers using the Liquids Reflectometer at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jianjun [ORNL; Heberle, Frederick A [ORNL; Carmichael, Justin R [ORNL; Ankner, John Francis [ORNL; Katsaras, John [ORNL

    2012-01-01

    Time-of-flight (TOF) neutron diffraction experiments on aligned stacks of lipid bilayers using the horizontal Liquids Reflectometer at the Spallation Neutron Source are reported. Specific details are given regarding the instrumental setup, data collection and reduction, phase determination of the structure factors, and reconstruction of the one-dimensional neutron scattering length density (NSLD) profile. The validity of using TOF measurements to determine the one-dimensional NSLD profile is demonstrated by reproducing the results of two well known lipid bilayer structures. The method is then applied to show how an antimicrobial peptide affects membranes with and without cholesterol.

  3. Spallation neutron production by 0.8, 1.2, and 1.6 GeV protons on various targets

    Science.gov (United States)

    Leray, S.; Borne, F.; Crespin, S.; Fréhaut, J.; Ledoux, X.; Martinez, E.; Patin, Y.; Petibon, E.; Pras, P.; Boudard, A.; Legrain, R.; Terrien, Y.; Brochard, F.; Drake, D.; Duchazeaubeneix, J. C.; Durand, J. M.; Meigo, S. I.; Milleret, G.; Whittal, D. M.; Wlazlo, W.; Durand, D.; Le Brun, C.; Lecolley, F. R.; Lecolley, J. F.; Lefebvres, F.; Louvel, M.; Varignon, C.; Hanappe, F.; Ménard, S.; Stuttge, L.; Thun, J.

    2002-04-01

    Spallation neutron production in proton induced reactions on Al, Fe, Zr, W, Pb, and Th targets at 1.2 GeV and on Fe and Pb at 0.8 and 1.6 GeV measured at the SATURNE accelerator in Saclay is reported. The experimental double differential cross sections are compared with calculations performed with different intranuclear cascade models implemented in high energy transport codes. The broad angular coverage also allowed the determination of average neutron multiplicities above 2 MeV. Deficiencies in some of the models commonly used for applications are pointed out.

  4. Spallation Neutron Production by 0.8, 1.2, and 1.6 GeV Protons on Pb Targets

    Science.gov (United States)

    Ledoux, X.; Borne, F.; Boudard, A.; Brochard, F.; Crespin, S.; Drake, D.; Duchazeaubeneix, J. C.; Durand, D.; Durand, J. M.; Fréhaut, J.; Hanappe, F.; Kowalski, L.; Lebrun, C.; Lecolley, F. R.; Lecolley, J. F.; Lefebvres, F.; Legrain, R.; Leray, S.; Louvel, M.; Martinez, E.; Meigo, S. I.; Ménard, S.; Milleret, G.; Patin, Y.; Petibon, E.; Plouin, F.; Pras, P.; Stuttge, L.; Terrien, Y.; Thun, J.; Uematsu, M.; Varignon, C.; Whittal, D. M.; Wlazło, W.

    1999-05-01

    Spallation neutron production in proton induced reactions on Pb targets at 0.8, 1.2, and 1.6 GeV has been measured at the SATURNE accelerator. Double-differential cross sections were obtained over a broad angular range from which averaged neutron multiplicities per reaction were inferred for energies above 2 MeV. The results are compared with calculations performed with a high energy transport code including two different intranuclear cascade (INC) models: it is shown that the Cugnon INC model gives a better agreement with the data than the Bertini one, mainly because of improved nucleon-nucleon cross sections and Pauli blocking treatment.

  5. Engineering design and construction of a function Hg – loop & Contribution of IPUL in windowless Hg-target feasibility studies

    CERN Document Server

    J. Freibergs, E. Platacis, K. Kravalis, A. Ziks&I.Platnieks

    Within EURISOL – DS, a liquid metal /LM/ spallation target with a power of several Megawatt is designed to provide neutrons to a fission target. The target station that allows the full intensity of a 4 MW proton beam to be used for RIB production will require new advanced technology. It is a critical component of EURISOL.For a power density above 103 MW/m3 the windowless, free-surface, molten LM-jet is proposed as a target since it avoids the very serious lifetime – shortening damage caused by the power proton beam in any system

  6. Performance characteristics of the new detector array for the SANS2d instrument on the ISIS spallation neutron source

    Science.gov (United States)

    Duxbury, D.; Heenan, R.; McPhail, D.; Raspino, D.; Rhodes, N.; Rogers, S.; Schooneveld, E.; Spill, E.; Terry, A.

    2014-12-01

    The performance of the new position sensitive neutron detector arrays of the Small Angle Neutron Scattering (SANS) instrument SANS2d is described. The SANS2d instrument is one of the seven instruments currently available for users on the second target station (TS2) of the ISIS spallation neutron source. Since the instrument became operational in 2009 it has used two one metre square multi-wire proportional detectors (MWPC). However, these detectors suffer from a low count rate capability, are easily damaged by excess beam and are then expensive to repair. The new detector arrays each consist of 120 individual position sensitive detector tubes, filled with 15 bar of 3He. Each of the tubes is one metre long and has a diameter of 8mm giving a detector array with an overall area of one square metre. Two such arrays have been built and installed in the SANS2d vacuum tank where they are currently taking user data. For SANS measurements operation of the detector within a vacuum is essential in order to reduce air scattering. A novel, fully engineered approach has been utilised to ensure that the high voltage connections and preamps are located inside the SANS2d vacuum tank at atmospheric pressure, within air tubes and air boxes respectively. The signal processing electronics and data acquisition system are located remotely in a counting house outside of the blockhouse. This allows easy access for maintenance purposes, without the need to remove the detectors from the vacuum tank. The design will be described in detail. A position resolution of 8mm FWHM or less has been measured along the length of the tubes. The initial measurements taken from a standard sample indicate that whilst the detector arrays themselves only represent a moderate improvement in overall detection efficiency (~ 20%), compared to the previous detector, the count rate capability is increased by a factor of 100. A significant advantage of the new array is the ability to change a single tube in situ

  7. Cross section measurement of residues produced in proton- and deuteron-induced spallation reactions on 93Zr at 105 MeV/u using the inverse kinematics method

    Science.gov (United States)

    Kawase, Shoichiro; Watanabe, Yukinobu; Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Takeuchi, Satoshi; Togano, Yasuhiro; Nakamura, Takashi; Maeda, Yukie; Ahn, Deuk Soon; Aikawa, Masayuki; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Ichihara, Takashi; Isobe, Tadaaki; Kawakami, Shunsuke; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shunpei; Kubo, Toshiyuki; Kubono, Shigeru; Kurokawa, Meiko; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shin'ichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakano, Keita; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Taniuchi, Ryo; Tsubota, Jun'ichi; Watanabe, Yasushi; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-09-01

    Isotopic production cross sections in the proton- and deuteron-induced spallation reactions on 93Zr at an energy of 105 MeV/u were measured in inverse kinematics conditions for the development of realistic nuclear transmutation processes for long-lived fission products (LLFPs) with neutron and light-ion beams. The experimental results were compared to the PHITS calculations describing the intra-nuclear cascade and evaporation processes. Although an overall agreement was obtained, a large overestimation of the production cross sections for the removal of a few nucleons was seen. A clear shell effect associated with the neutron magic number N = 50 was observed in the measured isotopic production yields of Zr and Y isotopes, which can be reproduced reasonably by the PHITS calculation.

  8. Safety techniques in the change of nuclear systems. Radiation protection at spallation neutron sources and transmutation facilities; Sicherheitstechnik im Wandel Nuklearer Systeme. Strahlenschutz bei Spallationsneutronenquellen und Transmutationsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Nuenighoff, Kay

    2009-07-01

    To push the boundary towards higher neutron fluxes concepts based on spallation reactions have been discussed. Here neutrons are produced by bombarding a heavy metal target (e.g. mercury, tungsten, or tantalum) with high energetic protons. Up to now such facilities could not be realised because of the high power particle accelerators needed. Recent developments of the accelerator technology open the possibility of construction and operating proton accelerators in the MW region. This is demonstrated by construction and commissioning of two MW spallation neutron sources, namely SNS (Oak Ridge, Tennessee, USA) with a power of 1.4 MW and J-PARC (Japan) with 1 MW. The realisation of proton accelerators at this power level will open the way towards energy amplifiers, as proposed e.g. by Carlo Rubbia. Such a facility will not only produce electric power. Furthermore longliving radionuclides can be transmutated into shortlived or even stable nuclides by neutron induced nuclear reactions. A mitigation of the problem of nuclear waste disposal. The above discussed developments prove that accelerators are not only constructed for research, moreover application of these technology became state of the art. With the emergence of particle accelerators in the MW region, radiation protection is confronted with new kind of problems to be solved. Especially the higher kinetic energies of the primary beam particles requires modification and expansion of computer programs well known in nuclear engineering. In contrast to nuclear reactors with kinetic energies up to 2-3 MeV, in spallation reaction secondary particles up to the incident energy in the GeV region will be produced. Problems related to radiation protection have to be considered in an energy range three orders of magnitude higher than known from nuclear reactors. In this thesis existing computer codes are compared and validated with data from selected experiments. Questions concerning radiation protection covers a broad range

  9. Safety analysis and lay-out aspects of shieldings against particle radiation at the example of spallation facilities in the megawatt range; Sicherheitstechnische Analyse und Auslegungsaspekte von Abschirmungen gegen Teilchenstrahlung am Beispiel von Spallationsanlagen im Megawatt Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Hanslik, R.

    2006-08-15

    This paper discusses the shielding of particle radiation from high current accelerators, spallation neutron sources and so called ADS-facilities (Accelerator Driven Systems). ADS-facilities are expected to gain importance in the future for transmutation of long-lived isotopes from fission reactors as well as for energy production. In this paper physical properties of the radiation as well as safety relevant requirements and corresponding shielding concepts are discussed. New concepts for the layout and design of such shielding are presented. Focal point of this work will be the fundamental difference between conventional fission reactor shielding and the safety relevant issues of shielding from high-energy radiation. Key point of this paper is the safety assessment of shielding issues of high current accelerators, spallation targets and ADS-blanket systems as well as neutron scattering instruments at spallation neutron sources. Safety relevant shielding requirements are presented and discussed. For the layout and design of the shielding for spallation sources computer base calculations methods are used. A discussion and comparison of the most important methods like semi-empirical, deterministic and stochastic codes are presented. Another key point within the presented paper is the discussion of shielding materials and their shielding efficiency concerning different types of radiation. The use of recycling material, as a cost efficient solution, is discussed. Based on the conducted analysis, flowcharts for a systematic layout and design of adequate shielding for targets and accelerators have been developed and are discussed in this paper. By use of these flowcharts layout and engineering design of future ADS-facilities can be performed. (orig.)

  10. A calibration of the production rate ratio P-21/P-26 by low energy secondry neutrons: Identification of Ne spallation components at the 10(exp 6) atoms/g level in terrestrial samples

    Science.gov (United States)

    Graf, TH.; Niedermann, S.; Marti, K.

    1993-01-01

    The spallation ratio (Ne-22/Ne-21)(sub c) from Si was determined as 1.243 plus or minus 0.022 in a terrestrial quartz sample. We carried out a calibration of the in-situ production rate ratio P-21/P-26 in quartz samples for which Be-10 and Al-26 production rates were previously measured. A ratio P-21/P-26 of 0.67 plus or minus 0.12 is obtained.

  11. An overview of the state of the art technologies for multi-MW scale offshore wind turbines and beyond

    DEFF Research Database (Denmark)

    Natarajan, Anand

    2014-01-01

    mechanisms such as individual blade pitch control offer promising advances. The lack of reliability of the gearbox has resulted in drive train technologies to move toward direct drives, whose benefits and liabilities are assessed in combination with generator concepts. The support structures are discussed......An overview of technological trends in the design of multi-mega Watt wind turbines focused on the offshore sector is presented. The state of the art technologies for wind turbine design are multidisciplinary ranging from blade aeroelasticity, power transmission to the generator, to advanced control...... systems that ensure performance and the design of offshore support structures to minimize cost of energy. Light weight carbon fiber blades, aeroelastic tailoring using bend–twist coupling are discussed in coordination with a multitude of aerodynamic technologies for optimal power capture such as high...

  12. Radiological considerations on multi-MW targets Part II After-heat and temperature distribution in packed tantalum spheres

    CERN Document Server

    Magistris, M

    2005-01-01

    CERN is designing a Superconducting Proton Linac (SPL) to provide a 2.2GeV, 4MW proton beam to feed facilities like, for example, a future Neutrino Factory or a Neutrino SuperBeam. One of the most promising target candidates is a stationary consisting of a Ti container filled with small Ta pellets. The power deposited as heat by the radioactive nuclides (the so-called after-heat) can considerably increase the target temperature after ceasing operation, if no active cooling is provided. An estimate of the induced radioactivity and after-heat was performed with the FLUKA Monte Carlo code. To estimate the highest temperature reached inside the target, the effective thermal conductivity of packed spheres was evaluated using the basic cell method. A method for estimating the contribution to heat transmission from radiation is also discussed1).

  13. Medium Voltage Three-level Converters for the Grid Connection of aMulti-MW Wind Turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2009-01-01

    Three-level (3L) neutral point clamped (NPC), flying capacitor (FC), and H-bridge (HB) voltage source converters (VSCs) as a grid-side full-scale medium voltage (MV) converter are modeled, controlled, and simulated for the grid connection of a hypothetical 6MW wind turbine. Via the converter...... topological features and the simulation results demonstrating the converter performance, these three 3L-VSCs are discussed and compared in terms of power density and reliability, which can be considered as two of the most important criteria for the converters placed in wind turbine nacelles. Given the grid...

  14. Medium voltage three-level converters for the grid connection of a multi-MW wind turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2009-01-01

    Three-level (3L) neutral point clamped (NPC), flying capacitor (FC), and H-bridge (HB) voltage source converters (VSCs) as a grid-side full-scale medium voltage (MV) converter are modeled, controlled, and simulated for the grid connection of a hypothetical 6MW wind turbine. Via the converter...... topological features and the simulation results demonstrating the converter performance, these three 3L-VSCs are discussed and compared in terms of power density and reliability, which can be considered as two of the most important criteria for the converters placed in wind turbine nacelles. Given the grid...

  15. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, Kim; Kleno, Kaspar H.; Holm, Sonja L.; Sales, Morten [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Danish Workpackage for the ESS Design Update Phase, Universitetsparken 5, 2100 Copenhagen O (Denmark); Birk, Jonas Okkels [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Danish Workpackage for the ESS Design Update Phase, Universitetsparken 5, 2100 Copenhagen O (Denmark); Laboratory for Quantum Magnetism, Ecole Polytecnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Hansen, Britt R.; Knudsen, Erik; Willendrup, Peter K. [Institute of Physics, Technical University of Denmark, 2800 Lyngby (Denmark); Danish Workpackage for the ESS Design Update Phase, 2800 Lyngby (Denmark); Lieutenant, Klaus [Institute for Energy Technology, Instituttveien 18, 2007 Kjeller (Norway); Helmholtz Center for Energy and Materials, Hahn-Meitner Platz, 14109 Berlin (Germany); German Work Package for the ESS Design Update, Hahn-Meitner Platz, 14109 Berlin (Germany); Moos, Lars von [Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde (Denmark); Danish Workpackage for the ESS Design Update Phase, 2800 Lyngby (Denmark); Institute for Energy Conversion, Technical University of Denmark, 4000 Roskilde (Denmark); Andersen, Ken H. [European Spallation Source ESS AB, 22100 Lund (Sweden)

    2013-05-15

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  16. Calculation of dose coefficients for radionuclides produced in a spallation neutron source utilizing NUBASE and the evaluated nuclear structure data file databases.

    Science.gov (United States)

    Shanahan, J; Eckerman, K; Arndt, A; Gold, C; Patton, P; Rudin, M; Brey, R; Gesell, T; Rusetski, V; Pagava, S

    2006-01-01

    Based on a mercury spallation neutron source target, the UNLV Transmutation Research Program has identified 72 radionuclides with a half-life greater than or equal to a minute as lacking an appropriate reference for a published dose coefficient according to existing radiation safety dose coefficient databases. A method was developed to compare the nuclear data presented in the ENSDF and NUBASE databases for these 72 radionuclides. Due to conflicting or lacking nuclear data in one or more of the databases, internal and external dose coefficient values have been calculated for only 14 radionuclides, which are not currently presented in Federal Guidance Reports Nos. 11, 12, and 13 or Publications 68 and 72 of the International Commission on Radiological Protection. Internal dose coefficient values are reported for inhalation and ingestion of 1 microm and 5 microm AMAD particulates along with the f1 values and absorption types for the adult worker. Internal dose coefficient values are also reported for inhalation and ingestion of 1 microm AMAD particulates as well as the f1 values and absorption types for members of the public. Additionally, external dose coefficient values for air submersion, exposure to contaminated ground surface, and exposure to soil contaminated to an infinite depth are also presented.

  17. Monte Carlo calculations on transmutation of trans-uranic nuclear waste isotopes using spallation neutrons difference of lead and graphite moderators

    CERN Document Server

    Hashemi-Nezhad, S R; Brandt, R; Krivopustov, M I; Kulakov, B A; Odoj, R; Sosnin, A N; Wan, J S; Westmeier, W

    2002-01-01

    Transmutation rates of sup 2 sup 3 sup 9 Pu and some minor actinides ( sup 2 sup 3 sup 7 Np, sup 2 sup 4 sup 1 Am, sup 2 sup 4 sup 5 Cm and sup 2 sup 4 sup 6 Cm), in two accelerator-driven systems (ADS) with lead or graphite moderating environments, were calculated using the LAHET code system. The ADS that were used had a large volume (approx 32 m sup 3) and contained no fissile material, except for a small amount of fissionable waste nuclei that existed in some cases. Calculations were performed at an incident proton energy of 1.5 GeV and the spallation target was lead. Also breeding rates of sup 2 sup 3 sup 9 Pu and sup 2 sup 3 sup 3 U as well as the transmutation rates of two long-lived fission products sup 9 sup 9 Tc and sup 1 sup 2 sup 9 I were calculated at different locations in the moderator. It is shown that an ADS with graphite moderator is a much more effective transmuter than that with lead moderator.

  18. Study of the spallation of 136Xe in collision with 1H and 12C at 1 GeV per nucleon

    Science.gov (United States)

    Gorbinet, T.; Aumann, T.; Bianchin, S.; Borodina, O.; Boudard, A.; Caesar, C.; Casajeros, E.; Czech, B.; Ducret, J.-É.; Hlavac, S.; Kurz, N.; Langer, C.; Le Bleis, T.; Leray, S.; Lukasik, J.; Pawlowski, P.; Pietri, S.; Salsac, M.-D.; Simon, H.; Veselsky, M.; Ayyad, Y.; Yordanov, O.

    2012-10-01

    The collision of 136Xe with a proton and with 12C at 1 GeV per nucleon has been studied in inverse kinematics with the SPALADIN setup at GSI. The detection in coincidence of the final state fragments (projectile residues, neutrons and Z ⩾ 2 charged fragments) with a large geometrical efficiency is provided by the inverse kinematics combined with a large-aperture dipole magnet and large detectors. Such a coincidence, measured on an event basis, allows us to select the excitation energy of the prefragment formed after the nuclear cascade and study its different de-excitation channels such as evaporation of light particles, asymmetric binary decay or multifragmentation. After a short summary of spallation reactions modeling, followed by the description of the setup, some preliminary results will be shown including the cross-sections of the reaction on the proton, compared in particular to other measurements as well as the cross-sections for the various fragment multiplicities. In the last section, we explain our method for the selection of the prefragment excitation energy and give a hint of the variables available in our experiment to study the excitation energy dependence of the prefragment de-excitation mechanism for both reactions.

  19. Capture and Fission rate of 232-Th, 238-U, 237-Np and 239-Pu from spallation neutrons in a huge block of lead.

    CERN Document Server

    Vlachoudis, Vasilis

    2000-01-01

    The study is centered on the research of the incineration possibility of nuclear waste, by the association of a particle accelerator with a multiplying medium of neutrons, in the project "Energy Amplifier" of C. Rubbia. It consists of the experimental determination of the rates of capture and fission of certain elements (232-Th, 238-U, 237-Np and 239-Pu) subjected to a fluence of fast spallation neutrons. These neutrons are produced by the interaction of high kinetic energy protons (several GeV) provided by the CERN-PS accelerator, on a large lead solid volume. The measurement techniques used in this work, are based on the activation of elements in the lead volume and the subsequent gamma spectroscopy of the activated elements, and also by the detection of fission fragment traces. The development, of a Monte Carlo code makes it possible, on one hand, to better understand the relevant processes, and on the other hand, to validate the code, by comparison with measurements, for the design and the construction of...

  20. Transmutation of $^{239}$Pu and Other Nuclides Using Spallation Neutrons Produced by Relativistic Protons Reacting with Massive U- and Pb-Targets

    CERN Document Server

    Adam, J; Bamblevski, V P; Barabanov, M Yu; Bradnova, V; Chaloun, P; Hella, K M; Kalinnikov, V G; Krivopustov, M I; Kulakov, B A; Perelygin, V P; Pronskikh, V S; Pavliouk, A V; Solnyshkin, A A; Sosnin, A N; Stegailov, V I; Tsoupko-Sitnikov, V M; Zaverioukha, O S; Adloff, J C; Debeauvais, M; Brandt, R; Langrock, E J; Vater, P; Van, J S; Westmeier, W; Dwivedi, K K; Guo Shi Lun; Li Li Qiang; Hashemi-Nezhad, S R; Kievets, M K; Lomonosova, E M; Zhuk, I V; Modolo, G; Odoj, R; Zamani-Valassiadou, M

    2001-01-01

    Experimental studies on the transmutation of some long-lived radioactive waste nuclei, such as ^{129}I, ^{237}Np, and ^{239}Pu, as well as on natural uranium and lanthanum (all of them used as sensors) were carried out at the Synchrophasotron of the Laboratory for High Energies (JINR, Dubna). Spallation neutrons were produced by relativistic protons with energies in the range of 0.5 GeV\\le E(p)\\le 1.5 GeV interacting with 20 cm long uranium or lead target stacks. The targets were surrounded by 6 cm paraffin moderators. The radioactive sensors mentioned above were positioned on the outside surface of the moderator and contained typically approximately 0.5 up to 1 gram of long-lived isotopes. The highly radioactive targets were produced perfectly well-sealed in aluminum containers by the Institute of Physics and Power Engineering, Obninsk, Russia. From the experimentally observed transmutation rates one can easily extrapolate, that in a subcritical nuclear power assembly (or "energy amplifier") using a 10 mA pr...

  1. EURISOL-DS METEX1: LDV measurement to detect Cavitations

    CERN Document Server

    Lettry, Jacques; Kharoua, Cyril; Samec, Karel

    Laser Doppler Vibrometers (LDV) are optical instruments for accurately measuring velocity and displacement of vibrating structures completely without contact.A rugged optic head (roughly the same size as a video camera) mounts to a tripod and can be easily pointed at a vibrating object.

  2. Finite element analysis and frequency shift studies for the bridge coupler of the coupled cavity linear accelerator of the spallation neutron source.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z. (Zukun)

    2001-01-01

    The Spallation Neutron Source (SNS) is an accelerator-based neutron scattering research facility. The linear accelerator (linac) is the principal accelerating structure and divided into a room-temperature linac and a superconducting linac. The normal conducting linac system that consists of a Drift Tube Linac (DTL) and a Coupled Cavity Linac (CCL) is to be built by Los Alamos National Laboratory. The CCL structure is 55.36-meters long. It accelerates H- beam from 86.8 Mev to 185.6 Mev at operating frequency of 805 MHz. This side coupled cavity structure has 8 cells per segment, 12 segments and 11 bridge couplers per module, and 4 modules total. A 5-MW klystron powers each module. The number 3 and number 9 bridge coupler of each module are connected to the 5-MW RF power supply. The bridge coupler with length of 2.5 {beta}{gamma} is a three-cell structure and located between the segments and allows power flow through the module. The center cell of each bridge coupler is excited during normal operation. To obtain a uniform electromagnetic filed and meet the resonant frequency shift, the RF induced heat must be removed. Thus, the thermal deformation and frequency shift studies are performed via numerical simulations in order to have an appropriate cooling design and predict the frequency shift under operation. The center cell of the bridge coupler also contains a large 4-inch slug tuner and a tuning post that used to provide bulk frequency adjustment and field intensity adjustment, so that produce the proper total field distribution in the module assembly.

  3. {sup 48}Ti(n,xnpa{gamma}) reaction cross sections using spallation neutrons for E{sub n} = 1 to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dashdorj, D; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Cooper, J R; Hoffman, R D; Younes, W; Devlin, N; Fotiades, N; Nelson, R O

    2005-01-06

    {gamma}-ray excitation functions have been measured for the interaction of fast neutrons with {sup 48}Ti (neutron energy from 1 MeV to 250 MeV). The Los Alamos National Laboratory spallation neutron source, at the LANSCE/WNR facility, provided a ''white'' neutron beam which is produced by bombarding a natural W target with a pulsed proton beam. The prompt-reaction {gamma} rays were measured with the large-scale Compton-suppressed Ge spectrometer, GEANIE. Neutron energies were determined by the time-of-flight technique. Excitation functions were converted to partial {gamma}-ray cross sections, taking into account the dead-time correction, the target thickness, the detector efficiency, and neutron flux (monitored with an in-line fission chamber). The data analysis is presented here for neutron energies between 1 to 20 MeV. Partial {gamma}-ray cross sections for transitions in {sup 47,48}Ti, {sup 48}Sc, and {sup 45}Ca have been determined. These results are compared to Hauser-Feshbach predictions calculated using the STAPRE code, which includes compound nuclear and pre-equilibrium emission. The partial cross sections for {gamma} rays, whose discrete {gamma}-ray cascade path leads to the ground state in {sup 48}Ti, {sup 47}Ti, {sup 48}Sc, and {sup 45}Ca have been summed to obtain estimates of the lower limits for reaction cross sections. Partial cross sections for unobserved {gamma}-rays are predicted from the STAPRE code. These lower limits are combined with Hauser-Feshbach calculations to deduce {sup 48}Ti(n,n'){sup 48}Ti, {sup 48}Ti(n,2n){sup 47}Ti, {sup 48}Ti(n,p){sup 48}Sc, and {sup 48}Ti(n,{alpha}){sup 45}Ca reaction channel cross sections.

  4. Study of the production of residual evaporation nuclei issued from the spallation reaction of uranium-238 by 1 GeV protons; Etude de la production de noyaux residuels d'evaporation issus de la reaction de spallation de l'uranium-238 par des protons a 1 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Taieb, J

    2000-10-01

    The spallation reaction by high energy protons is one of the envisaged nuclear reactions for production of exotic nuclei. We have measured the production of more than 300 different evaporation residues issued by the spallation reaction of Uranium-238 by 1 GeV protons. We used the reverse kinematics technique in order to produce the relativistic nuclei and therefore to be able to detect those nuclides within a very short time, shorter in most cases than the radioactive disintegration period. The achieved nuclear charge and mass resolution are excellent. They allow a good accuracy on the values of the measured cross-sections (10 to 15%). We have observed for the first time the nuclide Actinium-235 obtained consequently to the loss of 3 protons by the projectile. The measured isotopic distribution are strongly influenced by the mechanism of fission which leads to a strong reduction of the production of the heavy neutron deficient isotopes. We have compared our results to some other measurements achieved with radio-chemical methods at a similar energy. We observed a systematic disagreement of about 40%. Some comparison with the available systematics show that those are presently not able to reproduce the data with a reasonable precision. We could also measure the recoil momentum distribution for each studied isotopes. We show that Goldhaber's model agrees very well with the experiment in case. of 'cold' channels where the evaporation of particles never occurs. On the other hand, when the produced pre-fragment is excited the data show that Goldhaber's model does not reproduce.the data showing the limitation of such an approach. We finally tried to reproduce the measurement of evaporation residue cross-section thanks to the coupling of intra-nuclear cascade and statistical evaporation codes. The influence of the fission process is rather important is the system p+U; we therefore had to account for the dynamical aspect of the fission. We also showed

  5. Spallation neutron experiment at SATURNE

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    The double differential cross sections for (p,xn) reactions and the spectra of neutrons produced from the thick target have been measured at SATURNE in SACLAY from 1994 to 1997. The status of the experiment and the preliminary experimental results are presented. (author)

  6. Corrosion mechanism of T91 steel by Pb-Bi eutectic used as spallation target: importance for accelerator driven system; Mecanisme de corrosion de l'acier T91 par l'eutectique Pb-Bi utilise comme materiau de cible de spallation: importance pour les reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, L

    2005-10-15

    The aim of this work has been to determine the oxidation mechanism of the martensitic steel T91 in the Pb-Bi liquid eutectic alloy, saturated in oxygen, at 470 C, in order to develop a long-term predictive model of the oxidation kinetics of the steel. This work enters in the framework of the lifetime studies of the spallation module demonstrator: MEGAPIE for the researches on hybrid reactors. An experimental characterization of the oxide layers has been carried out as well as the oxidation kinetics of the T91 steel. An oxidation mechanism has been elaborated from these experimental results and then simulated. The oxide layer formed at the T91 surface presents a duplex structure constituted by a magnetite external layer and a spinel Fe-Cr internal layer. A growth mechanism of the oxide layers has been proposed: the growth of the magnetite layer seems to be limited by the iron diffusion in the lattice of the duplex oxide layer. In parallel, an auto-regulation mechanism seems to govern the growth of the Fe-Cr spinel layer. This mechanism includes a non-limiting step of the oxygen diffusion in the oxide layer (by liquid way in the nano-channels of lead), as well as a limiting step of iron diffusion in the lattice of the oxide layer. In considering the proposed oxidation mechanisms, a simulation of the growth of the two oxide layers is carried out and compared to the long-time oxidation growth kinetics. The good agreement between the experimental results allows, finally, to strengthen the proposition of a long-term growth kinetic oxidation mechanism of the oxide layers. (O.M.)

  7. Cross section measurement of residues produced in proton- and deuteron-induced spallation reactions on 93Zr at 105 MeV/u using the inverse kinematics method

    Directory of Open Access Journals (Sweden)

    Kawase Shoichiro

    2017-01-01

    Full Text Available Isotopic production cross sections in the proton- and deuteron-induced spallation reactions on 93Zr at an energy of 105 MeV/u were measured in inverse kinematics conditions for the development of realistic nuclear transmutation processes for long-lived fission products (LLFPs with neutron and light-ion beams. The experimental results were compared to the PHITS calculations describing the intra-nuclear cascade and evaporation processes. Although an overall agreement was obtained, a large overestimation of the production cross sections for the removal of a few nucleons was seen. A clear shell effect associated with the neutron magic number N = 50 was observed in the measured isotopic production yields of Zr and Y isotopes, which can be reproduced reasonably by the PHITS calculation.

  8. Study of the fragment distribution in the spallation reaction Fe + p for 5 energies from 300 to 1500 MeV/A and application to the determination of damage on an hybrid system window; Etude de la production des noyaux residuels dans la reaction de spallation Fe+p a 5 energies (300-1500 MeV/ A) et application au calcul de dommages sur une fenetre de systeme hybride

    Energy Technology Data Exchange (ETDEWEB)

    Villagrasa-Canton, C

    2003-12-01

    The window is a crucial part in an accelerator-driven sub-critical reactor: it has to sustain the vacuum of the accelerator body and it has to act as a containment barrier for the core of the reactor. The window undergoes both thermal strains due to the energy loss of the intense proton beam and radiation damages through nuclear reactions induced by protons and by the neutrons back-scattered from the reactor. The window is expected to be made of 90% of iron. The major contribution of this work is the measurement of the isotope production cross-section of the spallation reaction on Fe-56 for 5 energies from 300 to 1500 MeV/A and for Z > 7, the distribution of recoil speeds of fragments has also been measured. The first chapter is dedicated to the specificities of spallation reactions and their simulation through mathematical models. The second chapter presents the experimental setting, the reverse kinematics method has been used: it is a beam of Fe-56 that is impinging on an hydrogen target. The third chapter deals with the analysis process that has led to the values of cross-sections and of speed distributions. The fourth chapter presents a comparison of these results, first with already existing experimental data in overlapping domains and secondly with the models presented in the first chapter. It appears that the agreement is better for cross-sections than for speed distributions. The last chapter shows how these new data about iron can be applied to the assessment of critical issues concerning the window: -) the pile-up of fragments during irradiation time and -) the determination of dpa (displacement per atom). (A.C.)

  9. Converter Structure-Based Power Loss and Static Thermal Modeling of The Press-Pack IGBT Three-Level ANPC VSC Applied to Multi-MW Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2011-01-01

    MW wind turbine to a MV grid. The switching power loss models are built using the experimental switching power loss data acquired via the double-pulse tests conducted on a full-scale 3L-ANPC-VSC prototype. The converter static thermal model is developed based on the double-sided water-cooled press...... performance, the converter structure-based power loss and thermal models are developed in this study for the medium-voltage (MV) three-level active neutral-point-clamped voltage source converter (3L-ANPC-VSC) utilizing 4500 V-1800 A press-pack insulated-gate bipolar transistor-diode pairs and interfacing a 6......-pack switches. Via a single-phase test setup with two full-scale 3L-ANPC-VSC legs, the developed power loss and thermal models are validated experimentally. Employing the validated models, the 3L-ANPC-VSC's thermal performance is demonstrated on simulation for a 6 MW wind turbine grid interface. Hence...

  10. Multi-MW wind turbine power curve measurements using remote sensing instruments – the first Høvsøre campaign

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael

    speed calculated from LiDAR profile measurements gave a small reduction of the power curve uncertainty. Several factors can explain why this difference is smaller than expected, including the experimental design and errors pertaining to the LiDAR at that time. This first measurement campaign shows...

  11. Thermal Analysis of Multi-MW Two-Level Generator Side Converters with Reduced Common-Mode-Voltage Modulation Methods for Wind Turbines

    DEFF Research Database (Denmark)

    Qin, Zian; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    Thermal performance is one of the main indicators of power converter, since it is related to both the cost of cooling system and the reliability of the power converter. Moreover, the common-mode voltage in motor driver may damage the bearing of the motor and also cause failure. Therefore, both...... the thermal performance and common-mode voltage of the converter should be taken into account during the selection process of the modulation strategies. In this paper, based on the generator side converter of a 3 MW wind power system, the common-modevoltage reduced modulation strategies are compared...... with the conventional-60o discontinuous PWM, where the common-mode voltage, power losses and thermal performance are all taken into account. In detail, the common-mode voltages are investigated both in time domain and spectrum. The power loss distribution of the power converter with the two modulation strategies...

  12. A study of non-elastic reaction rates for the ADS materials in the environment of spallation neutrons produced by 1.6 GeV d-beam.

    Science.gov (United States)

    Bhatia, Chitra; Adam, J; Kumar, V; Katovsky, K; Majerle, M; Solnyshkin, A A; Tsoupko-Sitnikov, V M

    2012-07-01

    For the design and modeling of Accelerator Driven sub-critical System (ADS) a detailed study of response of ADS materials to the spallation neutrons is required. For this purpose reaction rates of different reactions like (n, xn) and (n, xnyp) in 209Bi, natMo, 56Fe, natNi, 55Mn, natTi and natCo materials are determined in an experiment conducted at Nuclotron of JINR, Dubna, using 1.6 GeV d-beam in the 'Energy+Transmutation' set-up. Reaction rates of various (n, xn) and (n, xnyp) reactions are studied in these samples. Results of reaction rates deduced from all the gamma peaks observed in case of 209Bi (n, xn) reactions with x=3-9, natMo (n, γ), (n, 3n), (n, 6n), 56Fe (n, p), (n, p2n), (n, p4n), natNi (n, 2n), (n, 3n), (n, p), (n, d), (n, t), 55Mn (n, γ), (n, 2n), (n, 4n), natTi (n, p), (n, d), (n, t) and natCo (n, γ), (n, xn) reactions with x=2-5 along with (n, p), (n, 2p2n), (n, 2p4n) and (n, 2p6n) are presented. The measured reaction rates for all the elements show good consistency for all the reaction channels and all observed Eγ's of the product nucleus. For all the above mentioned reactions, both experimental as well as theoretical spectrum average cross-sections (σsp.av.cs) are deduced and compared. A close agreement is found between the experimental σsp.av.cs and theoretical σsp.av.cs values. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Measurements of gas and volatile element production rates from an irradiated molten lead and lead-bismuth spallation target with proton beams of 1 and 1.4 GeV; Mesures de taux de production d'elements gazeux et volatiles lors de reactions induites par des protons de 1 et 1,4 GeV sur des cibles epaisses de plomb et plomb-bismuth liquides

    Energy Technology Data Exchange (ETDEWEB)

    Tall, Y

    2008-03-15

    The integrated project EUROTRANS (European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System) of the 6. EURATOM Framework Programme aims to demonstrate the transmutation of radioactive waste in ADS (Accelerator Driven Sub-critical system). It will carry out a first advanced design of an experimental facility to demonstrate the technical feasibility of transmutation, and will produce a conceptual design of an industrial facility dedicated to transmutation. An ADS consists of three fundamental elements: the accelerator of protons, the sub-critical core and the spallation target. SUBATECH (physique Sub-Atomique et des Technologies associees) laboratory is involved to the study of the chosen liquid lead-bismuth as a spallation ADS target. The irradiation of liquid lead-bismuth target with energetic proton beam generates in addition to neutrons, volatile and radioactive residues. In order to determine experimentally the production rates of gas and volatile elements following a spallation reaction in a lead-bismuth target, the experiment IS419 was performed at the ISOLDE facility at CERN (Centre Europeen de la Recherche Nucleaire). This experiment constitutes the frame of the thesis whose main objective is to assess and study the production and release rates of many gas and volatile element from the irradiated lead-bismuth target with an energetic proton beam. The obtained data are compared to Monte Carlo simulation code (MCNPX) results in order to test the intranuclear cascade model of Bertini and of Cugnon, and the evaporation options of Dresner and Schmidt. (author)

  14. Feasibility of High Power Refractory Metal Foil-Targets for EURISOL

    CERN Document Server

    R. Wilfinger, J. Lettry and the EURISOL Task 3 Workgroup

    Radioisotopes are produced by the ISOL method in thick targets. In existing ISOL facilities, only small yields have been obtained for short-lived nuclei close to the driplines due to the radioactive decay during the diffusion, effusion and ionization processes. An increase of the proton beam current increases the production rate, which is directly proportional to the primary proton flux. But at the same time, the power deposition inside the target is also increased proportional to the primary proton flux...

  15. Benchmark calculations on residue production within the EURISOL DS project; Part I: thin targets

    CERN Document Server

    David, J.C; Boudard, A; Doré, D; Leray, S; Rapp, B; Ridikas, D; Thiollière, N

    Report on benchmark calculations on residue production in thin targets. Calculations were performed using MCNPX 2.5.0 coupled to a selection of reaction models. The results were compared to nuclide production cross-sections measured in GSI in inverse kinematics

  16. Benchmark calculations on residue production within the EURISOL DS project; Part II: thick targets

    CERN Document Server

    David, J.-C; Boudard, A; Doré, D; Leray, S; Rapp, B; Ridikas, D; Thiollière, N

    Benchmark calculations on residue production using MCNPX 2.5.0. Calculations were compared to mass-distribution data for 5 different elements measured at ISOLDE, and to specific activities of 28 radionuclides in different places along the thick target measured in Dubna.

  17. EURISOL-DS METEX: Cooling and Temperature Control of the Mercury Loop

    CERN Document Server

    Stefan Joray

    The cooling of the mercury loop is described on pages two, three and four. The gaps in the water jackets of the heat exchangers are too large and the cooling water capacity is too low. Convection from the wall into water is bad. The mercury temperature is too high. On page five is a proposal how the mercury temperature can be kept low and constant.

  18. Optimization of Neutrino Rates from the EURISOL Beta-Beam Accelerator Complex

    CERN Document Server

    Wildner, E; Emelianenko, N; Fabich, A; Hancock, S; Lindroos, M

    2007-01-01

    The beta beam concept for the production of intense (anti-)neutrino beams is now well established. A baseline design has recently been published for a beta-beam facility at CERN. It has the virtue of respecting the known limitations of the CERN PS and SPS synchrotrons, but falls short of delivering the requested annual rate of neutrinos. We report on a first analysis to increase the rate using the baseline ions of 6He and 18 Ne. A powerful method to understand the functional dependence of the many parameters that influence the figure of merit for a given facility is available with modern analytical calculation software. The method requires that a symbolic analytical description is produced of the full accelerator chain. Such a description has been made using Mathematica for the proposed beta beam facility at CERN. The direct access from Mathematica to an ORACLE database for reading basic design parameters and re-injecting derived parameters for completion of the parameter list is both convenient and efficient...

  19. Physics and Technology for the Next Generation of Radioactive Ion Beam Facilities: EURISOL

    CERN Document Server

    Kadi, Y; Catherall, R; Giles, T; Stora, T; Wenander, F K

    2012-01-01

    Since the discovery of artificial radioactivity in 1935, nuclear scientists have developed tools to study nuclei far from stability. A major breakthrough came in the eighties when the first high energy radioactive beams were produced at Berkeley, leading to the discovery of neutron halos. The field of nuclear structure received a new impetus, and the major accelerator facilities worldwide rivalled in ingenuity to produce more intense, purer and higher resolution rare isotope beams, leading to our much improved knowledge and understanding of the general evolution of nuclear properties throughout the nuclear chart. However, today, further progress is hampered by the weak beam intensities of current installations which correlate with the difficulty to reach the confines of nuclear binding where new phenomena are predicted, and where the r-process path for nuclear synthesis is expected to be located. The advancement of Radioactive Ion Beam (RIB) science calls for the development of so-called next-generation facil...

  20. Spallation reactions studied with 4 -detector arrays

    Indian Academy of Sciences (India)

    charged particles. By pulse shape analysis and TOF measurements it is possible to dis- tinguish between all types of charged particles: light ones, intermediate mass fragments, fission fragments and even evaporation residues if the target is thin enough. Making coincident measurements with high efficiency(> 80%) of light ...

  1. Spallation sources in support of technology

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Lab., NM (United States)

    1996-05-01

    In this contribution I summarize a number of recent experiments at the Los Alamos Neutron Science Center (LANSCE) that have contributed to strategic and applied research. A number of new tools have been developed to address these problems, including software that allows materials texture to be obtained during Rietveld refinement, Bragg-edge diffraction, resonant-neutron and proton radiography. These tools have the potential to impact basic as well as applied research. It is clear that a new, more powerful neutron source such as the planned Japanese Hadron Project will be able to use these and other techniques to contribute in a direct way to important industrial technologies. (author)

  2. Design of the Next Generation Spallation Target

    Energy Technology Data Exchange (ETDEWEB)

    Ferres, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-13

    The purpose of this summary is to detail the studies that enable new nuclear physics experiments currently limited by neutron intensity or energy resolution available at LANSCE. The target is being redesigned so that the Flight Paths (FP) in the upper tier provide a higher intensity in the epithermal and medium energy ranges.

  3. Spallation reactions studied with 4-detector arrays

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... When scattered on samples of inert or biological materials, these neutrons can be used to study details of the material structure. They could also be utilized for the transmutation of long-lived nuclear wastes or for the feeding of sub-critical nuclear reactors. The role of different types of multi-detector arrays is ...

  4. The spallation neutron source: New opportunities

    Indian Academy of Sciences (India)

    ... begin operations in 2008. When complete, the facility will accommodate 25 instruments enabling researchers from the United States and abroad to study materials science that forms the basis for new technologies in telecommunications, manufacturing, transportation, information technology, biotechnology, and health.

  5. Converter structure-based power loss and static thermal modeling of the press-pack IGBT-based three-level ANPC and HB VSCs applied to Multi-MW wind turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2010-01-01

    The wind turbine converters demand high power density due to nacelle space limitation and high reliability due to high maintenance cost. Once the converter topology with the semiconductor switch technology is selected, the converter power density and reliability are dependent on the component cou...

  6. PREPARATION AND TESTING OF CORROSIONAND SPALLATION-RESISTANT COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, John

    2014-11-01

    This Energy & Environmental Research Center (EERC) project is designed to determine if plating APMT®, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The method for joining the APMT plate to the superalloys is called evaporative metal bonding and involves placing a thin foil of zinc (Zn) between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the Zn melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The Zn then diffuses through the alloys and evaporates from their surfaces. Laboratory testing to determine the diffusion rate of Zn through the alloys has been completed. However, an analytical solution does not exist to model the diffusion of zinc through the alloys. For this reason, a finite difference algorithm using MATLAB was developed. It makes use of the hopscotch algorithm. The model allows the user to specify the dimensions of the metal parts, the Zn concentration at the bondline, the mesh size, time step, and Zn diffusivity. The experimentally measured values of diffusivity for Zn in APMT and Rene 80/CM 247LC are approximately 2.7 × 10-12 and 4 × 10-14 m2/s, respectively. While the qualitative behavior of the model appears correct, a comparison of the diffusion predictions with the experimental results from earlier in the project indicates that the expected Zn concentration is significantly higher than that measured experimentally. The difference depends on the assumed initial concentration, which is difficult to quantify exactly under experimental conditions for t = 0. In addition to the diffusion work, the coefficients of thermal expansions were determined for each of the alloys as a function of temperature. This information has been entered into a finite element model using ANSYS so that appropriate force-applying structures can be designed for use in joining structures composed of APMT and the nickel alloys. Finite element modeling has been performed to finalize the fabrication geometry for the corrosion-testing phase. The addition of another bolt increases stress uniformity away from the region where the clamping is applied. It appears that a bolt spacing of approximately 25 mm in each jig is appropriate. This will allow the fabrication of 50-mm-wide sections of joints for the corrosion-testing task. Gasifier sampling activities continue to determine what types of trace contaminants may occur in cleaned syngas that could lead to corrosion or deposition in turbines firing coal syngas. The EERC has several pilot-scale gasifiers that are continually used in a variety of test configurations as determined by the needs of the projects that are funding the tests. We are sampling both noncombusted and combusted syngas produced during some of the pilot-scale gasifier tests. This year sampling was performed of both syngas and combusted syngas while the entrained-flow gasifier (EFG) was firing subbituminous coal from the Antelope Mine in Wyoming. Results of scanning electron microscope analyses of the syngas before combustion showed no submicron particles, only flakes of iron oxide that had likely formed on steel surfaces inside the combustor. As shown in the 2013 annual report, soot was also collected from the syngas when the much-lower-temperature fluid-bed gasifier (FBG) was fired, indicating that the much higher temperature of the EFG prevented soot formation. However, particles collected from the combusted syngas consist almost entirely of submicron soot, and little to no vaporized metals made it past the warm-gas filters and scrubbers in the high-temperature EFG system which could then deposit in a turbine system burning a higher hydrogen syngas. These results are consistent with the analyses of the particulates collected from combusted syngas when the lowertemperature FBG system is used.

  7. Thermal chopper spectrometer for the European spallation source

    DEFF Research Database (Denmark)

    Klenø, Kaspar Hewitt; Lefmann, Kim

    2011-01-01

    One of the instruments being considered for the ESS is a thermal chopper spectrometer, intended for the study of lattice vibrations and magnetic excitations. However, as the ESS will be a long pulsed source, we propose a very long instrument (180–300 m). We here present a guide system that can...... achieve a flux of 3.47 ×108 n/(s·cm2) and a resolution of dE/E = 5.3% for 1 Å neutrons on the sample with a transport efficiency of 80%. Furthermore, we demonstrate the efficiency of the instrument using a virtual experiment measuring an elastic line width...

  8. SMOOTH SPALLATION RESULTING FROM COLLISIONS OF COPPER PLATES

    OpenAIRE

    Zakharenko, I.

    1988-01-01

    The author examines the processes occuring during the collision of the metal plates with the speed 800-400 m/s. The experiment showed the formation of smooth cracks due to the collision of heat-treated copper plates with equal thickness.

  9. Thermal-hydraulic analysis of LBE spallation target for accelerator ...

    Indian Academy of Sciences (India)

    2013-01-06

    Jan 6, 2013 ... 1Department of Engineering Physics; 2Institute of Nuclear and New Energy Technology,. Tsinghua University, Beijing, 100084, China. ∗. Corresponding author. E-mail: aniseh.abdalla@gmail.com. MS received 27 June 2011; revised 16 May 2012; accepted 12 July 2012. Abstract. In an accelerator-driven ...

  10. Spallation products induced by energetic neutrons in plastic detector material

    CERN Document Server

    Grabisch, K; Enge, W; Scherzer, R

    1977-01-01

    Cellulose nitrate plastic detector sheets were irradiated with secondary neutrons of the 22 GeV/c proton beam at the CERN accelerator. He, Li and Be particles which are produced in nuclear interactions of the neutrons with the target elements C, N and O of the plastic detector material are measured. Preliminary angle and range distributions and isotropic abundances of the secondary particles are discussed. (6 refs).

  11. Neutron spallation source and the Dubna cascade code

    CERN Document Server

    Kumar, V; Goel, U; Barashenkov, V S

    2003-01-01

    Neutron multiplicity per incident proton, n/p, in collision of high energy proton beam with voluminous Pb and W targets has been estimated from the Dubna cascade code and compared with the available experimental data for the purpose of benchmarking of the code. Contributions of various atomic and nuclear processes for heat production and isotopic yield of secondary nuclei are also estimated to assess the heat and radioactivity conditions of the targets. Results obtained from the code show excellent agreement with the experimental data at beam energy, E < 1.2 GeV and differ maximum up to 25% at higher energy. (author)

  12. Production of Energetic Light Fragments in Spallation Reactions

    Directory of Open Access Journals (Sweden)

    Mashnik Stepan G.

    2014-03-01

    Full Text Available Different reaction mechanisms contribute to the production of light fragments (LF from nuclear reactions. Available models cannot accurately predict emission of LF from arbitrary reactions. However, the emission of LF is important formany applications, such as cosmic-ray-induced single event upsets, radiation protection, and cancer therapy with proton and heavy-ion beams, to name just a few. The cascade-exciton model (CEM and the Los Alamos version of the quark-gluon string model (LAQGSM, as implemented in the CEM03.03 and LAQGSM03.03 event generators used in the Los Alamos Monte Carlo transport code MCNP6, describe quite well the spectra of fragments with sizes up to 4He across a broad range of target masses and incident energies. However, they do not predict high-energy tails for LF heavier than 4He. The standard versions of CEM and LAQGSM do not account for preequilibrium emission of LF larger than 4He. The aim of our work is to extend the preequilibrium model to include such processes. We do this by including the emission of fragments heavier than 4He at the preequilibrium stage, and using an improved version of the Fermi Break-up model, providing improved agreement with various experimental data.

  13. Neutron spallation source and the Dubna Cascade Code

    Indian Academy of Sciences (India)

    into a stationary state sometimes emitting several nucleons. At the third and the last stage the excited residual nucleus decays by competitive successive evaporation of nucleons, fission and emission of γ-quanta. Dubna Cascade Code [4] developed for the purpose of mathematical modeling of ADSS allows one to estimate ...

  14. Neutron spallation source and the Dubna Cascade Code

    Indian Academy of Sciences (India)

    Neutron multiplicity per incident proton, /, in collision of high energy proton beam with voluminous Pb and W targets has been estimated from the Dubna Cascade Code and compared with the available experimental data for the purpose of benchmarking of the code. Contributions of various atomic and nuclear processes ...

  15. High Power Molten Targets for Radioactive Ion Beam Production: from Particle Physics to Medical Applications

    CERN Document Server

    De Melo Mendonca, T M

    2014-01-01

    Megawatt-class molten targets, combining high material densities and good heat transfer properties are being considered for neutron spallation sources, neutrino physics facilities and radioactive ion beam production. For this last category of facilities, in order to cope with the limitation of long diffusion times affecting the extraction of short-lived isotopes, a lead-bismuth eutectic (LBE) target loop equipped with a diffusion chamber has been proposed and tested offline during the EURISOL design study. To validate the concept, a molten LBE loop is now in the design phase and will be prototyped and tested on-line at CERN-ISOLDE. This concept was further extended to an alternative route to produce 1013 18Ne/s for the Beta Beams, where a molten salt loop would be irradiated with 7 mA, 160 MeV proton beam. Some elements of the concept have been tested by using a molten fluoride salt static unit at CERNISOLDE. The investigation of the release and production of neon isotopes allowed the measurement of the diffu...

  16. Deliverable D1: Engineering study of the Hg converter

    CERN Document Server

    K. Samec et al.

    The development of high-power converter targets otherwise known as neutron sources is today the focus of much attention, driven by the need for ever greater densities of neutron fluxes which are required in the fundamental sciences such as neutron imagery, isotope production and also for the more long-term goal of realising a hybrid sub-critical nuclear reactor. The neutrons in a converter target are produced by a process known in physics as spallation whereby a heavy Z atom releases neutrons below 20 [MeV] when hit by an incoming proton.The Eurisol initiative seeks to develop such an isotope production facility to provide the scientific community with the means to achieving high yields of isotopes and extending the variety of isotopes thus produced towards more exotic types rarely seen in existing facilities.The proposed ISOL facility would use both (a) several 100 kW proton beams on a thick solid target to produce RIBs directly, and (b) a liquid metal 1–5 MW ‘converter’ target to release high fluxes o...

  17. New findings on the onset of thermal disassembly in spallation reactions; Nouvelles approches pour l'etude de la multifragmentation thermique dans la spallation

    Energy Technology Data Exchange (ETDEWEB)

    Napolitani, P

    2004-09-15

    Thermal multifragmentation is the process of multi body disassembly of a hot nucleus when the excitation is almost purely thermal i.e. dynamical effects like compression (characteristic of ion-ion collisions at Fermi energy) are negligible. Suited reactions are proton induced collision or ion-ion abrasion at relativistic incident energy. Thus we measured four systems at FRS (Fragment separator, GSI, Darmstadt) in inverse kinematics: Fe{sup 56}+p, Fe{sup 56}+Ti(nat), Xe{sup 136}+p, Xe{sup 136}+Ti(nat) a 1 A*GeV. The inverse kinematics allows to observe all particles without any threshold in energy. This is a great advantage compared to experiments in direct kinematics, because only in inverse kinematics it is possible to obtain complete velocity spectra (without a hole for low velocities) for fully identified isotopes. The complex shape of the velocity spectra allows to identify the different deexcitation channels and it clearly shows the transition from a chaotic-dominated process (Gaussian cloud in velocity space) to a direct Coulomb- (or eventually expansion-) dominated process (shell of a sphere in velocity space). Different possible descriptions of the reaction process are discussed, based either on asymmetric fission or multifragmentation. The resulting physical picture is especially interesting for the Fe{sup 56}+p, and Xe{sup 136}+p systems: proton induced collisions could result in the split of the system in two or more fragments due to a fast break-up process. In this case, the configuration of the break-up partition is very asymmetric. The discussion will be extended to other characteristics, like the restoring of nuclear structure features in the isotopic production and the temperature dependence of the isotopic composition of the residues. (author)

  18. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Jeffrey L

    2009-05-22

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically, probably at a small fraction of the cost of He-3 detectors. In addition to neutron scattering science, the fully developed base technology can be used as a rugged, low-cost neutron detector in area monitoring and surveying. Radiation monitors are used in a number of other settings for occupational and environmental radiation safety. Such a detector can also be used in environmental monitoring and remote nuclear power plant monitoring. For example, the Department of Energy could use it to characterize nuclear waste dumps, coordinate clean-up efforts, and assess the radioactive contaminants in the air and water. Radiation monitors can be used to monitor the age and component breakdown of nuclear warheads and to distinguish between weapons and reactor grade plutonium. The UN's International Atomic Energy Agency (IAEA) uses radiation monitors for treaty verification, remote monitoring, and enforcing the non-proliferation of nuclear weapons. As part of treaty verification, monitors can be used to certify the contents of containers during inspections. They could be used for portal monitoring to secure border checkpoints, sea ports, air cargo centers, public parks, sporting venues, and key government buildings. Currently, only 2% of all sea cargo shipped is inspected for radiation sources. In addition, merely the presence of radiation is detected and nothing is known about the radioactive source until further testing. The utilization of radiation monitors with neutron sensitivity and capability of operation in hostile port environments would increase the capacity and effectiveness of the radioactive scanning processes.

  19. Spallation integral experiment analysis by high energy nucleon-meson transport code

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi; Meigo, Shin-ichiro; Sasa, Toshinobu; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yoshizawa, Nobuaki; Furihata, Shiori; Belyakov-Bodin, V.I.; Krupny, G.I.; Titarenko, Y.E.

    1997-03-01

    Reaction rate distributions were measured with various activation detectors on the cylindrical surface of the thick tungsten target of 20 cm in diameter and 60 cm in length bombarded with the 0.895 and 1.21 GeV protons. The experimental results were analyzed with the Monte Carlo simulation code systems of NMTC/JAERI-MCNP-4A, LAHET and HERMES. It is confirmed that those code systems can represent the reaction rate distributions with the C/E ratio of 0.6 to 1.4 at the positions up to 30 cm from beam incident surface. (author)

  20. $^{206}$ Po sources for production and release studies relevant for high power spallation targets

    CERN Multimedia

    The knowledge of the evaporation behaviour of Po is of essential importance for several scientific and technological applications, like accelerator driven systems (ADS) or the LIEBE project at CERN-ISOLDE. Fundamental investigations on the experimental conditions for the formation of volatile Po species as well as on the chemical composition of the volatile compounds are necessary for a safe operation of such facilities. $^{206}$Po, a mainly $\\gamma$- ray-emitting Po isotope with a half-life of 8.8 d, is best suited for model studies, due to the lower radiation hazard compared to the longer-lived $\\alpha$-emitting isotopes $^{208-210}$Po as well as the easy-to-measure $\\gamma$-ray emission. We propose the production of $^{206}$Po samples in several matrices via the implantation of its precursor $^{210}$Fr into selected metal foils at CERN-ISOLDE. Using these samples, experiments will be carried out at PSI studying the volatilization of Po from different matrices under varying chemical conditions.

  1. Validation of a Computer Code for Use in the Mechanical Design of Spallation Neutron Targets

    CERN Document Server

    Montanez, P A

    2000-01-01

    The present work concentrates on comparing a numerical code and a closed-form analytic solution for determining transient stress waves generated by an impinging, high-intensity proton pulse onto a perfectly elastic solid cylindrical target. The comparison of the two methods serves both to benchmark the physics and numerical methods of the codes, and to verify them against analytic expressions that can be established for calculating the response of the target for simple cases of loading and geometry. Additionally, the comparison elucidated the effects of approximations used in the computation of the analytic results. Two load cases have been investigated: (1) an instantaneously uniform thermal loading along the central core, and (2) a ramped and uniform thermal load applied along the central core. In addition, the influence of the approximations applied to the accurate analytic forms has been elucidated. By validating these analytical results, the closed-form solution may be confidently used to "bound" the sol...

  2. Effect of Damage Processes on Spallation Life in Thermal Barrier Coatings

    National Research Council Canada - National Science Library

    Newaz, Golam M

    2001-01-01

    .... TBCs consist of an outer ceramic layer that provides good thermal insulation due to the low thermal conductivity of the ceramic used, and the inner metallic bond coat layer that provides needed...

  3. Comments on the possibility of cavitation in liquid metal targets for pulsed spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter J.M. [Argonne National Lab., IL (United States)

    1996-06-01

    When short pulses of protons strike the volume of a liquid target, the rapid heating produces a pressurized region which relaxes as the pressure wave propagates outward. Skala and Bauer have modeled the effects of the pressure wave impinging on the container walls of a liquid mercury target under ESS conditions. They find that high pressures and high wall stresses result if the medium is uniform, nearly incompressible liquid. The pressure and the stresses are much reduced if the liquid contains bubbles of helium, due to their high compressibility. However, according to the calculation, the pressure still reaches an atmosphere or so at the surface, which reflects the compressive wave as a rarefaction wave of the same magnitude. Even such modest underpressures can lead to the growth of bubbles (cavitation) at or near the surface, which can collapse violently and erode the container surface. It is necessary to avoid this. Leighton provides a wide ranging discussion of pressure waves in bubbly media, which may provide insights into the nature and control of cavitation phenomena. The paper surveys some of the relevant information from that source.

  4. Thermal-hydraulic design of tungsten rod bundles for the APT 3He neutron spallation target

    Science.gov (United States)

    Willcutt, Gordon J. E.

    1995-01-01

    A preconceptual design has been developed for the 3He Target/Blanket System for the Accelerator Production of Tritium Project. The design use tungsten wire-wrapped rods to produce neutrons when the rods are struck by a proton beam. The rods are contained in bundles inside hexagonal Inconel ducts and cooled by D2O. Rod bundles are grouped in patterns in the proton beam inside a chamber filled with 3He that is transmuted to tritium by the neutrons coming from the tungsten rods. Additional 3He is transmuted in a blanket region surrounding the helium chamber. This paper describes the initial thermal-hydraulic design and testing that has been completed to confirm the designed calculations for pressure drop through the bundle and heat transfer in the bundle. Heat transfer tests were run to verify steady-state operation. These tests were followed by increasing power until nucleate boiling occurs to determine operating margins. Changes that improve the initial design are described.

  5. Design of a liquid metal target loop for a high power spallation

    CERN Document Server

    Andreas Vetter (PSI)

    Diplomarbeit zur Erlangung des Grades Diplom-IngenieurTechnische Universität BerlinThis thesis shows the lay-out of the liquid metal loop, which is designed to evacuate 3.0 MW of thermal power. It describes the function and sizing of the piping and components. The thesis deals with the choice of the pump, the expansion tank/gas separator and the heat exchanger using water as cooling fluid as well as instrumentation.

  6. Fundamental Problems of Neutron Physics at the Spallation Neutron Source at the ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Gudkov

    2008-07-16

    We propose to provide theoretical support for the experimental program in fundamental neutron physics at the SNS. This includes the study of neutron properties, neutron beta-decay, parity violation effects and time reversal violation effects. The main purpose of the proposed research is to work on theoretical problems related to experiments which have a high priority at the SNS. Therefore, we will make a complete analysis of beta-decay process including calculations of radiative corrections and recoil corrections for angular correlations for polarized neutron decay, with an accuracy better that is supposed to be achieved in the planning experiments. Based on the results of the calculations, we will provide analysis of sensitivity of angular correlations to be able to search for the possible extensions of the Standard model. Also we will help to plan other experiments to address significant problems of modern physics and will work on their theoretical support.

  7. The performance of neutron scattering spectrometers at a long-pulse spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R.

    1995-04-01

    The first conclusion the author wants to draw is that comparison of the performance of neutron scattering spectrometers at CW and pulsed sources is simpler for long-pulsed sources than it is for the short-pulse variety. Even though detailed instrument design and assessment will require Monte Carlo simulations (which have already been performed at Los Alamos for SANS and reflectometry), simple arguments are sufficient to assess the approximate performance of spectrometers at an LPSS and to support the contention that a 1 MW long-pulse source can provide attractive performance, especially for instrumentation designed for soft-condensed-matter science. Because coupled moderators can be exploited at such a source, its time average cold flux is equivalent to that of a research reactor with a power of about 15 MW, so only a factor of 4 gain from source pulsing is necessary to obtain performance that is comparable with the ILL. In favorable cases, the gain from pulsing can be even more than this, approaching the limit set by the peak flux, giving about 4 times the performance of the ILL. Because of its low duty factor, an LPSS provides the greatest performance gains for relatively low resolution experiments with cold neutrons. It should thus be considered complementary to short pulse sources which are most effective for high resolution experiments using thermal or epithermal neutrons.

  8. Fringe field interference of neighbor magnets in China spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Li, L., E-mail: lli@ihep.ac.cn [Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing (China); Dongguan Neutron Science Center, Dongguan 523803 (China); Dongguan Key Laboratory of High Precision Magnetic Field Measurement, Dongguan 523803 (China); Kang, W.; Wu, X.; Deng, C.D.; Li, S.; Yang, M.; Zhou, J.X.; Liu, Y.Q.; Wu, Y.W. [Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing (China); Dongguan Neutron Science Center, Dongguan 523803 (China); Dongguan Key Laboratory of High Precision Magnetic Field Measurement, Dongguan 523803 (China)

    2016-12-21

    In CSNS accelerator construction, the field measurement of all RCS magnets have been finished and the magnets have been installed in the tunnel before the end of 2015. The electromagnetic quadrupoles have a large aperture and the core-to-core distance between magnets is rather short in some places. The corrector magnet or the sextupole magnet is closer to one of the quadrupole magnets which caused certain interference. The interference caused by magnetic fringe field has been appeared and it becomes a significant issue in beam dynamics for beam loss control in this high-intensity proton accelerator. We have performed 3D computing simulations to study integral field distributions between the quadrupole and the corrector magnets, and the sextupole and the other quadrupole magnets. The effect of the magnetic fringe field and the interference has been investigated with different distances of the neighbor magnets. The simulation and the field measurement results will be introduced in this paper.

  9. The test beamline of the European Spallation Source - Instrumentation development and wavelength frame multiplication

    DEFF Research Database (Denmark)

    Woracek, R.; Hofmann, T.; Bulat, M.

    2016-01-01

    wavelength band between 1.6 A and 10 A by a dedicated wavelength frame multiplication (WFM) chopper system. WFM is proposed for several ESS instruments to allow for flexible time-of-flight resolution. Hence, ESS will benefit from the TBL which offers unique possibilities for testing methods and components...

  10. Deformation and spallation of a magnesium alloy under high strain rate loading

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.; Lu, L.; Li, C.; Xiao, X. H.; Zhou, X. M.; Zhu, J.; Luo, S. N.

    2016-04-01

    We investigate deformation and damage of a magnesium alloy, AZ91, under high strain rate (similar to 10(5) s(-1)) loading via planar impact. The soft-recovered specimens are examined with electron back-scatter diffraction (EBSD). EBSD analysis reveals three types of twinning: {1012} extension, {10 (1) over bar1} contraction, and {10 (1) over bar1}-{10 (1) over bar2) double twinning, and their number density increases with increasing impact velocity. The extension twins dominate contraction and double twins in size and number. Dislocation densities of the recovered specimens are evaluated with x-ray diffraction, and increase with increasing impact velocity. X-ray tomography is used to resolve three-dimensional microstructure of shock-recovered samples. The EBSD and tomography results demonstrate that the second phase, Mg17Al12, plays an important role in both deformation twinning and tensile cracking. Deformation twinning appears to be a common mechanism in deformation of magnesium alloys at low, medium and high strain rates, in addition to dislocation motion. (C) 2016 Elsevier B.V. All rights reserved.

  11. Moisture-Induced Delayed Alumina Scale Spallation on a Ni(Pt)Al Coating (Preprint)

    Science.gov (United States)

    2009-04-01

    with increase in p(H2O) [21,35 Janakiraman 1999, Maris- Sida 2003]. However the same effect was not especially evident for the more oxidation resistant...Tolpygo 2007, Maris- sida 2003). Crystallographically aligned surface striations and pits are also evident, presumably an artifact of the CVD...A similar but less severe effect was reported for the same coating on Rene´N5 (35 Maris- Sida , 2003), exhibiting a loss of 1 mg/cm2 in wet air

  12. Production Potential of 47Sc Using Spallation Neutron Flux at the Los Alamos Isotope Production Facility

    Science.gov (United States)

    2014-03-27

    bins will be listed [20]. This tally, in combination with the eighth entry on MCNPs LCA physics model card entry, NOACT, is very useful in extracting...19 and 23 (K, Ca, Sc, Ti, and V) resulting from direct neutron reactions. The 8th LCA entry of NOACT=-2 forces the model to assume all particles react...the LCA line. The LCA line is altered to indicate which physics model to use, and was modified for an investigation of Bertini, Isabel, INCL4 and

  13. Comparison of Spallation Neutron and Residual Nuclide Production Data with Different Intra-Nuclear Cascade Models

    Science.gov (United States)

    Leray, S.; Boudard, A.; Cugnon, J.; Legrain, R.; Volant, C.

    Recent results on neutron production obtained at SATURNE and isotopic distributions of residual nuclides measured at GSI are compared to high-energy transport code calculations in which three different Intra-Nuclear cascade models, Bertini, Isabel and Cugnon, are used. It is shown that the Bertini INC model generally fails to reproduce the data while the Cugnon and Isabel models give a better agreement.

  14. Quantification of damage evolution for a micromechanical model of ductile fracture in spallation of tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, A.K.; Thissell, W.R.; Tonks, D.L.; Hixon, R.; Addessio, F.

    1997-05-01

    The authors present quantification of micromechanical features such as voids that comprise the ductile fracture obtained under uniaxial strain condition in a spall test of commercial purity tantalum. Two evolutionary parameters of ductile fracture void formation are quantified: (i) the void volume fraction (porosity) and its distribution with respect to the distance from the main spall fracture plane, and (ii) void diameter distribution. The results complement the discussion of the implications of void clustering and linking for micromechanical modeling of ductile fracture as presented in a paper by D. L. Tonks et al. in this volume.

  15. Study of a spoke-type superconducting cavity for high power proton accelerators; Etude d'une cavite acceleratrice supraconductrice Spoke pour les accelerateurs de protons de forte intensite

    Energy Technology Data Exchange (ETDEWEB)

    Olry, G

    2003-04-01

    Since a few years, a lot of projects (especially dedicated to transmutation, radioactive beams production, spallation neutron sources or neutrinos factories) are based on high power proton linear accelerators. It has been demonstrated, thanks to their excellent RF performances, that superconducting elliptical cavities represent the best technological solution for the high energy part of these linacs (proton energy from typically 100 MeV). On the contrary, between 5 and 100 MeV, nothing is clearly settled and intensive studies on low-beta cavities are under progress. The main objective of this thesis is the study of a new low-beta cavity, called 'spoke', which could be used in the low energy part of European XADS (experimental accelerator driven system) and EURISOL (European isotope separation on-line) accelerators projects. A complete study of a beta 0.35 spoke cavity has been done: from its electromagnetic and mechanical optimization to warm and, above all, cold experimental tests: an accelerating field of 12.2 MV/m has been reached at T=4.2 K, that is to say one of the best value among the spoke cavities performances in the world. It has been shown that the specific ratio of a third, between the spoke bar diameter and the cavity length, led to optimize the surface electromagnetic fields. Moreover, spoke cavities can be used without any trouble, in the low energy part, due to their good rigidity. The experimental measurements performed on the cavity have confirmed the theoretical calculations, especially, concerning the expected frequency and mechanical behavior. Another study, performed on elliptical cavities, gave an explanation of the discrepancies between the measured and calculated frequencies thanks to a precise 3-dimensional geometrical control. (author)

  16. Design of a TOF-SANS instrument for the proposed long-wavelength target station at the spallation neutron source

    CERN Document Server

    Littrell, K C; Carpenter, J M; Seeger, P A

    2002-01-01

    We have designed a versatile high-data-rate SANS instrument (broad-range intense multipurpose SANS (BRIMS)) for the proposed long-wavelength target station at the SNS using the Los Alamos NISP Monte Carlo simulation package. BRIMS is designed to produce data spanning a Q range from 0.0025 to 0.7 A sup - sup 1 in a single measurement by simultaneously using neutrons with wavelengths from 1 to 14.5 A in a time-of-flight mode. The effects of various collimation choices, including multiple confocal pinhole apertures, on count rate, resolution, and Q range have been characterized with simulations using spherical particle and delta-function scatterers. We compare the anticipated performance of BRIMS with that of the premier reactor-based SANS instrument, D22, at ILL. (orig.)

  17. Application of new radiation detection techniques at the Paul Scherrer Institut, especially at the spallation neutron source

    CERN Document Server

    Lehmann, E; Williams, T; Pralong, C

    1999-01-01

    The demands on modern irradiation detection systems are diverse, encompassing spatial resolution, dynamic range, sensitivity and reproducibility. Nevertheless, there are two important new methods which can satisfy most of these demands in several applications: camera based systems and imaging plates. Imaging plates have primarily been used as gamma- and beta-sensitive detectors in biology and medicine, but are now available also as neutron sensitive systems. These methods are ideally suited for applications in neutron radiography because of their high sensitivity, linearity and digital output. Image processing, quantification of the image data and automated pattern recognition can easily be performed using modern software tools. The imaging plate system at PSI is shared between groups in reactor physics, radiation protection, biology, proton therapy and nuclear medicine. The collected experience from these different interests establishes the basis for a most effective application of this technique. The utilis...

  18. R&D Status for In-Situ Plasma Surface Cleaning of SRF Cavities at Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    S.-H. Kim, M.T. Crofford, M. Doleans, J.D. Mammosser, J. Saunders

    2011-03-01

    The SNS SCL is reliably operating at 0.93 GeV output energy with an energy reserve of 10MeV with high availability. Most of the cavities exhibit field emission, which directly or indirectly (through heating of end groups) limits the gradients achievable in the high beta cavities in normal operation with the beam. One of the field emission sources would be surface contaminations during surface processing for which mild surface cleaning, if any, will help in reducing field emission. An R&D effort is in progress to develop in-situ surface processing for the cryomodules in the tunnel without disassembly. As the first attempt, in-situ plasma processing has been applied to the CM12 in the SNS SRF facility after the repair work with a promising result. This paper will report the R&D status of plasma processing in the SNS.

  19. Ewald: an extended wide-angle Laue diffractometer for the second target station of the Spallation Neutron Source.

    Science.gov (United States)

    Coates, Leighton; Robertson, Lee

    2017-08-01

    Visualizing hydrogen atoms in biological materials is one of the biggest remaining challenges in biophysical analysis. While X-ray techniques have unrivaled capacity for high-throughput structure determination, neutron diffraction is uniquely sensitive to hydrogen atom positions in crystals of biological materials and can provide a more complete picture of the atomic and electronic structures of biological macromolecules. This information can be essential in providing predictive understanding and engineering control of key biological processes, for example, in catalysis, ligand binding and light harvesting, and to guide bioengineering of enzymes and drug design. One very common and large capability gap for all neutron atomic resolution single-crystal diffractometers is the weak flux of available neutron beams, which results in limited signal-to-noise ratios giving a requirement for sample volumes of at least 0.1 mm3. The ability to operate on crystals an order of magnitude smaller (0.01 mm3) will open up new and more complex systems to studies with neutrons which will help in our understanding of enzyme mechanisms and enable us to improve drugs against multi resistant bacteria. With this is mind, an extended wide-angle Laue diffractometer, 'Ewald', has been designed, which can collect data using crystal volumes below 0.01 mm3.

  20. The extension of the INCL model for spallation reactions up to 15 GeV and applications

    Science.gov (United States)

    Pedoux, Sophie

    There has been recently a considerable improvement of the intranuclear cascade + evaporation models, triggered by studies of possible transmutation of nuclear wastes in so-called ADS machines. It seems that the best conditions are fulfilled by proton beams of around 1 GeV. It has been shown that the Liege intranuclear cascade model (INCL), developed along these lines, reproduces fairly well a whole bunch of experimental data in the 200 MeV to 2 GeV range [1], when coupled with the ABLA evaporation-fission code developed by K.-H. Schmidt [2]. These data include total reaction cross-section, particle multiplicities, double differential crosssections, residue mass spectrum, isotopic distributions and recoil energy spectra. It should be stressed that this agreement is achieved without adjustment of parameters in the INCL part. Even the stopping time of the cascade is determined self-consistently. We are currently involved in the extension of the INCL4 to make it useful for the study of radiation effects induced by cosmic rays concerning satellite and man-born space mission. For that purpose, we have re-examined the description of inelastic nucleon-nucleon collisions in the 2-20 GeV c.m. energy range. A new model incorporating multipion production without relying on resonances (except for the Delta (1232)resonance), but consistent with known pionemission pattern [3], will be presented. Furthermore, the description of target nuclei relevant for radioprotection issues (like C,O,N) and for material protection (Si) will be improved. The possibility of predicting accurately neutron emission, deposition of energy, radiotoxicity, number of dpa and gas formation with the help of the improved INCL4 are presently tested and will be reported on. [1] A. Boudard, J. Cugnon, S. Leray and C. Volant, Phys. Rev. C66 (2002)044615 [2] J.-J. Gaimard and K.-H. Schmidt, Nucl. Phys. A531(1991) 709 [3] Z. Chen, Int. J. Modern Phys. E, Vol.2 N.2 (1993)285

  1. Design of a TOF-SANS instrument for the proposed long wavelength target station at the spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, P.; Littrell, K. [Intense Pulsed Neutron Source, Argonne National Laboratory, IL (United States); Seeger, P.A.

    2001-03-01

    We have designed a versatile high-throughput SANS instrument [Broad Range Intense Multipurpose SANS (BRIMS)] for the proposed Long Wavelength Target Station at the SNS by using acceptance diagrams and the Los Alamos NISP Monte Carlo simulation package. This instrument has been fully optimized to take advantage of the 10 Hz source frequency (broad wavelength bandwidth) and the cold neutron spectrum from a tall coupled solid methane moderator (12 cm x 20 cm). BRIMS has been designed to produce data in a Q range spanning from 0.0025 to 0.7 A{sup -1} in a single measurement by simultaneously using neutrons with wavelengths ranging from 1 to 14.5 A in a time of flight mode. A supermirror guide and bender assembly is employed to separate and redirect the useful portion of the neutron spectrum with {lambda}>1 A, by 2.3deg away from the direct beam containing high energy neutrons and {gamma} rays. The effects of various collimation choices on count rate, resolution and Q{sub min} have been characterized using spherical particle and delta function scatterers. The overall performance of BRIMS has been compared with that of the best existing reactor-based SANS instrument D22 at ILL. (author)

  2. Isotopic production cross sections and kinematics of spallation residues from the reaction {sup 238}U(1 AGeV) + d

    Energy Technology Data Exchange (ETDEWEB)

    Casarejos, E.; Pereira, J.; Benlliure, J. [Universidade de Santiago de Compostela (Spain); Armbruster, P.; Enqvist, T.; Schmidt, K.H.; Taieb, J. [Gesellschaft fur Schwerionenforschung, Darmstadt (Germany); Bernas, M.; Mustapha, B.; Rejmund, F.; Stephan, C.; Tassan-Got, L. [Institut de Physique Nucleaire, 91 -Orsay (France); Boudard, A.; Leray, S.; Volant, C.; Wlazlo, W. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee(DAPNIA-SPhN), 91- Gif sur Yvette (France)

    2008-07-01

    Isotopic production cross sections and momentum distributions of more than 1400 residual nuclei produced in the collision of {sup 238}U(1 AGeV)+{sup 2}H have been measured. The experiment was performed at GSI where we could take profit of the inverse kinematics technique and the high-resolution magnetic spectrometer FRS to identify in atomic and mass numbers all the produced nuclei. The identification technique challenges for the case of {sup 238}U are reviewed. Some features of {sup 238}U residues are discussed, including the access to information of fission dynamics. (authors)

  3. Design of a TOF-SANS instrument for the proposed Long Wavelength Target Station at the Spallation Neutron Source.

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, P.; Littrell, K.; Seeger, P. A.

    2000-11-28

    We have designed a versatile high-throughput SANS instrument [Broad Range Intense Multipurpose SANS (BRIMS)] for the proposed Long Wavelength Target Station at the SNS by using acceptance diagrams and the Los Alamos NISP Monte Carlo simulation package. This instrument has been fully optimized to take advantage of the 10 Hz source frequency (broad wavelength bandwidth) and the cold neutron spectrum from a tall coupled solid methane moderator (12 cm x 20 cm). BRIMS has been designed to produce data in a Q range spanning from 0.001 to 0.7 {angstrom}{sup {minus}1} in a single measurement by simultaneously using neutrons with wavelengths ranging from 1 to 14.5 {angstrom} in a time of flight mode. A supermirror guide and bender assembly is employed to separate and redirect the useful portion of the neutron spectrum with {lambda} > 1 {angstrom}, by 2.3{degree} away from the direct beam containing high energy neutrons and {gamma} rays. The effects of the supermirror coating of the guide, the location of the bender assembly with respect to the source, the bend angle, and various collimation choices on the flux, resolution and Q{sub min} have been characterized using spherical particle and delta function scatterers. The overall performance of BRIMS has been compared with that of the best existing reactor-based SANS instrument D22 at ILL.

  4. Assessment of Cavitation-Erosion Resistance of Potential Pump Impeller Materials for Mercury Service at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J [ORNL

    2007-03-01

    Using a standard vibratory horn apparatus, the relative cavitation-erosion resistance of a number of cast alloys in mercury was evaluated to facilitate material selection decisions for Hg pumps. The performance of nine different alloys - in the as-cast condition as well as following a case-hardening treatment intended to increase surface hardness - was compared in terms of weight loss and surface profile development as a function of sonication time in Hg at ambient temperature. The results indicated that among several potentially suitable alloys, CD3MWCuN perhaps exhibited the best overall resistance to cavitation in both the as-cast and surface treated conditions while the cast irons examined were found unsuitable for service of this type. However, other factors, including cost, availability, and vendor schedules may influence a material selection among the suitable alloys for Hg pumps.

  5. Corrigendum to "Fundamental neutron physics beamline at the spallation neutron source at ORNL" [Nucl. Instrum. Methods Phys. Res. A 773 (2015) 45-51

    Science.gov (United States)

    Fomin, N.; Greene, G. L.; Allen, R. R.; Cianciolo, V.; Crawford, C.; Ito, T. M.; Huffman, P. R.; Iverson, E. B.; Mahurin, R.; Snow, W. M.

    2015-07-01

    The authors regret that there was an error in the author list of the original publication. The name of author Dr. Ito was misspelled. The correct author list is as above. The authors would like to apologise for any inconvenience caused.

  6. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source

    DEFF Research Database (Denmark)

    Lefmann, Kim; Klenø, Kaspar H.; Birk, Jonas Okkels

    2013-01-01

    is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss...... the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes....

  7. Measurements of spallation neutrons from a thick lead target bombarded with 0.5 and 1.5 GeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro; Takada, Hiroshi; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-03-01

    Double differential neutron spectra from a thick lead target bombarded with 0.5 and 1.5 GeV protons have been measured with the time-of-flight technique. In order to obtain the neutron spectra without the effect of the flight time fluctuation by neutron scattering in the target, an unfolding technique has also been employed in the low energy region below 3 MeV. The measured data have been compared with the calculated results of NMTC/JAERI-MCNP-4A code system. It has been found that the code system gives about 50 % lower neutron yield than the experimental ones in the energy region between 20 and 80 MeV for both incident energies. The disagreements, however, have been improved well by taking account of the inmedium nucleon-nucleon scattering cross sections in the NMTC/JAERI code. (author)

  8. Effects of inside spallation of a coating on the debonding of its interface with a substrate subjected to a laser shock

    CERN Document Server

    Boustie, M; Romain, J P; Jeandin, M

    2002-01-01

    When applying a laser shock to a substrate with a coating in order to test the adhesion strength of the interface, traction can be generated not only at the interface, but also within the materials. The effects of a possible rupture of these materials prior to the debonding is analysed by shock wave propagation mechanisms and experimentally evidenced for plasma sprayed coatings of alumina on an aluminium substrate. An estimate of the bond strength and the spall strength of the coating is obtained by numerical simulation.

  9. Corrosion mechanism of T91 steel by Pb-Bi eutectic used as spallation target:importance for accelerator driven system; Caracterisation de l'endommagement de parois de galeries par tomographie electrique: application en laboratoire souterrain

    Energy Technology Data Exchange (ETDEWEB)

    Grislin-Mouezy, A

    2005-07-01

    The electrical tomography monitoring is one of the basic technique used in applied geophysics. This method allows to obtain the electrical resistivity distribution from the electrical potential measurements. The excavation of a new gallery in the underground rock laboratory at Mont Terri offers the possibility to follow and characterize the damaged zone in a spatial and temporal way. Successive acquired data sets have been carried out during several months and the results have been compared with the geological observations and the studies of the stress field. These results show that the resistivity changes are correlated with the local tectonics, the bedding and the stress field near the barriers. On account of the cylindrical geometry of the gallery, a modelling program has been developed in cylindrical co-ordinates. A program of inversion by simulated annealing has been developed too and tested on synthetical data sets. (O.M.)

  10. Wave Dragon MW

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...

  11. Through the looking glass: probing the nucleus using accelerated radioactive beams

    CERN Document Server

    Butler, P A

    2005-01-01

    Through the advent of post-accelerated beams of radioactive nuclei, probing nuclear properties of exotic nuclear species is now possible. Recent results from the new European radioactive ion beam facilities will be presented together with the prospects offered by the planned facilities such as SPIRAL2 and HIE-ISOLDE. The current ideas for the "third generation" radioactive ion beam facility EURISOL will also be briefly presented.

  12. Through the looking glass: probing the nucleus using accelerated radioactive beams

    Science.gov (United States)

    Butler, P. A.

    2005-04-01

    Through the advent of post-accelerated beams of radioactive nuclei, probing nuclear properties of exotic nuclear species is now possible. Recent results from the new European radioactive ion beam facilities will be presented together with the prospects offered by the planned facilities such as SPIRAL2 and HIE-ISOLDE. The current ideas for the "third generation" radioactive ion beam facility EURISOL will also be briefly presented.

  13. Screening Approach to the Activation of Soil and Contamination of Groundwater at Linear Proton Accelerator Sites

    CERN Document Server

    Otto, Thomas

    The activation of soil and the contamination of groundwater at proton accelerator sites with the radionuclides 3H and 22Na are estimated with a Monte-Carlo calculation and a conservative soil- and ground water model. The obtained radionuclide concentrations show that the underground environment of future accelerators must be adequately protected against a migration of activation products. This study is of particular importance for the proton driver accelerator in the planned EURISOL facility.

  14. SEVENTH HARMONIC 20 GHz CO-GENERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2014-04-08

    To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.

  15. FERMILAB ACCELERATOR R&D PROGRAM TOWARDS INTENSITY FRONTIER ACCELERATORS : STATUS AND PROGRESS

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-11-15

    The 2014 P5 report indicated the accelerator-based neutrino and rare decay physics research as a centrepiece of the US domestic HEP program at Fermilab. Operation, upgrade and development of the accelerators for the near- term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss key elements of the accelerator physics and technology R&D program toward future multi-MW proton accelerators and present its status and progress. INTENSITY FRONTIER ACCELERATORS

  16. US Accelerator R&D Program Toward Intensity Frontier Machines

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-09-15

    The 2014 P5 report indicated the accelerator-based neutrino and rare decay physics research as a centerpiece of the US domestic HEP program. Operation, upgrade and development of the accelerators for the near-term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss key elements of the accelerator physics and technology R&D program toward future multi-MW proton accelerators.

  17. Opportunities for in-situ diffraction studies of advanced materials ...

    Indian Academy of Sciences (India)

    Neutron Scattering Sciences Division, Spallation Neutron Source, Oak Ridge National. Laboratory, P.O. Box 2008, ... The spallation neutron source (SNS) is an accelerator-based neutron source in Oak Ridge, Tennessee. ... ated as a user facility, open to scientists and engineers from universities, industry, and government ...

  18. High power neutron production targets

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S. [Los Alamos National Lab., NM (United States)

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  19. Overview of the NSNS target station

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, T.A.; Barnes, J.M.; Charlton, L. A. [and others

    1997-04-01

    The technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the National Spallation Neutron Source (NSNS), are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis and the planned hardware research and development program are also described.

  20. The Neutron_Time of Flight Facility at CERN: First Commissioning Results.

    CERN Document Server

    Borcea, C; Cennini, P; Dahlfors, M; Dangenhorf, V; Ferrari, A; García-Muñoz, G; Kadi, Y; Lacoste, V; Nolte, R; Radermacher, E; Rubbia, Carlo; Saldaña, F; Vlachoudis, V; Zanini, L; CERN. Geneva. SPS and LHC Division

    2001-01-01

    Recently the CERN neutron spallation source became operational. Information concerning this new facility will be given as for installation, expected performances and physics program. Some preliminary results of the commisioning campaign of measurements will also be presented.

  1. County rises to hi-tech challenge: Agency vies for pounds 1bn European science project

    CERN Multimedia

    Meek, J

    2002-01-01

    The Yorkshire Forward development agency in northern England is backing the White Rose Consortium to build the European Spallation Source (ESS). One of the rivals for the investment is the Rutherford Appleton Laboratory in Oxfordshire (1 page).

  2. Sequía inminente de neutrones en Europa

    CERN Multimedia

    Ruiz de Elvira, Malen

    2002-01-01

    Four regions hope for the new European installation of spallation, waiting for a political decision. Europe cannot lose its actual and great supremacy in the field of researches using neutrons to illuminate the matter and find its secrets

  3. Current status of high energy nucleon-meson transport code

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi; Sasa, Toshinobu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Current status of design code of accelerator (NMTC/JAERI code), outline of physical model and evaluation of accuracy of code were reported. To evaluate the nuclear performance of accelerator and strong spallation neutron origin, the nuclear reaction between high energy proton and target nuclide and behaviors of various produced particles are necessary. The nuclear design of spallation neutron system used a calculation code system connected the high energy nucleon{center_dot}meson transport code and the neutron{center_dot}photon transport code. NMTC/JAERI is described by the particle evaporation process under consideration of competition reaction of intranuclear cascade and fission process. Particle transport calculation was carried out for proton, neutron, {pi}- and {mu}-meson. To verify and improve accuracy of high energy nucleon-meson transport code, data of spallation and spallation neutron fragment by the integral experiment were collected. (S.Y.)

  4. The Liège Intranuclear Cascade model – Towards a unified description of nuclear reactions induced by nucleons and light ions from a few MeV to a few GeV

    Directory of Open Access Journals (Sweden)

    Cugnon Joseph

    2014-03-01

    Full Text Available The predictive power of the last version INCL4.6 of the Liège Intranuclear Cascade model for spallation is reviewed. The good results obtained both at low and high energy extend the domain of validity of the model and allow the description of spallation reactions, except the coherent processes, by a unique model from a few MeV to a few GeV incident energy.

  5. Status of the LAHET{trademark} Code System

    Energy Technology Data Exchange (ETDEWEB)

    Waters, L.S.; Prael, R.E.

    1995-12-31

    The LAHET Code System (LCS) is extensively used for medium energy accelerator applications, including spallation target design and deep penetration shielding problems. Current applications include Accelerator Production of Tritium (APT), Accelerator Driven Transmutation Technologies (ADTT), LANSCE and WNR spallation target upgrades, as well as various medical projects. We will discuss recent upgrades to the MCNP and LAHET components of LCS, AND review the work in progress now funded under the APT program.

  6. Measurement of neutron-induced activation cross-sections using ...

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... A beam of 1 GeV proton coming from Dubna Nuclotron colliding with a lead target surrounded by 6 cm paraffin produces spallation neutrons. A Th-foil was kept on lead target (neutron spallation source) in a direct stream of neutrons for activation and other samples of 197Au, 209Bi, 59Co, 115In and 181Ta ...

  7. The high-energy neutrino background - Limitations on models of deuterium production

    Science.gov (United States)

    Eichler, D.

    1979-01-01

    It is pointed out that Epstein's (1977) model for deuterium production via high-energy spallation reactions produces high-energy neutrinos in sufficient quantity to stand out above those that are produced by cosmic-ray interactions in earth's atmosphere. That the Reines experiment detected neutrinos of atmospheric origin without detecting any cosmic component restricts deuterium production by spallation reactions to very high redshifts (z at least about 300). Improved neutrino experiments may be able to push these limits back to recombination.

  8. International and interlaboratory collaboration on Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    For effectiveness of facility development for Neutron Science Projects at JAERI, international and interlaboratory collaborations have been extensively planned and promoted, especially in the areas of accelerator and target technology. Here status of two collaborations relevant to a spallation neutron target development is highlighted from those collaborations. The two collaborations are experiments on BNL-AGS spallation target simulation and PSI materials irradiation. Both are planned to start in spring of 1997. (author)

  9. Integrable RCS as a Proposed Replacement for Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Valishev, Alexander [Fermilab

    2017-03-07

    Integrable optics is an innovation in particle accelerator design that potentially enables a greater betatron tune spread and damps collective instabilities. An integrable rapid-cycling synchrotron (RCS) would be an effective replacement for the Fermilab Booster, as part of a plan to reach multi-MW beam power at 120 GeV for the Fermilab high-energy neutrino program. We provide an example integrable lattice with features of a modern RCS - dispersion-free drifts, low momentum compaction factor, superperiodicity, chromaticity correction, bounded beta functions, and separate-function magnets.

  10. Multiplex Superconducting Transmission Line for green power consolidation on a Smart Grid

    Science.gov (United States)

    McIntyre, P.; Gerity, J.; Kellams, J.; Sattarov, A.

    2017-12-01

    A multiplex superconducting transmission line (MSTL) is being developed for applications requiring interconnection of multi-MW electric power generation among a number of locations. MSTL consists of a cluster of many 2- or 3-conductor transmission lines within a coaxial cryostat envelope. Each line operates autonomously, so that the interconnection of multiple power loads can be done in a failure-tolerant network. Specifics of the electrical, mechanical, and cryogenic design are presented. The consolidation of transformation and conditioning and the failure-tolerant interconnects have the potential to offer important benefit for the green energy components of a Smart Grid.

  11. A Practical Optimization Method for Designing Large PV Plants

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Koutroulis, E.; Eyigun, S.

    2011-01-01

    Nowadays Photovoltaic (PV) plants have multi MW sizes, the biggest plants reaching tens of MW of capacity. Such large-scale PV plants are made up of several thousands of PV panels, each panel being in the range of 150-350W. This means that the design of a Large PV power plant is a big challenge...... and configuring such a plant should be implemented taking into consideration not only the cost of the installation, but also the Annual Energy Production, the Performance Ratio and the Levelized Cost Of Energy. In this paper, an algorithm is presented including the most important models of the PV system...

  12. Fluka and thermo-mechanical studies for the CLIC main dump

    CERN Document Server

    Mereghetti, Alessio; Vlachoudis, Vasilis

    2011-01-01

    In order to best cope with the challenge of absorbing the multi-MW beam, a water beam dump at the end of the CLIC post-collision line has been proposed. The design of the dump for the Conceptual Design Report (CDR) was checked against with a set of FLUKA Monte Carlo simulations, for the estimation of the peak and total power absorbed by the water and the vessel. Fluence spectra of escaping particles and activation rates of radio-nuclides were computed as well. Finally, the thermal transient behavior of the water bath and a thermo-mechanical analysis of the preliminary design of the window were done.

  13. Thermal analysis of two-level wind power converter under symmetrical grid fault

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2013-01-01

    ) condition as well as the junction temperature. For the full-scale wind turbine system, the most thermal stressed power device in the grid-side converter will appear at the grid voltage below 0.5 pu, and for the partial-scale wind turbine system, the most thermal stressed power device in the rotor......In this paper, the case of symmetrical grid fault when using the multi-MW wind turbine of partial-scale and full-scale two-level power converter are designed and investigated. Firstly, the different operation behaviors of the relevant power converters under the voltage dip will be described...

  14. A low energy accumulation stage for a beta-beam facility

    CERN Document Server

    Källberg, Anders; Lindroos, Mats

    2006-01-01

    The EU supported EURISOL Design Study encompasses a beta-beam facility for neutrino physics. Intense electron (anti-)neutrino beams are in such a machine generated through the decay of radioactive ions in a high energy storage ring. The two main candidate isotopes for the generation of a neutrino and an antineutrino beam are 6He and 18Ne. The intensities required are hard to reach, in particular for the neon case. A possible solution to increase the intensity is to use an accumulator ring with an electron cooler. Critical parameters such as cooling times and current limitations due to space charge and tune shifts are presently being optimized. We will in this presentation give an overview of the low energy accumulation stage and review recent work on this option.

  15. Three decades of research using IGISOL technique at the University of Jyväskylä a portrait of the Ion Guide Isotope Separator On-Line facility in Jyväskylä

    CERN Document Server

    Eronen, Tommi; Jokinen, Ari; Kankainen, Anu; Moore, Iain; Penttilä, Heikki

    2014-01-01

    The IGISOL group at the University of Jyväskyla studies the properties of nuclei far off the line of beta stability. These studies are performed locally at the Jyväskylä Ion Guide Isotope Separator On-Line (IGISOL) facility, as well as at a number of other laboratories such as the ISOLDE facility in CERN, at GANIL and in Helmholzzentrum GSI, the location of the future radioactive beam facility FAIR. The group is also actively involved in work to support the development of international future facilities EURISOL and aforementioned FAIR. This book presents  carefully selected papers to portrait the work at IGISOL. Previously published in the journals Hyperfine Interactions and European Physical Journal A.

  16. Development of a liquid Pb-Bi target for high-power ISOL facilities

    Energy Technology Data Exchange (ETDEWEB)

    Houngbo, D., E-mail: dhoungbo@sckcen.be [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Department of Flow, Heat and Combustion Mechanics, Ghent University (UGent), St.-Pietersnieuwstraat 41, B-9000 Gent (Belgium); Bernardes, A.P. [CERN, 1211 Geneva 23 (Switzerland); David, J.C. [CEA/Saclay, 91191 Gif-sur-Yvette cedex (France); Delonca, M. [CERN, 1211 Geneva 23 (Switzerland); IRTES-M3M & IRTES-LERMPS, Université de Technologie de Belfort-Montbeliard, 90010 Belfort Cedex (France); Kravalis, K. [Institute of Physics of University of Latvia (IPUL), 32 Miera iela, Salaspils LV-2169 (Latvia); Lahiri, S. [Saha Institute of Nuclear Physics 1/AF Bidhannagar, Kolkata 700064 (India); Losito, R.; Maglioni, C. [CERN, 1211 Geneva 23 (Switzerland); Marchix, A. [CEA/Saclay, 91191 Gif-sur-Yvette cedex (France); Mendonca, T.M. [CERN, 1211 Geneva 23 (Switzerland); Popescu, L. [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Schumann, D. [Paul Scherrer Institute (PSI), 5232 Villigen PSI (Switzerland); Schuurmans, P. [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Stora, T.; Vollaire, J. [CERN, 1211 Geneva 23 (Switzerland); Vierendeels, J. [Department of Flow, Heat and Combustion Mechanics, Ghent University (UGent), St.-Pietersnieuwstraat 41, B-9000 Gent (Belgium)

    2016-06-01

    This paper describes some R&D activities conducted in support of the design and safe operation of a high-power liquid Pb-Bi target within the LIEBE (Liquid Eutectic Lead Bismuth Loop Target for EURISOL) project. The target material is lead bismuth eutectic (LBE) which also acts as a primary coolant. As a consequence of interaction of the highly pulsed 1.4-GeV protons at ISOLDE with the target, heat powers of the order of 2 GW would be instantaneously deposited in the target during a bunch. Considerable R&D effort is thus required to demonstrate its continued coolability and structural integrity. This paper mainly reports on the conjugate flow (CFD) and heat deposition (Monte Carlo) calculations, not accounting for Fluid–Structure Interactions.

  17. Status of charge breeding with electron cyclotron resonance ion sources (invited)

    CERN Document Server

    Lamy, T; Sortais, P; Thuillier, T; 10.1063/1.2149300

    2006-01-01

    Due to the production methods of exotic nuclei, an efficient acceleration of radioactive ion beams needs charge breeding of weakly charged ions. The upgrade of existing isotope separator on-line facilities (TRIUMF-isotope separation and acceleration, CERN-isotope separation on-line detector, etc.) or the development of projects for the acceleration of radioactive ion beams (GANIL-SPIRAL2, MAFF, EURISOL, etc.) requires charge breeders with high efficiency, fast charge breeding time, low background levels, and high intensity acceptance either in continuous or in pulsed mode. The optimization of these parameters is a challenge for the electron cyclotron resonance (ECR) community and is useful to get a better understanding of plasma physics in ECR ion sources (ECRISs). The ECR charge breeding technique has been developed for more than ten years at LPSC (former ISN) Grenoble, typical 1+rightward arrown+ efficiencies are in the 3%-10% range depending on the nature of the incoming beam (metallic, alkaline, and gaseo...

  18. Splitting of high power, cw proton beams

    CERN Document Server

    Facco, Alberto; Berkovits, Dan; Yamane, Isao; 10.1103/PhysRevSTAB.10.091001

    2007-01-01

    A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line adioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H beam to the main radioactive ion beam production target, and up to 100 kWof proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fractionof the main H- beam, magnetic splitting of H- and H0, and stripping of H0 to H+. The method allowsslow raising and individual fine adjustment of the beam intensity in each branch.

  19. Potential for neutrino and radioactive beam physics of the foreseen upgrades of the CERN accelerators

    CERN Document Server

    Benedikt, Michael; Ruggiero, F; Ostojic, R; Scandale, Walter; Shaposhnikova, Elena; Wenninger, J

    2006-01-01

    The integrated luminosity in the LHC experiments will directly depend upon the reliability and the level of performance of the injectors (Linac2, PSB, PS, SPS). The working group on "Proton Accelerators for the Future" which is in charge of elaborating a baseline scenario for the upgrade of these accelerators in close collaboration with the group looking after "Physics Opportunities with Future Proton Accelerators" has published its views for maximizing the LHC performance in a first document. The present report updates the information concerning the proposed future accelerators and highlights their interest for a possible neutrino facility at CERN as well as for a next generation ISOL-type radioactive ion beam facility ("EURISOL").

  20. Report on the R&D of Uranium Carbide targets by the PLOG collaboration at PNPI-Gatchina

    CERN Document Server

    A.E. Barzakh, D.V. Fedorov, A.M. Ionan, V.S. Ivanov, M.P. Levchenko, K.A. Mezilev, F.V. Moroz, S.Yu. Orlov, V.N. Panteleev, Yu.M. Volkov,O. Alyakrinskiy, A. Andrighetto, A. Lanchais, G. Lhersonneau*, V. Rizzi, L. Stroe#, L.B. Tecchio,O. Bajeat, M. Cheikh Mhamed, S. Essabaa, C. Lau, B. Roussière,M. Dubois, C. Eléon, G. Gaubert, P. Jardin, N. Lecesne, R. Leroy, J.Y. Pacquet, M. -G. Saint Laurent, A.C.C. Villari.

    The aim of this report is to summarize the experimental results of the R&D program on Uranium Carbide targets for Radioactive Ion Beam (RIB) production performed at the Petersburg Nuclear Physics Institute (PNPI) of Gatchina (Russia). The targets have been irradiated with 1 GeV protons delivered by the Synchrocyclotron and the measurements were carried out at the IRIS isotope separator on-line. Different compositions of Uranium Carbide targets as well as different kinds of ion sources have been tested in order to evaluate efficiency and release times of the reaction products. The report includes the results of experiments performed in the period of time going from November 2001 up to March 2006. This R&D program was performed in the framework of the collaboration with the EURISOL, SPES and SPIRAL-2 projects and ISTC program.

  1. Presentations at NuPECC meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Nuclear Physics European Collaboration Committee (NuPECC) is an associated committee of the European Science Foundation. The objective of NuPECC is to strengthen European collaboration in nuclear sciences. In pursuing this objective the committee shall first define a network of complementary facilities within Europe and encourage optimization of their usage and secondly provide a forum for the discussion of future facilities and instrumentation. The first part of this NuPECC meeting was dedicated to the presentation of the main activities of the CENBG (Center for nuclear research of Bordeaux Gradignan), while the second part was devoted to reporting the status of current European collaborations (ECT{sup *}, ECOS, FP7, EURISOL and SPIRAL-2), a survey of operating small scale facilities in Europe is given. This document gathers only the slides presented at this meeting. (A.C.)

  2. The ISOLDE Facility: Radioactive beams at CERN

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The Isope Separation On-Line (ISOL) technique evolved from chemical techniques used to separate radioactive isotopes off-line from irradiated "targets". The ISOL targets of today, used at e.g. ISOLDE, can be of many different types and in different phases but the isotopes are always delivered at very low energies making the technique ideal for study of ground state properties and collections for other applications such as solid state physics and medical physics. The possibility of accelerating these low energy beams for nuclear structure studies, and in the long term future for neutrino physics, is now being explored at first generation radioactive beam facilities. The upgrade towards HIE-ISOLDE aim to consolidate ISOLDE's position as a world leading radioactive nuclear beam facility and it will be a pre-cursor to a future all European ISOL facility, EURISOL, with order of magnitudes higher radioactive beam intensities and energies. Prerequisite knowledge and references: None

  3. CrossRef Optimizing charge breeding techniques for ISOL facilities in Europe: Conclusions from the EMILIE project

    CERN Document Server

    Delahaye, P; Angot, J; Cam, J F; Traykov, E; Ban, G; Celona, L; Choinski, J; Gmaj, P; Jardin, P; Koivisto, H; Kolhinen, V; Lamy, T; Maunoury, L; Patti, G; Thuillier, T; Tarvainen, O; Vondrasek, R; Wenander, F

    2016-01-01

    The present paper summarizes the results obtained from the past few years in the framework of the Enhanced Multi-Ionization of short-Lived Isotopes for Eurisol (EMILIE) project. The EMILIE project aims at improving the charge breeding techniques with both Electron Cyclotron Resonance Ion Sources (ECRIS) and Electron Beam Ion Sources (EBISs) for European Radioactive Ion Beam (RIB) facilities. Within EMILIE, an original technique for debunching the beam from EBIS charge breeders is being developed, for making an optimal use of the capabilities of CW post-accelerators of the future facilities. Such a debunching technique should eventually resolve duty cycle and time structure issues which presently complicate the data-acquisition of experiments. The results of the first tests of this technique are reported here. In comparison with charge breeding with an EBIS, the ECRIS technique had lower performance in efficiency and attainable charge state for metallic ion beams and also suffered from issues related to beam c...

  4. Task order #24 update: exploration of damage mechanisms in cylindrical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaul, Ann M [Los Alamos National Laboratory

    2011-01-14

    A typical method of failure for ductile materials is spallation damage, which is caused by the nucleation, growth and coalescence of voids due to the presence of high tensile stress in the material. Spallation damage models, such as TEPLA, are currently implemented in hydrodynamic computer codes used at Los Alamos National Laboratory (LANL). Parameters for such constitutive models are derived from data sets obtained primarily from gas gun and shock-driven experiments, which are designed to allow one-dimensional analysis of the evolution of the failure characteristics. However, in a non-planar geometry, advanced failure models predict failure to be a multi-dimensional process. Additionally, a limited amount of data exists for the process of void nucleation, growth and coalescence. Another lightly researched area is the state of the material in the event that the spallation layer is recollected and voids are closed. The experiments described here are being conducted as part of a Campaign-l effort to provide data addressing these issues. The Russian Damage Experimental Series is designed to provide fundamental non-planar (cylindrical) spallation damage data, including early time processes (void nucleation, growth and coalescence) and late time processes (recollection of the spallation layer). Previous experiments produced data addressing some of the early time processes. This presentation will be provided to LANL and VNIIEF colleagues as a means of assessing the status of Task Order No.24 at the current time.

  5. The accumulator of the ESSNUSB for Neutrino production

    CERN Document Server

    Wildner, E; Schönauer, H; Eshraqi, M; Lindroos, M; McGinnis, D; Bouquerel, E; Dracos, M; Vassilopoulos, N; Ekelöf, T; Jonnerby, J; Koutchouk, J P; Ruber, R

    2014-01-01

    The European Spallation Source (ESS) is a research centre based on the world’s most powerful neutron source currently under construction in Lund, Sweden, using 2.0 GeV, 2.86 ms long proton pulses at 14 Hz for the spallation facility (5MW on target). The possibility to pulse the linac at higher frequency to deliver, in parallel with the spallation neutron production, a very intense, cost effective, high performance neutrino beam. The high current in the horns of the target system for the neutrino production requires proton pulses far shorter than the linac pulse. Therefore an accumulator ring is required after the linac to produce the shorter pulses. Charge exchange injection of an H− beam from the linac would be used. The Linac would deliver 1.1 1015 protons per pulse. Due to space charge limits, several rings or one ring re-filled several times during the neutrino cycle are necessary.

  6. Plans for an Ultra Cold Neutron source at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L. [Los Alamos National Lab., NM (United States)

    1996-08-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of be a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors. (author)

  7. Exclusive measurements on {sup 56}Fe+p at 1AGev with the SPALADIN setup at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Le Gentil, E. [DAPNIA/SPhN, CEA/Saclay, F-91191 Gif sur Yvette Cedex (France)]. E-mail: eric.le-gentil@cea.fr; Boehmer, M. [TU Muenchen, D-85748 Garching (Germany); Lafriakh, A. [IPN Orsay, F-91406 Orsay Cedex (France); Pietri, S. [DAPNIA/SPhN, CEA/Saclay, F-91191 Gif sur Yvette Cedex (France); Aumann, T. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Bacri, C-O. [IPN Orsay, F-91406 Orsay Cedex (France); Benlliure, J. [Univ. de Santiago de Compostela, E-15706 Santiago de Compostella (Spain); Boudard, A. [DAPNIA/SPhN, CEA/Saclay, F-91191 Gif sur Yvette Cedex (France); Casarejos, E. [Univ. de Santiago de Compostela, E-15706 Santiago de Compostella (Spain); Combet, M. [DAPNIA/SEDI, CEA/Saclay, F-91191 Gif sur Yvette Cedex (France); Ducret, J-E. [DAPNIA/SPhN, CEA/Saclay, F-91191 Gif sur Yvette Cedex (France); Fernandez-Ordonez, M. [Univ. de Santiago de Compostela, E-15706 Santiago de Compostella (Spain); Gernhaeuser, R. [TU Muenchen, D-85748 Garching (Germany); Johansson, H. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Kelic, A. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Kezzar, K. [DAPNIA/SPhN, CEA/Saclay, F-91191 Gif sur Yvette Cedex (France); Kruecken, R. [TU Muenchen, D-85748 Garching (Germany); Kurtukian-Nieto, T. [Univ. de Santiago de Compostela, E-15706 Santiago de Compostella (Spain); Le Fevre, A. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Leray, S. [DAPNIA/SPhN, CEA/Saclay, F-91191 Gif sur Yvette Cedex (France); Lukasik, J. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Mueller, W.F.J. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Rejmund, F. [GANIL, CEA and IN2P3, B.P. 5027, F-14076 Caen (France); Schwarz, C.; Sfienti, C.; Simon, H.; Trautmann, W. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Volant, C. [DAPNIA/SPhN, CEA/Saclay, F-91191 Gif sur Yvette Cedex (France); Yordanov, O. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany)

    2006-06-23

    A new type of spallation experiments has been carried out at GSI, Darmstadt (Germany) in order to understand the spallation mechanism in greater details. These experiments use the inverse-kinematics technique where the ion beam is directed onto a liquid Hydrogen target, allowing the detection of heavy spallation residues in coincidence with low center-of-mass energy light particles. The setup is based on A Large Acceptance DIpole magNet (ALADIN) coupled with a multitrack Time Projection Chamber (TPC), a hodoscope and a neutron detector. First, data on {sup 56}Fe+p at 1AGeV were taken in February 2004. In the on-going analysis, isotopic cross-sections have been determined and compared to data taken at the FRagment Separator in GSI. Mean values and width of residue velocity distributions have also been obtained as well as Helium production cross-section. First, coincidence data are being analyzed.

  8. Fragmentation in Carbon Therapy Beams

    CERN Document Server

    Charara, Y M

    2010-01-01

    The state of the art Monte Carlo code HETC-HEDS was used to simulate spallation products, secondary neutron, and secondary proton production in A-150 Tissue Equivalent Plastic phantoms to investigate fragmentation of carbon therapy beams. For a 356 MeV/Nucleon carbon ion beam, production of charged particles heavier than protons was 0.24 spallation products per incident carbon ion with atomic numbers ranging from 1 through 5 (hydrogen to boron). In addition, there were 4.73 neutrons and 2.95 protons produced per incident carbon ion. Furthermore, as the incident energy increases, the neutron production rate increases at a rate of 20% per 10 MeV/nucleon. Secondary protons were created at a rate between 2.62-2.87 per carbon ion, while spallation products were created at a rate between 0.20-0.24 per carbon ion.

  9. The neutron Time-Of-Flight facility, n_TOF, at CERN (I): Technical Description

    CERN Document Server

    n_TOF, Collaboration

    2013-01-01

    The n_TOF facility is a spallation neutron source operating at CERN from 2001. It produces, thanks to the characteristics of the proton driver and of the massive Pb target, a wide energy, very high instantaneous neutron flux, which is employed for neutron-induced reactions measurement. The n TOF facility resumed operation in November 2008, after a 4 years stop due to radioprotection issues connected with the operation of the spallation target. It features a new lead spallation target with a more robust design a more efficient cooling, separate moderator circuit and a target area ventilation system. In this contribution technical details about this facility and its operation will be given, together with future perspective for the performances of the facility.

  10. Helium (3) Rich Solar Flares

    Science.gov (United States)

    Colgate, S. A.; Audouze, J.; Fowler, W. A.

    1977-05-03

    The extreme enrichment of {sup 3} He {sup 4} He greater than or equal to 1 in some solar flares as due to spallation and the subsequent confinement of the products in a high temperature, kT approx. = 200 keV, high density, n{sub e} approx. = 3 x 10{sup 15} cm {sup -3} plasma associated with the magnetic instability producing the flare is interpreted. The pinch or filament is a current of high energy protons that creates the spallation and maintains the temperature that produces the high energy x-ray spectrum and depletes other isotopes D, Li, Be, and B as observed. Finally the high temperature plasma is a uniquely efficient spallation target that is powered by the interaction of stellar convection and self generated magnetic field.

  11. Mercury flow experiments. 4th report Measurements of erosion rate caused by mercury flow

    CERN Document Server

    Kinoshita, H; Hino, R; Kaminaga, M

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a construction plan of the Material-Life Science Facility, which is consisted of a Muon Science Facility and a Neutron Scattering Facility, in order to open up the new science fields. The Neutron Scattering Facility will be utilized for advanced fields of Material and Life science using high intensity neutron generated by the spallation reaction of a 1 MW pulsed proton beam and mercury target. Design of the spallation mercury target system aims to obtain high neutron performance with high reliability and safety. Since the target system is using mercury as the target material and contains large amount of radioactive spallation products, it is necessary to estimate reliability for strength of instruments in a mercury flow system during lifetime of the facility. Piping and components in the mercury flow system would be damaged by erosion with mercury flow, since these components will be we...

  12. Proliferation Potential of Accelerator-Drive Systems: Feasibility Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Riendeau, C.D.; Moses, D.L.; Olson, A.P.

    1998-11-01

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium.

  13. Investigations of fast neutron production by 190 GeV/c muon interactions on graphite target

    CERN Document Server

    Chazal, V; Cook, B; Henrikson, H; Jonkmans, G; Paic, A; Mascarenhas, N; Vogel, P; Vuilleumier, J L

    2002-01-01

    The production of fast neutrons (1 MeV - 1 GeV) in high energy muon-nucleus interactions is poorly understood, yet it is fundamental to the understanding of the background in many underground experiments. The aim of the present experiment (CERN NA55) was to measure spallation neutrons produced by 190 GeV/c muons scattering on carbon target. We have investigated the energy spectrum and angular distribution of spallation neutrons, and we report the result of our measurement of the neutron production differential cross section.

  14. Cosmic ray source abundance of calcium

    CERN Document Server

    Perron, C

    1978-01-01

    Re-examines the results of experiments in which ultra-high purity iron targets were irradiated by protons from the two CERN accelerators (600 MeV and 21 GeV); the spallation products were then chemically separated, and their isotopic composition determined by mass spectrometry. Ratios of cross-sections for calcium production by spallation of iron show that /sup 42/Ca, /sup 43/Ca and /sup 44/Ca have about the same abundance, about 10-15% that of iron, confirming earlier studies. (11 refs).

  15. Pulsed-neutron techniques for condensed-matter research

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.S.; Carpenter, J.M.; Jorgensen, J.D.; Price, D.L.; Kamitakahara, W.

    1981-01-01

    Pulsed spallation sources are reviewed in a historical content as the latest generation of neutron sources in a line that started with the discovery of the neutron in 1932 and proceeded through research-reactor and accelerator-driven sources. The characteristics of the spallation sources are discussed in relation to their capabilities for structural and dynamical studies of condensed matter with slow neutrons and radiation effects research with fast neutrons. The new scientific opportunities opened up in these fields by the unique features of the sources are briefly reviewed, with some examples of completed work and experiments being planned.

  16. Proton and Ion Sources for High Intensity Accelerators

    CERN Multimedia

    Scrivens, R

    2004-01-01

    Future high intensity ion accelerators, including the Spallation Neutron Source (SNS), the European Spallation Source (ESS), the Superconducting Proton Linac (SPL) etc, will require high current and high duty factor sources for protons and negative hydrogen ions. In order to achieve these goals, a comparison of the Electron Cyclotron Resonance, radio-frequency and Penning ion sources, among others, will be made. For each of these source types, the present operational sources will be compared to the state-of-the-art research devices with special attention given to reliability and availability. Finally, the future research and development aims will be discussed.

  17. Investigating the intra-nuclear cascade process using the reaction 136Xe on deuterium at 500 AMeV

    Directory of Open Access Journals (Sweden)

    Rejmund F.

    2010-10-01

    Full Text Available More than 600 residual nuclei, formed in the spallation of 136Xe projectiles impinging on deuterium at 500 AMeV of incident energy, have been unambiguously identified and their production cross sections have been determined with high accuracy. By comparing these data to others previously measured for the reactions 136Xe  +  p at 1 AGeV and 136Xe  +  p at 500 AMeV we investigated the role that neutrons play in peripheral collisions and to understand the energy dissipation in frontal collisions in spallation reactions.

  18. Possibilities for polarized pulsed neutron instrumentation based on the time-of-flight spin-resonance energy filter

    CERN Document Server

    Parizzi, A A; Klose, F

    2002-01-01

    We present a new approach for dynamic energy filtering at spallation neutron sources, based on the original concept of the Drabkin spin-resonance flipper. The setup takes advantage of the neutron magnetic moment, and consists of a wavelength-selective magnetic resonator and a supermirror polarizer/analyzer system. We are proposing refinements (time dependence and revised magnetic field profiles) to the basic concepts of the setup, making it suitable for time-of-flight experiments at spallation neutron sources. We outline here possibilities for using this spin resonator as the core of new neutron instruments. (orig.)

  19. Moderator Configuration Options for ESS

    DEFF Research Database (Denmark)

    Zanini, L.; Batkov, K.; Klinkby, Esben Bryndt

    2016-01-01

    The current, still evolving status of the design and the optimization work for the moderator configuration for the European Spallation Source is described. The moderator design has been strongly driven by the low-dimensional moderator concept recently proposed for use in spallation neutron sources...... conventional, principles were also considered,such as the importance of moderator positioning, of the premoderator, and beam extraction considerations. Different design and configuration options are evaluated and compared with the reference volume moderator configuration described in the ESS Technical Design...

  20. Modelling surface motion and spall at the Nevada Test Site. Los Alamos Source Region Project

    Energy Technology Data Exchange (ETDEWEB)

    App, F.N.; Brunish, W.M.

    1992-01-01

    Spallation of the ground surface accompanies all underground nuclear explosions of significant yield. This report discusses computer modelling used to investigate the physical processes that govern spallation and the amplitude and wavelength of motion at the free surface under a variety of conditions. Four events are selected: MERLIN which was conducted in desert alluvium; HEARTS which was conducted in tuff beneath the water table in Yucca Flat; TOWANDA which was conducted beneath the water table on Pahute Mesa; and HOUSTON which was conducted above the water table in very dense rock and Pahute Mesa. These span the range of test environments for Los Alamos underground nuclear tests.

  1. Mining Archived HYSPEC User Data to Analyze the Prompt Pulse at the SNS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Michael B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallmeier, Franz X. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The Hybrid-Spectrometer (HYSPEC) is one of 17 instruments currently operated at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratories (ORNL). The secondary spectrometer of this instrument is located inside an out-building off the north side of the SNS instrument hall. HYSPEC has experienced a larger background feature than similar inelastic instruments since its commissioning in 2011. This background feature is caused by a phenomenon known as the “prompt pulse” which is an essential part of neutron production in a pulsed spallation source but comes with unfortunate side effects.

  2. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  3. PROSPECTS FOR A VERY HIGH POWER CW SRF LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Robert Rimmer

    2010-06-01

    Steady development in SRF accelerator technology combined with the success of large scale installations such as CEBAF at Jefferson Laboratory and the SNS Linac at ORNL gives credibility to the concept of very high average power CW machines for light sources or Proton drivers. Such machines would be powerful tools for discovery science in themselves but could also pave the way to reliable cost effective drivers for such applications as neutrino factories, an energy-frontier muon collider, nuclear waste transmutation or accelerator driven subcritical reactors for energy production. In contrast to machines such as ILC that need maximum accelerating gradient, the challenges in these machines are mainly in efficiency, reliability, beam stability, beam loss and of course cost. In this paper the present state of the art is briefly reviewed and options for a multi-GeV, multi-MW CW linac are discussed.

  4. Landscape of Future Accelerators at the Energy and Intensity Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M. J. [Northern Illinois U.; Chattopadhyay, S. [Northern Illinois U.

    2016-11-21

    An overview is provided of the currently envisaged landscape of charged particle accelerators at the energy and intensity frontiers to explore particle physics beyond the standard model via 1-100 TeV-scale lepton and hadron colliders and multi-Megawatt proton accelerators for short- and long- baseline neutrino experiments. The particle beam physics, associated technological challenges and progress to date for these accelerator facilities (LHC, HL-LHC, future 100 TeV p-p colliders, Tev-scale linear and circular electron-positron colliders, high intensity proton accelerator complex PIP-II for DUNE and future upgrade to PIP-III) are outlined. Potential and prospects for advanced “nonlinear dynamic techniques” at the multi-MW level intensity frontier and advanced “plasma- wakefield-based techniques” at the TeV-scale energy frontier and are also described.

  5. Quasi-Optical 34-GHz Rf Pulse Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2007-06-19

    Designs have been carried out on non-high-vacuum, low-power versions of three- and four-mirror quasi-optical passive and active Ka-band pulse compressors, and prototypes built and tested based on these designs. The active element is a quasi-optical grating employing gas discharge tubes in the gratings. Power gains of about 3:1 were observed experimentally for the passive designs, and about 7:1 with the active designs. High-power, high-vacuum versions of the three-and four-mirror quasi-optical pulse compressors were built and tested at low power. These now await installation and testing using multi-MW power from the 34-GHz magnicon.

  6. The VolturnUS 1:8 Floating Wind Turbine: Design, Construction, Deployment, Testing, Retrieval, and Inspection of the First Grid-Connected Offshore Wind Turbine in US

    Energy Technology Data Exchange (ETDEWEB)

    Dagher, Habib [Univ. of Maine, Orono, ME (United States); Viselli, Anthony [Univ. of Maine, Orono, ME (United States); Goupee, Andrew [Univ. of Maine, Orono, ME (United States); Kimball, Richard [Maine Maritime Academy, Castine, ME (United States); Allen, Christopher [Univ. of Maine, Orono, ME (United States)

    2017-08-15

    Volume II of the Final Report for the DeepCwind Consortium National Research Program funded by US Department of Energy Award Number: DE-EE0003278.001 summarizes the design, construction, deployment, testing, numerical model validation, retrieval, and post-deployment inspection of the VolturnUS 1:8-scale floating wind turbine prototype deployed off Castine, Maine on June 2nd, 2013. The 1:8 scale VolturnUS design served as a de-risking exercise for a commercial multi-MW VolturnUS design. The American Bureau of Shipping Guide for Building and Classing Floating Offshore Wind Turbine Installations was used to design the prototype. The same analysis methods, design methods, construction techniques, deployment methods, mooring, and anchoring planned for full-scale were used. A commercial 20kW grid-connected turbine was used and was the first offshore wind turbine in the US.

  7. Blade Bearing Friction Estimation of Operating Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    reliability can be increased by continuous monitoring of blade bearing. High blade bearing friction is undesirable, as it may be associated with excessive heating of the surfaces, damage and/or inefficient operation. Thus, continuous observation of bearing friction level is crucial for blade bearing health...... monitoring systems. A novel algorithm for online monitoring of bearing friction level is developed combining physical knowledge about pitch system dynamics with state estimator, i.e. observer theory and signal processing assuming realistic sensor availability. Results show estimation of bearing friction...... torque required for condition monitoring, and a corresponding indicator signal which represents estimation of a relative friction coefficient. All data used in this work have been calculated using the aeroelastic code, LACflex applying a model of a generic multi-MW WTG....

  8. Low-cost approach to high-volume production and practical considerations to improving efficiency of single crystalline silicon solar cells for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Barki, D.T.; Ramamurthy, E.S.; Srivatsan, R.; Sudha Rani, R. [R.E.S. Photovoltaics Ltd., Hyderabad (India)

    1994-12-31

    The purpose of this paper is to report the work carried out in identifying low cost processes and production engineering techniques suitable for adoption in developing countries, making full use of the inherent advantages in their environment. The methods described in this work have routinely produced 13% plus efficiency solar cells in volume production. Innovative low cost processes such as coin stack etching for junction removal and a novel co-sintering method for reliable screen printed contacts have been developed. The net result has been an ultra-low cost multi-MW sized production line utilizing optimum level of manpower and skills which are easy to obtain in the given Third World. A major feature of this exercise was also the successful development of critical processing equipment based on internally developed skills.

  9. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  10. Feasibility of large-scale calorimetric efficiency measurement for wind turbine generator drivetrains

    Science.gov (United States)

    Pagitsch, Michael; Jacobs, Georg; Schelenz, Ralf; Bosse, Dennis; Liewen, Christian; Reisch, Sebastian; Deicke, Matthias

    2016-09-01

    In the course of the global energy turnaround, the importance of wind energy is increasing continuously. For making wind energy more competitive with fossil energy, reducing the costs is an important measure. One way to reach this goal is to improve the efficiency. As the major potentials have already been exploited, improvements in the efficiency are made in small steps. One of the main preconditions for enabling these development activities is the sufficiently accurate measurement of the efficiency. This paper presents a method for measuring the efficiency of geared wind turbine generator drivetrains with errors below 0.5% by directly quantifying the power losses. The presented method is novel for wind turbines in the multi- MW-class.

  11. Improvement Plans of Fermilab's Proton Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  12. Control and Protection of Wind Power Plants with VSC-HVDC Connection

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay

    Wind power plants are the fastest growing source of renewable energy. The European Union expects to generate 230 GW wind power, in which the offshore wind power is expected to contribute 40 GW. Offshore wind power plants have better wind velocity profile leading to a higher energy yield. Europe has...... a huge potential of offshore wind energy, which is a green and sustainable resource. All these have led to the development of offshore wind power plants. However, overall cost of the offshore installation, operation, and maintenance are higher than those of the onshore wind power plants. Therefore......, the plant size needs to be higher such that the unit cost of energy can be lowered. An overall increase in operating efficiency would further reduce the cost of energy, thereby increasing the viability of the project. Multi-MW variable speed wind turbine generators, of unit sizes between 3-10 MW, have been...

  13. Generation of statistical scenarios of short-term wind power production

    DEFF Research Database (Denmark)

    Pinson, Pierre; Papaefthymiou, George; Klockl, Bernd

    2007-01-01

    Short-term (up to 2-3 days ahead) probabilistic forecasts of wind power provide forecast users with a paramount information on the uncertainty of expected wind generation. Whatever the type of these probabilistic forecasts, they are produced on a per horizon basis, and hence do not inform...... on the development of the forecast uncertainty through forecast series. This issue is addressed here by describing a method that permits to generate statistical scenarios of wind generation that accounts for the interdependence structure of prediction errors, in plus of respecting predictive distributions of wind...... generation. The approach is evaluated on the test case of a multi-MW wind farm over a period of more than two years. Its interest for a large range of applications is discussed....

  14. Visualization of transient phenomena during the interaction of pulsed CO2 laser radiation with matter

    Science.gov (United States)

    Schmitt, R.; Hugenschmidt, Manfred

    1996-05-01

    Carbon-dioxide-lasers operating in the pulsed mode with energy densities up to several tens of J/cm2 and peak power densities in the multi-MW/cm2-range may cause fast heating and melting. Eventually quasi-explosive ejection, decomposition or vaporization of material can be observed. Surface plasmas are strongly influencing the energy transfer from the laser radiation field to any target. For optically transparent plastics, such as PMMA for example, only slowly expanding plasmas (LSC-waves) are ignited at fluences around 20 J/cm2, with a low level of self-luminosity. High brightness, supersonically expanding plasma jets (LSD-waves) are generated at the same fluences on glasses. Similar conditions were found for metals as well. From recordings with a high speed CCD-camera, interesting features concerning the initial plasma phases and temporal evolution were deduced. Additionally, information was obtained concerning the quasi explosive ejection of material for PMMA.

  15. Electro-thermal Modeling for Junction Temperature Cycling-Based Lifetime Prediction of a Press-Pack IGBT 3L-NPC-VSC Applied to Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    Reliability is a critical criterion for multi-MW wind turbines, which are being employed with increasing numbers in wind power plants, since they operate under harsh conditions and have high maintenance cost due to their remote locations. In this study, the wind turbine grid-side converter...... prediction, the converter electro-thermal model including electrical, power loss, and dynamical thermal models is developed with the main focus on the thermal modeling regarding converter topology, switch technology, and physical structure. Moreover, these models are simplified for their practical...... implementation in computation platforms. Finally, the converter lifetimes for wind power profiles are predicted using the IGBT lifetime model available. Hence, the developed electrothermal model’s suitability for the lifetime predictions is shown....

  16. Power density investigations for the large wind turbines' grid-side press-pack IGBT 3L-NPC-VSCs

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2012-01-01

    Power density is the important design criterion in wind turbine converter design provided that satisfactory converter performance is guaranteed. In order to assess a converter in terms of power density, which is dependent on converter electrical and thermal behaviors, converter electro-thermal...... models are required to be derived, implemented, and utilized. In this study, employed as a grid-side medium voltage full-scale voltage source converters (VSCs) in a multi-MW wind turbine, press-pack IGBT three-level neutral-point-clamped VSC (3L-NPC-VSC), 3L active NPC-VSC (3L-ANPC-VSC), and 3L neutral......-point-piloted VSC (3L-NPP-VSC) are characterized in terms of converter operating principles, physical structure, power loss, and DC bus capacitor size for establishing the basis for converter electro-thermal modeling. Via the practical implementations of the converter electro-thermal models in a computation...

  17. Transmutation of 129 I, 237 Np, 238 Pu, 239 Pu, and 241 Am using ...

    Indian Academy of Sciences (India)

    Target-blanket facility `Energy + Transmutation' was irradiated by proton beam extracted from the Nuclotron Accelerator in Laboratory of High Energies of Joint Institute for Nuclear Research in Dubna, Russia. Neutrons generated by the spallation reactions of 0.7, 1.0, 1.5 and 2 GeV protons and lead target interact with ...

  18. Neutron and P, T symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-05-01

    New ideas for experiments to improve the T-violation limit by a factor of 10 to 100 is discussed for a intensive spallation neutron source. The methods to improve the limit of the right-handed current and the neutron lifetime are also discussed. (author)

  19. First flux measurement in a SINQ supermirror neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Schlumpf, N.; Bauer, G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    On Dec. 3, 1996, the Swiss spallation neutron source SINQ was taken into operation and produced its first neutrons successfully. The neutron spectrum within one of the supermirror guides was estimated by a chopper Time-of-Flight method. The result shows a 30% higher neutron intensity at the flux maximum than expected from previous Monte-Carlo simulations. (author) 1 fig., 4 refs.

  20. FOCUS: neutron time-of-flight spectrometer at SINQ: recent progress

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Mesot, J.; Holitzner, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Hempelmann, R. [Saarbruecken Univ. (Germany)

    1997-09-01

    At the Swiss neutron spallation source SINQ a time-of-flight spectrometer for cold neutrons is under construction. The design foresees a Hybrid solution combining a Fermi chopper with a doubly focusing crystal monochromator. During 1996 important progress has been made concerning the main spectrometer components such as the spectrometer housing and the detector system. (author) 2 figs., 3 refs.

  1. OscSNS: A Precision Neutrino Oscillation Experiment at the SNS

    CERN Document Server

    ,

    2013-01-01

    The growing evidence for short-baseline neutrino oscillations and the possible existence of sterile neutrinos necessitates the development of a cost-effective experiment that can resolve these mysteries. The OscSNS \\cite{1} experiment, located at the Spallation Neutron Source (SNS), Oak Ridge Laboratory, is ideal for this purpose.

  2. Present status and future development of WNR

    Energy Technology Data Exchange (ETDEWEB)

    Keyworth, G.A.

    1980-01-01

    The Los Alamos Weapons Neutron Research/Proton Storage Ring complex will be a major United States facility for the study of condensed matter science, fundamental interaction physics, and nuclear physics. The experimental facilities, research programs, and a proposed advanced spallation facility are described. (GHT)

  3. Evaluated displacement and gas production cross-sections for materials irradiated with intermediate energy nucleons

    Directory of Open Access Journals (Sweden)

    Konobeyev Alexander Yu.

    2017-01-01

    Full Text Available Atomic displacement and gas production cross-sections were obtained for a number of materials to calculate radiation damage and gas production rate in nuclear- and fusion reactors, and neutron spallation sources. An advanced atomistic modelling approach was applied for calculations of the number of stable displacements in materials.

  4. Microstructure and oxidation performance of a γ–γ ′ Pt-aluminide ...

    Indian Academy of Sciences (India)

    Administrator

    3.2 Cyclic oxidation performance. The weight change plots corresponding to cyclic oxida- tion of both β and γ–γ ′ bonds coated samples at 1100 °C in air are presented in figure 5. The uncoated superalloy had extremely poor oxidation resistance and underwent severe weight loss due to oxide spallation under the influ-.

  5. CAMEA ESS

    DEFF Research Database (Denmark)

    Freeman, P.G.; Birk, J.O.; Marko, M.

    2014-01-01

    The CAMEA ESS neutron spectrometer is designed to achieve a high detection efficiency in the horizontal scattering plane, and to maximize the use of the long pulse European Spallation Source. It is an indirect geometry time-of-flight spectrometer that uses crystal analysers to determine the final...

  6. J-PARC and the prospective neutron sciences

    Indian Academy of Sciences (India)

    duces about 25 neutrons from a lead target, with low heat deposition in the target. (figure 2). Studies in 1990s proved that the neutron production yield by the spallation re ... where the depths of poisoning plate from the moderator surfaces are 2.5 cm and 4 cm respectively. In the 1/E region for each moderator the pulse width.

  7. Basic and applied research at the Weapons Neutron Research facility

    Energy Technology Data Exchange (ETDEWEB)

    Gavron, A.

    1994-06-01

    The Weapons Neutron Research facility (WNR), is an intense, high energy spallation source, driven by the LAMPF 800 MeV proton linac. We describe some of the basic and applied research projects which are currently being worked on at this facility.

  8. Non-spherical voids and lattice reorientation patterning in a shock-loaded Al single crystal

    DEFF Research Database (Denmark)

    Hong, Chuanshi; Fæster, Søren; Hansen, Niels

    2017-01-01

    An Al single crystal shock loaded in the direction and captured at incipient spallation was examined by combining X-ray tomography, electron backscatter diffraction on a scanning electron microscope, and transmission electron microscopy (TEM). Octahedral voids with {1 1 1} faces were...... of dislocation cells and extended dislocation boundaries, illustrating the importance of plastic deformation during void growth....

  9. Behaviour of uranium alloys at high loading rates

    Energy Technology Data Exchange (ETDEWEB)

    Rolc, S.; Pechacek, J.; Krejci, J. (Ceskoslovenska Akademie Ved, Brno (CS). Ustav Fyzikalni Metalurgie); Buchar, J.

    1991-10-01

    The mechanical behaviour of depleted uranium, uranium with molybdenum, niobium, titanium and rhenium was investigated under high strain rates. The Hopkinson split pressure bar was used. The spallation of these materials was also studied. The correlation of the spall strength, {sigma}{sub c}, with flow properties was found. 11 refs., 4 figs., 1 tab..

  10. Oxidation of Fe–22Cr Coated with Co3O4: Microstructure Evolution and the Effect of Growth Stresses

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Burriel, Monica; Garcia, Gemma

    2007-01-01

    of the growth stresses on microstructure evolution in the scales that developed on the non-coated and the coated Fe–22Cr alloy. Microstructural features suggested that scale spallation on coated Fe–22Cr occurred as a result of superimposing thermal stresses during cooling onto the growth stresses, that had...

  11. Preliminary design studies of a 100 MeV H-/H+LINAC as injector for ...

    Indian Academy of Sciences (India)

    Preliminary design studies of a 100 MeV H-/H+LINAC as injector for SNS synchrotron/ADS LINAC. S A PANDE, MOONOOKU PRASAD, NITA KULKARNI and P R HANNURKAR. Centre for Advanced Technology, Indore 452 013, India. Abstract. It is proposed to construct a spallation neutron source (SNS) at Centre for ...

  12. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... scalar diquark star within the framework of an effective 4-theory (S K Karn et al [1]) some interesting observations are made with regard to the stability of stellar objects describable in general in terms of the polynomial field theories. pp 469-481 Research Articles. Neutron spallation source and the Dubna Cascade Code.

  13. Herschel Finds Evidence for Stellar Wind Particles in a Protostellar Envelope: Is This What Happened to the Young Sun?

    NARCIS (Netherlands)

    Ceccarelli, C.; Dominik, C.; López-Sepulcre, A.; Kama, M.; Padovani, M.; Caux, E.; Caselli, P.

    2014-01-01

    There is evidence that the young Sun emitted a high flux of energetic (≥10 MeV) particles. The collisions of these particles with the material at the inner edge of the Protosolar Nebula disk induced spallation reactions that formed short-lived radionuclei, like 10Be, whose trace is now visible in

  14. Radiation induced cavitation: A possible phenomenon in liquid targets?

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1998-07-01

    The proposed design of a new, short-pulse spallation neutron source includes a liquid mercury target irradiated with a 1 GeV proton beam. This paper explores the possibility that cavitation bubbles may be formed in the mercury and briefly discusses some design features that could avoid harmful effects should cavitation take place.

  15. Interfacing MCNPX and McStas for simulation of neutron transport

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Lauritzen, Bent; Nonbøl, Erik

    2013-01-01

    Simulations of target-moderator-reflector system at spallation sources are conventionally carried out using Monte Carlo codes such as MCNPX[1] or FLUKA[2, 3] whereas simulations of neutron transport from the moderator and the instrument response are performed by neutron ray tracing codes such as Mc...

  16. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. Manish Sharma. Articles written in Pramana – Journal of Physics. Volume 68 Issue 2 February 2007 pp 307-313. Measurement of neutron-induced activation cross-sections using spallation source at JINR and neutronic validation of the Dubna code · Manish Sharma V Kumar ...

  17. Neutron cross-sections above 20 MeV for design and modeling of ...

    Indian Academy of Sciences (India)

    One of the outstanding new developments in the field of partitioning and transmutation (P&T) concerns accelerator-driven systems (ADS) which consist of a combination of a high-power, high-energy accelerator, a spallation target for neutron production and a sub-critical reactor core. The development of the commercial ...

  18. Data processing workflow for time of flight polarized neutrons inelastic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Savici, Andrei T [ORNL; Zaliznyak, Igor [Brookhaven National Laboratory (BNL); Garlea, Vasile O [ORNL; Winn, Barry L [ORNL

    2017-01-01

    We discuss the data processing workflow for polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. The effects of the focusing Heusler crystal polarizer and the wide-angle supermirror transmission polarization analyzer are added to the data processing flow of the non-polarized case. The implementation is done using the Mantid software package.

  19. Nuclear reaction modeling, verification experiments, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, F.S.

    1995-10-01

    This presentation summarized the recent accomplishments and future promise of the neutron nuclear physics program at the Manuel Lujan Jr. Neutron Scatter Center (MLNSC) and the Weapons Neutron Research (WNR) facility. The unique capabilities of the spallation sources enable a broad range of experiments in weapons-related physics, basic science, nuclear technology, industrial applications, and medical physics.

  20. Neutrons for technology and science

    Energy Technology Data Exchange (ETDEWEB)

    Aeppli, G.

    1995-10-01

    We reviewed recent work using neutrons generated at nuclear reactors an accelerator-based spallation sources. Provided that large new sources become available, neutron beams will continue to have as great an impact on technology and science as in the past.