WorldWideScience

Sample records for ethylmethacrylate graft copolymer

  1. Comb-like temperature-responsive polyhydroxyalkanoate-graft-poly(2-dimethylamino-ethylmethacrylate) for controllable protein adsorption

    DEFF Research Database (Denmark)

    Yao, Hui; Wei, Daixu; Che, Xuemei

    2016-01-01

    %. Graft copolymer PHA-g-PDMAEMA showed enhanced thermal stability, biocompatibility and controllable hydrophilicity compared with non-grafted P(3HDD-co-3H9D). The grafted material presented an obvious tendency of increasing protein adsorptions over the lower critical solution temperature (LCST 47.5 °C...... controllable protein adsorption for biomedical usages....

  2. Polyether/Polyester Graft Copolymers

    Science.gov (United States)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  3. Synthesis and Characterization of Stimuli-Responsive Poly(2-dimethylamino-ethylmethacrylate)-Grafted Chitosan Microcapsule for Controlled Pyraclostrobin Release

    OpenAIRE

    Chunli Xu; Lidong Cao; Pengyue Zhao; Zhaolu Zhou; Chong Cao; Feng Zhu; Fengmin Li; Qiliang Huang

    2018-01-01

    Controllable pesticide release in response to environmental stimuli is highly desirable for better efficacy and fewer adverse effects. Combining the merits of natural and synthetic polymers, pH and temperature dual-responsive chitosan copolymer (CS-g-PDMAEMA) was facilely prepared through free radical graft copolymerization with 2-(dimethylamino) ethyl 2-methacrylate (DMAEMA) as the vinyl monomer. An emulsion chemical cross-linking method was used to expediently fabricate pyraclostrobin micro...

  4. Polyether-polyester graft copolymer

    Science.gov (United States)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  5. Synthesis and Characterization of Stimuli-Responsive Poly(2-dimethylamino-ethylmethacrylate-Grafted Chitosan Microcapsule for Controlled Pyraclostrobin Release

    Directory of Open Access Journals (Sweden)

    Chunli Xu

    2018-03-01

    Full Text Available Controllable pesticide release in response to environmental stimuli is highly desirable for better efficacy and fewer adverse effects. Combining the merits of natural and synthetic polymers, pH and temperature dual-responsive chitosan copolymer (CS-g-PDMAEMA was facilely prepared through free radical graft copolymerization with 2-(dimethylamino ethyl 2-methacrylate (DMAEMA as the vinyl monomer. An emulsion chemical cross-linking method was used to expediently fabricate pyraclostrobin microcapsules in situ entrapping the pesticide. The loading content and encapsulation efficiency were 18.79% and 64.51%, respectively. The pyraclostrobin-loaded microcapsules showed pH-and thermo responsive release. Microcapsulation can address the inherent limitation of pyraclostrobin that is photo unstable and highly toxic on aquatic organisms. Compared to free pyraclostrobin, microcapsulation could dramatically improve its photostability under ultraviolet light irradiation. Lower acute toxicity against zebra fish on the first day and gradually similar toxicity over time with that of pyraclostrobin technical concentrate were in accordance with the release profiles of pyraclostrobin microcapsules. This stimuli-responsive pesticide delivery system may find promising application potential in sustainable plant protection.

  6. Synthesis and Characterization of Stimuli-Responsive Poly(2-dimethylamino-ethylmethacrylate)-Grafted Chitosan Microcapsule for Controlled Pyraclostrobin Release.

    Science.gov (United States)

    Xu, Chunli; Cao, Lidong; Zhao, Pengyue; Zhou, Zhaolu; Cao, Chong; Zhu, Feng; Li, Fengmin; Huang, Qiliang

    2018-03-14

    Controllable pesticide release in response to environmental stimuli is highly desirable for better efficacy and fewer adverse effects. Combining the merits of natural and synthetic polymers, pH and temperature dual-responsive chitosan copolymer (CS- g -PDMAEMA) was facilely prepared through free radical graft copolymerization with 2-(dimethylamino) ethyl 2-methacrylate (DMAEMA) as the vinyl monomer. An emulsion chemical cross-linking method was used to expediently fabricate pyraclostrobin microcapsules in situ entrapping the pesticide. The loading content and encapsulation efficiency were 18.79% and 64.51%, respectively. The pyraclostrobin-loaded microcapsules showed pH-and thermo responsive release. Microcapsulation can address the inherent limitation of pyraclostrobin that is photo unstable and highly toxic on aquatic organisms. Compared to free pyraclostrobin, microcapsulation could dramatically improve its photostability under ultraviolet light irradiation. Lower acute toxicity against zebra fish on the first day and gradually similar toxicity over time with that of pyraclostrobin technical concentrate were in accordance with the release profiles of pyraclostrobin microcapsules. This stimuli-responsive pesticide delivery system may find promising application potential in sustainable plant protection.

  7. Synthesis of graft copolymers onto starch and its semiconducting properties

    Directory of Open Access Journals (Sweden)

    Nevin Çankaya

    Full Text Available Literature review has revealed that, although there are studies about grafting on natural polymers, especially on starch, few of them are about electrical properties of graft polymers. Starch methacrylate (St.met was obtained by esterification of OH groups on natural starch polymer for this purpose. Grafting of synthesized N-cyclohexyl acrylamide (NCA and commercial methyl methacrylate (MMA monomers with St.met was done by free radical polymerization method. The graft copolymers were characterized with FT-IR spectra, thermal and elemental analysis. Thermal stabilities of the graft copolymers were determined by TGA (thermo gravimetric analysis method and thermal stability of the copolymers is decreased via grafting. The electrical conductivity of the polymers was measured as a function of temperature and it has been observed that electrical conductivity increases with increasing temperature. The absorbance and transmittance versus wavelength of the polymers have been measured. Keywords: Starch, Graft copolymer, Semiconducting, Thermal stability, Starch methacrylate

  8. Characterization and Some Properties of Functionalized Graft Copolymer

    International Nuclear Information System (INIS)

    Hegazy El-Sayed, A.; Kamal, H.; Mahmoud, Gh.A.; Khalifa, N.A.

    2000-01-01

    The study involved the investigation and characterization of membranes prepared by graft copolymerization of acrylonitrile (AN) and vinyl acetate (VAc) binary monomers onto low density polyethylene (LDPE) and isotactic polypropylene (IPP). The mutual gamma-irradiation method was used as a grafting technique. The effects of grafting and chemical treatments on the thermal properties and crystallinity of prepared graft copolymer have been investigated using DSC, TGA and XRD. IR spectra recorded before and after grafting and also for the chemically treated membranes to elucidate the structural changes occurred due to grafting and chemical treatments

  9. Novel block, graft and random copolymers for biomedical applications

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Jankova Atanasova, Katja; Tanaka, Masaru

    Despite the simple structure, poly(2-methoxyethyl acrylate) (PMEA) shows excellent blood compatibility [1]. Both the freezing-bound water (intermediate water: preventing the biocomponents from directly contacting the polymer surface) and non-freezing water on the polymer surface play important...... copolymers with MMA [4] utilizing ATRP. Here we present other block, graft and random copolymers of MEA intended for biomedical applications. These macromolecular architectures have been constructed by employing controlled radical polymerization methods such as RAFT and ATRP....

  10. Insolubilisation of biologically active materials with novel radiation graft copolymers

    International Nuclear Information System (INIS)

    Garnett, J.L.; Jankiewicz, S.V.; Levot, R.; Sangster, D.F.

    1984-01-01

    The use of radiation grafting to immobilise a typical enzyme, trypsin, is reported. The technique involves radiation grafting to a backbone polymer a monomer containing an appropriate functional group to which the enzyme is bonded. In the present work, p-nitrostyrene has been grafted to representative trunk polymers, polypropylene and PVC, the nitro group in the resulting copolymer converted to the isothiocyanato derivative to which trypsin is attached. Of importance to this insolubilisation process, especially for radiation sensitive backbone polymers, is the inclusion of additives which enhance grafting. A new class of additives which increase the grafting yields is reported using as representative backbone polymers, naturally occurring cellulose and synthetic low density polyethylene. The new additives are specific metal salts such as LiClO 4 . The reactivity of these salts in grafting enhancement has been compared with that of mineral acid which has previously been used as an additive to increase grafting yields in both preirradiation and simultaneous techniques. A new model for grafting enhancement in the presence of the metal salts as well as acids is proposed whereby increased grafting yields are attributed to increased partitioning of monomer into the graft region in the presence of ionic solutes. The value of these additives in preparing copolymers suitable for general reagent insolubilisation reactions is discussed

  11. Sulfomethylated graft copolymers of xanthan gum and polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, I.W.; Empey, R.A.; Racciato, J.S.

    1978-08-08

    A water-soluble anionic graft copolymer of xanthan gum and polyacrylamide is described in which at least part of the amide function of the acrylamide portion of the copolymer is sulfomethylated and the xanthan gum portion of the copolymer is unreacted with formaldehyde. The copolymer is sulfomethylated by reaction with formaldehyde and sodium metabisulfite. The formaldehyde does not cause any appreciable cross-linking between hydroxyl groups of the xanthan moieties. The sulfomethylation of the acrylamido group takes place at temperatures from 35 to 70 C. The pH is 10 or higher, typically from 12 to 13. The degree of anionic character may be varied by adjusting the molar ratio of formaldehyde and sodium metabisulfite with respect to the copolymer. 10 claims.

  12. Rapid synthesis of graft copolymers from natural cellulose fibers.

    Science.gov (United States)

    Thakur, Vijay Kumar; Thakur, Manju Kumari; Gupta, Raju Kumar

    2013-10-15

    Cellulose is the most abundant natural polysaccharide polymer, which is used as such or its derivatives in a number of advanced applications, such as in paper, packaging, biosorption, and biomedical. In present communication, in an effort to develop a proficient way to rapidly synthesize poly(methyl acrylate)-graft-cellulose (PMA-g-cellulose) copolymers, rapid graft copolymerization synthesis was carried out under microwave conditions using ferrous ammonium sulfate-potassium per sulfate (FAS-KPS) as redox initiator. Different reaction parameters such as microwave radiation power, ratio of monomer, solvent and initiator concentrations were optimized to get the highest percentage of grafting. Grafting percentage was found to increase with increase in microwave power up to 70%, and maximum 36.73% grafting was obtained after optimization of all parameters. Fourier transforms infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG) analysis were used to confirm the graft copolymerization of poly(methyl acrylate) (PMA) onto the mercerized cellulose. The grafted cellulosic polymers were subsequently subjected to the evaluation of different physico-chemical properties in order to access their application in everyday life, in a direction toward green environment. The grafted copolymers demonstrated increased chemical resistance, and higher thermal stability. Published by Elsevier Ltd.

  13. Removal of Industrial Pollutants From Wastewater's By Graft Copolymers

    International Nuclear Information System (INIS)

    Hegazy El-Sayed, A.; El-Nagar Abdel-Wahab, M.; Senna Magdy, M.; Zahran Abdel-Hamid, H.

    1999-01-01

    Graft copolymers that obtained by radiation grafting of acrylic acid and acrylamide onto LDPE film were converted to N-hydroxy ethyl amide and hydroxamic acid derivatives respectively. The possible application for the different prepared chemical derivatives of LDPE graft copolymers in metal adsorption from solutions containing a single cation or simulated medium active waste has been investigated. The results showed that the adsorption of Cu(II) metal by different chemical derivatives was greatly affected by different factors such as graft yield, ph value, concentration of metal in the feed solution, immersion time and treatment temperature. The affinity of N-hydroxy ethyl amide derivative toward the different metals was found to be in the order of; Cu(II) >Pd(II) > Cd(II)> Co(II). However, for hydroxamic acid derivative , the affinity order was: Cd(II) > Cu(II) > Co(II). The ESR and IR analysis revealed that the metal ions are chelated through the lone pair of electrons on the -OH and -NH- groups forming a ring structure. The measured metal ion uptake from simulated medium active waste mixture by N-hydroxy ethyl amide derivative was found to follow the following order: Fe> U> Ni> Zr> Zn> Cr. On the other hand, the measured metal uptake by hydroxamic acid derivative was found to follow: Fe>U> Zr> Ca. It is concluded that the prepared grafted copolymers are of interest for metal chelation and could be applied in the field of waste treatment

  14. Characterization of Functionalized Acrylic acid /4- Vinyl Pyridine Graft Copolymers

    International Nuclear Information System (INIS)

    Kamal, H.; Mahmoud, Gh.A.; Hegazy, D.E.

    2009-01-01

    Properties and characterization of the membranes prepared by radiation grafting of acrylic acid (AAc) or/ and 4-vinyl pyridine (4VP) onto low density polyethylene (LDPE) and polypropylene (PP) films were carried out. The FTIR spectra for the grafted membranes were studied to evaluate the structure change as a result of grafting. The swelling behaviour of the graft copolymer in methanol was studied. It was found that the grafting of AAc and/ or 4- VP onto LDPE and PP resulted in introducing good hydrophilic properties to such polymer substrates. The hydrophilic properties were directly proportional to the amount of functional groups. The mechanical properties (Young's modulus, elongation percent and tensile strength) of the grafted membranes also, have been investigated. As the grafting degree increases, the modulus also increases. Increasing the hydrophilicity of the membranes by chemical treatment enhances its mechanical properties. The thermal parameters of the grafted membranes such as δH m1 . δH m2 , and T rc have been also studied by using DSC

  15. Functionalized and graft copolymers of chitosan and its pharmaceutical applications.

    Science.gov (United States)

    Bhavsar, Chintan; Momin, Munira; Gharat, Sankalp; Omri, Abdelwahab

    2017-10-01

    Chitosan is the second most abundant natural polysaccharide. It belongs a family of polycationic polymers comprised of repetitive units of glucosamine and N-acetylglucosamine. Its biodegradability, nontoxicity, non-immunogenicity and biocompatibility along with properties like mucoadhesion, fungistatic and bacteriogenic have made chitosan an appreciated polymer with numerous applications in the pharmaceutical, comestics and food industry. However, the limited solubility of chitosan at alkaline and neutral pH limits its widespread commercial use. This can be circumvented by fabrication of chitosan by graft copolymerization with acyl, alkyl, monomeric and polymeric moieties. Areas covered: Modifications like quarterization, thiolation, acylation and grafting result in copolymers with higher mucoadhesion strength, increased hydrophobic interactions (advantageous in hydrophobic drug entrapment), and increased solubility in alkaline pH, the ability for adsorption of metal ions, protein and peptide delivery and nutrient delivery. Insights on methods of polymerization, including atomic transfer radical polymerization and click chemistry are discussed. Applications of such modified chitosan copolymers in medical and surgical, and drug delivery, including nasal, oral and buccal delivery have also been covered. Expert opinion: Despite a number of successful investigations, commercialization of chitosan copolymers still remains a challenge. Further advancements in polymerization techniques may address the unmet needs of the healthcare industry.

  16. POTENTIAL USE OF GRAFT COPOLYMERS OF MERCERIZED FLAX AS FILLER IN POLYSTYRENE COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    Susheel Kalia

    2008-11-01

    Full Text Available Graft copolymerization of binary vinyl monomers onto mercerized flax fiber was carried out for the enhancement of mechanical properties of polystyrene composites. Binary vinyl monomer mixture of AA+AN has been found to show maximum grafting (33.55% onto mercerized flax. Graft copolymers thus synthesized were characterized with FT-IR spectroscopy, SEM, and TGA techniques. Mercerized flax (MF showed maximum thermal stability in comparison to graft copolymers. It has been found that polystyrene composites reinforced with graft copolymers showed improvement in mechanical properties such as wear resistance, compressive strength, and tensile strength.

  17. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, A.; Valle, L.; Franco, L. del [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Sarasua, J.R. [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain); Estrany, F. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, J., E-mail: Jordi.Puiggali@upc.es [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain)

    2014-09-01

    Lactide and trimethylene carbonate copolymers were successfully grafted with polyethylene glycol via previous functionalization with maleic anhydride and using N,N′-diisopropylcarbodiimide as condensing agent. Maleinization led to moderate polymer degradation. Specifically, the weight average molecular weight decreased from 36,200 to 30,200 g/mol for the copolymer having 20 mol% of trimethylene carbonate units. Copolymers were characterized by differential scanning calorimetry, thermogravimetry and X-ray diffraction. Morphology of spherulites and lamellar crystals was evaluated with optical and atomic force microscopies, respectively. The studied copolymers were able to crystallize despite the randomness caused by the trimethylene carbonate units and the lateral groups. Contact angle measurements indicated that PEG grafted copolymers were more hydrophilic than parent copolymers. This feature justified that enzymatic degradation in lipase medium and proliferation of both epithelial-like and fibroblast-like cells were enhanced. Grafted copolymers were appropriate to prepare regular drug loaded microspheres by the oil-in-water emulsion method. Triclosan release from loaded microspheres was evaluated in two media. - Highlights: • Pegylated copolymers of lactide and trimethylene carbonate have been synthesized. • Grafting with polyethylene glycol was able via maleic anhydride functionalization. • Drug-loaded microspheres could be prepared from new pegylated copolymers. • Hydrophilicity of lactide/trimethylene carbonate copolymers increased by pegylation. • New pegylated copolymers supported cell adhesion and proliferation.

  18. Effect of cationic grafted copolymer structure on the encapsulation of bovine serum albumin

    International Nuclear Information System (INIS)

    Flynn, Nicholas; Topal, Ç. Özge; Hikkaduwa Koralege, Rangika S.; Hartson, Steve; Ranjan, Ashish; Liu, Jing; Pope, Carey; Ramsey, Joshua D.

    2016-01-01

    The aim of the present study was to evaluate a library of poly-L-lysine (PLL)-graft (g)-polyethylene glycol (PEG) copolymers for the ability to encapsulate effectively a model protein, bovine serum albumin (BSA), and to characterize the stability and protein function of the resulting nanoparticle. A library of nine grafted copolymers was produced by varying PLL molecular weight and PEG grafting ratio. Electrostatic self-assembly of the protein and the grafted copolymer drove encapsulation. The formation of protein/polymer nanoparticles with a core/shell structure was confirmed using PAGE, dynamic light scattering, and electron microscopy. Encapsulation of the BSA into nanoparticles was strongly dependent on the copolymer-to-protein mass ratio, PEG grafting ratio, and PLL molecular weight. A copolymer-to-protein mass ratio of 7:1 and higher was generally required for high levels of encapsulation, and under these conditions, no loss of protein activity was observed. Copolymer characteristics also influenced nanoparticle resistance to polyanions and protease degradation. The results indicate that a copolymer of 15–30 kDa PLL, with a PEG grafting ratio of 10:1, is most promising for protein delivery. - Highlights: • A 4–70 kDa range of PLL-g-PEG copolymers was able to encapsulate BSA into NPs. • Encapsulation of BSA by PLL-g-PEG not only retained but increased esterolytic activity. • NPs were stable against protease degradation and polyanion dissociation.

  19. Effect of cationic grafted copolymer structure on the encapsulation of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Nicholas [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Topal, Ç. Özge [School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Hikkaduwa Koralege, Rangika S. [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Hartson, Steve [Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 (United States); Ranjan, Ashish; Liu, Jing; Pope, Carey [Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Ramsey, Joshua D., E-mail: josh.ramsey@okstate.edu [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2016-05-01

    The aim of the present study was to evaluate a library of poly-L-lysine (PLL)-graft (g)-polyethylene glycol (PEG) copolymers for the ability to encapsulate effectively a model protein, bovine serum albumin (BSA), and to characterize the stability and protein function of the resulting nanoparticle. A library of nine grafted copolymers was produced by varying PLL molecular weight and PEG grafting ratio. Electrostatic self-assembly of the protein and the grafted copolymer drove encapsulation. The formation of protein/polymer nanoparticles with a core/shell structure was confirmed using PAGE, dynamic light scattering, and electron microscopy. Encapsulation of the BSA into nanoparticles was strongly dependent on the copolymer-to-protein mass ratio, PEG grafting ratio, and PLL molecular weight. A copolymer-to-protein mass ratio of 7:1 and higher was generally required for high levels of encapsulation, and under these conditions, no loss of protein activity was observed. Copolymer characteristics also influenced nanoparticle resistance to polyanions and protease degradation. The results indicate that a copolymer of 15–30 kDa PLL, with a PEG grafting ratio of 10:1, is most promising for protein delivery. - Highlights: • A 4–70 kDa range of PLL-g-PEG copolymers was able to encapsulate BSA into NPs. • Encapsulation of BSA by PLL-g-PEG not only retained but increased esterolytic activity. • NPs were stable against protease degradation and polyanion dissociation.

  20. Chemical structure of chromium(III) crosslinked collagen-poly(methyl methacrylate) copolymers in radiation grafting

    International Nuclear Information System (INIS)

    Pietrucha, K.

    1991-01-01

    Upon γ-irradiation of aqueous emulsions of methyl methacrylate embedded into chrome tanned skin, the formation of graft copolymers is observed. The number-average molecular weight of the grafted poly(methyl methacrylate) side chains was in the range of 430000 (for a dose of 10 kGy) and practically independent of grafting degree. However, the number of branches per graft copolymer molecule increases from 0.3 to 0.8 when the degree of grafting increases from 32% to 88%. Similarly, the radiation yield, i.e. the number of branches formed per 100 eV of energy absorbed in the substrate polymer increases from 0.75 to 1.94. The value and meaning of molecular weight of graft copolymer is discussed along with the mechanism of polymer chain termination. (author) 14 refs.; 3 figs.; 4 tabs

  1. Radiation-induced grafting from binary mixture of monomers onto cellulose acetate film and the characterization of the graft copolymer

    International Nuclear Information System (INIS)

    Bhattacharyya, S.N.; Maldas, D.

    1984-01-01

    Binary mixtures of styrene and acrylamide in methanol-water were grafted onto cellulose acetate films by taking recourse to preirradiation grafting technique. The extent of total grafting was determined from the measured weight increase. The percent acrylamide residue in the graft copolymer was calculated from the observed nitrogen content but the polystyrene residue in the grafted sample was determined by IR spectral studies. When the specific permeability of water vapour through the grafted films is measured, it is observed that the specific permeability increases with the increase of grafting of acrylamide in all humidities, but in case of styrene which is a nonpolar molecule the permeability is found to show a reversed order. In the case of mixed graft the permeability pattern pertains to that when both styrene and acrylamide have their effective roles to play. (author)

  2. Morphology and Phase Transitions in Styrene-Butadiene-Styrene Triblock Copolymer Grafted with Isobutyl Substituted Polyhedral Oligomeric Silsesquioxanes (Postprint)

    National Research Council Canada - National Science Library

    Drazowski, Daniel B; Lee, Andre; Haddad, Timothy S

    2007-01-01

    Two symmetric triblock polystyrene-butadiene-polystyrene (SBS) copolymers with different styrene content were grafted with varying amounts of isobutyl-substituted polyhedral oligomeric silsesquioxane (POSS) molecules...

  3. Morphology and Phase Transitions in Styrene-Butadiene-Styrene Triblock Copolymer Grafted with Isobutyl Substituted Polyhedral Oligomeric Silsesquioxanes (preprint)

    National Research Council Canada - National Science Library

    Drazkowski, Daniel B; Lee, Andre; Haddad, Timothy S

    2006-01-01

    Two symmetric triblock polystyrene-butadiene-polystyrene (SBS) copolymers with different styrene content were grafted with varying amounts of isobutyl-substituted polyhedral oligomeric silsesquioxane (POSS) molecules...

  4. Synthesis and characterization of the polystyrene - asphaltene graft copolymer BY FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Leo, Adan Yovani; Salazar Ramiro

    2008-01-01

    The creation of new polymer compounds to be added to asphalt has drawn considerable attention because these substances have succeeded in modifying the asphalt rheological characteristics and physical properties for the enhancement of its behavior during the time of use. This work explains the synthesis of a new graft copolymer based on an asphalt fraction called asphaltene, modified with maleic anhydride. Polystyrene functionalization is conducted in a parallel fashion in order to obtain polybenzylamine resin with an amine - NH2 free group that reacts with the anhydride graft groups in the asphaltene, thus obtaining the new Polystyrene/Asphaltene graft copolymer

  5. Synthesis, Characterization, and Aqueous Lubricating Properties of Amphiphilic Graft Copolymers Comprising 2-Methoxyethyl Acrylate

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Røn, Troels; Jankova Atanasova, Katja

    2014-01-01

    Amphiphilic anionic and cationic graft copolymers possessing poly(2-hydroxyethyl methacrylate) (PHEMA) backbone and poly(methacrylic acid), poly(2-methoxyethyl acrylate-co-methacrylic acid), and poly(2-methoxyethyl acrylate-co-2-(dimethylamino)ethyl methacrylate) grafts are constructed by merging...... of the corresponding monomers followed by deblocking reaction leads to well-defined amphiphiles with narrow molecular weight distributions (PDI ≤ 1.29) and varying content of methacrylic acid. The graft copolymers showed effective surface adsorption and lubrication for self-mated poly(dimethylsiloxane) (PDMS) contacts...

  6. Solid-state graft copolymer electrolytes for lithium battery applications.

    Science.gov (United States)

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R

    2013-08-12

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed.

  7. Development of Graft Copolymer Flocculant Based on Acrylamide and Acrylic Acid for the dewatering of coal

    International Nuclear Information System (INIS)

    Mahmoud, G.A.; Abdel Khalek, M.A

    2012-01-01

    Most coal preparation processes were carried out in water medium. The water content of coal product has a negative impact on handling and specific energy value. The moisture content may be attributed to the proportion of fine coal, which presents the greatest dewatering problem. A novel polymeric flocculant has been developed by graft copolymerization of acrylamide (AAm) with acrylic acid (AAc) using gamma irradiation technique. The grafted copol621621ymer P(AAm/AAc) was characterized by Fourier-transform infrared spectroscopy (FTIR), and thermo-gravimetric analysis (TGA). The effects of reaction parameters, such as total absorbed dose, and monomer concentration on grafting yield were investigated. The flocculation performance of the graft copolymer P(AAm/AAc) was investigated in coal suspension. It was observed that the grafting ratio was one of the key factors for the flocculating effects. The copolymers with various grafting ratios showed different flocculating properties. It was found that as the grafting ratio increased, the flocculating effect also increased. The flocculation performance of the grafted copolymer was better than that of the commercial flocculant, poly-acrylamide (Magnafloc 1011).

  8. Self-Assembly of Block and Graft Copolymers in Organic Solvents: An Overview of Recent Advances

    Directory of Open Access Journals (Sweden)

    Leonard Ionut Atanase

    2018-01-01

    Full Text Available This review is an attempt to update the recent advances in the self-assembly of amphiphilic block and graft copolymers. Their micellization behavior is highlighted for linear AB, ABC triblock terpolymers, and graft structures in non-aqueous selective polar and non-polar solvents, including solvent mixtures and ionic liquids. The micellar characteristics, such as particle size, aggregation number, and morphology, are examined as a function of the copolymers’ architecture and molecular characteristics.

  9. Mesoscopic multiphase structures and the interfaces of block and graft copolymers in bulk

    International Nuclear Information System (INIS)

    Matsushita, Yushu

    1996-01-01

    Microphase-separated structures of copolymers with various architectures and their polymer/polymer interfaces were studied. They are SP diblock, PSP triblock, and SPP graft copolymers, where S and P denote polystyrene and poly(2-vinylpyridine), respectively. Morphological observations were carried out by means of transmission electron microscopy and small-angle X-ray scattering. Chain dimensions of component polymers were measured by small-angle neutron scattering and microphase-separated interfaces were observed by neutron reflectivity measurements using deuterium-labeled samples. It was clarified that morphological phase transitions among thermodynamically equilibrium structures for SP diblock and PSP triblock copolymers occur at almost the same compositions; however, those of SPP graft copolymers tend to occur at higher volume fraction of polystyrene, φ s , than those for block copolymers. As for alternating lamellar structures it turned out to be clear that lamellar domain spacings, D's, were scaled as the 2/3 power of the molecular weight of polymers irrespective of their architectures. S block chains of SP diblock and PSP triblock copolymers in lamellar structures were both confirmed to be deformed toward the direction perpendicular to the lamellar interfaces, but it revealed that their volumes were preserved. Further, S/P interfacial thicknesses of SP and PSP were essentially the same to each other and the values defined as the FWHM of the error functions which express the segment density distributions of the interfaces were determined to be about 4 nm. (author)

  10. Position transitions of polymer-grafted nanoparticles in diblock-copolymer nanocomposites

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Self-assembly of block copolymer/nanoparticle blends has promising applications in the design and fabrication of novel functional nanomaterials. Precise control of the spatial positions of nanoparticles within block copolymer-based nanomaterials is crucial to achieve some special physical properties and functions. Here, we employ the self-consistent field method to theoretically investigate the self-assembly of polymer grafted-nanoparticles in a diblock copolymer. It is found that by varying the size and selectivity of nanoparticles, one can not only produce various self-assembled nanostructures but also modulate the spatial positions of the nanoparticles, either at the copolymer interfaces or in the center of one copolymer phase, within the nanostructures. A denser grafted polymer brush plays a role of shielding effect on nanoparticles and can position them into the center of one copolymer phase. The nanostructural transition we observed is dictated by the competition between entropy and enthalpy. On the basis of a number of simulations, two phase diagrams of self-assembled nanostructures are constructed. This study may be helpful for optimal design of advanced materials with desired nanostructures and enhanced performance.

  11. Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer.

    Science.gov (United States)

    Abdel-Halim, E S

    2012-10-01

    Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30 mmol KBrO(3) and 30 mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50 °C using a material to liquor ratio of 1:10. Copyright © 2012. Published by Elsevier Ltd.

  12. Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: physicochemical and technological characterisation.

    Science.gov (United States)

    Marinich, J A; Ferrero, C; Jiménez-Castellanos, M R

    2009-05-01

    Nowadays, graft copolymers are being used as an interesting option when developing a direct compression excipient for controlled release matrix tablets. New graft copolymers of ethyl methacrylate (EMA) on waxy maize starch (MS) and hydroxypropylstarch (MHS) were synthesised by free radical polymerization and alternatively dried in a vacuum oven (OD) or freeze-dried (FD). This paper evaluates the performance of these new macromolecules and discusses the effect of the carbohydrate nature and drying process on their physicochemical and technological properties. Grafting of EMA on the carbohydrate backbone was confirmed by IR and NMR spectroscopy, and the grafting yields revealed that graft copolymers present mainly a hydrophobic character. The graft copolymerization also leads to more amorphous materials with larger particle size and lower apparent density and water content than carbohydrates (MS, MHS). All the products show a lack of flow, except MHSEMA derivatives. MSEMA copolymers underwent much plastic flow and less elastic recovery than MHSEMA copolymers. Concerning the effect of drying method, FD derivatives were characterised by higher plastic deformation and less elasticity than OD derivatives. Tablets obtained from graft copolymers showed higher crushing strength and disintegration time than tablets obtained from raw starches. This behaviour suggests that these copolymers could be used as excipients in matrix tablets obtained by direct compression and with a potential use in controlled release.

  13. Proton conducting graft copolymers with tunable length and density of phosphonated side chains for fuel cell membranes

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Takamuku, Shogo; Jankova Atanasova, Katja

    2014-01-01

    Polysulfones functionalized with highly phosphonated poly(pentafluorostyrene) side chains of different lengths were synthesized applying controlled polymerization and modification methods. The graft copolymers' thermal properties were evaluated by differential scanning calorimetry and thermal...... gravimetrical analyses. The proton conductivity of membrane prepared from the graft copolymer with the shortest phosphonated side chains was 134 mS cm(-1) at 100 degrees C under fully immersed conditions. The graft copolymer TEM image shows a nanophase separation of ion-rich segments within the polysulfone...

  14. PETMA-g-PETMA-b-PS 'palm tree' graft copolymer: A new polymeric architecture obtained via RAFT and ROP process

    International Nuclear Information System (INIS)

    Soares, Paula P.; Silva, Eduardo de O. da; Petzhold, Cesar L.

    2009-01-01

    Block copolymer with pendant thiirane moiety PETMA-b-PS is the base for a new class of 'palm tree' graft copolymers, which can show interesting properties. ETMA can be polymerized through ring opening polymerization with Lewis bases as initiator, e.g., Br- and tertiary amines. We used this reaction as a way to graft a copolymer PETMA-b-PS possessing 5% of ETMA unities, with chains having poly(propylene sulfide), obtained by graft from method. Produced materials were characterized through H1 NMR, SEC and DSC. (author)

  15. Poly(ethylene glycol) grafted chitosan as new copolymer material for oral delivery of insulin

    International Nuclear Information System (INIS)

    Ho, Thanh Ha; Thanh Le, Thi Nu; Nguyen, Tuan Anh; Dang, Mau Chien

    2015-01-01

    A new scheme of grafting poly (ethylene glycol) onto chitosan was proposed in this study to give new material for delivery of insulin over oral pathway. First, methoxy poly(ethylene glycol) amine (mPEGa MW 2000) were grafted onto chitosan (CS) through multiples steps to synthesize the grafting copolymer PEG-g-CS. After each synthesis step, chitosan and its derivatives were characterized by FTIR, "1H NMR Then, insulin loaded PEG-g-CS nanoparticles were prepared by cross-linking of CS with sodium tripolyphosphate (TPP). Same insulin loaded nanoparticles using unmodified chitosan were also prepared in order to compare with the modified ones. Results showed better protecting capacity of the synthesized copolymer over original CS. CS nanoparticles (10 nm of size) were gel like and high sensible to temperature as well as acidic environment while PEG-g-CS nanoparticles (200 nm of size) were rigid and more thermo and pH stable. (paper)

  16. Effect of acid additives on graft copolymerization and water absorption of graft copolymers of cassava starch and acrylamide/acrylic acid

    International Nuclear Information System (INIS)

    Kiatkamjornwong, Suda; Mongkolsawat, Kanlaya; Sonsuk, Manit

    2003-01-01

    Gelatinized cassava starch was radiation graft copolymerized with acrylamide or acrylic acid in the presence of sulfuric acid, nitric acid or maleic acid at a specific dose rate to a fixed total dose. Homopolymer or free copolymer was extracted by water to obtain the pure graft copolymer, which was subsequently saponified with 5% potassium hydroxide solution at room temperature for 90 min. The saponified graft copolymer was investigated for the effect of acid additives and water absorption. The addition of 2% maleic acid into the grafting reaction containing acrylamide-to-starch ratio of 2.5:1 can produce the superabsorbent copolymer having water absorption as high as 2,256 ± 25 g g -1 . The effect of acid additive was explained. (author)

  17. Styrene-divinylbenzene copolymer grafted with phosphonic acid dialkylesters

    Directory of Open Access Journals (Sweden)

    SMARANDA ILIESCU

    2004-12-01

    Full Text Available The functionalization of a crosslinked chloromethylated polystyrene 8% divinylbenzene copolymer with phosphonic ester groups is detailed. The reacton conditions were studied in order to determine the optimal conditions for obtaining only diesters. A statistical method for the calculation of the fraction of repetive units for the inited and final resin is proposed.

  18. Optical characterization of CdS nanoparticles embedded into the comb-type amphiphilic graft copolymer

    Science.gov (United States)

    Kalaycı, Özlem A.; Duygulu, Özgür; Hazer, Baki

    2013-01-01

    This study refers to the synthesis and characterization of a novel organic/inorganic hybrid nanocomposite material containing cadmium sulfide (CdS) nanoparticles. For this purpose, a series of polypropylene (PP)-g-polyethylene glycol (PEG), PP-g-PEG comb-type amphiphilic graft copolymers were synthesized. PEGs with Mn = 400, 2000, 3350, and 8000 Da were used and the graft copolymers obtained were coded as PPEG400, PPEG2000, PPEG3350, and PPEG8000. CdS nanoparticles were formed in tetrahydrofuran solution of PP-g-PEG amphiphilic comb-type copolymer by the reaction between aqueous solutions of Na2S and Cd(CH3COO)2 simultaneously. Micelle formation of PPEG2000 comb-type amphiphilic graft copolymer in both solvent/non-solvent (petroleum ether-THF) by transmission electron microscopy (TEM). The optical characteristics, size morphology, phase analysis, and dispersion of CdS nanoparticles embedded in PPEG400, PPEG2000, PPEG3350, and PPEG8000 comb-type amphiphilic graft copolymer micelles were determined by high resolution TEM (HRTEM), energy dispersive spectroscopy, UV-vis spectroscopy, and fluorescence emission spectroscopy techniques. The aggregate size of PPEG2000-CdS is between 10 and 50 nm; however, in the case of PPEG400-CdS, PPEG3350-CdS, and PPEG8000-CdS samples, it is up to approximately 100 nm. The size of CdS quantum dots in the aggregates for PPEG2000 and PPEG8000 samples was observed as 5 nm by HRTEM analysis, and this result was also supported by UV-vis absorbance spectra and fluorescence emission spectra.

  19. Optical characterization of CdS nanoparticles embedded into the comb-type amphiphilic graft copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Kalayc Latin-Small-Letter-Dotless-I , Oezlem A. [Bulent Ecevit University, Department of Physics (Turkey); Duygulu, Oezguer [TUBITAK Marmara Research Center, Materials Institute (Turkey); Hazer, Baki, E-mail: bkhazer@karaelmas.edu.tr [Bulent Ecevit University, Department of Chemistry (Turkey)

    2013-01-15

    This study refers to the synthesis and characterization of a novel organic/inorganic hybrid nanocomposite material containing cadmium sulfide (CdS) nanoparticles. For this purpose, a series of polypropylene (PP)-g-polyethylene glycol (PEG), PP-g-PEG comb-type amphiphilic graft copolymers were synthesized. PEGs with Mn = 400, 2000, 3350, and 8000 Da were used and the graft copolymers obtained were coded as PPEG400, PPEG2000, PPEG3350, and PPEG8000. CdS nanoparticles were formed in tetrahydrofuran solution of PP-g-PEG amphiphilic comb-type copolymer by the reaction between aqueous solutions of Na{sub 2}S and Cd(CH{sub 3}COO){sub 2} simultaneously. Micelle formation of PPEG2000 comb-type amphiphilic graft copolymer in both solvent/non-solvent (petroleum ether-THF) by transmission electron microscopy (TEM). The optical characteristics, size morphology, phase analysis, and dispersion of CdS nanoparticles embedded in PPEG400, PPEG2000, PPEG3350, and PPEG8000 comb-type amphiphilic graft copolymer micelles were determined by high resolution TEM (HRTEM), energy dispersive spectroscopy, UV-vis spectroscopy, and fluorescence emission spectroscopy techniques. The aggregate size of PPEG2000-CdS is between 10 and 50 nm; however, in the case of PPEG400-CdS, PPEG3350-CdS, and PPEG8000-CdS samples, it is up to approximately 100 nm. The size of CdS quantum dots in the aggregates for PPEG2000 and PPEG8000 samples was observed as 5 nm by HRTEM analysis, and this result was also supported by UV-vis absorbance spectra and fluorescence emission spectra.

  20. Optical characterization of CdS nanoparticles embedded into the comb-type amphiphilic graft copolymer

    International Nuclear Information System (INIS)

    Kalaycı, Özlem A.; Duygulu, Özgür; Hazer, Baki

    2013-01-01

    This study refers to the synthesis and characterization of a novel organic/inorganic hybrid nanocomposite material containing cadmium sulfide (CdS) nanoparticles. For this purpose, a series of polypropylene (PP)-g-polyethylene glycol (PEG), PP-g-PEG comb-type amphiphilic graft copolymers were synthesized. PEGs with Mn = 400, 2000, 3350, and 8000 Da were used and the graft copolymers obtained were coded as PPEG400, PPEG2000, PPEG3350, and PPEG8000. CdS nanoparticles were formed in tetrahydrofuran solution of PP-g-PEG amphiphilic comb-type copolymer by the reaction between aqueous solutions of Na 2 S and Cd(CH 3 COO) 2 simultaneously. Micelle formation of PPEG2000 comb-type amphiphilic graft copolymer in both solvent/non-solvent (petroleum ether–THF) by transmission electron microscopy (TEM). The optical characteristics, size morphology, phase analysis, and dispersion of CdS nanoparticles embedded in PPEG400, PPEG2000, PPEG3350, and PPEG8000 comb-type amphiphilic graft copolymer micelles were determined by high resolution TEM (HRTEM), energy dispersive spectroscopy, UV–vis spectroscopy, and fluorescence emission spectroscopy techniques. The aggregate size of PPEG2000-CdS is between 10 and 50 nm; however, in the case of PPEG400-CdS, PPEG3350-CdS, and PPEG8000-CdS samples, it is up to approximately 100 nm. The size of CdS quantum dots in the aggregates for PPEG2000 and PPEG8000 samples was observed as 5 nm by HRTEM analysis, and this result was also supported by UV–vis absorbance spectra and fluorescence emission spectra.

  1. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    International Nuclear Information System (INIS)

    Brisset, Florian; Vieillard, Julien; Berton, Benjamin; Morin-Grognet, Sandrine; Duclairoir-Poc, Cécile; Le Derf, Franck

    2015-01-01

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique

  2. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    Energy Technology Data Exchange (ETDEWEB)

    Brisset, Florian, E-mail: florian.brisset@etu.univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Vieillard, Julien, E-mail: julien.vieillard@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Berton, Benjamin, E-mail: benjamin.berton@univ-rouen.fr [EA 3233 SMS, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Morin-Grognet, Sandrine, E-mail: sandrine.morin@univ-rouen.fr [EA 3829 MERCI, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Duclairoir-Poc, Cécile, E-mail: cecile.duclairoir@univ-rouen.fr [EA 4312 LMSM, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Le Derf, Franck, E-mail: franck.lederf@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France)

    2015-02-28

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique.

  3. Polyaspartamide-Polylactide Graft Copolymers with Tunable Properties for the Realization of Fluorescent Nanoparticles for Imaging.

    Science.gov (United States)

    Craparo, Emanuela Fabiola; Porsio, Barbara; Mauro, Nicolò; Giammona, Gaetano; Cavallaro, Gennara

    2015-08-01

    Here, the synthesis and the characterization of novel amphiphilic graft copolymers with tunable properties, useful in obtaining polymeric fluorescent nanoparticles for application in imaging, are described. These copolymers are obtained by chemical conjugation of rhodamine B (RhB) moieties, polylactic acid (PLA), and O-(2-aminoethyl)-O'-methyl poly(ethylene glycol) (PEG) on α,β-poly(N-2-hydroxyethyl)-D,L-aspartamide (PHEA). In particular, PHEA is first functionalized with RhB to obtain PHEA-RhB with a derivatization degree in RhB (DDRhB ) equal to 0.55 mol%. By varying the reaction conditions, different amounts of PLA are grafted on PHEA-RhB to obtain PHEA-RhB-PLA with DDPLA equal to 1.9, 4.0, and 6.2 mol%. Then, PEG chains are grafted on PHEA-RhB-PLA derivatives to obtain PHEA-RhB-PLA-PEG graft copolymers. The preparation of polymeric fluorescent nanoparticles with tunable properties and spherical shape is described by using PHEA-RhB-PLA-PEG with DD in PLA and PEG equal to 4.0 and 4.9 mol%, by following easily scaling up processes, such as emulsion-solvent evaporation and high pressure homogenization (HPH)-solvent evaporation techniques. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis of Graft Copolymers Based on Poly(2‐Methoxyethyl Acrylate) and Investigation of the Associated Water Structure

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Tanaka, Masaru; Ogura, Keiko

    2012-01-01

    Graft copolymers composed of poly(2‐methoxyethyl acrylate) are prepared employing controlled radical polymerization techniques. Linear backbones bearing atom transfer radical polymerization (ATRP) initiating sites are obtained by reversible addition–fragmentation chain transfer copolymerization...... polydispersity indices (1.17–1.38) are attained. Thermal investigations of the graft copolymers indicate the presence of the freezing bound water, and imply that the materials may exhibit blood compatibility....

  5. Cellulose-based graft copolymers prepared by simplified electrochemically mediated ATRP

    Directory of Open Access Journals (Sweden)

    P. Chmielarz

    2017-02-01

    Full Text Available Brush-shaped block copolymer with a dual hydrophilic poly(acrylic acid-block-poly(oligo(ethylene glycol acrylate (PAA-b-POEGA arms was synthesized for the first time via a simplified electrochemically mediated ATRP (seATRP under both constant potential electrolysis and constant current electrolysis conditions, utilizing only 30 ppm of catalyst complex. The polymerization conditions were optimized to provide fast reactions while employing low catalyst concentrations and preparation of cellulose-based brush-like copolymers with narrow molecular weight distributions. The results from proton nuclear magnetic resonance (1H NMR spectral studies support the formation of cellulose-based graft (copolymers. It is expected that these new polymer brushes may find application as pH- and thermo-sensitive drug delivery systems.

  6. Determining the degree of grafting for poly (vinylidene fluoride) graft-copolymers using fluorine elemental analysis

    International Nuclear Information System (INIS)

    Yu Yang; Zhang Bowu; Yang Xuanxuan; Deng Bo; Li Linfan; Yu Ming; Li Jingye

    2011-01-01

    Acrylic acid (AAc) and styrene (St) were grafted onto poly (vinylidene fluoride) (PVDF) powder or membrane samples by pre-irradiation graft copolymerization. The grafted chains were proved by FT-IR spectroscopy analysis. The degree of grafting (DG) of the grafted PVDF was determined by fluorine elemental analysis (FEA) method, and was compared with the DGs determined by weighing method, acid-base back titration method and quantitative FT-IR method. The results show that the FEA method is accurate, convenient and universal, especially for the grafted polymer powders. (authors)

  7. Hyaluronic Acid Graft Copolymers with Cleavable Arms as Potential Intravitreal Drug Delivery Vehicles.

    Science.gov (United States)

    Borke, Tina; Najberg, Mathie; Ilina, Polina; Bhattacharya, Madhushree; Urtti, Arto; Tenhu, Heikki; Hietala, Sami

    2018-01-01

    Treatment of retinal diseases currently demands frequent intravitreal injections due to rapid clearance of the therapeutics. The use of high molecular weight polymers can extend the residence time in the vitreous and prolong the injection intervals. This study reports a water soluble graft copolymer as a potential vehicle for sustained intravitreal drug delivery. The copolymer features a high molecular weight hyaluronic acid (HA) backbone and poly(glyceryl glycerol) (PGG) side chains attached via hydrolysable ester linkers. PGG, a polyether with 1,2-diol groups in every repeating unit available for conjugation, serves as a detachable carrier. The influence of synthesis conditions and incubation in physiological media on the molecular weight of HA is studied. The cleavage of the PGG grafts from the HA backbone is quantified and polymer-from-polymer release kinetics are determined. The biocompatibility of the materials is tested in different cell cultures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Obtention of graft copolymers by ionizing radiation, characterization and study of hemo-compatible properties

    International Nuclear Information System (INIS)

    Queiroz, A.A.A. de.

    1993-01-01

    The present work had as objectives the obtention and characterization of grafting copolymers by radiation induced polymerization and the study of its hemo compatible properties. The relationship between grafting conditions and anti-trombogenicity was examined for the purpose of clearing the necessity of controlling grafting conditions to enhance the copolymers blood compatibility. Two methods were chosen to accomplish the irradiation: mutual and pre-irradiation (peroxidation) of the films in 6O Co source and electron beam accelerator. Primarily grafting parameters were studied in the systems of the monomers N, N-dimethyl acrylamide (DMAA) and acrylic acid (AA) with the polymeric films: poly (tetrafluoroethylene) (PTFE), poly (ethylene-co-tetrafluoroethylene) (PETFE), low density polyethylene (LDPE) and poly (vinyl chloride) (PVC). The simultaneous irradiation was effective in the polymerization of all the substrates above mentioned, although the peroxidation method has given better results for PETFE-DMAA, LDPE-g-DMAA, LDPE-g-AA and PVC-g-AA. In the system AA/LDPE and AA/PVC the homo polymerization was controlled by the addition of the comonomer N, N-dimethyl acrylic acid (DMA). As for the grafting parameters, low dose rate and low irradiation dose, showed to be very effective for the graftability of DMAA and AA on the substrates. (author). 129 refs, 51 figs, 7 tabs

  9. Synthesis of a gamma irradiation grafted polytetrafluoroethylene (PTFE) based olefinic copolymer

    International Nuclear Information System (INIS)

    Ferreto, Helio Fernando Rodrigues

    2006-01-01

    The extrusion of linear low density polyethylene (LLDPE) is limited by a process related defect known as 'melt fracture' or 'sharkskin', which is a surface defect of the extruded polymer. This defect results in a product with a rough surface that lacks luster and in alterations of specific surface properties. The aim of this study was to obtain a recycled polytetrafluoroethylene polymer with an olefin that could improve the extrudability of the LLDPE. The copolymer was obtained by irradiating recycled PTFE in an inert atmosphere followed by the addition of an olefinic monomer to graft the latter in the polymeric matrix (PTFE). After a certain time of contact, the copolymer was heat treated to permit recombination and elimination of the radicals, both in a reactive and/or inert atmosphere. Three olefinic monomers were used, namely; acetylene, ethylene and 1,3-butadiene. The 1,3-butadiene monomer was found to be more effective with respect to grafting. The specimens were studied using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential thermogravimetry (DTG). 0.2-2.0 wt% of the copolymer that was obtained was mixed with LLDPE. The rheological properties of the mixture were determined with a torque rheometer. The results indicated that the process used rendered a copolymer which when added to LLDPE, improved the extrusion process and eliminated the defect 'melt fracture'. (author)

  10. Cellulose-based graft copolymers with controlled architecture prepared in a homogeneous phase

    Czech Academy of Sciences Publication Activity Database

    Raus, Vladimír; Štěpánek, M.; Uchman, M.; Šlouf, Miroslav; Látalová, Petra; Čadová, Eva; Netopilík, Miloš; Kříž, Jaroslav; Dybal, Jiří; Vlček, Petr

    2011-01-01

    Roč. 49, č. 20 (2011), s. 4353-4367 ISSN 0887-624X R&D Projects: GA ČR GA106/09/1348; GA ČR GAP208/10/0353 Institutional research plan: CEZ:AV0Z40500505 Keywords : atom transfer radical polymerization (ATRP) * cellulose * graft copolymers Subject RIV: JI - Composite Materials Impact factor: 3.919, year: 2011

  11. Role of block copolymer adsorption versus bimodal grafting on nanoparticle self-assembly in polymer nanocomposites.

    Science.gov (United States)

    Zhao, Dan; Di Nicola, Matteo; Khani, Mohammad M; Jestin, Jacques; Benicewicz, Brian C; Kumar, Sanat K

    2016-09-14

    We compare the self-assembly of silica nanoparticles (NPs) with physically adsorbed polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymers (BCP) against NPs with grafted bimodal (BM) brushes comprised of long, sparsely grafted PS chains and a short dense carpet of P2VP chains. As with grafted NPs, the dispersion state of the BCP NPs can be facilely tuned in PS matrices by varying the PS coverage on the NP surface or by changes in the ratio of the PS graft to matrix chain lengths. Surprisingly, the BCP NPs are remarkably better dispersed than the NPs tethered with bimodal brushes at comparable PS grafting densities. We postulate that this difference arises because of two factors inherent in the synthesis of the NPs: In the case of the BCP NPs the adsorption process is analogous to the chains being "grafted to" the NP surface, while the BM case corresponds to "grafting from" the surface. We have shown that the "grafted from" protocol yields patchy NPs even if the graft points are uniformly placed on each particle. This phenomenon, which is caused by chain conformation fluctuations, is exacerbated by the distribution function associated with the (small) number of grafts per particle. In contrast, in the case of BCP adsorption, each NP is more uniformly coated by a P2VP monolayer driven by the strongly favorable P2VP-silica interactions. Since each P2VP block is connected to a PS chain we conjecture that these adsorbed systems are closer to the limit of spatially uniform sparse brush coverage than the chemically grafted case. We finally show that the better NP dispersion resulting from BCP adsorption leads to larger mechanical reinforcement than those achieved with BM particles. These results emphasize that physical adsorption of BCPs is a simple, effective and practically promising strategy to direct NP dispersion in a chemically unfavorable polymer matrix.

  12. PMMA-g-OEtOx Graft Copolymers: Influence of Grafting Degree and Side Chain Length on the Conformation in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Irina Muljajew

    2018-03-01

    Full Text Available Depending on the degree of grafting (DG and the side chain degree of polymerization (DP, graft copolymers may feature properties similar to statistical copolymers or to block copolymers. This issue is approached by studying aqueous solutions of PMMA-g-OEtOx graft copolymers comprising a hydrophobic poly(methyl methacrylate (PMMA backbone and hydrophilic oligo(2-ethyl-2-oxazoline (OEtOx side chains. The graft copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT copolymerization of methyl methacrylate (MMA and OEtOx-methacrylate macromonomers of varying DP. All aqueous solutions of PMMA-g-OEtOx (9% ≤ DG ≤ 34%; 5 ≤ side chain DP ≤ 24 revealed lower critical solution temperature behavior. The graft copolymer architecture significantly influenced the aggregation behavior, the conformation in aqueous solution and the coil to globule transition, as verified by means of turbidimetry, dynamic light scattering, nuclear magnetic resonance spectroscopy, and analytical ultracentrifugation. The aggregation behavior of graft copolymers with a side chain DP of 5 was significantly affected by small variations of the DG, occasionally forming mesoglobules above the cloud point temperature (Tcp, which was around human body temperature. On the other hand, PMMA-g-OEtOx with elongated side chains assembled into well-defined structures below the Tcp (apparent aggregation number (Nagg = 10 that were able to solubilize Disperse Orange 3. The thermoresponsive behavior of aqueous solutions thus resembled that of micelles comprising a poly(2-ethyl-2-oxazoline (PEtOx shell (Tcp > 60 °C.

  13. The Synthesis of Cellulose Graft Copolymers Using Cu(0)-Mediated Polymerization

    Science.gov (United States)

    Donaldson, Jason L.

    Cellulose is the most abundant renewable polymer on the planet and there is great interest in expanding its use beyond its traditional applications. However, its hydrophilicity and insolubility in most common solvent systems are obstacles to its widespread use in advanced materials. One way to counteract this is to attach hydrophobic polymer chains to cellulose: this allows the properties of the copolymer to be tailored by the molecular weight, density, and physical properties of the grafts. Two methods were used here to synthesize the graft copolymers: a 'grafting-from' approach, where synthetic chains were grown outward from bromoester moieties on cellulose (Cell-BiB) via Cu(0)-mediated polymerization; and a 'grafting-to' approach, where fully formed synthetic chains with terminal sulfide functionality were added to cellulose acetate with methacrylate functionality (CA-MAA) via thiol-ene Michael addition. The Cell-BiB was synthesized in the ionic liquid 1-butyl-3-methylimidazolium chloride and had a degree of substitution of 1.13. Polymerization from Cell-BiB proceeded at similar but slightly slower rate than an analogous non-polymeric initiator (EBiB). The average graft density of poly(methyl acrylate) chains was 0.71 chains/ring, with a maximum of 1.0 obtained. The graft density when grafting poly(methyl methacrylate) was only 0.15, and this appeared to be due to the slow initiation of BiB groups. Using EBiB to model the reaction and improve the design should allow this to be overcome. Chain extension experiments demonstrated the living behaviour of the polymer. The CA-MAA was synthesized by esterification with methacrylic acid. Reactions of CA-MAA with thiophenol and dodecanethiol resulted in quantitative addition of the thiol to the alkene. The grafts were synthesized by Cu(0)-mediated polymerization from a bifunctional initiator containing a disulfide bond, followed by reduction to sulfides. The synthetic polymers were successfully grafted to CA-MAA but the

  14. H‐shaped double graft copolymers: Effect of molecular architecture on morphology

    International Nuclear Information System (INIS)

    Lee, Chin; Gido, Samuel P.; Poulos, Yiannis; Hadjichristidis, Nikos; Tan, Nora Beck; Trevino, Samuel F.; Mays, Jimmy W.

    1997-01-01

    The morphologies formed by block copolymers with a double‐graft, H or S 2 IS 2 architecture were investigated using transmission electron microscopy (TEM) and small angle neutron scattering (SANS). Here S and I represent blocks of polystyrene and polyisoprene, respectively. These materials were synthesized using anionic polymerization and chlorosilane linking, and they were characterized using size exclusion chromatography, membrane osmometry, and low‐angle laser light scattering. This characterization work confirmed the desired molecular architectures and narrow molecular weight distributions. The results of morphological characterization indicate that one can understand complex grafting architectures by decomposing them into fundamental building blocks, which are taken as the component single graft structures out of which the larger structure is constructed. We propose rules for dividing structures into these components, which we call constituting block copolymers. The morphological behavior of the more complex architecture is approximately equivalent to that of the constituting block copolymer structure. Through the use of the constituting block copolymers we map the experimentally determined morphological behavior of the H architecture onto the morphology diagram calculated by Milner for miktoarm stars [Macromolecules 27, 2333 (1994)]. Mapping the H architecture onto the morphology diagram in this way produces general agreement between experimental results and the model. However, it is found that in the case of the H architecture, as well as in previously published results for I 2 S and I 3 S miktoarm star materials, that the morphology diagram slightly overestimates the amount of shift in the order‐order transition lines produced by asymmetry in molecular architecture. This overestimation in the theory is attribute to a junction point localization effect which was neglected in Milner’s calculation

  15. Study on radiation grafting of NASI on sephadex and conjugation of the copolymer with BSA

    International Nuclear Information System (INIS)

    Yi Min; Li Jun; Wei Jinshan; Ha Hongfei

    1997-01-01

    N-acryloxysuccinimide (NASI) with a function ester group is grafted on Sephadex G75 and Sephadex G50 separately by radiation technology. The radiation grafting conditions including absorbed dose, dose rate, monomer concentration in solvent are investigated. The conjugation reactions between the grafted copolymers Sephadex G75-NASI, and bovine serum albumin (BSA) or Sephadex G50-NASI and bovine serum albumin (BSA) are followed. The experiment results show that the conjugate of Sephadex G75-NASI with larger holes and BSA (M r = 6.6 x 10 4 ) is obtained successfully, however, the Sephadex G50 with small holes can be only conjugated with neutral red (M r = 2.58 x 10 2 )

  16. Thermoresponsive copolymer-grafted SBA-15 porous silica particles for temperature-triggered topical delivery systems

    Directory of Open Access Journals (Sweden)

    S. A. Jadhav

    2017-02-01

    Full Text Available A series of poly(N-isopropylacrylamide-co-acrylamide thermoresponsive random copolymers with different molecular weights and composition were synthesized and characterized by attenuated total reflectance Fourier-transform infrared (ATR-FTIR, differential scanning calorimetry (DSC, size exclusion chromatography (SEC and proton nuclear magnetic resonance (NMR spectroscopy. The lower critical solution temperatures (LCST of the copolymers were tuned by changing the mole ratios of monomers. Copolymer with highest molecular weight and LCST (41.2 °C was grafted on SBA-15 type mesoporous silica particles by a two-step polymer grafting procedure. Bare SBA-15 and the thermoresponsive copolymergrafted (hybrid SBA-15 particles were fully characterized by scanning electron microscope (SEM, ATR-FTIR, thermogravimetric analysis (TGA and Brunauer-Emmett-Teller (BET analyses. The hybrid particles were tested for their efficiency as temperature-sensitive systems for dermal delivery of the antioxidant rutin (quercetin-3-O-rutinoside. Improved control over rutin release by hybrid particles was obtained which makes them attractive hybrid materials for drug delivery.

  17. Microwave based synthesis and spectral characterization of thermo-sensitive poly(N,N-diethylacrylamide) grafted pectin copolymer.

    Science.gov (United States)

    Işıklan, Nuran; Tokmak, Şeyma

    2018-07-01

    The functionalization of polysaccharides with synthetic polymers has attracted great attention owing to its application in many industrial fields. The aim of this work was to study the impact of pectin functionalization with N,N-diethylacrylamide (DEAAm). Pectin was modified via microwave-induced graft copolymerization of DEAAm using ceric ammonium nitrate (CAN) and N,N,N',N'-tetramethylethylenediamine (TEMED). FTIR, 13 C NMR, DSC/TGA, XRD, and SEM techniques were used to verify the structure of graft copolymers. Various reaction conditions such as microwave irradiation time, temperature, microwave power, monomer, initiator, and TEMED concentrations were investigated to get a maximum grafting yield of 192%. Lower critical solution temperatures (LCST) of graft copolymers were determined by UV spectroscopy. Graft copolymers were found to be thermo-sensitive, with LCST of 31°C and high thermal resistance. Biocompatibility test of copolymers showed that copolymers were not cytotoxic to L929 fibroblasts cells and can be used as a biomaterial. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Poly(ester amide-Poly(ethylene oxide Graft Copolymers: Towards Micellar Drug Delivery Vehicles

    Directory of Open Access Journals (Sweden)

    Gregory J. Zilinskas

    2012-01-01

    Full Text Available Micelles formed from amphiphilic copolymers are promising materials for the delivery of drug molecules, potentially leading to enhanced biological properties and efficacy. In this work, new poly(ester amide-poly(ethylene oxide (PEA-PEO graft copolymers were synthesized and their assembly into micelles in aqueous solution was investigated. It was possible to tune the sizes of the micelles by varying the PEO content of the polymers and the method of micelle preparation. Under optimized conditions, it was possible to obtain micelles with diameters less than 100 nm as measured by dynamic light scattering and transmission electron microscopy. These micelles were demonstrated to encapsulate and release a model drug, Nile Red, and were nontoxic to HeLa cells as measured by an MTT assay. Overall, the properties of these micelles suggest that they are promising new materials for drug delivery systems.

  19. Halloysite nanotubes grafted hyperbranched (co)polymers via surface-initiated self-condensing vinyl (co)polymerization

    International Nuclear Information System (INIS)

    Mu Bin; Zhao Mingfei; Liu Peng

    2008-01-01

    Halloysite nanotubes (HNTs) grafted hyperbranched polymers were prepared by the self-condensing vinyl polymerization (SCVP) of 2-((bromoacetyl)oxy)ethyl acrylate (BAEA) and the self-condensing vinyl copolymerization of n-butyl acrylate (BA) and BAEA with BAEA as inimer (AB*) respectively, from the surfaces of the 2-bromoisobutyric acid modified halloysite nanotubes (HNTs-Br) via atom transfer radical polymerization (ATRP) technique. The halloysite nanotubes grafted hyperbranched polymer (HNTs-HP) and the halloysite nanotubes grafted hyperbranched copolymer (HNTs-HCP) were characterized by elemental analysis (EA), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscope (TEM). The grafted hyperbranched polymers were characterized with Nuclear magnetic resonance (NMR) and the molecular ratio between the inimer AB* and BA in the grafted hyperbranched copolymers was found to be 3:2, calculated from the TGA and EA results

  20. Halloysite nanotubes grafted hyperbranched (co)polymers via surface-initiated self-condensing vinyl (co)polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Mu Bin; Zhao Mingfei; Liu Peng [Lanzhou University, State Key Laboratory of Applied Organic Chemistry and Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering (China)], E-mail: pliu@lzu.edu.cn

    2008-05-15

    Halloysite nanotubes (HNTs) grafted hyperbranched polymers were prepared by the self-condensing vinyl polymerization (SCVP) of 2-((bromoacetyl)oxy)ethyl acrylate (BAEA) and the self-condensing vinyl copolymerization of n-butyl acrylate (BA) and BAEA with BAEA as inimer (AB*) respectively, from the surfaces of the 2-bromoisobutyric acid modified halloysite nanotubes (HNTs-Br) via atom transfer radical polymerization (ATRP) technique. The halloysite nanotubes grafted hyperbranched polymer (HNTs-HP) and the halloysite nanotubes grafted hyperbranched copolymer (HNTs-HCP) were characterized by elemental analysis (EA), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscope (TEM). The grafted hyperbranched polymers were characterized with Nuclear magnetic resonance (NMR) and the molecular ratio between the inimer AB* and BA in the grafted hyperbranched copolymers was found to be 3:2, calculated from the TGA and EA results.

  1. Properties of starch-polyglutamic acid (PGA) graft copolymer prepared by microwave irradiation - Fourier transform infrared spectroscopy (FTIR) and rheology studies

    Science.gov (United States)

    The rheological properties of waxy starch-'-polygutamic acid (PGA) graft copolymers were investigated. Grafting was confirmed by FTIR spectroscopy. The starch-PGA copolymers absorbed water and formed gels, which exhibited concentration-dependent viscoelastic solid properties. Higher starch-PGA conce...

  2. Metal Complexation with Chitosan and its Grafted Copolymer

    International Nuclear Information System (INIS)

    Abo-Hussen, A.A.; Elkholy, S.S.; Elsabee, M.Z.

    2005-01-01

    The adsorption of M (II); Co (II), Ni (If), Cu (II), Zn (II) and Cd (II) from aqueous solutions by chitosan flakes and beads have been studied. The maximum up-take of M (II) ions on chitosan beads was greater than on flakes. Batch adsorption experiments were carried out as a function of ph, agitation period and initial concentration of the metal ions. A ph of 6.0 was found to be optimum for M (II) adsorption on chitosan flakes and beads. The uptake of the ions was determined from the changes in its concentration, as measured by ultraviolet and visible spectroscopy. The metal ions uptake of chitosan grafted with vinyl pyridine (VP) is higher than that of the chitosan. The experimental data of the adsorption equilibrium from M (II)-solutions correlated well with the Langmuir and Freundlich equations. Several spectroscopic methods have been used to study the formation of the polymer/metal cation complex. The cation coordination is accompanied by proton displacement off the polymer or by fixation of a hydroxide ion in aqueous solutions. The largest ionic displacement is observed with Cu (II) and Zn (II) demonstrating the largest affinity of chitosan for these ions. The FT-IR spectral of the complexes show that both the amino and hydroxyl groups of chitosan participated in the chelation process. The ESR spectra of Cu-complex show an absorption at gi 2.06, g// = 2.23, A// x 10-4 (cm-1) = 160 and G = 3.8 indicating the formation of square planar structure. The adsorption of M (II) ions followed the sequence Cu (II) > Zn (II) > Cd (II) > Ni (II) > Co (II), this order seems to be independent on the size and the physical form of chitosan. SEM shows small membranous structure on the surface of chitosan flakes as compared to Cu (Il)- chitosan complex. EDTA was used for the desorption studies

  3. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer

    International Nuclear Information System (INIS)

    Dorati, R.; Colonna, C.; Tomasi, C.; Genta, I.; Bruni, G.; Conti, B.

    2014-01-01

    The aim of this research was to investigate a tough polymer to develop 3D scaffolds and 2D films for tissue engineering applications, in particular to repair urethral strictures or defects. The polymer tested was a graft copolymer of polylactic acid (PLA) synthesized with the rationale to improve the toughness of the related PLA homopolymer. The LMP-3055 graft copolymer (in bulk) demonstrated to have negligible cytotoxicity (bioavailability > 85%, MTT test). Moreover, the LMP-3055 sterilized through gamma rays resulted to be cytocompatible and non-toxic, and it has a positive effect on cell biofunctionality, promoting the cell growth. 3D scaffolds and 2D film were prepared using different LMP-3055 polymer concentrations (7.5, 10, 12.5 and 15%, w/v), and the effect of polymer concentration on pore size, porosity and interconnectivity of the 3D scaffolds and 2D film was investigated. 3D scaffolds got better results for fulfilling structural and biofunctional requirements: porosity, pore size and interconnectivity, cell attachment and proliferation. 3D scaffolds obtained with 10 and 12.5% polymer solutions (3D-2 and 3D-3, respectively) were identified as the most suitable construct for the cell attachment and proliferation presenting pore size ranged between 100 and 400 μm, high porosity (77–78%) and well interconnected pores. In vitro cell studies demonstrated that all the selected scaffolds were able to support the cell proliferation, the cell attachment and growth resulting to their dependency on the polymer concentration and structural features. The degradation test revealed that the degradation of polymer matrix (ΔMw) and water uptake of 3D scaffolds exceed those of 2D film and raw polymer (used as control reference), while the mass loss of samples (3D scaffold and 2D film) resulted to be controlled, they showed good stability and capacity to maintain the physical integrity during the incubation time. - Highlights: • Tough PLA graft copolymer was proposed

  4. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Dorati, R., E-mail: rossella.dorati@unipv.it [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Colonna, C. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Tomasi, C. [C.S.G.I., Department of Chemistry, Division of Physical Chemistry, University of Pavia, V.le Taramelli 16 I, 27100 Pavia (Italy); Genta, I. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Bruni, G. [C.S.G.I., Department of Chemistry, Division of Physical Chemistry, University of Pavia, V.le Taramelli 16 I, 27100 Pavia (Italy); Conti, B. [Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia (Italy); Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia (Italy)

    2014-01-01

    The aim of this research was to investigate a tough polymer to develop 3D scaffolds and 2D films for tissue engineering applications, in particular to repair urethral strictures or defects. The polymer tested was a graft copolymer of polylactic acid (PLA) synthesized with the rationale to improve the toughness of the related PLA homopolymer. The LMP-3055 graft copolymer (in bulk) demonstrated to have negligible cytotoxicity (bioavailability > 85%, MTT test). Moreover, the LMP-3055 sterilized through gamma rays resulted to be cytocompatible and non-toxic, and it has a positive effect on cell biofunctionality, promoting the cell growth. 3D scaffolds and 2D film were prepared using different LMP-3055 polymer concentrations (7.5, 10, 12.5 and 15%, w/v), and the effect of polymer concentration on pore size, porosity and interconnectivity of the 3D scaffolds and 2D film was investigated. 3D scaffolds got better results for fulfilling structural and biofunctional requirements: porosity, pore size and interconnectivity, cell attachment and proliferation. 3D scaffolds obtained with 10 and 12.5% polymer solutions (3D-2 and 3D-3, respectively) were identified as the most suitable construct for the cell attachment and proliferation presenting pore size ranged between 100 and 400 μm, high porosity (77–78%) and well interconnected pores. In vitro cell studies demonstrated that all the selected scaffolds were able to support the cell proliferation, the cell attachment and growth resulting to their dependency on the polymer concentration and structural features. The degradation test revealed that the degradation of polymer matrix (ΔMw) and water uptake of 3D scaffolds exceed those of 2D film and raw polymer (used as control reference), while the mass loss of samples (3D scaffold and 2D film) resulted to be controlled, they showed good stability and capacity to maintain the physical integrity during the incubation time. - Highlights: • Tough PLA graft copolymer was proposed

  5. Synthesis of Antibacterial Silver–Poly(ɛ-caprolactone-Methacrylic Acid Graft Copolymer Nanofibers and Their Evaluation as Potential Wound Dressing

    Directory of Open Access Journals (Sweden)

    Mohammed A. Al-Omair

    2015-08-01

    Full Text Available Electrospun polycaprolacyone/polymethacrylic acid graft copolymer nanofibers (PCL/MAA containing silver nanoparticles (AgNPs were synthesized for effective wound disinfection. Surface morphology, AgNPs content, water uptake of electrospun PCL/MAA graft copolymer nanofibers without and with AgNPs, and levels of AgNPs leaching from the nanofibers in water as well as antimicrobial efficacy were studied. Scanning electron microscope images revealed that AgNPs dispersed well in PCL/MAA copolymer nanofibers with mean fiber diameters in the range of 200–579 nm and the fiber uniformity and diameter were not affected by the AgNPs. TEM images showed that AgNPs are present in/on the electrospun PCL/MAA graft copolymer nanofibers. The diameter of the electrospun nanofibers containing AgNPs was in the range of 200–579 nm, however, the diameter of AgNPs was within the range of 20–50 nm and AgNPs were observed to be spherical in shape. The PCL/MAA copolymer nanofibers showed a good hydrophilic property and the nanofibers containing AgNPs had excellent antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and against the Gram-positive bacteria Bacillus thuringiensis and Staphylococcus aureus, with a clear inhibition zone with a diameter between 22 and 53 mm. Moreover, electrospun PCL/MAA copolymer nanofibers sustained the release of AgNPs into water over 72 h.

  6. Graft copolymers of polypropylene films. 1. radiation induced grafting of mixed monomers. Vol. 3

    International Nuclear Information System (INIS)

    El-Salmawi, K.M.; El-Naggar, A.M.; Said, H.M.; Zahran, A.H.

    1996-01-01

    Radiation graft copolymerization of co monomer mixtures of acrylic acid (AAC), and styrene (S) onto polypropylene (PP) film by mutual method has been investigated. The effects of different factors that may affect the grafting yield such as inhibitor concentration (Mohr's salt), solvent composition (MeOH and H 2 O), radiation dose and dose rate were considered. It was found that the role of Mohr's salt is very effective when the ratio of AAC in the co monomer mixtures was at lower values. However, the addition of 1.25 Wt% of Mohr's salt reduced the homo polymer formation and enhances the grafting process. Graft copolymerization in presence of solvent mixture composed of methanol and water was found to afford higher grafting than in pure methanol regardless of the composition of the co monomer mixture used. However, the highest degree of grafting was obtained at a solvent composition of 20% H 2 O:80%MeOH and a co monomer mixture of 20%AAC:80%sty. An attempt was made to determine each PAAC and PS fractions in the total graft yield obtained. Two methods of analysis based on using the reactivity ratios reported in literature, elemental analysis and IR spectroscopy. The determination of poly (acrylic acid) and polystyrene fractions by elemental analysis is believed more accurate than these by reactivity ratio. The precise results obtained by elemental analysis with respect to the chemical structure of known polymer prepared under identical conditions. The results obtained by IR measurements go well with that obtained with the reactivity ratio methods. 5 figs., 3 tabs

  7. Graft copolymers of polypropylene films. 1. radiation induced grafting of mixed monomers. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Salmawi, K M; El-Naggar, A M; Said, H M; Zahran, A H [Radiation Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    Radiation graft copolymerization of co monomer mixtures of acrylic acid (AAC), and styrene (S) onto polypropylene (PP) film by mutual method has been investigated. The effects of different factors that may affect the grafting yield such as inhibitor concentration (Mohr`s salt), solvent composition (MeOH and H{sub 2} O), radiation dose and dose rate were considered. It was found that the role of Mohr`s salt is very effective when the ratio of AAC in the co monomer mixtures was at lower values. However, the addition of 1.25 Wt% of Mohr`s salt reduced the homo polymer formation and enhances the grafting process. Graft copolymerization in presence of solvent mixture composed of methanol and water was found to afford higher grafting than in pure methanol regardless of the composition of the co monomer mixture used. However, the highest degree of grafting was obtained at a solvent composition of 20% H{sub 2} O:80%MeOH and a co monomer mixture of 20%AAC:80%sty. An attempt was made to determine each PAAC and PS fractions in the total graft yield obtained. Two methods of analysis based on using the reactivity ratios reported in literature, elemental analysis and IR spectroscopy. The determination of poly (acrylic acid) and polystyrene fractions by elemental analysis is believed more accurate than these by reactivity ratio. The precise results obtained by elemental analysis with respect to the chemical structure of known polymer prepared under identical conditions. The results obtained by IR measurements go well with that obtained with the reactivity ratio methods. 5 figs., 3 tabs.

  8. Blood compatibility assessment of graft copolymer (NR-g-DMAA) tubes

    International Nuclear Information System (INIS)

    Razzak, M.T.; Otsuhata, Kazushige; Tabata, Yoneho; Ohashi, Fumio; Takeuchi, Atsuki

    1992-01-01

    Graft copolymer (NR-g-DMAA) tubes have been prepared using simultaneous radiation induced grafting of N,N-dimethyl-acrylamide, (DMAA) onto natural rubber (NR) tubes. The blood compatibility of the NR-g-DMAA tubes was assessed with three methods, namely in vitro test, ex vivo once through test and ex vivo loops test. In the case of the in vitro test, a simple whole blood contacting procedure has been employed. The ex vivo once through test involves the exposing of NR-g-DMAA tubes with once through flow of fresh canine blood and then it was inspected for any evidence of clot. In the case of ex vivo loops test, the NR-g-DMAA tube was implanted at external jugular vein of a mongrel canine and the blood flow in the NR-g-DMAA tube was detected with an ultrasonic flow meter. It was found that the blood compatibility of NR-g-DMAA tubes is improved significantly with the increasing degree of grafting. All the NR-g-DMAA tubes having a degree of grafting of about 30 wt% or more exhibit good blood compatibility. It was found that the blood compatibility of the NR-g-DMAA tube is better than that of a medical grade silicon rubber (SiR) tube. (Author)

  9. Structure of polymeric nanoparticles in surfactant-stabilized aqueous dispersions of high-molar-mass hydrophobic graft copolymers

    Czech Academy of Sciences Publication Activity Database

    Hajduová, J.; Procházka, K.; Raus, Vladimír; Šlouf, Miroslav; Krzyžánek, Vladislav; Garamus, V. M.; Štěpánek, M.

    2014-01-01

    Roč. 456, 20 August (2014), s. 10-17 ISSN 0927-7757 R&D Projects: GA TA ČR TE01020118 Institutional support: RVO:61389013 ; RVO:68081731 Keywords : nanoprecipitation * graft copolymer * light scattering Subject RIV: EA - Cell Biology; JA - Electronics ; Optoelectronics, Electrical Engineering (UPT-D) Impact factor: 2.752, year: 2014

  10. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).

    Science.gov (United States)

    Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

    2014-10-13

    This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Preparation and characterization of the graft copolymer of chitosan with poly[rosin-(2-acryloyloxy)ethyl ester].

    Science.gov (United States)

    Duan, Wengui; Chen, Chunhong; Jiang, Linbin; Li, Guang Hua

    2008-09-05

    Graft copolymerization of rosin-(2-acryloyloxy)ethyl ester (RAEE) onto chitosan (Cts) was carried out under microwave irradiation using potassium persulfate as an initiator. The structures, morphology, and thermal properties of the Cts graft copolymer (Cts-g-PRAEE) were characterized by means of FT-IR, XRD, SEM, and TG. Also, Cts and Cts-g-PRAEE copolymer were used as carriers of fenoprofen calcium (FC), and their controlled release behavior in artificial intestinal juice were studied. The results show that the rate of release of fenoprofen calcium from the carrier of Cts-g-PRAEE copolymer becomes very slower than that of Cts in artificial intestinal juice. Copyright © 2008. Published by Elsevier Ltd.

  12. Potassium fulvate-modified graft copolymer of acrylic acid onto cellulose as efficient chelating polymeric sorbent.

    Science.gov (United States)

    Mohamed, Magdy F; Essawy, Hisham A; Ammar, Nabila S; Ibrahim, Hanan S

    2017-01-01

    Acrylic acid (AA) was graft copolymerized from cellulose (Cell) in presence of potassium fulvate (KF) in order to enhance the chemical activity of the resulting chelating polymer and the handling as well. Fourier transform infrared (FTIR) proved that KF was efficiently inserted and became a permanent part of the network structure of the sorbent in parallel during the grafting copolymerization. Scanning electron microscopy (SEM) revealed intact homogeneous structure with uniform surface. This indicates improvement of the handling, however, it was not the case for the graft copolymer of acrylic acid onto cellulose in absence of KF, which is known to be brittle and lacks mechanical integrity. Effective insertion of this co-interpenetrating agent provided more functional groups, such as OH and COOH, which improved the chelating power of the produced sorbent as found for the removal of Cu 2+ ions from its aqueous solutions (the removal efficiency reached ∼98.9%). Different models were used to express the experimental data. The results corroborated conformity of the pseudo-second order kinetic model and Langmuir isotherm model to the sorption process, which translates into dominance of the chemisorption. Regeneration of the chelating polymers under harsh conditions did not affect the efficiency of copper ions uptake up to three successive cycles. A thermodynamic investigation ensured exothermic nature of the adsorption process that became less favourable at higher temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Study of the Effect of Grafted Antioxidant on the Acrylonitrile-Butadiene Copolymer Properties

    Directory of Open Access Journals (Sweden)

    Abdulaziz Ibrahim Al-Ghonamy

    2010-01-01

    Full Text Available The grafting of ADPEA onto natural rubber was executed with UV radiation. Benzoyl peroxide was used to initiate the free-radical grafting copolymerization. Natural rubber-graft-N-(4-aminodiphenylether acrylamide (NR-g-ADPEA was characterized with an IR technique. The paper aims interested to determine the crosslinking density by using the ultrasonic technique. The ultrasonic velocities of both longitudinal and shear waves were measured in thermoplastic discs of NBR vulcanizates as a function of aging time. Ultrasonic velocity measurements were taken at 2 MHz ultrasonic frequency using the pulse echo method. We studied the effect of aging on the mechanical properties, crosslinking density, and the swelling and extraction phenomena for acrylonitrile-butadiene copolymer (NBR vulcanizates, which contained the prepared NR-g-ADPEA and a commercial antioxidant, N-isopropyl-−-phenyl-p-phenylenediamine. The prepared antioxidant enhanced both the mechanical properties of the NBR vulcanizates and the permanence of the ingredients in these vulcanizates.

  14. A novel route for the production of chitosan/poly(lactide-co-glycolide) graft copolymers for electrospinning

    International Nuclear Information System (INIS)

    Xie Deming; Huang Huamei; Blackwood, Keith; MacNeil, Sheila

    2010-01-01

    Both chitosan and polylactide/polyglycolide have good biocompatibility and can be used to produce tissue engineering scaffolds for cultured cells. However the synthetic scaffolds lack groups that would facilitate their modification, whereas chitosan has extensive active amide and hydroxyl groups which would allow it to be subsequently modified for the attachment of peptides, proteins and drugs. Also chitosan is very hydrophilic, whereas PLGA is relatively hydrophobic. Accordingly there are many situations where it would be ideal to have a copolymer of both, especially one that could be electrospun to provide a versatile range of scaffolds for tissue engineering. Our aim was to develop a novel route of chitosan-g-PLGA preparation and evaluate the copolymers in terms of their chemical characterization, their performance on electrospinning and their ability to support the culture of fibroblasts as an initial biological evaluation of these scaffolds. Chitosan was first modified with trimethylsilyl chloride, and catalyzed by dimethylamino pyridine. PLGA-grafted chitosan copolymers were prepared by reaction with end-carboxyl PLGA (PLGA-COOH). FT-IR and 1 H-NMR characterized the copolymer molecular structure as being substantially different to that of the chitosan or PLGA on their own. Elemental analysis showed an average 18 pyranose unit intervals when PLGA-COOH was grafted into the chitosan molecular chain. Differential scanning calorimetry results showed that the copolymers had different thermal properties from PLGA and chitosan respectively. Contact angle measurements demonstrated that copolymers became more hydrophilic than PLGA. The chitosan-g-PLGA copolymers were electrospun to produce either nano- or microfibers as desired. A 3D fibrous scaffold of the copolymers gave good fibroblast adhesion and proliferation which did not differ significantly from the performance of the cells on the chitosan or PLGA electrospun scaffolds. In summary this work presents a

  15. A novel route for the production of chitosan/poly(lactide-co-glycolide) graft copolymers for electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Xie Deming [Tissue Engineering Laboratory, Department of Biomedical Engineering, Jinan University, Guangzhou, 510630 (China); Huang Huamei [Morphological Experiments Center of Medical College, Jinan University, Guangzhou, 510630 (China); Blackwood, Keith; MacNeil, Sheila [Tissue Engineering Group, Department of Engineering Materials and Division of Biomedical Sciences and Medicine, Kroto Research Institute, University of Sheffield North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2010-12-15

    Both chitosan and polylactide/polyglycolide have good biocompatibility and can be used to produce tissue engineering scaffolds for cultured cells. However the synthetic scaffolds lack groups that would facilitate their modification, whereas chitosan has extensive active amide and hydroxyl groups which would allow it to be subsequently modified for the attachment of peptides, proteins and drugs. Also chitosan is very hydrophilic, whereas PLGA is relatively hydrophobic. Accordingly there are many situations where it would be ideal to have a copolymer of both, especially one that could be electrospun to provide a versatile range of scaffolds for tissue engineering. Our aim was to develop a novel route of chitosan-g-PLGA preparation and evaluate the copolymers in terms of their chemical characterization, their performance on electrospinning and their ability to support the culture of fibroblasts as an initial biological evaluation of these scaffolds. Chitosan was first modified with trimethylsilyl chloride, and catalyzed by dimethylamino pyridine. PLGA-grafted chitosan copolymers were prepared by reaction with end-carboxyl PLGA (PLGA-COOH). FT-IR and{sup 1}H-NMR characterized the copolymer molecular structure as being substantially different to that of the chitosan or PLGA on their own. Elemental analysis showed an average 18 pyranose unit intervals when PLGA-COOH was grafted into the chitosan molecular chain. Differential scanning calorimetry results showed that the copolymers had different thermal properties from PLGA and chitosan respectively. Contact angle measurements demonstrated that copolymers became more hydrophilic than PLGA. The chitosan-g-PLGA copolymers were electrospun to produce either nano- or microfibers as desired. A 3D fibrous scaffold of the copolymers gave good fibroblast adhesion and proliferation which did not differ significantly from the performance of the cells on the chitosan or PLGA electrospun scaffolds. In summary this work presents a

  16. Grafting of copolymer styrene maleic anhydride on poly(ethylene terephthalate) film by chemical reaction and by plasma method

    Energy Technology Data Exchange (ETDEWEB)

    Bigan, Muriel; Bigot, Julien [Laboratoire de Chimie Organique et Macromoleculaire (UMR 8009), Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France); Mutel, Brigitte [Laboratoire de Genie des Procedes d' Interactions Fluides reactifs-Materiaux (UPRES-EA 3751), Batiment C5, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France)], E-mail: Brigitte.mutel@univ-lille1.fr; Coqueret, Xavier [Laboratoire Reactions Selectives et Applications (UMR-CNRS 6519) Universite de Reims Champagne-Ardennes, B.P. 1039, 51687 Reims Cedex 2 (France)

    2008-02-15

    This work deals with the chemical grafting of a styrene maleic anhydride copolymer on the surface of a previously hydrolyzed polyethylene terephthalate (PET) film 12 {mu}m thick via covalent bond. Two different ways are studied. The first one involves an activation of the hydrolyzed PET by the triethylamine before the grafting step. In the second one, the copolymer reacts with the 4-dimethylaminopyridine in order to form maleinyl pyridinium salt which reacts with alcohol function of the hydrolyzed PET. Characterization and quantification of the grafting are performed by Fourier transform infrared spectroscopy. Factorial experiment designs are used to optimize the process and to estimate experimental parameters effects. The opportunity to associate the chemical process to a cold remote nitrogen plasma one is also examined.

  17. Simulated food effects on drug release from ethylcellulose: PVA-PEG graft copolymer-coated pellets.

    Science.gov (United States)

    Muschert, Susanne; Siepmann, Florence; Leclercq, Bruno; Carlin, Brian; Siepmann, Juergen

    2010-02-01

    Food effects might substantially alter drug release from oral controlled release dosage forms in vivo. The robustness of a novel type of controlled release film coating was investigated using various types of release media and two types of release apparatii. Importantly, none of the investigated conditions had a noteworthy impact on the release of freely water-soluble diltiazem HCl or slightly water-soluble theophylline from pellets coated with ethylcellulose containing small amounts of PVA-PEG graft copolymer. In particular, the presence of significant amounts of fats, carbohydrates, surfactants, bile salts, and calcium ions in the release medium did not alter drug release. Furthermore, changes in the pH and differences in the mechanical stress the dosage forms were exposed to did not affect drug release from the pellets. The investigated film coatings allowing for oral controlled drug delivery are highly robust in vitro and likely to be poorly sensitive to classical food effects in vivo.

  18. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer.

    Science.gov (United States)

    Dorati, R; Colonna, C; Tomasi, C; Genta, I; Bruni, G; Conti, B

    2014-01-01

    The aim of this research was to investigate a tough polymer to develop 3D scaffolds and 2D films for tissue engineering applications, in particular to repair urethral strictures or defects. The polymer tested was a graft copolymer of polylactic acid (PLA) synthesized with the rationale to improve the toughness of the related PLA homopolymer. The LMP-3055 graft copolymer (in bulk) demonstrated to have negligible cytotoxicity (bioavailability >85%, MTT test). Moreover, the LMP-3055 sterilized through gamma rays resulted to be cytocompatible and non-toxic, and it has a positive effect on cell biofunctionality, promoting the cell growth. 3D scaffolds and 2D film were prepared using different LMP-3055 polymer concentrations (7.5, 10, 12.5 and 15%, w/v), and the effect of polymer concentration on pore size, porosity and interconnectivity of the 3D scaffolds and 2D film was investigated. 3D scaffolds got better results for fulfilling structural and biofunctional requirements: porosity, pore size and interconnectivity, cell attachment and proliferation. 3D scaffolds obtained with 10 and 12.5% polymer solutions (3D-2 and 3D-3, respectively) were identified as the most suitable construct for the cell attachment and proliferation presenting pore size ranged between 100 and 400μm, high porosity (77-78%) and well interconnected pores. In vitro cell studies demonstrated that all the selected scaffolds were able to support the cell proliferation, the cell attachment and growth resulting to their dependency on the polymer concentration and structural features. The degradation test revealed that the degradation of polymer matrix (ΔMw) and water uptake of 3D scaffolds exceed those of 2D film and raw polymer (used as control reference), while the mass loss of samples (3D scaffold and 2D film) resulted to be controlled, they showed good stability and capacity to maintain the physical integrity during the incubation time. © 2013.

  19. High-strain-induced deformation mechanisms in block-graft and multigraft copolymers

    KAUST Repository

    Schlegel, Ralf

    2011-12-13

    The molecular orientation behavior and structural changes of morphology at high strains for multigraft and block-graft copolymers based on polystyrene (PS) and polyisoprene (PI) were investigated during uniaxial monotonic loading via FT-IR and synchrotron SAXS. Results from FT-IR revealed specific orientations of PS and PI segments depending on molecular architecture and on the morphology, while structural investigations revealed a typical decrease in long-range order with increasing strain. This decrease was interpreted as strain-induced dissolution of the glassy blocks in the soft matrix, which is assumed to affect an additional enthalpic contribution (strain-induced mixing of polymer chains) and stronger retracting forces of the network chains during elongation. Our interpretation is supported by FT-IR measurements showing similar orientation of rubbery and glassy segments up to high strains. It also points to highly deformable PS domains. By synchrotron SAXS, we observed in the neo-Hookean region an approach of glassy domains, while at higher elongations the intensity of the primary reflection peak was significantly decreasing. The latter clearly verifies the assumption that the glassy chains are pulled out from the domains and are partly mixed in the PI matrix. Results obtained by applying models of rubber elasticity to stress-strain and hysteresis data revealed similar correlations between the softening behavior and molecular and morphological parameters. Further, an influence of the network modality was observed (random grafted branches). For sphere forming multigraft copolymers the domain functionality was found to be less important to achieve improved mechanical properties but rather size and distribution of the domains. © 2011 American Chemical Society.

  20. Effect of Grafting Density of Random Copolymer Brushes on Perpendicular Alignment in PS-b-PMMA Thin Films

    KAUST Repository

    Lee, Wooseop; Park, Sungmin; Kim, Yeongsik; Sethuraman, Vaidyanathan; Rebello, Nathan; Ganesan, Venkat; Ryu, Du Yeol

    2017-01-01

    We modulated the grafting density (σ) of a random copolymer brush of poly(styrene-r-methyl methacrylate) on substrates to probe its effect on the formation of perpendicularly aligned lamellae of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA). Supported by coarse-grained simulation results, we hypothesized that an increase in σ will allow us to systematically tune the block copolymer interfacial interactions with the substrates from being preferential to one of the blocks to being neutral toward both blocks and will thereby facilitate enhanced regimes of perpendicularly aligned lamellae. We verified such a hypothesis by using a simple grafting-to approach to modify the substrates and characterized the thickness window for perpendicular lamellae as a function of brush thickness (or σ) on the grafted substrates using scanning force microscopy (SFM) images and grazing incidence small-angle X-ray scattering (GISAXS) measurements. The experimental results validated our hypothesis and suggested that the σ of random copolymer brushes can be used as an additional versatile parameter to modulate the interfacial interactions and the resulting alignment of block copolymer films.

  1. Effect of Grafting Density of Random Copolymer Brushes on Perpendicular Alignment in PS-b-PMMA Thin Films

    KAUST Repository

    Lee, Wooseop

    2017-07-18

    We modulated the grafting density (σ) of a random copolymer brush of poly(styrene-r-methyl methacrylate) on substrates to probe its effect on the formation of perpendicularly aligned lamellae of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA). Supported by coarse-grained simulation results, we hypothesized that an increase in σ will allow us to systematically tune the block copolymer interfacial interactions with the substrates from being preferential to one of the blocks to being neutral toward both blocks and will thereby facilitate enhanced regimes of perpendicularly aligned lamellae. We verified such a hypothesis by using a simple grafting-to approach to modify the substrates and characterized the thickness window for perpendicular lamellae as a function of brush thickness (or σ) on the grafted substrates using scanning force microscopy (SFM) images and grazing incidence small-angle X-ray scattering (GISAXS) measurements. The experimental results validated our hypothesis and suggested that the σ of random copolymer brushes can be used as an additional versatile parameter to modulate the interfacial interactions and the resulting alignment of block copolymer films.

  2. Phase behavior of poly(dimethylsiloxane)-poly(ethylene oxide) amphiphilic block and graft copolymers in compressed carbon dioxide

    International Nuclear Information System (INIS)

    Stoychev, Ivan; Peters, Felix; Kleiner, Matthias; Sadowski, Gabriele; Clerc, Sebastien; Ganachaud, Francois; Chirat, Mathieu; Lacroix-Desmazes, Patrick; Fournel, Bruno

    2012-01-01

    The phase behavior of triblock and graft-type poly(dimethylsiloxane) (PDMS)-poly(ethylene oxide) (PEO) copolymer surfactants has been investigated in compressed carbon dioxide (CO 2 ). For this purpose, cloud-point pressures have been measured in the pressure and temperature range from P=10 to 40 MPa and from T= 293 to 338 K. The Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state (EoS) has been applied to model the experimental data in order to better understand the influence of the structure of the copolymers on the phase behavior of the system. The pure-component parameters for PDMS have been fitted originally to PDMS/n-pentane system. These parameters are successfully applied for PDMS in CO 2 by adjusting a temperature-dependent binary interaction parameter. The phase behavior of the triblock copolymers was successfully predicted by PC-SAFT. In contrast, the phase behavior of the graft copolymers was difficult to predict accurately at this stage. (authors)

  3. Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers

    International Nuclear Information System (INIS)

    Maksin, Danijela D.; Nastasović, Aleksandra B.; Milutinović-Nikolić, Aleksandra D.; Suručić, Ljiljana T.; Sandić, Zvjezdana P.; Hercigonja, Radmila V.; Onjia, Antonije E.

    2012-01-01

    Highlights: ► Methacrylate based copolymers grafted with diethylene triamine as Cr(VI) sorbents. ► Chemisorption and pore diffusion are characteristics of this sorption system. ► Langmuir isotherm provided best fit and maximum adsorption capacity was 143 mg g −1 . ► Cr(VI) sorption onto amino-functionalized copolymer was endothermic and spontaneous. ► A simple, efficient and cost-effective hexavalent chromium removal method. - Abstract: Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25–70 °C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q max , at pH 1.8 and 25 °C was 143 mg g −1 for PGME2-deta (sample with the highest amino group concentration) while at 70 °C Q max reached the high value of 198 mg g −1 . Thermodynamic parameters revealed spontaneous and endothermic nature of Cr(VI) adsorption onto PGME-deta.

  4. Regiocontroll synthesis cellulose-graft-polycaprolactone copolymer (2,3-di-O-PCL-cellulose by a new route

    Directory of Open Access Journals (Sweden)

    K. L. Wang

    2017-12-01

    Full Text Available A new and convenient route to the regiocontrolled synthesis of a cellulose-based derivate copolymer (2,3-di-O-polycaprolactone-cellulose grafting ε-caprolactone (ε-CL from α-cellulose, cellulose-graft-polycaprolactone (cellulose-g-PCL, by a classical ring-opening polymerization (ROP reaction, using stannous octoate (Sn(Oct2 as catalyst, in 68% concentration of zinc chloride aqueous solution at 120 °C was presented. By controlling the hydroxyl of cellulose/ε-CL, catalyst/monomer ratio and the reaction time, the molecular architecture of the copolymers can be altered. The solubility of cellulose in zinc chloride aqueous was indicated by UV/VIS spectrometer and rheological measurements. The structures and thermal properties of cellulose-g-polycaprolactone copolymers were characterized using Fourier Transform Infrared (FT-IR, Proton Nuclear Magnetic Resonance Spectroscopy (1H NMR, X-ray Diffraction (XRD, Thermogravimetric Analysis (TGA, Differential Scanning Calorimetry (DSC and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES. The interesting results confirm that zinc chloride solution can break the intra-molecular hydrogen bonds of cellulose selectively (not only O3H···O5, but also O2H···O6, and has no effect on the inter-molecular hydrogen bonds (O6H···O3. And the grafting reactivity of hydroxyl on cellulose is C2–OH > C3–OH >> C6–OH in zinc chloride solution, and this is clearly different from other researches. Most importantly, this work confirms that the method to regiocontrolled synthesis cellulose-based derivative polymers by regiobreaking hydrogen bonds is feasible. It is strongly believed that the new discovery may give a novel, environmental, simple and inexpensive method to modify cellulose chemically with various side chains grafted on a given hydroxyl, through liberating hydroxyl as reactive group from hydrogen bonds broken selectively by different solvents.

  5. Selective adsorption of Pb (II) ions by amylopectin-g-poly (acrylamide-co-acrylic acid): A bio-degradable graft copolymer.

    Science.gov (United States)

    Sasmal, Dinabandhu; Maity, Jayanta; Kolya, Haradhan; Tripathy, Tridib

    2017-04-01

    Amylopectin-g-poly (acrylamide-co-acrylic acid) [AP-g-poly (AM-co-AA)] was synthesised in water medium by using potassium perdisulphate as an initiator. The graft copolymer was characterized by molecular weight determination by size exclusion chromatography (SEC), fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscope (SEM) studies, thermal analysis, measurement of neutralisation equivalent and biodegradation studies. The graft copolymer was used for Pb (II) ion removal from aqueous solution. The Pb (II) ion removal capacity of the graft copolymer was also compared with another laboratory developed graft copolymer Amylopectin-g-poly (acrylamide) (AP-g-PAM). Both the graft copolymers were also used for the competitive metal ions removal with Pb (II)/Cd (II), Pb (II)/Zn (II), Pb (II)/Ni (II), Pb (II)/Cu (II) pairs separately under similar conditions. AP-g-poly (AM-co-AA) showed better Pb (II) ion adsorbing power over AP-g-PAM and also much selective towards Pb (II) ions. The adsorption follows a second order rate equation and Langmuir isotherm model. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The promise of a specially-designed graft copolymer of acrylic acid onto cellulose as selective sorbent for heavy metal ions.

    Science.gov (United States)

    Essawy, Hisham A; Mohamed, Magdy F; Ammar, Nabila S; Ibrahim, Hanan S

    2017-10-01

    A specially-designed graft copolymer of acrylic acid onto in-situ formed cellulose-fulvate hybrid showed privileged tendency for uptake of Pb(II) during competitive removal from a mixture containing Cd(II) and Ni(II) within 5min at pH 5. This novel trend is attributed mainly to the crowded high content of coordinating centers within the designed graft copolymer along with the acquired superabsorbency. This provides an outstanding tool to separate some metal ions selectively from mixtures containing multiple ions on kinetic basis. Thus, the designed graft copolymer structure exhibited superior efficiency that reached ∼95% for sole removal of Pb(II). Kinetic modeling for Pb(II) individual removal showed excellent fitting with a pseudo second-order model. Intraparticle diffusion model on the other hand ensured governance of boundary layer effect over diffusion during the removal process due to the superabsorbency feature of the graft copolymer. The experimental findings were described with models such as Freundlich, Langmuir, and Dubinin-Radushkevich. The Langmuir and Freundlich models showed convenience with the adsorption isotherm of Pb(II) onto the developed graft copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-01

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous

  8. Phosphate functionalized and lactic acid containing graft copolymer: synthesis and evaluation as biomaterial for bone tissue engineering applications.

    Science.gov (United States)

    Datta, Pallab; Chatterjee, Jyotirmoy; Dhara, Santanu

    2013-01-01

    Polyvinyl alcohol (PVA) and polylactic acids (PLA) are biocompatible materials possessing some inherent contrasting limitations which have reduced the scope of their individual applicability. Specifically, overcoming strong hydrophobicity and introducing chemical groups for biofunctionalization are unmet challenges for PLA whilst chemical endeavors to render adequate aqueous stability and cell adhesion properties to PVA have not produced completely intended results. Objective of the present work is to explore synthesis of a graft polymer as an approach towards coupling biofunctional groups with PLA materials. In a two-step reaction, PPVA (phosphorylated polyvinyl alcohol or PVA pre-functionalized with phosphate) is esterified with lactic acid followed by polymerization into PLA in presence of stannous chloride as catalyst to obtain phosphorylated polyvinyl alcohol-graft-polylactic acid (PPVA-g-LA) copolymer. Product is characterized by nuclear magnetic resonance, X-ray diffraction, and thermogravimetric analysis. PPVA-g-LA shows an increase in uniaxial elongation compared to parent PPVA under condition of tensile loading. The graft copolymer also exhibits higher water contact angles compared to PPVA, but a more hydrophilic surface compared to PLA. Culture of MG-63 cells on solvent cast films of polymers demonstrates that PPVA-g-LA as a cell substrate can significantly (p acid-based biomaterials with subsequent improvement in cell response on the polymers. In this attempt, it also affords materials with tunable surface or bulk properties of relevance for tissue engineering applications.

  9. Graft copolymers of polyurethane with various vinyl monomers via radiation-induced miniemulsion polymerization: Influential factors to grafting efficiency and particle morphology

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hua [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China); Wang Mozhen [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)], E-mail: pstwmz@ustc.edu.cn; Ge Xuewu [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)], E-mail: xwge@ustc.edu.cn

    2009-02-15

    Graft copolymers of polyurethane (PU) with various vinyl monomers were synthesized through a one-pot but two-step miniemulsion polymerization process. Firstly, the polycondensation of isophorone diisocyanate (IPDI) with hydroxyl-terminated polybutadiene (HTPB) had been performed in aqueous miniemulsion at 40 deg. C in order to obtain PU dispersions. Consecutively, an in-situ graft copolymerization of the vinyl monomers with the synthesized PU was initiated by {gamma}-ray radiation at room temperature. The grafting efficiency of PU with vinyl monomer (G{sub PU/monomer}) was calculated from {sup 1}H NMR spectra and the particle morphology of the final hybrid latex was observed by transmission electron microscopy (TEM). As there was no monomer transferring in miniemulsion system, homogenous hybrid particles would be synthesized provided that the monomer was miscible with PU, such as styrene. With the increase of the polarity of the monomer, the compatibility of PU with monomer decreased. G{sub PU/monomer} varied as G{sub PU/styrene}(37%)>G{sub PU/butyl} {sub acrylate} {sub (BA)}(21%)>G{sub PU/methyl} {sub methacrylate} {sub (MMA)}(12%). The proportion of homogeneous nucleation would increase as the hydrophilicity of the monomer increased. High temperature would destabilize the miniemulsion so as to result in a less grafting efficiency. Compared to the phase separation during the seeded emulsion polymerization, the miniemulsion polymerization method facilitated the preparation of homogeneous materials owing to its monomer droplet nucleation mechanism.

  10. Radiation induced graft copolymerization of n-butyl acrylate onto poly(ethylene terephthalate) (PET) films and thermal properties of the obtained graft copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Ping Xiang [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang Mozhen, E-mail: pstwmz@ustc.edu.c [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ge Xuewu, E-mail: xwge@ustc.edu.c [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-05-15

    n-Butyl acrylate (BA) was successfully grafted onto poly(ethylene terephthalate) (PET) film using simultaneous radiation induced graft copolymerization with gamma rays. When BA concentration ranges from 20% to 30%, the Degree of Grafting (DG), measured by gravimetry and {sup 1}H NMR, increases with the monomer concentration and absorbed dose, but decreases with dose rate from 0.83 to 2.53 kGy/h. The maximum DG can reach up to 22.1%. The thermal transition temperatures such as glass-transition temperature (T{sub g}) and cold-crystallization temperature (T{sub cc}) of PET in grafted films were little different from those in original PET film, indicating that microphase separation occurred between PBA side chains and PET backbone. This work implied that if PET/elastomers (e.g., acrylate rubber) blends are radiated by high energy gamma rays under a certain condition, PET-g-polyacrylate copolymer may be produced in-situ, which will improve the compatibility between PET and the elastomers so as to improve the integral mechanical properties of PET based engineering plastic.

  11. Enhancement of the grafting performance and of the water absorption of cassava starch graft copolymer by gamma radiation

    International Nuclear Information System (INIS)

    Kiatkamjornwong, Suda; Meechai, Nispa

    1997-01-01

    Enhancement of the gamma radiation grafting of acrylonitrile onto gelatinized cassava starch was investigated. Infrared spectrometry was used to follow the chemical changes in the grafting reaction and from saponification. The saponified starch-g-PAN (HSPAN) was then characterized in terms of grafting parameters to provide a guide for the optimum total dose (kGy) and the appropriate ratio of starch/acrylonitrile for a fixed dose rate of 2.5 x 10 -1 kGy/min. Other dose rates were also carried out to obtain the appropriate result of grafting copolymerization and of water absorption. A thin aluminium foil, covering the inner wall of the reaction vessel, was found to be far more effective than any other metal films in the enhancement of the grafting reaction and the water absorption as well. Nitric acid in the medium increases the grafting yield and the water absorption. Methyl ether hydroquinone inhibitor was evaluated for its ability to increase homopolymerization and decrease graft reaction. When styrene was used as a comonomer, it hampered the grafting of acrylonitrile onto starch backbone. The water absorption capacity was improved by freeze-drying the HSPAN. The treatment of the HSPAN with aluminium trichloride hexahydrate was found to enhance the degree of wicking, but to decrease the water absorbency. (author)

  12. Amphiphilic graft copolymer based on poly(styrene-co-maleic anhydride with low molecular weight polyethylenimine for efficient gene delivery

    Directory of Open Access Journals (Sweden)

    Duan XP

    2012-09-01

    Full Text Available Xiaopin Duan,1,2 Jisheng Xiao,2 Qi Yin,2 Zhiwen Zhang,2 Shirui Mao,1 Yaping Li21School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 2Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, ChinaBackground and methods: A new amphiphilic comb-shaped copolymer (SP was synthesized by conjugating poly(styrene-co-maleic anhydride with low molecular weight polyethyleneimine for gene delivery. Fourier transform infrared spectrum, 1H nuclear magnetic resonance, and gel permeation chromatography were used to characterize the graft copolymer.Results: The buffering capability of SP was similar to that of polyethyleneimine within the endosomal pH range. The copolymer could condense DNA effectively to form complexes with a positive charge (13–30 mV and a small particle size (130–200 nm at N/P ratios between 5 and 20, and protect DNA from degradation by DNase I. In addition, SP showed much lower cytotoxicity than polyethyleneimine 25,000. Importantly, the gene transfection activity and cellular uptake of SP-DNA complexes were all markedly higher than that of complexes of polyethyleneimine 25,000 and DNA in MCF-7 and MCF-7/ADR cell lines.Conclusion: This work highlights the promise of SP as a safe and efficient synthetic vector for DNA delivery.Keywords: poly(styrene-co-maleic anhydride, polyethylenimine, DNA, gene delivery

  13. Amphiphilic graft copolymer based on poly(styrene-co-maleic anhydride) with low molecular weight polyethylenimine for efficient gene delivery

    Science.gov (United States)

    Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Mao, Shirui; Li, Yaping

    2012-01-01

    Background and methods A new amphiphilic comb-shaped copolymer (SP) was synthesized by conjugating poly(styrene-co-maleic anhydride) with low molecular weight polyethyleneimine for gene delivery. Fourier transform infrared spectrum, 1H nuclear magnetic resonance, and gel permeation chromatography were used to characterize the graft copolymer. Results The buffering capability of SP was similar to that of polyethyleneimine within the endosomal pH range. The copolymer could condense DNA effectively to form complexes with a positive charge (13–30 mV) and a small particle size (130–200 nm) at N/P ratios between 5 and 20, and protect DNA from degradation by DNase I. In addition, SP showed much lower cytotoxicity than polyethyleneimine 25,000. Importantly, the gene transfection activity and cellular uptake of SP-DNA complexes were all markedly higher than that of complexes of polyethyleneimine 25,000 and DNA in MCF-7 and MCF-7/ADR cell lines. Conclusion This work highlights the promise of SP as a safe and efficient synthetic vector for DNA delivery. PMID:23028224

  14. Management of Industrial Dye Wastes Through Adsorption By Functionalized Graft Copolymers

    International Nuclear Information System (INIS)

    El-Nagger Abdel-Wahab, M.; Hegazy El-Sayed, A.; Aly Hussein, A.; Zahran Abdel-Hamid, H.

    1999-01-01

    The sorption of Methyl Green (basic dye) by different grafted polymers with individual acrylonitrile (AN) and its binary comonomer mixture with N-vinylpyrrolidone (NVP) has been investigated. It was found that at approximately equal levels of graft yield of AN, poly(tetrafluoroethylene-hexafluoropropylene)(FEP) showed the highest dye sorption of the basic dye while the grafted low density polyethylene (LDPE) displayed the lowest dye sorption. On the other hand, the different grafted polymers with AN/NVP binary monomers which having an approximately equal total graft yield (TGY) showed a dye sorption for the same basic dye according to the order: HDPE>FEP> LDPE>PP. Nevertheless, it was found that the dye sorption values by the grafted polymers with AN/NVP mixtures are much higher than those by the grafted polymers with individual AN monomer. The dye ability of HDPE grafted with individual AN and the comonomer mixture AN/NVP towards basic and disperse dyes was utilized to investigate the synergism during radiation grafting of the comonomer mixture. Results showed that such graft materials are promising in practical use for the treatment of industrial dye wastes from textile factories

  15. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive.

    Science.gov (United States)

    Zhao, Yi-Fan; Zhang, Pei-Bin; Sun, Jian; Liu, Cui-Jing; Yi, Zhuan; Zhu, Li-Ping; Xu, You-Yi

    2015-06-15

    Here we describe the development of versatile antifouling polyethersulfone (PES) filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Amphiphilic polyethersulfone-block-poly(2-hydroxyethyl methacrylate) (PES-b-PHEMA) was beforehand designed and used as the blending additive of PES membranes prepared by phase inversion technique. The surface enriched PHEMA blocks on membrane surface acted as an anchor to immobilize the initiating site. Poly(sulfobetaine methacrylate) (PSBMA) were subsequently grafted onto the PES blend membranes by surface-initiated atom transfer radical polymerization (SI-ATRP). The analysis of surface chemistry confirmed the successful grafting of zwitterionic PSBMA brushes on PES membrane surface. The resulted PES-g-PSBMA membranes were capable of separating proteins from protein solution and oil from oil/water emulsion efficiently. Furthermore, the modified membranes showed high hydrophilicity and strongly antifouling properties due to the incorporation of well-defined PSBMA layer. In addition, the PES-g-PSBMA membranes exhibited excellent blood compatibility and durability during the washing process. The developed antifouling PES membranes are versatile and can find their applications in protein filtration, blood purification and oil/water separation, etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Novel phosphate-grafted ePTFE copolymers for optimum in vitro mineralization

    International Nuclear Information System (INIS)

    Wentrup-Byrne, Edeline; Suzuki, Shuko; Groendahl, Lisbeth; Suwanasilp, Juthakarn Jessica

    2010-01-01

    Surface modification via graft copolymerization is an attractive method for optimizing polymers used in biomedical applications. We developed a novel method using a mixed solvent system (either water and dichloromethane (DCM) or water, methanol and DCM) consisting of two solvent phases for grafting 2-(methacryloyloxy)ethyl phosphate onto expanded polytetrafluoroethylene (ePTFE). This new method resulted in the fabrication of grafted membranes with greater grafting extents (GEs) (as evaluated from x-ray photoelectron spectroscopy (XPS)) in the organic phase than those obtained when grafting was carried out in a single phase. It also made it possible to graft in the aqueous phase, a process that is otherwise inhibited by the concomitant formation of large amounts of highly crystalline homopolymer. Thorough characterization of the grafted membranes using gravimetric, XPS and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) not only permitted evaluation of the grafting outcomes but also made it possible to analyze their dependence on monomer concentration and solvent composition. A selection of membranes was tested for their in vitro mineralization capacity using simulated body fluid. It was found that an 'ideal' mineralization outcome, i.e. a uniform coating of carbonated hydroxyapatite (cHAP) formed on the sample grafted in the aqueous phase of the water/DCM two-phase solvent system. A detailed discussion bringing together these results, as well as results from a series of earlier studies, allows conclusions regarding polymer chemistry and the topology necessary for cHAP mineralization.

  17. Synthesis by ATRP of triblock copolymers with densely grafted styrenic end blocks from a polyisobutylene macroinitiator

    DEFF Research Database (Denmark)

    Truelsen, Jens Høg; Kops, Jørgen; Pedersen, Walther Batsberg

    2000-01-01

    A macroinitiator was prepared from a triblock copolymer of polyisobutylene (PIB) with end blocks of poly(p-methylstyrene) (P(p-MeS)) by bromination to obtain initiating bromomethyl groups for atom transfer radical polymerization (ATRP). Controlled polymerization of styrene and p-acetoxystyrene yi......A macroinitiator was prepared from a triblock copolymer of polyisobutylene (PIB) with end blocks of poly(p-methylstyrene) (P(p-MeS)) by bromination to obtain initiating bromomethyl groups for atom transfer radical polymerization (ATRP). Controlled polymerization of styrene and p...

  18. Preparation of thermo-responsive graft copolymer by using a novel macro-RAFT agent and its application for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Song, Cunfeng; Yu, Shirong [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Liu, Cheng; Deng, Yuanming; Xu, Yiting [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005 (China); Chen, Xiaoling, E-mail: tinachen0628@163.com [Department of Endodontics, Xiamen Stomatology Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361003 (China); Dai, Lizong, E-mail: lzdai@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005 (China)

    2016-05-01

    A methodology to prepare thermo-responsive graft copolymer by using a novel macro-RAFT agent was proposed. The macro-RAFT agent with pendant dithioester (ZC(S)SR) was facilely prepared via the combination of RAFT polymerization and esterification reaction. By means of ZC(S)SR-initiated RAFT polymerization, the thermo-responsive graft copolymer consisting of poly(methyl methacrylate-co-hydroxylethyl methacrylate) (P(MMA-co-HEMA)) backbone and hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) side chains was constructed through the “grafting from” approach. The chemical compositions and molecular weight distributions of the synthesized polymers were respectively characterized by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and gel permeation chromatography (GPC). Self-assembly behavior of the amphiphilic graft copolymers (P(MMA-co-HEMA)-g-PNIPAAm) was studied by transmission electron microscopy (TEM), dynamic light scattering (DLS) and spectrofluorimeter. The critical micelle concentration (CMC) value was 0.052 mg mL{sup −1}. These micelles have thermo-responsibility and a low critical solution temperature (LCST) of 33.5 °C. Further investigation indicated that the guest molecule release property of these micelles, which can be well described by a first-order kinetic model, was significantly affected by temperature. Besides, the micelles exhibited excellent biocompatibility and cellular uptake property. Hence, these micelles are considered to have potential application in controlled drug delivery. - Highlights: • A novel macro-RAFT agent with ZC(S)SR was used for preparing graft copolymer. • P(MMA-co-HEMA)-g-PNIPAAm was successful prepared via the “grafting from” approach. • Thermo-responsibility of the P(MMA-co-HEMA)-g-PNIPAAm micelles was investigated. • The drug release behavior of the P(MMA-co-HEMA)-g-PNIPAAm micelles was studied. • These micelles exhibited excellent biocompatibility and cellular uptake property.

  19. Preparation of thermo-responsive graft copolymer by using a novel macro-RAFT agent and its application for drug delivery

    International Nuclear Information System (INIS)

    Song, Cunfeng; Yu, Shirong; Liu, Cheng; Deng, Yuanming; Xu, Yiting; Chen, Xiaoling; Dai, Lizong

    2016-01-01

    A methodology to prepare thermo-responsive graft copolymer by using a novel macro-RAFT agent was proposed. The macro-RAFT agent with pendant dithioester (ZC(S)SR) was facilely prepared via the combination of RAFT polymerization and esterification reaction. By means of ZC(S)SR-initiated RAFT polymerization, the thermo-responsive graft copolymer consisting of poly(methyl methacrylate-co-hydroxylethyl methacrylate) (P(MMA-co-HEMA)) backbone and hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) side chains was constructed through the “grafting from” approach. The chemical compositions and molecular weight distributions of the synthesized polymers were respectively characterized by "1H nuclear magnetic resonance ("1H NMR) and gel permeation chromatography (GPC). Self-assembly behavior of the amphiphilic graft copolymers (P(MMA-co-HEMA)-g-PNIPAAm) was studied by transmission electron microscopy (TEM), dynamic light scattering (DLS) and spectrofluorimeter. The critical micelle concentration (CMC) value was 0.052 mg mL"−"1. These micelles have thermo-responsibility and a low critical solution temperature (LCST) of 33.5 °C. Further investigation indicated that the guest molecule release property of these micelles, which can be well described by a first-order kinetic model, was significantly affected by temperature. Besides, the micelles exhibited excellent biocompatibility and cellular uptake property. Hence, these micelles are considered to have potential application in controlled drug delivery. - Highlights: • A novel macro-RAFT agent with ZC(S)SR was used for preparing graft copolymer. • P(MMA-co-HEMA)-g-PNIPAAm was successful prepared via the “grafting from” approach. • Thermo-responsibility of the P(MMA-co-HEMA)-g-PNIPAAm micelles was investigated. • The drug release behavior of the P(MMA-co-HEMA)-g-PNIPAAm micelles was studied. • These micelles exhibited excellent biocompatibility and cellular uptake property.

  20. Hydrophil diaphragms on the basis of perfluorated copolymers FEP and polyacryl nitrile: Manufacture by radiation- initiated grafting and their use for pervaporation

    International Nuclear Information System (INIS)

    Scholz, H.

    1986-01-01

    The radiation-initiated grafting copolymerisation of hydrophil monomers to FEP, a copolymer of tetrafluorethene and hexafluorpropene and to polyacryl nitrile (PAN) was examined in this dissertation. The grafted products were used as diaphragms for the separation of water-ethanol mixtures by pervaporation. Water was separated through the diaphragm from the mixture in the pervaporation experiments. It was shown how the mechanical properties of the basic polymer affect the interaction between basic polymer and grafted polymer and how the grafting conditions affect the diaphragm properties. By grafting acrylic acid on to the basic polymers FEP and PAN, very good results were achieved for the water-ethanol separation, if the diaphragms were used in the K form. The selectivity of PAN-g-acrylic acid-K for water reached values of α > 1000. (orig./RB) [de

  1. PCL-PEG graft copolymers with tunable amphiphilicity as efficient drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Al Samad, A.; Bethry, A.; Koziolová, Eva; Netopilík, Miloš; Etrych, Tomáš; Bakkour, Y.; Coudane, J.; El Omar, F.; Nottelet, B.

    2016-01-01

    Roč. 4, č. 37 (2016), s. 6228-6239 ISSN 2050-750X R&D Projects: GA MŠk(CZ) LO1507; GA ČR(CZ) GA15-02986S Institutional support: RVO:61389013 Keywords : HPMA copolymer * tumor * micelle Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.543, year: 2016

  2. Synthesis of photoactuating acrylic thermoplastic elastomers containing diblock copolymer-grafted carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Ilčíková, M.; Mrlík, M.; Sedláček, T.; Šlouf, Miroslav; Zhigunov, Alexander; Koynov, K.; Mosnáček, J.

    2014-01-01

    Roč. 3, č. 10 (2014), s. 999-1003 ISSN 2161-1653 R&D Projects: GA TA ČR TE01020118 Institutional support: RVO:61389013 Keywords : photoactuating nanocomposite * carbon nanotubes * copolymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.764, year: 2014

  3. Enhancement the Thermal Stability and the Mechanical Properties of Acrylonitrile-Butadiene Copolymer by Grafting Antioxidant

    Directory of Open Access Journals (Sweden)

    Abdulaziz Ibrahim Al-Ghonamy

    2010-01-01

    Full Text Available Monomeric antioxidants are widely used as effective antioxidants to protect polymers against thermal oxidation. Low molecular weight antioxidants are easily lost from polymer through migration, evaporation, and extraction. Physical loss of antioxidants is considered to be major concern in the environmental issues and safety regulation as well as long life time of polymers. The grafting copolymerization of natural rubber and o-aminophenol was carried out by using two-roll mill machine. The prepared natural rubber-graft-o-Aminophenol, NR-graft-o-AP, was analysed by using Infrared and 1H-NMR Spectroscopy techniques. The thermal stability, mechanical properties, and ultrasonic attenuation coefficient were evaluated for NBR vulcanizates containing the commercial antioxidant, N-phenyl--naphthylamine (PBN, the prepared grafted antioxidant, NR-graft-o-AP, and the control vulcanizate. Results of the thermal stability showed that the prepared NR-graft-o-AP can protect NBR vulcanizate against thermal treatment much better than the commercial antioxidant, PBN, and control mix, respectively. The prepared grafted antioxidant improves the mechanical properties of NBR vulcanizate.

  4. Enhancement the Thermal Stability and the Mechanical Properties of Acrylonitrile-Butadiene Copolymer by Grafting Antioxidant

    International Nuclear Information System (INIS)

    Al-Ghonamy, A.I.; El-Wakil, A.A.; Ramadan, M.; El-Wakil, A.A.; Ramadan, M.

    2010-01-01

    Monomeric antioxidants are widely used as effective antioxidants to protect polymers against thermal oxidation. Low molecular weight antioxidants are easily lost from polymer through migration, evaporation, and extraction. Physical loss of antioxidants is considered to be major concern in the environmental issues and safety regulation as well as long life time of polymers. The grafting copolymerization of natural rubber and o-aminophenol was carried out by using two-roll mill machine. The prepared natural rubber-graft-o-Aminophenol, NR-graft-o-AP, was analysed by using Infrared and 1H-NMR Spectroscopy techniques. The thermal stability, mechanical properties, and ultrasonic attenuation coefficient were evaluated for NBR vulcanizations containing the commercial antioxidant, N-phenyl-β-naphthylamine (PBN), the prepared grafted antioxidant, NR-graft-o-AP, and the control vulcanization. Results of the thermal stability showed that the prepared NR-graft-o-AP can protect NBR vulcanization against thermal treatment much better than the commercial antioxidant, PBN, and control mix, respectively. The prepared grafted antioxidant improves the mechanical properties of NBR vulcanization.

  5. Analysis of Gel Permeation Chromatography From Irradiation Copolymer Grafting of Methylmethacrylate on to Natural Rubber

    International Nuclear Information System (INIS)

    Hendrana, Sunit; Purwanto, Indratmoko Hari; Karyaningsih, Ipit; Utama, MargaHerwinarni

    2004-01-01

    Grafting of methyl methacrylate (MMA) onto natural rubber was carried out by γ-irradiation using 60 Co source at dose rate 1 KGy/h and total dose of 5 KGy. Gel permeation chromatography (GPC) was used to analyse the grafting. The GPC's chromatogram, molecular weight and molecular weight distribution data indicate that grafting of MMA onto natural rubber and homo polymerization of MMA are the reaction mostly occurs. Meanwhile, the presence of natural rubber radical with a chain end natural rubber radical affect the PMMA homopolymer occurred

  6. Preparation of thermo-responsive graft copolymer by using a novel macro-RAFT agent and its application for drug delivery.

    Science.gov (United States)

    Song, Cunfeng; Yu, Shirong; Liu, Cheng; Deng, Yuanming; Xu, Yiting; Chen, Xiaoling; Dai, Lizong

    2016-05-01

    A methodology to prepare thermo-responsive graft copolymer by using a novel macro-RAFT agent was proposed. The macro-RAFT agent with pendant dithioester (ZC(S)SR) was facilely prepared via the combination of RAFT polymerization and esterification reaction. By means of ZC(S)SR-initiated RAFT polymerization, the thermo-responsive graft copolymer consisting of poly(methyl methacrylate-co-hydroxylethyl methacrylate) (P(MMA-co-HEMA)) backbone and hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) side chains was constructed through the "grafting from" approach. The chemical compositions and molecular weight distributions of the synthesized polymers were respectively characterized by (1)H nuclear magnetic resonance ((1)H NMR) and gel permeation chromatography (GPC). Self-assembly behavior of the amphiphilic graft copolymers (P(MMA-co-HEMA)-g-PNIPAAm) was studied by transmission electron microscopy (TEM), dynamic light scattering (DLS) and spectrofluorimeter. The critical micelle concentration (CMC) value was 0.052 mg mL(-1). These micelles have thermo-responsibility and a low critical solution temperature (LCST) of 33.5°C. Further investigation indicated that the guest molecule release property of these micelles, which can be well described by a first-order kinetic model, was significantly affected by temperature. Besides, the micelles exhibited excellent biocompatibility and cellular uptake property. Hence, these micelles are considered to have potential application in controlled drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Synthesis of a pH- and Thermo- Responsive Binary Copolymer Poly(N-vinylimidazole-co-N-vinylcaprolactam Grafted onto Silicone Films

    Directory of Open Access Journals (Sweden)

    Ángela Obando-Mora

    2015-10-01

    Full Text Available This work focuses on the effects of gamma-ray irradiation conditions on the stimuli-responsiveness of silicone rubber (SR substrates grafted with N-vinylcaprolactam (NVCL and N-vinylimidazole (NVIM, modified by the simultaneously polymerization and grafting method, which is expected to result in valuable new applications in the near future. The modification of silicone rubber was carried out via γ-ray radiation in order to graft a binary copolymer, poly(N-vinylimidazole-co-N-vinylcaprolactam, by the pre-irradiation method, to obtain pH- and thermo-responsive materials. The grafting yield was found to be directly proportional to the dose and monomers concentration. The biomaterials were characterized by using Fourier-transform infrared attenuated total reflection (FTIR-ATR, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, and swelling; and their stimuli behavior was evaluated by lower critical solution temperature (LCST and pH critical studies.

  8. SYNTHESIS AND CHARACTERISTICS OF GRAFT COPOLYMERS OF POLY (BUTYL ACRYLATE AND CELLULOSE WITH ULTRASONIC PROCESSING AS A MATERIAL FOR OIL ABSORPTION

    Directory of Open Access Journals (Sweden)

    Ping Qu

    2011-11-01

    Full Text Available A series of materials used for oil absorption based on cellulose fiber grafted with butyl acrylate (BuAc have been prepared by radical polymerization under ultrasonic waves processing. Effects of ultrasonic dose for the maximum graft yield were considered. The dependency of optimum conditions for oil absorption rate on parameters such as ultrasonic processing time and ultrasonic power were also determined. Fourier infrared (FT-IR analysis was used to confirm the chemical reaction taking place between cellulose and butyl acrylate. The thermogravimetric behavior of the graft copolymer was characterized by thermogravimetric analysis (TGA. Scanning electron microscope (SEM analysis was used to determine the surface structure of the grafted material. With the increase of the ultrasonic treatment dose, the surface of the ultrasonic processed material became more regular, and the material was transformed into a homogeneous network polymer having a good structure and good adsorbing ability.

  9. Algal biomass harvesting by graft copolymer of polyacrylamide on guar gum (GGg-PAM: a sustainable method for alternative source of energy

    Directory of Open Access Journals (Sweden)

    Pinki Pal

    2016-09-01

    Full Text Available Microalgal cells has been utilized as a rich source of food, feed and fuel. The process of concentrating algal cells from water suspension is called harvesting. This article deals with the algal biomass harvesting by flocculation process using acrylamide grafted guar gum. Acrylamide has been successfully grafted onto the backbone of guar gum by microwave initiated method in which microwave radiation alone (without chemical free radical initiator is used to initiate the grafting reaction. Simultaneously with the synthesis of graft copolymer, water removal capability of various grades of GGg-PAM have also been studied as a flocculant for algal biomass harvesting through standard jar test procedure for collection of algal biomass. The collected biomass can be hand carried. The collected biomass has been characterized in terms of crude fat content and elemental composition. Calorific value of this collected biomass has also been theoretically calculated.

  10. Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers--evaluation of thermal, physico-chemical and mechanical properties.

    Science.gov (United States)

    Kaith, B S; Jindal, R; Jana, A K; Maiti, M

    2010-09-01

    In this paper, corn starch based green composites reinforced with graft copolymers of Saccharum spontaneum L. (Ss) fiber and methyl methacrylates (MMA) and its mixture with acrylamide (AAm), acrylonitrile (AN), acrylic acid (AA) were prepared. Resorcinol-formaldehyde (Rf) was used as the cross-linking agent in corn starch matrix and different physico-chemical, thermal and mechanical properties were evaluated. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR and scanning electron microscopic (SEM) techniques. S. spontaneum L fiber-reinforced composites were found to exhibit better tensile strength. On the other hand Ss-g-poly (MMA) reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. (c) 2010 Elsevier Ltd. All rights reserved.

  11. DMFC Performance of Polymer Electrolyte Membranes Prepared from a Graft-Copolymer Consisting of a Polysulfone Main Chain and Styrene Sulfonic Acid Side Chains

    Directory of Open Access Journals (Sweden)

    Nobutaka Endo

    2016-08-01

    Full Text Available Polymer electrolyte membranes (PEMs for direct methanol fuel cell (DMFC applications were prepared from a graft-copolymer (PSF-g-PSSA consisting of a polysulfone (PSF main chain and poly(styrene sulfonic acid (PSSA side chains with various average distances between side chains (Lav and side chain lengths (Lsc. The polymers were synthesized by grafting ethyl p-styrenesulfonate (EtSS on macro-initiators of chloromethylated polysulfone with different contents of chloromethyl (CM groups, and by changing EtSS content in the copolymers by using atom transfer radical polymerization (ATRP. The DMFC performance tests using membrane electrode assemblis (MEAs with the three types of the PEMs revealed that: a PSF-g-PSSA PEM (SF-6 prepared from a graft copolymer with short average distances between side chains (Lav and medium Lsc had higher DMFC performance than PEMs with long Lav and long Lsc or with short Lav and short Lsc. SF-6 had about two times higher PDmax (68.4 mW/cm2 than Nafion® 112 at 30 wt % of methanol concentration. Furthermore, it had 58.2 mW/cm2 of PDmax at 50 wt % of methanol concentration because of it has the highest proton selectivity during DMFC operation of all the PSF-g-PSSA PEMs and Nafion® 112.

  12. Storage Stability Improvement of Copolymer Grafted Polypropylene-AcrylicAcid (PP-AA), by means of Various After Treatment Processes

    International Nuclear Information System (INIS)

    Gitopadmojo, Isminingsih

    2000-01-01

    Polypropylene yams that have been subjected to irradiation induced graftco-polymerization with acrylic acid, have gained its moisture regain and dyeability, that fulfilled the requirement as textile material for garment.However, the copolymer grafted PP-AA has suffered from degradation in thestorage, which was indicated in the previous study that the strengthretention has dropped tremendously by photo-oxidation or photo-degradation.After treatments of PP-AA yams with chemical compound that was able toprevent further photo-oxidation, will be expected to improve the stability ofPP-AA in storage. In this research activity, the polypropylene (PP) yams weresubjected to irradiation induced graft co-polymerization by means ofγ-Ray Co-60 as irradiation source with acrylic acid (AA) as monomer.Various after treatments were subjected to the grafted PP-AA yams such asalkalisation process; dyeing (anionic dyes, cationic dyes and nonionic dyes);as well as processing with optical brightening agent and UV stabilizer,separately. The PP-AA yams (before and after treatment) were subjected tostorage from 1 month up to 42 months, and then being tested for theirmoisture regain, strength retention and elongation at breaks. The samplesbeing stored for 12 months were subjected to radical analysis. It isconcluded from the experiment that after treatment of grafted PP-AA by meansof those various processes were able to improve the stability of copolymergrafted PP-AA in storage. The presence of peroxide radical in the ESR(electron spin resonance) spectrum on PP-AA yams before treatment and theones after treated with alkaline and being stored for 12 months haveindicated the presence of photo oxidation or photo degradation, while thepresence of poly enyl radical in the ESR spectrum of after treated PP-AA withdyes having azo and azine compound as chromophore, as well as with UVstabilizer with carbonyl as chromophore and being stored for 12 months haveproved that its presence have protected such

  13. Removal of cadmium(II) from aqueous solution by corn stalk graft copolymers.

    Science.gov (United States)

    Zheng, Liuchun; Dang, Zhi; Zhu, Chaofei; Yi, Xiaoyun; Zhang, Hui; Liu, Congqiang

    2010-08-01

    Corn stalk was modified using graft copolymerization to produce absorbent (AGCS), which was characterized by elemental analysis, fourier transform infrared, X-ray diffraction, solid-state CP/MAS (13)C NMR spectra, thermogravimetric analysis and differential scanning calorimeter. AGCS, having cyano group (-CN) after grafted successfully, exhibits more high adsorption potential for Cd(II) than unmodified forms. The efficiency of AGCS for removal of cadmium ions was evaluated. Factors affecting Cd(II) adsorption such as pH value and adsorbent dosage were investigated. More than 90% removal was achieved at pH 3.0-7.0 and the adsorption increased from 16.0% to 99.2% with increase of adsorbent dose. In addition, two isotherm models, namely, Langmuir and Freunlich were also analyzed to determine the best fit equation for adsorption of Cd(II) on AGCS. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Chromatographic study of the conformational behavior of graft copolymers with a broad distribution of grafting densities in dilute solutions in selective solvents for grafts

    Czech Academy of Sciences Publication Activity Database

    Netopilík, Miloš; Janata, Miroslav; Svitáková, Romana; Trhlíková, Olga; Berek, D.; Macova, E.; Limpouchová, Z.; Procházka, K.

    2016-01-01

    Roč. 39, č. 1 (2016), s. 50-58 ISSN 1082-6076 R&D Projects: GA ČR(CZ) GA13-02938S Grant - others:OPPK(XE) CZ.2.16/3.1.00/24504 Institutional support: RVO:61389013 Keywords : interaction chromatography * size exclusion chromatography * poly(4-methylstyrene)-graft-poly(2-vinylpyridine) Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.697, year: 2016

  15. Ruthenium complexing during sorption by graft copolymer of polyacrylonitrile fibre with poly-2-methyl-5-vnylpyridine (PAN-MVP)

    International Nuclear Information System (INIS)

    Simanova, S.A.; Kolmakova, A.I.; Konovalov, L.V.; Kukushkin, Yu.N.; Lysenko, A.A.

    1984-01-01

    The sorption of ruthenium chlorocomplexes is studied on graft copolymer of polyacrylonitrile fibre with poly-2-methyl-5-vinylpyridine (PAN-MVP). The sorption has been performed under static conditions in the course of mixing at 20 and 98 deg from 0.1-2 OM HCl, 0.1-1 m NaCl solutions. The volume of the investigated solutions constituted 25 ml, fibre weight -0.1-0.3 g. Ruthenium concentration in solutions has been changed in the limits of 5x10 3 -2x10 -2 mol/l. The fibre has been preliminarily moistened by a solution containing no ruthenium. In all cases fresh-prepared ruthenium chlorocomplex solutions have been used. It has been found that with temperature increase the PAN-MVP sorption capacitance relative to ruthenium increases (at 20 deg-1.15 mmol/g, at 98 deg-1.70 mmol/g. The ruthenium chlorocomplex sorption by pyridine fibrous sorbent from salt-acid solutions occurs by anionoexchange mechanism and is related to the formation in the sorbent phase of onium chlorocomplexes - (RPyH) 2 [RuCl 6 ]. In the course of sorbents heating pyridine compounds are subject to Anderson regroupping with formation of compounds of diamine type-[Ru(RPy) 2 Cl 4

  16. Poly(ethylmethacrylate-co-diethylaminoethyl acrylate) coating improves endothelial re-population, bio-mechanical and anti-thrombogenic properties of decellularized carotid arteries for blood vessel replacement.

    Science.gov (United States)

    López-Ruiz, Elena; Venkateswaran, Seshasailam; Perán, Macarena; Jiménez, Gema; Pernagallo, Salvatore; Díaz-Mochón, Juan J; Tura-Ceide, Olga; Arrebola, Francisco; Melchor, Juan; Soto, Juan; Rus, Guillermo; Real, Pedro J; Diaz-Ricart, María; Conde-González, Antonio; Bradley, Mark; Marchal, Juan A

    2017-03-24

    Decellularized vascular scaffolds are promising materials for vessel replacements. However, despite the natural origin of decellularized vessels, issues such as biomechanical incompatibility, immunogenicity risks and the hazards of thrombus formation, still need to be addressed. In this study, we coated decellularized vessels obtained from porcine carotid arteries with poly (ethylmethacrylate-co-diethylaminoethylacrylate) (8g7) with the purpose of improving endothelial coverage and minimizing platelet attachment while enhancing the mechanical properties of the decellularized vascular scaffolds. The polymer facilitated binding of endothelial cells (ECs) with high affinity and also induced endothelial cell capillary tube formation. In addition, platelets showed reduced adhesion on the polymer under flow conditions. Moreover, the coating of the decellularized arteries improved biomechanical properties by increasing its tensile strength and load. In addition, after 5 days in culture, ECs seeded on the luminal surface of 8g7-coated decellularized arteries showed good regeneration of the endothelium. Overall, this study shows that polymer coating of decellularized vessels provides a new strategy to improve re-endothelialization of vascular grafts, maintaining or enhancing mechanical properties while reducing the risk of thrombogenesis. These results could have potential applications in improving tissue-engineered vascular grafts for cardiovascular therapies with small caliber vessels.

  17. Investigation and Characterization of Radiation Grafted Copolymers for Possible Practical Use in Waste Treatment

    International Nuclear Information System (INIS)

    El-Sayed Hegazy, A.; Abd El-Rahim, H.A.; Shawky, H.A.; Aly, H.F.

    1999-01-01

    Selective removal and recovery of metals from industrial effluent is an environmental problem and economic concern. There are a number of heavy metals that are candidates for removal prior to having waste solutions coming in contact with the environment. Therefore, a study has been made on the preparation of hydrophilic membranes having both anionic and cationic exchangers. To achieve such properties in the required membranes, a trial has been made on the radiation graft copolymerization of binary monomers possessing anionic and cationic exchangers such as acrylic acid /2- and 4- vinyl pyridine (AAc/2-VP) (AAc/4-VP) onto available commercial polymeric substrate such as low density polyethylene (LDPE). The preparation conditions at which the grafting process proceeds homogeneously are determined. Characterization and some selected properties of the prepared grafted membranes were studied and accordingly the possibility of its practicable use in waste water treatment from heavy and toxic metals such as Pb, Zn, Cd, Fe, ...etc, was investigated. The metal uptake by such prepared membranes was determined by using atomic absorption technique. The membrane efficiency and durability was investigated. The maximum uptake for a given metal was higher for the LDPE-g-P(AAc/2 VP) membranes than that for the LDPE-g-P(AAc/4 VP). The chelated metal ions were easily desorbed by treating the membrane with 0.1 N H CI for 2 h at room temperature. A mixture of two or three metals in the same feed solution was used to determine the selectivity of the membrane towards different metals. The results obtained for the prepared membranes showed a great promise for their applicability in the removal of heavy metals from wastewater

  18. Synthesis, characterization, and biocompatible properties of alanine-grafted chitosan copolymers.

    Science.gov (United States)

    Park, Gyu Han; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2016-04-01

    In order to overcome major problems regarding the lack of affinity to solvents and limited reactivity of the free amines of chitosan, introduction of appropriate spacer arms having terminal amine function is considered of interest. L-Alanine-N-carboxyanhydride was grafted onto chitosan via anionic ring-opening polymerization. The chemical and structural characterizations of L-alanine-grafted chitosan (Ala-g-Cts) were confirmed through Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy ((1)H NMR). In addition, the viscoelastic properties of Ala-g-Cts were examined by means of a rotational viscometer, and thermal analysis was carried out with a thermogravimetric analyzer and differential scanning calorimetry. Morphological changes in the chitosan L-alanine moiety were determined by x-ray diffraction. To determine the feasibility of using these films as biomedical materials, we investigated the effects of their L-alanine content on physical and mechanical properties. The biodegradation results of crosslinked Ala-g-Cts films were evaluated in phosphate-buffered solution containing lysozyme at 37℃. Proliferation of MC3T3-E1 cells on crosslinked Ala-g-Cts films was also investigated with use of the CCK-8 assay. © The Author(s) 2016.

  19. Glycidyl methacrylate macroporous copolymer grafted with diethylene triamine as sorbent for Reactive Black 5

    Directory of Open Access Journals (Sweden)

    Sandić Zvjezdana P.

    2014-01-01

    Full Text Available In this paper, macroporous glycidyl methacrylate and ethylene glycol dimethacrylate copolymer functionalized with diethylene triamine [PGME-deta], was evaluated as Reactive Black 5 (RB5 sorbent. Batch RB5 removal from aqueous solution by PGME-deta was investigated by varying pH, contact time, sorbent dosage, initial dye concentration and temperature. The sorption is pH sensitive having maximum at pH 2 (dye removal of 85%, decreasing with the increase of pH (dye removal of 24% at pH=11 after 60 min. Sorption kinetics was fitted to chemical-reaction and particle-diffusion models (pseudo-first-order, pseudo-second-order, intraparticle diffusion and Mckay models. The pseudo-second-order kinetic model accurately predicted the RB5 amount sorbed under all investigated operating conditions, while the intraparticle diffusion was the dominant rate-limiting mechanism. The diffusion mechanism was more prevalent with the decrease in temperature and the increase in concentration. The isotherm data was best fitted with the Langmuir model, indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption, with the maximum sorption capacity of 353 mg g-1. The calculated sorption rates improved with increasing temperature and an activation energy close to 40 kJ mol-1 was determined, suggesting that chemisorption was also rate-controlling. [Projekat Ministarstva nauke Republike Srbije, br. III 43009, br. TR 37021 i br. III 45001

  20. Synthesis and properties of a novel UV-cured fluorinated siloxane graft copolymer for improved surface, dielectric and tribological properties of epoxy acrylate coating

    International Nuclear Information System (INIS)

    Yan, Zhenlong; Liu, Weiqu; Gao, Nan; Wang, Honglei; Su, Kui

    2013-01-01

    A novel functional fluorinated siloxane graft copolymer bearing with vinyl end-groups was synthesized from dihydroxypropyl-terminated poly(dimethylsiloxane) (PDMS), dicarboxyl terminated poly(2,2,3,4,4,4-hexafluorobutyl acrylate) oligomer (CTHFA), 2,4-toluene diissocyanate (TDI) and 2-hydroxyethyl methacrylate (HEMA). The chemical structure was characterized by FT-IR and GPC. The effect of concentration of the vinyl-capped fluorosilicone graft copolymer (Vi-PFSi) on the surface, thermal properties, dielectric and tribological properties of UV-cured films was investigated. Contact angles and surface energies showed that the high hydrophobic and oleophobic surfaces were obtained by incorporation of Vi-PFSi at very low amount (0.5 wt%). X-ray photoelectron spectroscopy (XPS) evidenced that the fluorinated and siloxane moiety selectively migrated to the outermost surface of UV-cured film, thus reduced its surface energy from 45.42 to 15.40 mN/m 2 without affecting its bulk properties. The morphology of fracture surface of modified film exhibited rough fracture surface only at the outermost surface, revealing fluorinated and siloxane groups migrated toward air-side surface. The dielectric constants decreased from 5.32 (1 MHz) for bisphenol-A epoxy methacrylate (EMA) to 2.82 (1 MHz) for modified film when the Vi-PFSi copolymer concentration increased from 0 to 0.8 wt%. Tribological results from abrasion tester suggested that the Vi-PFSi could obviously reduce the abrasion weight loss of modified films.

  1. Positron annihilation study on free volume of amino acid modified, starch-grafted acrylamide copolymer

    International Nuclear Information System (INIS)

    Mahmoud, K.R.; Al-Sigeny, S.; Sharshar, T.; El-Hamshary, H.

    2006-01-01

    Free volume measurements using positron annihilation lifetime spectroscopy was performed for uncrosslinked and crosslinked starch-grafted polyacrylamide, and their modified amino acid samples including some of their iron(III) complexes. The measurements were performed at room temperature. The analysis of lifetime spectra yielded mostly three lifetime components. It was observed that the values of the short lifetime component τ 1 are slightly higher than the lifetime associated with the self-decay of para-positronium atoms in polymers. The free volume was probed using ortho-positronium pick-off annihilation lifetime parameters. The mean free volume has also been calculated from the lifetime data. The avrage value of this parameter of the crosslinked polymer were found to be higher than those of the uncrosslinked polymer

  2. Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line.

    Science.gov (United States)

    Akbarzadeh, Abolfazl; Samiei, Mohammad; Joo, Sang Woo; Anzaby, Maryam; Hanifehpour, Younes; Nasrabadi, Hamid Tayefi; Davaran, Soodabeh

    2012-12-18

    The aim of present study was to develop the novel methods for chemical and physical modification of superparamagnetic iron oxide nanoparticles (SPIONs) with polymers via covalent bonding entrapment. These modified SPIONs were used for encapsulation of anticancer drug doxorubicin. At first approach silane-grafted magnetic nanoparticles was prepared and used as a template for polymerization of the N-isopropylacrylamide (NIPAAm) and methacrylic acid (MAA) via radical polymerization. This temperature/pH-sensitive copolymer was used for preparation of DOX-loaded magnetic nanocomposites. At second approach Vinyltriethoxysilane-grafted magnetic nanoparticles were used as a template to polymerize PNIPAAm-MAA in 1, 4 dioxan and methylene-bis-acrylamide (BIS) was used as a cross-linking agent. Chemical composition and magnetic properties of Dox-loaded magnetic hydrogel nanocomposites were analyzed by FT-IR, XRD, and VSM. The results demonstrate the feasibility of drug encapsulation of the magnetic nanoparticles with NIPAAm-MAA copolymer via covalent bonding. The key factors for the successful prepardtion of magnetic nanocomposites were the structure of copolymer (linear or cross-linked), concentration of copolymer and concentration of drug. The influence of pH and temperature on the release profile of doxorubicin was examined. The in vitro cytotoxicity test (MTT assay) of both magnetic DOx-loaded nanoparticles was examined. The in vitro tests showed that these systems are no toxicity and are biocompatible. IC50 of DOx-loaded Fe3O4 nanoparticles on A549 lung cancer cell line showed that systems could be useful in treatment of lung cancer.

  3. Synthesis of hemicellulose-acrylic acid graft copolymer super water absorbent resin by ultrasonic irradiation technology

    Directory of Open Access Journals (Sweden)

    Fangfang LIU

    2015-12-01

    Full Text Available The hemicellulose super water absorbent resin is prepared by using ultrasonic irradiation technology, with the waste liquid produced during the preparation of viscose fiber which contains a large amount of hemicellulose as raw material, acrylic acid as graft monomer, N,N’-methylene bis acrylamide (NMBA as cross linking agent, and (NH42S2O8-NaHSO3 as the redox initiation system. The synthesis conditions, structure and water absorption ability of resin are discussed. The results indicate that water absorbency of the resin is 311 g/g, the tap water absorbency is 102 g/g, the normal saline absorbency is 55 g/g, and the artificial urine absorbency is 31 g/g under the optimal synthesis conditions, so the resin has great water absorption rate and water retaining capacity. The FT-IR and SEM analysis shows that the resin with honeycomb network structure is prepared. The successfully synthesized of the resin means that the hemicellulose waste liquid can be highly effectively recycled, and it provides a kind of new raw material for the synthesis of super water absorbent resin.

  4. Cassava starch graft copolymers an eco-friendly corrosion inhibitor for steel in H{sub 2}SO{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xianghong; Deng, Shuduan [Southwest Forestry University, Kunming (China)

    2015-11-15

    Cassava starch graft copolymer (CSGC) was prepared by grafting acryl amide (AA) onto cassava starch (CS). The inhibition effect of CSGC on the corrosion of cold rolled steel (CRS) in 1.0M H{sub 2}SO{sub 4} solution was first studied by weight loss, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM) methods. The results show that CSGC is a good inhibitor, and inhibition efficiency of CSGC is higher than that of CS or AA. The adsorption of CSGC on steel surface obeys Langmuir adsorption isotherm. CSGC is a mixed-type inhibitor at 20 .deg. C, while mainly a cathodic inhibitor at 50 .deg. C.

  5. Grafting

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, J L [New South Wales Univ., Kensington (Australia). School of Chemistry

    1979-01-01

    The unique value of ionizing radiation for the initiation of grafting to backbone polymers is discussed. The principles of the technique are briefly reviewed. The conditions under which free radicals and ions participate in these reactions are examined. Examples of representative grafting processes are considered to illustrate where the technique can be of potential commercial value to a wide range of industries. The general principles of these grafting reactions are shown to be applicable to radiation induced rapid cure technology such as is provided by electron beam processing facilities. Grafting reactions initiated by UV are also treated and shown to be of importance because of the many similarities in properties of the ionizing radiation and UV systems, also the rapid industrial exploitation of EB and sensitized UV processing technology. Possible future trends in radiation grafting are outlined.

  6. Impact of molecular weight and degree of conjugation on the thermodynamics of DNA complexation and stability of polyethylenimine-graft-poly(ethylene glycol) copolymers.

    Science.gov (United States)

    Smith, Ryan J; Beck, Rachel W; Prevette, Lisa E

    2015-01-01

    Poly(ethylene glycol) (PEG) is often conjugated to polyethylenimine (PEI) to provide colloidal stability to PEI-DNA polyplexes and shield charge leading to toxicity. Here, a library of nine cationic copolymers was synthesized by grafting three molecular weights (750, 2000, 5000Da) of PEG to linear PEI at three conjugation ratios. Using isothermal titration calorimetry, we have quantified the thermodynamics of the associations between the copolymers and DNA and determined the extent to which binding is hindered as a function of PEG molecular weight and conjugation ratio. Low conjugation ratios of 750Da PEG to PEI resulted in little decrease in DNA affinity, but a significant decrease-up to two orders of magnitude-was found for the other copolymers. We identified limitations in determination of affinity using indirect assays (electrophoretic mobility shift and ethidium bromide exclusion) commonly used in the field. Dynamic light scattering of the DNA complexes at physiological ionic strength showed that PEI modifications that did not reduce DNA affinity also did not confer significant colloidal stability, a finding that was supported by calorimetric data on the aggregation process. These results quantify the DNA interaction thermodynamics of PEGylated polycations for the first time and indicate that there is an optimum PEG chain length and degree of substitution in the design of agents that have desirable properties for effective in vivo gene delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Cotton fibers encapsulated with homo- and block copolymers: synthesis by the atom transfer radical polymerization grafting-from technique and solid-state NMR dynamic investigations.

    Science.gov (United States)

    Castelvetro, Valter; Geppi, Marco; Giaiacopi, Simone; Mollica, Giulia

    2007-02-01

    Cotton fibers were modified by surface-initiated atom transfer radical polymerization of ethyl acrylate (EA) followed by copolymerization with styrene. Either ethyl 2-bromopropionate as a sacrificial free initiator or Cu(II) as a deactivator was used to optimize the EA grafting yield and to preserve the livingness of the chain ends for the subsequent growth of a poly(styrene) (PSty) block from the poly(ethyl acrylate) (PEA) grafts. The polymer-encapsulated cotton fibers were analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, and solid-state NMR (high-resolution 13C cross-polarization magic angle spinning, 1H spin-lattice relaxation times, and 1H free induction decay analysis NMR). The latter allowed the detection of the dynamic modifications associated with the presence of homo- and block copolymer grafts. In particular, the results of the DSC and NMR investigations suggest a heterogeneous morphology of the g-PEA-b-PSty grafted skin, which could be described as an inner layer of g-PEA sandwiched between the semicrystalline cellulose of the core fiber and the high glass transition temperature PSty of the covalently linked outer layer. Such morphology results in a reduced molecular mobility of the PEA chains.

  8. High fluorescence emission silver nano particles coated with poly (styrene-g-soybean oil) graft copolymers: Antibacterial activity and polymerization kinetics.

    Science.gov (United States)

    Hazer, Baki; Kalaycı, Özlem A

    2017-05-01

    Autoxidation of poly unsaturated fatty acids makes negative effect on foods. In this work, this negative effect was turned to a great advantage using autoxidized soybean oil as a macroperoxide nanocomposite initiator containing silver nano particles in free radical polymerization of vinyl monomers. The synthesis of soybean oil macro peroxide was carried out by exposing soybean oil to air oxygen with the presence of silver nanoparticles (Ag NPs) at room temperature. Autoxidized soybean oil macroperoxide containing silver nanoparticles (Agsbox) successfully initiated the free radical polymerization of styrene in order to obtain Polystyrene (PS)-g-soybean oil graft copolymer containing Ag NPs. Both autoxidized soybean oil and PS-g-sbox with Ag NPs showed a surface plasmon resonance and high fluorescence emission. Overall rate constant (K) of styrene polymerization initiated by autoxidized soybean oil macroperoxide with Ag NPs was found to be K=1.95.10 -4 Lmol -1 s -1 at 95°C. Antibacterial efficiency was observed in the PS-g-soybean oil graft copolymer film samples containing Ag NPs. 1 H NMR and GPC techniques were used for the structural analysis of the fractionated polymeric oils. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Recent progress on the design and applications of polysaccharide-based graft copolymer hydrogels as adsorbents for wastewater purification

    CSIR Research Space (South Africa)

    Mittal, Hemant

    2016-05-01

    Full Text Available as emulsifiers and thickeners. In their natural form, gum polysaccharides have poor mechanical and physical properties; therefore, they are frequently modified with various synthetic monomers such as acrylamide and acrylic acid using graft copolymerization. Graft...

  10. Self-aggregated nanoparticles based on amphiphilic poly(lactic acid-grafted-chitosan copolymer for ocular delivery of amphotericin B

    Directory of Open Access Journals (Sweden)

    Zhou WJ

    2013-09-01

    Full Text Available Wenjun Zhou,1 Yuanyuan Wang,2 Jiuying Jian,2 Shengfang Song1 1Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, People’s Republic of China; 2College of Life Science, Chongqing Medical University, Chongqing, People’s Republic of China Background: The purpose of this study was to develop a self-aggregated nanoparticulate vehicle using an amphiphilic poly(lactic acid-grafted-chitosan (PLA-g-CS copolymer and to evaluate its potential for ocular delivery of amphotericin B. Methods: A PLA-g-CS copolymer was synthesized via a “protection-graft-deprotection” procedure and its structure was confirmed by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and X-ray diffraction spectra. Amphotericin B-loaded nanoparticles based on PLA-g-CS (AmB/PLA-g-CS were prepared by the dialysis method and characterized for particle size, zeta potential, and encapsulation efficiency. Studies of these AmB/PLA-g-CS nanoparticles, including their mucoadhesive strength, drug release properties, antifungal activity, ocular irritation, ocular pharmacokinetics, and corneal penetration were performed in vitro and in vivo. Results: Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and X-ray diffraction spectra showed that the PLA chains were successfully grafted onto chitosan molecules and that crystallization of chitosan was suppressed. The self-aggregated PLA-g-CS nanoparticles had a core-shell structure with an average particle size of approximately 200 nm and zeta potentials higher than 30 mV. Amphotericin B was incorporated into the hydrophobic core of the nanoparticles with high encapsulation efficiency. Sustained drug release from the nanoparticles was observed in vitro. The ocular irritation study showed no sign of irritation after instillation of the PLA-g-CS nanoparticles into rabbit eyes. The minimal inhibitory concentration of the AmB/PLA-g-CS nanoparticles showed antifungal

  11. Lignin poly(lactic acid) copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  12. PETMA-g-PETMA-b-PS 'palm tree' graft copolymer: A new polymeric architecture obtained via RAFT and ROP process;Copolimero PETMA-PS-G-P(PSMA) do tipo 'palma': nova arquitetura polimerica obtida via processo RAFT e ROP

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Paula P.; Silva, Eduardo de O. da; Petzhold, Cesar L., E-mail: poli_pps@yahoo.com.b [Universidade Federal do Rio Grande do Sul (IQ/UFRS), Porto Alegre, RS (Brazil). Dept. de Quimica Organica. Lab. de Sintese e Polimeros

    2009-07-01

    Block copolymer with pendant thiirane moiety PETMA-b-PS is the base for a new class of 'palm tree' graft copolymers, which can show interesting properties. ETMA can be polymerized through ring opening polymerization with Lewis bases as initiator, e.g., Br- and tertiary amines. We used this reaction as a way to graft a copolymer PETMA-b-PS possessing 5% of ETMA unities, with chains having poly(propylene sulfide), obtained by graft from method. Produced materials were characterized through H1 NMR, SEC and DSC. (author)

  13. Stability of radicals in electron-irradiated fluoropolymer film for the preparation of graft copolymer fuel cell electrolyte membranes

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Ma, Yue; Qian, Huan

    This presentation concerns the stability of radicals generated in poly(ethylene-alt-tetra­fluoro­ethylene) (ETFE) film by electron irradiation prior to grafting of styrene onto this base material. It has been demonstrated that the grafting yield decreases as the storage time of the irradiated fil...

  14. Preparation of the copolymer of acrylic acid and acrylamide grafted onto polyethylene and its complexation with samarium ion

    International Nuclear Information System (INIS)

    Kido, Junji; Akiba, Hideto; Nishide, Hiroyuki; Tsuchida, Eishun; Omichi, Hideki; Okamoto, Jiro.

    1986-01-01

    Acrylic acid (AA) and acrylamide (AAm) were graft-copolymerized onto polyethylene (PE) powder by the pre-irradiation method. Complex formation constants of Sm ion with the PE powder grafted with both AA and AAm (PE-g-(AA-co-AAm)) were larger than those with the PE powder grafted with AA (PE-g-AA). Sm ion was efficiently separated from the solution containing both Sm ion and a transition metal ion such as Cu ion. Even after the γ-ray irradiation on PE-g-(AA-co-AAm) and PE-g-AA, the adsorption did not decrease. (author)

  15. A comparative study of natural, formaldehyde-treated and copolymer-grafted orange peel for Pb(II) adsorption under batch and continuous mode

    International Nuclear Information System (INIS)

    Lugo-Lugo, Violeta; Hernandez-Lopez, Susana; Barrera-Diaz, Carlos; Urena-Nunez, Fernando; Bilyeu, Bryan

    2009-01-01

    Natural, formaldehyde-treated and copolymer-grafted orange peels were evaluated as adsorbents to remove lead ions from aqueous solutions. The optimum pH for lead adsorption was found to be pH 5. The adsorption process was fast, reaching 99% of sorbent capacity in 10 min for the natural and treated biomasses and 20 min for the grafted material. The treated biomass showed the highest sorption rate and capacity in the batch experiments, with the results fitting well to a pseudo-first order rate equation. In the continuous test with the treated biomass, the capacity at complete exhaustion was 46.61 mg g -1 for an initial concentration of 150 mg L -1 . Scanning electronic microscopy and energy dispersive X-ray spectroscopy indicated that the materials had a rough surface, and that the adsorption of the metal took place on the surface. Fourier transform infrared spectroscopy revealed that the functional groups responsible for metallic biosorption were the -OH, -COOH and -NH 2 groups on the surface. Finally, the thermogravimetric analysis indicates that a mass reduction of 80% can be achieved at 600 deg. C

  16. Obtention of graft copolymers by ionizing radiation, characterization and study of hemo-compatible properties; Obtencao de copolimeros de enxerto via radiacao ionizante, caracterizacao e estudo de suas propriedades hemocompativeis

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, A A.A. de

    1994-12-31

    The present work had as objectives the obtention and characterization of grafting copolymers by radiation induced polymerization and the study of its hemo compatible properties. The relationship between grafting conditions and anti-trombogenicity was examined for the purpose of clearing the necessity of controlling grafting conditions to enhance the copolymers blood compatibility. Two methods were chosen to accomplish the irradiation: mutual and pre-irradiation (peroxidation) of the films in {sup 6O} Co source and electron beam accelerator. Primarily grafting parameters were studied in the systems of the monomers N, N-dimethyl acrylamide (DMAA) and acrylic acid (AA) with the polymeric films: poly (tetrafluoroethylene) (PTFE), poly (ethylene-co-tetrafluoroethylene) (PETFE), low density polyethylene (LDPE) and poly (vinyl chloride) (PVC). The simultaneous irradiation was effective in the polymerization of all the substrates above mentioned, although the peroxidation method has given better results for PETFE-DMAA, LDPE-g-DMAA, LDPE-g-AA and PVC-g-AA. In the system AA/LDPE and AA/PVC the homo polymerization was controlled by the addition of the comonomer N, N-dimethyl acrylic acid (DMA). As for the grafting parameters, low dose rate and low irradiation dose, showed to be very effective for the graftability of DMAA and AA on the substrates. (author). 129 refs, 51 figs, 7 tabs.

  17. Short-chain grafting of tetrahydrofuran and 1,4-dioxane cycles on vinylchloride-maleic anhydride copolymer

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Mass increase of vinylchloride-maleic anhydride (VC-MA copolymer samples aged in tetrahydrofuran (THF or in 1,4-dioxane results from chemical interaction of VC-MA macromolecules with 1,4-dioxane or THF. Microstructure of the products of such modification was proved by infrared spectroscopy (IR- and nuclear magnetic resonance spectroscopy (13C NMR and 1H NMR. Mechanism of modification has been proposed. The results of microstructure research of VC-MA samples aged in THF and in 1,4-dioxane coincide with already known data on the reactions of opening of these and other oxygen-containing cycles under mild conditions.

  18. Synthesis of a gamma irradiation grafted polytetrafluoroethylene (PTFE) based olefinic copolymer; Estudo da sintese de copolimero olefinico a base de politetrafluoroetileno (PTFE) por meio da enxertia induzida por radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Ferreto, Helio Fernando Rodrigues

    2006-07-01

    The extrusion of linear low density polyethylene (LLDPE) is limited by a process related defect known as 'melt fracture' or 'sharkskin', which is a surface defect of the extruded polymer. This defect results in a product with a rough surface that lacks luster and in alterations of specific surface properties. The aim of this study was to obtain a recycled polytetrafluoroethylene polymer with an olefin that could improve the extrudability of the LLDPE. The copolymer was obtained by irradiating recycled PTFE in an inert atmosphere followed by the addition of an olefinic monomer to graft the latter in the polymeric matrix (PTFE). After a certain time of contact, the copolymer was heat treated to permit recombination and elimination of the radicals, both in a reactive and/or inert atmosphere. Three olefinic monomers were used, namely; acetylene, ethylene and 1,3-butadiene. The 1,3-butadiene monomer was found to be more effective with respect to grafting. The specimens were studied using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential thermogravimetry (DTG). 0.2-2.0 wt% of the copolymer that was obtained was mixed with LLDPE. The rheological properties of the mixture were determined with a torque rheometer. The results indicated that the process used rendered a copolymer which when added to LLDPE, improved the extrusion process and eliminated the defect 'melt fracture'. (author)

  19. Triblock Copolymers with Grafted Fluorine-Free Amphiphilic Non-Ionic Side Chains for Antifouling and Fouling-Release Applications

    Energy Technology Data Exchange (ETDEWEB)

    Y Cho; H Sundaram; C Weinman; M Paik; M Dimitriou; J Finlay; M Callow; J Callow; E Kramer; C Ober

    2011-12-31

    Fluorine-free, amphiphilic, nonionic surface active block copolymers (SABCs) were synthesized through chemical modification of a polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene triblock copolymer precursor with selected amphiphilic nonionic Brij and other surfactants. Amphiphilicity was imparted by a hydrophobic aliphatic group combined with a hydrophilic poly(ethylene glycol) (PEG) group-containing moiety. The surfaces were characterized by dynamic water contact angle, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure (NEXAFS) analysis. In biofouling assays, settlement (attachment) of both spores of the green alga Ulva and cells of the diatom Navicula on SABCs modified with Brij nonionic side chains was significantly reduced relative to a PDMS standard, with a nonionic surfactant combining a PEG group and an aliphatic moiety demonstrating the best performance. Additionally, a fouling-release assay using sporelings (young plants) of Ulva and Navicula suggested that the SABC derived from nonionic Brij side chains also out-performed PDMS as a fouling-release material. Good antifouling and fouling-release properties were not demonstrated for the other two amphiphilic surfaces derived from silicone and aromatic group containing nonionic surfactants included in this study. The results suggest that small differences in chemical surface functionality impart more significant changes with respect to the antifouling settlement and fouling-release performance of materials than overall wettability behavior.

  20. Formulation and in vitro characterization of novel sildenafil citrate-loaded polyvinyl alcohol-polyethylene glycol graft copolymer-based orally dissolving films.

    Science.gov (United States)

    Xu, Li-Li; Shi, Li-Li; Cao, Qing-Ri; Xu, Wei-Juan; Cao, Yue; Zhu, Xiao-Yin; Cui, Jing-Hao

    2014-10-01

    This work was aimed to develop novel sildenafil citrate (SC)-loaded polyvinyl alcohol (PVA)-polyethylene glycol (PEG) graft copolymer (Kollicoat(®) IR)-based orally dissolving films (ODFs) using a solvent casting method. Formulation factors such as plasticizers and disintegrants were optimized on the basis of characteristics of blank ODFs. The SC-loaded ODF with a loading capacity up to 6.25mg in an area of 6 cm(2) was prepared and evaluated in terms of mechanical properties, disintegration time and dissolution rate. The physicochemical properties of drug-loaded ODF were also investigated using the scanning electron microscope (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The blank ODF composed of Kollicoat(®) IR, sodium alginate (ALG-Na) and glycerol (10:2:1.5, w/w) had a remarkably short disintegration time of about 20s. The SC-loaded ODF showed a delayed disintegration time (about 25s), but exhibited improved mechanical properties when compared to the blank ODF. SC was homogeneously dispersed throughout the ODF and the crystalline form of drug had been partly changed, existing strong hydrogen bonding between the drug and carriers. The Kollicoat(®) IR/ALG-Na based ODFs containing SC might be an alternative to conventional tablet for the treatment of male erectile dysfunction. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Amphiphilic poly{[α-maleic anhydride-ω-methoxypoly(ethylene glycol]-co-(ethyl cyanoacrylate} graft copolymer nanoparticles as carriers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Jinfeng Xing

    2009-10-01

    Full Text Available Jinfeng Xing, Liandong Deng, Jun Li, Anjie DongDepartment of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of ChinaAbstract: In this study, the transdermal drug delivery properties of D,L-tetrahydropalmatine (THP-loaded amphiphilic poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate} (PEGECA graft copolymer nanoparticles (PEGECAT NPs were evaluated by skin penetration experiments in vitro. The transdermal permeation experiments in vitro were carried out in Franz diffusion cells using THP-loaded PEGECAT NPs as the donor system. Transmission electron microscopy and Fourier transform infrared spectroscopy were used to characterize the receptor fluid. The results indicate that the THP-loaded PEGECAT NPs are able to penetrate the rat skin. Fluorescent microscopy measurements demonstrate that THP-loaded PEGECAT NPs can penetrate the skin not only via appendage routes but also via epidermal routes. This nanotechnology has potential application in transdermal drug delivery. Keywords: poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate}, nanoparticles, transdermal drug delivery, D,L-tetrahydropalmatine

  2. Poly(ethylene-co-acrylic acid)-g-poly(ethylene glycol) graft copolymer templated synthesis of mesoporous TiO{sub 2} thin films for quasi-solid-state dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajkumar; Jung, Ye Eun; Kim, Dong Jun; Kim, Sang Jin; Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr

    2014-02-03

    An amphiphilic graft copolymer, poly(ethylene-co-acrylic acid)-graft-poly(ethylene glycol) (PEAA-g-PEG), consisting of a PEAA backbone and PEG side chains was synthesized via an esterification reaction. {sup 1}H nuclear magnetic resonance and Fourier-transformed infrared analysis demonstrated esterification between carboxylic acid of PEAA and hydroxyl group of PEG. Small angle X-ray scattering results revealed that the crystalline domain spacing of PEAA increased from 11.3 to 12.8 nm upon using a more polar solvent with a higher affinity for poly(acrylic acid), while the crystalline domain spacing of PEAA disappeared with PEG grafting, indicating structural change to an amorphous state. Mesoporous TiO{sub 2} thin films were synthesized via a sol–gel reaction using PEAA-g-PEG graft copolymer as a structure-directing agent. The hydrophilically-preformed TiO{sub 2} nanoparticles were selectively confined in the hydrophilic PEG domains of the graft copolymer, and mesoporous TiO{sub 2} thin films were formed, as confirmed by scanning electron microscopy. The morphology of TiO{sub 2} films was tunable by varying the concentrations of polymer solutions and the amount of preformed TiO{sub 2}. A quasi-solid-state dye-sensitized solar cell fabricated with PEAA-g-PEG templated TiO{sub 2} film exhibited an energy conversion efficiency of 3.8% at 100 mW/cm{sup 2}, which was greater than that of commercially-available paste (2.6%) at a similar film thickness (3 μm). The improved performance was due to the larger surface area for high dye loading and organized structure with good interconnectivity. - Highlights: • Poly(ethylene-co-acrylic acid)-g-poly(ethylene glycol) (PEAA-g-PEG) graft copolymer is synthesized. • Amphiphilic PEAA-g-PEG acts as a structure directing agent. • Mesoporous TiO{sub 2} thin films are prepared by sol–gel reaction using PEAA-g-PEG template. • Efficiency of DSSC with templated TiO{sub 2} is greater than with commercial TiO{sub 2} paste.

  3. Poly(vinyl chloride)-g-poly(2-(dimethylamino)ethyl methacrylate) graft copolymers templated synthesis of mesoporous TiO{sub 2} thin films for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajkumar; Ahn, Sung Hoon; Seo, Jin Ah; Kim, Sang Jin; Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of)

    2012-07-15

    A poly(vinyl chloride) (PVC) main chain was grafted with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) containing a quaternary amine group using atom transfer radical polymerization. The successful synthesis of a PVC-g-PDMAEMA graft copolymer was confirmed by Fourier transform infrared, nuclear magnetic resonance, thermogravimetric analysis, and transmission electron microscopy. The PVC-g-PDMAEMA graft copolymer was used as a structure-directing agent (SDA) for the fabrication of a mesoporous thin film containing a titanium dioxide (TiO{sub 2}) layer. To control the porosity of the resultant inorganic layer, the ratio of SDA to TTIP as well as the concentration of the sol-gel was varied. The structure and porosity of the mesoporous film were characterized by XRD and SEM analysis. The mesoporous TiO{sub 2} film fabricated on the FTO surface was used as a photoanode for the dye-sensitized solar cell (DSSC). DSSC performance was the greatest when using TiO{sub 2} film with a higher porosity and lower interfacial resistance. The highest energy conversion efficiency reached 3.2 % at 100 mW/cm{sup 2}, which was one of the highest reported values for a quasi-solid-state DSSC with 600-nm-thick TiO{sub 2} film.

  4. Copolymer-grafted silica phase from a cation-anion monomer pair for enhanced separation in reversed-phase liquid chromatography.

    Science.gov (United States)

    Mallik, Abul K; Qiu, Hongdeng; Takafuji, Makoto; Ihara, Hirotaka

    2014-05-01

    This work reports a new imidazolium and L-alanine derived copolymer-grafted silica stationary phase for ready separation of complex isomers using high-performance liquid chromatography (HPLC). For this purpose, 1-allyl-3-octadecylimidazolium bromide ([AyImC18]Br) and N-acryloyl-L-alanine sodium salt ([AAL]Na) ionic liquids (IL) monomers were synthesized. Subsequently, the bromide counteranion was exchanged with the 2-(acrylamido)propanoate organic counteranion by reacting the [AyImC18]Br with excess [AAL]Na in water. The obtained IL cation-anion monomer pair was then copolymerized on mercaptopropyl-modified silica (Sil-MPS) via a surface-initiated radical chain-transfer reaction. The selective retention behaviors of polycyclic aromatic hydrocarbons (PAHs), including some positional isomers, steroids, and nucleobases were investigated using the newly obtained Sil-poly(ImC18-AAL), and octadecyl silylated silica (ODS) was used as the reference column. Interesting results were obtained for the separation of PAHs, steroids, and nucleobases with the new organic phase. The results showed that the Sil-poly(ImC18-AAL) presented multiple noncovalent interactions, including hydrophobic, π-π, carbonyl-π, and ion-dipole interactions for the separation of PAHs and dipolar compounds. Only pure water was sufficient as the mobile phase for the separation of the nucleobases. Ten nucleosides and bases were separated, using only water as the mobile phase, within a very short time using the Sil-poly(ImC18-AAL), which is otherwise difficult to achieve using conventional hydrophobic columns such as ODS. The combination of electrostatic and hydrophobic interactions are important for the effective separation of such basic compounds without the use of any organic additive as the eluent on the Sil-poly(ImC18-AAL) column.

  5. Biocompatible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability

    International Nuclear Information System (INIS)

    Saber-Samandari, Samaneh; Saber-Samandari, Saeed

    2017-01-01

    Significant efforts have been made to develop a suitable biocompatible scaffold for bone tissue engineering. In this work, a chitosan-graft-poly(acrylic acid-co-acrylamide)/hydroxyapatite nanocomposite scaffold was synthesized through a novel multi-step route. The prepared scaffolds were characterized for crystallinity, morphology, elemental analysis, chemical bonds, and pores size in their structure. The mechanical properties (i.e. compressive strength and elastic modulus) of the scaffolds were examined. Further, the biocompatibility of scaffolds was determined by MTT assays on HUGU cells. The result of cell culture experiments demonstrated that the prepared scaffolds have good cytocompatibility without any cytotoxicity, and with the incorporation of hydroxyapatite in their structure improves cell viability and proliferation. Finally, celecoxib as a model drug was efficiently loaded into the prepared scaffolds because of the large specific surface area. The in vitro release of the drug displayed a biphasic pattern with a low initial burst and a sustained release of up to 14 days. Furthermore, different release kinetic models were employed for the description of the release process. The results suggested that the prepared cytocompatible and non-toxic nanocomposite scaffolds might be efficient implants and drug carriers in bone-tissue engineering. - Highlights: • A series of biocompatible scaffolds were synthesized through a novel multi-step route. • The mechanical properties of the scaffolds were found close to those of trabecular bone. • The prepared scaffolds were able to load celecoxib efficiently as a model drug. • The celecoxib release was mainly controlled by a Fickian diffusion process. • The scaffold can be efficient as an implant for tissue engineering and drug delivery.

  6. Preparation, property of the complex of carboxymethyl chitosan grafted copolymer with iodine and application of it in cervical antibacterial biomembrane

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Yang, Yumin; Liao, Qingping [Zhejiang Sanchuang Biological Technology Co., Ltd., Jiaxing, Zhejiang Province 314031 (China); Yang, Wei [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Ma, Wanfeng [Zhejiang Sanchuang Biological Technology Co., Ltd., Jiaxing, Zhejiang Province 314031 (China); Zhao, Jian [Department of Gynaecology and Obstetrics, The First Hospital of Peking University, Beijing 100034 (China); Zheng, Xionggao [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Yang, Yang [Zhejiang Sanchuang Biological Technology Co., Ltd., Jiaxing, Zhejiang Province 314031 (China); Chen, Rui [Department of Gynaecology and Obstetrics, The First Hospital of Peking University, Beijing 100034 (China)

    2016-10-01

    Cervical erosion is one of the common diseases of women. The loop electrosurgical excisional procedure (LEEP) has been used widely in the treatment of the cervical diseases. However, there are no effective wound dressings for the postoperative care to protect the wound area from further infection, leading to increased secretion and longer healing time. Iodine is a widely used inorganic antibacterial agent with many advantages. However, the carrier for stable iodine complex antibacterial agents is lack. In the present study, a novel iodine carrier, Carboxymethyl chitosan-g-(poly(sodium acrylate)-co-polyvinylpyrrolidone) (CMCTS-g-(PAANa-co-PVP), was prepared by graft copolymerization of sodium acrylate (AANa) and N-vinylpyrrolidone (NVP) to a carboxymethyl chitosan (CMCTS) skeleton. The obtained structure could combine prominent property of poly(sodium acrylate) (PAANa) anionic polyelectrolyte segment and good complex property of polyvinylpyrrolidone (PVP) segment to iodine. The bioactivity of CMCTS could also be kept. The properties of the complex, CMCTS-g-(PAANa-co-PVP)-I{sub 2}, were studied. The in vitro experiment shows that it has broad-spectrum bactericidal effects to virus, fungus, gram-positive bacteria and gram-negative bacteria. A CMCTS-g-(PAANa-co-PVP)-I{sub 2} complex contained cervical antibacterial biomembrane (CABM) was prepared. The iodine release from the CABM is pH-dependent. The clinic trial results indicate that CABM has better treatment effectiveness than the conventional treatment in the postoperative care of the LEEP operation. - Highlights: • The multifunctional iodine complexing carrier CMCTS-g-(PAANa-co-PVP) was prepared. • CMCTS-g-(PAANa-co-PVP)-I{sub 2} with high antibacterial property and bio-safety was studied. • By compositing it with CMCTS and gelatin further, CABM with multifunction was deduced. • The releasing properties of the activated iodine from CABM showed pH sensitivity. • CABM showed good treating effect for

  7. Biocompatible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability

    Energy Technology Data Exchange (ETDEWEB)

    Saber-Samandari, Samaneh, E-mail: samaneh.saber@gmail.com [Department of Chemistry, Eastern Mediterranean University, Gazimagusa, TRNC via Mersin 10 (Turkey); Saber-Samandari, Saeed, E-mail: saeedss@aut.ac.ir [New Technologies Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2017-06-01

    Significant efforts have been made to develop a suitable biocompatible scaffold for bone tissue engineering. In this work, a chitosan-graft-poly(acrylic acid-co-acrylamide)/hydroxyapatite nanocomposite scaffold was synthesized through a novel multi-step route. The prepared scaffolds were characterized for crystallinity, morphology, elemental analysis, chemical bonds, and pores size in their structure. The mechanical properties (i.e. compressive strength and elastic modulus) of the scaffolds were examined. Further, the biocompatibility of scaffolds was determined by MTT assays on HUGU cells. The result of cell culture experiments demonstrated that the prepared scaffolds have good cytocompatibility without any cytotoxicity, and with the incorporation of hydroxyapatite in their structure improves cell viability and proliferation. Finally, celecoxib as a model drug was efficiently loaded into the prepared scaffolds because of the large specific surface area. The in vitro release of the drug displayed a biphasic pattern with a low initial burst and a sustained release of up to 14 days. Furthermore, different release kinetic models were employed for the description of the release process. The results suggested that the prepared cytocompatible and non-toxic nanocomposite scaffolds might be efficient implants and drug carriers in bone-tissue engineering. - Highlights: • A series of biocompatible scaffolds were synthesized through a novel multi-step route. • The mechanical properties of the scaffolds were found close to those of trabecular bone. • The prepared scaffolds were able to load celecoxib efficiently as a model drug. • The celecoxib release was mainly controlled by a Fickian diffusion process. • The scaffold can be efficient as an implant for tissue engineering and drug delivery.

  8. Low molecular weight poly (2-dimethylamino ethylmethacrylate) polymers with controlled.positioned fluorescent labeling: Synthesis, characterization and in vitro interaction with human endothelial cells

    DEFF Research Database (Denmark)

    Flebus, Luca; Lombart, Francois; Sevrin, Chantal

    2015-01-01

    Poly (2-dimethylamino ethylmethacrylate) (PDMAEMA) is an attractive non-degradable polymer studied as nonviral vector for gene delivery but it can be also adopted for delivery of other biopharmaceutical drugs. As a parenteral carrier, the PDMAEMA free form (FF) might interact with tissues and cells...... to a minor cytotoxicity compared to the higher ones.As main conclusion this study highlights the similitude in cell trafficking of FF PDMAEMA and data previously reported for PDMAEMA/DNA complexes....

  9. Poly(l-lysine)-graft-folic acid-coupled poly(2-methyl-2-oxazoline) (PLL-g-PMOXA-c-FA): a bioactive copolymer for specific targeting to folate receptor-positive cancer cells.

    Science.gov (United States)

    Chen, Yin; Cao, Wenbin; Zhou, Junli; Pidhatika, Bidhari; Xiong, Bin; Huang, Lu; Tian, Qian; Shu, Yiwei; Wen, Weijia; Hsing, I-Ming; Wu, Hongkai

    2015-02-04

    In this study, we present the preparation, characterization and application of a novel bioactive copolymer poly(l-lysine)-graft-folic acid-coupled poly(2-methyl-2-oxazoline) (PLL-g-PMOXA-c-FA), which has a specific interaction with folate receptor (FR)-positive cancer cells. Glass surface immobilized with PLL-g-PMOXA-c-FA was demonstrated to be adhesive to FR-positive cancer cells (HeLa, JEG-3) while nonadhesive to FR-negative ones (MCF-7, HepG2) in 3 h. The specific interaction between conjugated FA on the substrate and FRs on the cells could hardly be inhibited unless a high concentration (5 mM) of free FA was used due to the multivalent nature of it. The FA functionality ratio of the copolymer on the substrate had a significant influence on the adhesion of HeLa cells, and our experiments revealed that the affinity of the substrate to the cells declined dramatically with the decrease of functionality ratio. This was believed to be caused by the polydispersity of PMOXA tethers, as supported by GPC and ToF-SIMS data. As a proof of concept in the application of our material, we demonstrated successful recovery of HeLa cells from mixture with MCF-7 (1:100) on the copolymer-coated glass, and our results showed that both high sensitivity (95.6 ± 13.3%) and specificity (24.3 ± 8.6%) were achieved.

  10. Synthesis and self-assembly of Chitosan-g-Polystyrene copolymer: A new route for the preparation of heavy metal nanoparticles

    KAUST Repository

    Francis, Raju S.; Baby, Deepa K.; Gnanou, Yves

    2015-01-01

    Amphiphilic graft copolymers made of a Chitosan (CS) backbone and three arm polystyrene (PS) grafts were prepared by "grafting onto" strategy using Toluene Diisocyanate. IR spectroscopy and SEC show the successful grafting process. SEM pictures

  11. Radiation resistance of ethylene-styrene copolymers

    International Nuclear Information System (INIS)

    Matsumoto, Kaoru; Ikeda, Masaaki; Ohki, Yoshimichi; Kusama, Yasuo; Harashige, Masahiro; Yazaki, Fumihiko.

    1988-01-01

    In this paper, the radiation resistance of ethylene-styrene copolymer, a polymeric resin developed newly by the authors, is reported. Resin examined were five kinds of ethylene-styrene copolymers: three random and two graft copolymers with different styrene contents. Low-density polyethylene was used as a reference. The samples were irradiated by 60 Co γ-rays to total absorbed doses up to 10 MGy. The mechanical properties of the smaples were examined. Infrared spectroscopy, differential scanning calorimetry and X-ray scattering techniques were used to examine the morphology of the samples. The random copolymers are soft and easy to extend, because benzene rings which exisist highly at random hinder the crystallization. As for the radiation resistance, they are highly resistant to γ-rays in the aspects of carbonyl group formation, gel formation, and elongation. Further, they show even better radiation resistance when proper additives were compounded in. The graft copolymers are hard to extend, because they consist of segregated polystyrene and polyethylene regions which are connected with each other. The tensile strength of irradiated graft copolymers does not decrease below that of unirradiated copolymers, up to a total dose of 10 MGy. As a consequence, it can be said that ethylene-styrene copolymers have good radiation resistance owing to the so-called 'sponge' effect of benzene rings. (author)

  12. Graft Copolymerization of Methyl Methacrylate Monomer onto Starch and Natural Rubber Latex Initiated by Gamma Irradiation

    Directory of Open Access Journals (Sweden)

    S. Iskandar

    2011-04-01

    Full Text Available To obtain the degradable plastic, the graft copolymerization of methyl methacrylate onto starch and natural rubber latex was conducted by a simultaneous irradiation technique. Gamma-ray from cobalt-60 source was used as the initiator. The grafted copolymer of starch-polymethyl methacrylate and the grafted copolymer of natural rubber-polymethyl methacrylate were mixed in the blender, and dried it in the oven. The dried grafted copolymer mixture was then molded using hydraulic press machine. The effect of irradiation dose, composition of the grafted copolymer mixture, film forming condition and recycle effect was evaluated. The parameters observed were tensile strength, gel fraction and soil burial degradability of grafted copolymer mixture. It was found that the tensile strength of grafted copolymer mixture increased by -ray irradiation. Increasing of the grafted copolymer of natural rubber-polymethyl methacrylate content, the gel fraction and tensile strength of the grafted copolymer mixture increased. The tensile strength of the grafted copolymer mixture was increased from 18 MPa to 23 MPa after recycled (film forming reprocessed 3 times. The grafted copolymer mixture was degraded completely after soil buried for 6 months

  13. Methacrylate-Based Copolymers for Polymer Optical Fibers

    Directory of Open Access Journals (Sweden)

    Daniel Zaremba

    2017-01-01

    Full Text Available Waveguides made of poly-methyl-methacrylate (PMMA play a major role in the homogeneous distribution of display backlights as a matrix for solid-state dye lasers and polymer optical fibers (POFs. PMMA is favored because of its transparency in the visible spectrum, low price, and well-controlled processability. Nevertheless, technical drawbacks, such as its limited temperature stability, call for new materials. In this work, the copolymerization technique is used to modify the properties of the corresponding homopolymers. The analytical investigation of fourteen copolymers made of methyl-methacrylate (MMA or ethyl-methacrylate (EMA as the basis monomer is summarized. Their polymerization behaviors are examined by NMR spectroscopy with subsequent copolymerization parameter evaluation according to Fineman-Ross and Kelen-Tüdös. Therefore, some r-parameter sets are shown to be capable of copolymerizations with very high conversions. The first applications as high-temperature resistant (HT materials for HT-POFs are presented. Copolymers containing isobornyl-methacrylate (IBMA as the comonomer are well-suited for this demanding application.

  14. Inhomogeneity of block copolymers at the interface of an immiscible polymer blend

    Science.gov (United States)

    Ryu, Ji Ho; Kim, YongJoo; Lee, Won Bo

    2018-04-01

    We present the effects of structure and stiffness of block copolymers on the interfacial properties of an immiscible homopolymer blend. Diblock and two-arm grafted copolymers with variation in stiffness are modeled using coarse-grained molecular dynamics to compare the compatibilization efficiency, i.e., reduction of interfacial tension. Overall, grafted copolymers are located more compactly at the interface and show better compatibilization efficiency than diblock copolymers. In addition, an increase in the stiffness for one of the blocks of the diblock copolymers causes unusual inhomogeneous interfacial coverage due to bundle formation. However, an increase in the stiffness for one of blocks of the grafted copolymers prevents the bundle formation due to the branched chain. As a result, homogeneous interfacial coverage of homopolymer blends is realized with significant reduction of interfacial tension which makes grafted copolymer a better candidate for the compatibilizer of immiscible homopolymer blend.

  15. Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene-b-styrene block copolymer

    Czech Academy of Sciences Publication Activity Database

    Ilčíková, M.; Mrlík, M.; Sedláček, T.; Chorvát, D.; Krupa, I.; Šlouf, Miroslav; Koynov, K.; Mosnáček, J.

    2014-01-01

    Roč. 55, č. 1 (2014), s. 211-218 ISSN 0032-3861 R&D Projects: GA TA ČR TE01020118 Institutional support: RVO:61389013 Keywords : thermoplastic elastomers * grafting from surface * smart materials Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.562, year: 2014

  16. Magnetic iron oxide nanoparticles grafted N-isopropylacrylamide/chitosan copolymer for the extraction and determination of letrozole in human biological samples.

    Science.gov (United States)

    Khalaj Moazen, Mercede; Ahmad Panahi, Homayon

    2017-03-01

    Magnetic iron oxide nanoparticles are used for the extraction of a drug from an aqueous solution. In the current study, the magnetic iron oxide nanoparticles were synthesized via a facile coprecipitation approach, and then modified by (3-mercaptopropyl)trimethoxysilane followed by grafting thermosensitive polymer N-isopropylacrylamide and biopolymer chitosan. Structure, morphology, size, thermal resistance, specific surface area, and magnetic properties of the grafted nanosorbent were characterized by using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, elemental analysis, thermogravimetric analysis, specific surface area analysis and vibrating sample magnetometry. The effective parameters on sorption/desorption of letrozole on grafted magnetic nanosorbent were evaluated. The best sorption of letrozole via the grafted nanosorbent occurred at 20°C at an optimum pH of 7. The extraction of trace letrozole in human biological fluids is investigated and revealed 89.1 and 97.8% recovery in plasma and urine, respectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Graft Copolymerisation of Acrylamide onto Cellulose using ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    ABSTRACT: Graft copolymers of acrylamide onto holocellulose derived from cocoa. (Theobroma cacao) wood meal have been produced using hydroquinone enhanced Fe2+/H2O2 redox system. The addition of hydroquinone to the redox system affected the effectiveness of the redox system to initiate graft copolymer ...

  18. Dynamic mechanical analysis of binary and ternary polymer blends based on nylon copolymer/EPDM rubber and EPM grafted maleic anhydride compatibilizer

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available The dynamic mechanical properties such as storage modulus, loss modulus and damping properties of blends of nylon copolymer (PA6,66 with ethylene propylene diene (EPDM rubber was investigated with special reference to the effect of blend ratio and compatibilisation over a temperature range –100°C to 150°C at different frequencies. The effect of change in the composition of the polymer blends on tanδ was studied to understand the extent of polymer miscibility and damping characteristics. The loss tangent curve of the blends exhibited two transition peaks, corresponding to the glass transition temperature (Tg of individual components indicating incompatibility of the blend systems. The morphology of the blends has been examined by using scanning electron microscopy. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends. Finally, attempts have been made to compare the experimental data with theoretical models.

  19. Grafting of acrylamide onto synthetic co polyamide by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamoud, M R; Qamhieyh, E A [Chemistry Dept., College of Ibn Al-Haitham Baghdad university-Adhamiyah-Baghdad- (Iraq)

    1995-10-01

    Grafted copolymer was prepared by using gamma irradiation to graft acrylamide onto polymeric molecule prepared by interfacial condensation between two diamine molecules like 1,2 diamino propane and 1,6 diamino-hexane in aqueous layer with sebacoyl chloride in organic layer. The resulted co polyamide was grafted with acrylamide using gamma irradiation. The optimum conditions of grafting reaction were found, also various factors such as the effect of solvents, redox systems and the role water on the radiochemical grafting were studied. Many techniques were used in the characterization of the copolymer before and after grafting. 8 figs.,.

  20. Graft-crosslinked copolymers based on poly(arylene ether ketone)-gc-sulfonated poly(arylene ether sulfone) for PEMFC applications.

    Science.gov (United States)

    Zhang, Xuan; Hu, Zhaoxia; Luo, Linqiang; Chen, Shanshan; Liu, Jianmei; Chen, Shouwen; Wang, Lianjun

    2011-07-15

    Novel poly(arylene ether ketone) polymers with fluorophenyl pendants and phenoxide-terminated wholly sulfonated poly(arylene ether sulfone) oligomers are prepared via Ni(0)-catalyzed and nucleophilic polymerization, respectively, and subsequently used as starting materials to obtain graft-crosslinked membranes as polymer electrolyte membranes. The phenoxide-terminated sulfonated moieties are introduced as hydrophilic parts as well as crosslinking units. The chemical structure and morphology of the obtained membranes are confirmed by (1) H NMR and tapping-mode AFM. The properties required for fuel cell applications, including water uptake and dimensional change, as well as proton conductivity, are investigated. AFM results show a clear nanoscale phase-separation microstructure of the obtained membranes. The membranes show good dimensional stability and reasonably high proton conductivities under 30-90% relative humidity. The anisotropic proton conductivity ratios (σ(formula see text) ) of the membranes in water are in the range 0.65-0.92, and increase with an increase in hydrophilic block length. The results indicate that the graft-crosslinked membranes are promising candidates for applications as polymer electrolyte membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Radiation induced grafting of monomers onto natural rubber : processes and applications

    International Nuclear Information System (INIS)

    Sunny Sebastian, M.

    2001-01-01

    Full text: Certain inherent mechanical properties of natural rubber (NR) can be modified by grafting vinyl monomers onto the polymer backbone. This paper described the gamma radiation induced graft copolymerization of methyl methacrylate (MMA), styrene and acrylonitrile (AN) onto NR. The graft copolymers can be crosslinked by sulphur and organic accelerators. The crosslinked graft copolymers show improved modulus and hardness in their films compared to NR. However the tensile strength of the films is reduced by grafting. The methods for preparing the graft copolymers, their properties and applications are briefly described

  2. Ca (OH)2Nanoparticles Based on Acrylic Copolymers for the consolidation and protection of Ancient Egypt Calcareous Stone Monuments

    Science.gov (United States)

    Al-Dosari, Mohammad A.; Darwish, Sawsan S.; Adam, Mahmoud A.; Elmarzugi, Nagib A.; Al-Mouallimi, Nadia; Ahmed, Sayed M.

    2017-04-01

    The deterioration of calcareous stones materials used in artistic/architectural field is one of the most serious problems facing conservation today. The aim of this study was to evaluate the effectiveness of nanosized particles of calcium hydroxide (slaked lime) as a consolidation and protection material dispersed in acrylic copolymer, poly ethylmethacrylate/methylacrylate (70:30) (Poly (EMA/MA), for calcareous stone monuments and painted surfaces affected by different kinds of decay. The synthesis process of Ca (OH)2 nanoparticles/polymer nanocomposites have been prepared by in situ emulsion polymerization system. The prepared nanocomposite containing 5% of Ca (OH)2 nanoparticles showed obvious transparency features and represent nanocomposites coating technology with hydrophobic, consolidating and well protection properties.

  3. Ca (OH)2Nanoparticles Based on Acrylic Copolymers for the consolidation and protection of Ancient Egypt Calcareous Stone Monuments

    International Nuclear Information System (INIS)

    Al-Dosari, Mohammad A.; Ahmed, Sayed M.; Darwish, Sawsan S.; Adam, Mahmoud A.; Elmarzugi, Nagib A.; Al-Mouallimi, Nadia

    2017-01-01

    The deterioration of calcareous stones materials used in artistic/architectural field is one of the most serious problems facing conservation today. The aim of this study was to evaluate the effectiveness of nanosized particles of calcium hydroxide (slaked lime) as a consolidation and protection material dispersed in acrylic copolymer, poly ethylmethacrylate/methylacrylate (70:30) (Poly (EMA/MA), for calcareous stone monuments and painted surfaces affected by different kinds of decay. The synthesis process of Ca (OH) 2 nanoparticles/polymer nanocomposites have been prepared by in situ emulsion polymerization system. The prepared nanocomposite containing 5% of Ca (OH) 2 nanoparticles showed obvious transparency features and represent nanocomposites coating technology with hydrophobic, consolidating and well protection properties. (paper)

  4. EFFECT OF DEXTRAN-graft-POLYACRYLAMIDE INTERNAL STRUCTURE ON FLOCCULATION PROCESS PARAMETERS

    International Nuclear Information System (INIS)

    Bezugla, T.; Kutsevol, N.; Shyichuk, A.; Ziolkowska, D.

    2008-01-01

    Dextran-graft-Polyacrylamide copolymers (D-g-PAA) of brush-like architecture were tested as flocculation aids in the model kaolin suspensions. Due to expanded conformation the D-g-PAA copolymers are more effective flocculants than individual PAA with close molecular mass. The internal structure of D-g-PAA copolymers which is determined by number and length of grafted PAA chains, the distance between grafts, etc., has the significant influence on flocculation behavior of such polymers

  5. Anticancer efficacy of a supramolecular complex of a 2-diethylaminoethyl–dextran–MMA graft copolymer and paclitaxel used as an artificial enzyme

    Directory of Open Access Journals (Sweden)

    Yasuhiko Onishi

    2014-12-01

    Full Text Available The anticancer efficacy of a supramolecular complex that was used as an artificial enzyme against multi-drug-resistant cancer cells was confirmed. A complex of diethylaminoethyl–dextran–methacrylic acid methylester copolymer (DDMC/paclitaxel (PTX, obtained with PTX as the guest and DDMC as the host, formed a nanoparticle 50–300 nm in size. This complex is considered to be useful as a drug delivery system (DDS for anticancer compounds since it formed a stable polymeric micelle in water. The resistance of B16F10 melanoma cells to PTX was shown clearly through a maximum survival curve. Conversely, the DDMC/PTX complex showed a superior anticancer efficacy and cell killing rate, as determined through a Michaelis–Menten-type equation, which may promote an allosteric supramolecular reaction to tubulin, in the same manner as an enzymatic reaction. The DDMC/PTX complex showed significantly higher anticancer activity compared to PTX alone in mouse skin in vivo. The median survival times of the saline, PTX, DDMC/PTX4 (particle size 50 nm, and DDMC/PTX5 (particle size 290 nm groups were 120 h (treatment (T/control (C, 1.0, 176 h (T/C, 1.46, 328 h (T/C, 2.73, and 280 h (T/C, 2.33, respectively. The supramolecular DDMC/PTX complex showed twice the effectiveness of PTX alone (p < 0.036. Above all, the DDMC/PTX complex is not degraded in cells and acts as an intact supramolecular assembly, which adds a new species to the range of DDS.

  6. Advances in radiation grafting

    International Nuclear Information System (INIS)

    Hegazy, El-Sayed A.; AbdEl-Rehim, H.A.; Kamal, H.; Kandeel, K.A.

    2001-01-01

    Graft copolymerization is an attractive means for modifying base polymers because grafting frequently results in the superposition of properties relating to the backbone and pendent chains. Among the various methods for initiating the grafting reaction, ionizing radiation is the cleanest and most versatile method of grafting available. Ion-exchange membranes play an important role in modern technology, especially in separation and purification of materials. The search for improved membrane composition has considered almost every available polymeric material because of its great practical importance. Grafting of polymers with a mixture of monomers is important since different types of chains containing different functional groups are included. A great deal is focused on the waste treatment of heavy and toxic metals from wastewater because of the severe problems of environmental pollution. Functionalized polymers suitable for metal adsorption with their reactive functional groups such as carboxylic and pyridine groups suitable for waste treatment were prepared by radiation grafting method. More reactive chelating groups were further introduced to the grafted copolymer through its functional groups by chemical treatments with suitable reagents. The advances of radiation grafting and possible uses are briefly discussed

  7. Radiation induced graft copolymerization of acrylamide onto poly (3-hydroxybutyrate)

    International Nuclear Information System (INIS)

    Gonzalez Torres, Maykel; Rapado Paneque, Manuel; Paredes Zaldivar, Mayte; Altanes Valentin, Sonia; Barrera Gonzalez, Gisela

    2008-01-01

    The graft copolymer poly (3-hydroxybutyrate)-g- polyacrylamide [P (HB-g-AAm)] was synthesized by radiation induced graft copolymerization of acrylamide onto poly (3-hydroxybutyrate). The study was conducted by the simultaneous irradiation method. The structure of [P (HB-g-AAm)] was identified by Fourier Transform Infrared (FTIR) spectroscopy. Thermal behavior of the graft copolymer was also studied by Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). From the results it was found that FTIR studies showed new signals (stretching -N-H) as strong evidence of grafting. The grafting degree was found to be 10 % and the thermodynamic parameter obtained from the DSC thermogram of plain PHB and the graft copolymer varied showing decrease in the material crystallinity and increase in the glass transition temperature. These results demonstrate that the radiation induced graft copolymerization reaction of acrylamide onto PHB was successively achieved. (Author)

  8. Grafting heterogeneous catalyst with gamma radiation

    International Nuclear Information System (INIS)

    Garnett, J.L.; Long, M.A.; Levot, R.G.

    1984-01-01

    A process for the production of a heterogeneous catalyst comprises the steps of: irradiating an organic macromolecular substrate or a metal substrate with ionising or ultra violet radiation in the presence of a monomer selected from the group consisting of o-, m-, or p- styryl diphenyl phosphine and o-, m- or p- phenyl acrylyl diphenyl phosphine, to graft the monomer to the substrate; and reacting the graft copolymer with a homogeneous catalyst selected from the group consisting of catalytic metal salts and catalytic organometallic complexes such that the graft copolymer conjugate becomes a ligand of the catalyst

  9. Synthesis, Characterization and Evaluation of the Transformations in Hibiscus sabdariffa-graft-poly(butyl acrylate

    Directory of Open Access Journals (Sweden)

    B. S. Kaith

    2008-01-01

    Full Text Available Different reaction parameters for the graft copolymerization of butyl acrylate onto Hibiscus sabdariffa fiber were optimized. Graft copolymers thus obtained were subjected to characterization using XRD, TGA, DTA, SEM and FTIR techniques and were evaluated for physio-chemical changes in the behavior. The percentage crystallinity and crystallinity index were found to decrease with increase in grafting while there was reduction in moisture absorption and increase in chemical, thermal resistance of the graft copolymers.

  10. Physical properties of agave cellulose graft polymethyl methacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan [Polymer Research Centre (PORCE), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor (Malaysia)

    2013-11-27

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  11. Skin graft

    Science.gov (United States)

    Skin transplant; Skin autografting; FTSG; STSG; Split thickness skin graft; Full thickness skin graft ... donor site. Most people who are having a skin graft have a split-thickness skin graft. This takes ...

  12. Nanoparticles based on novel amphiphilic polyaspartamide copolymers

    International Nuclear Information System (INIS)

    Craparo, Emanuela Fabiola; Teresi, Girolamo; Ognibene, Maria Chiara; Casaletto, Maria Pia; Bondi, Maria Luisa; Cavallaro, Gennara

    2010-01-01

    In this article, the synthesis of two amphiphilic polyaspartamide copolymers, useful to obtain polymeric nanoparticles without using surfactants or stabilizing agents, is described. These copolymers were obtained starting from α,β-poly-(N-2-hydroxyethyl)-dl-aspartamide (PHEA) by following a novel synthetic strategy. In particular, PHEA and its pegylated derivative (PHEA-PEG 2000 ) were functionalized with poly(lactic acid) (PLA) through 1,1'-carbonyldiimidazole (CDI) activation to obtain PHEA-PLA and PHEA-PEG 2000 -PLA graft copolymers, respectively. These copolymers were properly purified and characterized by 1 H-NMR, FT-IR, and Size Exclusion Chromatography (SEC) analyses, which confirmed that derivatization reactions occurred. Nanoparticles were obtained from PHEA-PLA and PHEA-PEG 2000 -PLA graft copolymers by using the high pressure homogenization-solvent evaporation method, avoiding the use of surfactants or stabilizing agents. Polymeric nanoparticles were characterized by dimensional analysis, before and after freeze-drying process, and Scanning Electron Microscopy (SEM). Zeta potential measurements and X-ray Photoelectron Spectroscopy (XPS) analysis demonstrated the presence of PEG and/or PHEA onto the PHEA-PEG 2000 -PLA and PHEA-PLA nanoparticle surface, respectively.

  13. Radiation induced graft copolymerization of jute fibre

    International Nuclear Information System (INIS)

    Al-Siddique, F.R.; Khan, A.U.; Sheikh, R.A.

    1983-01-01

    Graft copolymerized jute fibres (GCJF) were prepared by γ-ray induced graft copolymerization of various monomers onto bleached and de-waxed jute samples. The effect of γ-ray dose on the tendency of various monomers to form graft co-polymer was studied. It was found that the tendency decreases as follows: methylmethacrylate (MMA)>acrylonitrile (AN)>styrene (STY)>vinylacetate (VA). When the effect of monomer concentration on the formation of graft co-polymer was studied, it was found that a mixture of AN and STY gave a higher amount of grafting than what was observed for STY or AN alone, when used at a comparable concentration. A study on the effect of concentration of methyl alcohol (a swelling agent for jute) on the tendency of the monomers to form graft co-polymer showed that although there is no effect when only AN is used, an appreciable effect is observed if AN is mixed with STY. In the later case the tendency of graft co-polymerization increases with the increase of CH 3 OH concentration. It was further observed that the increase of CH 3 OH also has a positive influence on MMA to form graft co-polymer in the range of 40-90% CH 3 OH. The affinity of GCJF towards moisture has been found to decrease with the increase of polymer loading onto jute. The presence of swelling agents during graft copolymer formation was also found to decrease the affinity of GCJF towards moisture. (author)

  14. Morphological studies on block copolymer modified PA 6 blends

    Energy Technology Data Exchange (ETDEWEB)

    Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  15. The graft copolymerisation of acrylamide onto cellulose using ...

    African Journals Online (AJOL)

    Theobroma cacao) wood meal have been produced using hydroquinone enhanced Fe2+/H2O2 redox system. The addition of hydroquinone to the redox system affected the effectiveness of the redox system to initiate graft copolymer formation.

  16. Anomalous Behaviors of Block Copolymers at the Interface of an Immiscible Polymer Blend

    Science.gov (United States)

    Ryu, Ji Ho; Lee, Won Bo

    We investigate the effects of structure and stiffness of block copolymers on the interface of an immiscible polymer blend using coarse-grained molecular dynamics (CGMD) simulation. The diblock and grafted copolymers, which are described by Kremer and Grest bead spring model, are used to compare the compatibilization efficiency, that is, reduction of the interfacial tension. It is found that, overall, the grafted copolymers are located more compactly at the interface and show better compatibilization efficiency than diblock copolymers. In addition, it is noted that an increase in the stiffness of one block of diblock copolymer causes inhomogeneous interfacial coverage due to bundle formation among the stiff blocks and orientational constraint on bundled structures near the interface, which makes copolymers poor compatibilizers. The dependence of anomalous orientational constraint on the chain length of homopolymers is also investigated. Theoretical and Computational Soft Matters Lab.

  17. Incorporation of fluconazole in copolymer PMMA-g-PEG derivatives

    International Nuclear Information System (INIS)

    Silveira, B.M.; Santos, V.M.R. dos; Novack, K.M.; Lopes, S.A.

    2014-01-01

    The graft copolymer PMMA-g-PEG went through chemical transformations in its chain through acetylation, halogenation, methylation and esterification followed by hydrolysis reactions. Subsequently, the copolymer PMMA-g-PEG derivatives passed through the process of emulsification and incorporation of the drug fluconazole. Derivatives copolymers were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) after incorporation in order to evaluate their effectiveness. The efficiency of incorporation was observed and it was also verified that the complexity of polymer chain influence in the incorporated fluconazole content. (author)

  18. Synthesis and characterization of organometallic copolymers of acrylic acid g-polyethylene, with Mo, Fe, Co, Zn and Ni

    International Nuclear Information System (INIS)

    Dorantes R, G.L.

    1997-01-01

    In this study, the preparation of a series of low density polyethylenes grafted with acrylic acid is presented. The grafting reactions were initiated by different doses of γ radiation; it was observed that grafting increased with the doses of radiation. The prepared copolymers were coordinated with different metals, as Mo, Fe, Co, Zn and Ni. The amount of metal supported on the polymer was determined by atomic absorption. Infrared spectroscopy and thermogravimetric analysis confirmed the metal chelation on the graft copolymer. The film surfaces were observed by scanning electron microscopy. positron annihilation spectroscopy revealed a decrease on the free volume in the low density polyethylene after the grafting with acrylic acid. (Author)

  19. The γ-radiation induced grafting of unsaturated segmented polyurethanes with N-vinyl pyrrolidone

    International Nuclear Information System (INIS)

    Egboh, S.H.; George, M.H.; Barrie, J.A.

    1984-01-01

    Linear unsaturated segmented polyurethanes have been modified by hydrophilic grafting at 40 deg C with N-vinyl pyrrolidone, in N,N-dimethylformamide as solvent, using 60 Cobalt γ-irradiation. Graft copolymers were isolated from homopolymers by selective solvent extraction using a Soxhlet apparatus. The effects of reaction time, total dose, temperature and monomer concentration, on the graft yields have been examined. Relatively high irradiation doses were avoided during the grafting experiments to prevent possible degradation of the segmented polyurethanes and gelation of the homopolymer, poly(N-vinyl pyrrolidone). The ungrafted and grafted copolymers were characterized, and the graft copolymers were shown to be more thermally stable than the original polyurethanes, by thermogravimetric analysis. An explanation for the observed variation of the graft yields with some of the experimental variables is suggested. (author)

  20. The adsorption of Pb(sup2+) and Cu(sup2+) onto gum ghatti-grafted poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: isotherms and kinetic models

    CSIR Research Space (South Africa)

    Mittal, H

    2015-01-01

    Full Text Available A biodegradable hydrogel polymer of gum ghatti (Gg) with a copolymer mixture of acrylamide (AAm) and acrylonitrile (AN) was synthesized using the free-radical graft copolymerization technique. The effect of graft copolymerization on the surface area...

  1. Determination of the distribution of graft yields following a radiation-induced graft copolymerization

    International Nuclear Information System (INIS)

    Schipschack, K.; Wagner, H.; Sawtschenko, L.

    1976-01-01

    In the radiation-induced graft copolymerization on solid initial polymers a distribution of graft yields takes place along the cross-sections of samples. Methods for determining this distribution, which are described in the literature, are reviewed. In our own investigations boards made of ethylene-vinyl acetate copolymers and grafted with vinyl chloride were used. Distributions of the grafted component obtained by infrared analysis of microtome cuts parallel to the surface are partly rather inhomogeneous, and are interpreted as dependent on the experimental parameters. (author)

  2. Olefin–Styrene Copolymers

    OpenAIRE

    Nunzia Galdi; Antonio Buonerba; Leone Oliva

    2016-01-01

    In this review are reported some of the most relevant achievements in the chemistry of the ethylene–styrene copolymerization and in the characterization of the copolymer materials. Focus is put on the relationship between the structure of the catalyst and that of the obtained copolymer. On the other hand, the wide variety of copolymer architecture is related to the properties of the material and to the potential utility.

  3. Radiation graft post-polymerization of sodium styrene sulfonate onto polyethylene

    International Nuclear Information System (INIS)

    Kitaeva, N.K.; Duflot, V.R.; Ilicheva, N.S.

    2013-01-01

    Post-irradiation grafting of sodium styrene sulfonate (SSS) in the presence of acrylic acid (AA) has been investigated on polyethylene (PE) pre-exposed to gamma radiation at room temperature in the air. Special attention was paid to the effect of low molecular weight salt additives on the kinetics of graft copolymerization of SSS and AA. The presence of SSS links in the grafted PE copolymers was detected by the methods of UV and FTIR spectroscopy. Based on the FTIR spectroscopy and element analysis data, a mechanism was proposed for graft copolymerization of SSS and AA onto PE. The mechanical properties of the graft copolymers were studied. It was established that PE copolymers grafted with sulfonic acid and carboxyl groups have higher strength characteristics (16.3 MPa) compared to the samples containing only carboxyl groups (11 MPa). (author)

  4. Synthesis of Graft Copolymers by Small Doses of Irradiation; Synthese des copolymeres greffes au moyen de petites doses de rayonnements; Sintez privitykh sopolimerov s pomoshch'yu malykh doz oblucheniya; Sintesis de copolimeros de injerto mediante pequenas dosis de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Dobo, J; Somogyi, M; Kiss, L

    1960-07-15

    In addition to grafting, there is often an undesirable alteration in the properties of the original polymer when polymer monomer mixtures are irradiated. As a result of irradiation, grafting occurs not only on the original polymeric backbone, but also on the already grafted side-chains. The result is an acceleration of grafting. The effect is especially pronounced in the case of preformed polymers, if irradiation is carried out intermittently. The grafting of styrene can be accelerated by the addition of some solvents which suppress the protective effect of the styrene on the polymer. Grafting can be accelerated by other additives. The swelling properties of the irradiated films were investigated. (author) [French] Lorsque des melanges de polymeres et de monomeres sont soumis a des rayonnements, il se produit souvent, en meme temps que la greffe, une alteration facheuse des proprietes du polymere original. L'irradiation provoque une reaction de greffage, non seulement sur le polymere original, mais aussi sur les chaines laterales deja greffees. Il en resulte une acceleration du processus de greffage. L'effet est particulierement marque dans le cas des polymeres preformes, lorsque l'irradiation est effectuee par intermittence. On peut accelerer le processus de greffage du styrolene en ajoutant certains solvants qui suppriment l'action protectrice du styrolene sur le polymere. On peut aussi accelerer le processus a l'aide d'autres additifs. Les auteurs ont etudie les proprietes de gonflement des pellicules irradiees. (author) [Spanish] Simultaneamente con el injerto, bajo la accion de las radiaciones se produce frecuentemente una alteracion de las propiedades del polimero original, efecto que convendria evitar. Por lo tanto, quiza ofrezcan interes los elevados grados de injerto obtenidos en nuestros laboratorios con pequenas dosis de radiacion. La irradiacion no solo provoca una reaccion de injerto en la estructura polimerica original, sino tambien en las cadenas

  5. Graft copolymerization of glycidyl methacrylate onto delignified kenaf fibers through pre-irradiation technique

    International Nuclear Information System (INIS)

    Sharif, Jamaliah; Mohamad, Siti Fatahiyah; Fatimah Othman, Nor Azilah; Bakaruddin, Nurul Azra; Osman, Hasnul Nizam; Güven, Olgun

    2013-01-01

    Glycidyl methacrylate grafted kenaf (GMA-g-Kenaf) was prepared by pre-irradiation grafting technique. Kenaf fibers were treated with different concentration of sodium chlorite solution before used as trunk polymer. Treated kenaf fibers were irradiated by electron beam followed by grafting reaction in GMA/water emulsion system. The degree of grafting was determined as a function of absorbed dose, reaction time, reaction temperature and concentration of monomer. The results showed that the lignin content was decreased from 14.3% to as low as 3.3% with the increased of sodium chlorite concentration. This was evidenced by SEM pictures which show the surface of treated kenaf fibers was cleaner and smoother compared to that of untreated one. The degree of grafting increased with the increase of absorbed dose, reaction temperature, reaction time and monomer concentration as well as with decreasing lignin content. Formation of graft copolymer was confirmed with SEM, FTIR analysis. The structural investigation by XRD showed that degree of crystallinity of graft copolymers decreased with the increase in degree of grafting. - Highlights: • We used kenaf fibers for radiation induce graft copolymerization with GMA. • Kenaf fibers was treated to remove lignin in order to increase grafting yield. • Treated kenaf fibers were graft copolymerize through preirradiation technique. • Optimum conditions for graft copolymerization of kenaf fibers were established. • Formation of graft copolymer is also confirmed with SEM, FTIR and XRD

  6. Caraterização composicional do AES - um copolímero de enxertia de poli(estireno-co-acrilonitrila em poli(etileno-co-propileno-co-dieno Compositional characterization of AES a graft copolymer based on poly(styrene-co-acrylonitrile and poly(etyhlene-co-propylene-co-diene

    Directory of Open Access Journals (Sweden)

    Renato Turchet

    2006-06-01

    Full Text Available O objetivo deste trabalho é a caracterização do AES, um copolímero de enxertia de poli(estireno-co-acrilonitrila, SAN, em poli(etileno-co-propileno-co-dieno, EPDM. Para tanto, o AES foi submetido à extração seletiva de seus componentes: o SAN livre, o EDPM livre, e o copolímero de enxertia EPDM-g-SAN. O AES e suas frações foram caracterizados por espectroscopia de infravermelho, análise elementar, calorimetria diferencial de varredura e ressonância magnética nuclear, RMN¹H e RMN13C. O AES analisado apresenta a seguinte composição em massa: 65% de EPDM-g-SAN, 13% de EPDM livre e 22% de SAN livre. O EPDM apresenta 69,8% em massa de etileno, 26,5% em massa de propileno e 4,6% em massa do dieno, 2-etilideno-5-norboneno, ENB. O SAN apresenta razão em massa acrilonitrila/estireno de 28/72 e distribuição randômica de comonômeros de estireno e acrilonitrila. Estes resultados são concordantes com a composição do AES fornecida pelo fabricante, indicando que a metodologia proposta é adequada.This work aims the characterization of AES, a graft copolymer based on poly(styrene-co-acrylonitrile, SAN, and poly(etyhlene-co-propylene-co-diene, EPDM. AES was submitted to selective extraction of its components: free SAN, EPDM chains and the graft copolymer EPDM-g-SAN. AES and its fractions were characterized by infrared spectroscopy, elemental analysis, differential scanning calorimetry, 13C and ¹H nuclear magnetic resonance. The AES has 65 wt % of EPDM-g-SAN, 13 wt % of free EPDM and 22 wt % of free SAN. EPDM has 69.8 wt % of ethylene, 26.5 wt % of propylene and 4.6 wt % of diene, 2-ethylidene-5-norbonene ENB. SAN presents acrylonitrile/styrene mass ratio of 28/72 and a random distribution of acrylonitrile and styrene comonomers. These results are in agreement with the composition reported by the AES supplier, indicating that the proposed methodology is adequate.

  7. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible block copolymers?are described along with atom transfer radical polymerization (ATRP), a technique utilized to develop well-defined functional thermo reversible block copolymers. The brief also focuses on Polyrotaxanes and their great potential as stimulus-responsive materials which produce poly (dimethyl siloxane) (PDMS) based thermo reversible block copolymers.

  8. Synthesis of polyaniline catalysed by Cu(I), Ni(II) and Fe(II) supported on the polyethylene-i-acrylic acid copolymer

    International Nuclear Information System (INIS)

    Hernandez, L.; Urena, F.; Lopez, R.

    1997-01-01

    In this study the active sites of acrylic acid (AA) were grafted in low density polyethylene (PEBD) using gamma radiation. Subsequently, the graft copolymer PEBD-i-AA was coordinated with different metals such as copper, nickel and iron. The organometallic copolymers so formed were used as catalysts in the aniline polymerization reaction. Finally, it was realized the characterization of the obtained products, determining their thermal properties, copolymer graft percentage, quantification of the metal contained in the complex as well as polymerization and electric conductivity percentages of the poly aniline film. (Author)

  9. Skin Graft

    OpenAIRE

    Shimizu, Ruka; Kishi, Kazuo

    2012-01-01

    Skin graft is one of the most indispensable techniques in plastic surgery and dermatology. Skin grafts are used in a variety of clinical situations, such as traumatic wounds, defects after oncologic resection, burn reconstruction, scar contracture release, congenital skin deficiencies, hair restoration, vitiligo, and nipple-areola reconstruction. Skin grafts are generally avoided in the management of more complex wounds. Conditions with deep spaces and exposed bones normally require the use o...

  10. Biodegradation of starch–graft–polystyrene and starch–graft–poly(methacrylic acid copolymers in model river water

    Directory of Open Access Journals (Sweden)

    Nikolić Vladimir

    2013-01-01

    Full Text Available In this paper the biodegradation study of grafted copolymers of polystyrene (PS and corn starch and poly(methacrylic acid and corn starch in model river water is described. These copolymers were obtained in the presence of different amine activators. The synthesized copolymers and products of degradation were characterized by Fourier Transform Infrared Spectroscopy (FTIR and Scanning Electron Microscopy (SEM. Biodegradation was monitored by mass decrease and number of microorganisms by Koch’s method. Biodegradation of both copolymers advanced with time, poly(methacrylic acid-graft-starch copolymers completely degraded after 21 day, and polystyrene-graft-starch partially degraded (45.78-93.09 % of total mass after 27 days. Differences in the degree of biodegradation are consequences of different structure of the samples, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. The grafting degree of PS necessary to prevent biodegradation was 54 %. Based on experimental evidence, mechanisms of both biodegradation processes are proposed, and influence of degree of starch and synthetic component of copolymers on degradation were established. [Projekat Ministarstva nauke Republike Srbije, br. 172001 i br. 172062

  11. Cytotoxicity of copolymer PHEMA-g-LDPE obtained for ionizing radiation

    International Nuclear Information System (INIS)

    Lorenzetti, Solange G.; Camillo, Maria A.P.; Higa, Olga Z.; Queiroz, Alvaro A.A. de

    2005-01-01

    Polymeric biomaterials are the polymers described in the literature which are employed in medicine and biotechnology. The aim of the work was the preparation of biocompatible polymeric surface for the posterior immobilization of protein compounds using grafted copolymers obtained by ionizing radiation. The copolymers was obtained by gamma irradiation induced grafting of 2-hydroxyethyl methacrylate (HEMA) onto low density polyethylene (LDPE) in different conditions.. The grafting yield ranged from 2% to 50%. The copolymers were analysed by infrared spectroscopy (FTIR). MEV micrographs showed a smooth surface for the virgin LDPE and rough surface for the copolymers due to the grafted PHEMA. The hydrophilic property appeared with the grafting increase of PHEMA onto LDPE. The diffusion coefficient was determined. Cytotoxicity assay was performed for the evaluation of biocompatibility. The method is based on the quantitative assesment of surviving viable cells upon exposure of CHO cells to the material extract and incubation with the supravital dye MTS. The amount of MTS, taken up by the population of cells is directly proportional to the number of viable cells in culture. The grafted polymers were not cytotoxic and will be used for the chemical immobilization of the enzyme phospholipase A2, purified from the rattlesnake venom. (author)

  12. Radiation-induced grafting of styrene on to LDPE films for preparation of cation exchange membranes, i. effect of grafting conditions

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef; Hamdani Saidi; Hussin Mohd Nor; Khairul Zaman Mohd Dahlan; Kamaruddin Hashim

    1999-01-01

    PE-g-polystyrene copolymers were prepared by simultaneous radiation-induced graft copolymerization of styrene onto low density polyethylene (LDPE) films. The effects of irradiation conditions such as monomer concentration, Mohr's salt and sulfuric acid addition, irradiation dose and dose rate were investigated. It was found that the degree of grafting increases with the monomer concentration and reaches its maximum value at styrene concentration of 80 vol %. The addition of Mohr's salt as well as sulfuric acid caused a considerable increase in the degree of grafting with various styrene concentrations. The degree of grafting also increased with the increased in irradiation dose, however it remarkably decreased with the increase in dose rate. The formation of graft copolymers was confirmed by FTIR analysis. The structural investigation of the graft copolymer was carried out by x-ray diffraction (XRD). The degree of crystallinity content was found to be decreased with the increase in the degree of grafting and influenced the mechanical properties of the graft copolymer to some extent. (Author)

  13. Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide.

    Science.gov (United States)

    Wei, Liqing; McDonald, Armando G; Stark, Nicole M

    2015-03-09

    Polyhydroxybutyrate (PHB) was grafted onto cellulose fiber by dicumyl peroxide (DCP) radical initiation via in situ reactive extrusion. The yield of the grafted (cellulose-g-PHB) copolymer was recorded and grafting efficiency was found to be dependent on the reaction time and DCP concentration. The grafting mechanism was investigated by electron spin resonance (ESR) analysis and showed the presence of radicals produced by DCP radical initiation. The grafted copolymer structure was determined by nuclear magnetic resonance (NMR) spectroscopy. Scanning electronic microscopy (SEM) showed that the cellulose-g-PHB copolymer formed a continuous phase between the surfaces of cellulose and PHB as compared to cellulose-PHB blends. The relative crystallinity of cellulose and PHB were quantified from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) results, while the absolute degree of crystallinity was evaluated by differential scanning calorimetry (DSC). The reduction of crystallinity indicated the grafting reaction occurred not just in the amorphous region but also slightly in crystalline regions of both cellulose and PHB. The smaller crystal sizes suggested the brittleness of PHB was decreased. Thermogravimetric analysis (TGA) showed that the grafted copolymer was stabilized relative to PHB. By varying the reaction parameters the compositions (%PHB and %cellulose) of resultant cellulose-g-PHB copolymer are expected to be manipulated to obtain tunable properties.

  14. Ionic Copolymer-Magnetite Complexes for Magnetic Resonance Imaging and Drug Delivery

    OpenAIRE

    Zhang, Rui

    2015-01-01

    This thesis is focused on the design, synthesis and characterization of magnetite-ionic copolymer complexes as nanocarriers for drug delivery and magnetic resonance imaging. The polymers included phosphonate and carboxylate-containing graft and block copolymers. Oleic-acid coated magnetite nanoparticles (8-nm and 16-nm diameters) were investigated. Cisplatin and carboplatin were used as sample drugs. The potentials of the magnetite-ionomer complexes as dual drug delivery carriers and magneti...

  15. Study on grafting glycidyl methacrylate onto HDPE membranes by pre-irradiation graft copolymerization

    International Nuclear Information System (INIS)

    Tong Long; Zu Jianhua; Liu Xinwen; Sun Guisheng; Yu Chunhui

    2006-01-01

    Glycidyl methacrylate (GMA) was grafted onto HDPE membranes by pre-irradiation method with 1.8 MeV E-beam and a kind of membranes having reactive epoxy groups was successfully synthesized. Effects of monomer concentration, reaction temperature and time and irradiation dose on the grafting yield were studied. Composition, thermo-property and surface morphology of the grafted membranes were studied by FTIR, DSC and Tapping-mode AFM, respectively. The FTIR measurements proved the synthesized copolymer is HDPE-g-GMA. The DSC results indicated the grafted HDPE's melting temperature (T m ) and heat of fusion (ΔH f ( HDPE) ) which was reduced with increasing grafting yield. The AFM images indicated that surface of the HDPE-g-GMA membranes was rougher than the virgin HDPE. (authors)

  16. Biodegradable copolymers carrying cell-adhesion peptide sequences.

    Science.gov (United States)

    Proks, Vladimír; Machová, Lud'ka; Popelka, Stepán; Rypácek, Frantisek

    2003-01-01

    Amphiphilic block copolymers are used to create bioactive surfaces on biodegradable polymer scaffolds for tissue engineering. Cell-selective biomaterials can be prepared using copolymers containing peptide sequences derived from extracellular-matrix proteins (ECM). Here we discuss alternative ways for preparation of amphiphilic block copolymers composed of hydrophobic polylactide (PLA) and hydrophilic poly(ethylene oxide) (PEO) blocks with cell-adhesion peptide sequences. Copolymers PLA-b-PEO were prepared by a living polymerisation of lactide in dioxane with tin(II)2-ethylhexanoate as a catalyst. The following approaches for incorporation of peptides into copolymers were elaborated. (a) First, a side-chain protected Gly-Arg-Gly-Asp-Ser-Gly (GRGDSG) peptide was prepared by solid-phase peptide synthesis (SPPS) and then coupled with delta-hydroxy-Z-amino-PEO in solution. In the second step, the PLA block was grafted to it via a controlled polymerisation of lactide initiated by the hydroxy end-groups of PEO in the side-chain-protected GRGDSG-PEO. Deprotection of the peptide yielded a GRGDSG-b-PEO-b-PLA copolymer, with the peptide attached through its C-end. (b) A protected GRGDSG peptide was built up on a polymer resin and coupled with Z-carboxy-PEO using a solid-phase approach. After cleavage of the delta-hydroxy-PEO-GRGDSG copolymer from the resin, polymerisation of lactide followed by deprotection of the peptide yielded a PLA-b-PEO-b-GRGDSG block copolymer, in which the peptide is linked through its N-terminus.

  17. Graft polymerization of vinyl acetate onto starch. Saponification to starch-g-poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1979-01-01

    Graft polymerizations of vinyl acetate onto granular cornstarch were initiated by cobalt-60 irradiation of starch-monomer-water mixtures, and ungrafted poly(vinyl acetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 Mrad. Over half of the polymer was present as ungrafted poly(vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only 34% grafted synthetic polymer (34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acrylamide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficency. Grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate--methyl methacrylate was carried out near 0 0 C; although conversion of monomers to polymer was low and grafted polymer contained 40 to 50% poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hydroxide to convert starch-g-poly(vinyl acetate) to starch-g-poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety was about 30,000. The solubility of starch-g-poly(vinyl alcohol) in hot water was less than 50; however, solubility could be increased by substituting either acid-modified or hypochlorite-oxidized for unmodified starch in the graft polymerization reaction. Vinyl acetate was also graft polymerized onto acid-modified starch which had been dispersed and partially solubilized by heating in water. A total irradiation dose of either 1.0 or 0.5 Mrad gave starch-g-poly

  18. Synthesis and Thermosensitive Behavior of Polyacrylamide Copolymers and Their Applications in Smart Textiles

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-05-01

    Full Text Available We tuned the lower critical solution temperature (LCST of amphiphilic poly(N-isopropylacrylamide (PNIPAAm via copolymerization with a hydrophilic comonomer of N-hydroxymethyl acrylamide (NHMAAm. A series of copolymers P(NIPAAm-co-NHMAAm were synthesized by atom transfer radical polymerization (ATRP using CuBr/(N,N,N',N',N''-Pentamethyldiethylenetriamine (PMDETA as a catalyst system and 2-bromo ethyl isobutyrate (EBiB as an initiator. The copolymers were well characterized by Fourier transform infrared spectroscopy (FT-IR, 1H Nuclear magnetic resonance (NMR, and Thermogravimetric analysis (TGA. The copolymers followed a simple rule in their thermosensitive behaviors and have a linear increase in the LCST as a function of NHMAAm mol%. The thermosensitive properties of the copolymer films were investigated and demonstrated hydrophilic-hydrophobic transitions. Finally, the copolymer was grafted onto cotton fabrics using citric acid (CA as a crosslinking agent and sodium hypophosphite (SHP as a catalyst following a two dipping, two padding process. The large number of hydroxyl groups in the copolymer makes grafting convenient and firm. The grafted cotton fabrics show obvious thermosensitive behaviors. The results demonstrate that the cotton fabrics become more hydrophobic when the temperature is higher than the LCST. This study presents a valuable route towards temperature-responsive smart textiles and their potential applications.

  19. Thermodynamic characterization of poly(4-hydroxystyrene)-g-[poly(propyleneoxide-b-ethylene oxide)] thermoresponsive brush copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Thanassoulas, Angelos, E-mail: athanas@rrp.demokritos.gr [Biomolecuar Physics Laboratory, National Centre for Scientific Research “Demokritos”, 153 10 Aghia Paraskevi (Greece); Papadopoulos, Athanasios [Biomolecuar Physics Laboratory, National Centre for Scientific Research “Demokritos”, 153 10 Aghia Paraskevi (Greece); Pispas, Stergios [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 11635 Athens (Greece); Zhao, Junpeng; Zhang, Guangzhao [Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Nounesis, George [Biomolecuar Physics Laboratory, National Centre for Scientific Research “Demokritos”, 153 10 Aghia Paraskevi (Greece)

    2016-08-20

    Highlights: • PPO-b-PEO core-shell brush copolymers exhibit thermoresponsive behavior in aqueous solutions. • Their thermal transitions strongly depend on their architecture and chemical composition. • These copolymer transitions follow a coil-to-globule mechanism. • It is possible to fine-tune their thermoresponsiveness to a wide range of temperatures. - Abstract: Thermoresponsive brush copolymers with poly(4-hydroxystyrene) backbones and poly(propyleneoxide-b-ethylene oxide) side chains were synthesized via a “grafting from” technique. The thermoresponsive behavior of four samples with different compositions has been investigated in dilute aqueous solutions by high-accuracy differential scanning calorimetry measurements. Thermal transitions involving both core contraction and intermolecular aggregation have been observed for all the copolymers in this study. The temperature where these thermal transitions occur is strongly associated to the architecture and chemical composition of the copolymers, allowing for fine-tuning of their thermoresponsiveness in a wide range of temperatures.

  20. Study by the positron annihilation technique of Graft copolimerization of methyl methacrylate in polyethylene induced by gamma radiation

    International Nuclear Information System (INIS)

    Zaldivar Gonzalez, M.E.

    1992-01-01

    Radiation initiated grafting is a very broad field which has attracted considerable interest over the last two decades. Graft copolymers may combine suitable properties of two polymeric components. Radiation methods are particulary appropiate for the production of a large variety of graft copolymers having interesting properties. Ionizing radiation has provided a convenient and clean method to activate a sustrate polymer and undoubtedly, it has added impetus to this field of research. In the present work, graft polymerization of methyl methacrylate (MMA) onto low density polyethylene (LDPE) was carried out. The effect of gamma ray irradiation dose on the grafting degree was investigated for two different methods: direct and preirradiation. The best method to prepare the copolymer for the LDPE film thickness studied: 0.05 and 0.2 mm., was direct method. In both polyethylene thickness, the grafting degree increased as a function of the reaction time. However, grafting for LDPE 0.2 mm. it is better, because the copolymer with that thickness conserve the main physical-chemistry properties of the LDPE along the different grafting degrees obtained, which it is important for practical purposes. Infrared spectroscopy was used to probe the changes ocurred in the LDPE structure with the graft of MMA, first spectrum showed typical bands for LDPE structure, while in the second spectrum new bands appeared which corresponded to PMMA structure grafted onto LDPE. Positron annihilation lifetime technique was applied to study the copolymer microstructure according to increase of grafting degree. O-PS lifetime and intensity tend to decrease. This behavior could be due to the diminution of free volume in the original LDPE matrix as grafting proceeds. Copolymer morphology was observed using optical microscopy (Author)

  1. Influence of copolymer architectures on adhesion and compatibilization of polymers at interfaces

    Science.gov (United States)

    Guo, Lantao

    Adhesion and compatibilization of immiscible homopolymers by a variety of copolymer architectures were studied. The work is arranged into 5 chapters: In Chapter 1, an introduction to recent studies on improvement of adhesion and compatibilization of polymer blends using copolymers was made including the advantages and shortcomings of interfacial reinforcement by a diblock copolymer architecture. Emphasis is on the novel ways to improve adhesion at polymer interfaces by a variety of copolymer architectures, including physical entanglement and chemical modification and chemical bonding. In Chapter 2, a series of Polystyrene-Poly(methyl methacrylate) (PS-PMMA) graft copolymers were introduced to modify the PS and PMMA homopolymer interface and was found to increase the interfacial fracture toughness to a large extent, depending on the detailed architectural variables such as the graft number per chain, the lengths of the backbone and the grafts, and the total molecular weights of the graft copolymers. It was also found that there was an optimal number of grafts per chain which can be interpreted based on the graft length and inter-branch length of the backbone of the copolymer. Effect of in-situ grafting via a chemical reaction between Polystyrene-Poly(vinyl phenol) (PS-PSOH) and oxazoline containing Styrene-Acrylonitril (SAN) was also discussed compared with the physical grafting of a graft copolymer of different structural parameters. In Chapter 3, hydrogen bonding was utilized to toughen the interface between PS and PAA poly(acrylic acid)) or PMMA using a random copolymer architecture of Polystyrene-Poly(vinyl pyridine) (PS-PVP). It was shown that random copolymer architecture is not only economically feasible due to its low cost of producing but also very effective on adhesion because it not only overcomes the issue of micelle formation which is an unavoidable situation in the diblock and graft cases but the enhancement of adhesion is much higher utilizing a H

  2. Synthesis and characterization of c-PTFE-g-styrene copolymer by preirradiation method

    International Nuclear Information System (INIS)

    Oktaviani; Ambyah Suliwarno; Tita Puspitasari

    2011-01-01

    Crosslinked-poly(tetrafluoroethylene)-graf-styrene (c-PTFE-g-styrene) copolymer has been synthesized by copolymerization preirradiation method. Irradiation onto c-PTFE films was carried out by γ-ray with irradiation doses of 15, 30, and 45 kGy at room temperature. Styrene was grafted into irradiated c-PTFE films in the temperature range of between 600-90°C. Parameter observed in the grafting process was degree of grafting. The results showed that the degree of grafting increased with increasing of irradiation doses. The highest degree of grafting was 25,44 % obtained at temperature of 70°C and still increased up to 25,73% with increasing of the grafting time. The optimum grafting time was 2 hours. Chemical and physical properties of c-PTFE-g-styrene film were analyzed by IR spectrophotometer and Scanning Electron Microscopy (SEM). (author)

  3. Characterisation of Microbial Cellulose Modified by Graft Copolymerization Technique

    International Nuclear Information System (INIS)

    Tita Puspitasari; Cynthia Linaya Radiman

    2008-01-01

    Chemical and phisycal modifications of polymer can be carried out by radiation induced graft copolymerization. This research was carried out to study the morphology and crystallinity of microbial cellulose copolymer grafted by acrylic acid (MC-g-AAC). The SEM microstructural analysis proved that the acrylic acid could diffuse into the microbial celullose and resulted a dense structure. Crystallinity measurement showded that the crystalinity of microbial cellulose increase from 50 % to 53 % after modification. (author)

  4. Protein resistance of dextran and dextran-PEG copolymer films

    Science.gov (United States)

    Kozak, Darby; Chen, Annie; Bax, Jacinda; Trau, Matt

    2011-01-01

    The protein resistance of dextran and dextran-poly(ethylene glycol) (PEG) copolymer films was examined on an organosilica particle-based assay support. Comb-branched dextran-PEG copolymer films were synthesized in a two step process using the organosilica particle as a solid synthetic support. Particles modified with increasing amounts (0.1-1.2 mg m−2) of three molecular weights (10 000, 66 900, 400 000 g mol−1) of dextran were found to form relatively poor protein-resistant films compared to dextran-PEG copolymers and previously studied PEG films. The efficacy of the antifouling polymer films was found to be dependent on the grafted amount and its composition, with PEG layers being the most efficient, followed by dextran-PEG copolymers, and dextran alone being the least efficient. Immunoglobulin gamma (IgG) adsorption decreased from ~ 5 to 0.5 mg m−2 with increasing amounts of grafted dextran, but bovine serum albumin (BSA) adsorption increased above monolayer coverage (to ~2 mg m−2) indicating ternary adsorption of the smaller protein within the dextran layer. PMID:21614699

  5. Pancreas grafts

    International Nuclear Information System (INIS)

    Hahn, D.; Buell, U.; Land, W.; Unertl, K.

    1981-01-01

    Perfusion studies with sup(99m)Tc-DTPA, which has hitherto been used routinely to investigate renal grafts, have also proved useful for monitoring the perfusion of pancreas grafts. A total perfusion failure is equally reliably demonstrable as in renal grafts. Quantitatively smaller perfusion alterations can be demonstrated by monitoring the course. It seems possible to differentiate the salivary edema of a rejection reaction, well known from animal experiments, with the help of other paramters (e.g. creatinine). Further clinical studies are however necessary to confirm these results. (orig.) [de

  6. Sorption of Different Dye Wastes By Poly(vinyl alcohol) /Poly (Carboxymethyl Cellulose) Blend Grafted Through A Radiation Method

    International Nuclear Information System (INIS)

    El-Salmawi Kariman, M.; Abu Zaid Magda, M.; Ibraheim Sayeda, M.; El-Naggar Abdel Wahab, M.; Zahran Abdel Hamid, H.

    1999-01-01

    The sorption of different dye wastes normaly released from industrial textile factories by a graft copolymer of poly(vinyl alcohol)/poly(carboxymethyl cellulose) blend with polystyrene has been investigated. The dye sorption was evaluated at different conditions. The amount of sorbed dye was determined by using a spectroscopic method. The blend graft copolymer showed a relatively high sorption for basic dye than other dyestuffs such as acid, reactive and direct. Moreover, it was found that the dye sorption did not depend on the weight of the blend graft copolymer or the volume of the waste solution. The treatment of the dye waste by using the prepared blend graft copolymer may be considered a practical one from the point of view of environmental methods

  7. A facile metal-free "grafting-from" route from acrylamide-based substrate toward complex macromolecular combs

    KAUST Repository

    Zhao, Junpeng

    2013-01-01

    High-molecular-weight poly(N,N-dimethylacrylamide-co-acrylamide) was used as a model functional substrate to investigate phosphazene base (t-BuP 4)-promoted metal-free anionic graft polymerization utilizing primary amide moieties as initiating sites. The (co)polymerization of epoxides was proven to be effective, leading to macromolecular combs with side chains being single- or double-graft homopolymer, block copolymer and statistical copolymer. © 2013 The Royal Society of Chemistry.

  8. Radiation-induced graft polymerization of acrylic acid onto fluorinated polymers: Pt. 2

    International Nuclear Information System (INIS)

    Abdel-Ghaffar, M.; Hegazy, E.A.; Dessouki, A.M.; El-Sawy, N.M.; El-Assy, N.B.

    1991-01-01

    Radiation induced grafting of acrylic acid onto poly (tetrafluoroethylene-perfluorovinyl ether) (PFA) films was investigated. The grafted films rapidly absorbed Fe 3+ , Co 2+ , Ni 2+ , and Cu 2+ ions in high efficiency. The polyacrylic acid grafted onto PFA acted as a chelating site for the previously selected transition metal ions. Such prepared copolymer-metal complexes were confirmed spectrophotometrically via IR, UV-spectrometry, X-ray fluorescence, X-ray diffraction, and colour index measurements. Electrical conductivity and mechanical properties of PFA grafted copolymer-metal complexes were investigated. The applications of such prepared copolymer-metal complexes in the field of semiconductors besides its performance as a cation-exchange membrane may be of great interest. (author)

  9. Controlled grafting of cellulose esters using SET-LRP process

    Czech Academy of Sciences Publication Activity Database

    Vlček, Petr; Raus, Vladimír; Janata, Miroslav; Kříž, Jaroslav; Sikora, Antonín

    2011-01-01

    Roč. 49, č. 1 (2011), s. 164-173 ISSN 0887-624X R&D Projects: GA ČR GA106/09/1348 Institutional research plan: CEZ:AV0Z40500505 Keywords : cellulose esters * copolymerization * graft copolymers Subject RIV: JI - Composite Materials Impact factor: 3.919, year: 2011

  10. Graft copolymerization and characterization of styrene with chitosan ...

    African Journals Online (AJOL)

    Fourier transform infrared spectroscopy (FTIR) results showed the presence of polystyrene peaks, indicating the success of the grafting procedure. Thermogravimetric analyses (TGA) revealed that the thermal stability of the prepared copolymer is higher than that of chitosan alone. Mw and Mn of the isolated polystyrene from ...

  11. Synthesis of copolymers suitable for the storage and slow release of reactants. Cases of copper salts for intra-uterine devices

    International Nuclear Information System (INIS)

    Gaussens, Gilbert; Duchemin-Berthet, Jeanne.

    1976-01-01

    This research has been carried out to determine whether a grafted poly(ethylene-vinyl acetate) matrix could be prepared which would release useful amounts of copper salts when used in intra-uterine devices. Intra-uterine devices were prepared by grafting hydroxyethyl acrylate onto ethylene-vinylacetate copolymers (EVA). The kinetics of the grafting reaction were studied. The grafting reaction was initiated by cobalt 60 gamma rays using the simultaneous method. The conditions of copper salts absorption by the grafted copolymers were selected. The average quantity of copper salts released daily from the intra-uterine device was meaured as a function of grafting ratio and the amount of copper salt initially incorporated in the grafted polymeric matrix. In vitro experiments samples showed constant release rates during a period of 18 months

  12. Iodinated glycidyl methacrylate copolymer as a radiopaque material for biomedical applications.

    Science.gov (United States)

    Dawlee, S; Jayabalan, M

    2013-07-01

    Polymeric biomaterial was synthesized by copolymerizing 50:50 mol% of monomers, glycidyl methacrylate and methyl methacrylate. Iodine atoms were then grafted to the epoxide groups of glycidyl methacrylate units, rendering the copolymer radiopaque. The percentage weight of iodine in the present copolymer was found to be as high as 23%. The iodinated copolymer showed higher glass transition temperature and thermal stability in comparison with unmodified polymer. Radiographic analysis showed that the copolymer possessed excellent radiopacity. The iodinated copolymer was cytocompatible to L929 mouse fibroblast cells. The in vivo toxicological evaluation by intracutaneous reactivity test of the copolymer extracts has revealed that the material was nontoxic. Subcutaneous implantation of iodinated copolymer in rats has shown that the material was well tolerated. Upon explantation and histological examination, no hemorrhage, infection or necrosis was observed. The samples were found to be surrounded by a vascularized capsule consisting of connective tissue cells. The results indicate that the iodinated copolymer is biocompatible and may have suitable applications as implantable materials.

  13. Optimization of cellulose acrylate and grafted 4-vinylpyridine and 1-vinylimidazole synthesis

    Directory of Open Access Journals (Sweden)

    Bojanić Vaso

    2010-01-01

    Full Text Available Optimization of cellulose acrylate synthesis by reaction with sodium cellulosate and acryloyl chloride was carried out. Optimal conditions for conducting the synthesis reaction of cellulose acrylate were as follows: the molar ratio of cellulose/potassium-t-butoxide/acryloyl chloride was 1:3:10 and the optimal reaction time was 10 h. On the basis of elemental analysis with optimal conditions for conducting the reaction of cellulose acrylate, the percentage of substitution of glucose units in cellulose Y = 80.7%, and the degree of substitution of cellulose acrylate DS = 2.4 was determined. The grafting reaction of acrylate vinyl monomers onto cellulose in acetonitrile with initiator azoisobutyronitrile (AIBN in a nitrogen atmosphere was performed, by mixing for 5 h at acetonitrile boiling temperature. Radical copolymerization of synthesized cellulose acrylate and 4-vinylpyridine, 1-vinylimidazole, 1-vinyl-2-pyrrolidinone and 9-vinylcarbazole, cellulose-poly-4-vinylpyridine (Cell-PVP, cellulose-poly-1- vinylimidazole (Cell-PVIm and cellulose-poly-1-vinyl-2-pyrrolidinone (Cell-P1V2P and cellulose-poly-9-vinylcarbazole (Cell-P9VK were synthesized. Acrylate cellulose and cellulose grafted copolymers were confirmed by IR spectroscopy, based on elementary analysis and the characteristics of grafted copolymers of cellulose were determined. The mass share of grafted copolymers, X, the relationship of derivative parts/cellulose vinyl group, Z, and the degree of grafting copolymers of cellulose (mass% were determined. In reaction of methyl iodide and cellulose-poly-4-vinylpyridine (Cell-PVP the cellulose-1-methyl-poly-4-vinylpyridine iodide (Cell-1-Me-PVPJ was synthesized. Cellulose acrylate and grafted copolymers were obtained with better thermal, electrochemical and ion-emulation properties for bonding of noble metals Au, Pt, Pd from water solutions. The synthesis optimization of cellulose acrylate was applied as a model for the synthesis of grafted

  14. Block coordination copolymers

    Science.gov (United States)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  15. The effect of copolymers on the interfaces in incompatible homopolymers blend: Molecular dynamics study

    Science.gov (United States)

    Ryu, Jiho; Lee, Won Bo

    2015-03-01

    Using molecular dynamics simulations the effect of copolymers as compatibilizer for reducing interfacial tension and enhancement of interfacial adhesion at the interface of thermodynamic unfavorable homopolymers blend is studied with block- and graft-copolymers. We have calculated local pressure tensor of system along the axis perpendicular to interface, varying bending potential energy of one part, which consist of just one kind of beads, of copolymer chain to examine the effect of stiffness of surfactin molecules. Here we consider symmetric diblock copolymer (f =1/2) having 1/2 N make of beads of type A and the other part made of beads of type B, and graft copolymer having backbone linear chain consist of 1/2 N beads of type of A and branched with two side-chain consist of 1/4 N beads of type B. All simulations were performed under the constant NPT ensemble at T* =1, ρ* ~0.85. Also we studied changes of effect of copolymers with increasing pairwise repulsive interaction potential between two beads of types A and B while homopolymers chain length are fixed, N =30. Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea.

  16. Reduction of CT beam hardening artefacts of ethylene vinyl alcohol copolymer by variation of the tantalum content: evaluation in a standardized aortic endoleak phantom

    International Nuclear Information System (INIS)

    Treitl, Karla M.; Scherr, Michael; Foerth, Monika; Braun, Franziska; Maxien, Daniel; Treitl, Marcus

    2015-01-01

    Our aim was to develop an aortic stent graft phantom to simulate endoleak treatment and to find a tantalum content (TC) of ethylene-vinyl-alcohol-copolymer that causes fewer computed tomography (CT) beam hardening artefacts, but still allows for fluoroscopic visualization. Ethylene-vinyl-alcohol-copolymer specimens of different TC (10-50 %, and 100 %) were injected in an aortic phantom bearing a stent graft and endoleak cavities with simulated re-perfusion. Fluoroscopic visibility of the ethylene-vinyl-alcohol-copolymer specimens was analyzed. In addition, six radiologists analyzed endoleak visibility, and artefact intensity of ethylene-vinyl-alcohol-copolymer in CT. Reduction of TC significantly decreased CT artefact intensity of ethylene-vinyl-alcohol-copolymer and increased visibility of endoleak re-perfusion (p < 0.000). It also significantly decreased fluoroscopic visibility of ethylene-vinyl-alcohol-copolymer (R = 0.883, p ≤ 0.01), and increased the active embolic volumes prior to visualization (Δ ≥ 40 μl). Ethylene-vinyl-alcohol-copolymer specimens with a TC of 45-50 % exhibited reasonable visibility, a low active embolic volume and a tolerable CT artefact intensity. The developed aortic stent graft phantom allows for a reproducible simulation of embolization of endoleaks. The data suggest a reduction of the TC of ethylene-vinyl-alcohol-copolymer to 45 -50 % of the original, to interfere less with diagnostic imaging in follow-up CT examinations, while still allowing for fluoroscopic visualization. (orig.)

  17. Thermoreversible cross-linking of maleated ethylene/propylene copolymers with diamines and amino-alcohols

    NARCIS (Netherlands)

    Mee, van der M.A.J.; Goossens, J.G.P.; Duin, van M.

    2008-01-01

    Maleated ethylene/propylene copolymers (MAn-g-EPM) were thermoreversibly cross-linked using diamines and amino-alcohols. Covalent cross-links are formed via the equilibrium reaction of the grafted anhydride groups with di-functional cross-linkers containing combinations of primary (1°) and secondary

  18. Sorption behaviour of polystyrene grafted sago starch in various solvents

    International Nuclear Information System (INIS)

    Janarthanan, P.; Yunus, W.M.Z.W.; Ahmed, M.B.; Rahman, M.Z.; Haron, M.J.; Silong, S.

    2001-01-01

    This paper describes swelling properties of polystyrene grafted sago starch in dimethyl sulfoxide (DMSO); chloroform (CHCl/sub 3/), water, acetone carbon tetrachloride (CCl/sub 4/) cyclohexanone and toluene. The copolymer for this study was prepared by grafting styrene onto sago starch using ceric ammonium nitrate as a redox initiator. Solvent uptake of the copolymer with respect to time was obtained by soaking the samples in chosen solvents for various time intervals at 25+-1 degree centigrade. The results obtained from swelling of polystyrene grafted sago starch in polar and non polar solvents showed that the percentage of swelling at equilibrium and the swelling rate coefficient decreased in the following order: DMSO > water > acetone cyclohexanone approx. CHCl/sub 3/ > toluene approx. CCl/sub 4/. Dimethyl sulfoxide showed the highest percentage of swelling at equilibrium that is 765%. Diffusions of the solvents onto the polymers were found to be of a Fickian only for DMSO. (author)

  19. Obtention and characterization of acrylic acid-i-polyethylene organometallic copolymers with Mo, Fe, Co, Zn, and Ni

    International Nuclear Information System (INIS)

    Dorantes, G.; Urena, F.; Lopez, R.; Lopez, R.

    1997-01-01

    In this study a graft acrylic acid (AA) in low density polyethylene (PEBD) copolymers were prepared, using as reaction initiator, gamma radiation at different doses. These copolymers were coordinated with molybdenum, cobalt, iron, zinc and nickel. the obtained polymeric materials were characterized by conventional analysis techniques. It was studied the measurement parameter variation of the positron annihilation when they inter activated with this type of materials and so obtaining information about microstructure of these polymers. (Author)

  20. Identifying the nature of surface chemical modification for directed self-assembly of block copolymers

    Directory of Open Access Journals (Sweden)

    Laura Evangelio

    2017-09-01

    Full Text Available In recent years, block copolymer lithography has emerged as a viable alternative technology for advanced lithography. In chemical-epitaxy-directed self-assembly, the interfacial energy between the substrate and each block copolymer domain plays a key role on the final ordering. Here, we focus on the experimental characterization of the chemical interactions that occur at the interface built between different chemical guiding patterns and the domains of the block copolymers. We have chosen hard X-ray high kinetic energy photoelectron spectroscopy as an exploration technique because it provides information on the electronic structure of buried interfaces. The outcome of the characterization sheds light onto key aspects of directed self-assembly: grafted brush layer, chemical pattern creation and brush/block co-polymer interface.

  1. Synthesis and Characterization of Konjac Glucomannan-Graft-Polyacrylamide via γ-Irradiation

    Directory of Open Access Journals (Sweden)

    Jie Pang

    2008-03-01

    Full Text Available The synthesis of konjac glucomannan-graft-polyacrylamide (KGM-g-PAM wascarried out at 25°C by γ-irradiation under a N2 atmosphere. The effects of absorbedradiation dosage and monomer concentration on grafting yield and water absorbency werestudied. The grafted copolymers were characterized using Fourier Transform Infrared(FTIR spectroscopy, nuclear magnetic resonance (NMR, x-ray diffraction (XRD,thermogravimetric analysis (TGA and gel permeation chromatography (GPC. Thegrafting yield was observed to increase with increasing absorbed dosage and monomerconcentration. Compared with the original KGM, the grafted copolymers exhibited betterthermal stability and water absorbency. The results suggest that γ-irradiation is convenientand efficient for inducing graft copolymerization of KGM and acrylamide (AM.

  2. Modification of macroporous membranes by graft co-polymerization induced by pre-irradiation with an electron accelerator

    International Nuclear Information System (INIS)

    Grasselli, M.; Yoshii, Fumio

    1999-01-01

    Glycidyl methacrylate (GMA) and N,N-dimethylacrylamide (DMAA) have been co-grafted on hollow fiber membranes of macroporous polyethylene. Grafted copolymers have been obtained with different ratios of the monomers (molar ratio between 0 and 2 DMAA/GMA). The properties of the modified membranes are studied

  3. The preparation of highly absorbing cellulosic copolymers -the cellulose acetate/propionate-g.co-acrylic acid system

    International Nuclear Information System (INIS)

    Bilgin, V.; Guthrie, J.T.

    1990-01-01

    A series of copolymers based on the cellulose acetate/propionate-g.co-acrylic acid system has been prepared under radiation-induced control. These copolymers have been assessed for their water-retention capacity both in an unmodified state and after ''decrystallization'' or ''neutralization'' treatments. The grafting of acrylic acid onto the cellulose acetate/propionate had little effect on the water retention power of the cellulose acetate/propionate. However, improvements to the water retentivity was obtained after ''decrystallization'' procedures had been carried out on the copolymers using selected alkali metal salts with methanol as the continuous medium. The water-retentivity of the copolymers increased with increase in the extent of grafting, though the effect is less pronounced at high graft levels. Neutralization of the functional groups of the grafted branches provided a route to obtaining a marked increase in the level of water retentivity. Excessive salt concentrations gave reduced levels of water retentivity. Cesium carbonate and sodium carbonate have been shown to be effective in providing marked improvements in the water-retaining capacity of the copolymers. Maxima in performance are shown with respect to the treatment conditions. (author)

  4. Synthesis and self-assembly of Chitosan-g-Polystyrene copolymer: A new route for the preparation of heavy metal nanoparticles

    KAUST Repository

    Francis, Raju S.

    2015-01-01

    Amphiphilic graft copolymers made of a Chitosan (CS) backbone and three arm polystyrene (PS) grafts were prepared by "grafting onto" strategy using Toluene Diisocyanate. IR spectroscopy and SEC show the successful grafting process. SEM pictures of Chitosan-g-Polystyrene (CS-g-PS) indicate a spherulite like surface and exhibit properties that result from the disappearance of Chitosan crystallinity. The introduced polystyrene star grafts units improve hydrophobic properties considerably as confirmed by the very high solubility of (CS-g-PS) in organic solvents. The graft copolymer which self-assembles into polymeric micelles in organic media demonstrates much better adsorption of transition and inner transition metal ions than pure Chitosan whose amine groups are not necessarily available due to crystallinity.

  5. The study on grafting comonomer of n-butyl acrylate and styrene onto poly(ethylene terephthalate) film by gamma-ray induced graft copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Ping Xiang; Wang Mozhen [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ge Xuewu, E-mail: xwge@ustc.edu.c [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-09-15

    Poly(ethylene terephthalate) (PET) film was successfully grafted with n-butyl acrylate and styrene comonomer through gamma-ray induced graft copolymerization. The degree of grafting (DG) and the composition of grafted side chain were characterized by {sup 1}H NMR. It was found that St can inhibit the homopolymerization of BA effectively and increase the DG when the concentration of comonomer mixture is kept constant. The proportion of St to BA in grafted side chain has a positive dependence on the feed ratio of St, which ultimately approaches the feed ratio. The thermal properties of poly(ethylene terephthalate)-graft-poly(n-butyl acrylate-co-styrene) (PET-g-P(BA-co-St)) films were investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The T{sub g} of PET decreases with the DG, indicating that the grafted P(BA-co-St) copolymer has good compatibility with PET backbone.

  6. Amine functionalization of cellulose surface grafted with glycidyl methacrylate by γ-initiated RAFT polymerization

    International Nuclear Information System (INIS)

    Barsbay, Murat; Güven, Olgun; Kodama, Yasko

    2016-01-01

    This study presents the functionalization of poly(glycidyl methacrylate) (PGMA) grafted cellulose filter paper by a model compound, ethylenediamine (EDA), through the epoxy groups of PGMA. Cellulose based copolymers were prepared via the radiation-induced and RAFT-mediated graft polymerization. The samples were characterized by ATR–FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurements and scanning electron microscopy (SEM). An efficient modification density of around 1 mmol EDA/mg copolymer was attained within ca. 8 h, indicating that chemical composition of well-defined copolymers may further be tuned by appropriately selecting the reactive agents for use in many emerging fields. - Highlights: • Ethylenediamine (EDA) was immobilized to cellulose-g-PGMA copolymers. • FTIR, XPS, SEM, EA and CA measurements were used for characterization. • The useful qualities of the RAFT were combined with the versatility of PGMA.

  7. Block copolymer battery separator

    Science.gov (United States)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  8. Stent graft placement for dysfunctional arteriovenous grafts

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Gyeong Sik [Dept. of Radiology, CHA Bundang Medical Center, College of Medicine, CHA University, Seongnam (Korea, Republic of); Shin, Byung Seok; Ohm, Joon Young; Ahn, Moon Sang [Chungnam National University Hospital, Daejeon (Korea, Republic of)

    2015-07-15

    This study aimed to evaluate the usefulness and outcomes of stent graft use in dysfunctional arteriovenous grafts. Eleven patients who underwent stent graft placement for a dysfunctional hemodialysis graft were included in this retrospective study. Expanded polytetrafluoroethylene covered stent grafts were placed at the venous anastomosis site in case of pseudoaneurysm, venous laceration, elastic recoil or residual restenosis despite the repeated angioplasty. The patency of the arteriovenous graft was evaluated using Kaplan-Meier analysis. Primary and secondary mean patency was 363 days and 741 days. Primary patency at 3, 6, and 12 months was 82%, 73%, and 32%, respectively. Secondary patency at the 3, 6, 12, 24, and 36 months was improved to 91%, 82%, 82%, 50%, and 25%, respectively. Fractures of the stent graft were observed in 2 patients, but had no effect on the patency. Stent graft placement in dysfunctional arteriovenous graft is useful and effective in prolonging graft patency.

  9. Improved homopolymer separation to enable the application of H-1 NMR and HPLC for the determination of the reaction parameters of the graft copolymerization of acrylic acid onto starch

    NARCIS (Netherlands)

    Witono, Judy R.; Marsman, Jan Henk; Noordergraaf, Inge-Willem; Heeres, Hero J.; Janssen, Leon P. B. M.

    2013-01-01

    Graft copolymers of starch with acrylic acid are a promising green, bio based material with many potential applications. The grafting of acrylic acid onto cassava starch in an aqueous medium initiated by Fenton's reagent has been studied. Common grafting result parameters are add-on (yield) and

  10. Synthesis of electroactive tetraaniline grafted polyethylenimine for tissue engineering

    Science.gov (United States)

    Dong, Shilei; Han, Lu; Cai, Muhang; Li, Luhai; Wei, Yan

    2015-07-01

    Tetraaniline grafted polyethylenimine (AT-PEI) was successfully synthesized in this study. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy was used to determine the structure of carboxyl-capped aniline tetramer (AT-COOH) and AT-PEI. UV-Vis spectroscopy and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize the absorption spectrum of the obtained AT-PEI samples. The morphology of AT-PEI copolymers in aqueous solution was determined by Scanning electron microscope (SEM). Moreover, AT-PEI copolymers demonstrated excellent solubility in aqueous solution and possessed electroactivity by cyclic voltammogram (CV) curves, which showed its potential application in the field of tissue engineering.

  11. Effects of Electron Beam Irradiation on Binary Polyamide-6 Blends with Metallocene Copolymers

    International Nuclear Information System (INIS)

    Rosales, C.

    2006-01-01

    A versatile way to produce new materials with high Izod impact strength and reduced heat deformations is the irradiation of compatibilized blends. The effect of electron beam irradiation and different types of dispersed phase grafted copolymers on thermal and mechanical properties, and SEM morphology of polyamide-6 (PA-6) blends were investigated. Two metallocene copolymers (mEPDM and mPOE) grafted in-situ with maleic anhydride and two commercial maleated copolymers (EPDM-g-MA and mEPR-g-MA) were employed in binary blends with PA6 as matrix. The blends were prepared by extrusion with a composition of 80 wt. % of PA-6. The influence of the radical or functional groups generated in the grafting and the irradiation processes (25, 50, 100 and 200 kGy) was found by ATR-FTIR. The blends exhibited the characteristic thermal behavior of immiscible systems. All compatibilizers employed influenced the melting and crystallization behavior of the blend components without irradiation and an improvement in interface adhesion was clearly observed by SEM micrographs. The sizes of the dispersed phase in the non-irradiated reactive blends were in agreement with the viscosity ratios of the blend components. High toughness materials were obtained with ethylene-polypropylene-diene (mEPDM) grafted copolymers without significant variations in their thermal properties and Izod impact strength at room temperature and -30 degree with the irradiation doses. However, the toughness of the blends with grafted metallocene polyethylenes was affected by the irradiation doses employed. Therefore, the gel content and tensile properties of the samples depended on the chain scission, crosslinking and/or grafting reactions of the blend components

  12. Immobilization of enzymes and antibodies to radiation grafted polymers for therapeutic and diagnostic applications

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A.S.; Gombotz, W.R.; Uenoyama, S.; Dong, L.C.; Schmer, G.

    1986-01-01

    Pre-irradiation and mutual radiation grafting were employed to produce poly(methacrylic acid) (MAAc) hydrogels on polypropylene/polyethylene (PP/PE) copolymer films, and porous PP fibers of a plasma filter. A diphenyl picryl hydrazyl (DPPH) assay was developed to measure the surface peroxide concentration of the pre-irradiated PP/PE films prior to grafting. Mutually grafted porous PP fibers were used for subsequent immobilization of L-asparaginase while the mutually grafted PP/PE films were used to immobilize a schistosoma monoclonal antibody.

  13. Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water.

    Science.gov (United States)

    Ifuku, Shinsuke; Iwasaki, Masayoshi; Morimoto, Minoru; Saimoto, Hiroyuki

    2012-09-01

    Graft copolymerization of acrylic acid (AA) on chitin nanofibers was carried out with potassium persulfate as a free radical initiator in an aqueous medium. The molar ratio of grafted AA increased with the AA concentration. The grafted chitin nanofibers were characterized by FT-IR, FE-SEM, UV-vis, XRD, and TGA. After polymerization, the characteristic morphology of chitin nanofibers was maintained. Chitin nanofibers grafted with AA were efficiently dissociated and dispersed homogeneously in basic water because of the electrostatic repulsion effect between nanofibers. AA was grafted on the surface and amorphous part of chitin nanofibers, and the original crystalline structure of α-chitin was maintained. At 330 °C, the weight residue of the graft copolymer increased with the grafted AA content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Study on non-ionic membrane prepared by radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Hegazy, E.-S.A.; Mokhtar, S.M.; Osman, M.B.S.; Mostafa, A.E.-K.B.

    1990-01-01

    The preparation of good hydrogel supported on polymeric material was carried out by means of direct radiation-induced graft polymerization of N-vinyl-2-pyrrolidone (NVP) onto low density polyethylene films (LDPE). The optimum conditions were determined, at which the grafting process occurred and suitable degrees of grafting were obtained with a homogeneous distribution of the graft chains throughout the polymer. The effect of different inhibitors, addition of ZnCl 2 and monomer concentration on the grafting yield was also studied. Some investigations and characterization on the prepared graft copolymer were investigated and the possibility of its practical use was discussed. Mechanical properties, thermal and chemical stability and hydrophilic properties of such prepared grafted films showed a great promise in some practical applications. (author)

  15. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via photo-initiated graft polymerization of poly(ethylene glycol)

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaomeng [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Luan Shifang, E-mail: sfluan@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yang Huawei; Shi Hengchong; Zhao Jie; Jin Jing [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin Jinghua, E-mail: yinjh@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Stagnaro, Paola [Istituto per Io Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova (Italy)

    2012-01-15

    Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) copolymer biomedical elastomer was covalently grafted with poly(ethylene glycol) methyl ether methacrylate (PEGMA) via a photo-initiated graft polymerization technique. The surface graft polymerization of SEBS with PEGMA was verified by ATR-FTIR and XPS. Effect of graft polymerization parameters, i.e., monomer concentration, UV irradiation time and initiator concentration on the grafting density was investigated. Comparing with the virgin SEBS film, the PEGMA-modified SEBS film presented an enhanced wettability and a larger surface energy. Besides, the surface grafting of PEGMA imparted excellent anti-platelet adhesion and anti-protein adsorption to the SEBS surface.

  16. Peroxydisulfate initiated synthesis of potato starch-graft-poly(acrylonitrile under microwave irradiation

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Potato starch-graft-poly(acrylonitrile could be efficiently synthesized using small concentration of ammonium peroxydisulfate (0.0014M in aqueous medium under microwave irradiation. A representative microwave synthesized graft copolymer was characterized using Fourier Transform Infrared Spectroscopy, X-ray Diffraction, Scanning Electron Microscopy and Thermogravimetric Analysis. Under microwave conditions oxygen removal from the reaction vessel was not required and the graft copolymer was obtained in high yield using very small amount of ammonium peroxydisulfate, however using the same amount of ammonium peroxydisulfate (0.0014M on thermostatic water bath no grafting was observed up to 98°C (even in inert atmosphere. Raising the concentration of the initiator to 0.24 M resulted into 10% grafting at 50 °C but in inert atmosphere.The viscosity/shear stability of the grafted starch (aqueous solution and water/saline retention ability of the microwave synthesized graft copolymer were also studied and compared with that of the native potato starch.

  17. Synthesis of polyaniline catalysed by Cu(I), Ni(II) and Fe(II) supported on the polyethylene-i-acrylic acid copolymer; Sintesis de polianilina catalizada por Cu(I), Ni(II) y Fe(II), soportados en el copolimero polietileno-i-acido acrilico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, L.; Urena, F.; Lopez, R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    In this study the active sites of acrylic acid (AA) were grafted in low density polyethylene (PEBD) using gamma radiation. Subsequently, the graft copolymer PEBD-i-AA was coordinated with different metals such as copper, nickel and iron. The organometallic copolymers so formed were used as catalysts in the aniline polymerization reaction. Finally, it was realized the characterization of the obtained products, determining their thermal properties, copolymer graft percentage, quantification of the metal contained in the complex as well as polymerization and electric conductivity percentages of the poly aniline film. (Author)

  18. Bone Graft Alternatives

    Science.gov (United States)

    ... Spine Treatment Spondylolisthesis BLOG FIND A SPECIALIST Treatments Bone Graft Alternatives Patient Education Committee Patient Education Committee ... procedure such as spinal fusion. What Types of Bone Grafts are There? Bone grafts that are transplanted ...

  19. Convenient synthetic method of starch/lactic acid graft copolymer ...

    Indian Academy of Sciences (India)

    is a potentially useful and completely biodegradable material for biodegradable plastics because of its nontoxic, low cost and its natural abundance which can be obtained from many crops including corn, wheat, rice, potato and so on (Tester and Karkallas 2002). Therefore, modification of starch, physi- cally and chemically ...

  20. Magnetic silica hybrids modified with guanidine containing co-polymers for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, 30, Lenin Avenue, 634500 Tomsk (Russian Federation); Khashirova, Svetlana Yu. [Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nal' chik, 360004 Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V.; Goncharenko, Alexander A. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation)

    2016-07-01

    Guanidine containing co-polymers grafted onto silica nanoparticles to form core-shell structure were prepared by sol-gel method in the presence of γ-Fe{sub 2}O{sub 3} nanoparticles. The morphological features for uncoated and coated silica particles have been characterized with scanning electron microscopy. The results show that the polymer coated silicas exhibit spherical morphology with rough polymeric surface covered by γ-Fe{sub 2}O{sub 3} nanoparticles. The grafting amount of guanidine containing co-polymers evaluated by thermogravimetric analysis was in the range from 17 to 30%. Then, the drug loading properties and cumulative release of silica hybrids modified with guanidine containing co-polymers were evaluated using molsidomine as a model drug. It was shown that after polymer grafting the loading content of molsidomine could reach up to 3.42 ± 0.21 and 2.34 ± 0.14 mg/g respectively. The maximum drug release of molsidomine is achieved at pH 1.6 (approximately 71–75% release at 37 °C), whereas at pH 7.4 drug release is lower (50.4–59.6% release at 37 °C). These results have an important implication that our magneto-controlled silica hybrids modified with guanidine containing co-polymers are promising as drug carriers with controlled behaviour under influence of magnetic field. - Highlights: • Polymer coated silica hybrids containing γ-Fe{sub 2}O{sub 3} were prepared via sol–gel method. • Polymer grafting influences pH-response and surface properties of final products. • Molsidomine as a model drug was effectively loaded into polymer coated silicas. • The drug loading depends on the nature of grafted polymer and its content.

  1. Graft Copolymerization Of Methyl Methacrylate Onto Agave Cellulose

    International Nuclear Information System (INIS)

    Noor Afizah Rosli; Ishak Ahmad; Ibrahim Abdullah; Farah Hannan Anuar

    2014-01-01

    The grafting polymerization of methyl methacrylate (MMA) and Agave cellulose was prepared and the grafting reaction conditions were optimized by varying the reaction time and temperature, and ratio of monomer to cellulose. The resulting graft copolymers were characterized by Fourier transform infrared, X-ray diffraction analysis, thermogravimetric analysis, and scanning electron microscopy (SEM). The experimental results showed that the optimal conditions were at a temperature of 45 degree Celsius for 90 min with ratio monomer to cellulose at 1:1 (g/ g). An additional peak at 1738 cm -1 which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted cellulose, respectively. Grafting of MMA onto cellulose enhanced its thermal stability and SEM observation further furnished evidence of grafting MMA onto Agave cellulose with increasing cellulose diameter and surface roughness. (author)

  2. Cytotoxicity of copolymer PHEMA-g-LDPE obtained for ionizing radiation; Citotoxicidade de copolimero de PEBD-e-PHEMA obtido por radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetti, Solange G.; Camillo, Maria A.P.; Higa, Olga Z. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Biologia Molecular]. E-mail: solangl@ig.com.br; Queiroz, Alvaro A.A. de [Universidade Federal de Itajuba, MG (Brazil). Dept. de Fisica e Quimica

    2005-07-01

    Polymeric biomaterials are the polymers described in the literature which are employed in medicine and biotechnology. The aim of the work was the preparation of biocompatible polymeric surface for the posterior immobilization of protein compounds using grafted copolymers obtained by ionizing radiation. The copolymers was obtained by gamma irradiation induced grafting of 2-hydroxyethyl methacrylate (HEMA) onto low density polyethylene (LDPE) in different conditions.. The grafting yield ranged from 2% to 50%. The copolymers were analysed by infrared spectroscopy (FTIR). MEV micrographs showed a smooth surface for the virgin LDPE and rough surface for the copolymers due to the grafted PHEMA. The hydrophilic property appeared with the grafting increase of PHEMA onto LDPE. The diffusion coefficient was determined. Cytotoxicity assay was performed for the evaluation of biocompatibility. The method is based on the quantitative assesment of surviving viable cells upon exposure of CHO cells to the material extract and incubation with the supravital dye MTS. The amount of MTS, taken up by the population of cells is directly proportional to the number of viable cells in culture. The grafted polymers were not cytotoxic and will be used for the chemical immobilization of the enzyme phospholipase A2, purified from the rattlesnake venom. (author)

  3. UV absorption and photoisomerization of p-methoxycinnamate grafted silicone.

    Science.gov (United States)

    Pattanaargson, Supason; Hongchinnagorn, Nantawan; Hirunsupachot, Piyawan; Sritana-anant, Yongsak

    2004-01-01

    p-Methoxycinnamate moieties, UV-B-absorptive chromophores of the widely used UV-B filter, 2-ethylhexyl p-methoxycinnamate (OMC), were grafted onto the 7 mol% amino functionalized silicone polymer through amide linkages. Comparing with OMC, the resulting poly [3-(p-methoxycinnamido)(propyl)(methyl)-dimethyl] siloxane copolymer (CAS) showed less E to Z isomerization when exposed to UV-B light. The absorption profiles of the product showed the maximum absorption wavelength to be similar to that of OMC but with less sensitivity to the type of solvent. Poly (methylhydrosiloxane) grafted with 10 mol% p-methoxycinnamoyl moieties was prepared through hydrosilylations of 2-propenyl-p-methoxycinnamate, in which the resulting copolymer showed similar results to those of CAS.

  4. Synthesis and property characterization of cassava starch grafted poly(acrylamide-co-(maleic acid)) superabsorbent via γ-irradiation

    International Nuclear Information System (INIS)

    Kiatkamjornwong, Suda; Mongkolsawat, Kanlaya; Sonsuk, Manit

    2004-01-01

    Graft copolymerizations of acrylamide and maleic acid onto cassava starch by a simultaneous irradiation technique using γ-rays as a initiator were carried out. Various important parameters of total dose, dose rate, monomer-to-cassava starch ratio and maleic acid content were studied. Addition of 2% ww -1 diprotic acid of maleic acid into the reaction mixture yields a saponified starch graft copolymer with a water absorption in distilled water as high as 2256g g -1 of its dried weight. The water absorption of these saponified graft copolymers insaline and buffer solutions was also measured. The water absorption depends largely on the cationic type and concentration of these solutions in terms of ionic strength. This research explains a charge transfer mechanism for graft copolymerization of maleic acid and acrylamide onto cassava starch, and describes the influential parameters that affect grafting efficiency and water absorption. (author)

  5. Polyethylene-Based Tadpole Copolymers

    KAUST Repository

    Alkayal, Nazeeha; Zhang, Zhen; Bilalis, Panayiotis; Gnanou, Yves; Hadjichristidis, Nikolaos

    2017-01-01

    Novel well-defined polyethylene-based tadpole copolymers ((c-PE)-b-PS, PE: polyethylene, PS: polystyrene) with ring PE head and linear PS tail are synthesized by combining polyhomologation, atom transfer radical polymerization (ATRP), and Glaser

  6. Radiation Graft Copolymerization of Butyl methacrylate and Acrylamide onto Low density polyethylene and polypropylene films and its application in wastewater treatment

    International Nuclear Information System (INIS)

    Abdel Ghaffar, A.M.; El-Arnaouty, M.B.; Aboulfotouh, M.E.; Taher, N.H.

    2012-01-01

    Butyl methacrylate and Acrylamide (BMA/AAm) comonomer were grafted onto Low density polyethylene and polypropylene films using direct gamma radiation by grafting technique. The influences of grafting conditions such as solvent, monomer concentration, monomer composition, and irradiation dose on the grafting yield were determined. It was found that, using DMF as a solvent enhanced the copolymerization process. The grafting yield increases with comonomer concentration up to 60 %. . Also it was found that, the degree of grafting of (BMA/AAm) onto LDPE and PP films increases as the AAm content increases till optimum value at (50:50) %. The grafting yield of the comonomer found to be increased with increasing radiation dose. It was observed that the degree of grafting of polyethylene films is higher than that for polypropylene films. Some selected properties of the graft copolymers, such as water uptake and thermal properties determined by using thermogravimetric analysis (TGA) has been carried out. The morphology and structure of grafted films was investigated by using SEM, IR and X-ray diffraction. The improvement in such properties of the prepared copolymers was observed which makes possible uses in some practical applications such as in the removal of some heavy metals from wastewater. It was found that the maximum metal uptake by the copolymer is ordered in the sequence of Cu 2+ > CO 2+ > Ni 2+ ions.

  7. Effect of grafting cellulose acetate and methylmethacrylate as compatibilizer onto NBR/SBR blends

    International Nuclear Information System (INIS)

    Khalf, A.I.; Nashar, D.E.El.; Maziad, N.A.

    2010-01-01

    Compatibilizer is used for improving of processability, interfacial interaction and mechanical properties of polymer blends. In this study acrylonitrile butadiene rubber (NBR) and styrene-butadiene rubber (SBR) blends were compatibilized by a graft copolymer of acrylonitrile butadiene rubber (NBR) grafted with cellulose acetate (CA) i.e. (NBR-g-CA) and acrylonitrile butadiene rubber (NBR) grafted with methylmethacrylate i.e. (NBR-g-MMA). Compatibilizers were prepared by gamma radiation induced grafting of NBR with cellulose acetate (CA) and methylmethacrylate (MMA) were added with different ratios to NBR/SBR (50/50) blend. The compatibilized blends were evaluated by rheometric characteristics, physico-mechanical properties, swelling behavior, scanning electron microscope (SEM) and thermal analysis. The results showed that, the blends with graft copolymer effect greatly on the rheological characteristics [optimum cure time (Tc 90 ), scorch time (Ts 2 ), and the cure rate index (CRI)]. The physico-mechanical properties of the investigated blends were enhanced by the incorporation of these graft copolymers, while the resistance to swelling in toluene became higher. SEM photographs confirm that, these compatibilizers improve the interfacial adhesion between NBR/SBR (50/50) blend which induce compatibilization in the immiscible blends. The efficiency of the compatibilizer was also evaluated by studying the thermogravimetric analysis.

  8. Application of Bottlebrush Block Copolymers as Photonic Crystals.

    Science.gov (United States)

    Liberman-Martin, Allegra L; Chu, Crystal K; Grubbs, Robert H

    2017-07-01

    Brush block copolymers are a class of comb polymers that feature polymeric side chains densely grafted to a linear backbone. These polymers display interesting properties due to their dense functionality, low entanglement, and ability to rapidly self-assemble to highly ordered nanostructures. The ability to prepare brush polymers with precise structures has been enabled by advancements in controlled polymerization techniques. This Feature Article highlights the development of brush block copolymers as photonic crystals that can reflect visible to near-infrared wavelengths of light. Fabrication of these materials relies on polymer self-assembly processes to achieve nanoscale ordering, which allows for the rapid preparation of photonic crystals from common organic chemical feedstocks. The characteristic physical properties of brush block copolymers are discussed, along with methods for their preparation. Strategies to induce self-assembly at ambient temperatures and the use of blending techniques to tune photonic properties are emphasized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis of Fuel Cell Membrane: Copolymerization of Styrene on ETFE Film by Grafted pre-Irradiation

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-10-01

    Full Text Available Preirradiation Grafting styrene monomer on ETFE  film has been prepared. Research has been  performed by γ-ray radiation at various total dose from 2.5 - 12.5 kGy and various dose rate from 1.3 - 1.9 kGy/hour. Irradiated copolymer is then grafted by styrene monomer in various solvent: ethanol, 2-propanol, and toluene, various concentration from 20 - 70% volume, various temperature from 50 - 90oC, and various grafting time from 2 - 12 hours. The results showed that percent of grafting is increase with increase of total dose and decrease of  rate dose. The optimum experiment conditions are obtained at total dose 10 kGy, dose rate 1,9 kGy/hour, 2-propanol solvent, 40% volume styrene, 4 hours grafting time, and 70oC grafting temperature.

  10. Incorporation of fluconazole in copolymer PMMA-g-PEG derivatives; Incorporacao de fluconazol em ineditos derivados do copolimero PMMA-g-PEG

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, B.M.; Santos, V.M.R. dos; Novack, K.M.; Lopes, S.A., E-mail: vmrebello@yahoo.com.br [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2014-07-01

    The graft copolymer PMMA-g-PEG went through chemical transformations in its chain through acetylation, halogenation, methylation and esterification followed by hydrolysis reactions. Subsequently, the copolymer PMMA-g-PEG derivatives passed through the process of emulsification and incorporation of the drug fluconazole. Derivatives copolymers were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) after incorporation in order to evaluate their effectiveness. The efficiency of incorporation was observed and it was also verified that the complexity of polymer chain influence in the incorporated fluconazole content. (author)

  11. Bone grafting: An overview

    Directory of Open Access Journals (Sweden)

    D. O. Joshi

    2010-08-01

    Full Text Available Bone grafting is the process by which bone is transferred from a source (donor to site (recipient. Due to trauma from accidents by speedy vehicles, falling down from height or gunshot injury particularly in human being, acquired or developmental diseases like rickets, congenital defects like abnormal bone development, wearing out because of age and overuse; lead to bone loss and to replace the loss we need the bone grafting. Osteogenesis, osteoinduction, osteoconduction, mechanical supports are the four basic mechanisms of bone graft. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. An ideal bone graft material is biologically inert, source of osteogenic, act as a mechanical support, readily available, easily adaptable in terms of size, shape, length and replaced by the host bone. Except blood, bone is grafted with greater frequency. Bone graft indicated for variety of orthopedic abnormalities, comminuted fractures, delayed unions, non-unions, arthrodesis and osteomyelitis. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. By adopting different procedure of graft preservation its antigenicity can be minimized. The concept of bone banking for obtaining bone grafts and implants is very useful for clinical application. Absolute stability require for successful incorporation. Ideal bone graft must possess osteogenic, osteoinductive and osteocon-ductive properties. Cancellous bone graft is superior to cortical bone graft. Usually autologous cancellous bone graft are used as fresh grafts where as allografts are employed as an alloimplant. None of the available type of bone grafts possesses all these properties therefore, a single type of graft cannot be recomm-ended for all types of orthopedic abnormalities. Bone grafts and implants can be selected as per clinical problems, the equipments available and preference of

  12. Chitosan-g-lactide copolymers for fabrication of 3D scaffolds for tissue engineering

    Science.gov (United States)

    Demina, T. S.; Zaytseva-Zotova, D. S.; Timashev, P. S.; Bagratashvili, V. N.; Bardakova, K. N.; Sevrin, Ch; Svidchenko, E. A.; Surin, N. M.; Markvicheva, E. A.; Grandfils, Ch; Akopova, T. A.

    2015-07-01

    Chitosan-g-oligo (L, D-lactide) copolymers were synthesized and assessed to fabricate a number of 3D scaffolds using a variety of technologies such as oil/water emulsion evaporation technique, freeze-drying and two-photon photopolymerization. Solid-state copolymerization method allowed us to graft up to 160 wt-% of oligolactide onto chitosan backbone via chitosan amino group acetylation with substitution degree reaching up to 0.41. Grafting of hydrophobic oligolactide side chains with polymerization degree up to 10 results in chitosan amphiphilic properties. The synthesized chitosan-g-lactide copolymers were used to design 3D scaffolds for tissue engineering such as spherical microparticles and macroporous hydrogels.

  13. Biodegradable p(DLLA-epsilon-CL) nerve guides versus autologous nerve grafts : Electromyographic and video analysis

    NARCIS (Netherlands)

    Meek, MF; Nicolai, JPA; Gramsbergen, A; van der Werf, J.F.A.

    The aim of this study was to evaluate the functional effects of bridging a gap in the sciatic nerve of the rat with either a biodegradable copolymer of (DL)-lactide and epsilon -caprolactone [p(DLLA-epsilon -CL)] nerve guide or an autologous nerve graft. Electromyograms (EMGs) of the gastrocnemius

  14. Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid

    NARCIS (Netherlands)

    Witono, J. R.; Noordergraaf, Inge; Heeres, H. J.; Janssen, L. P. B. M.; Heeres, Hero

    2014-01-01

    An important application of starch grafted with copolymers from unsaturated organic acids is the use as water absorbent. Although much research has been published in recent years, the kinetics of water absorption and the swelling behavior of starch based superabsorbents are relatively unexplored.

  15. Synthesis and self-assembling of responsive polysaccharide-based copolymers in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Nivia do N.; Balaban, Rosangela de C. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Halila, Sami; Borsali, Redouane, E-mail: borsali@cermav.cnrs.fr, E-mail: halila@cermav.cnrs.fr [Centre de Recherche sur les Macromolecules Vegetales (CERMAV), Grenoble (France)

    2015-07-01

    This work reports the synthesis and the thermoresponsive self-assembly behavior of carboxymethylcellulose-g-JeffamineM2070 and carboxymethylcellulose-g-JeffamineM600 copolymers in aqueous media. They were prepared through the grafting of two different types of amino-terminated poly(ethylene oxide-co-propylene oxide) chains onto the carboxylate groups of carboxymethylcellulose, by using water-soluble carbodiimide derivative and N-hydroxysuccinimide as coupling reagents. The grafting efficiency was confirmed by infrared and the degree of substitution by {sup 1}H NMR integrations. The salt effect on cloud point temperature was evaluated into different solvents (Milli-Q water, 0.5M NaCl, synthetic sea water (SSW) and 0.5M K{sub 2}CO{sub 3}) by UV-Vis and dynamic light scattering (DLS) measurements. Both copolymers showed lower cloud point temperature in 0.5M K2CO3 than in 0.5M NaCl and in SSW, which was attributed to the higher ionic strength for K{sub 2}CO{sub 3} combined to the ability of CO{sub 3}{sup 2-} to decrease polymer-water interactions. Copolymers chains displayed higher hydrodynamic radii than CMC precursor at 25 and 60 °C in saline solutions, and self-associations changed as a function of the environment and copolymer composition. (author)

  16. Synthesis and self-assembling of responsive polysaccharide-based copolymers in aqueous media

    International Nuclear Information System (INIS)

    Marques, Nivia do N.; Balaban, Rosangela de C.; Halila, Sami; Borsali, Redouane

    2015-01-01

    This work reports the synthesis and the thermoresponsive self-assembly behavior of carboxymethylcellulose-g-JeffamineM2070 and carboxymethylcellulose-g-JeffamineM600 copolymers in aqueous media. They were prepared through the grafting of two different types of amino-terminated poly(ethylene oxide-co-propylene oxide) chains onto the carboxylate groups of carboxymethylcellulose, by using water-soluble carbodiimide derivative and N-hydroxysuccinimide as coupling reagents. The grafting efficiency was confirmed by infrared and the degree of substitution by "1H NMR integrations. The salt effect on cloud point temperature was evaluated into different solvents (Milli-Q water, 0.5M NaCl, synthetic sea water (SSW) and 0.5M K_2CO_3) by UV-Vis and dynamic light scattering (DLS) measurements. Both copolymers showed lower cloud point temperature in 0.5M K2CO3 than in 0.5M NaCl and in SSW, which was attributed to the higher ionic strength for K_2CO_3 combined to the ability of CO_3"2"- to decrease polymer-water interactions. Copolymers chains displayed higher hydrodynamic radii than CMC precursor at 25 and 60 °C in saline solutions, and self-associations changed as a function of the environment and copolymer composition. (author)

  17. Synthesis, characterization and electrospinning of corn cob cellulose-graft-polyacrylonitrile and their clay nanocomposites.

    Science.gov (United States)

    Kalaoğlu, Özlem I; Ünlü, Cüneyt H; Galioğlu Atıcı, Oya

    2016-08-20

    This study aims at evaluation of cellulose recovered from agricultural waste (corn cob) in terms of synthesis of graft copolymers, polymer/clay nanocomposites, and nanofibers. The copolymers and nanocomposites were synthesized in aqueous solution using Ce(4+) initiator. Conditions (concentrations of the components, reaction temperature, and period) were determined first for copolymer synthesis to obtain the highest conversion ratio. Then found parameters were used to synthesize nanocomposites adding clay mineral to reaction medium. Although there was a decrease in conversion in nanocomposites syntheses, thermal and rheologic measurements indicated enhancements compared to pristine copolymer. Obtained polymeric materials have been successfully electrospun into nanofibers and characterized. Average diameter of the nanofibers was about 650nm and was strongly influenced by NaMMT amount in the nanocomposite sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Dose Rate Effect on Grafting by Gamma Radiation of DMAEMA onto Flexible PVC

    International Nuclear Information System (INIS)

    Panzarini, L.C.G.A.; Araujo, F.D.C.; Martinello, V.C.; Somesari, E.; Manzoli, J.E.; Silveira, C.; Paes, H.A.; Moura, E.

    2009-01-01

    Intravenous tubing, blood bags and catheters stays in contact with blood and body fluids. They are normally made by flexible PVC. The contact of PVC with this fluid is not possible for long periods and there is the necessity of addition of non-thrombogenic substances into blood. This work shows the radiation grafting process to produce copolymer PVC-g-DMAEMA, a new material that allows a future grafting of Heparin on it, and will have the perspective of avoiding undesirable substances additions to blood or body fluid contact. In this preliminary work, only radiation dose rate effect on grafting was studied

  19. Graft Copolymerization of Styrene from Poly(vinyl alcohol via RAFT Process

    Directory of Open Access Journals (Sweden)

    Gholam Ali Koohmareh

    2011-01-01

    Full Text Available Polystyrene, PS, was grafted from poly(vinyl alcohol, PVA, backbone by reversible addition-fragmentation chain transfer (RAFT polymerization. The hydroxyl groups of the PVA were converted into aromatic dithioester RAFT agent and polymerization began in the presence of this agent. The structure of compounds was confirmed by FT-IR and 1HNMR spectroscopy. The graft copolymer was characterized by thermogravimetric analysis (TGA, X-ray diffraction (XRD, and scanning electron microscopy (SEM. Grafted polystyrene chains were cleaved from the PVA backbone by acidic hydrolysis of the PVA-g-PS, and its polydispersity index, PDI, was determined by gel permeation chromatography (GPC showing narrow molecular weight distribution.

  20. Metallo-supramolecular block copolymer micelles

    NARCIS (Netherlands)

    Gohy, J.M.W.

    2009-01-01

    Supramolecular copolymers have become of increasing interest in recent years in the search for new materials with tunable properties. In particular, metallo-supramolecular block copolymers in which metal-ligand complexes are introduced in block copolymer architectures, have known important progress,

  1. Grafting and curing

    International Nuclear Information System (INIS)

    Garnett, J.L.; Loo-Teck Ng; Visay Viengkhou

    1998-01-01

    Progress in radiation grafting and curing is briefly reviewed. The two processes are shown to be mechanistically related. The parameters influencing yields are examined particularly for grafting. For ionising radiation grafting systems (EB and gamma ray) these include solvents, substrate and monomer structure, dose and dose-rate, temperature and more recently role of additives. In addition, for UV grafting, the significance of photoinitiators is discussed. Current applications of radiation grafting and curing are outlined. The recent development of photoinitiator free grafting and curing is examined as well as the potential for the new excimer laser sources. The future application of both grafting and curing is considered, especially the significance of the occurrence of concurrent grafting during cure and its relevance in environmental considerations

  2. Skin graft - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100100.htm Skin graft - series—Normal anatomy To use the sharing features ... entire body, and acts as a protective barrier. Skin grafts may be recommended for: Extensive wounds Burns Specific ...

  3. Biodegradable flocculants based on polyacrylamide and poly(N,N-dimethylacrylamide) grafted amylopectin.

    Science.gov (United States)

    Kolya, Haradhan; Tripathy, Tridib

    2014-09-01

    Synthesis of amylopectin grafted polyacrylamide (AP-g-PAM) and poly(N,N-dimethylacrylamide) (AP-g-PDMA) was carried out by Ce4+ in water medium. The reaction conditions for maximum grafting was optimized by varying the reaction variables, including the concentration of monomers, ceric ammonium nitrate (CAN), amylopectin, reaction time and temperature. The graft copolymers were characterized by FTIR spectroscopy, NMR (both 1H and 13C) spectroscopy, molecular weight determination and molecular weight distribution by using size exclusion chromatography (SEC), thermal analysis (TGA), SEM studies. Biodegradation of the graft copolymers was carried out by enzyme hydrolysis. Flocculation performances of the graft copolymers were evaluated in 1.0 wt% coal and 1.0 wt% silica suspensions. A comparative study of the flocculation performances of AP-g-PDMA and AP-g-PAM was also made. It shows that the flocculation performance of AP-g-PDMA was better than that of AP-g-PAM. AP-g-PDMA performed best when compared with other commercial flocculants in the same suspensions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Carbohydrate polymer based pH-sensitive IPN microgels: Synthesis, characterization and drug release characteristics

    International Nuclear Information System (INIS)

    Eswaramma, S.; Reddy, N. Sivagangi; Rao, K.S.V. Krishna

    2017-01-01

    pH-sensitive interpenetrating polymer network (IPN) microgels of chitosan (CS) and guargum-g-poly((2-dimethylamino)ethylmethacrylate) (GG-g-PDMAEMA) were developed by emulsion crosslinking method using glutaraldehyde as a crosslinker. In this regard, primarily guargum (GG) is grafted with (2-dimethylamino)ethylmethacrylate (DMAEMA) followed by blended with CS to prepare various microgel formulations. These microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil (5-FU). The maximum % encapsulation efficiency was found to be 81. Fourier transform infrared analysis was used to investigate the formation of graft copolymer (GG-g-PDMAEMA), chemical structure of microgels as well as the chemical interactions of drug molecules with the polymer matrix. The surface morphological studies and average particle size were examined by scanning electron microscopy. The average size of microgels is 130 ± 20 μm. Thermal behavior and molecular distribution of 5-FU within the polymer matrix were confirmed from thermogravimetric analysis and X-ray diffraction experiments. The pH-sensitive swelling behavior of IPN microgels was investigated in different pH solutions. To study the release profile of 5-FU, in vitro release profiles were performed in both pH 1.2 and 7.4. The release kinetics showed pH- dependent drug release and IPN microgels exhibited an excellent controlled release pattern for 5-FU over a period of more than 24 h. The release mechanism was analyzed by evaluating the release data using different empirical equations. - Highlights: • poly((2-dimethylamino)ethylmethacrylate) was grafted on to guargum backbone. • pH-responsive IPN microgels were developed from chitosan and graft copolymer. • Microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil. • Swelling and drug release studies were greatly dependent on pH.

  5. Carbohydrate polymer based pH-sensitive IPN microgels: Synthesis, characterization and drug release characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Eswaramma, S. [Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516003 (India); Reddy, N. Sivagangi [Advanced Nanomaterials Lab, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241 (Korea, Republic of); Rao, K.S.V. Krishna, E-mail: ksvkr@yogivemanauniversity.ac.in [Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516003 (India)

    2017-07-01

    pH-sensitive interpenetrating polymer network (IPN) microgels of chitosan (CS) and guargum-g-poly((2-dimethylamino)ethylmethacrylate) (GG-g-PDMAEMA) were developed by emulsion crosslinking method using glutaraldehyde as a crosslinker. In this regard, primarily guargum (GG) is grafted with (2-dimethylamino)ethylmethacrylate (DMAEMA) followed by blended with CS to prepare various microgel formulations. These microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil (5-FU). The maximum % encapsulation efficiency was found to be 81. Fourier transform infrared analysis was used to investigate the formation of graft copolymer (GG-g-PDMAEMA), chemical structure of microgels as well as the chemical interactions of drug molecules with the polymer matrix. The surface morphological studies and average particle size were examined by scanning electron microscopy. The average size of microgels is 130 ± 20 μm. Thermal behavior and molecular distribution of 5-FU within the polymer matrix were confirmed from thermogravimetric analysis and X-ray diffraction experiments. The pH-sensitive swelling behavior of IPN microgels was investigated in different pH solutions. To study the release profile of 5-FU, in vitro release profiles were performed in both pH 1.2 and 7.4. The release kinetics showed pH- dependent drug release and IPN microgels exhibited an excellent controlled release pattern for 5-FU over a period of more than 24 h. The release mechanism was analyzed by evaluating the release data using different empirical equations. - Highlights: • poly((2-dimethylamino)ethylmethacrylate) was grafted on to guargum backbone. • pH-responsive IPN microgels were developed from chitosan and graft copolymer. • Microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil. • Swelling and drug release studies were greatly dependent on pH.

  6. Ionic membranes obtained by radiation-induced graft copolymerization, I-preparation. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Rehim, H A; Hegazy, E A [National Center for Radiation and Technology, Atomic Energy Authority, Cairo, (Egypt); Ali, A M.I.; Nowier, H G; Aly, H F [Hot Laboratories Center, atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    A study has been made on the preparation of ionic membranes by radiation-induced graft copolymerization of acrylic acid (AAC) onto low density polyethylene (LDPE) films. The Suitable conditions at which the grafting proceeds homogeneously were determined. To minimize the homo polymerization of AAC during irradiation process different types of inhibitors were investigated to find that the addition of Fe Cl{sub 3} (1.5 Wt%) effectively reduced such process when compared with other inhibitors used. The suitable diluent for this grafting system is found to be distilled water, methanol and methanol water mixture. The effect of diluent mixture composition, irradiation time, addition of mineral or organic acid and metal chlorides on the grafting yield and its homogeneity in the graft copolymer was determined. It was observed that the grafting yield increased as the content of water increased in MeOH/H{sub 2} O mixture. The addition of oxalic acid to the reaction medium enhanced the grafting process, however, the addition of HCl or H{sub 2} S O{sub 4} resulted in a more homogeneous grafting. The same effect was also observed when metal salts; namely N H{sub 4} Cl, NaCl and Cu Cl{sub 2} were added and resulted in homogeneous grafted membranes. The swelling and permeability of the grafted films prepared were also investigated. Results obtained in this study showed a great promise for the possible practical use of such prepared graft copolymers as a good hydrophilic membrane. The possibility of its use as an ion-exchange membrane for metal waste will be considered.4 figs., 5 tabs.

  7. Effect of Sequence Blockiness on the Morphologies of Surface-grafted Elastin-like Polypeptides

    Science.gov (United States)

    Albert, Julie; Sintavanon, Kornkanok; Mays, Robin; MacEwan, Sarah; Chilkoti, Ashutosh; Genzer, Jan

    2014-03-01

    The inter- and intra- molecular interactions among monomeric units of copolymers and polypeptides depend strongly on monomer sequence distribution and dictate the phase behavior of these species both in solution and on surfaces. To study the relationship between sequence and phase behavior, we have designed a series of elastin-like polypeptides (ELPs) with controlled monomer sequences that mimic copolymers with various co-monomer sequence distributions and attached them covalently to silicon substrates from buffer solutions at temperatures below and above the bulk ELPs' lower critical solution temperatures (LCSTs). The dependence of ELP grafting density on solution temperature was examined by ellipsometry and the resultant surface morphologies were examined in air and under water with atomic force microscopy. Depositions performed above the LCST resulted in higher grafting densities and greater surface roughness of ELPs relative to depositions carried out below the LCST. In addition, we are using gradient substrates to examine the effect of ELP grafting density on temperature responsiveness.

  8. Grafting of GMA and some comonomers onto chitosan for controlled release of diclofenac sodium.

    Science.gov (United States)

    Sharma, Rajeev Kr; Lalita; Singh, Anirudh P; Chauhan, Ghanshyam S

    2014-03-01

    In order to develop pH sensitive hydrogels for controlled drug release we have graft copolymerized glycidyl methacrylate (GMA) with comonomers acrylic acid, acrylamide and acrylonitrile, onto chitosan (Ch) by using potassium persulphate (KPS) as free radical initiator in aqueous solution. The optimum percent grafting for GMA was recorded for 1g chitosan at [KPS]=25.00 × 10(-3)mol/L, [GMA]=0.756 × 10(-3)mol/L, reaction temperature=60 °C and reaction time=1h in 20 mL H2O. Binary monomers were grafted for five different concentrations at optimum grafting conditions evaluated for GMA alone onto chitosan. The graft copolymers were characterized by FTIR, XRD, TGA and SEM. The swelling properties of chitosan and graft copolymers were investigated at different pH to define their end uses in sustained release of an anti-inflammatory drug, diclofenac sodium. Percent drug release w.r.t. drug loaded in polymeric sample was studied as function of time in buffer solutions of pH 2.0 and 7.4. In vitro release data was analyzed using Fick's Law. Chitosan grafted with binary monomers, GMA-co-AAm and GMA-co-AN showed very good results for sustained release of drug at 7.4 pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Graft copolymerization of N-maleoyl-N-phthaloyl-chitosan (MAPHCS) and acrylic acid via γ-ray irradiation

    International Nuclear Information System (INIS)

    Mu Qing; Fang Yue'e

    2006-01-01

    Chitosan is a well-known abundant natural polymer with good biodegradability, biocompatibility and bioactivity. But its insolubility in common organic solvents of chitosan have hindered its utilization and basic research. N-maleoyl-N-phthaloyl-chitosan (MAPHCS), soluble in DMF or DMSO, was synthesized and characterized by Fourier transform infrared spectra analysis (FT-IR) and 1 H-NMR. The graft copolymerization of acrylic acid onto chitosan was carried out with N-maleoyl-N-phthaloyl-chitosan as intermediate in homogeneous system and initiated by γ-irradiation. The double bond of MAPHCS may be the grafting site because the grafting field was much higher than that of the graft copolymerization of acrylic acid and phthaloylchitosan via γ-ray irradiation. The chemical structure of the graft copolymer was characterized by FT-IR and 1 H-NMR. As indicated in FTIR spectra, the evidence of the stronger absorbance at 2800-3000 cm -1 for C-H and at 1720 cm -1 for carboxyl group implied significantly the successful introduction of the poly (acrylic acid) on the chitosan chain. Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were also used to characterize the copolymer. Effects of synthesis variables on the graft copolymerization were studied in light of the grafting percentage. The grafting percentage increased with the dose at lower doses, and then decreased. The maximum grafting percentage was up to 132%. (authors)

  10. Bone grafts in dentistry

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar

    2013-01-01

    Full Text Available Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation.

  11. Polyethylene-Based Tadpole Copolymers

    KAUST Repository

    Alkayal, Nazeeha

    2017-02-15

    Novel well-defined polyethylene-based tadpole copolymers ((c-PE)-b-PS, PE: polyethylene, PS: polystyrene) with ring PE head and linear PS tail are synthesized by combining polyhomologation, atom transfer radical polymerization (ATRP), and Glaser coupling reaction. The -OH groups of the 3-miktoarm star copolymers (PE-OH)-b-PS, synthesized by polyhomologation and ATRP, are transformed to alkyne groups by esterification with propiolic acid, followed by Glaser cyclization and removal of the unreacted linear with Merrifield\\'s resin-azide. The characterization results of intermediates and final products by high-temperature size exclusion chromatography, H NMR spectroscopy, and differential scanning calorimetry confirm the tadpole topology.

  12. Main-chain supramolecular block copolymers.

    Science.gov (United States)

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  13. The radiation crosslinking of ethylene copolymers

    International Nuclear Information System (INIS)

    Burns, N.M.

    1979-01-01

    The enhanced radiation crosslinking tendency of ethylene-vinyl acetate and ethylene-ethyl acrylate copolymers over ethylene homopolymer is proportional to the comonomer content. This is caused by an increase in the amorphous polymer content and by structure-related factors. The copolymers crosslink by a random process that for ethylene-vinyl acetate copolymer involves some crosslinking through the acetoxy group of the comonomer. While knowledge of the process for the crosslinking of ethylene-ethyl acrylate copolymer is less certain, it is currently believed to occur primarily at the branch point on the polymer backbone. Data relating comonomer content and the molecular weight of the copolymers to the radiation crosslinking levels realized were developed to aid in resin selection by the formulator. Triallyl cyanurate cure accelerator was found to be less effective in ethylene-vinyl acetate copolymer than in homopolymer and to have no effect on gel development in ethylene-ethyl acrylate copolymer. (author)

  14. Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins

    International Nuclear Information System (INIS)

    Pietrucha, K.; Pekala, W.; Kroh, J.

    1981-01-01

    Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by irradiation with 60 Co γ-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The mechanism of some of the processes occurring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed. (author)

  15. Effects of solvents on the radiation grafting reaction of vinyl compounds on poly (3-hydroxybutyrate)

    International Nuclear Information System (INIS)

    Torres, Maykel González; Talavera, José Rogelio Rodríguez; Muñoz, Susana Vargas; Pérez, Manuel González; Castro, Ma. Pilar. Carreón.; Cortes, Jorge Cerna

    2015-01-01

    Vinyl Acetate was grafted onto poly (3-hydroxybutyrate) by the simultaneous gamma irradiation method using different types of solvents and in bulk (solvent free), at 10 kGy and 1.62 kGy/h dose and dose rate respectively. Subsequent complete hydrolysis allowed the conversion of grafted chains from poly (vinyl acetate) to poly (vinyl alcohol). The aim of this study is to determine the effect of solvent through the estimation of the dependence of the degree of grafting with the choice of solvent, the calculation of the degree of crystallinity, and to study the biodegradation of the products. The results showed a greater degree of grafting in bulk, while the more suitable solvent was hexane. Characterization of the grafted copolymer indicated that crystallinity percentage decreased by an increase in grafting, while the biodegradability was promoted by the increment in poly (vinyl alcohol) grafted. - Highlights: • PHB was indirectly grafted with PVA, by complete hydrolysis of grafted PVAc. • The effect of solvents on the grafting, crystallinity and biodegradation was studied. • The characterizations of the products were obtained by SEM, TGA, and DSC

  16. Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins

    Energy Technology Data Exchange (ETDEWEB)

    Pietrucha, K.; Pekala, W.; Kroh, J. (Lodz Univ. (Poland))

    1981-01-01

    Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by irradiation with /sup 60/Co ..gamma..-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The mechanism of some of the processes occurring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed.

  17. Some investigations on the post radiation grafting of acrylamide onto polyethylene films

    International Nuclear Information System (INIS)

    Hegazy, E-S.A.; El-Dessouky, M.M.; El-Sharabasy, S.A.

    1986-01-01

    A study has been made on the post radiation grafting of aqueous acrylamide onto low density polyethylene film. It was found that the addition of 0.05 wt % Mohr's salt reduced effectively the homopolymerization of acrylamide and the grafting process was successfully achieved. The dependence of the grafting rate on the preirradiation dose and monomer concentration was found to be of 1.43 and 1.4 order, respectively. The overall activation energy for the graft polymerization was found to be 13.5 and 1.95 Kcal/mol below and above 45 0 C, respectively. Some properties of the graft co-polymer such as swelling behaviour, electrical conductivity, and reverse osmosis desalination of saline water (water flux and salt rejection), were also investigated and the possibility of its uses in the practical applications was discussed. (author)

  18. Radiation graft copolymerization of n-butyl acrylate on natural rubber latex

    International Nuclear Information System (INIS)

    Sundardi, F.; Kadariah, S.

    1986-01-01

    A method of radiation graft copolymerization of n-butyl acrylate (NBA) on natural rubber (NR) latex has been studied. The rate of conversion increases with the increase of NBA in latex. An irradiation dose of about 12 kGy is needed to obtain 90% conversion with 40 phr of NBA in latex. Tensile strength, tear strength, and elongation at break of grafted NR are found to decrease with increasing degree of grafting. The physical strength of a vulcanizate prepared from a mixture of NR and ply-NBA was found to be better than that of NBA-NR graft copolymer vulcanizate. The graft copolymerization reaction takes place in the outer layer of NR particles, and because the secondary bonds between poly-NBA molecules may be weaker than those between NR molecules, the existence of a poly-NBA layer in NR particles will decrease its physical strength

  19. Neutral wetting brush layers for block copolymer thin films using homopolymer blends processed at high temperatures

    International Nuclear Information System (INIS)

    Ceresoli, M; Palermo, M; Ferrarese Lupi, F; Seguini, G; Perego, M; Zuccheri, G; Phadatare, S D; Antonioli, D; Gianotti, V; Sparnacci, K; Laus, M

    2015-01-01

    Binary homopolymer blends of two hydroxyl-terminated polystyrene (PS-OH) and polymethylmethacrylate (PMMA-OH) homopolymers (Mn ∼ 16000 g mol"−"1) were grafted on SiO_2 substrates by high-temperature (T > 150 °C), short-time (t < 600 s) thermal treatments. The resulting brush layer was tested to screen preferential interactions of the SiO_2 substrate with the different symmetric and asymmetric PS-b-PMMA block copolymers deposited on top of the grafted molecules. By properly adjusting the blend composition and the processing parameters, an efficient surface neutralization path was identified, enabling the formation, in the block copolymer film, of homogeneous textures of lamellae or cylinders perpendicularly oriented with respect to the substrate. A critical interplay between the phase segregation of the homopolymer blends and their grafting process on the SiO_2 was observed. In fact, the polar SiO_2 is preferential for the PMMA-rich phase that forms a homogeneous layer on the substrate, while the PS-rich phase is located at the polymer-air interface. During the thermal treatment, phase segregation and grafting proceed simultaneously. Complete wetting of the PS rich phase on the PMMA rich phase leads to the formation of a PS/PMMA bilayer. In this case, the progressive diffusion of PS chains toward the polymer-SiO_2 interface during the thermal treatment allows tuning of the brush layer composition. (paper)

  20. Numerical investigation of the contraction of neutral-charged diblock copolymer brushes in electric fields

    International Nuclear Information System (INIS)

    Chen, Yuwei; Li, Haiming; Zhu, Yuejin; Tong, Chaohui

    2016-01-01

    Using self-consistent field theory (SCFT), the contraction of neutral-charged A-B diblock copolymer brushes in electric fields generated by opposite surface charges on two parallel electrodes has been numerically investigated. The diblock copolymer chains were grafted with the free end of the neutral block to one electrode and immersed in a salt-free solution sandwiched between the two electrodes. The numerical results reveal that the charged monomers, A-B joint segment and the tail exhibit bimodal distributions under external electric fields, which are absent for homopolymer polyelectrolyte brushes. The dependences of the relative populations and peak positions of the two modes on various parameters such as block ratio, grafting density, chain length and strength of the applied electric field were systematically examined and the underlining mechanisms were elucidated. It was found in this study that, if the total amount of surface charges on the grafting electrode is no more than that of the counter-ions in the system, overall charge neutrality is generally maintained inside the brushes when including the contribution of surface charges on the grafting electrode. In such a case, the counter-ions expelled from the brushes are highly enriched in the immediate vicinity of the second electrode and an approximate charge balance between these expelled counter-ions and the opposite surface charges on the second electrode is achieved. (paper)

  1. Modification of macroporous membranes by graft co-polymerization induced by pre-irradiation with an electron accelerator; Modificacion de membranas macroporosas para la recuperacion de protemas por intercambio ionico

    Energy Technology Data Exchange (ETDEWEB)

    Grasselli, M [Buenos Aires Univ. (Argentina). Facultad de Farmacia y Bioquimica; Yoshii, Fumio [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1999-07-01

    Glycidyl methacrylate (GMA) and N,N-dimethylacrylamide (DMAA) have been co-grafted on hollow fiber membranes of macroporous polyethylene. Grafted copolymers have been obtained with different ratios of the monomers (molar ratio between 0 and 2 DMAA/GMA). The properties of the modified membranes are studied.

  2. Modeling of emulsion copolymer microstructure

    NARCIS (Netherlands)

    van Doremaele, G.H.J.; Herk, van A.M.; German, A.L.

    1992-01-01

    A model is developed to describe stages II and III of batch emulsion copolymn., and its predictive capabilities are investigated by application to the system styrene-Me acrylate. The main reaction site is the monomer-swollen polymer particle. Copolymn. rate and copolymer microstructure (molar

  3. Thermo-responsive block copolymers

    NARCIS (Netherlands)

    Mocan Cetintas, Merve

    2017-01-01

    Block copolymers (BCPs) are remarkable materials because of their self-assembly behavior into nano-sized regular structures and high tunable properties. BCPs are in used various applications such as surfactants, nanolithography, biomedicine and nanoporous membranes. In these thesis, we aimed to

  4. Enhancement of Thermal Stability and Selectivity by Introducing Aminotriazine Comonomer to Poly(Octadecyl Acrylate-Grafted Silica as Chromatography Matrix

    Directory of Open Access Journals (Sweden)

    Abul K. Mallik

    2018-02-01

    Full Text Available This paper introduces a poly(octadecyl acrylate (pODA-based organic phase on silica, which is assisted by 2-vinyl-4,6-diamino-1,3,5-triazine (AT, for a chromatography stationary phase. The ODA-AT copolymer grafting onto silica surface was characterized by elemental analysis, FT-IR spectroscopy, scanning electron microscopy, thermo gravimetric analysis and differential scanning calorimeter (DSC. An endothermic peak top of the copolymer-grafted silica was increased to 46 °C from 38 °C, which was a peak top of pODA homopolymer. For high performance liquid chromatography (HPLC application, the molecular selectivity increased with an increase in the AT contents of the ODA-AT copolymer as organic phase. The co-existence of an aminotriazine moiety in the copolymer promoted side-chain ordering of the poly(octadecyl moiety, thus enhancing molecular planarity selectivity for PAHs in reversed-phase liquid chromatography.

  5. Development of Novel Absorbents and Membranes by Radiation-Induced Grafting for Selective Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Hegazy, E A; Abdel-Rehim, H; Hegazy, D; Ali, A A; Kamal, H; Sayed, A [National Center for Radiation Research and Technology, Atomic Energy Egypt, P.O.Box 29, Nasr City, Cairo (Egypt)

    2012-09-15

    The direct radiation grafting technique was used to graft glycidyl methacrylate (GMA) monomer containing epoxy ring, onto polypropylene fibres. The ring opening of the epoxy ring in GMA by different amino groups was studied to introduce various chelating agents. Some properties of grafted fibres were studied and the possibility of its practical use for water treatment from iron and manganese metals was investigated. The radiation initiated grafting of acrylic acid (AAc) or acrylamide (AAm) monomers onto poly(vinyl alcohol) (PVA), a 2-acrylamide-2-methyl propane sulfonic acid (AMPS) polymer was studied. Cationic/anionic membranes were also prepared by radiation-induced grafting of styrene/methacrylic acid (Sty/MAA) binary monomers onto LDPE films. To impart reactive cationic/anionic characters in the grafted membranes, sulfonation and alkaline treatments for styrene and carboxylic acid groups, respectively, were carried out. The possibility of their applications in the selective removal of some heavy metals was studied. The prepared grafted materials had a great ability to recover the metal ions such as: Ni{sup 2+}, Co{sup 2+}, Cu{sup 2+}, Cd{sup 2+}, Mg{sup 2+}, Zn{sup 2+}, Mn{sup 2+} and Cr{sup 3+} from their solutions. It was found that AMPS content in the grafted copolymers is the main parameter for the selectivity of the copolymer towards metal ions. The higher the AMPS content the higher the selectivity towards Co and Ni ions. In case of LDPE-g-P(STY/MAA), the sulfonation and alkaline treatments are the most effective methods to influence metal absorption and swelling behaviour of the prepared membranes. Graft composition, dose and pH have also a great influence on the membrane characteristics and applicability in wastewater treatments from heavy and toxic metals. Results revealed that the prepared grafted materials with different functionalized groups are promising as ion selective membranes and could be used for wastewater treatment. (author)

  6. Obtention of cationic polymeric membranes by radiation-induced grafting method

    International Nuclear Information System (INIS)

    Marin H E, H.

    1994-01-01

    Radiation-induced grafting of LDPE with the monomers, acrylic acid and methacrylic acid, has been studied. The grafting was made with several presentations of LDPE (foil, powder and pellets) by direct method using a Co 60 gamma rays. The irradiation was carried out in vacuum at room temperature at different doses (0.02 kGy - 0.2 kGy) with a rate dose of 0.8632 kGy/h. The graft yield was measured by the relation of initial and final weights. The variations of the LDPE structure was followed by infrared absorption spectroscopy and the results showed that there was important variations in LDPE structure when the dose increases. The tensile strong properties of the copolymers were investigated and it was found that the structure of LDPE was modified by the presence of chains of poly (acrylic) and poly (methacrylic) acid and this was reflected in the tensile properties of the polymer. A trial has been made in order to use the powder presentation of the copolymer like ion exchange resin first we measured volumetrically the quantity of milliequivalents per gram of carboxylic groups by titration 5 ml. of a solution 0.1 N of NaOH, which was 48 h. in contact with the copolymer, with a solution 0.1 N of HCl and we found that the quantity of milliequivalents enhance according with the irradiation dose. Finally, we made ion exchange experiments by passing a solution containing Ca +2 ions through ion exchange columns packed with the copolymer the results showed that these copolymers has good properties in retaining Ca +2 ions. We conclude that these copolymers can be used for ion exchange process however final conditions must be improved. (Author)

  7. Study of the simultaneous grafting and heparinisation of poly(vinyl chloride), by gamma radiation

    International Nuclear Information System (INIS)

    Panzarini, Luz Consuelo Gonzalez Alonso

    2003-01-01

    This work had the objective of obtaining the PVC-co-DMAEMA-co-Heparin graft copolymer through process of simultaneous irradiation by γ-radiation coming from a 60 Co source with dose rate ranging between 0,5 and 0,8 kGy h -1 . Grafting parameters were evaluated in function of PVC film swelling time before irradiation, concentration of hydrophilic N,N-dimethylaminoethyl methacrylate (DMAEMA) monomer, radiation doses ranging between zero and 7,0 kGy, concentration of isopropyl alcohol and CUSO 4 as homopolymerization inhibitors varying from 0,02 mol L -1 to 1,0 mol L -1 . Preliminary studies allowed us to establish the concentration of DMAEMA at 30 and 45%. At these two studied concentrations, were observed the highest grafting levels when was utilized 0,02 mol L -1 concentrations of homopolymerization inhibitor. A study of grafting as a function of the dose showed an interdependence between the dose and DMAEMA concentration, where was achieved the highest grafting level at doses of 2,5 kGy and 5,0 kGy for the systems containing 45% and 30% of DMAEMA, respectively. Graft copolymer characterization, accomplished by Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) evidenced the largest grafting levels for the irradiated samples with 45% of DMAEMA, however heparin presence was only evident on irradiated samples with 30% of DMAEMA. Surface morphological analysis, carried out by scanning electronic microscopy, permitted us to notice that addition of heparin to the reaction medium (0.25% w/v) led to obtaining surfaces less rough than those ones observed in heparin absence, suggesting then a more homogeneous distribution of the graft chains. Evaluation of antithrombogenic properties of the graft copolymers, accomplished 'in vitro' through platelets adhesion test, showed that the increase of surface roughness affects the blood platelet activation mechanisms, leading consequently to a more thrombogenic surface. Analysis by means of electron paramagnetic

  8. Obtention and characterization of acrylic acid-i-polyethylene organometallic copolymers with Mo, Fe, Co, Zn, and Ni; Obtencion y caracterizacion de copolimeros organometalicos de acido acrilico-i-polietileno, con Mo, Fe, Co, Zn y Ni

    Energy Technology Data Exchange (ETDEWEB)

    Dorantes, G.; Urena, F.; Lopez, R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Lopez, R. [Universidad Autonoma del Estado de Mexico (Mexico)

    1997-07-01

    In this study a graft acrylic acid (AA) in low density polyethylene (PEBD) copolymers were prepared, using as reaction initiator, gamma radiation at different doses. These copolymers were coordinated with molybdenum, cobalt, iron, zinc and nickel. the obtained polymeric materials were characterized by conventional analysis techniques. It was studied the measurement parameter variation of the positron annihilation when they inter activated with this type of materials and so obtaining information about microstructure of these polymers. (Author)

  9. Radiation graft copolymerization of styrene with m/e and styrene with acrylic acid at highthyl methacryl dose rate

    International Nuclear Information System (INIS)

    Aliev, R.Eh.; Kabanov, B.Ya.

    1984-01-01

    Comparative investigation of radiation graft copolymerization of styrene with methyl methacrylate (MMA) and styrene with acrylic acid (AA) is carried out at considerably differing radiation dose rates. The monomer mixture was grafted to PE low density films at dose rates of 0.16, 0.25 Gy/s (1 MeV electron acceleration). The value of graft was 3-6 and 5-10%, respectively, for the styrene-MMA and styrene-AA systems. An essential difference in the dependences of the formed copolymer composition on initial monomer mixture composition is noticed. Difference in composition of graft polymers prepared at different dose rates is less for the systems with AA, than for systems with MMA. It is shown that at high dose rates in difference with low ones not only radical graft copolymerization of the styrene mixture with AA takes place, but a contribution of the graft styrene polymerization according to cation mechanism as well

  10. All solid-state polymer electrolytes prepared from a hyper-branched graft polymer using atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Higa, Mitsuru; Fujino, Yukiko; Koumoto, Taihei; Kitani, Ryousuke; Egashira, Satsuki

    2005-01-01

    We propose an all solid-state (liquid free) polymer electrolyte (SPE) prepared from a hyper-branched graft copolymer. The graft copolymer consisting of a poly(methyl methacrylate) main chain and poly(ethylene glycol) methyl ether methacrylate side chains was synthesized by atom transfer radical polymerization changing the average chain distance between side chains, side chain length and branched chain length of the proposed structure of the graft copolymer. The ionic conductivity of the SPEs increases with increasing the side chain length, branched chain length and/or average distance between the side chains. The ionic conductivity of the SPE prepared from POEM 9 whose POEM content = 51 wt% shows 2 x 10 -5 S/cm at 30 deg. C. The tensile strength of the SPEs decreases with increases the side chain length, branched chain length and/or average distance between the side chains. These results indicate that a SPE prepared from the hyper-branched graft copolymer has potential to be applied to an all-solid polymer electrolyte

  11. Synthesis and characterization of PEPO grafted carboxymethyl guar and carboxymethyl tamarind as new thermo-associating polymers.

    Science.gov (United States)

    Gupta, Nivika R; Torris A T, Arun; Wadgaonkar, Prakash P; Rajamohanan, P R; Ducouret, Guylaine; Hourdet, Dominique; Creton, Costantino; Badiger, Manohar V

    2015-03-06

    New thermo associating polymers were designed and synthesized by grafting amino terminated poly(ethylene oxide-co-propylene oxide) (PEPO) onto carboxymethyl guar (CMG) and carboxymethyl tamarind (CMT). The grafting was performed by coupling reaction between NH2 groups of PEPO and COOH groups of CMG and CMT using water-soluble EDC/NHS as coupling agents. The grafting efficiency and the temperature of thermo-association, T(assoc) in the copolymer were studied by NMR spectroscopy. The graft copolymers, CMG-g-PEPO and CMT-g-PEPO exhibited interesting thermo-associating behavior which was evidenced by the detailed rheological and fluorescence measurements. The visco-elastic properties (storage modulus, G'; loss modulus, G") of the copolymer solutions were investigated using oscillatory shear experiments. The influence of salt and surfactant on the T(assoc) was also studied by rheology, where the phenomenon of "Salting out" and "Salting in" was observed for salt and surfactant, respectively, which can give an easy access to tunable properties of these copolymers. These thermo-associating polymers with biodegradable nature of CMG and CMT can have potential applications as smart injectables in controlled release technology and as thickeners in cosmetics and pharmaceutical formulations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. EUV lithographic radiation grafting of thermo-responsive hydrogel nanostructures

    International Nuclear Information System (INIS)

    Farquet, Patrick; Padeste, Celestino; Solak, Harun H.; Guersel, Selmiye Alkan; Scherer, Guenther G.; Wokaun, Alexander

    2007-01-01

    Nanostructures of the thermoresponsive poly(N-isopropyl acrylamide) (PNIPAAm) and of PNIPAAm-block-poly(acrylic acid) copolymers were produced on poly(tetrafluoroethylene-co-ethyelene) (ETFE) films using extreme ultraviolet (EUV) lithographic exposure with subsequent graft-polymerization. The phase transition of PNIPAAm nanostructures at the low critical solution temperature (LCST) at 32 deg. C was imaged by atomic force microscopy (AFM) phase contrast measurements in pure water. Results show a higher phase contrast for samples measured below the LCST temperature than for samples above the LCST, proving that the soft PNIPAAm hydrogel transforms into a much more compact conformation above the LCST. EUV lithographic exposures were combined with the reversible addition-fragment chain transfer (RAFT)-mediated polymerization using cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agent to synthesize PNIPAAm block-copolymer nanostructures

  13. Graft polymerization of styrene onto starch by simultaneous cobalt-60 irradiation

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1977-01-01

    Starch-g-polystyrene copolymers have been prepared by the simultaneous 60 Co irradiation of starch--styrene mixtures, and copolymers have been characterized with respect to weight per cent polystyrene (% add-on) and also the molecular weight and molecular weight distribution of polystyrene grafts. In a typical polymerization, 4g each of starch and styrene were blended with 1 ml water and 1.5 ml of an organic solvent; the resulting semisolid paste was irradiated to a total dose of 1 Mrad. With ethylene glycol, acetonitrile, ethanol, methanol, acetone, and dimethylformamide as the organic solvent, values for % add-on ranged from 24% to 29%. The highest % add-on (43%) and the highest conversion of styrene to grafted polymer (76%) were obtained when the organic solvent was omitted, and water alone was used. When water was also omitted, polymerization of styrene was negligible; however, graft copolymer was formed in the absence of water when either ethylene glycol or ethanol was added. Attempts were unsuccessful to achieve a % add-on greater than 43% by doubling the amount of styrene in the polymerization recipe. Mixtures of equal weights of starch and styrene are relatively nonviscous, but these mixtures thicken when either water or ethylene glycol is blended in. Reasons for this thickening action and the possible influence of thickening on the graft polymerization reaction were explored

  14. Development of EPDM based thermoplastic elastomers for oil resistant applications: optimization of radiation grafting parameters

    International Nuclear Information System (INIS)

    Chaudhari, C.V.; Dubey, K.A.; Bhardwaj, Y.K.; Sabharwal, S.

    2008-01-01

    Full text: Ethylene-propylene diene terpolymer (EPDM) is currently among the most industrially useful elastomers because of its certain unique properties like excellent heat resistance, resistance towards ozone deterioration, high impact strength. However EPDM has a serious drawback of weak adhesion properties and tendency to swell in contact with paraffin oil and aromatic hydrocarbons. Blending EPDM with suitable polar elastomers or grafting polar polymer chains onto EPDM is an easy method to overcome this drawback. Radiation grafting of Acrylonitrile (ACN) on EPDM provides an easy and effective method of incorporating ACN uniformly on the EPDM backbone. Grafting of ACN on EPDM is expected to result grafted copolymer with better oil resistance, hardness and better compatibility with polar polymer matrices. In the present study radiation induced grafting of ACN onto EPDM rubber film was investigated by mutual radiation grafting technique. Effect of experimental variables viz. radiation dose, dose rate, types of solvents and monomer content on extent of grafting was studied. The solvent composition of Acetone:CCl 4 (20:80) was found to be the optimum mixture which resulted in highest degree of grafting. It was found that the degree of grafting increases with radiation dose, monomer content and decreases with dose rate

  15. Comparative Study of the Physical, Topographical and Biological Properties of Electrospinning PCL, PLLA, their Blend and Copolymer Scaffolds

    Science.gov (United States)

    Bolbasov, E.; Goreninskii, S.; Tverdokhlebov, S.; Mishanin, A.; Viknianshchuk, A.; Bezuidenhout, D.; Golovkin, A.

    2018-05-01

    Biodegradable polymers (blends, copolymers) could be the ideal materials for manufacturing of scaffolds for small diameter vascular graft. Such material characteristics as mechanical properties, chemical structure, nano- and micro topography, surface charge, porosity, wettability etc. are becoming the most important aspects for effectiveness of prosthesis biofunctionalization because of their great impact on cell adhesion, spreading, cell proliferation, differentiation and cell function. The aim of the study is to compare physical, topographical and biological properties of polycaprolactone (PCL), poly-L-lactic acid (PLLA), polycaprolactone + poly-L-lactic acid blend (PCL PLLA), L-lactide/Caprolactone copolymer (PLC7015) scaffolds fabricated with the same fiber thickness using electrospun technology. PCL PLLA scaffolds had the highest average pore area (pactive phase of adhesion process. We propose that physical and topographical properties of PCL, PLLA, their blend and copolymer are of a great dependence of chemical structure but could be changed during the manufacturing process that will lead to changes in biological properties.

  16. Blends of Styrene-Butadiene-Styrene Triblock Copolymer with Random Styrene-Maleic Anhydride Copolymers

    NARCIS (Netherlands)

    Piccini, Maria Teresa; Ruggeri, Giacomo; Passaglia, Elisa; Picchioni, Francesco; Aglietto, Mauro

    2002-01-01

    Blends of styrene-butadiene-styrene triblock copolymer (SBS) with random styrene-maleic anhydride copolymers (PS-co-MA), having different MA content, were prepared in a Brabender Plastigraph mixer. The presence of polystyrene (PS) blocks in the SBS copolymer and the high styrene content (93 and 86

  17. Polyketones as alternating copolymers of carbon monoxide

    International Nuclear Information System (INIS)

    Belov, Gennady P; Novikova, Elena V

    2004-01-01

    Characteristic features of the catalytic synthesis of alternating copolymers of carbon monoxide with various olefins, dienes, styrene and its derivatives are considered. The diversity of catalyst systems used for the copolymerisation of carbon monoxide is demonstrated and their influence on the structure and the molecular mass of the resulting copolymers is analysed. The data on the structure and physicochemical and mechanical properties of this new generation of functional copolymers are generalised and described systematically for the first time.

  18. Copolymers of fluorinated polydienes and sulfonated polystyrene

    Science.gov (United States)

    Mays, Jimmy W [Knoxville, TN; Gido, Samuel P [Hadley, MA; Huang, Tianzi [Knoxville, TN; Hong, Kunlun [Knoxville, TN

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  19. Synthesis of biodegradable styrene copolymers

    OpenAIRE

    Gevers, Dries; Kobben, Stephan; Junkers, Tanja; Copinet, Alain; Buntinx, Mieke; Peeters, Roos

    2017-01-01

    Polystyrene (PS), a versatile polymer with many applications (e.g. packaging) representing about 10% of the total annual polymer consumption, shows practically no biodegradability. In this study a styrene (ST) based copolymer is synthesized and examined regarding its ability to degrade in a composting test. As second monomer, to introduce biodegradable ester groups, 5,6-benzo-2-metylene-dioxepane (BMDO) has been used in radical copolymerization reactions performed in inert and stirred 10 m...

  20. Dispersion and alignment of nanorods in cylindrical block copolymer thin films.

    Science.gov (United States)

    Rasin, Boris; Chao, Huikuan; Jiang, Guoqian; Wang, Dongliang; Riggleman, Robert A; Composto, Russell J

    2016-02-21

    Although significant progress has been made in controlling the dispersion of spherical nanoparticles in block copolymer thin films, our ability to disperse and control the assembly of anisotropic nanoparticles into well-defined structures is lacking in comparison. Here we use a combination of experiments and field theoretic simulations to examine the assembly of gold nanorods (AuNRs) in a block copolymer. Experimentally, poly(2-vinylpyridine)-grafted AuNRs (P2VP-AuNRs) are incorporated into poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) thin films with a vertical cylinder morphology. At sufficiently low concentrations, the AuNRs disperse in the block copolymer thin film. For these dispersed AuNR systems, atomic force microscopy combined with sequential ultraviolet ozone etching indicates that the P2VP-AuNRs segregate to the base of the P2VP cylinders. Furthermore, top-down transmission electron microscopy imaging shows that the P2VP-AuNRs mainly lie parallel to the substrate. Our field theoretic simulations indicate that the NRs are strongly attracted to the cylinder base where they can relieve the local stretching of the minority block of the copolymer. These simulations also indicate conditions that will drive AuNRs to adopt a vertical orientation, namely by increasing nanorod length and/or reducing the wetting of the short block towards the substrate.

  1. Osseous scintigraphy and auxiliary graft

    International Nuclear Information System (INIS)

    Khelifa, F.; Siles, S.; Puech, B.

    1992-01-01

    The scintigraphy could be a good way to survey the osseous graft: three cases are studied in which were recognized the presence of a graft, surinfection, graft lysis, pseudo-arthrosis, algodystrophy. 8 refs., 5 figs

  2. Meniscal allograft transplantation. Part 1: systematic review of graft biology, graft shrinkage, graft extrusion, graft sizing, and graft fixation.

    Science.gov (United States)

    Samitier, Gonzalo; Alentorn-Geli, Eduard; Taylor, Dean C; Rill, Brian; Lock, Terrence; Moutzouros, Vasilius; Kolowich, Patricia

    2015-01-01

    To provide a systematic review of the literature regarding five topics in meniscal allograft transplantation: graft biology, shrinkage, extrusion, sizing, and fixation. A systematic literature search was conducted using the PubMed (MEDLINE), ScienceDirect, and EBSCO-CINAHL databases. Articles were classified only in one topic, but information contained could be reported into other topics. Information was classified according to type of study (animal, in vitro human, and in vivo human) and level of evidence (for in vivo human studies). Sixty-two studies were finally included: 30 biology, 3 graft shrinkage, 11 graft extrusion, 17 graft size, and 6 graft fixation (some studies were categorized in more than one topic). These studies corresponded to 22 animal studies, 22 in vitro human studies, and 23 in vivo human studies (7 level II, 10 level III, and 6 level IV). The principal conclusions were as follows: (a) Donor cells decrease after MAT and grafts are repopulated with host cells form synovium; (b) graft preservation alters collagen network (deep freezing) and causes cell apoptosis with loss of viable cells (cryopreservation); (c) graft shrinkage occurs mainly in lyophilized and gamma-irradiated grafts (less with cryopreservation); (d) graft extrusion is common but has no clinical/functional implications; (e) overall, MRI is not superior to plain radiograph for graft sizing; (f) graft width size matching is more important than length size matching; (g) height appears to be the most important factor influencing meniscal size; (h) bone fixation better restores contact mechanics than suture fixation, but there are no differences for pullout strength or functional results; and (i) suture fixation has more risk of graft extrusion compared to bone fixation. Systematic review of level II-IV studies, Level IV.

  3. Bone graft revascularization strategies

    NARCIS (Netherlands)

    Willems, W.F.

    2014-01-01

    Reconstruction of avascular necrotic bone by pedicled bone grafting is a well-known treatment with little basic research supporting its application. A new canine model was used to simulate carpal bone avascular necrosis. Pedicled bone grafting proved to increase bone remodeling and bone blood flow,

  4. Hierarchical self-assembly of two-length-scale multiblock copolymers

    International Nuclear Information System (INIS)

    Brinke, Gerrit ten; Loos, Katja; Vukovic, Ivana; Du Sart, Gerrit Gobius

    2011-01-01

    The self-assembly in diblock copolymer-based supramolecules, obtained by hydrogen bonding short side chains to one of the blocks, as well as in two-length-scale linear terpolymers results in hierarchical structure formation. The orientation of the different domains, e.g. layers in the case of a lamellar-in-lamellar structure, is determined by the molecular architecture, graft-like versus linear, and the relative magnitude of the interactions involved. In both cases parallel and perpendicular arrangements have been observed. The comb-shaped supramolecules approach is ideally suited for the preparation of nanoporous structures. A bicontinuous morphology with the supramolecular comb block forming the channels was finally achieved by extending the original approach to suitable triblock copolymer-based supramolecules.

  5. An Investigation of Proton Conductivity of Vinyltriazole-Grafted PVDF Proton Exchange Membranes Prepared via Photoinduced Grafting

    OpenAIRE

    Sezgin, Sinan; Sinirlioglu, Deniz; Muftuoglu, Ali Ekrem; Bozkurt, Ayhan

    2014-01-01

    Proton exchange membrane fuel cells (PEMFCs) are considered to be a promising technology for clean and efficient power generation in the twenty-first century. In this study, high performance of poly(vinylidene fluoride) (PVDF) and proton conductivity of poly(1-vinyl-1,2,4-triazole) (PVTri) were combined in a graft copolymer, PVDF-g-PVTri, by the polymerization of 1-vinyl-1,2,4-triazole on a PVDF based matrix under UV light in one step. The polymers were doped with triflic acid (TA) at differe...

  6. Radiation grafting of pH-sensitive acrylic acid and 4-vinyl pyridine onto nylon-6 using one- and two-step methods

    International Nuclear Information System (INIS)

    Ortega, Alejandra; Alarcón, Darío; Muñoz-Muñoz, Franklin; Garzón-Fontecha, Angélica; Burillo, Guillermina

    2015-01-01

    Acrylic acid (AAc) and 4-vinyl pyridine (4VP) were γ-ray grafted onto nylon-6 (Ny 6 ) films via pre-irradiation oxidative method. These monomers were grafted using a one-step method to render Ny 6 -g–(AAc/4VP). A two-step or sequential method was used to render (Ny 6 -g–AAc)-g–4VP. Random copolymer branches were obtained when the grafting was carried out via one-step method using the two monomers together. The two-step method was applied to graft chains of 4VP on both Ny 6 substrate and previously grafted AAc chains (Ny 6 -g–AAc). The two types of binary copolymers synthesized were characterized to determine the amount of grafted polymers, the thermal behavior (DSC and TGA), the surface composition (XPS), and the pH responsiveness. In the two-step process, it is possible to achieve a higher graft yield, better control of the amount of each monomer, good reversibility in the swelling/deswelling process and shorter time to achieve equilibrium swelling. - Highlights: • A new binary graft of 4VP and AAc onto Ny 6 films was synthesized by γ-radiation. • The binary grafted material has potential application for heavy ion retention. • The two-step method shows better conditions in swelling and reversibility properties. • Surface distribution of monomers was evaluate by XPS characterization

  7. Synthesis and properties of silane-fluoroacrylate grafted starch.

    Science.gov (United States)

    Qu, Jia; He, Ling

    2013-10-15

    The latex of silane-fluoroacrylate grafted starch for coating materials, VTMS-starch/P(MMA/BA/3FMA), is obtained by two step grafting reactions. Vinyltrimethoxysilane (VTMS) is primarily grafted onto starch by condensation between Si-OH and C-OH at 120 °C, and then the copolymer of methyl methacrylate (MMA), butyl acrylate (BA) and 2,2,2-trifluoroethyl methacrylate (3FMA) is grafted onto the VTMS-starch by emulsion polymerization. Fourier transform infrared spectrometry (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to confirm the chemically grafting reactions in every step. The conversion percent, grafting percent and grafting efficiency for VTMS-starch/p(MMA/BA/3FMA) latex indicate that the optimum conditions should be controlled at 75 °C for 1h as VTMS-starch/P(MMA/BA/3FMA) in 1/3 weight ratio. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis have revealed that the latexes exhibit the uniform spherical particles of 40-60 nm in a narrow size distribution. The latex films perform the obvious hydrophobic (107°) property, lower surface free energy (25-35 mN/m) and the higher thermostability (330-440 °C) than starch (51°, 51.32 mN/m, 100-330 °C). Dynamic thermomechanical analysis (DMA) shows that the latex film could gain considerable toughness and strength with an elongation at break of 39.45% and a tensile strength of 11.97 MPa. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Copolymers of various architectures containing ethylene and 5-norbornen-2-yl derivatives

    Science.gov (United States)

    Diamanti, Steve Jon

    Polyolefins are a class of materials with enormous economic impact. Tailoring of polyolefin bulk properties by synthetic control is a major focus of many industrial and academic research groups. Polar functionalities within the hydrophobic polyolefin backbone can change important properties, such as, toughness, adhesion, solvent resistance, blend compatibility with other functional polymers, and rheological properties. Functional polyolefin materials with block or graft architectures are the most desirable structures as the pure polyolefin block maintains its intrinsic properties. Our initial work elucidated a neutral nickel based catalyst system capable of catalyzing the "quasi-living" homopolymerization of ethylene and the "quasi-living" copolymerization of ethylene with 5-norbornen-2-yl acetate (NBA), a polar comonomer. Through testing the effect of several reaction variables on the copolymerization of ethylene with NBA it was found that changing ethylene pressure causes a large change in the content of NBA in the copolymer chain. This change in NBA content, in turn, drastically affects the physical and thermal properties of these polymers. Understanding the impact of such reaction variables on copolymer properties made it possible to design more sophisticated architectures. This catalytic system has since been used to synthesize block copolymers and tapered block copolymers of ethylene and NBA. Block copolymers of ethylene and NBA have been synthesized by a method utilizing ethylene pressure variation to create two distinct copolymeric blocks that are able to order into microphase-separated structures. The block structure of these materials has been proven by 1H-NMR spectroscopy, thermal analysis, GPC, AFM, and TEM. The synthesis, characterization, and bulk and thermal properties of tapered block copolymers containing ethylene and NBA, has also been performed. The final structure of the tapered block polymer is a polar amorphous chain (rich in NBA) on one

  9. Metal Adsorbent Prepared from Poly(Methyl Acrylate)-Grafted Cassava Starch via Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suwanmala, P; Hemvichian, K; Srinuttrakul, W [Nuclear Research and Development Group, Thailand Institute of Nuclear Technology, Bangkok (Thailand)

    2012-09-15

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, %Dg = 191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum conditions: in a mixture solution of 20% HA (w/v) and methanol solution (methanol:H{sub 2}O = 5:1) 300 mL, pH 13, reaction time 2 h, and 20 g of grafted copolymer. The adsorbent was characterized by FTIR, TGA, and DSC. The presence of electron donating groups in adsorbent containing hydroxamic acid groups gives the ability to form polycomplexes with metal ions. The ability of the adsorbent to adsorb various metals was investigated in order to evaluate the possibility of its use in metal adsorption. The adsorbent exhibited a remarkable % adsorption for Cd{sup 2+}, Al{sup 3+}, UO{sub 2} {sup 2+}, V{sup 5+} and Pb{sup 2+} at pH 3, 4, 5, 4, and 3, respectively. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15, and 1.6 mmol/g adsorbent for Cd{sup 2+}, Al{sup 3+}, UO{sub 2} {sup 2+}, V{sup 5+} and Pb{sup 2+}, respectively, in the batch mode adsorption. (author)

  10. Radiation-induced graft copolymerization of methyl acrylate and acrylic acid onto rubber wood fiber

    International Nuclear Information System (INIS)

    Saliza Jam; Mansor Ahmad; Wan Md Zin Wan Yunus; Khairul Zaman Mohd Dahlan

    2001-01-01

    Graft copolymerization of methyl acrylate and acrylic acid monomers onto rubber wood fiber (RWF) was carried out by simultaneous radiation-induced technique. The parameters affecting the grafting reaction were investigated and the optimum conditions for both monomers obtained are as follows: impregnation time = 16 hours, total dose = 30 kGy, methanol : water ratio, 3:1, monomers concentration = 40 v/v % and sulphuric acid concentration = 0.1 mol/L. Fourier Transform Infrared (FTIR), thermogravimetry analysis (TGA), and scanning electron microscope (SEM) analyses used to characterize graft copolymers. The structural investigation by x-ray diffraction (XRD) shows the degree of crystallinity of rubber wood fiber decreased with the incorporation of poly(methyl acrylate) and poly(acrylic acid) grafts. (Author)

  11. Radiation-induced grafting polymerization of MMA onto polybutadiene rubber latex

    International Nuclear Information System (INIS)

    Peng Jing; Wang Maolin; Qiao Jinliang; Wei Genshuan

    2005-01-01

    The grafting of methyl methacrylate (MMA) onto polybutadiene rubber latex by the direct radiation method was carried out. The effects of monomer concentration, absorbed dose and dose rate of gamma rays on the grafting yield were investigated. The graft copolymers were characterized by transmission electron microscopy (TEM), FTIR spectroscopy, and differential scanning calorimetry. TEM photographs revealed that the core-shell structures of latex particles are formed at low MMA content, and with the increasing of MMA content, the semi-IPN-like structure with core-shell could be developed due to the high gel fraction of polybutadiene (PBD) seed particles. In addition, infrared analysis confirmed that MMA could be grafted onto PBD molecular chains effectively under appropriate irradiation conditions. The interfacial adhesion between PBD rubber (core) and PMMA (shell) phases could be enhanced with the increase of MMA concentration

  12. Comparative study of the monomer grafting: ethylene, acetylene, 1,3-butadiene and estyrene in the matrix of recycled polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Ikari, Carolina T.; Rosner, Gerhardyne O.; Oliveira, Ana C.F.; Ferreto, Helio F.R.; Lima, Luiz F.C.P.; Lugao, Ademar B.; Moreira, Otavio M.

    2009-01-01

    In this study it is used the recycled polytetrafluoroethylene (PTFE), that with the gamma radiation under inert atmosphere or in presence of air, it is obtained free radicals and a posterior the monomer grafting (ethylene, acetylene, styrene or 1.3 butadiene), obtaining the copolymer polytetrafluoroethylene-g-monomer. It is studied the obtention of the polymer by two methods: by direct way, via grafting, where the polymer is irradiated in presence of monomer, and via grafting when the polymer is irradiated in absence of monomer and under inert or air. The characterization of the copolymer was performed by the techniques of infrared region absorption spectroscopy with Fourier transformation (FTIR), thermogravimetric (TGA) and derivative thermogravimetry (DTG), and percentage of mass grafting (DOG)

  13. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Science.gov (United States)

    2010-04-01

    ... Components of Articles Intended for Repeated Use § 177.2470 Polyoxymethylene copolymer. Polyoxymethylene copolymer identified in this section may be safely used as an article or component of articles intended for... are available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and Drug...

  14. Copolymers at the solid - liquid interface

    NARCIS (Netherlands)

    Wijmans, C.M.

    1994-01-01

    Copolymers consisting of both adsorbing and nonadsorbing segments can show an adsorption behaviour which is very different from that of homopolymers. We have mainly investigated the adsorption of AB diblock copolymers, which have one adsorbing block (anchor) and one nonadsorbing block

  15. Amphiphilic copolymers for fouling-release coatings

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, Stefan Møller; Hvilsted, Søren

    of the coatings [9,10,11]. This work shows the effect of an amphiphilic copolymer that induces hydrophilicity on the surface of the silicone-based fouling release coatings. The behaviour of these copolymers within the coating upon immersion and the interaction of these surface-active additives with other...

  16. Poly(ferrocenylsilane)-block-Polylactide Block Copolymers

    NARCIS (Netherlands)

    Roerdink, M.; van Zanten, Thomas S.; Hempenius, Mark A.; Zhong, Zhiyuan; Feijen, Jan; Vancso, Gyula J.

    2007-01-01

    A PFS/PLA block copolymer was studied to probe the effect of strong surface interactions on pattern formation in PFS block copolymer thin films. Successful synthesis of PFS-b-PLA was demonstrated. Thin films of these polymers show phase separation to form PFS microdomains in a PLA matrix, and

  17. Carboxy terminated rubber based on natural rubber grafted with acid anhydrides and its adhesion properties

    International Nuclear Information System (INIS)

    Klinpituksa, P; Kongkalai, P; Kaesaman, A

    2014-01-01

    The chemical modification of natural rubber by grafting of various polar functional molecules is an essential method, improving the versatility of rubber in applications. This research investigated the preparation of natural rubber-graft-citraconic anhydride (NR-g-CCA), natural rubber-graft-itaconic anhydride (NR-g-ICA), and natural rubber-graft-maleic anhydride (NR-g-MA), with the anhydrides grafted to natural rubber in toluene using benzoyl peroxide as an initiator. Variations of monomer content, initiator content, temperature and reaction time of the grafting copolymerization were investigated. The maximum degrees of grafting were 1.06% for NR-g-CCA, 4.66% for NR-g-ICA, and 5.03% for NR-g-MA, reached using 10 phr citraconic anhydride, 10 phr of itaconic anhydride, or 8 phr of maleic anhydride, 3 phr benzoyl peroxide, at 85, 80 and 80°C for 2, 2 and 3 hrs, respectively. Solvent-based wood adhesives were formulated from these copolymers with various contents of wood resin in the range 10-40 phr. The maximal 289 N/in cleavage peel and 245.7 KPa shear strength for NR-g-MA (5.03% grafting) were obtained at 40 phr wood resin

  18. Graft copolymerization of vinyl monomers onto nylon 6 fibers by γ-ray pre-irradiation in air

    International Nuclear Information System (INIS)

    Iwasaki, Tatsuo; Ueda, Yoshitsugu

    1992-01-01

    Vinyl acetate, methyl methacrylate, alkyl acrylates, acrylonitrile, and acrylamide, were grafted onto nylon 6 fibers by the γ-ray pre-irradiation technique, and the effects of grafting on the microstructure and the mechanical properties of the graft copolymers were investigated. According to the analysis by wide-angle X-ray diffraction, the degree of crystallization decreased by increasing the percent graft of poly(vinyl acetate) in the grafted nylon 6 films. The mechanical parameters, such as the Young's modulus and the tensile strength at break, increased with increasing percent graft up to 50%. When percent grafting was smaller than 50%, rather homogeneous amorphous materials were obtained with vinyl acetate, while heterogeneous ones were obtained with other vinyl monomers. A poly(vinyl alcohol) grafted nylon 6 was obtained effectively by saponification of poly(vinyl acetate) grafted nylon 6, the former showing higher mechanical properties than the latter. Similar behavior was observed after saponification of the poly(methyl acrylate) grafted nylon 6. (author)

  19. Radiation-Induced Grafting for the Synthesis of Adsorbents for Phosphate and Chromate Removal from Aqueous Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kavakli, P A; Kavakli, C; Guven, O [Department of Chemistry, Hacettepe University, Beytepe, 06800, Ankara (Turkey)

    2012-09-15

    Nonwoven fabrics made of PE coated PP fibres were irradiated by accelerated electrons in inert atmospheres for grafting of two different monomers, glycidyl methacrylate and dimethylaminoethyl methacrylate. Grafting conditions were optimized by a systematic investigation of the effects of absorbed dose, monomer concentration, grafting reaction temperature and duration. 150% grafted copolymers were later modified by protonation and quaternization of poly(dimethylaminoethyl methacrylate) chains and by Cu(II) loading of dipyridyl amine modified poly(glycidyl methacrylate) graft chains. The PE/PP based adsorbents thus prepared were used for their suitability of removing phosphate and chromate ions from aqueous systems. Adsorption/removal studies were carried out in both batch and continuous flow type systems. The selectivity of adsorption of phosphate ions in the presence of other competing anions were also checked showing the enhanced selectivity for phosphate ions. (author)

  20. Rapid self-assembly of block copolymers to photonic crystals

    Science.gov (United States)

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  1. Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsin-Ying; Wang, Chih-Yu; Lin, Chia-Jen; Pan, Ru-Pin [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan 30010 (China); Lin, Song-Shiang; Lee, Chein-Dhau [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan 31040 (China); Kou, Chwung-Shan, E-mail: rpchao@mail.nctu.edu.t [Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 30013 (China)

    2009-08-07

    This work explores the surface treatment of copolymer materials with fluorinated carbonyl groups in various mole fractions by ultraviolet irradiation and ion-beam (IB) bombardment and its effect on liquid crystal (LC) surface alignments. X-ray photoemission spectroscopic analysis confirms that the content of the grafted CF{sub 2} side chains dominates the pretilt angle. A significant increase in oxygen content is responsible for the increase in the polar surface energy during IB treatment. Finally, the polar component of the surface energy dominates the pretilt angle of the LCs.

  2. Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films

    International Nuclear Information System (INIS)

    Wu, Hsin-Ying; Wang, Chih-Yu; Lin, Chia-Jen; Pan, Ru-Pin; Lin, Song-Shiang; Lee, Chein-Dhau; Kou, Chwung-Shan

    2009-01-01

    This work explores the surface treatment of copolymer materials with fluorinated carbonyl groups in various mole fractions by ultraviolet irradiation and ion-beam (IB) bombardment and its effect on liquid crystal (LC) surface alignments. X-ray photoemission spectroscopic analysis confirms that the content of the grafted CF 2 side chains dominates the pretilt angle. A significant increase in oxygen content is responsible for the increase in the polar surface energy during IB treatment. Finally, the polar component of the surface energy dominates the pretilt angle of the LCs.

  3. Polystyrene-poly(vinylphenol) copolymers as compatibilzers for organic-inorganic composites

    International Nuclear Information System (INIS)

    Landry, C.J.T.; Coltrain, B.K.; Teegarden, D.M.

    1996-01-01

    Random, graft, and block copolymers of polystyrene (PS) and poly(4-vinylphenol) (PVPh), and PVPh homopolymer are shown to act as compatibilizers for incompatible organic-inorganic composite materials. The VPh component reacts, or interacts strongly with the polymerizing inorganic (titanium or zirconium) alkoxide. The organic components studied were PS, poly(vinyl methyl ether), and poly(styrene-co-acrylonitrile). The use of such compatibilizers provides a means of combining in situ polymerized inorganic oxides and hydrophobic polymers. This is seen as a reduction in the size of the dispersed inorganic phase and results in improved optical and mechanical properties

  4. Thermosensitive mPEG-b-PA-g-PNIPAM comb block copolymer micelles: effect of hydrophilic chain length and camptothecin release behavior.

    Science.gov (United States)

    Yang, Xiao-Li; Luo, Yan-Ling; Xu, Feng; Chen, Ya-Shao

    2014-02-01

    Block copolymer micelles are extensively used as drug controlled release carriers, showing promising application prospects. The comb or brush copolymers are especially of great interest, whose densely-grafted side chains may be important for tuning the physicochemical properties and conformation in selective solvents, even in vitro drug release. The purpose of this work was to synthesize novel block copolymer combs via atom transfer radical polymerization, to evaluate its physicochemical features in solution, to improve drug release behavior and to enhance the bioavailablity, and to decrease cytotoxicity. The physicochemical properties of the copolymer micelles were examined by modulating the composition and the molecular weights of the building blocks. A dialysis method was used to load hydrophobic camptothecin (CPT), and the CPT release and stability were detected by UV-vis spectroscopy and high-performance liquid chromatography, and the cytotoxicity was evaluated by MTT assays. The copolymers could self-assemble into well-defined spherical core-shell micelle aggregates in aqueous solution, and showed thermo-induced micellization behavior, and the critical micelle concentration was 2.96-27.64 mg L(-1). The micelles were narrow-size-distribution, with hydrodynamic diameters about 128-193 nm, depending on the chain length of methoxy polyethylene glycol (mPEG) blocks and poly(N-isopropylacrylamide) (PNIPAM) graft chains or/and compositional ratios of mPEG to PNIPAM. The copolymer micelles could stably and effectively load CPT but avoid toxicity and side-effects, and exhibited thermo-dependent controlled and targeted drug release behavior. The copolymer micelles were safe, stable and effective, and could potentially be employed as CPT controlled release carriers.

  5. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-03-22

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  6. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-01-01

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  7. Radiation induced vapour phase grafting of styrene onto fluorinated substrates

    International Nuclear Information System (INIS)

    Dargaville, T.; Hill, D.; George, G.; Cardona, F.

    2000-01-01

    Full text: Polytetrafluoroethylene (PTFE) is well known for being inert towards heat, solvents and harsh chemicals. However, in contrast, PTFE is extremely sensitive to radiation suffering from a dramatic decrease in mechanical strength even when exposed to low doses. In this study we have used a copolymer of PTFE, poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA). The effect of the ether comonomer is to render the polymer melt processable, lower the crystallinity and increase the radical yield when compared with PTFE. When grafting styrene to PFA using a radiation initiated process, the resulting polymer has the desirable chemical and thermal resistance of the PFA substrate combined with the functionality of the styrene, however, due to the incidental degradative effect of radiation on the PFA substrate it is important to find conditions where the best graft is achieved without exposing the substrate to extraneous levels of radiation. We have successfully grafted styrene to PFA by simultaneously exposing PFA to styrene vapour and gamma radiation. This process was found to be independent of dose rate at low dose rates suggesting a diffusion controlled mechanism. The penetration of the graft into the PFA substrate was measured by mapping a cross-section using micro-probe Raman spectroscopy

  8. PEG Grafted-Nanodiamonds for the Delivery of Gemcitabine.

    Science.gov (United States)

    Lu, Mingxia; Wang, Yu-Kai; Zhao, Jiacheng; Lu, Hongxu; Stenzel, Martina H; Xiao, Pu

    2016-12-01

    Carboxyl end-functionalized poly[poly(ethylene glycol) methyl ether methacrylate] [P(PEGMEMA)] and its block copolymer with gemcitabine substituted poly(N-hydroxysuccinimide methacrylate) [PGem-block-P(PEGMEMA)] are synthesized via reversible addition-fragmentation transfer (RAFT) polymerization. Then, two polymers are grafted onto the surface of amine-functionalized nanodiamonds to obtain [P(PEGMEMA)]-grafted nanodiamonds (ND-PEG) and [PGem-block-P(PEGMEMA)]-grafted nanodiamonds (ND-PF). Gemcitabine is physically absorbed to ND-PEG to produce ND-PEG (Gem). Two polymer-grafted nanodiamonds (i.e., with physically absorbed gemcitabine ND-PEG (Gem) and with chemically conjugated gemcitabine ND-PF) are characterized using attenuated total reflectance infrared spectroscopy, dynamic light scattering, and thermogravimetric analysis. The drug release, cytotoxicity (to seed human pancreatic carcinoma AsPC-1 cells), and cellular uptake of ND-PEG (Gem) and ND-PF are also investigated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Distribution of short block copolymer chains in Binary Blends of Block Copolymers Having Hydrogen Bonding

    Science.gov (United States)

    Kwak, Jongheon; Han, Sunghyun; Kim, Jin Kon

    2014-03-01

    A binary mixture of two block copolymers whose blocks are capable of forming the hydrogen bonding allows one to obtain various microdomains that could not be expected for neat block copolymer. For instance, the binary blend of symmetric polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) and polystyrene-block-polyhydroxystyrene copolymer (PS-b-PHS) blends where the hydrogen bonding occurred between P2VP and PHS showed hexagonally packed (HEX) cylindrical and body centered cubic (BCC) spherical microdomains. To know the exact location of short block copolymer chains at the interface, we synthesized deuterated polystyrene-block-polyhydroxystyrene copolymer (dPS-b-PHS) and prepared a binary mixture with PS-b-P2VP. We investigate, via small angle X-ray scattering (SAXS) and neutron reflectivity (NR), the exact location of shorter dPS block chain near the interface of the microdomains.

  10. Radiation induced graft copolymerization of cellulosic fabric waste and its application in the removal of cyanide and dichromate from aqueous solution

    International Nuclear Information System (INIS)

    El-Kelesh, N.A.; Hashem, A.; Sokker, H.H.; Abd Elaal, S.E.

    2005-01-01

    Graft polymerization and crosslinking in radiation processing are attractive techniques for modification of the chemical and physical properties of the conventional polymers. The graft polymerization and subsequent chemical treatment can introduce a chelate agent function into a conventional polymer such as cellulosic fabric. Cellulosic graft copolymers were prepared by the reaction of the fiber with acrylonitrile (AN) and 2-acrylamido-2-methyl propane sulfonic acid (AMPS) in DMF initiated by gamma-radiation 60 Co. The grafted fabric was chemically treated with hydroxyl amine to obtain amidoxime form. Factors affecting on the grafting such as radiation dose, monomer concentration and solvent concentration as well as monomer composition was investigated. The chemically modified graft fabric was applied for recovery of cyanide and dichromate from aqueous solution. The CN show removal percent 89%, whereas dichromate has 65% removal percent

  11. Micellization and Dynamics of a Block Copolymer

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2006-01-01

    and copolymer mixtures, and evidence in favor of a multi-equilibria unimer-micelle model will be presented. Results obtained by liquid chromatographic methods will be shown and it will be demonstrated that commercial EPE copolymers are inhomogeneous at several levels and many of their unusual properties reflect...... ratios and temperature. The micellization process with increasing temperature has been followed by a number of techniques including differential scanning calorimetry, liquid chromatography, and surface tension measurements. Different micellization models have been tested for purified copolymers...

  12. PEO-related block copolymer surfactants

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Non-ionic block copolymer systems based on hydrophilic poly(ethylene oxide) and more hydrophobic co-polymer blocks are used intensively in a variety of industrial and personal applications. A brief description on the applications is presented. The physical properties of more simple model systems...... of such PEG-based block copolymers in aqueous suspensions are reviewed. Based on scattering experiments using either X-ray or neutrons, the phase behavior is characterized, showing that the thermo-reversible gelation is a result of micellar ordering into mesoscopic crystalline phases of cubic, hexagonal...

  13. Radiation-grafting of N-vinylimidazole onto silicone rubber for antimicrobial properties

    Science.gov (United States)

    Meléndez-Ortiz, H. Iván; Alvarez-Lorenzo, Carmen; Burillo, Guillermina; Magariños, Beatriz; Concheiro, Angel; Bucio, Emilio

    2015-05-01

    Poly(N-vinylimidazole) (PVIm) was grafted numbers onto silicone rubber (SR) with the aim of providing antimicrobial properties. The grafting was carried out by means of gamma rays using the direct method. The influence on the grafting yield of absorbed dose, monomer concentration, addition of FeSO4 salt, composition and type of solvent (H2O, MeOH, THF, and acetone) was investigated. Grafts onto SR between 10% and 90% were obtained at doses from 20 to 100 kGy and a dose rate 10.9 kGy h-1; grafting yield increased with monomer concentration and dose. The new graft copolymers were confirmed by Fourier transform infrared spectroscopy (FT-IR). Differential scanning calorimeter (DSC) showed glass transition at 149 and 159 °C for 38% and 88% grafting respectively. Thermogravimetry analysis (TGA) presented two decomposition temperatures for SR-g-VIm at 380 (PVIm) and 440 °C (SR). SR-g-VIm showed antibacterial activity against Pseudomonas aeruginosa.

  14. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Barleany, Dhena Ria, E-mail: dbarleany@yahoo.com; Ulfiyani, Fida; Istiqomah, Shafina; Rahmayetty [Department of Chemical Engineering, University of Sultan Ageng Tirtayasa, Cilegon, Banten (Indonesia); Heriyanto, Heri; Erizal [Centre for Application of Isotopes and Radiation, Jakarta (Indonesia)

    2015-12-29

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w{sup −1} acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g{sup −1} of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g{sup −1} and 523 g g{sup −1} for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM)

  15. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    Science.gov (United States)

    Barleany, Dhena Ria; Ulfiyani, Fida; Istiqomah, Shafina; Heriyanto, Heri; Rahmayetty, Erizal

    2015-12-01

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w-1 acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g-1 of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g-1 and 523 g g-1 for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM).

  16. Studies on preparing and adsorption property of grafting terpolymer microbeads of PEI-GMA/AM/MBA for bilirubin.

    Science.gov (United States)

    Gao, Baojiao; Lei, Haibo; Jiang, Liding; Zhu, Yong

    2007-06-15

    Crosslinking copolymer microbeads with a diameter range of 100-150 microm were synthesized by suspension copolymerization of glycidyl methacrylate (GMA), acrylamide (AM) and N,N'-methylene bisacrylamide (MBA). Subsequently, polyethyleneimine (PEI) was grafted on the surfaces of the terpolymer microbeads GMA/AM/MBA via the ring-opening reaction of the epoxy groups, and the grafting microbeads PEI-GMA/AM/MBA were prepared. In this paper, the adsorption property of the grafting microbeads for bilirubin was mainly investigated, and the effects of various factors, such as pH value, ionic strength and grafting degree of PEI on the surface of grafting microbeads and the adsorption capacity of the grafting microbeads for bilirubin were examined. The batch adsorption experiment results show that by right of the action of grafted polyamine macromolecules PEI, the grafting microbeads PEI-GMA/AM/MBA have quite strong adsorption ability for bilirubin; the isotherm adsorption conforms to Freundlich equation. The pH value of the medium affects the adsorption capacity greatly, As in the nearly neutral solutions with pH 6, the grafting microbeads have the strongest adsorption ability for bilirubin, whereas in acidic and basic solutions their adsorption ability is weak. The ionic strength hardly affects the adsorption ability of the grafting microbeads. The grafting degree of PEI on the surfaces of the grafting microbeads also has a great effect on the adsorption capacity, and higher the grafting degree of PEI on the surface of the microbead PEI-GMA/AM/MBA, the stronger is the adsorption ability of the microbeads.

  17. Radiation grafting from binary mixtures of vinyl ether of mono ethanol amine with N-vinylpyrrolidone and vinyl ether of ethylene glycol onto polyolefins films and metallization of obtained films

    International Nuclear Information System (INIS)

    Al'-Saed Abdel' Aal'; Nurkeeva, Z.; Khutoryanskij, V.; Mun, G.; Sangajlo, M.

    2003-01-01

    Radiation grafting from binary mixtures of vinyl ether of mono ethanol amine with N-vinylpyrrolidone and vinyl ether of ethylene glycol onto polyolefins films using γ-radiation and accelerated electrons has been studied. IR-spectroscopy is used to confirm the structure of grafted films. A combination of and metallization of obtained films. A combination of gravimetric and potentiometric techniques is applied to determine the fraction of each monomer in graft copolymer. Water uptake and contact angle measurements confirmed that the grafting process improve the hydrophilic properties of obtained films. The obtained materials are metallized by electroless copper plating. The metallized films have good electro conductive properties. (author)

  18. Functional Nanoporous Polymers from Block Copolymer Precursors

    DEFF Research Database (Denmark)

    Guo, Fengxiao

    Abstract Self-assembly of block copolymers provides well-defined morphologies with characteristic length scales in the nanometer range. Nanoporous polymers prepared by selective removal of one block from self-assembled block copolymers offer great technological promise due to their many potential...... functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed......, where living anionic polymerization and atom transfer radical polymerization (ATRP) are combined to synthesize a polydimethylsiloxane-b-poly(tert-butyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer precursor. By using either anhydrous hydrogen fluoride or trifluoroacetic acid, PtBA block...

  19. Block Copolymers: Synthesis and Applications in Nanotechnology

    Science.gov (United States)

    Lou, Qin

    This study is focused on the synthesis and study of (block) copolymers using reversible deactivation radical polymerizations (RDRPs), including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, two primary areas of study are undertaken: (1) a proof-of-concept application of lithographic block copolymers, and (2) the mechanistic study of the deposition of titania into block copolymer templates for the production of well-ordered titania nanostructures. Block copolymers have the ability to undergo microphase separation, with an average size of each microphase ranging from tens to hundreds of nanometers. As such, block copolymers have been widely considered for nanotechnological applications over the past two decades. The development of materials for various nanotechnologies has become an increasingly studied area as improvements in many applications, such as those found in the semiconductor and photovoltaic industries are constantly being sought. Significant growth in developments of new synthetic methods ( i.e. RDRPs) has allowed the production of block copolymers with molecular (and sometimes atomic) definition. In turn, this has greatly expanded the use of block copolymers in nanotechnology. Herein, we describe the synthesis of statistical and block copolymers of 193 nm photolithography methacrylate and acrylate resist monomers with norbornyl and adamantyl moieties using RAFT polymerization.. For these resist (block) copolymers, the phase separation behaviors were examined by atomic force microscopy (AFM). End groups were removed from the polymers to avoid complications during the photolithography since RAFT end groups absorb visible light. Poly(glycidyl methacrylate-block-polystyrene) (PGMA-b-PS) was synthesize by ATRP and demonstrated that this block copolymer acts as both a lithographic UV (365 nm) photoresist and a self-assembly material. The PGMA segments can undergo cationic

  20. Improvement of antithrombogenicity of a fluoro polymer by radiation-induced grafting of hydrophilic monomer

    International Nuclear Information System (INIS)

    Otsuhata, Kazushige; Razzak, M.T.; Tabata, Yoneho; Ohashi, Fumito; Takeuchi, Atsushi.

    1985-01-01

    Fluoro polymers have been used as biomaterials in medical field since they have good compatibility with both tissue and blood, and their biomaterial application are of variety. Blood compatibility of fluoro polymers, however, are not always enough for every applications. Especially, there is a large difficulty in the application for artificial vessel with small radius below than 4 mm. In the present study, grafting of a hydrophilic monomer onto a fluoro polymer has been carried out to improve blood compatibility of the fluoro polymer. The technique of grafting employed here was simultaneous irradiation method of gamma rays from a 60 Co source. The fluoro polymer and the hydrophilic monomer used in the experiment were alternative copolymer of ethylene and tetrafluoethylene(AFLON) and N,N-dimethylacry lamide(DMAA), respectively. After grafting, it was found by in vitro tests that antithrombogenicity of AFLON was improved by grafting of DMAA. It was, however, also found that degree of the improvement is affected by grafting conditions. When ethyl acetate was used as a solvent for the graft copolymerization, the improvement was affected by dose rate. Blood compatibility of DMAA-g-AFLON obtained at a higher dose rate of 1 x 10 5 rad/h was not improved, while it was improved in the sample of DMAA-g-AFLON obtained at a lower dose rate of 1 x 10 4 rad/h. On the other hand, when acetone was used as a solvent for the grafting, the degree of grafting gave a significant effect on the improvement. Blood compatibility of all samples with grafting percent more than 20 % was improved by grafting of DMAA. (author)

  1. Responsive Copolymers for Enhanced Petroleum Recovery

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    2001-02-27

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  2. Reactivity Ratios for Organotin Copolymer Systems

    Directory of Open Access Journals (Sweden)

    Mohamed H. El-Newehy

    2010-04-01

    Full Text Available Di(tri-n-butyltin itaconate (DTBTI and monoethyl tributyltin fumarate (METBTF were synthesized as organotin monomers. The organotin monomers were copolymerized with styrene (ST and methyl methacrylate (MMA via a free radical polymerization technique. The overall conversion was kept low (£15% wt/wt for all studied samples and the copolymer composition was determined from tin analysis. The synthesized monomers and copolymers were characterized by elemental analysis, 1H- and 13C-NMR, and FTIR spectroscopy.

  3. Graft-Sparing Strategy for Thoracic Prosthetic Graft Infection.

    Science.gov (United States)

    Uchino, Gaku; Yoshida, Takeshi; Kakii, Bunpachi; Furui, Masato

    2018-04-01

     Thoracic prosthetic graft infection is a rare but serious complication with no standard management. We reported our surgical experience on graft-sparing strategy for thoracic prosthetic graft infection.  This study included patients who underwent graft-sparing surgery for thoracic prosthetic graft infection at Matsubara Tokushukai Hospital in Japan from January 2000 to October 2017.  There were 17 patients included in the analyses, with a mean age at surgery of 71.0 ± 10.5 years; 11 were men. In-hospital mortality was observed in five patients (29.4%).  Graft-sparing surgery for thoracic prosthetic graft infection is an alternative option particularly for early graft infection after hemiarch replacement. Georg Thieme Verlag KG Stuttgart · New York.

  4. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive

    International Nuclear Information System (INIS)

    Li Jianhua; Li Mizi; Miao Jing; Wang Jiabin; Shao Xisheng; Zhang Qiqing

    2012-01-01

    An attempt to improve hydrophilicity and anti-fouling properties of PVDF membranes, a novel amphiphilic zwitterionic copolymer poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate) (PVDF-g-PSBMA) was firstly synthesized by atom transfer radical polymerization (ATRP) and used as amphiphilic copolymer additive in the preparation of PVDF membranes. The PVDF-g-PSBMA/PVDF blend membranes were prepared by immersion precipitation process. Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) measurements confirmed that PSBMA brushes from amphiphilic additives were preferentially segregated to membrane-coagulant interface during membrane formation. The morphology of membranes was characterized by scanning electron microscopy (SEM). Water contact angle measurements showed that the surface hydrophilicity of PVDF membranes was improved significantly with the increasing of amphiphilic copolymer PVDF-g-PSBMA in cast solution. Protein static adsorption experiment and dynamic fouling resistance experiment revealed that the surface enrichment of PSBMA brush endowed PVDF blend membrane great improvement of surface anti-fouling ability.

  5. Superselective arterial embolisation with a liquid polyvinyl alcohol copolymer in patients with acute gastrointestinal haemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Lenhart, Markus; Schneider, Hans [Sozialstiftung Bamberg, Department of Diagnostic and Interventional Radiology, Bamberg (Germany); Paetzel, Christian [Klinikum Weiden, Department of Radiology, Weiden (Germany); Sackmann, Michael [Sozialstiftung Bamberg, Department of Gastroenterology, Bamberg (Germany); Jung, Ernst Michael; Schreyer, Andreas G.; Feuerbach, Stefan; Zorger, Niels [University of Regensburg, Department of Radiology, Regensburg (Germany)

    2010-08-15

    To evaluate the results of emergency embolisation in acute arterial bleeding of the gastrointestinal tract with a liquid polyvinyl alcohol copolymer from two centres. We retrospectively analysed 16 cases (15 patients) of acute arterial bleeding of the gastrointestinal tract where emergency embolotherapy was performed by using the copolymer when acute haemorrhage was not treatable with endoscopic techniques alone. Cause of haemorrhage and technical and clinical success were documented. Arterial embolotherapy was successful in all 16 cases. The technical success rate was 100%. The cause of bleeding was pancreatitis in four, graft-versus-host disease (GVHD) of the colon in three, malignancy in three, angiodysplasia in two, ulcer in two and panarteritis no dosa and trauma in one each. There were no procedure-related complications. No bowel necrosis occurred because of embolisation. In 13 cases, the patients were discharged in good condition (81%); the three patients with GVHD died because of the underlying disease. The copolymer seems to have great potential in embolotherapy of acute arterial gastrointestinal bleeding. In our series none of the patients had rebleeding at the site of embolisation and no clinically obvious bowel necrosis occurred. (orig.)

  6. Evolution of lateral ordering in symmetric block copolymer thin films upon rapid thermal processing

    International Nuclear Information System (INIS)

    Ceresoli, Monica; Ferrarese Lupi, Federico; Seguini, Gabriele; Perego, Michele; Sparnacci, Katia; Gianotti, Valentina; Antonioli, Diego; Laus, Michele; Boarino, Luca

    2014-01-01

    This work reports experimental findings about the evolution of lateral ordering of lamellar microdomains in symmetric PS-b-PMMA thin films on featureless substrates. Phase separation and microdomain evolution are explored in a rather wide range of temperatures (190–340 °C) using a rapid thermal processing (RTP) system. The maximum processing temperature that enables the ordering of block copolymers without introducing any significant degradation of macromolecules is identified. The reported results clearly indicate that the range of accessible temperatures in the processing of these self-assembling materials is mainly limited by the thermal instability of the grafted random copolymer layer, which starts to degrade at T > 300 °C, inducing detachment of the block copolymer thin film. For T ⩽ 290 °C, clear dependence of correlation length (ξ) values on temperature is observed. The highest level of lateral order achievable in the current system in a quasi-equilibrium condition was obtained at the upper processing temperature limit after an annealing time as short as 60 s. (paper)

  7. Superselective arterial embolisation with a liquid polyvinyl alcohol copolymer in patients with acute gastrointestinal haemorrhage

    International Nuclear Information System (INIS)

    Lenhart, Markus; Schneider, Hans; Paetzel, Christian; Sackmann, Michael; Jung, Ernst Michael; Schreyer, Andreas G.; Feuerbach, Stefan; Zorger, Niels

    2010-01-01

    To evaluate the results of emergency embolisation in acute arterial bleeding of the gastrointestinal tract with a liquid polyvinyl alcohol copolymer from two centres. We retrospectively analysed 16 cases (15 patients) of acute arterial bleeding of the gastrointestinal tract where emergency embolotherapy was performed by using the copolymer when acute haemorrhage was not treatable with endoscopic techniques alone. Cause of haemorrhage and technical and clinical success were documented. Arterial embolotherapy was successful in all 16 cases. The technical success rate was 100%. The cause of bleeding was pancreatitis in four, graft-versus-host disease (GVHD) of the colon in three, malignancy in three, angiodysplasia in two, ulcer in two and panarteritis no dosa and trauma in one each. There were no procedure-related complications. No bowel necrosis occurred because of embolisation. In 13 cases, the patients were discharged in good condition (81%); the three patients with GVHD died because of the underlying disease. The copolymer seems to have great potential in embolotherapy of acute arterial gastrointestinal bleeding. In our series none of the patients had rebleeding at the site of embolisation and no clinically obvious bowel necrosis occurred. (orig.)

  8. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianhua, E-mail: jhli_2005@163.com [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China); Li Mizi; Miao Jing; Wang Jiabin; Shao Xisheng [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China); Zhang Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China) and Institute of Biomedical Engineering, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192 (China)

    2012-06-15

    An attempt to improve hydrophilicity and anti-fouling properties of PVDF membranes, a novel amphiphilic zwitterionic copolymer poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate) (PVDF-g-PSBMA) was firstly synthesized by atom transfer radical polymerization (ATRP) and used as amphiphilic copolymer additive in the preparation of PVDF membranes. The PVDF-g-PSBMA/PVDF blend membranes were prepared by immersion precipitation process. Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) measurements confirmed that PSBMA brushes from amphiphilic additives were preferentially segregated to membrane-coagulant interface during membrane formation. The morphology of membranes was characterized by scanning electron microscopy (SEM). Water contact angle measurements showed that the surface hydrophilicity of PVDF membranes was improved significantly with the increasing of amphiphilic copolymer PVDF-g-PSBMA in cast solution. Protein static adsorption experiment and dynamic fouling resistance experiment revealed that the surface enrichment of PSBMA brush endowed PVDF blend membrane great improvement of surface anti-fouling ability.

  9. Organization of Gold Nanorods in Cylinder-Forming Block Copolymer Films

    Science.gov (United States)

    Jian, Guoquian; Riggleman, Robert; Composto, Russell

    2012-02-01

    The addition of gold nanorods (AuNRs) to copolymer films can impart unique optical and electrical properties. To take full advantage of this system, the AuNRs must be dispersed in a self-organizing copolymer that directs the orientation of the anisotropic particle. In the present work, AuNRs with aspect ratio 3.6 (8 nm x 29 nm) are grafted with poly(2-vinyl pyridine) (P2VP) brushes and dispersed in a cylindrical forming diblock copolymer of polystyrene-b-P2VP (180K-b-77K, 29.6 wt% P2VP). Films are spun cast and solvent annealed in chloroform to produce a perpendicular cylindrical morphology at the surface. Using TEM and UV-ozone etching combined with AFM, the AuNRs are well dispersed and co-locate (top down view) with the P2VP cylinders, ˜50nm diameter. However, the AuNRs mainly lie parallel to the surface indicating that they likely locate at the junction created at the intersection between P2VP cylinders and P2VP brush layer adjacent to the silicon oxide surface. Self-consistent field calculations of the Au:PS-b-P2VP morphology as well as the effect of adding P2VP homopolymer to the nanocomposite will be discussed.

  10. Arteriovenous shunt graft ulceration with sinus and graft epithelialization

    Directory of Open Access Journals (Sweden)

    Pooja Singhal

    2015-03-01

    Full Text Available Arteriovenous fistula and grafts are used as access sites for patients with chronic kidney disease and are prone for complications. Stent grafts are used to treat access site complications. We report a rare and unusual finding of epithelialization of the sinus tract and the lumen of a polytetrafluoroethylene graft, following ulceration of the overlying skin.

  11. The influence of chain stretching on the phase behavior of multiblock copolymer and comb copolymer melts

    NARCIS (Netherlands)

    Angerman, HJ; ten Brinke, G

    The subject of this paper is inspired by microphase-separated copolymer melts in which a small-scale structure is present inside one of the phases of a large-scale structure. Such a situation can arise in a diblock copolymer melt, if one of the blocks of the diblock is in itself a multiblock

  12. Elucidation of the Structure Formation of Polymer-Conjugated Proteins in Solution and Block Copolymer Templates

    Science.gov (United States)

    Ferebee, Rachel L.

    The broader technical objective of this work is to contribute to the development of enzyme-functionalized nanoporous membranes that can function as autonomous and target selective dynamic separators. The scientific objective of the research performed within this thesis is to elucidate the parameters that control the mixing of proteins in organic host materials and in block copolymers templates in particular. A "biomimetic" membrane system that uses enzymes to selectively neutralize targets and trigger a change in permeability of nanopores lined with a pH-responsive polymer has been fabricated and characterized. Mechanical and functional stability, as well as scalability, have been demonstrated for this system. Additional research has focused on the role of polymeric ligands on the solubility characteristics of the model protein, Bovine Serum Albumin (BSA). For this purpose BSA was conjugated with poly(ethylene glycol) (PEG) ligands of varied degree of polymerization and grafting density. Combined static and dynamic light scattering was used (in conjunction with MALDI-TOF) to determine the second virial coefficient in PBS solutions. At a given mass fraction PEG or average number of grafts, the solubility of BSA-PEG conjugates is found to increase with the degree of polymerization of conjugated PEG. This result informs the synthesis of protein-conjugate systems that are optimized for the fabrication of block copolymer blend materials with maximum protein loading. Blends of BSA-PEG conjugates and block copolymer (BCP) matrices were fabricated to evaluate the dispersion morphology and solubility limits in a model system. Electron microscopy was used to evaluate the changes in lamellar spacing with increased filling fraction of BSA-PEG conjugates.

  13. Oxidation of Phenol by Hydrogen Peroxide Catalyzed by Metal-Containing Poly(amidoxime Grafted Starch

    Directory of Open Access Journals (Sweden)

    Hany El-Hamshary

    2011-11-01

    Full Text Available Polyamidoxime chelating resin was obtained from polyacrylonitrile (PAN grafted starch. The nitrile groups of the starch-grafted polyacrylonitrile (St-g-PAN were converted into amidoximes by reaction with hydroxylamine under basic conditions. The synthesized graft copolymer and polyamidoxime were characterized by FTIR, TGA and elemental microanalysis. Metal chelation of the polyamidoxime resin with iron, copper and zinc has been studied. The produced metal-polyamidoxime polymer complexes were used as catalysts for the oxidation of phenol using H2O2 as oxidizing agent. The oxidation of phenol depends on the central metal ion present in the polyamidoxime complex. Reuse of M-polyamidoxime catalyst/H2O2 system showed a slight decrease in catalytic activities for all M-polyamidoxime catalysts.

  14. Superabsorbent Prepared by Radiation Induced Graft Copolymerization of Acrylic Acid onto Cassava Starch. Chapter 18

    Energy Technology Data Exchange (ETDEWEB)

    Suwanmala, P.; Tangthong, T.; Hemvichian, K. [Thailand Institute of Nuclear Technology (Thailand)

    2014-07-15

    Superabsorbent was synthesized by radiation induced graft polymerization of acrylic acid onto cassava starch. Parameters such as the absorbed dose and the amount of monomer were investigated in order to determine the optimum conditions for the grafting polymerization. Water retention, germination percentage, and germination energy were also determined in order to evaluate the possibility of superabsorbent in agricultural applications, especially in arid regions. The graft copolymer was characterized by the Fourier transform infrared spectroscopy (FTIR). Results indicated that the sand mixed with 0.1% wt superabsorbent could absorb more water than the sand without superabsorbent. The germination energy of corn seeds mixed with 0.5% superabsorbent was obviously higher than those without superabsorbent. These experimental results showed that the superabsorbent has considerable effects on seed germination and the growth of young plants. (author)

  15. Haemodynamics in axillobifemoral bypass grafts

    NARCIS (Netherlands)

    C.H. Wittens

    1992-01-01

    textabstractThis thesis is based on four publications on the subject of graft configuration and haemodynamics in axillobifemoral bypass grafts: 1. A clinical evaluation of 17 patients with axillobifemoral bypass graft operations, performed for various indications. Two important observations were

  16. Primary renal graft thrombosis

    NARCIS (Netherlands)

    Bakir, N; Sluiter, WJ; Ploeg, RJ; van Son, WJ; Tegzess, Adam

    Background. Renal allograft thrombosis is a serious complication of kidney transplantation that ultimately leads to graft loss. Its association with acute and hyperacute rejection is well documented; however, in a large proportion of patients the precise cause remains obscure. The exact incidence

  17. Aortic Graft Infection Secondary to Iatrogenic Transcolonic Graft Malposition.

    Science.gov (United States)

    Blank, Jacqueline J; Rothstein, Abby E; Lee, Cheong Jun; Malinowski, Michael J; Lewis, Brian D; Ridolfi, Timothy J; Otterson, Mary F

    2018-01-01

    Aortic graft infections are a rare but devastating complication of aortic revascularization. Often infections occur due to contamination at the time of surgery. Iatrogenic misplacement of the limbs of an aortobifemoral graft is exceedingly rare, and principles of evaluation and treatment are not well defined. We report 2 cases of aortobifemoral bypass graft malposition through the colon. Case 1 is a 54-year-old male who underwent aortobifemoral bypass grafting for acute limb ischemia. He had previously undergone a partial sigmoid colectomy for diverticulitis. Approximately 6 months after vascular surgery, he presented with an occult graft infection. Preoperative imaging and intraoperative findings were consistent with graft placement through the sigmoid colon. Case 2 is a 60-year-old male who underwent aortobifemoral bypass grafting due to a nonhealing wound after toe amputation. His postoperative course was complicated by pneumonia, bacteremia thought to be secondary to the pneumonia, general malaise, and persistent fevers. Approximately 10 weeks after the vascular surgery, he presented with imaging and intraoperative findings of graft malposition through the cecum. Aortic graft infection is usually caused by surgical contamination and presents as an indolent infection. Case 1 presented as such; Case 2 presented more acutely. Both grafts were iatrogenically misplaced through the colon at the index operation. The patients underwent extra-anatomic bypass and graft explantation and subsequently recovered.

  18. ToF-SIMS analysis of poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) ultrathin adlayers.

    Science.gov (United States)

    Pidhatika, Bidhari; Chen, Yin; Coullerez, Geraldine; Al-Bataineh, Sameer; Textor, Marcus

    2014-02-01

    Understanding of the interfacial chemistry of ultrathin polymeric adlayers is fundamentally important in the context of establishing quantitative design rules for the fabrication of nonfouling surfaces in various applications such as biomaterials and medical devices. In this study, seven poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-PMOXA) copolymers with grafting density (number of PMOXA chains per lysine residue) 0.09, 0.14, 0.19, 0.33, 0.43, 0.56, and 0.77, respectively, were synthesized and characterized by means of nuclear magnetic resonance spectroscopy (NMR). The copolymers were then adsorbed on Nb2O5 surfaces. Optical waveguide lightmode spectroscopy method was used to monitor the surface adsorption in situ of these copolymers and provide information on adlayer masses that were then converted into PLL and PMOXA surface densities. To investigate the relationship between copolymer bulk architecture (as shown by NMR data) and surface coverage as well as surface architecture, time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis was performed. Furthermore, ToF-SIMS method combined with principal component analysis (PCA) was used to verify the protein resistant properties of PLL-PMOXA adlayers, by thorough characterization before and after adlayer exposure to human serum. ToF-SIMS analysis revealed that the chemical composition as well as the architecture of the different PLL-PMOXA adlayers indeed reflects the copolymer bulk composition. ToF-SIMS results also indicated a heterogeneous surface coverage of PLL-PMOXA adlayers with high grafting densities higher than 0.33. In the case of protein resistant surface, PCA results showed clear differences between protein resistant and nonprotein-resistant surfaces. Therefore, ToF-SIMS results combined with PCA confirmed that the PLL-PMOXA adlayer with brush architecture resists protein adsorption. However, low increases of some amino acid signals in ToF-SIMS spectra were detected after the adlayer has

  19. Multiblock copolymers synthesized in aqueous dispersions using multifunctional RAFT agents

    NARCIS (Netherlands)

    Bussels, R.; Bergman-Göttgens, C.M.; Meuldijk, J.; Koning, C.E.

    2005-01-01

    Triblock copolymers were synthesized in aqueous dispersions in two polymerization steps using a low molar mass difunctional dithiocarbamate-based RAFT agent, and in merely one polymerization step using a macromolecular difunctional dithiocarbamate-based RAFT agent. Segmented block copolymers

  20. Polyamide copolymers having 2,5-furan dicarboxamide units

    Science.gov (United States)

    Chisholm, Bret Ja; Samanta, Satyabrata

    2017-09-19

    Polyamide copolymers, and methods of making and using polyamide copolymers, having 2,5-furan dicarboxamide units are disclosed herein. Such polymers can be useful for engineering thermoplastics having advantageous physical and/or chemical properties.

  1. Use of a copolymer dressing on superficial and partial-thickness burns in a paediatric population.

    Science.gov (United States)

    Everett, M; Massand, S; Davis, W; Burkey, B; Glat, P M

    2015-07-01

    no readmissions for further debridement or skin grafting. Our experience shows that patients may be discharged shortly after the application of the copolymer dressing, with manageable pain scores and ease of use as determined by the caretakers high satisfaction. This new, fully synthetic copolymer dressing is easy to apply, does not require any additional antimicrobial coverage and may be used to successfully manage deeper partial-thickness burns, donor sites or burns in areas of contour, where many other dressings might not be considered or be appropriate. None declared.

  2. Polymer brushes on nanoparticles: their positioning in and influence on block copolymer morphology.

    Science.gov (United States)

    Kim, Bumjoon

    2007-03-01

    Polymers brushes grafted to the nanoparticle surface enable the precise positioning of particles within a block copolymer matrix by determining the compatibility of nanoparticles within a polymeric matrix and modifying the interfacial properties between polymers and inorganic nanoparticle. Short thiol terminated polystyrene (PS-SH), poly(2-vinylpyridine) (P2VP-SH) and PS-r-P2VP with the molecular weight (Mn) of 3 kg/mol were used to control the location of Au nanoparticles over PS-b-P2VP diblock copolymer template. We will discuss further the approach of varying the areal chain density (σ) of PS-SH brushes on the PS coated particles, which utilizes the preferential wetting of one block of a copolymer (P2VP) on the Au substrate. Such favorable interaction provides the strong binding of Au particles to the PS/P2VP interface as σ of PS chains on the Au particle decreases. We find that at σ above a certain value, the nanoparticles are segregated to the center of the PS domains while below this value they are segregated to the interface. The transition σ for PS-SH chains (Mn = 3.4 kg/mol) is 1.3 chains/nm^2 but unexpectedly scales as Mn-0.55 as Mn is varied from 1.5 to 13 kg/mol. In addition, we will discuss changes in block copolymer morphology that occur as the nanoparticle volume fraction (φ) is increased for nanoparticles that segregate to the domain center as well as those that segregate to the interface, the latter behaving as nanoparticle surfactants. Small φ of such surfactants added to lamellar diblock copolymers lead initially to a decrease in lamellar thickness, a consequence of decreasing interfacial tension, up to a critical value of φ beyond which the block copolymer adopts a bicontinuous morphology. I thank my collaborators G. H. Fredrickson, J. Bang, C. J. Hawker, and E. J. Kramer as well as funding by the MRL as UCSB from the NSF-MRSEC-Program Award DMR05-20418.

  3. Ionic membranes obtained by radiation - induced graft copolymerization, II-characterization and waste treatment. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A M.I.; Nowier, H G; Aly, H F [National Center for Radiation and Technology, Atomic Energy Authority, Cairo, (Egypt); Abd El-Rehim, H A; Hegazy, E A [Hot Laboratories Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Ionic membranes were prepared by radiation-induced grafting of acrylic acid onto low density polyethylene films. To elucidate the possibility of practical use, a study was made for the characterization of the grafted and chemically treated mechanisms. The selectivity of such prepared membranes towards the chelation or absorption of different alkali metals was investigated, to find that the higher affinity was observed for K{sup +}, Na{sup +} and Li{sup +} ions compared to other alkali metals used. The metal uptake percent was determined using different techniques; flame photometer, and X-ray fluorescence (XRF). The uptake of metal from its feed solution by the the grafted membrane increased as the degree of grating increased, i.e. it is directly proportional to the functional carboxylic acid groups in the graft copolymer. As a consequence, the electrical conductivity of metal feed solution decreased during such process of metal chelation by membrane. The higher the grafting degree of membrane, the lower the electrical conductivity of metal feed solutions observed. the changes in thermal properties of the membranes prepared were investigated and characterized using differential scanning calorimetry, (DSC), and thermal gravimetric analysis (TGA). The thermal stability of these membranes increased with degree of grafting due to the formation of cross linked network structure via hydrogen bonding. furthermore, such stability is enhanced for the alkali-treated membranes even at high elevated temperatures. The membranes prepared showed a great promise for possible use in some practical applications such as metal waste treatment. 3 figs., 5 tabs.

  4. Ionic membranes obtained by radiation - induced graft copolymerization, II-characterization and waste treatment. Vol. 3

    International Nuclear Information System (INIS)

    Ali, A.M.I.; Nowier, H.G.; Aly, H.F.; Abd El-Rehim, H.A.; Hegazy, E.A.

    1996-01-01

    Ionic membranes were prepared by radiation-induced grafting of acrylic acid onto low density polyethylene films. To elucidate the possibility of practical use, a study was made for the characterization of the grafted and chemically treated mechanisms. The selectivity of such prepared membranes towards the chelation or absorption of different alkali metals was investigated, to find that the higher affinity was observed for K + , Na + and Li + ions compared to other alkali metals used. The metal uptake percent was determined using different techniques; flame photometer, and X-ray fluorescence (XRF). The uptake of metal from its feed solution by the the grafted membrane increased as the degree of grating increased, i.e. it is directly proportional to the functional carboxylic acid groups in the graft copolymer. As a consequence, the electrical conductivity of metal feed solution decreased during such process of metal chelation by membrane. The higher the grafting degree of membrane, the lower the electrical conductivity of metal feed solutions observed. the changes in thermal properties of the membranes prepared were investigated and characterized using differential scanning calorimetry, (DSC), and thermal gravimetric analysis (TGA). The thermal stability of these membranes increased with degree of grafting due to the formation of cross linked network structure via hydrogen bonding. furthermore, such stability is enhanced for the alkali-treated membranes even at high elevated temperatures. The membranes prepared showed a great promise for possible use in some practical applications such as metal waste treatment. 3 figs., 5 tabs

  5. Radiation crosslinking of poly(butyl acrylate) during polymerization and grafted copolymerization with Cr(III) crosslinked collagen

    International Nuclear Information System (INIS)

    Pietrucha, K.; Kroh, J.

    1984-01-01

    Enhanced crosslinking of synthetic polymer simultaneous with grafting and homopolymerization processes have been observed in irradiated leather tanned with Cr(III) and embedded with aqueous emulsions of butyl acrylate. Extent of poly(butyl acrylate) crosslinking during copolymerization was found to be approximately one order higher than in the case of radiation polymerization of butyl acrylate in emulsion. New method for isolation of grafted copolymer based on degradation of collagen has been developed. The extent of crosslinking was calculated from the swelling data. (author)

  6. Radiation crosslinking of poly(butyl acrylate) during polymerization and grafted copolymerization with Cr(III) crosslinked collagen

    International Nuclear Information System (INIS)

    Pietrucha, K.; Kroh, J.

    1986-01-01

    Enhanced crosslinking of synthetic polymer simultaneously with grafting and homopolymerization processes has been observed in irradiated leather tanned with Cr(III) and embedded with aqueous emulsions of butyl acrylate. The extent of poly(butyl acrylate) crosslinking during copolymerization was found to be approximately one order higher than in the case of radiation polymerization of butyl acrylate in emulsion. A new method for isolation of grafted copolymer based on degradation of collagen has been developed. The extent of crosslinking was calculated from the swelling data. (author)

  7. Preparation of New Adsorbent Containing Hydroxamic Acid Groups by Electron Beam-Induced Grafting for Metal Ion Adsorption

    International Nuclear Information System (INIS)

    Suwanmala, Phiriyatorn; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2007-08-01

    Full text: A new adsorbent containing hydroxamic acid groups was synthesized by electron beam-induced graft copolymerization of methyl acrylate (MA) onto nonwoven fabric composed of polyethylene-coated polypropylene fiber. Conversion of ester groups of the grafted copolymer into the hydroxamic groups was performed by treatment with an alkaline solution of hydroxylamine (HA). Adsorbent containing hydroxamic acid groups can adsorb 99% of UO2 2+ , 98% of V5+, 97% of Pb2+ and 96% of Al3+ at pH, 5, 4, 6, and 4, respectively, after coming into contact with 100 ppb metal solution for 24 h

  8. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  9. Fabrication of thermo-responsive cotton fabrics using poly(vinyl caprolactam-co-hydroxyethyl acrylamide) copolymer.

    Science.gov (United States)

    Xiao, Min; González, Edurne; Monterroza, Alexis Martell; Frey, Margaret

    2017-10-15

    A thermo-responsive polymer with hydrophilic to hydrophobic transition behavior, poly(vinyl caprolactam-co-hydroxyethyl acrylamide) P(VCL-co-HEAA), was prepared by copolymerization of vinyl caprolactam and N-hydroxyethyl acrylamide via free radical solution polymerization. The resulting copolymer was characterized by Fourier transform infrared spectroscopy (FTIR), 1 H nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The lower critical solution temperature (LCST) of P(VCL-co-HEAA) was determined at 34.5°C. This thermo-responsive polymer was then grafted onto cotton fabrics using 1,2,3,4-butanetetracarboxylic acid (BTCA) as crosslinker and sodium hypophosphite (SHP) as catalyst. FTIR and energy dispersive X-ray spectroscopy (EDS) studies confirmed the successful grafting reaction. The modified cotton fabric exhibited thermo-responsive behavior as evidenced by water vapor permeability measurement confirming decreased permeability at elevated temperature. This is the first demonstration that a PVCL based copolymer is grafted to cotton fabrics. This study provides a new thermo-responsive polymer for fabrication of smart cotton fabrics with thermally switchable hydrophilicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Photo-Induced Micellization of Block Copolymers

    Directory of Open Access Journals (Sweden)

    Satoshi Kuwayama

    2010-11-01

    Full Text Available We found novel photo-induced micellizations through photolysis, photoelectron transfer, and photo-Claisen rearrangement. The photolysis-induced micellization was attained using poly(4-tert-butoxystyrene-block-polystyrene diblock copolymer (PBSt-b-PSt. BSt-b-PSt showed no self-assembly in dichloromethane and existed as isolated copolymers. Dynamic light scattering demonstrated that the copolymer produced spherical micelles in this solvent due to irradiation with a high-pressure mercury lamp in the presence of photo-acid generators, such as bis(alkylphenyliodonium hexafluorophosphate, diphenyliodonium hexafluorophosphate, and triphenylsulfonium triflate. The 1H NMR analysis confirmed that PBSt-b-PSt was converted into poly(4-vinylphenol-block-PSt by the irradiation, resulting in self-assembly into micelles. The irradiation in the presence of the photo-acid generator also induced the micellization of poly(4-pyridinemethoxymethylstyrene-block-polystyrene diblock copolymer (PPySt-b-PSt. Micellization occurred by electron transfer from the pyridine to the photo-acid generator in their excited states and provided monodispersed spherical micelles with cores of PPySt blocks. Further, the photo-Claisen rearrangement caused the micellization of poly(4-allyloxystyrene-block-polystyrene diblock copolymer (PASt-b-PSt. Micellization was promoted in cyclohexane at room temperature without a catalyst. During micellization, the elimination of the allyl groups competitively occurred along with the photorearrangement of the 4-allyloxystyrene units into the 3-allyl-4-hydroxystyrene units.

  11. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be safely...

  12. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be safely...

  13. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of articles...

  14. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials, containers...

  15. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be safely...

  16. Surface-Initiated Atom Transfer Radical Polymerization of Magnetite Nanoparticles with Statistical Poly(tert-butyl acrylate-poly(poly(ethylene glycol methyl ether methacrylate Copolymers

    Directory of Open Access Journals (Sweden)

    Patcharin Kanhakeaw

    2015-01-01

    Full Text Available This work presented the surface modification of magnetite nanoparticle (MNP with poly[(t-butyl acrylate-stat-(poly(ethylene glycol methyl ether methacrylate] copolymers (P[(t-BA-stat-PEGMA] via a surface-initiated “grafting from” atom transfer radical polymerization (ATRP. Loading molar ratio of t-BA to PEGMA was systematically varied (100 : 0, 75 : 25, 50 : 50, and 25 : 75, resp. such that the degree of hydrophilicity of the copolymers, affecting the particle dispersibility in water, can be fine-tuned. The reaction progress in each step of the synthesis was monitored via Fourier transform infrared spectroscopy (FTIR. The studies in the reaction kinetics indicated that PEGMA had higher reactivity than that of t-BA in the copolymerizations. Gel permeation chromatography (GPC indicated that the molecular weights of the copolymers increased with the increase of the monomer conversion. Transmission electron microscopy (TEM revealed that the particles were spherical with averaged size of 8.1 nm in diameter. Dispersibility of the particles in water was apparently improved when the copolymers were coated as compared to P(t-BA homopolymer coating. The percentages of MNP and the copolymer in the composites were determined via thermogravimetric analysis (TGA and their magnetic properties were investigated via vibrating sample magnetometry (VSM.

  17. Preparation and properties of poly(vinyl alcohol)-g-octadecanol copolymers based solid–solid phase change materials

    International Nuclear Information System (INIS)

    Shi Haifeng; Li Jianhua; Jin Yanmei; Yin Yiping; Zhang Xingxiang

    2011-01-01

    Highlights: ► In this paper, our objective is just focused on the preparation and characterization of such SSPCMs aiming at providing one suitable material for improving the thermal stability and preventing the liquid leakage from the matrix. Here, the SSPCMs can be fabricated by grafting to method between poly(vinyl alcohol) and octadecanol, which the grafting ratio can be controlled by adjusting the feeding components. ► The thermal properties, crystalline structure and morphology were detailed studies by WAXD, FT-IR, TGA and DSC, proving that the PVA-g-octadecanol process the better thermal storage ability and thermal stability. Compared with pure octadecanol, the heat fusion of PVA-g-octadecanol decreased due to the mobility confinement and the lower rearrangements of C18 alkyl side chains. ► This result is for the first time reported, and is a meaningful result for the investigation of the solid–solid phase change materials, and the preparation process provides one template-directed approach to obtain the high-performance materials with the better heat storage and thermal stability. - Abstract: The heat storage and phase transition behavior of a series of poly(vinyl alcohol)-g-octadecanol copolymers (PVA-g-C18OH) with apparent grafting ratios ranging from 283 to 503%, synthesized through “grafting to” method, has been investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide-angle X-ray diffraction (WAXD) and polarized optical microscopy (POM). PVA-g-C18OH copolymers exhibit the better thermal stability against C18OH, and the thermal energy storage ability (ΔH m ) is of dependence on the apparent grafting ratios. Compared with C18OH, the lower thermal storage efficiency possible is attributed to the less CH 2 groups entered into the crystalline domains and the frustrated mobility of the grafted C18 alkyl side chains between PVA backbones. The results show that

  18. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  19. Graft copolymerization of acrylo–nitrile onto delignified native bamboo (Bambusa vulgaris cellulosic and its utilization potential for heavy metal uptake from aqueous medium

    Directory of Open Access Journals (Sweden)

    M.O. EKEBAFE

    2011-06-01

    Full Text Available Graft polymerization of acrylonitrile onto delingnified cellulosic material obtained from Nigeria grown bamboo (Bambusa vulgaris could be initiated by a ceric ammonium nitrate redox system. Optimization of grafting of acrylonitrile onto cellulosic material was performed by varying the reaction conditions, such as the duration of soaking of cellulosic material in ceric ammonium nitrate solution, concentration of ceric ammonium nitrate solution, polymerization time, temperature of reaction, and acrylonitrile concentration and saponification time, in order to study their influence on percent grafting yield and grafting efficiency. The resulting cellulosic-g-polyacrylonitrile (PAN copolymers were fractionated by extraction at 33 C with N,N’-dimethylformamide. Fractions were characterized by determining both the % add-on and the free polymer. Saponification of grafted copolymer was done by reaction with sodium hydroxide followed by methanol precipitation. The absorbent polymer so produced gave fair water retention values. The optimum reaction conditions obtained were: 20 mmol/L ceric ammonium nitrate solution in 1% nitric acid, soaking duration of 0.5 h at 40 C for a polymerization time of 2 h and saponification time of 3 h. The percent grafting was 167.89%, grafting efficiency was 93.52% and water retention value was 389 g/g. The grafting was confirmed using FTIR. Sorption of different metal ions in the mixture, e.g. Cr, Mn, Ni, Cu and Pb, by grafted cellulosic and the hydrogel was also investigated. Hydrolysis increases the sorption affinity of grafted cellulose toward water and metal ions.

  20. Amphiphilic block copolymers for biomedical applications

    Science.gov (United States)

    Zupancich, John Andrew

    Amphiphilic block copolymer self-assembly provides a versatile means to prepare nanoscale objects in solution. Control over aggregate shape is granted through manipulation of amphiphile composition and the synthesis of well-defined polymers offers the potential to produce micelles with geometries optimized for specific applications. Currently, polymer micelles are being investigated as vehicles for the delivery of therapeutics and attempts to increase efficacy has motivated efforts to incorporate bioactive ligands and stimuli-responsive character into these structures. This thesis reports the synthesis and self-assembly of biocompatible, degradable polymeric amphiphiles. Spherical, cylindrical, and bilayered vesicle structures were generated spontaneously by the direct dispersion of poly(ethylene oxide)-b-poly(gamma-methyl-ε-caprolactone) block copolymers in water and solutions were characterized with cryogenic transmission electron microscopy (cryo-TEM). The dependence of micelle structure on diblock copolymer composition was examined through the systematic variation of the hydrophobic block molecular weight. A continuous evolution of morphology was observed with coexistence of aggregate structures occurring in windows of composition intermediate to that of pure spheres, cylinders and vesicles. A number of heterobifunctional poly(ethylene oxide) polymers were synthesized for the preparation of ligand-functionalized amphiphilic diblock copolymers. The effect of ligand conjugation on block copolymer self-assembly and micelle morphology was also examined. An RGD-containing peptide sequence was efficiently conjugated to a set of well characterized poly(ethylene oxide)-b-poly(butadiene) copolymers. The reported aggregate morphologies of peptide-functionalized polymeric amphiphiles deviated from canonical structures and the micelle clustering, cylinder fragmentation, network formation, and multilayer vesicle generation documented with cryo-TEM was attributed to

  1. Dynamics of Block Copolymer Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We also carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.

  2. Co-polymer Films for Sensors

    Science.gov (United States)

    Ryan, Margaret A. (Inventor); Jewell, April D. (Inventor); Taylor, Charles (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Manatt, Kenneth S. (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor); Homer, Margie L. (Inventor); Shevade, Abhijit V. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  3. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...

  4. Vein grafting in fingertip replantations.

    Science.gov (United States)

    Yan, Hede; Jackson, William D; Songcharoen, Somjade; Akdemir, Ovunc; Li, Zhijie; Chen, Xinglong; Jiang, Liangfu; Gao, Weiyang

    2009-01-01

    In this retrospective study, the survival rates of fingertip replantation with and without vein grafting were evaluated along with their postoperative functional and cosmetic results. One hundred twenty-one-fingertip amputations were performed in 103 patients between September 2002 and July 2007. Thirty-four amputated fingertips were replanted without vein grafting, while 87 amputated fingertips were replanted with vein grafting for arterial and/or venous repairs. The overall survival rates of the replantations with and without vein grafting were 90% (78/87) and 85% (29/34), respectively. The survival rates were 88% (36/41) with venous repair, 93% (25/27) with arterial repair, and 89% (17/19) with both. Nineteen patients without vein grafting and 48 patients with vein grafting had a follow-up period of more than one year. Good cosmetic and functional outcomes were observed in both groups of patients. The results show that vein grafting is a reliable technique in fingertip replantations, showing no significant difference (P > 0.05) in survival between those with and without vein grafting. Furthermore, no significant difference (P > 0.05) in survival was found between cases with vein grafts for arterial and/or venous repairs. In fingertip replantations with vein grafting, favorable functional and esthetic results can be achieved without sacrificing replantation survival. (c) 2009 Wiley-Liss, Inc.

  5. Graft copolymerization of styrene onto poly(vinyl alcohol) initiated by potassium diperiodatocuprate (III)

    International Nuclear Information System (INIS)

    Bai, L.; Wang, Ch.; Jin, J.; Liu, Y.

    2009-01-01

    The graft copolymerization of styrene onto poly(vinyl alcohol) is studied by using a novel redox system of potassium diperiodatocuprate-poly(vinyl alcohol) (Cu(III)poly(vinyl alcohol) in alkaline medium. Cu(III)-poly(vinyl alcohol) redox pair is an efficient initiator for this graft copolymerization which is proved by high graft efficiency (>97%) and high percentage of graft (>300%). Reaction conditions (monomer-to-poly(vinyl alcohol) weight ratio, initiator concentration, p H, time and temperature) affect the graft parameters which have been investigated systematically. The optimum reaction conditions are found as St/poly(vinyl alcohol) = 5.4; [Cu(III)] = 1*10 -2 M; p H = 12.7; temperature = 50 d eg C ; time = 3.5 h. Further, the equation of the overall polymerization rate can be written as follows: R p = k C 1.9 (St) C 1.7 (Cu(III)). The overall activation energy was calculated to be 42.0 kJ/mol based on the experimental data of the relations between R p and C(St); R p and C(Cu(III)); and R p and temperature. A mechanism is proposed to explain the formation of radicals and the initiation. The structure of the graft copolymers is confirmed by Fourier transfer infrared spectroscopy. Some peaks were compared with poly(vinyl alcohol) at 3080.34-3001.79 cm -1 (=C-H stretching in the phenyl ring), 1600.34-1450.95 cm -1 (C=C stretching in the phenyl ring), 755.17 cm -1 and 698.64 cm -1 (=C-H out-off-plane bending in phenyl ring) which are considered to belong to the characteristic absorption bands of phenyl group of polystyrene. Therefore it proves that the graft copolymer is composed of poly(vinyl alcohol) and polystyrene. thermal gravimetric analysis thermo grams of poly(vinyl alcohol) and poly(vinyl alcohol)-graft-polystyrene are investigated as well. As it is shown the initial decomposition temperature of poly(vinyl alcohol)-g-polystyrene(377.3 d eg C ) is much higher than that of poly(vinyl alcohol) (241.8 d eg C ), which indicates that the thermal stability of the

  6. Synthesis and self-assembly behavior of a biodegradable and sustainable soybean oil-based copolymer nanomicelle

    Science.gov (United States)

    Bao, Lixia; Bian, Longchun; Zhao, Mimi; Lei, Jingxin; Wang, Jiliang

    2014-08-01

    Herein, we report a novel amphiphilic biodegradable and sustainable soybean oil-based copolymer (SBC) prepared by grafting hydrophilic and biocompatible hydroxyethyl acrylate (HEA) polymeric segments onto the natural hydrophobic soybean oil chains. FTIR, H1-NMR, and GPC measurements have been used to investigate the molecular structure of the obtained SBC macromolecules. Self-assembly behaviors of the prepared SBC in aqueous solution have also been extensively evaluated by fluorescence spectroscopy and transmission electron microscopy. The prepared SBC nanocarrier with the size range of 40 to 80 nm has a potential application in the biomedical field.

  7. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    Science.gov (United States)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  8. Dyed grafted films for large-dose radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Rehim, F; El-Sawy, N M; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1993-07-01

    By radiation-induced polymerization of acrylic acid onto poly(ethylene-tetrafluoroethylene) (ET) copolymer film and reacting the resulted grafted film with both Rhodamine B (RB) and Malachite Green (MG), new dosimeter films have been developed for high-dose gamma radiation applications in the range of absorbed doses from 10 to 180 kGy. The radiation-induced color bleaching has been analysed with visible spectrophotometry, either at the maximum of the absorption band peaking at 559 nm (for ETRB) or that peaking at 627 nm (for ETMG). The effects of different conditions of absorbed dose rate, temperature and relative humidity during irradiation and post-irradiation storage on dosimeter performance are discussed. (author).

  9. Poly(NIPAM-co-MPS-grafted multimodal porous silica nanoparticles as reverse thermoresponsive drug delivery system

    Directory of Open Access Journals (Sweden)

    Sushilkumar A. Jadhav

    2017-05-01

    Full Text Available Hybrid drug delivery systems (DDS have been prepared by grafting poly(NIPAM-co-MPS chains on multimodal porous silica nanoparticles having an inner mesoporous structure and an outer thin layer of micropores. The hybrid thermoresponsive DDS were fully characterized and loaded with a model drug. The in vitro drug release tests are carried out at below and above the lower critical solution temperature (LCST of the copolymer. The results have revealed that due to the presence of small diameter (~1.3 nm micropores at the periphery of the particles, the collapsed globules of the thermoresponsive copolymer above its LCST hinders the complete release of the drug which resulted in a reverse thermoresponsive drug release profile by the hybrid DDS.

  10. Immobilization of glucose oxidase on sepharose by UV-initiated graft copolymerization

    International Nuclear Information System (INIS)

    D'Angiuro, L.; Cremonesi, P.

    1982-01-01

    The performance of a new method of enzyme immobilization based on photochemically initiated direct graft copolymerization was recently investigated. The immobilization reaction can be carried out in a simple way and by carefully selecting the reaction conditions, the enzyme-graft copolymer can be obtained as the main reaction product. Coupling efficiency of glucose oxidase has been found to depend only on the amount of photocatalyst (FeCl 3 ) fixed on Sepharose used as polysaccharide support. Small quantities of glycidylmethacrylate (GMA) (0.25 g/g dry Sepharose) are sufficient but necessary to achieve the best enzyme coupling efficiency (20-40%). Enzyme immobilization occurs very rapidly and the entire reaction occurs within 60 min. Reaction patterns and physicochemical characteristics of the obtained enzyme-graft copolymers exclude the glucose oxidase entrapment: therefore a covalent attachment mechanism may be proposed. The kinetic parameters of immobilized glucose oxidase (K/sub m/' = 2.0 x 10 -2 M) are quite similar to those of free enzyme (K/sub m/ = 1.93 x 10 -2 M), and no diffusion limitation phenomena are evidenced in samples having different enzyme or polymer content. Lyophilization, thermostability, and long-term continuous operation also have been investigated. The advantages of this method over that using vinylenzyme copolymerization are discussed

  11. Effect of Compatibilization on Poly-ε-Caprolactone Grafting onto Poly(ethylene-co-vinyl alcohol

    Directory of Open Access Journals (Sweden)

    Mohamed Taha

    2011-10-01

    Full Text Available The non-miscibility of the reactants during solvent free poly-ε-caprolactone grafting onto poly(ethylene-co-vinyl alcohol (EVOH dramatically affects reaction kinetics. Different solutions were proposed to accelerate the exchange reactions between poly(ethylene-co-vinyl alcohol and poly-ε-caprolactone. Reactions were conducted in a batch reactor or a mini twin-screw extruder. The addition of a poly(ethylene-co-vinyl alcohol-g-poly-ε-caprolactone copolymer increased the compatibility of the reactants and led to a higher reaction rate. This copolymer was either prepared separately and added at the reaction beginning or prepared in situ grafting caprolactone from EVOH. The reactive system evolution was analyzed using molar mass evolution, microstructure characterization, thermal properties and the reactive blend morphology. The compatibilization effect combined with optimized reaction conditions, such as concentration and nature of catalyst and temperature, resulted in an important increase in reaction rates. Among the tested catalysts, 1,5,7-Triazabicyclo [4.4.0]dec-5-ene was a more efficient catalyst for grafting reactions than Tin (II 2-ethylhexanoate.

  12. Graft copolymerization of N-vinyl-2-pyrrolidone onto pre-irradiated poly(vinylidene fluoride) powder

    International Nuclear Information System (INIS)

    Xu Chenqi; Huang Wei; Zhou Yongfeng; Yan Deyue; Chen Shutao; Huang Hua

    2012-01-01

    Graft copolymerization of N-vinyl-2-pyrrolidone (NVP) onto 60 Co γ-ray pre-irradiated poly (vinylidene fluoride) (PVDF) powder was investigated to find out the relationship between the degree of grafting (DG) and various factors, including monomer concentration, irradiation dose, reaction time, catalyst and so on. The DG can be calculated by comparing the amount of nitrogen element in the resulting copolymer (PVDF-g-PVP) powder with that in PVP on the basis of element analysis. The presence of PVP in the resulting PVDF powder was confirmed by the comparative studies of pristine PVDF and grafted PVDF powder through Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), thermo gravimetric analyzer (TGA) and differential scanning calorimetry (DSC), respectively. When the reaction was performed at the monomer concentration of 20% (vol.) and the absorbed dose of 40 kGy for 3 h in water, the max. DG of 17.7% was obtained. - Highlights: ► We modify pristine PVDF powders with NVP by the pre-irradiated graft polymerization. ► The various factors influencing the degree of grafting are investigated in detail. ► The optimal condition of graft polymerization is obtained. ► The polymerization is processed at 20% (vol.) of NVP and 40kGy for 3 hours in water. ► The maximum degree of grafting is 17.7 % at such a condition.

  13. Vascular graft infections with Mycoplasma

    DEFF Research Database (Denmark)

    Levi-Mazloum, Niels Donald; Skov Jensen, J; Prag, J

    1995-01-01

    laboratory techniques, the percentage of culture-negative yet grossly infected vascular grafts seems to be increasing and is not adequately explained by the prior use of antibiotics. We have recently reported the first case of aortic graft infection with Mycoplasma. We therefore suggest the hypothesis...... that the large number of culture-negative yet grossly infected vascular grafts may be due to Mycoplasma infection not detected with conventional laboratory technique....

  14. Shear instability of a gyroid diblock copolymer

    DEFF Research Database (Denmark)

    Eskimergen, Rüya; Mortensen, Kell; Vigild, Martin Etchells

    2005-01-01

    -induced destabilization is discussed in relation to analogous observations on shear-induced order-to-order and disorder-to-order transitions observed in related block copolymer systems and in microemulsions. It is discussed whether these phenomena originate in shear-reduced fluctuations or shear-induced dislocations....

  15. CONJUGATED BLOCK-COPOLYMERS FOR ELECTROLUMINESCENT DIODES

    NARCIS (Netherlands)

    Hilberer, A; Gill, R.E; Herrema, J.K; Malliaras, G.G; Wildeman, J.; Hadziioannou, G

    In this article we review results obtained in our laboratory on the design and study of new light-emitting polymers. We are interested in the synthesis and characterisation of block copolymers with regularly alternating conjugated and non conjugated sequences. The blocks giving rise to luminescence

  16. Substrate tolerant direct block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars

    2016-01-01

    Block copolymer (BC) self-assembly constitutes a powerful platform for nanolithography. However, there is a need for a general approach to BC lithography that critically considers all the steps from substrate preparation to the final pattern transfer. We present a procedure that significantly sim...... plasma treatment enables formation of the oxidized PDMS hard mask, PS block removal and polymer or graphene substrate patterning....

  17. Micellization and Characterization of Block Copolymer Detergents

    DEFF Research Database (Denmark)

    Hvidt, Søren

    and different models have been proposed. Results obtained by a range of liquid chromatographic methods will be shown and it will be demonstrated that commercial EPE copolymers are inhomogeneous at several levels and many of their unusual properties reflect the presence of impurities....

  18. Cyclic olefin copolymer-silica nanocomposites foams

    Czech Academy of Sciences Publication Activity Database

    Pegoretti, A.; Dorigato, A.; Biani, A.; Šlouf, Miroslav

    2016-01-01

    Roč. 51, č. 8 (2016), s. 3907-3916 ISSN 0022-2461 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : cyclic olefin copolymer * nanocomposites * silica Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.599, year: 2016

  19. Environmental application of radiation grafting

    International Nuclear Information System (INIS)

    Tamada, Masao

    2007-01-01

    Adsorbent having high selectivity against a certain metal ion was synthesized by means of radiation-induced graft polymerization for the purpose of environmental application. The resulting adsorbents were utilized for the removal of toxic metal from scallop waste and the collection of uranium from seawater. As a novel application of grafting, the biodegradability of poly-hydroxybutylate was controlled by grafting. The biodegradability could be depressed by the graft chain and then recovered by external stimuli such as thermal and chemical treatments. (author)

  20. Swelling, ion uptake and biodegradation studies of PE film modified through radiation induced graft copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Inderjeet, E-mail: ij_kaur@hotmail.com [Department Chemistry, HPU Shimla 171005 (India); Gupta, Nitika; Kumari, Vandna [Department Chemistry, HPU Shimla 171005 (India)

    2011-09-15

    An attempt to develop biodegradable polyethylene film grafting of mixture of hydrophilic monomers methacrylic acid (MAAc) and acrylamide (AAm) onto PE film has been carried out by preirradiation method using benzoyl peroxide as the radical initiator. Since ether linkages are susceptible to easy cleavage during degradation process, PE film was irradiated before the grafting reactions by {gamma}-rays to introduce peroxidic linkages (PE-OO-PE) that offer sites for grafting. The effect of irradiation dose, monomer concentration, initiator concentration, temperature, time and amount of water on the grafting percent was determined. Maximum percentage of grafting of binary mixture (MAAc+AAm), (1792%) was obtained at a total concentration of binary monomer mixture=204.6x10{sup -2} mol/L ([MAAc]=176.5x10{sup -2} mol/L, [AAm]=28.1x10{sup -2} mol/L), [BPO]=8.3x10{sup -2} mol/L at 100 deg. C in 70 min. The grafted PE film was characterized by the Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopic (SEM) methods. Some selective properties of grafted films such as swelling studies, ion uptake and biodegradation studies have been investigated. The grafted films show good swelling in water, ion uptake studies shows promising results for desalination of brackish water and the soil burial test shows that PE film grafted with binary monomer mixture degrades up to 47% within 50 days. - Highlights: > Binary mixture of methacrylic acid (MAAc) and acrylamide (AAm) onto PE film by preirradiation method was carried out. > Graft copolymers of MAAc+AAm and PE film were characterized by FTIR, TGA and SEM studies and was found to be thermally stable. > Grafting of MAAc+AAm improved swelling behavior giving maximum swelling (485.71%) in water as against PE with 0% swelling. > The grafted PE-g-poly (MAAc-co-AAm) behaves as an excellent material for ion separation. > Biodegradation studies by soil burial test showed 47.19% of

  1. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    OpenAIRE

    Yunqi Li; Bishnu Prasad Bastakoti; Yusuke Yamauchi

    2016-01-01

    This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially p...

  2. Preparation of metal ion exchange resin by radiation-induced graft copolymerization

    International Nuclear Information System (INIS)

    Nakase, Yoshiaki; Akasaka, Nobuhiro.

    1982-06-01

    Radiation-induced graft copolymerization of 2-acrylamide-2-methyl propane sulfonic acid (AMPS) onto polyvinylchloride (PVC) and polyvinylidene chloride resin (PVD) was investigated in the water-acetone system and their adsorptive activities to metal ion were also examined. In the case of PVC, the degree of grafting increased with the increase of acetone content, but the adsorptive activity to metal ions (mainly lithic ion) became maximum in the system with water/acetone of 2/3. Grafted PVC prepared at about 35 0 C and at a higher concentration of AMPS showed higher adsorption activity than the other cases. In the case of PVD, a similar result was obtained with the case of PVC except the temperature dependence and effect of swelling agent. Polymerizations at temperatures of 35 and 50 0 C showed no effect on the degree of grafting, and the usage of a swelling agent was quite effective to the adsorptive activity. Glass transition temperature of the grafted copolymer was the same as that of original polymer, and their thermal stability was confirmed up to the temperature at which homopolymer of AMPS decomposed, about 180 0 C. (author)

  3. Grafting the alar rim: application as anatomical graft.

    Science.gov (United States)

    Gruber, Ronald P; Fox, Paige; Peled, Anne; Belek, Kyle A

    2014-12-01

    Alar rim contour and alar rim grafts have become essential components of rhinoplasty. Ideally, grafts of the nose should be anatomical in shape. So doing might make grafts of the alar rim more robust. The authors considered doing that by applying the graft as a continuous extension of the lateral crus. Twelve patients (two men and 10 women) constituted the study group (seven primary and five secondary cases). Of those, there were five concave rims, two concave rims with rim retraction, two boxy tips, and three cephalically oriented lateral crura. Surgical technique included the following: (1) an open approach was used; (2) a marginal incision that ignored the caudal margin of the lateral crus (the incision went straight posteriorly to a point 5 to 6 mm from the rim margin) was used; (3) a triangular graft was made to cover the exposed vestibular skin; (4) it was secured end to end to the caudal border of the lateral crus; and (5) the poster end was allowed to sit in a small subcutaneous pocket. Follow-up was 11 to 19 months. All 12 patients exhibited good rims as judged by a blinded panel. Rim retraction was not fully corrected in one patient, but no further treatment was required. One patient did require a secondary small rim graft for residual rim concavity. The concept of grafting the alar rim is strongly supported by the authors' results. The modifications the authors applied by designing the graft to be anatomical in shape has been a technical help.

  4. Grafting of 2 (2-hydroxy-5-vinylphenyl) 2H-benzotriazole onto polymers with aliphatic groups. Synthesis and polymerization of 2 (2-hydroxy-5-isopropenylphenyl) 2H-benzotriazole and a new synthesis of 2 (2-hydroxy-5-vinylphenyl) 2H-benzotriazole

    Science.gov (United States)

    Pradellok, W.; Nir, Z.; Vogl, O.

    1981-01-01

    Successful grafting of 2(2-hydroxy-5-vinylphenyl)2H-benzotriazole onto saturated aliphatic C-H groups of polymers has been accomplished. When the grafting reaction was carried out in chlorobenzene at 150 C = 160 C with di-tertiarybutylperoxide as the grafting initiator, grafts as high as 20 percent - 30 percent at a grafting efficiency of 50 percent and 80 percent have readily been obtained. The grafting reaction was carried out in tubes sealed under high vacuum since trace amounts of oxygen cause complete inhibition of the grafting reaction by the phenolic monomer. On a variety of different polymers including atactic polypropylene, ethylene/vinyl acetate copolymer, poly(methyl methacrylate), poly(butyl acrylate), and polycarbonate were used.

  5. Suction blister grafting - Modifications for easy harvesting and grafting

    Directory of Open Access Journals (Sweden)

    2012-01-01

    Full Text Available Suction blister grafting is a simple modality of treatment of patients with resistant and stable vitiligo. But raising the blisters may be time consuming and transferring to the recipient site may be difficult as the graft is ultrathin. By doing some modifications we can make the technique simpler and easier. We can decrease the blister induction time by intradermal injection of saline, exposure to Wood′s lamp, intrablister injection of saline. By these methods we can decrease the blister induction time from 2-3 hrs to 45-90 minutes. After harvesting the graft, it can be transferred to the recipient area by taking the graft on a sterile glass slide, on the gloved finger, rolling the graft over a sterile syringe and then spreading on the recipient area, or taking on the sterile wrapper of paraffin dressing and then placing over the recipient area.

  6. Sorption of europium (3) by polymer sorbents with grafted heterocyclic nitrogen-containing groupings

    International Nuclear Information System (INIS)

    Bel'tyukova, S.V.; Kravchenko, T.B.; Balamtsarashvili, G.M.; Roska, A.S.

    1990-01-01

    On polymer sorbents (copolymer of styrene-divinylbenzene) with grafted heterocyclic nitrogen-containing functional groupings of tetrazole, triazole and imidazole (sorbents 1,2,3, respectively). It is stated that europium sorption takes place from neutral solutions in presence of organic solvents. Luminescent properties of europium on sorbent are used to develope methods of its determination in high purity lanthanide and yttrium oxides. Europium determination limits consist 7.5·10 -5 μg/ml on 1 and 3 sorbents and 1.5·10 -4 μg/ml on sorbent 2, S p value is 0.089 and 0.075, respectivaly

  7. SOME TECHNIQUES IN CORNEAL GRAFTING

    African Journals Online (AJOL)

    1971-04-10

    Apr 10, 1971 ... current herpes corneae. The visual acuity was less than. 6/60. The left eye had had a central nebula since child- hood and was deemed amblyopic. Six weeks after a 7 x 0·3 mm lamellar graft in the right eye was placed, ulceration occurred in the graft junction. A total thin conjunctival flap was sutured over.

  8. Phase behavior of model ABC triblock copolymers

    Science.gov (United States)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that

  9. Modification of phase transitions in swift heavy ion irradiated and MMA-grafted ferroelectric fluoro-polymers

    International Nuclear Information System (INIS)

    Petersohn, E.; Betz, N.; Le Moel, A.

    1994-01-01

    Ferroelectric polyvinylidene fluoride (β) and copolymers of vinylidene fluoride trifluoroethylene (P(VDF/TrFE)) films were irradiated with swift heavy ions and post irradiation grafted with methyl methacrylate (MMA). We have studied the influence of irradiation parameters such as the ion fluence, the type of ion and the electronic stopping power, on the melting and crystallization temperatures and the ferroelectric-paraelectric phase transitions, by differential scanning calorimetry (DSC) and dielectric measurements. The relation between the shift in the transition temperatures and the ion fluence is described by a single term equation. Ion track grafting with MMA affects the ferroelectric-paraelectric phase transitions in P(VDF/TrFE) and leads to a strong amorphization of the polymer films. The grafting in β PVDF occurs mainly on the surface of the samples and no change in the transition temperatures is observed. (authors). 12 refs., 6 figs., 2 tabs

  10. Water-compatible 'aspartame'-imprinted polymer grafted on silica surface for selective recognition in aqueous solution.

    Science.gov (United States)

    Singh, Meenakshi; Kumar, Abhishek; Tarannum, Nazia

    2013-05-01

    Molecularly imprinted polymers selective for aspartame have been prepared using N-[2-ammonium-ethyl-piperazinium) maleimidopropane sulfonate copolymer bearing zwitterionic centres along the backbone via a surface-confined grafting procedure. Aspartame, a dipeptide, is commonly used as an artificial sweetener. Polymerisation on the surface was propagated by means of Michael addition reaction on amino-grafted silica surface. Electrostatic interactions along with complementary H-bonding and other hydrophobic interactions inducing additional synergetic effect between the template (aspartame) and the imprinted surface led to the formation of imprinted sites. The MIP was able to selectively and specifically take up aspartame from aqueous solution and certain pharmaceutical samples quantitatively. Hence, a facile, specific and selective technique using surface-grafted specific molecular contours developed for specific and selective uptake of aspartame in the presence of various interferrants, in different kinds of matrices is presented.

  11. Radiation grafting on natural films

    Science.gov (United States)

    Lacroix, M.; Khan, R.; Senna, M.; Sharmin, N.; Salmieri, S.; Safrany, A.

    2014-01-01

    Different methods of polymer grafting using gamma irradiation are reported in the present study for the preparation of newly functionalized biodegradable films, and some important properties related to their mechanical and barrier properties are described. Biodegradable films composed of zein and poly(vinyl alcohol) (PVA) were gamma-irradiated in presence of different ratios of acrylic acid (AAc) monomer for compatibilization purpose. Resulting grafted films (zein/PVA-g-AAc) had their puncture strength (PS=37-40 N mm-1) and puncture deformation (PD=6.5-9.8 mm) improved for 30% and 50% PVA in blend, with 5% AAc under 20 kGy. Methylcellulose (MC)-based films were irradiated in the presence of 2-hydroxyethyl methacrylate (HEMA) or silane, in order to determine the effect of monomer grafting on the mechanical properties of films. It was found that grafted films (MC-g-HEMA and MC-g-silane) using 35% monomer performed higher mechanical properties with PS values of 282-296 N mm-1 and PD of 5.0-5.5 mm under 10 kGy. Compatibilized polycaprolactone (PCL)/chitosan composites were developed via grafting silane in chitosan films. Resulting trilayer grafted composite film (PCL/chitosan-g-silane/PCL) presented superior tensile strength (TS=22 MPa) via possible improvement of interfacial adhesion (PCL/chitosan) when using 25% silane under 10 kGy. Finally, MC-based films containing crystalline nanocellulose (CNC) as a filling agent were prepared and irradiated in presence of trimethylolpropane trimethacrylate (TMPTMA) as a grafted plasticizer. Grafted films (MC-g-TMPTMA) presented superior mechanical properties with a TS of 47.9 MPa and a tensile modulus (TM) of 1792 MPa, possibly due to high yield formation of radicals to promote TMPTMA grafting during irradiation. The addition of CNC led to an additional improvement of the barrier properties, with a significant 25% reduction of water vapor permeability (WVP) of grafted films.

  12. Cationic nanoparticles with quaternary ammonium-functionalized PLGA–PEG-based copolymers for potent gene transfection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Hsung [Kaohsiung Medical University, School of Dentistry, College of Dental Medicine (China); Fu, Yin-Chih [Kaohsiung Medical University, Graduate Institute of Medicine, College of Medicine (China); Chiu, Hui-Chi [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Wang, Chau-Zen [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Lo, Shao-Ping [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Ho, Mei-Ling [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Liu, Po-Len [Kaohsiung Medical University, Department of Respiratory Therapy, College of Medicine (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China)

    2013-11-15

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA-phe-PEG-qDETA (PPD), phe-PEG-qDETA-PLGA (PDP), and PLGA-phe-PEG-qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH{sub 2}), phenylalanine (phe), and poly(lactic-co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of ∼217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle.

  13. Renewable Pentablock Copolymers Containing Bulky Natural Rosin for Tough Bioplastics

    Science.gov (United States)

    Rahman, Md Anisur; Ganewatta, Mitra S.; Lokupitiya, Hasala N.; Liang, Yuan; Stefik, Morgan; Tang, Chuanbing

    Renewable polymers have received significant attention due to environmental concerns on petrochemical counterparts. One of the most abundant natural biomass is resin acids. However, most polymers derived from resin acids are low molecular weight and brittle because of the high chain entanglement molecular weight resulted from the bulky hydrophenanthrene pendant group. It is well established that the brittleness can be overcome by synthesizing multi-block copolymers with low entanglement molecular weight components. We investigated the effects of chain architecture and microdomain orientation on mechanical properties of both tri and pentablock copolymers. We synthesized rosin-containing A-B-A-B-A type pentablock and A-B-A type triblock copolymers to improve their mechanical properties. Pentablock copolymers showed higher strength and better toughness as compared to triblock copolymers, both superior to homopolymers. The greater toughness of pentablock copolymers is due to the presence of the rosin based midblock chains that act as bridging chains between two polynorbornene blocks.

  14. Phase Behavior of Binary Blends of AB+AC Block Copolymers with compatible B and C blocks

    Science.gov (United States)

    Pryamitsyn, Victor; Ganesan, Venkat

    2012-02-01

    Recently the experimental studies of phase behavior of binary blends of PS-b-P2VP and PS-b-PHS demonstrated an interesting effect: blends of symmetric PS-b-P2VP and shorter symmetric (PS-b-PHS) formed cylindrical HEX and spherical BCC phases, while each pure component formed lamellas. The miscibility of P2VP and PHS is caused by the hydrogen bonding between P2VP and PHS,which can be described as a negative Flory ?-parameter between P2VP and PHS. We developed a theory of the microphase segregation of AB+AC blends of diblock copolymers based on strong stretching theory. The main result of our theory is that in the copolymer brush-like layer formed by longer B chain and shorter C chains, the attraction between B and shorter C chains causes relative stretching of short C chains and compression of longer B chains. The latter manifests in an excessive bending force towards the grafting surface (BC|AA interface). Such bending force causes a transition from a symmetric lamella phase to a HEX cylinder or BCC spherical phases with the BC phase being a ``matrix'' component. In a blend of asymmetric BCC sphere forming copolymers (where B and C segments are the minor components), such bending force may unfold BCC spherical phase to a HEX cylinder phase, or even highly uneven lamella phases.

  15. Synthesis and Properties of Star HPMA Copolymer Nanocarriers Synthesised by RAFT Polymerisation Designed for Selective Anticancer Drug Delivery and Imaging.

    Science.gov (United States)

    Chytil, Petr; Koziolová, Eva; Janoušková, Olga; Kostka, Libor; Ulbrich, Karel; Etrych, Tomáš

    2015-06-01

    High-molecular-weight star polymer drug nanocarriers intended for the treatment and/or visualisation of solid tumours were synthesised, and their physico-chemical and preliminary in vitro biological properties were determined. The water-soluble star polymer carriers were prepared by the grafting of poly(amido amine) (PAMAM) dendrimers by hetero-telechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, synthesised by the controlled radical Reversible Addition Fragmentation chain Transfer (RAFT) polymerisation. The well-defined star copolymers with Mw values ranging from 2 · 10(5) to 6 · 10(5) showing a low dispersity (approximately 1.2) were prepared in a high yield. A model anticancer drug, doxorubicin, was bound to the star polymer through a hydrazone bond, enabling the pH-controlled drug release in the target tumour tissue. The activated polymer arm ends of the star copolymer carrier enable a one-point attachment for the targeting ligands and/or a labelling moiety. In this study, the model TAMRA fluorescent dye was used to prove the feasibility of the polymer carrier visualisation by optical imaging in vitro. The tailor-made structure of the star polymer carriers should facilitate the synthesis of targeted polymer-drug conjugates, even polymer theranostics, for simultaneous tumour drug delivery and imaging. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Anti-Biofouling Properties of Comblike Block Copolymers with Amphiphilic Side Chains

    International Nuclear Information System (INIS)

    Krishnan, S.; Ayothi, R.; Hexemer, A.; Finlay, J.; Sohn, K.; Perry, R.; Ober, C.; Kramer, E.; Callow, M.

    2006-01-01

    Surfaces of novel block copolymers with amphiphilic side chains were studied for their ability to influence the adhesion of marine organisms. The surface-active polymer, obtained by grafting fluorinated molecules with hydrophobic and hydrophilic blocks to a block copolymer precursor, showed interesting bioadhesion properties. Two different algal species, one of which adhered strongly to hydrophobic surfaces, and the other, to hydrophilic surfaces, showed notably weak adhesion to the amphiphilic surfaces. Both organisms are known to secrete adhesive macromolecules, with apparently different wetting characteristics, to attach to underwater surfaces. The ability of the amphiphilic surface to undergo an environment-dependent transformation in surface chemistry when in contact with the extracellular polymeric substances is a possible reason for its antifouling nature. Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) was used, in a new approach based on angle-resolved X-ray photoelectron spectroscopy (XPS), to determine the variation in chemical composition within the top few nanometers of the surface and also to study the surface segregation of the amphiphilic block. A mathematical model to extract depth-profile information from the normalized NEXAFS partial electron yield is developed

  17. Nanoparticle Encapsulation in Diblock Copolymer/Homopolymer Blend Thin Film Mixtures

    Science.gov (United States)

    Zhao, Junnan; Chen, Xi; Green, Peter

    2014-03-01

    We investigated the organization of low concentrations of poly (2-vinylpyridine) (P2VP) grafted gold nanoparticles within a diblock copolymer polystyrene-b-poly (2-vinylpyridine) (PS-b-P2VP)/homopolymer polystyrene (PS) blend thin film. The PS-b-P2VP copolymers formed micelles, composed of inner cores of P2VP block and outer coronae of PS blocks, throughout the homopolymer PS. All nanoparticles were encapsulated within micelle cores and each micelle contained one or no nanoparticle, on average. When the host PS chains are much longer than corona chains, micelles tended to self-organize at the interfaces. Otherwise, they were dispersed throughout the PS host. In comparison to the neat PS-b-P2VP/PS blend, the nanoparticles/PS-b-P2VP/PS system had a higher density of smaller micelles, influenced largely by the number of nanoparticles in the system. The behavior of this system is understood in terms of the maximization of the nanoparticle/micelle core interactions and of the translational entropies of the micelles and the nanoparticles.

  18. Flexible control of cellular encapsulation, permeability, and release in a droplet-templated bifunctional copolymer scaffold.

    Science.gov (United States)

    Chen, Qiushui; Chen, Dong; Wu, Jing; Lin, Jin-Ming

    2016-11-01

    Designing cell-compatible, bio-degradable, and stimuli-responsive hydrogels is very important for biomedical applications in cellular delivery and micro-scale tissue engineering. Here, we report achieving flexible control of cellular microencapsulation, permeability, and release by rationally designing a diblock copolymer, alginate-conjugated poly(N-isopropylacrylamide) (Alg-co-PNiPAM). We use the microfluidic technique to fabricate the bifunctional copolymers into thousands of mono-disperse droplet-templated hydrogel microparticles for controlled encapsulation and triggered release of mammalian cells. In particular, the grafting PNiPAM groups in the synthetic cell-laden microgels produce lots of nano-aggregates into hydrogel networks at elevated temperature, thereafter enhancing the permeability of microparticle scaffolds. Importantly, the hydrogel scaffolds are readily fabricated via on-chip quick gelation by triggered release of Ca 2+ from the Ca-EDTA complex; it is also quite exciting that very mild release of microencapsulated cells is achieved via controlled degradation of hydrogel scaffolds through a simple strategy of competitive affinity of Ca 2+ from the Ca-Alginate complex. This finding suggests that we are able to control cellular encapsulation and release through ion-induced gelation and degradation of the hydrogel scaffolds. Subsequently, we demonstrate a high viability of microencapsulated cells in the microgel scaffolds.

  19. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner

    Science.gov (United States)

    Barsbay, Murat; Güven, Olgun

    2009-12-01

    Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly γ radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of γ radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of γ radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.

  20. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner

    International Nuclear Information System (INIS)

    Barsbay, Murat; Gueven, Olgun

    2009-01-01

    Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly γ radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of γ radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of γ radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.

  1. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner

    Energy Technology Data Exchange (ETDEWEB)

    Barsbay, Murat [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey)], E-mail: mbarsbay@hacettepe.edu.tr; Gueven, Olgun [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey)], E-mail: guven@hacettepe.edu.tr

    2009-12-15

    Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly {gamma} radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of {gamma} radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of {gamma} radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.

  2. Grafting of allylimidazole and n-vinylcaprolactam as a thermosensitive polymer onto magnetic nano-particles for the extraction and determination of celecoxib in biological samples.

    Science.gov (United States)

    Morovati, Atefeh; Ahmad Panahi, Homayon; Yazdani, Farzaneh

    2016-11-20

    In this research, a novel method is reported for the surface grafting of n-vinylcaprolactam as a thermosensitive agent and allylimidazole with affinity toward celecoxib onto magnetic nano-particles. The grafted nano-particles were characterized by Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetric analysis. The surface morphology was studied using Scanning Electron Microscopy. The resulting grafted nano-particles were used for the determination of trace celecoxib in biological human fluids and pharmaceutical samples. The profile of celecoxib uptake by the modified magnetic nano-particles indicated good accessibility of the active sites in the grafted copolymer. It was found that the adsorption behavior could be fitted by the Langmuir adsorption isotherm model. Solid phase extraction for biological fluids such as urine and serum were investigated. In this study, urine extraction recovery of more than 95% was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Jin, E-mail: jinxxwang@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-11-15

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  4. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    International Nuclear Information System (INIS)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-01-01

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  5. Comparative study of the monomer grafting: ethylene, acetylene, 1,3-butadiene and estyrene in the matrix of recycled polytetrafluoroethylene (PTFE); Estudo comparativo da enxertia dos monomeros: etileno, acetileno, 1,3-butadieno e estireno na matriz de politetrafluoroetileno (PTFE) reciclado

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, Carolina T.; Rosner, Gerhardyne O.; Oliveira, Ana C.F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente (CQMA); Faculdades Oswaldo Cruz, Sao Paulo, SP (Brazil); Ferreto, Helio F.R.; Lima, Luiz F.C.P.; Lugao, Ademar B., E-mail: hferreto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente (CQMA); Moreira, Otavio M. [Faculdades Oswaldo Cruz, Sao Paulo, SP (Brazil)

    2009-07-01

    In this study it is used the recycled polytetrafluoroethylene (PTFE), that with the gamma radiation under inert atmosphere or in presence of air, it is obtained free radicals and a posterior the monomer grafting (ethylene, acetylene, styrene or 1.3 butadiene), obtaining the copolymer polytetrafluoroethylene-g-monomer. It is studied the obtention of the polymer by two methods: by direct way, via grafting, where the polymer is irradiated in presence of monomer, and via grafting when the polymer is irradiated in absence of monomer and under inert or air. The characterization of the copolymer was performed by the techniques of infrared region absorption spectroscopy with Fourier transformation (FTIR), thermogravimetric (TGA) and derivative thermogravimetry (DTG), and percentage of mass grafting (DOG)

  6. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    OpenAIRE

    Hoarfrost, Megan Lane

    2012-01-01

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the additio...

  7. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  8. Rapid ordering of block copolymer thin films

    International Nuclear Information System (INIS)

    Majewski, Pawel W; Yager, Kevin G

    2016-01-01

    Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times—hours or days—required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. We also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems. (topical review)

  9. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  10. A Cationic Smart Copolymer for DNA Binding

    Directory of Open Access Journals (Sweden)

    Tânia Ribeiro

    2017-11-01

    Full Text Available A new block copolymer with a temperature-responsive block and a cationic block was prepared by reversible addition-fragmentation chain transfer (RAFT polymerization, with good control of its size and composition. The first block is composed by di(ethylene glycol methyl ether methacrylate (DEGMA and oligo(ethylene glycol methyl ether methacrylate (OEGMA, with the ratio DEGMA/OEGMA being used to choose the volume phase transition temperature of the polymer in water, tunable from ca. 25 to above 90 °C. The second block, of trimethyl-2-methacroyloxyethylammonium chloride (TMEC, is positively charged at physiological pH values and is used for DNA binding. The coacervate complexes between the block copolymer and a model single strand DNA are characterized by fluorescence correlation spectroscopy and fluorescence spectroscopy. The new materials offer good prospects for biomedical application, for example in controlled gene delivery.

  11. Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid.

    Science.gov (United States)

    Witono, J R; Noordergraaf, I W; Heeres, H J; Janssen, L P B M

    2014-03-15

    An important application of starch grafted with copolymers from unsaturated organic acids is the use as water absorbent. Although much research has been published in recent years, the kinetics of water absorption and the swelling behavior of starch based superabsorbents are relatively unexplored. Also, water retention under mechanical strain is usually not reported. Cassava starch was used since it has considerable economic potential in Asia. The gelatinized starch was grafted with acrylic acid and Fenton's initiator and crosslinked with N,N'-methylenebisacrylamide (MBAM). Besides a good initial absorption capacity, the product could retain up to 63 g H2O/g under severe suction. The material thus combines a good absorption capacity with sufficient gel strength. The mathematical analysis of the absorption kinetics shows that at conditions of practical interest, the rate of water penetration into the gel is determined by polymer chain relaxations and not by osmotic driven diffusion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Terpolymerization of 2-ethoxy ethylmethacrylate, styrene and maleic ...

    Indian Academy of Sciences (India)

    Unknown

    MMa, MSt and M2-EOEMA are molecular weights of Ma, St and 2-EOEMA monomer units, respectively. The compo- sition of terpolymers obtained by FTIR analysis is pre- sented in figure 1 and table 1. The donor–acceptor interaction between St and Ma results in equimolar (1 : 1) charge transfer complex (CTC) system and ...

  13. SANS study of coated block copolymer micelles

    Czech Academy of Sciences Publication Activity Database

    Pleštil, Josef; Kříž, Jaroslav; Koňák, Čestmír; Pospíšil, Herman; Kadlec, Petr; Sedláková, Zdeňka; Grillo, I.; Cubitt, R.

    2005-01-01

    Roč. 206, č. 12 (2005), s. 1206-1215 ISSN 1022-1352 R&D Projects: GA ČR GA203/03/0600; GA AV ČR IAA1050201; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z40500505 Keywords : block copolymer micelles * core-shell polymers * nanoparticles Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.111, year: 2005

  14. Increased radiation degradation in methyl methacrylate copolymers

    International Nuclear Information System (INIS)

    Helbert, J.N; Wagner, G.E.; Caplan, P.J.; Poindexter, E.H.

    1975-01-01

    The effect of polar substituents at the quaternary carbon on degradation processes in several polymers and 10 to 20 percent copolymers of methyl methacrylate was explored. EPR was used to monitor radiation degradation products and to determine radiation G values. Irradiations were carried out at 77 0 K in a gamma irradiator at a dose rate of 0.3 Mrad/hr. (U.S.)

  15. Graft intolerance syndrome requiring graft nephrectomy after late kidney graft failure: can it be predicted? A retrospective cohort study.

    Science.gov (United States)

    Bunthof, Kim L W; Verhoeks, Carmen M; van den Brand, Jan A J G; Hilbrands, Luuk B

    2018-02-01

    Graft nephrectomy is recommended in case of early graft failure. When the graft fails more than 3-6 months after transplantation, it is current practice to follow a wait-and-see policy. A common indication for graft removal is the graft intolerance syndrome. We aimed to create a risk prediction model for the occurrence of graft intolerance resulting in graft nephrectomy. We collected data of kidney transplantations performed in our center between 1980 and 2010 that failed at least 6 months after transplantation. We evaluated the association between baseline characteristics and the occurrence of graft nephrectomy because of graft intolerance using a competing risk regression model. Prognostic factors were included in a multivariate prediction model. In- and exclusion criteria were met in 288 cases. In 48 patients, the graft was removed because of graft intolerance. Donor age, the number of rejections, and shorter graft survival were predictive factors for graft nephrectomy because of the graft intolerance syndrome. These factors were included in a prediction rule. Using donor age, graft survival, and the number of rejections, clinicians can predict the need for graft nephrectomy with a reasonable accuracy. © 2017 Steunstichting ESOT.

  16. Grafting of the 6.6 nylon with N,N-dimethylacrylamide by using ionizing radiation in the vacuum and in presence of air

    International Nuclear Information System (INIS)

    Canavel, Valdir; Kawano, Yoshio

    1997-01-01

    The present work has as objectives the obtention and characterization of graft copolymer by irradiation. The polymer used was Nylon 6.6, the monomer was N, N-dimethylacrylamide and the solvent was the formic acid. The solutions were irradiated in 60 Co source in interval dose of 0-20 kGy at two different dose rates (o,20 and 1,02 kGy/h). The results showed that the values of grafting percentage increase or decrease depending of the type of reaction: crosslinking or chain scission. The T m values decreased with the increasing of the dose in both dose rate. (author)

  17. An Investigation of Proton Conductivity of Vinyltriazole-Grafted PVDF Proton Exchange Membranes Prepared via Photoinduced Grafting

    Directory of Open Access Journals (Sweden)

    Sinan Sezgin

    2014-01-01

    Full Text Available Proton exchange membrane fuel cells (PEMFCs are considered to be a promising technology for clean and efficient power generation in the twenty-first century. In this study, high performance of poly(vinylidene fluoride (PVDF and proton conductivity of poly(1-vinyl-1,2,4-triazole (PVTri were combined in a graft copolymer, PVDF-g-PVTri, by the polymerization of 1-vinyl-1,2,4-triazole on a PVDF based matrix under UV light in one step. The polymers were doped with triflic acid (TA at different stoichiometric ratios with respect to triazole units and the anhydrous polymer electrolyte membranes were prepared. All samples were characterized by FTIR and 1H-NMR spectroscopies. Their thermal properties were examined by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. TGA demonstrated that the PVDF-g-PVTri and PVDF-g-PVTri-(TAx membranes were thermally stable up to 390°C and 330°C, respectively. NMR and energy dispersive X-ray spectroscopy (EDS results demonstrated that PVDF-g-PVTri was successfully synthesized with a degree of grafting of 21%. PVDF-g-PVTri-(TA3 showed a maximum proton conductivity of 6×10-3 Scm−1 at 150°C and anhydrous conditions. CV study illustrated that electrochemical stability domain for PVDF-g-PVTri-(TA3 extended over 4.0 V.

  18. Facile preparation of an alternating copolymer-based high molecular shape-selective organic phase for reversed-phase liquid chromatography.

    Science.gov (United States)

    Mallik, Abul K; Noguchi, Hiroki; Rahman, Mohammed Mizanur; Takafuji, Makoto; Ihara, Hirotaka

    2018-06-22

    The synthesis of a new alternating copolymer-grafted silica phase is described for the separation of shape-constrained isomers of polycyclic aromatic hydrocarbons (PAHs) and tocopherols in reversed-phase high-performance liquid chromatography (RP-HPLC). Telomerization of the monomers (octadecyl acrylate and N-methylmaleimide) was carried out with a silane coupling agent; 3-mercaptopropyltrimethoxysilane (MPS), and the telomer (T) was grafted onto porous silica surface to prepare the alternating copolymer-grafted silica phase (Sil-alt-T). The new hybrid material was characterized by elemental analyses, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and solid-state 13 C and 29 Si cross-polarization magic-angle spinning (CP/MAS) NMR spectroscopy. The results of 13 C CP/MAS NMR demonstrated that the alkyl chains of the grafted polymers in Sil-alt-T remained disordered, amorphous, and mobile represented by gauche conformational form. Separation abilities and molecular-shape selectivities of the prepared organic phase were evaluated by the separation of PAHs isomers and Standard Reference Material 869b, Column Selectivity Test Mixture for Liquid Chromatography, respectively and compared with commercially available octadecylsilylated silica (ODS) and C 30 columns as well as previously reported alternating copolymer-based column. The effectiveness of this phase is also demonstrated by the separation of tocopherol isomers. Oriented functional groups along the polymer main chains and cavity formations are investigated to be the driving force for better separation with multiple-interactions with the solutes. One of the advantages of the Sil-alt-T phase to that of the previously reported phase is the synthesis of the telomer first and then immobilized onto silica surface. In this case, the telomer was characterized easily with simple spectroscopic techniques and the molecular mass and polydispersity index of the telomer were determined by size exclusion

  19. Grafting of Interpenetrating Networks of Two Stimuli-responsive Polymers onto PP

    International Nuclear Information System (INIS)

    Ruiz, J. C.

    2006-01-01

    In this work a new strategy was used to prepare interpenetrating polymer networks (IPNs) of two 'stimuli-responsive' polymers: a thermosensitive poly N-isopropylacrylamide (PNIPAAm) and pH sensitive poly acrylic acid (PAAc), the last grafted onto PP films. IPNs are a combination of two or more polymers in network form, which are mixed together (not chemically but physically), with al least one such polymer polymerized and/or crosslinked in the immediate presence of the other(s). The 'stimuli-responsive' polymers, also called 'smart' polymers, exhibit relatively large and sharp physical or chemical changes in response to small physical or chemical stimuli. These polymers are being used as hydrogels or copolymers for technical applications in chemical and mechanical engineering systems such as mass separation, chemical valves, temperature or pH indicators, biomedical and drug delivery systems. For these applications a rapid response and good mechanical properties are necessary. Formerly when PNIPAAm and PAAc were chemically combined their sensitivity was often altered or eliminated and their copolymer had poor mechanical properties. Attempts to solve this problem by creating IPN's with a reduced gel size or by using a macro-porous structure were successful in preserving sensitivity but failed to produce adequate mechanical properties. The object of this paper is to improve the past results of using a binary graft of PNIPAAm and PAAc onto poly(tetrafluoroethylene) PTFE. Poly acrylic acid was grafted onto polypropylene films (with good mechanical properties) by gamma radiation in air (pre-irradiation method), then these grafts were crosslinked using any of the next two methods: The first one, the grafted film in water and argon atmosphere by gamma radiation; and the second one, in the same conditions, but adding a crosslinking agent N, N'-methylenebisacrylamide (MBAAm). The second network was carried out in situ, in the cross-linked PAAc grafted onto PP films, by

  20. Cartilage grafting in nasal reconstruction.

    Science.gov (United States)

    Immerman, Sara; White, W Matthew; Constantinides, Minas

    2011-02-01

    Nasal reconstruction after resection for cutaneous malignancies poses a unique challenge to facial plastic surgeons. The nose, a unique 3-D structure, not only must remain functional but also be aesthetically pleasing to patients. A complete understanding of all the layers of the nose and knowledge of available cartilage grafting material is necessary. Autogenous material, namely septal, auricular, and costal cartilage, is the most favored material in a free cartilage graft or a composite cartilage graft. All types of material have advantages and disadvantages that should guide the most appropriate selection to maximize the functional and cosmetic outcomes for patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Dilute-solution Structure of Charged Arborescent Graft Polymer

    International Nuclear Information System (INIS)

    Yun, Seok; Briber, R.M.; Kee, R. Andrew; Gauthier, Mario

    2006-01-01

    The solutions of charged G1 arborescent polystyrene-graft-poly(2-vinylpyridine) copolymers in methanol-d4 and D 2 O were investigated over a dilute concentration range φ = 0.005-0.05 (φ: mass fraction) using small-angle neutron scattering (SANS). Upon addition of acid (HCl) arborescent graft polymers became charged and a peak appeared in SANS data. The interparticle distance (d exp ) calculated from a peak position corresponded to the expected value (d uni ) for a uniform particle distribution. This indicates the formation of liquid-like ordering due to long-range Coulombic repulsions. The smaller dielectric constant of methanol-d4 resulted in long-range electrostatic repulsions persisting to lower polymer concentration than in D 2 O. The slow mode scattering was observed by dynamic light scattering measurements for the same polymer solutions, indicating the presence of structural inhomogeneity in the solutions. Both the peak and slow mode disappeared by addition of NaCl or excess HCl into the solutions due to the screening of electrostatic interactions. The G1 polymer grafted with longer P2VP chains (M w ∼ 30,000 versus 5000 g mol) formed a gel on addition of HCl. This result reveals that molecular expansion is more significant for arborescent polymers with longer (M w ∼ 30,000) linear polyelectrolyte branches, resulting in gelation for φ > 0.01. Upon addition of NaCl or excess HCl a gel transformed back to a liquid resulted from the screening of electrostatic interactions.

  2. Inheritance of graft compatibility in Douglas fir.

    Science.gov (United States)

    D.L. Copes

    1973-01-01

    Graft compatibility of genetically related and unrelated rootstock-scion combinations was compared. Scion clones were 75% compatible when grafted on half-related rootstocks but only 56% compatible when grafted on unrelated rootstocks. Most variance associated with graft incompatibility in Douglas-fir appears to be caused by multiple genes.

  3. Graft union formation in Douglas-fir.

    Science.gov (United States)

    D.L. Copes

    1969-01-01

    Greenhouse-grown Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) graft unions were examined between 2 and 84 days after grafting. Room temperature was maintained at 60-70 F throughout the growing season. In most respects grafts of Douglas-fir followed development patterns previously reported for spruce and pine grafts, but specific differences...

  4. Enchansing the Ionic Purity of Hydrophilic Channels by Blending Fully Sulfonated Graft Copolymers with PVDF Homopolymer

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Ching-Ching Yang, Ami; Jankova Atanasova, Katja

    2013-01-01

    The influence of tuning the ionic content of membranes by blending, as opposed to varying the degree of sulfonation, is evaluated. Membranes of fully sulfonated poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly(styrene sulfonic acid) blended with PVDF were prepared and investigated...

  5. GRAFT COPOLYMERS OF LIGNIN AS HYDROPHOBIC AGENTS FOR PLASTIC (WOOD-FILLED) COMPOSITES. (R828565)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Preparation of dual-sensitive graft copolymer hydrogel based on N ...

    Indian Academy of Sciences (India)

    Administrator

    Organic solvent-soluble N-maleoyl-chitosan (NMCS) was synthesized by reaction of ... provement or modification of polymer materials through ... the mixture of hexane and toluene. ... reacted solution was cooled to room temperature and.

  7. High-strain-induced deformation mechanisms in block-graft and multigraft copolymers

    KAUST Repository

    Schlegel, Ralf; Duan, Yongxin; Weidisch, Roland; Hö lzer, Stefan M.; Schneider, Konrad M.; Stamm, Manfred; Uhrig, David W.; Mays, Jimmy Wayne; Heinrich, Gert; Hadjichristidis, Nikolaos

    2011-01-01

    -Hookean region an approach of glassy domains, while at higher elongations the intensity of the primary reflection peak was significantly decreasing. The latter clearly verifies the assumption that the glassy chains are pulled out from the domains and are partly

  8. Fat Grafting for Facial Filling and Regeneration.

    Science.gov (United States)

    Coleman, Sydney R; Katzel, Evan B

    2015-07-01

    Plastic surgeons have come to realize that fat grafting can rejuvenate an aging face by restoring or creating fullness. However, fat grafting does much more than simply add volume. Grafted fat can transform or repair the tissues into which it is placed. Historically, surgeons have hesitated to embrace the rejuvenating potential of fat grafting because of poor graft take, fat necrosis, and inconsistent outcomes. This article describes fat grafting techniques and practices to assist readers in successful harvesting, processing, and placement of fat for optimal graft retention and facial esthetic outcomes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Design of a Sapling Branch Grafting Robot

    Directory of Open Access Journals (Sweden)

    Qun Sun

    2014-01-01

    Full Text Available The automatic sapling grafting methods and grafting robot technologies are not comprehensively studied despite the fact that they are urgently required in practice. For this reason, a sapling grafting robot is developed to implement automatic grafting for saplings. The developed grafting robot includes clipping mechanism, moving mechanism, cutting mechanism, binding mechanism, and Arduino MCU based control system, which is capable of clipping, moving, positioning, cutting, grafting, and binding saplings. Experiments show that the stock cutting efficiency is 98.4%, the scion cutting efficiency is 98.9%, the grafting efficiency is 87.3%, and the binding efficiency is 68.9%.

  10. Preparation of biosensors by immobilization of polyphenol oxidase in conducting copolymers and their use in determination of phenolic compounds in red wine.

    Science.gov (United States)

    Böyükbayram, A Elif; Kiralp, Senem; Toppare, Levent; Yağci, Yusuf

    2006-10-01

    Electrochemically produced graft copolymers of thiophene capped polytetrahydofuran (TPTHF1 and TPTHF2) and pyrrole were achieved by constant potential electrolysis using sodium dodecylsulfate (SDS) as the supporting electrolyte. Characterizations were based on Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Electrical conductivities were measured by the four-probe technique. Novel biosensors for phenolic compounds were constructed by immobilizing polyphenol oxidase (PPO) into conducting copolymers prepared by electropolymerization of pyrrole with thiophene capped polytetrahydrofuran. Kinetic parameters, maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) and optimum conditions regarding temperature and pH were determined for the immobilized enzyme. Operational stability and shelf-life of the enzyme electrodes were investigated. Enzyme electrodes of polyphenol oxidase were used to determine the amount of phenolic compounds in two brands of Turkish red wines and found very useful owing to their high kinetic parameters and wide pH working range.

  11. Hydrophilic/hydrophobic character of grafted cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, E., E-mail: takacs@iki.kfki.h [Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary); Wojnarovits, L. [Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary); Borsa, J. [Budapest University of Technology and Economics (Hungary); Racz, I. [Bay Zoltan Institute for Materials Science and Technology, Budapest (Hungary)

    2010-04-15

    Vinyl monomers with long paraffin chains were grafted onto two kinds of cellulose (cotton and cotton linter) by direct irradiation grafting technique. The effect of dose, monomer structure and concentration, as well as homopolymer suppressor (styrene) concentration on the grafting yield was studied and the optimal grafting conditions were established. Grafting decreased the swelling of the samples in water and increased their polymer compatibility in polypropylene matrix.

  12. Air Pump-Assisted Graft Centration, Graft Edge Unfolding, and Graft Uncreasing in Young Donor Graft Pre-Descemet Endothelial Keratoplasty.

    Science.gov (United States)

    Jacob, Soosan; Narasimhan, Smita; Agarwal, Amar; Agarwal, Athiya; A I, Saijimol

    2017-08-01

    To assess an air pump-assisted technique for graft centration, graft edge unfolding, and graft uncreasing while performing pre-Descemet endothelial keratoplasty (PDEK) using young donor grafts. Continuous pressurized air infusion was used for graft centration, graft edge unfolding, and graft unwrinkling. Ten eyes of 10 patients underwent PDEK with donors aged below 40 years. In all eyes, the donor scrolled into tight scrolls. In all cases, the air pump-assisted technique was effective in positioning and centering the graft accurately and in straightening infolded graft edges and smoothing out graft creases and wrinkles. Endothelial cell loss was 38.6%. Postoperative best-corrected visual acuity at 6 months was 0.66 ± 0.25 in decimal equivalent. Continuous pressurized air infusion acted as a third hand providing a continuous pressure head that supported the graft and prevented graft dislocation as well as anterior chamber collapse during intraocular maneuvering. Adequate maneuvering space was available in all cases, and bleeding, if any, was tamponaded successfully in all cases. Although very young donor grafts may be used for PDEK, they are difficult to center and unroll completely before floating against host stroma. An air pump-assisted technique using continuous pressurized air infusion allows successful final graft positioning even with very young donor corneas. It thus makes surgery easier as several key steps are made easier to handle. It additionally helps in tamponading hemorrhage during peripheral iridectomy, increasing surgical space, preventing fluctuations in the anterior chamber depth, and promoting graft adherence.

  13. FAS grafted superhydrophobic ceramic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Lu Jun [School of Material Science and Engineering, Jingdezhen Ceramic Institute, 333001 Jingdezhen (China); Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, CAS, 1295 DingXi Road, Shanghai 200050 (China); Yu Yun, E-mail: yunyush@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, CAS, 1295 DingXi Road, Shanghai 200050 (China); Zhou Jianer [School of Material Science and Engineering, Jingdezhen Ceramic Institute, 333001 Jingdezhen (China); Song Lixin; Hu Xingfang [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, CAS, 1295 DingXi Road, Shanghai 200050 (China); Larbot, Andre [Institut Europeen des Membranes, UMR 5635-CNRS, ENSCM, UMII, 1919 Route de Mende 34293, Montpellier Cedex 5 (France)

    2009-08-30

    The hydrophobic properties of {gamma}-Al{sub 2}O{sub 3} membrane have been obtained by grafting fluoroalkylsilane (FAS) on the surface of the membrane. The following grafting parameters were studied: the eroding time of the original membrane, the grafting time, the concentration of FAS solution and the multiplicity of grafting. Hydrophobicity of the membranes was characterized by contact angle (CA) measurement. The thermogravimetric analysis (TGA) was used to investigate the weight loss process (25-800 deg. C) of the fluoroalkylsilane grafted on Al{sub 2}O{sub 3} powders under different grafting conditions. The morphologies of the membranes modified under different parameters were examined by field emission scanning electron microscopy (FE-SEM) and the surface roughness (Ra) was measured using white light interferometers. A needle-like structure was observed on the membrane surface after modification, which causes the change of Ra. On the results above, we speculated a model to describe the reaction between FAS and {gamma}-Al{sub 2}O{sub 3} membrane surface as well as the formed surface morphology.

  14. FAS grafted superhydrophobic ceramic membrane

    Science.gov (United States)

    Lu, Jun; Yu, Yun; Zhou, Jianer; Song, Lixin; Hu, Xingfang; Larbot, Andre

    2009-08-01

    The hydrophobic properties of γ-Al 2O 3 membrane have been obtained by grafting fluoroalkylsilane (FAS) on the surface of the membrane. The following grafting parameters were studied: the eroding time of the original membrane, the grafting time, the concentration of FAS solution and the multiplicity of grafting. Hydrophobicity of the membranes was characterized by contact angle (CA) measurement. The thermogravimetric analysis (TGA) was used to investigate the weight loss process (25-800 °C) of the fluoroalkylsilane grafted on Al 2O 3 powders under different grafting conditions. The morphologies of the membranes modified under different parameters were examined by field emission scanning electron microscopy (FE-SEM) and the surface roughness (Ra) was measured using white light interferometers. A needle-like structure was observed on the membrane surface after modification, which causes the change of Ra. On the results above, we speculated a model to describe the reaction between FAS and γ-Al 2O 3 membrane surface as well as the formed surface morphology.

  15. Interventions in Infrainguinal Bypass Grafts

    International Nuclear Information System (INIS)

    Mueller-Huelsbeck, S.; Order, B.-M.; Jahnke, T.

    2006-01-01

    The interventional radiologist plays an important role in the detection and prevention of infrainguinal bypass failure. Early detection and evaluation of flow-limiting lesions effectively preserve graft (venous bypass and polyester or expanded polytetrafluoroethylene bypass) patency by identifying stenoses before occlusion occurs. Delay in treatment of the at-risk graft may result in graft failure and a reduced chance of successful revascularization. For this reason, surveillance protocols form an important part of follow-up after infrainguinal bypass surgery. As well as having an understanding of the application of imaging techniques including ultrasound, MR angiography, CT angiography and digital subtraction angiography, the interventional radiologist should have detailed knowledge of the minimally invasive therapeutic options. Percutaneous transluminal angioplasty (PTA), or alternatively cutting balloon angioplasty, is the interventional treatment of choice in prevention of graft failure and occlusion. Further alternatives include metallic stent placement, fibrinolysis, and mechanical thrombectomy. Primary assisted patency rates following PTA can be up to 65% at 5 years. When the endovascular approach is unsuccessful, these therapeutic options are complemented by surgical procedures including vein patch revision, jump grafting, or placement of a new graft

  16. Surface morphology of PS-PDMS diblock copolymer films

    DEFF Research Database (Denmark)

    Andersen, T.H.; Tougaard, S.; Larsen, N.B.

    2001-01-01

    Spin coated thin films (∼400 Å) of poly(styrene)–poly(dimethylsiloxane) (PS–PDMS) diblock copolymers have been investigated using X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Surface segregation of the poly(dimethylsiloxane) blocks was studied for five diblock copolymers which ra...

  17. Rheological Behavior of Entangled Polystyrene-Polyhedral Oligosilsesquioxane (POSS) Copolymer

    National Research Council Canada - National Science Library

    Wu, Jian; Mather, Patrick T; Haddad, Timothy S; Kim, Gyeong-Man

    2006-01-01

    ...: random copolymers of polystyrene (PS) and styryl-based polyhedral oligosilsesquioxane (POSS), R7(Si8O12)(C6H4CH=CH2), with R = isobutyl (iBu). A series of styrene-styryl POSS random copolymers with 0, 6, 15, 30, 50 wt...

  18. Adsorption of charged diblock copolymers : effect on colloidal stability

    NARCIS (Netherlands)

    Israels, R.

    1994-01-01

    In this thesis we present Scheutjens-Fleer (SF) calculations on the adsorption of diblock copolymers. More specifically, we restrict ourselves to adsorption at uncharged surfaces, while the specific type of block copolymers we consider have one uncharged adsorbing "anchor" block and one

  19. Amphiphilic brushes from metallo-supramolecular block copolymers

    NARCIS (Netherlands)

    Guillet, P.; Fustin, C.A.; Wouters, D.; Höppener, S.; Schubert, U.S.; Gohy, J.M.W.

    2009-01-01

    A novel strategy to control the formation of amphiphilic brushes from metallo-supramol. block copolymers is described. The investigated copolymer consists of a polystyrene block linked to a poly(ethylene oxide) one via a charged bis-terpyridine ruthenium(ii) complex (PS-[Ru]-PEO). The initial

  20. Polyether based segmented copolymers with uniform aramid units

    NARCIS (Netherlands)

    Niesten, M.C.E.J.

    2000-01-01

    Segmented copolymers with short, glassy or crystalline hard segments and long, amorphous soft segments (multi-block copolymers) are thermoplastic elastomers (TPE’s). The hard segments form physical crosslinks for the amorphous (rubbery) soft segments. As a result, this type of materials combines

  1. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  2. Antimicrobial activity of poly(acrylic acid) block copolymers

    International Nuclear Information System (INIS)

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P.; Lackner, Maximilian

    2014-01-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed

  3. Radiation crosslinked block copolymer blends with improved impact resistance

    International Nuclear Information System (INIS)

    Saunders, F.L.; Pelletier, R.R.

    1976-01-01

    Polymer blends having high impact resistance after mechanical working are produced by blending together a non-elastomeric monovinylidene aromatic polymer such as polystyrene with an elastomeric copolymer, such as a block copolymer of styrene and butadiene, in the form of crosslinked, colloidal size particles

  4. Characteristics of immobilized aminoacylase from Aspergillus oryzae on macroporous copolymers.

    Science.gov (United States)

    He, B L; Jiang, P; Qiu, Y B

    1990-01-01

    Aminoacylase from Aspergillus oryzae was adsorbed on functionallized macroporous copolymers where the enzyme showed excellent catalyzing activity and operation stability. Various factors which effect the activity of the immobilized aminoacylase such as temperature, pH and ionic strength were investigated. The continuous operation of the enzyme immobilized on macroporous copolymers was compared with that of the enzyme immobilized on DEAE-Sephadex.

  5. Synthesis and characterization of waterborne polyurethane acrylate copolymers

    International Nuclear Information System (INIS)

    Sultan, Misbah; Bhatti, Haq Nawaz; Zuber, Mohammad; Barikani, Mehdi

    2013-01-01

    Polyurethane acrylate copolymers were synthesized by emulsion polymerization process. To reduce the environmental hazards, organic solvents were replaced by eco-friendly aqueous system. Concentration of polyurethane and acrylate monomer was varied to investigate the effect of chemical composition on performance properties of copolymers. FTIR spectroscopy was used as a key tool to record the chemical synthesis route. The synthesized copolymer emulsions were characterized by evaluating their particle size, viscosity, dry weight content, chemical and water resistance. Thermal decomposition was studied by thermogravimetric analysis. Scanning electron microscope was used to visualize the morphological structure of copolymers. The experimental results indicate better polyurethane acrylate compatibility till the ratio of 30/70. However, these copolymers exhibited synergistic effects between the two polymers and revealed a remarkable improvement in numerous coating properties

  6. Radiation grafting on natural films

    International Nuclear Information System (INIS)

    Lacroix, M.; Khan, R.; Senna, M.; Sharmin, N.; Salmieri, S.; Safrany, A.

    2014-01-01

    Different methods of polymer grafting using gamma irradiation are reported in the present study for the preparation of newly functionalized biodegradable films, and some important properties related to their mechanical and barrier properties are described. Biodegradable films composed of zein and poly(vinyl alcohol) (PVA) were gamma-irradiated in presence of different ratios of acrylic acid (AAc) monomer for compatibilization purpose. Resulting grafted films (zein/PVA-g-AAc) had their puncture strength (PS=37–40 N mm −1 ) and puncture deformation (PD=6.5–9.8 mm) improved for 30% and 50% PVA in blend, with 5% AAc under 20 kGy. Methylcellulose (MC)-based films were irradiated in the presence of 2-hydroxyethyl methacrylate (HEMA) or silane, in order to determine the effect of monomer grafting on the mechanical properties of films. It was found that grafted films (MC-g-HEMA and MC-g-silane) using 35% monomer performed higher mechanical properties with PS values of 282–296 N mm −1 and PD of 5.0–5.5 mm under 10 kGy. Compatibilized polycaprolactone (PCL)/chitosan composites were developed via grafting silane in chitosan films. Resulting trilayer grafted composite film (PCL/chitosan-g-silane/PCL) presented superior tensile strength (TS=22 MPa) via possible improvement of interfacial adhesion (PCL/chitosan) when using 25% silane under 10 kGy. Finally, MC-based films containing crystalline nanocellulose (CNC) as a filling agent were prepared and irradiated in presence of trimethylolpropane trimethacrylate (TMPTMA) as a grafted plasticizer. Grafted films (MC-g-TMPTMA) presented superior mechanical properties with a TS of 47.9 MPa and a tensile modulus (TM) of 1792 MPa, possibly due to high yield formation of radicals to promote TMPTMA grafting during irradiation. The addition of CNC led to an additional improvement of the barrier properties, with a significant 25% reduction of water vapor permeability (WVP) of grafted films. - Highlights: • Irradiation of zein

  7. Fluorinated polyimides grafted with poly(ethylene glycol) side chains by the RAFT-mediated process and their membranes

    International Nuclear Information System (INIS)

    Chen Yiwang; Chen Lie; Nie Huarong; Kang, E.T.; Vora, R.H.

    2005-01-01

    Graft polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) from fluorinated polyimide (FPI) was carried out by the reversible addition-fragmentation chain transfer (RAFT)-mediated process. The peroxides generated by the ozone treatment on FPI facilitated the thermally-initiated graft copolymerization from FPI backbone. The 'living' character of the graft chain growing was ascertained in the subsequent chain extension of PEGMA. Nuclear magnetic resonance (NMR) and molecular weight measurements were used to characterize the chemical composition and structure of the copolymers. Microfiltration (MF) membranes were fabricated from the FPI-g-PEGMA comb copolymers by phase inversion in aqueous media. Surface composition analysis of the membranes scanned by X-ray photoelectron spectroscopy (XPS) revealed a substantial surface enrichment of the hydrophilic components. The pore size distribution of the resulting membranes was found to be much more uniform than that of the corresponding membranes cast from FPI-g-PEGMA prepared by the conventional radical polymerization process in the absence of the chain transfer agent. The morphology of the membranes was characterized by scanning electron microscopy (SEM)

  8. Process for producing a grafted thermoplastic resin having a multiple constituent

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T; Nomura, T; Higasa, A; Ito, I

    1964-05-15

    A process for producing a thermoplastic graft copolymer having a multiple constituent is provided to obtain a stable, weather-proof resin with high impact strength by irradiating with high energy radiations an aqueous solution composed of: (1) a polymer or copolymer of isobutylene or a mixture thereof, (2) at least one aromatic vinyl monomer, (3) at least one acrylic monomer having no carboxylic radicals, and (4) at least one unsaturated carboxylic acid. The preferable proportions of the abovesaid materials are: (1) 10% to 40%, (2) 25% to 65%, (3) 10% to 45% and (4) 3% to 20%. The resin is suitable for high impact resistant materials for use in vehicles business machines, electric appliances, housing, pipes and the like. The concentration of monomers or polymers in the total emulsified solution may generally be 10% to 80%, but 30% to 60% is preferable. The concentration of the emulsifying agent may be 0.1% to 10%, preferably 1% to 5%. The range of the radiation doses is 1 x 10/sup 4/ to 5 x 10/sup 7/ rad. A dose rate of 1 x 10/sup 3/ to 1 x 10/sup 8/ rad/hr is preferred. The irradiation temperature may be 0/sup 0/ to about 100/sup 0/C, preferably room temperature to 80/sup 0/C. The irradiation time is several minutes to some ten minutes. In one of the examples, a graft copolymer thus produced had the following composition: 27% of isobutylene, 54% of styrene, 13% of acrylonitrile and 6% of maleic acid; and it showed a tensile strength of 293 kg/cm/sup 2/, a hardness of 93R and an impact strength of 0.572 kg.m/cm/sup 2/.

  9. Process of irradiating an ethylene-vinyl acetate copolymer to produce low melt index copolymers, and products of said process

    International Nuclear Information System (INIS)

    Potts, J.E.

    1976-01-01

    Application of ionizing radiation in a dose between 0.5 and 1.5 megareps to copolymers of ethylene and vinyl acetate lowers the melt index and increases the toughness and flexibility of the copolymers without substantially decreasing solubility or thermoplasticity. The increased toughness and flexibility carries over into blends with wax or polyethylene. (author)

  10. Ionization of amphiphilic acidic block copolymers.

    Science.gov (United States)

    Colombani, Olivier; Lejeune, Elise; Charbonneau, Céline; Chassenieux, Christophe; Nicolai, Taco

    2012-06-28

    The ionization behavior of an amphiphilic diblock copolymer poly(n-butyl acrylate(50%)-stat-acrylic acid(50%))(100)-block-poly(acrylic acid)(100) (P(nBA(50%)-stat-AA(50%))(100)-b-PAA(100), DH50) and of its equivalent triblock copolymer P(nBA(50%)-stat-AA(50%))(100)-b-PAA(200)-b-P(nBA(50%)-stat-AA(50%))(100) (TH50) were studied by potentiometric titration either in pure water or in 0.5 M NaCl. These polymers consist of a hydrophilic acidic block (PAA) connected to a hydrophobic block, P(nBA(50%)-stat-AA(50%))(100), whose hydrophobic character has been mitigated by copolymerization with hydrophilic units. We show that all AA units, even those in the hydrophobic block could be ionized. However, the AA units within the hydrophobic block were less acidic than those in the hydrophilic block, resulting in the preferential ionization of the latter block. The preferential ionization of PAA over that of P(nBA(50%)-stat-AA(50%))(100) was stronger at higher ionic strength. Remarkably, the covalent bonds between the PAA and P(nBA(50%)-stat-AA(50%))(100) blocks in the diblock or the triblock did not affect the ionization of each block, although the self-association of the block copolymers into spherical aggregates modified the environment of the PAA blocks compared to when PAA was molecularly dispersed.

  11. Amphiphilic block copolymers for drug delivery.

    Science.gov (United States)

    Adams, Monica L; Lavasanifar, Afsaneh; Kwon, Glen S

    2003-07-01

    Amphiphilic block copolymers (ABCs) have been used extensively in pharmaceutical applications ranging from sustained-release technologies to gene delivery. The utility of ABCs for delivery of therapeutic agents results from their unique chemical composition, which is characterized by a hydrophilic block that is chemically tethered to a hydrophobic block. In aqueous solution, polymeric micelles are formed via the association of ABCs into nanoscopic core/shell structures at or above the critical micelle concentration. Upon micellization, the hydrophobic core regions serve as reservoirs for hydrophobic drugs, which may be loaded by chemical, physical, or electrostatic means, depending on the specific functionalities of the core-forming block and the solubilizate. Although the Pluronics, composed of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), are the most widely studied ABC system, copolymers containing poly(L-amino acid) and poly(ester) hydrophobic blocks have also shown great promise in delivery applications. Because each ABC has unique advantages with respect to drug delivery, it may be possible to choose appropriate block copolymers for specific purposes, such as prolonging circulation time, introduction of targeting moieties, and modification of the drug-release profile. ABCs have been used for numerous pharmaceutical applications including drug solubilization/stabilization, alteration of the pharmacokinetic profile of encapsulated substances, and suppression of multidrug resistance. The purpose of this minireview is to provide a concise, yet detailed, introduction to the use of ABCs and polymeric micelles as delivery agents as well as to highlight current and past work in this area. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association

  12. Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co(II) from aqueous solutions

    Science.gov (United States)

    Saleh, Alaaeldine Sh.; Ibrahim, Ahmed G.; Elsharma, Emad M.; Metwally, Essam; Siyam, Tharwat

    2018-03-01

    The graft copolymerization has been proven as a superior polymerization technique because it combines the functional advantages of the grafted and base polymers. In this work, the radiation-induced grafting of acrylamide (AAm) and maleic acid (MA) onto chitosan (CTS) was developed and optimized by determining the grafting percentage and efficiency as a function of grafting conditions such as AAm, MA, and CTS concentrations, and absorbed dose. Fourier transform infrared spectroscopic analysis (FTIR) confirmed the graft copolymerization. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) further characterized the grafted copolymers and showed their high thermal stability. Using batch sorption experiments and 60Co as a radiotracer, poly(CTS-AAm) and poly(CTS-MA) were evaluated for Co(II) removal from aqueous solutions. The Co(II) removal increases with increasing time, pH, polymer, and Co(II) concentrations. Experimentally, P(CTS-AAm) and P(CTS-MA) show high sorption capacities of Co(II), i.e. 150 mg g-1 and 421 mg g-1, respectively, which makes them potential sorbents of Co(II) for water and wastewater treatment. Finally, the Co(II) sorption was examined using sorption isotherm and kinetic models. The sorption was best fitted to Langmuir model which suggests the sorption is of chemisorption type. On the other hand, the sorption kinetics was best represented by Elovich model which also indicates the chemical nature of Co(II) sorption on P(CTS-AAm) and P(CTS-MA).

  13. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Poly-1-butene resins and butene/ethylene copolymers... resins and butene/ethylene copolymers. The poly-1-butene resins and butene/ethylene copolymers identified... the catalytic polymerization of 1-butene liquid monomer. Butene/ethylene copolymers are produced by...

  14. Low Molecular Weight pDMAEMA-block-pHEMA Block-Copolymers Synthesized via RAFT-Polymerization: Potential Non-Viral Gene Delivery Agents?

    Directory of Open Access Journals (Sweden)

    Thomas Kissel

    2011-03-01

    Full Text Available The aim of this study was to investigate non-viral pDNA carriers based on diblock-copolymers consisting of poly(2-(dimethyl aminoethyl methacrylate (pDMAEMA and poly(2-hydroxyethyl methacrylate (pHEMA. Specifically the block-lengths and molecular weights were varied to determine the minimal requirements for transfection. Such vectors should allow better transfection at acceptable toxicity levels and the entire diblock-copolymer should be suitable for renal clearance. For this purpose, a library of linear poly(2-(dimethyl aminoethyl methacrylate-block-poly(2-hydroxyl methacrylate (pDMAEMA-block-pHEMA copolymers was synthesized via RAFT (reversible addition-fragmentation chain transfer polymerization in a molecular weight (Mw range of 17–35.7 kDa and analyzed using 1H and 13C NMR (nuclear magnetic resonance, ATR (attenuated total reflectance, GPC (gel permeation chromatography and DSC (differential scanning calorimetry. Copolymers possessing short pDMAEMA-polycation chains were 1.4–9.7 times less toxic in vitro than polyethylenimine (PEI 25 kDa, and complexed DNA into polyplexes of 100–170 nm, favorable for cellular uptake. The DNA-binding affinity and polyplex stability against competing polyanions was comparable with PEI 25 kDa. The zeta-potential of polyplexes of pDMAEMA-grafted copolymers remained positive (+15–30 mV. In comparison with earlier reported low molecular weight homo pDMAEMA vectors, these diblock-copolymers showed enhanced transfection efficacy under in vitro conditions due to their lower cytotoxicity, efficient cellular uptake and DNA packaging. The homo pDMAEMA115 (18.3 kDa self-assembled with DNA into small positively charged polyplexes, but was not able to transfect cells. The grafting of 6 and 57 repeating units of pHEMA (0.8 and 7.4 kDa to pDMAEMA115 increased the transfection efficacy significantly, implying a crucial impact of pHEMA on vector-cell interactions. The intracellular trafficking, in vivo transfection

  15. Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Suo, Aili, E-mail: ailisuo@mail.xjtu.edu.cn [Department of Oncology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710061 (China); Qian, Junmin, E-mail: jmqian@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Yaping; Liu, Rongrong; Xu, Weijun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Hejing [Department of Oncology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710061 (China)

    2016-05-01

    A comb-like amphiphilic copolymer methoxypolyethylene glycol-graft-poly(L-lysine)-block-poly(L-phenylalanine) (mPEG-g-PLL-b-Phe) was successfully synthesized. To synthesize mPEG-g-PLL-b-Phe, diblock copolymer PLL-b-Phe was first synthesized by successive ring-opening polymerization of α-amino acid N-carboxyanhydrides followed by the removal of benzyloxycarbonyl protecting groups, and then mPEG was grafted onto PLL-b-Phe by reductive amination via Schiff's base formation. The chemical structures of the copolymers were identified by {sup 1}H NMR. mPEG-g-PLL-b-Phe copolymer had a critical micelle concentration of 6.0 mg/L and could self-assemble in an aqueous solution into multicompartment nanomicelles with a mean diameter of approximately 78 nm. The nanomicelles could encapsulate doxorubicin (DOX) through hydrophobic and π–π stacking interactions between DOX molecules and Phe blocks and simultaneously complex P-gp siRNA with cationic PLL blocks via electrostatic interactions. The DOX/P-gp siRNA-loaded nanomicelles showed spherical morphology, possessed narrow particle size distribution and had a mean particle size of 120 nm. The DOX/P-gp siRNA-loaded nanomicelles exhibited pH-responsive release behaviors and displayed accelerated release under acidic conditions. The DOX/P-gp siRNA-loaded nanomicelles were efficiently internalized into MCF-7 cells, and DOX released could successfully reach nuclei. In vitro cytotoxicity assay demonstrated that the DOX/P-gp siRNA-loaded nanomicelles showed a much higher cytotoxicity in MCF-7 cells than DOX-loaded nanomicelles due to their synergistic killing effect and that the blank nanomicelles had good biocompatibility. Thus, the novel comb-like mPEG-g-PLL-b-Phe nanomicelles could be a promising vehicle for co-delivery of chemotherapeutic drug and genetic material. - Highlights: • Comb-like amphiphilic copolymer mPEG-g-PLL-b-Phe was successfully synthesized. • Polypeptide-based copolymer could self-assemble into

  16. Evolution of skin grafting for treatment of burns: Reverdin pinch grafting to Tanner mesh grafting and beyond.

    Science.gov (United States)

    Singh, Mansher; Nuutila, Kristo; Collins, K C; Huang, Anne

    2017-09-01

    Skin grafting is the current standard care in the treatment of full thickness burns. It was first described around 1500 BC but the vast majority of advancements have been achieved over the past 200 years. An extensive literature review was conducted on Pubmed, Medline and Google Scholar researching the evolution of skin grafting techniques. The authors concentrated on the major landmarks of skin grafting and also provide an overview of ongoing research efforts in this field. The major innovations of skin grafting include Reverdin pinch grafting, Ollier grafting, Thiersch grafting, Wolfe grafting, Padgett dermatome and modifications, Meek-wall microdermatome and Tanner mesh grafting. A brief description of the usage, advantages and limitations of each technique is included in the manuscript. Skin grafting technique have evolved significantly over past 200 years from Reverdin pinch grafting to modern day meshed skin grafts using powered dermatome. Increasing the expansion ratio and improving the cosmetic and functional outcome are the main focus of ongoing skin grafting research and emerging techniques (such as Integra ® , Recell ® , Xpansion ® ) are showing promise. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  17. A comparative study on the graft copolymerization of acrylic acid onto rayon fibre by a ceric ion redox system and a γ-radiation method.

    Science.gov (United States)

    Kaur, Inderjeet; Kumar, Raj; Sharma, Neelam

    2010-10-13

    Functionalization of rayon fibre has been carried out by grafting acrylic acid (AAC) both by a chemical method using a Ce(4+)-HNO(3) redox initiator and by a mutual irradiation (γ-rays) method. The reaction conditions affecting the grafting percentage have been optimized for both methods, and the results are compared. The maximum percentage of grafting (50%) by the chemical method was obtained utilizing 18.24 × 10(-3) moles/L of ceric ammonium nitrate (CAN), 39.68 × 10(-2) moles/L of HNO(3), and 104.08 × 10(-2) moles/L of AAc in 20 mL of water at 45°C for 120 min. For the radiation method, the maximum grafting percentage (60%) was higher, and the product was obtained under milder reaction conditions using a lower concentration of AAc (69.38 × 10(-2) moles/L) in 10 mL of water at an optimum total dose of 0.932 kGy. Swelling studies showed higher swelling for the grafted rayon fibre in water (854.54%) as compared to the pristine fibre (407%), while dye uptake studies revealed poor uptake of the dye (crystal violet) by the grafted fibre in comparison with the pristine fibre. The graft copolymers were characterized by IR, TGA, and scanning electron micrographic methods. Grafted fibre, prepared by the radiation-induced method, showed better thermal behaviour. Comparison of the two methods revealed that the radiation method of grafting of acrylic acid onto rayon fibre is a better method of grafting in comparison with the chemical method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Kinetics of vein graft hyperplasia

    International Nuclear Information System (INIS)

    Zwolak, R.M.; Adams, M.C.; Clowes, A.W.

    1986-01-01

    Human aortocoronary vein grafts fail due to accelerated occlusive disease. The possibility that this is related to cellular hyperplasia was investigated in a rabbit model where kinetics of vein graft thickening, endothelial (EC) repair, and smooth muscle cell (SMC) proliferation were measured from 2 days to 24 weeks after implanting jugular vein segments in the carotid artery. Immediately after graft placement focal EC denudation was observed. These defects were repaired within 1 week and did not recur. By 4 weeks intimal area had increased 30 fold from 0.028 +/- 0.004 to 0.705 +/- 0.021 mm 2 , and a 24 weeks was 0.93 +/- 0.21 mm 2 . This response did not produce a reduction in graft lumen area. EC and SMC thymidine-labeling index were measured by en face and cross-section autoradiography after injection of 3 H-thymidine and perfusion fixation. Despite rapid EC surface repair EC labeling index remained elevated and only returned to normal levels at 12 weeks; SMC labeling was 10 fold greater than baseline even at 24 weeks (0.22% vs 0.02%). SMC mass demonstrated morphometrically increased between 2 and 12 weeks. Intimal thickening in vein grafts is due to SMC proliferation and develops after the EC layer has been restored. In contrast, intimal SMC proliferate in damaged arteries when the EC layer is absent and cease when the EC layer is regenerated

  19. Anomalous Micellization of Pluronic Block Copolymers

    Science.gov (United States)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  20. Responsive linear-dendritic block copolymers.

    Science.gov (United States)

    Blasco, Eva; Piñol, Milagros; Oriol, Luis

    2014-06-01

    The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bactericidal and Hemocompatible Coating via the Mixed-Charged Copolymer.

    Science.gov (United States)

    Fan, Xiao-Li; Hu, Mi; Qin, Zhi-Hui; Wang, Jing; Chen, Xia-Chao; Lei, Wen-Xi; Ye, Wan-Ying; Jin, Qiao; Ren, Ke-Feng; Ji, Jian

    2018-03-28

    Cationic antibacterial coating based on quaternary ammonium compounds, with an efficient and broad spectrum bactericidal property, has been widely used in various fields. However, the high density of positive charges tends to induce weak hemocompatibility, which hinders the application of the cationic antibacterial coating in blood-contacting devices and implants. It has been reported that a negatively charged surface can reduce blood coagulation, showing improved hemocompatibility. Here, we describe a strategy to combine the cationic and anionic groups by using mixed-charged copolymers. The copolymers of poly (quaternized vinyl pyridine- co- n-butyl methacrylate- co-methacrylate acid) [P(QVP- co- nBMA- co-MAA)] were synthesized through free radical copolymerization. The cationic group of QVP, the anionic group of MAA, and the hydrophobic group of nBMA were designed to provide bactericidal capability, hemocompatibility, and coating stability, respectively. Our findings show that the hydrophilicity of the copolymer coating increased, and its zeta potential decreased from positive charge to negative charge with the increase of the anionic/cationic ratio. Meanwhile, the bactericidal property of the copolymer coating was kept around a similar level compared with the pure quaternary ammonium copolymer coating. Furthermore, the coagulation time, platelet adhesion, and hemolysis tests revealed that the hemocompatibility of the copolymer coating improved with the addition of the anionic group. The mixed-charged copolymer combined both bactericidal property and hemocompatibility and has a promising potential in blood-contacting antibacterial devices and implants.

  2. Vascularized osseous graft for scaphoid

    International Nuclear Information System (INIS)

    Mendez Daza, Carlos Hernan; Mathoulin, Cristophe

    2004-01-01

    The most commonly used technique for treatment of pseudo-arthrosis of the scaphoid is osteo-synthesis with Kirschnet wires and cortical sponge grafts. Results reported by different teams using this procedure show no more than 90% osseous consolidation, especially in cases where vascularisation of the proximal fragment of the scaphoid is compromised. Here we present a series of ten cases of pseudo-arthrosis of the scaphoid, treated using a new surgical technique involving a vascularized osseous graft of the distal radius. Using this procedure we obtained 100% consolidation, with no complications either during the procedure or immediately post-operatively. Patients returned to work in week 15 on average. In 4 cases we observed discomfort in the area of the scar, which was successfully treated using local cortisone injection. The results obtained are very similar to those seen in the literature on the different techniques for vascularized osseous grafts for pseudo-arthrosis of the scaphoid

  3. Synthesis of Monodispersed Gold Nanoparticles with Exceptional Colloidal Stability with Grafted Polyethylene Glycol-g-polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Alaaldin M. Alkilany

    2015-01-01

    Full Text Available Herein, we report the synthesis of spherical gold nanoparticles with tunable core size (23–79 nm in the presence of polyethylene glycol-g-polyvinyl alcohol (PEG-g-PVA grafted copolymer as a reducing, capping, and stabilizing agent in a one-step protocol. The resulted PEG-g-PVA-capped gold nanoparticles are monodispersed with an exceptional colloidal stability against salt addition, repeated centrifugation, and extensive dialysis. The effect of various synthesis parameters and the kinetic/mechanism of the nanoparticle formation are discussed.

  4. Grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    ), raman spectroscopy and X-ray diffraction (XRD) measurements. UV–Visible absorption spectroscopy was used to study optical properties such as optical energy gap (Eg), Urbach's energy (Eu), refractive index (n), real (ε1) and imaginary (ε2) parts of dielectric constant of PVA as well as PVA......Polyvinyl alcohol (PVA) grafted SiC (PVA-g-SiC)/PVA nanocomposite was synthesized by incorporating PVA grafted silicon carbide (SiC) nanocrystals inside PVA matrix. In-depth structural characterization of resulting nanocomposite was carried out using fourier transform infrared spectroscopy (FTIR...

  5. Oral mucosa grafts for urethral reconstruction

    African Journals Online (AJOL)

    reports reveal that split and full thickness skin grafts from the scrotum, penis, extragenital sites (ureter, saphenous .... Table 1: Summary of the history of oral mucosa grafts for urethroplasty .... advised that care should be taken when suturing the.

  6. Postoperative radiographic evaluation of vascularized fibular grafts

    International Nuclear Information System (INIS)

    Manaster, B.J.; Coleman, D.A.; Bell, D.A.

    1989-01-01

    This paper reports on thirty-five patients with free vascularized fibular grafts examined postoperatively with plain radiography. Early graft incorporation is seen as a fuzziness of the cortex at the site of its insertion into the host bone. Causes of failure in grafting for bone defects include graft fracture, hardware failure, and infection. A high percentage of complications or at least delayed unions occurred when vascularized fibular grafts were used to fill defects in the lower extremity. Conversely, upper extremity defects bridged by vascularized grafts heal quickly and hypertrophy. Vascularized grafts placed in the femoral head and neck for a vascular necrosis incorporate early on their superior aspect. The osseous tunnel in which they are placed is normally wider than the graft and often becomes sclerotic; this appearance does not represent nonunion

  7. In-situ crosslinkable and self-assembling elastin-like polypeptide block copolymers for cartilage tissue repair

    Science.gov (United States)

    Lim, Dong Woo

    This work describes the development of genetically engineered elastin-like polypeptide (ELP) block copolymers as in-situ gelling scaffolds for cartilage tissue repair. The central hypothesis underlying this work is that ELP based biopolymers can be exploited as injectable biomaterials by rapid chemical crosslinking. To prove this, gene libraries encoding ELP having different molecular weights and amino acid sequences, and ELP block copolymers composed of various ELP blocks having diverse amino acid composition, length, and phase transition behavior were synthesized by recursive directional ligation, expressed in E. Coli and purified by inverse transition cycling. Mannich-type condensation of hydroxymethylphosphines (HMPs) with primary- and secondary-amines of amino acids was developed as a new crosslinking method of polypeptides. Chemically crosslinked ELP hydrogels were formed rapidly in an aqueous solution by reaction of ELPs containing periodic lysine residues with HMPs. The crosslinking density and mechanical property of the ELP hydrogels were controlled at the sequence level by varying the Lys density in ELPs composed of mono-block as well as by segregation of the Lys residues within specific blocks of tri-block architectures. Fibroblasts embedded in ELP hydrogels survived the crosslinking process and were viable after in vitro culture for at least 3 days. The DNA content of fibroblasts within the tri-block gels was significantly higher than that in the mono-block gels at day 3. These results suggest that the HMP crosslinked ELP block copolymer hydrogels show finely tuned mechanical properties and different microenvironments for cell viability as well as potential as in-situ crosslinkable biopolymers for tissue repair applications with load-bearing environments. As an alternative, rheological behavior of the ELP block copolymers and ELP-grafted hyaluronic acids (HAs) as artificial extracellular matrices (ECMs) showed that they were thermally aggregated into

  8. Prevention of primary vascular graft infection with silver-coated polyester graft in a porcine model

    DEFF Research Database (Denmark)

    Gao, H; Sandermann, J; Prag, J

    2010-01-01

    To evaluate the efficacy of a silver-coated vascular polyester graft in the prevention of graft infection after inoculation with Staphylococcus aureus in a porcine model.......To evaluate the efficacy of a silver-coated vascular polyester graft in the prevention of graft infection after inoculation with Staphylococcus aureus in a porcine model....

  9. Evaluation of Replacement Grafts and Punch Grafts in the Treatment of Vitiligo

    Directory of Open Access Journals (Sweden)

    Singh Ajit Kumar

    1980-01-01

    Full Text Available Thirtycasesof vitiligo eachwithminimum of two lesions undent replacement graft and multiple punch grafts in one lesion each. Complications observed at the recipient site like infection and raised nigosed surface were significantly more in replacement grafts. Hypopigmentation of the graft was significantly more when the disease was progressive.

  10. Patchy micelles based on coassembly of block copolymer chains and block copolymer brushes on silica particles.

    Science.gov (United States)

    Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying

    2015-04-14

    Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.

  11. Graft infections after surgical aortic reconstructions

    NARCIS (Netherlands)

    Berger, P.

    2015-01-01

    Prosthetic vascular grafts are frequently used to reconstruct (part) of the aorta. Every surgical procedure caries a certain risk for infection and when a prosthetic aortic graft is implanted, this may lead to an aortic graft infection (AGI). Endovascular techniques have gradually replaced open

  12. Mechanical properties of weakly segregated block copolymers : 1. Synergism on tensile properties of poly(styrene-b-n-butylmethacrylate) diblock copolymers

    NARCIS (Netherlands)

    Weidisch, R.; Michler, G.H.; Fischer, H.; Arnold, M.; Hofmann, S.; Stamm, M.

    1999-01-01

    Mechanical properties of poly(styrene-b-n-butylmethacrylate) diblock copolymers, PS-b-PBMA, with different lengths of the polystyrene block were investigated. The copolymers display a composition range where the tensile strength of the block copolymers exceeds the values of the corresponding

  13. The caudal septum replacement graft.

    Science.gov (United States)

    Foda, Hossam M T

    2008-01-01

    To describe a technique for reconstructing the lost tip support in cases involving caudal septal and premaxillary deficiencies. The study included 120 patients with aesthetic and functional nasal problems resulting from the loss of caudal septal and premaxillary support. An external rhinoplasty approach was performed to reconstruct the lost support using a cartilaginous caudal septum replacement graft and premaxillary augmentation with Mersilene mesh. The majority of cases (75%) involved revisions in patients who had previously undergone 1 or more nasal surgical procedures. A caudal septum replacement graft was combined with premaxillary augmentation in 93 patients (77.5%). The mean follow-up period was 3 years (range, 1-12 years). The technique succeeded in correcting the external nasal deformities in all patients and resulted in a significant improvement in breathing in 74 patients (86%) with preoperative nasal obstruction. There were no cases of infection, displacement, or extrusion. The caudal septum replacement graft proved to be very effective in restoring the lost tip support in patients with caudal septal deficiency. Combining the graft with premaxillary augmentation using Mersilene mesh helped increase support and stability over long-term follow-up.

  14. ACL Graft Healing and Biologics

    NARCIS (Netherlands)

    Muller, Bart; Bowman, Karl F.; Bedi, Asheesh

    2013-01-01

    Operative reconstruction of a torn anterior cruciate ligament (ACL) has become the most broadly accepted treatment. An important, but underreported, outcome of ACL reconstruction is graft failure, which poses a challenge for the orthopedic surgeon. An understanding of the tendon-bone healing and the

  15. Copolymer natural latex in concrete: Dynamic evaluation through energy dissipation of polymer modified concrete

    Science.gov (United States)

    Andayani, Sih Wuri; Suratman, Rochim; Imran, Iswandi; Mardiyati

    2018-05-01

    Portland cement concrete have been used in construction due to its strength and ecomical value. But it has some limitations, such low flexural strength, low tensile strength, low chemical resistant and etc. Due to its limitations in flexural and tensile strength, Portland cement concrete more susceptible by seismic force. There are some methods for improving its limitations. Polymer addition into concrete mixture could be one of solution for improving the flexural and tensile strength, in aiming to get erthquake resistant properties. Also, the eartquake resistant could be achieved by improving energy dissipation capacity. In this research, the earthquake resistant evalution was approached from dynamic evaluation through energy dissipation capacity, after polymer addition as concrete additives. The polymers were natural latex (Indonesian naural resource) grafted with styrene and methacrylate, forming copolymer - natural latex methacrylate (KOLAM) and copolymer - natural latex styrene (KOLAS). They were added into concrete mixture resulting polymer modified concrete. The composition of polymer are 1%, 5% and 10% weight/weight of cement. The higher capacity of energy dissipation will give more capability in either absorbing or dissipating energy, and it was predicted would give better earthquake resistant.. The use of KOLAM gave better performance than KOLAS in energy dissipation capacity. It gave about 46% for addition of 1% w/w compared to Portland cement concrete. But for addition 5% w/w and 10% w/w, they gave about 7% and 5% higher energy dissipation capacity. The KOLAM addition into concrete mixture would reduce the maximum impact load with maximumabout 35% impact load reducing after 1% w/w addition. The higher concentration of KOLAM in concrete mixture, lower reducing of impact load, they were about 4% and 3% for KOLAM 5% and 10%. For KOLAS addition in any compositions, there were no positive trend either in energy dissipation capacity or impact load properties

  16. HPMA and HEMA copolymer bead interactions with eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Cristina D. Vianna-Soares

    2004-09-01

    Full Text Available Two different hydrophilic acrylate beads were prepared via aqueous suspension polymerization. Beads produced of a hydroxypropyl methacrylate (HPMA and ethyleneglycol methacrylate (EDMA copolymer were obtained using a polyvinyl alcohol suspending medium. Copolymers of 2hydroxyethyl methacrylate (HEMA, methyl methacrylate (MMA and ethyleneglycol methacrylate (EDMA beads were obtained using magnesium hydroxide as the suspending agent. Following characterization by scanning electron microscopy (SEM, nitrogen sorption analysis (NSA and mercury intrusion porosimetry (MIP, the beads were cultured with monkey fibroblasts (COS7 to evaluate their ability to support cell growth, attachment and adhesion. Cell growth behavior onto small HPMA/EDMA copolymer beads and large HEMA/MMA/EDMA copolymer beads is evaluated regarding their hidrophilicity/hidrophobicity and surface roughness.

  17. Controlled Synthesis of Fluorinated Copolymers with Pendant Sulfonates

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2008-01-01

    Novel fluorinated copolymers of different architectures and bearing sulfopropyl groups were synthesized by atom transfer radical polymerization (ATRP) of aromatic fluorinated monomers and two modification reactions performed on the polymer chain - demethylation followed by sulfopropylation. As a ...

  18. Fast & scalable pattern transfer via block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars

    2015-01-01

    A fully scalable and efficient pattern transfer process based on block copolymer (BCP) self-assembling directly on various substrates is demonstrated. PS-rich and PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are used to give monolayer sphere morphology after spin-casting of s......A fully scalable and efficient pattern transfer process based on block copolymer (BCP) self-assembling directly on various substrates is demonstrated. PS-rich and PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are used to give monolayer sphere morphology after spin...... on long range lateral order, including fabrication of substrates for catalysis, solar cells, sensors, ultrafiltration membranes and templating of semiconductors or metals....

  19. Self-Assembly of Rod-Coil Block Copolymers

    National Research Council Canada - National Science Library

    Jenekhe, S

    1999-01-01

    ... the self-assembly of new rod-coil diblock, rod- coil-rod triblock, and coil-rod-coil triblock copolymers from solution and the resulting discrete and periodic mesostmctares with sizes in the 100...

  20. Design of block copolymer membranes using segregation strength trend lines

    KAUST Repository

    Sutisna, Burhannudin; Polymeropoulos, Georgios; Musteata, Valentina-Elena; Peinemann, Klaus-Viktor; Avgeropoulos, Apostolos; Smilgies, Detlef-M.; Hadjichristidis, Nikolaos; Nunes, Suzana Pereira

    2016-01-01

    composition, polymer molecular weights, casting solution concentration, and evaporation time. We propose here an effective method for designing new block copolymer membranes. The method consists of predetermining a trend line for the preparation of isoporous