WorldWideScience

Sample records for ether lipid prodrugs

  1. Exogenous ether lipids predominantly target mitochondria.

    Directory of Open Access Journals (Sweden)

    Lars Kuerschner

    Full Text Available Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria in ether lipid metabolism and intracellular ether lipid trafficking.

  2. Lipid conjugated prodrugs for enzyme-triggered liposomal drug delivery to tumors

    DEFF Research Database (Denmark)

    Clausen, Mads Hartvig

    2011-01-01

    For some time we have been developing novel enzyme-triggered prodrugs for drug delivery targeting cancer. The liposomal prodrugs take advantage of the EPR effect to localize to tumors and of the local over-expression of secretory phospholipase A2 in tumors. Compared to conventional liposomal drug...... delivery systems, our prodrug-lipid conjugates have two main advantages: 1) the drugs are covalently linked to the lipids and thus leakage is circumvented and 2) the lipophilic bilayer of the formulated liposomes effectively shields the drugs from the aqueous environment in vivo. Consequently, the strategy...... targeting nuclear receptors and structural proteins. The presentation will highlight various strategies and recent progress towards improved systems, including chemical synthesis, enzyme activity and cytotoxicity....

  3. Cholesterylbutyrate Solid Lipid Nanoparticles as a Butyric Acid Prodrug

    Directory of Open Access Journals (Sweden)

    Alessandro Mauro

    2008-02-01

    Full Text Available Cholesterylbutyrate (Chol-but was chosen as a prodrug of butyric acid.Butyrate is not often used in vivo because its half-life is very short and therefore too largeamounts of the drug would be necessary for its efficacy. In the last few years butyric acid'santi-inflammatory properties and its inhibitory activity towards histone deacetylases havebeen widely studied, mainly in vitro. Solid Lipid Nanoparticles (SLNs, whose lipid matrixis Chol-but, were prepared to evaluate the delivery system of Chol-but as a prodrug and totest its efficacy in vitro and in vivo. Chol-but SLNs were prepared using the microemulsionmethod; their average diameter is on the order of 100-150 nm and their shape is spherical.The antineoplastic effects of Chol-but SLNs were assessed in vitro on different cancer celllines and in vivo on a rat intracerebral glioma model. The anti-inflammatory activity wasevaluated on adhesion of polymorphonuclear cells to vascular endothelial cells. In thereview we will present data on Chol-but SLNs in vitro and in vivo experiments, discussingthe possible utilisation of nanoparticles for the delivery of prodrugs for neoplastic andchronic inflammatory diseases.

  4. Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Gong, Xiaojuan; Moghaddam, Minoo J.; Conn, Charlotte E.; Kimpton, Kathleen; Waddington, Lynne J.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE); (CSIRO/LW)

    2014-09-24

    We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.

  5. Exogenous ether lipids predominantly target mitochondria

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Richter, Doris; Hannibal-Bach, Hans Kristian

    2012-01-01

    Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high......, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria...

  6. In vivo evaluation of lipid-based formulations for oral delivery of apomorphine and its diester prodrugs

    DEFF Research Database (Denmark)

    Borkar, Nrupa Nitin; Holm, René; Yang, Mingshi

    2016-01-01

    .05) than after DLA-w/o administration, indicating that triglycerides and surfactants improved the oral absorption of DLA. Similarly, Cmax and AUC after dosing apomorphine-o/w were significantly higher (p≤0.05) than that of aqueous suspension. This suggested that lipids and lipolysis products possibly aided......In the present study, the differences in oral absorption of apomorphine and its diester prodrugs and the effect of lipid-based formulations on the absorption of apomorphine or its prodrugs were investigated. Apomorphine, dilauroyl apomorphine (DLA) and dipalmitoyl apomorphine (DPA) were orally...

  7. Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy

    Directory of Open Access Journals (Sweden)

    Qu CY

    2015-06-01

    Full Text Available Chun-Ying Qu,1,* Min Zhou,1,* Ying-wei Chen,2 Mei-mei Chen,3 Feng Shen,1 Lei-Ming Xu11Digestive Endoscopic Diagnosis and Treatment Center, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China; 2Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, People’s Republic of China; 3Digestive Department, Xinhua Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China*These authors contributed equally to this workPurpose: The first-line chemotherapy treatment protocol for gastric cancer is combination chemotherapy of 5-fluorouracil (5-FU and cisplatin (CDDP. The aim of this study was to engineer prodrug-based nanostructured lipid carriers (NLC platform for codelivery of 5-FU and CDDP to enhance therapy and decrease toxicity.Methods: First, 5-FU-stearic acid lipid conjugate was synthesized by two steps. Second, 5-FU-stearic acid prodrug and CDDP were loaded in NLC. Finally, hyaluronic acid (HA was coated onto NLC surface. Average size, zeta potential, and drug loading capacity of NLC were evaluated. Human gastric cancer cell line BGC823 (BGC823 cells was used for the testing of in vitro cytotoxicity assays. In vivo antitumor activity of NLC was evaluated in mice bearing BGC823 cells model.Results: HA-coated 5-FU-stearic acid prodrug and CDDP-loaded NLC (HA-FU/C-NLC showed a synergistic effect in combination therapy and displayed the greatest antitumor activity than all of the free drugs or uncoated NLC in vitro and in vivo.Conclusion: This work reveals that HA-coated NLC could be used as a novel carrier to codeliver 5-FU and CDDP for gastric cancer therapy. HA-FU/C-NLC could be a promising targeted and combinational therapy in nanomedicine.Keywords: gastric cancer, nanostructured lipid carriers, hyaluronic acid, combination chemotherapy, lipid prodrug

  8. Biosynthesis of archaeal membrane ether lipids

    Directory of Open Access Journals (Sweden)

    Samta eJain

    2014-11-01

    Full Text Available A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA. In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol and the tetraether (or caldarchaeol lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the last universal common ancestor LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria.

  9. Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics

    DEFF Research Database (Denmark)

    Jensen, Sara Munk; Brandl, Martin; Treusch, Alexander H

    2015-01-01

    The molecular structures, biosynthetic pathways and physiological functions of membrane lipids produced by organisms in the domain Archaea are poorly characterized as compared with that of counterparts in Bacteria and Eukaryota. Here we report on the use of high-resolution shotgun lipidomics......-resolution Fourier transform mass spectrometry using an ion trap-orbitrap mass spectrometer. This analysis identified five clusters of molecular ions that matched ether lipids in the database with sub-ppm mass accuracy. To structurally characterize and validate the identities of the potential lipid species, we...... performed structural analysis using multistage activation on the ion trap-orbitrap instrument as well as tandem mass analysis using a quadrupole time-of-flight machine. Our analysis identified four ether lipid species previously reported in Archaea, and one ether lipid species that had not been described...

  10. Ether lipids of planktonic archae in the marine water column

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hoefs, M.J.L.; Schouten, S.; King, L.L.; Wakeham, S.G.; Leeuw, J.W. de

    1997-01-01

    Acyclic and cyclic biphytanes derived from the membrane ether lipids of archaea were found in water column particulate and sedimentary organic matter from several oxic and anoxic marine environments. Compound-specific isotope analyses of the carbon skeletons suggest that planktonic archaea utilize

  11. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery.

    Science.gov (United States)

    Pan, Dipanjan; Pham, Christine T N; Weilbaecher, Katherine N; Tomasson, Michael H; Wickline, Samuel A; Lanza, Gregory M

    2016-01-01

    Sn2 lipase labile phospholipid prodrugs in conjunction with contact-facilitated drug delivery offer an important advancement in Nanomedicine. Many drugs incorporated into nanosystems, targeted or not, are substantially lost during circulation to the target. However, favorably altering the pharmacokinetics and volume of distribution of systemic drug delivery can offer greater efficacy with lower toxicity, leading to new prolonged-release nanoexcipients. However, the concept of achieving Paul Erhlich's inspired vision of a 'magic bullet' to treat disease has been largely unrealized due to unstable nanomedicines, nanosystems achieving low drug delivery to target cells, poor intracellular bioavailability of endocytosed nanoparticle payloads, and the substantial biological barriers of extravascular particle penetration into pathological sites. As shown here, Sn2 phospholipid prodrugs in conjunction with contact-facilitated drug delivery prevent premature drug diffusional loss during circulation and increase target cell bioavailability. The Sn2 phospholipid prodrug approach applies equally well for vascular constrained lipid-encapsulated particles and micelles the size of proteins that penetrate through naturally fenestrated endothelium in the bone marrow or thin-walled venules of an inflamed microcirculation. At one time Nanomedicine was considered a 'Grail Quest' by its loyal opposition and even many in the field adsorbing the pains of a long-learning curve about human biology and particles. However, Nanomedicine with innovations like Sn2 phospholipid prodrugs has finally made 'made the turn' toward meaningful translational success. © 2015 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  12. Mechanistic Study of the sPLA2 Mediated Hydrolysis of a Thio-ester Pro Anticancer Ether Lipid

    DEFF Research Database (Denmark)

    Linderoth, Lars; Fristrup, Peter; Hansen, Martin

    2009-01-01

    Secretory phospholipase A2 (sPLA2) is an interesting enzyme for triggered liposomal drug delivery to tumor tissue due the overexpression of sPLA2 in cancerous tissue. A drug delivery system based on the triggered release of therapeutics from sPLA2-sensitive liposomes constituted of pro anticancer...... ether lipids, which become cytotoxic upon sPLA2-catalyzed hydrolysis has previously been established. To optimize the hydrolysis rate of the lipids and thereby optimizing the release profile of the drugs from the liposomes, we have synthesized a thio-ester pro anticancer ether lipid. Liposomes...... constituted of this lipid showed an altered rate of hydrolysis by sPLA2. We have tested the cytotoxicity of the thio-ester pro anticancer ether lipids toward cancer cells, and the results showed that the cytotoxicity is indeed maintained upon sPLA2 exposure. To further understand the origin for the observed...

  13. Early steps of biosynthesis of ether lipids in archaebacteria; Eteru shishitsu seigosei no shoki dankai

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, T. [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-05-20

    Membrane lipids in archaebacteria are different from those of eubacteria and eukaryote which are fatty acid esters of glycerol. Archaebacterial lipids are mainly ether-linked lipids composed of glycerol linked to two molecules of isoprenoid phytanyl groups or of ether-linked glycerol with phytanyl group. This structural feature is one of the origins of survival and growth of archaebacteria in extreme conditions of high temperature, strong acid or alkali. It is considered that geranylgeranyl phosphate (GGPP) is synthesized and attached to glycerol phosphate, followed by reduction of the double bond in the geranylgeranyl moieties to form the diether lipids while the head-to-heat condensation of the phytanyl groups produces the tetraether lipids. Aiming to elucidate the lipid biosynthesis mechanism in a hyperthermophilic archaebacterium, Sulfolobus acidocaldarius, the gene of GGPP synthase was cloned with the aid of carotenoid synthesis in phytopathogenic Erwinia uredovora and its sequence was studied. 29 refs., 9 figs.

  14. Effects of vehicles and prodrug properties and their interactions on the delivery of 6-mercaptopurine through skin: bisacyloxymethyl-6-mercaptopurine prodrugs.

    Science.gov (United States)

    Waranis, R P; Sloan, K B

    1987-08-01

    A series of S6,9-bisacyloxymethyl-6-mercaptopurine (6,9-bis-6-MP) prodrug derivatives was synthesized and characterized. The solubilities of the derivatives in solvents (vehicles), which exhibited a wide range of polarities from water to oleic acid, were measured. The abilities of the prodrugs to deliver 6-mercaptopurine (6-MP) from the vehicles have also been determined, and experimental fluxes and permeability coefficients (Kp) have been calculated for a large number of prodrug: vehicle combinations. Generally the best prodrugs of the series in terms of delivering 6-MP, regardless of the vehicle, were the first two members--the bisacetyl- and the bispropionyloxymethyl-6-mercaptopurine prodrugs. This result has been attributed mainly to the increased water solubility of these two prodrugs compared with that of 6-MP and the other prodrugs, since all of the prodrugs are much more lipid soluble than 6-MP. For three vehicles--isopropyl myristate, propylene glycol, and water--there was a good correlation between log experimental Kp for the delivery of 6-MP by the prodrugs from those vehicles and the theoretical solubility parameters of the prodrugs. The stabilities of the bisacetyl-(2), bisproprionyl-(3), and bisbutyryloxymethyl-6-mercaptopurine (4) derivatives were determined in buffer and in buffer containing enzymes leached from the dermis. Prodrug 2 was more stable than 3 or 4 in the buffer containing the enzymes, while 4 was more stable than 2 or 3 in the plain buffer.

  15. Antiparkinson Prodrugs

    Directory of Open Access Journals (Sweden)

    Laura Serafina Cerasa

    2008-01-01

    Full Text Available Parkinson`s disease (PD is a progressive, neurodegenerative disorder whichinvolves the loss of dopaminergic neurons of the substantia nigra pars compacta. Currenttherapy is essentially symptomatic, and L-Dopa (LD, the direct precursor of dopamine(DA, is the treatment of choice in more advanced stages of the disease. Substitutiontherapy with LD is, however, associated with a number of acute problems. The peripheralconversion of LD by amino acid decarboxylase (AADC to DA is responsible for thetypical gastrointestinal (nausea, emesis and cardiovascular (arrhythmia, hypotension sideeffects. To minimize the conversion to DA outside the central nervous system (CNS LD isusually given in combination with peripheral inhibitors of AADC (carbidopa andbenserazide. In spite of that, other central nervous side effects such as dyskinesia, on-offphenomenon and end-of-dose deterioration still remain. The main factors responsible forthe poor bioavailability and the wide range of inter- and intra-patient variations of plasmalevels are the drug’s physical-chemical properties: low water and lipid solubility, resultingin unfavourable partition, and the high susceptibility to chemical and enzymaticdegradation. In order to improve the bioavailability, the prodrug approach appeared to bethe most promising and some LD prodrugs have been prepared in an effort to solve theseproblems. We report here a review of progress in antiparkinson prodrugs, focusing onchemical structures mainly related to LD, DA and dopaminergic agonists.

  16. Effects of a Squalene Epoxidase Inhibitor, Terbinafine, on Ether Lipid Biosyntheses in a Thermoacidophilic Archaeon, Thermoplasma acidophilum

    Science.gov (United States)

    Kon, Takahide; Nemoto, Naoki; Oshima, Tairo; Yamagishi, Akihiko

    2002-01-01

    The archaeal plasma membrane consists mainly of diether lipids and tetraether lipids instead of the usual ester lipids found in other organisms. Although a molecule of tetraether lipid is thought to be synthesized from two molecules of diether lipids, there is no direct information about the biosynthetic pathway(s) or intermediates of tetraether lipid biosynthesis. In this study, we examined the effects of the fungal squalene epoxidase inhibitor terbinafine on the growth and ether lipid biosyntheses in the thermoacidophilic archaeon Thermoplasma acidophilum. Terbinafine was found to inhibit the growth of T. acidophilum in a concentration-dependent manner. When growing T. acidophilum cells were pulse-labeled with [2-14C]mevalonic acid in the presence of terbinafine, incorporation of radioactivity into the tetraether lipid fraction was strongly suppressed, while accumulation of radioactivity was noted at the position corresponding to diether lipids, depending on the concentration of terbinafine. After the cells were washed with fresh medium and incubated further without the radiolabeled substrate and the inhibitor, the accumulated radioactivity in the diether lipid fraction decreased quickly while that in the tetraether lipids increased simultaneously, without significant changes in the total radioactivity of ether lipids. These results strongly suggest that terbinafine inhibits the biosynthesis of tetraether lipids from a diether-type precursor lipid(s). The terbinafine treatment will be a tool for dissecting tetraether lipid biosynthesis in T. acidophilum. PMID:11844769

  17. Temperature-Dependent Alkyl Glycerol Ether Lipid Composition of Mesophilic and Thermophilic Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Arnauld Vinçon-Laugier

    2017-08-01

    Full Text Available The occurrence of non-isoprenoid alkyl glycerol ether lipids in Bacteria and natural environments is increasingly being reported and the specificity and diagenetic stability of these lipids make them powerful biomarkers for biogeochemical and environmental studies. Yet the environmental controls on the biosynthesis of these peculiar membrane lipids remain poorly documented. Here, the lipid content of two mesophilic (Desulfatibacillum aliphaticivorans and Desulfatibacillum alkenivorans and one thermophilic (Thermodesulfobacterium commune sulfate-reducing bacteria—whose membranes are mostly composed of ether lipids—was investigated as a function of growth temperature (20–40°C and 54–84°C, respectively. For all strains, the cellular lipid content was lower at sub- or supra-optimal growth temperature, but the relative proportions of dialkyl glycerols, monoalkyl glycerols and fatty acids remained remarkably stable whatever the growth temperature. Rather than changing the proportions of the different lipid classes, the three strains responded to temperature changes by modifying the average structural composition of the alkyl and acyl chains constitutive of their membrane lipids. Major adaptive mechanisms concerned modifications of the level of branching and of the proportions of the different methyl branched lipids. Specifically, an increase in temperature induced mesophilic strains to produce less dimethyl branched dialkyl glycerols and 10-methyl branched lipids relative to linear structures, and the thermophilic strain to decrease the proportion of anteiso relative to iso methyl branched compounds. These modifications were in agreement with a regulation of the membrane fluidity. In one mesophilic and the thermophilic strains, a modification of the growth temperature further induced changes in the relative proportions of sn-2 vs sn-1 monoalkyl glycerols, suggesting an unprecedented mechanism of homeoviscous adaptation in Bacteria. Strong

  18. Regiospecific analysis of neutral ether lipids by liquid chromatography/electrospray ionization/single quadrupole mass spectrometry: validation with synthetic compounds

    DEFF Research Database (Denmark)

    Hartvigsen, Karsten; Ravandi, A.; Bukhave, Klaus

    2001-01-01

    A reversed-phase high-performance liquid chromatography (HPLC) method with on-line electrospray ionization/collision-induced dissociation/mass spectrometry (ESI/CID/MS) is presented for the regiospecific analysis of synthetic reference compounds of neutral ether lipids. The reference compounds were...... characterized by chromatographic retention times, full mass spectra, and fragmentation patterns as an aid to clarify the regiospecificity of ether lipids from natural sources. The results clearly show that single quadrupole mass spectroscopic analysis may elucidate the regiospecific structure of neutral ether...... + H - H2O](+), whereas the reverse situation characterized the sn-3 species. Furthermore, corresponding sn-2 and sn-3 species were separated by the chromatographic system. However, loss of water was promoted as fatty acid unsaturation was raised, which may complicate interpretation of the mass spectra...

  19. Drug Delivery by an Enzyme-Mediated Cyclization of a Lipid Prodrug with Unique Bilayer-Formation Properties

    DEFF Research Database (Denmark)

    Linderoth, Lars; Peters, Günther H.j.; Madsen, Robert

    2009-01-01

    Special delivery: Liposomal drug-delivery systems in which prodrugs are activated specifically by disease-associated enzymes have great potential for the treatment of severe diseases, such as cancer. A new type of phospholipid-based prodrug has the ability to form stable small unilamellar vesicle...... (see picture). Activation of the prodrug vesicles by the enzyme sPLA2 initiates a cyclization reaction, which leads to the release of the drug....

  20. Lamellar crystalline self-assembly behaviour and solid lipid nanoparticles of a palmityl prodrug analogue of Capecitabine—A chemotherapy agent

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaojuan; Moghaddam, Minoo J.; Sagnella, Sharon M.; Conn, Charlotte E.; Danon, Stephen J.; Waddington, Lynne J.; Drummond, Calum J. [CSIRO/MSE

    2014-09-24

    An amphiphile prodrug, 5'-deoxy-5-fluoro-N4-(palmityloxycarbonyl) cytidine or 5'-deoxy-5-fluoro-N4-(hexadecanaloxycarbonyl) cytidine (5-FCPal), consisting of the same head group as the commercially available chemotherapeutic agent Capecitabine, linked to a palmityl hydrocarbon chain via a carbamate bond is reported. Thermal analysis of this prodrug indicates that it melts at ~115 °C followed quickly by degradation beginning at ~120 °C. The neat solid 5-FCPal amphiphile acquires a lamellar crystalline arrangement with a d-spacing of 28.6 ± 0.3 Å, indicating interdigitation of the hydrocarbon chains. Under aqueous conditions, solid 5-FCPal is non-swelling and no lyotropic liquid crystalline phase formation is observed. In order to assess the in vitro toxicity and in vivo efficacy in colloidal form, solid lipid nanoparticles (SLNs) with an average size of ~700 nm were produced via high pressure homogenization. The in vitro toxicity of the 5-FCPal SLNs against several different cancer and normal cell types was assessed over a 48 h period, and IC50 values were comparable to those observed for Capecitabine. The in vivo efficacy of the 5-FCPal SLNs was then assessed against the highly aggressive mouse 4T1 breast cancer model. To do so, the prodrug SLNs were administered orally at 3 different dosages (0.1, 0.25, 0.5 mmol/mouse/day) and compared to Capecitabine delivered at the same dosages. After 21 days of receiving the treatments, the 0.5 mmol dose of 5-FCPal exhibited the smallest average tumour volume. Since 5-FCPal is activated in a similar manner to Capecitabine via a 3 step enzymatic pathway with the final step occurring preferentially at the tumour site, formulation of the prodrug into SLNs combines the advantage of selective, localized activation with the sustained release properties of nanostructured amphiphile self-assembly and multiple payload materials thereby potentially creating a more effective anticancer agent.

  1. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38.

    Science.gov (United States)

    Bala, Vaskor; Rao, Shasha; Boyd, Ben J; Prestidge, Clive A

    2013-11-28

    SN38 (7-ethyl-10-hydroxy camptothecin) is a prominent and efficacious anticancer agent. It is poorly soluble in both water and pharmaceutically approved solvents; therefore, the direct formulation of SN38 in solution form is limited. Currently, the water soluble prodrug of SN38, irinotecan (CPT-11), is formulated as a low pH solution and is approved for chemotherapy. However, CPT-11, along with most other water-soluble prodrugs shows unpredictable inter-patient conversion to SN38 in vivo, instability in the physiological environment and variable dose-related toxicities. More recently, macromolecular prodrugs (i.e. EZN-2208, IMMU-130) and nanomedicine formulations (i.e. nanoemulsions, polymeric micelles, lipid nanocapsule/nanoparticle, and liposomes) of SN38 have been investigated for improved delivery to cancer cells and tissues. Specifically, these carriers can take advantage of the EPR effect to direct drug preferentially to tumour tissues, thereby substantially improving efficacy and minimising side effects. Furthermore, oral delivery has been shown to be possible in preclinical results using nanomedicine formulations (i.e. dendrimers, lipid nanocapsules, polymeric micelles). This review summarizes the recent advances for the delivery of SN38 with a focus on macromolecular prodrugs and nanomedicines. © 2013 Elsevier B.V. All rights reserved.

  2. Dendrimer Prodrugs

    Directory of Open Access Journals (Sweden)

    Soraya da Silva Santos

    2016-05-01

    Full Text Available The main objective of this review is to describe the importance of dendrimer prodrugs in the design of new drugs, presenting numerous applications of these nanocomposites in the pharmaceutical field. Therefore, the use of dendrimer prodrugs as carrier for drug delivery, to improve pharmacokinetic properties of prototype, to promote drug sustained-release, to increase selectivity and, consequently, to decrease toxicity, are just some examples of topics that have been extensively reported in the literature, especially in the last decade. The examples discussed here give a panel of the growing interest dendrimer prodrugs have been evoking in the scientific community.

  3. Targeted enzyme prodrug therapies.

    Science.gov (United States)

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  4. Construction and cellular uptake behavior of redox-sensitive docetaxel prodrug-loaded liposomes.

    Science.gov (United States)

    Ren, Guolian; Jiang, Mengjuan; Guo, Weiling; Sun, Bingjun; Lian, He; Wang, Yongjun; He, Zhonggui

    2018-01-01

    A redox-responsive docetaxel (DTX) prodrug consisting of a disulfide linkage between DTX and vitamin E (DTX-SS-VE) was synthesized in our laboratory and was successfully formulated into liposomes. The aim of this study was to optimize the formulation and investigate the cellular uptake of DTX prodrug-loaded liposomes (DPLs). The content of DTX-SS-VE was determined by ultrahigh-performance liquid chromatography (UPLC). The formulation and process were optimized using entrapment efficiency (EE), drug-loading (DL), particle size and polydispersity index (PDI) as the evaluation indices. The optimal formulation was as follows: drug/lipid ratio of 1:12, cholesterol/lipid ratio of 1:10, hydration temperature of 40 °C, sonication power and time of 400 W and 5 min. The EE, DL and particle size of the optimized DPLs were 97.60 ± 0.03%, 7.09 ± 0.22% and 93.06 ± 0.72 nm, respectively. DPLs had good dilution stability under the physiological conditions over 24 h. In addition, DPLs were found to enter tumor cells via different pathways and released DTX from the prodrug to induce apoptosis. Taken together, the optimized formulation and process were found to be a simple, stable and applicable method for the preparation of DPLs that could successfully escape from lysosomes.

  5. Prodrugs in Cardiovascular Therapy

    Directory of Open Access Journals (Sweden)

    Maryam Tabrizian

    2008-05-01

    Full Text Available Prodrugs are biologically inactive derivatives of an active drug intended to solve certain problems of the parent drug such as toxicity, instability, minimal solubility and non-targeting capabilities. The majority of drugs for cardiovascular diseases undergo firstpass metabolism, resulting in drug inactivation and generation of toxic metabolites, which makes them appealing targets for prodrug design. Since prodrugs undergo a chemical reaction to form the parent drug once inside the body, this makes them very effective in controlling the release of a variety of compounds to the targeted site. This review will provide the reader with an insight on the latest developments of prodrugs that are available for treating a variety of cardiovascular diseases. In addition, we will focus on several drug delivery methodologies that have merged with the prodrug approach to provide enhanced target specificity and controlled drug release with minimal side effects.

  6. Cytomegalovirus protease targeted prodrug development.

    Science.gov (United States)

    Sabit, Hairat; Dahan, Arik; Sun, Jing; Provoda, Chester J; Lee, Kyung-Dall; Hilfinger, John H; Amidon, Gordon L

    2013-04-01

    Human cytomegalovirus (HCMV) is a prevalent virus that infects up to 90% of the population. The goal of this research is to determine if small molecular prodrug substrates can be developed for a specific HCMV encoded protease and thus achieve site-specific activation. HCMV encodes a 256 amino acid serine protease that is responsible for capsid assembly, an essential process for herpes virus production. The esterase activity of the more stable HCMV A143T/A144T protease mutant was evaluated with model p-nitrophenol (ONp) esters, Boc-Xaa-ONp (Ala, Leu, Ile, Val, Gln, Phe at the Xaa position). We demonstrate that the A143T/A144T mutant has esterase activity toward specific small ester compounds, e.g., Boc-L-Ala-ONp. Mono amino acid and dipeptide prodrugs of ganciclovir (GCV) were also synthesized and evaluated for hydrolysis by the A143T/A144T protease mutant in solution. Hydrolysis of these prodrugs was also evaluated in Caco-2 cell homogenates, human liver microsomes (HLMs), and rat and human plasma. For the selectivity potential of the prodrugs, the hydrolysis ratio was evaluated as a percentage of prodrug hydrolyzed by the HCMV protease over the percentages of prodrug hydrolyses by Caco-2 cell homogenates, HLMs, and human/rat plasma. A dipeptide prodrug of ganciclovir, Ac-l-Gln-l-Ala-GCV, emerged as a potential selective prodrug candidate. The results of this research demonstrate that targeting prodrugs for activation by a specific protease encoded by the infectious HCMV pathogen may be achievable.

  7. Prodrug Strategy in Drug Development

    Directory of Open Access Journals (Sweden)

    Hajnal Kelemen

    2016-09-01

    Full Text Available Prodrugs are chemically modified derivatives introduced in therapy due to their advantageous physico-chemical properties (greater stability, improved solubility, increased permeability, used in inactive form. Biological effect is exerted by the active derivatives formed in organism through chemical transformation (biotransformation. Currently, 10% of pharmaceutical products are used as prodrugs, nearly half of them being converted to active form by hydrolysis, mainly by ester hydrolysis. The use of prodrugs aims to improve the bioavailability of compounds in order to resolve some unfavorable characteristics and to reduce first-pass metabolism. Other objectives are to increase drug absorption, to extend duration of action or to achieve a better tissue/organ selective transport in case of non-oral drug delivery forms. Prodrugs can be characterized by chemical structure, activation mechanism or through the presence of certain functional groups suitable for their preparation. Currently we distinguish in therapy traditional prodrugs prepared by chemical derivatisation, bioprecursors and targeted delivery systems. The present article is a review regarding the introduction and applications of prodrug design in various areas of drug development.

  8. Suppression of inflammation in a mouse model of rheumatoid arthritis using targeted lipase-labile fumagillin prodrug nanoparticles.

    Science.gov (United States)

    Zhou, Hui-Fang; Yan, Huimin; Senpan, Angana; Wickline, Samuel A; Pan, Dipanjan; Lanza, Gregory M; Pham, Christine T N

    2012-11-01

    Nanoparticle-based therapeutics are emerging technologies that have the potential to greatly impact the treatment of many human diseases. However, drug instability and premature release from the nanoparticles during circulation currently preclude clinical translation. Herein, we use a lipase-labile (Sn 2) fumagillin prodrug platform coupled with a unique lipid surface-to-surface targeted delivery mechanism, termed contact-facilitated drug delivery, to counter the premature drug release and overcome the inherent photo-instability of fumagillin, an established anti-angiogenic agent. We show that α(v)β(3)-integrin targeted fumagillin prodrug nanoparticles, administered at 0.3 mg of fumagillin prodrug/kg of body weight suppress the clinical disease indices of KRN serum-mediated arthritis in a dose-dependent manner when compared to treatment with the control nanoparticles with no drug. This study demonstrates the effectiveness of this lipase-labile prodrug nanocarrier in a relevant preclinical model that approximates human rheumatoid arthritis. The lipase-labile prodrug paradigm offers a translatable approach that is broadly applicable to many targeted nanosystems and increases the translational potential of this platform for many diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Archaeal lipids in oral delivery of therapeutic peptides

    DEFF Research Database (Denmark)

    Jacobsen, Ann-Christin; Jensen, Sara M; Fricker, Gert

    2017-01-01

    Archaea contain membrane lipids that differ from those found in the other domains of life (Eukarya and Bacteria). These lipids consist of isoprenoid chains attached via ether bonds to the glycerol carbons at the sn-2,3 positions. Two types of ether lipids are known, polar diether lipids and bipolar...

  10. Modern Prodrug Design for Targeted Oral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Arik Dahan

    2014-10-01

    Full Text Available The molecular information that became available over the past two decades significantly influenced the field of drug design and delivery at large, and the prodrug approach in particular. While the traditional prodrug approach was aimed at altering various physiochemical parameters, e.g., lipophilicity and charge state, the modern approach to prodrug design considers molecular/cellular factors, e.g., membrane influx/efflux transporters and cellular protein expression and distribution. This novel targeted-prodrug approach is aimed to exploit carrier-mediated transport for enhanced intestinal permeability, as well as specific enzymes to promote activation of the prodrug and liberation of the free parent drug. The purpose of this article is to provide a concise overview of this modern prodrug approach, with useful successful examples for its utilization. In the past the prodrug approach used to be viewed as a last option strategy, after all other possible solutions were exhausted; nowadays this is no longer the case, and in fact, the prodrug approach should be considered already in the very earliest development stages. Indeed, the prodrug approach becomes more and more popular and successful. A mechanistic prodrug design that aims to allow intestinal permeability by specific transporters, as well as activation by specific enzymes, may greatly improve the prodrug efficiency, and allow for novel oral treatment options.

  11. Potential Development of Tumor-Targeted Oral Anti-Cancer Prodrugs: Amino Acid and Dipeptide Monoester Prodrugs of Gemcitabine.

    Science.gov (United States)

    Tsume, Yasuhiro; Drelich, Adam J; Smith, David E; Amidon, Gordon L

    2017-08-10

    One of the main obstacles for cancer therapies is to deliver medicines effectively to target sites. Since stroma cells are developed around tumors, chemotherapeutic agents have to go through stroma cells in order to reach tumors. As a method to improve drug delivery to the tumor site, a prodrug approach for gemcitabine was adopted. Amino acid and dipeptide monoester prodrugs of gemcitabine were synthesized and their chemical stability in buffers, resistance to thymidine phosphorylase and cytidine deaminase, antiproliferative activity, and uptake/permeability in HFF cells as a surrogate to stroma cells were determined and compared to their parent drug, gemcitabine. The activation of all gemcitabine prodrugs was faster in pancreatic cell homogenates than their hydrolysis in buffer, suggesting enzymatic action. All prodrugs exhibited great stability in HFF cell homogenate, enhanced resistance to glycosidic bond metabolism by thymidine phosphorylase, and deamination by cytidine deaminase compared to their parent drug. All gemcitabine prodrugs exhibited higher uptake in HFF cells and better permeability across HFF monolayers than gemcitabine, suggesting a better delivery to tumor sites. Cell antiproliferative assays in Panc-1 and Capan-2 pancreatic ductal cell lines indicated that the gemcitabine prodrugs were more potent than their parent drug gemcitabine. The transport and enzymatic profiles of gemcitabine prodrugs suggest their potential for delayed enzymatic bioconversion and enhanced resistance to metabolic enzymes, as well as for enhanced drug delivery to tumor sites, and cytotoxic activity in cancer cells. These attributes would facilitate the prolonged systemic circulation and improved therapeutic efficacy of gemcitabine prodrugs.

  12. Long-Acting Diclofenac Ester Prodrugs for Joint Injection: Kinetics, Mechanism of Degradation, and In Vitro Release From Prodrug Suspension.

    Science.gov (United States)

    Mertz, Nina; Larsen, Susan Weng; Kristensen, Jesper; Østergaard, Jesper; Larsen, Claus

    2016-10-01

    A prodrug approach for local and sustained diclofenac action after injection into joints based on ester prodrugs having a pH-dependent solubility is presented. Inherent ester prodrug properties influencing the duration of action include their pH-dependent solubility and charge state, as well as susceptibility to undergo esterase facilitated hydrolysis. In this study, physicochemical properties and pH rate profiles of 3 diclofenac ester prodrugs differing with respect to the spacer carbon chain length between the drug and the imidazole-based promoiety were determined and a rate equation for prodrug degradation in aqueous solution in the pH range 1-10 was derived. In the pH range 6-10, the prodrugs were subject to parallel degradation to yield diclofenac and an indolinone derivative. The prodrug degradation was found to be about 6-fold faster in 80% (vol/vol) human plasma as compared to 80% (vol/vol) human synovial fluid with 2-(1-methyl-1H-imidazol-2-yl)ethyl 2-(2-(2,6 dichlorophenyl)amino)phenylacetate being the poorest substrate toward enzymatic cleavage. The conversion and release of parent diclofenac from prodrug suspensions in vitro were studied using the rotating dialysis model. The results suggest that it is possible to alter and control dissolution and reconversion behavior of the diclofenac prodrugs, thus making the prodrug approach feasible for local and sustained diclofenac action after joint injection. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Ketobemidone prodrugs for buccal delivery

    DEFF Research Database (Denmark)

    Hansen, L.B.; Christrup, Lona Louring; Bundgaard, H.

    1992-01-01

    As part of studies aiming at developing a ketobemidone prodrug suitable for buccal or sublingual administration, the potential impact of saliva enzyme-catalyzed hydrolysis of various ester prodrugs was assessed. The hydrolysis of three ketobemidone esters in human whole saliva, obtained under con...... in the mouth and their rate of disintegration were shown to have some influence on the rate of saliva secretion and hence on saliva esterase activity but not to an extent compromising the efficient buccal or sublingual delivery of the ketobemidone prodrugs....

  14. Design of cellulose ether-based macromolecular prodrugs of ciprofloxacin for extended release and enhanced bioavailability.

    Science.gov (United States)

    Amin, Muhammad; Abbas, Nazia Shahana; Hussain, Muhammad Ajaz; Sher, Muhammad; Edgar, Kevin J

    2018-07-01

    The present study reveals the syntheses of hydroxypropylcellulose‑(HPC) and hydroxyethylcellulose‑(HEC) based macromolecular prodrugs (MPDs) of ciprofloxacin (CIP) using homogeneous reaction methodology. Covalently loaded drug content (DC) of each prodrug was quantified using UV-Vis spectrophotometry to determine degree of substitution (DS). HPC-ciprofloxacin (HPC-CIP) conjugates showed DS of CIP in the range 0.87-1.15 whereas HEC-ciprofloxacin (HEC-CIP) conjugates showed DS range 0.51-0.75. Transmission electron microscopy revealed that HPC-CIP conjugate 2 and HEC-CIP conjugate 6 self-assembled into nanoparticles of 150-300 and 180-250nm, respectively. Size exclusion chromatography revealed HPC-CIP conjugate 2 and HEC-CIP conjugate 6 as monodisperse systems. In vitro drug release studies indicated 15 and 43% CIP release from HPC-CIP conjugate 2 after 6h in simulated gastric and simulated intestinal fluids (SGF and SIF), respectively. HEC-CIP conjugate 6 showed 16% and 46% release after 6h in SGF and SIF, respectively. HPC-CIP conjugate 2 and HEC-CIP conjugate 6 exhibited half-lives of 10.87 and 11.71h, respectively with area under the curve values of 164 and 175hμgmL -1 , respectively, indicating enhanced bioavailability and improved pharmacokinetic profiles in animal model. Equal antibacterial activities to that of unmodified CIP confirmed their competitive efficacies. Cytotoxicity studies supported their non-toxic nature and biocompatibility. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Preclinical studies of dendrimer prodrugs.

    Science.gov (United States)

    Kojima, Chie

    2015-01-01

    Dendrimers are synthetic macromolecules with well-defined structures bearing a wide variety of functional groups on their periphery. These groups can be used to conjugate bioactive molecules such as drugs, ligands and imaging agents. Dendrimer prodrugs can be used to improve the water solubility and pharmacokinetic properties of the corresponding free drugs. This article summarizes preclinical studies pertaining to the use of drug-dendrimer conjugates as dendrimer prodrugs for the treatments of various diseases, including cancer and inflammatory diseases. A wide range of anticancer drugs have been conjugated to dendrimers via biodegradable linkers. The side effects of the parent drugs can be markedly reduced using dendrimer prodrugs, with some drugs showing improved efficacy. Anti-inflammatory agents have also been conjugated to dendrimers and used to treat a number of inflammatory diseases. Drug-dendrimer conjugates are preferable to drug-dendrimer complexes, where the use of degradable linkers is critical to the release of the drug. Polyethylene glycol and/or ligands can be added to a dendrimer prodrug, which is useful for the targeting of affected tissues. Imaging probes can also be incorporated into dendrimer prodrugs for the simultaneous delivery of therapeutic and diagnostic agents as 'theranostics.'

  16. Long-Acting Diclofenac Ester Prodrugs for Joint Injection

    DEFF Research Database (Denmark)

    Mertz, Nina; Larsen, Susan Weng; Kristensen, Jesper

    2016-01-01

    A prodrug approach for local and sustained diclofenac action after injection into joints based on ester prodrugs having a pH-dependent solubility is presented. Inherent ester prodrug properties influencing the duration of action include their pH-dependent solubility and charge state, as well...... as susceptibility to undergo esterase facilitated hydrolysis. In this study, physicochemical properties and pH rate profiles of 3 diclofenac ester prodrugs differing with respect to the spacer carbon chain length between the drug and the imidazole-based promoiety were determined and a rate equation for prodrug...... degradation in aqueous solution in the pH range 1-10 was derived. In the pH range 6-10, the prodrugs were subject to parallel degradation to yield diclofenac and an indolinone derivative. The prodrug degradation was found to be about 6-fold faster in 80% (vol/vol) human plasma as compared to 80% (vol...

  17. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  18. Photoactivatable Caged Prodrugs of VEGFR-2 Kinase Inhibitors

    OpenAIRE

    Boris Pinchuk; Rebecca Horbert; Alexander Döbber; Lydia Kuhl; Christian Peifer

    2016-01-01

    In this study, we report on the design, synthesis, photokinetic properties and in vitro evaluation of photoactivatable caged prodrugs for the receptor tyrosine kinase VEGFR-2. Highly potent VEGFR-2 inhibitors 1 and 3 were caged by introduction of a photoremovable protecting group (PPG) to yield the caged prodrugs 4 and 5. As expected, enzymatic and cellular proliferation assays showed dramatically diminished efficacy of caged prodrugs in vitro. Upon ultraviolet (UV) irradiation of the prodrug...

  19. Hypoxia-targeting antitumor prodrugs and photosensitizers

    International Nuclear Information System (INIS)

    Zhang Zhouen; Nishimoto, S.I.

    2006-01-01

    Tumor hypoxia has been identified as a key subject for tumor therapy, since hypoxic tumor cells show resistance to treatment of tumor tissues by radiotherapy, chemotherapy and phototherapy. For improvement of tumor radiotherapy, we have proposed a series of radiation-activated prodrugs that could selectively release antitumor agent 5-fluorouracil or 5-fluorodeoxyuridine under hypoxic conditions. Recently, we attempted to develop two families of novel hypoxia-targeting antitumor agents, considering that tumor-hypoxic environment is favorable to biological and photochemical reductions. The first family of prodrugs was derived from camptothecin as a potent topoisomerase I inhibitor and several bioreductive motifs. These prodrugs could be activated by NADPH-cytochrome P450 reductase or DT-diaphorase to release free camptothecin, and thereby showed hypoxia-selective cytotoxictiy towards tumor cells. These prodrugs were also applicable to the real-time monitoring of activation and antitumor effect by fluorometry. Furthermore, the camptothecin-bioreductive motif conjugates was confirmed to show an oxygen-independent DAN photocleaving activity, which could overcome a drawback of back electron transfer occurring in the photosensitized one-electron oxidation of DNA. Thus, these camptothecin derivatives could be useful to both chemotherapy and phototherapy for hypoxic tumor cells. The second family of prodrugs harnessed UV light for cancer therapy, incorporating the antitumor agent 5-fluorourcil and the photolabile 2-nitrobenzyl chromophores. The attachment of a tumor-homing cyclic peptide CNGRC was also employed to construct the prototype of tumor-targeting photoactiaved antitumor prodrug. These novel prodrugs released high yield of 5-fluorourcil upon UV irradiation at λ ex =365 nm, while being quite stable in the dark. The photoactivation mechanism was also clarified by means of nanosecond laser flash photolysis. (authors)

  20. Photoactivatable Caged Prodrugs of VEGFR-2 Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Boris Pinchuk

    2016-04-01

    Full Text Available In this study, we report on the design, synthesis, photokinetic properties and in vitro evaluation of photoactivatable caged prodrugs for the receptor tyrosine kinase VEGFR-2. Highly potent VEGFR-2 inhibitors 1 and 3 were caged by introduction of a photoremovable protecting group (PPG to yield the caged prodrugs 4 and 5. As expected, enzymatic and cellular proliferation assays showed dramatically diminished efficacy of caged prodrugs in vitro. Upon ultraviolet (UV irradiation of the prodrugs original inhibitory activity was completely restored and even distinctly reinforced, as was the case for the prodrug 4. The presented results are a further evidence for caging technique being an interesting approach in the protein kinase field. It could enable spatial and temporal control for the inhibition of VEGFR-2. The described photoactivatable prodrugs might be highly useful as biological probes for studying the VEGFR-2 signal transduction.

  1. Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion.

    Science.gov (United States)

    Borreani, Jennifer; Espert, María; Salvador, Ana; Sanz, Teresa; Quiles, Amparo; Hernando, Isabel

    2017-04-19

    The effect of cellulose ethers in oil-in-water emulsions on stability during storage and on texture, microstructure and lipid digestibility during in vitro gastrointestinal digestion was investigated. All the cellulose ether emulsions showed good physical and oxidative stability during storage. In particular, the methylcellulose with high methoxyl substituents (HMC) made it possible to obtain emulsions with high consistency which remained almost unchanged during gastric digestion, and thus could enhance fullness and satiety perceptions at gastric level. Moreover, the HMC emulsion slowed down lipid digestion to a greater extent than a conventional protein emulsion or the emulsions stabilised by the other cellulose ethers. Therefore, HMC emulsions could be used in weight management to increase satiation capacity and decrease lipid digestion.

  2. Stimuli-responsive PEGylated prodrugs for targeted doxorubicin delivery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minghui; Qian, Junmin, E-mail: jmqian@mail.xjtu.edu.cn; Liu, Xuefeng; Liu, Ting; Wang, Hongjie

    2015-05-01

    In recent years, stimuli-sensitive prodrugs have been extensively studied for the rapid “burst” release of antitumor drugs to enhance chemotherapeutic efficiency. In this study, a novel stimuli-sensitive prodrug containing galactosamine as a targeting moiety, poly(ethylene glycol)–doxorubicin (PEG–DOX) conjugate, was developed for targeting HepG2 human liver cancer cells. To obtain the PEG–DOX conjugate, both galactosamine-decorated poly(ethylene glycol) aldehyde (Gal-PEG-CHO) and methoxy poly(ethylene glycol) aldehyde (mPEG-CHO) were firstly synthesized and functionalized with dithiodipropionate dihydrazide (TPH) through direct reductive amination via Schiff's base formation, and then DOX molecules were chemically conjugated to the hydrazide end groups of TPH-functionalized Gal-/m-PEG chains via pH-sensitive hydrazone linkages. The chemical structures of TPH-functionalized PEG and PEG–DOX prodrug were confirmed by {sup 1}H NMR analysis. The PEG–DOX conjugate could self-assemble into spherical nanomicelles with a mean diameter of 140 nm, as indicated by transmission electron microscopy and dynamic light scattering. The drug loading content and loading efficiency in the prodrug nanomicelles were as high as 20 wt.% and 75 wt.%, respectively. In vitro drug release studies showed that DOX was released rapidly from the prodrug nanomicelles at the intracellular levels of pH and reducing agent. Cellular uptake and MTT experiments demonstrated that the galactosamine-decorated prodrug nanomicelles were more efficiently internalized into HepG2 cells via a receptor-mediated endocytosis process and exhibited a higher toxicity, compared with pristine prodrug nanomicelles. These results suggest that the novel Gal-PEG–DOX prodrug nanomicelles have tremendous potential for targeted liver cancer therapy. - Highlights: • A novel stimuli-responsive PEGylated prodrugs is synthesized. • PEGylated prodrugs can self-assemble into spherical nanoparticles (140 nm

  3. Toxicology and Biodistribution Studies for MGH2.1, an Oncolytic Virus that Expresses Two Prodrug-activating Genes, in Combination with Prodrugs

    Directory of Open Access Journals (Sweden)

    Kazue Kasai

    2013-01-01

    Full Text Available MGH2.1 is a herpes simplex virus type 1 (HSV1 oncolytic virus that expresses two prodrug-activating transgenes: the cyclophosphamide (CPA-activating cytochrome P4502B1 (CYP2B1 and the CPT11-activating secreted human intestinal carboxylesterase (shiCE. Toxicology and biodistribution of MGH2.1 in the presence/absence of prodrugs was evaluated in mice. MGH2.1 ± prodrugs was cytotoxic to human glioma cells, but not to normal cells. Pharmacokinetically, intracranial MGH2.1 did not significantly alter the metabolism of intraperitoneally (i.p. administered prodrugs in mouse plasma, brain, or liver. MGH2.1 did not induce an acute inflammatory reaction. MGH2.1 DNA was detected in brains of mice inoculated with 108 pfus for up to 60 days. However, only one animal showed evidence of viral gene expression at this time. Expression of virally encoded genes was restricted to brain. Intracranial inoculation of MGH2.1 did not induce lethality at 108 pfus in the absence of prodrugs and at 106 pfus in the presence of prodrugs. This study provides safety and toxicology data justifying a possible clinical trial of intratumoral injection of MGH2.1 with peripheral administration of CPA and/or CPT11 prodrugs in humans with malignant gliomas.

  4. Substrate-Competitive Activity-Based Profiling of Ester Prodrug Activating Enzymes.

    Science.gov (United States)

    Xu, Hao; Majmudar, Jaimeen D; Davda, Dahvid; Ghanakota, Phani; Kim, Ki H; Carlson, Heather A; Showalter, Hollis D; Martin, Brent R; Amidon, Gordon L

    2015-09-08

    Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and

  5. Model prodrugs for the intestinal oligopeptide transporter

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    The human intestinal di/tri-peptide carrier, hPepT1, has been suggested as a target for increasing intestinal transport of low permeability compounds by creating prodrugs designed for the transporter. Model ester prodrugs using the stabilized dipeptides D-Glu-Ala and D-Asp-Ala as pro...... with a pH of approximately 6.0, but still release the model drug at the intercellular and blood pH of approximately 7.4. Even though benzyl alcohol is not a low molecular weight drug molecule, these results indicate that the dipeptide prodrug principle is a promising drug delivery concept. However......, the physico-chemical properties such as electronegativity, solubility, and log P of the drug molecule may also have an influence on the potential of these kinds of prodrugs. The purpose of the present study is to investigate whether the model drug electronegativity, estimated as Taft substitution parameter...

  6. Prodrugs of herpes simplex thymidine kinase inhibitors.

    Science.gov (United States)

    Yanachkova, Milka; Xu, Wei-Chu; Dvoskin, Sofya; Dix, Edward J; Yanachkov, Ivan B; Focher, Federico; Savi, Lida; Sanchez, M Dulfary; Foster, Timothy P; Wright, George E

    2015-04-01

    Because guanine-based herpes simplex virus thymidine kinase inhibitors are not orally available, we synthesized various 6-deoxy prodrugs of these compounds and evaluated them with regard to solubility in water, oral bioavailability, and efficacy to prevent herpes simplex virus-1 reactivation from latency in a mouse model. Organic synthesis was used to prepare compounds, High Performance Liquid Chromatography (HPLC) to analyze hydrolytic conversion, Mass Spectrometry (MS) to measure oral bioavailability, and mouse latent infection and induced reactivation to evaluate the efficacy of a specific prodrug. Aqueous solubilities of prodrugs were improved, oxidation of prodrugs by animal cytosols occurred in vitro, and oral absorption of the optimal prodrug sacrovir™ (6-deoxy-mCF3PG) in the presence of the aqueous adjuvant Soluplus® and conversion to active compound N(2)-[3-(trifluoromethyl)pheny])guanine (mCF3PG) were accomplished in mice. Treatment of herpes simplex virus-1 latent mice with sacrovir™ in 1% Soluplus in drinking water significantly suppressed herpes simplex virus-1 reactivation and viral genomic replication. Ad libitum oral delivery of sacrovir™ was effective in suppressing herpes simplex virus-1 reactivation in ocularly infected latent mice as measured by the numbers of mice shedding infectious virus at the ocular surface, numbers of trigeminal ganglia positive for infectious virus, number of corneas that had detectable infectious virus, and herpes simplex virus-1 genome copy numbers in trigeminal ganglia following reactivation. These results demonstrate the statistically significant effect of the prodrug on suppressing herpes simplex virus-1 reactivation in vivo. © The Author(s) 2015.

  7. Suppression of inflammation in a mouse model of rheumatoid arthritis using targeted lipase-labile fumagillin prodrug nanoparticles

    OpenAIRE

    Zhou, Hui-fang; Yan, Huimin; Senpan, Angana; Wickline, Samuel A.; Pan, Dipanjan; Lanza, Gregory M.; Pham, Christine T.N.

    2012-01-01

    Nanoparticle-based therapeutics are emerging technologies that have the potential to greatly impact the treatment of many human diseases. However, drug instability and premature release from the nanoparticles during circulation currently preclude clinical translation. Herein, we use a lipase-labile (Sn 2) fumagillin prodrug platform coupled with a unique lipid surface-to-surface targeted delivery mechanism, termed contact-facilitated drug delivery, to counter the premature drug release and ov...

  8. Substrate mediated enzyme prodrug therapy

    DEFF Research Database (Denmark)

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  9. Improvement of buccal delivery of morphine using the prodrug approach

    DEFF Research Database (Denmark)

    Christrup, Lona Louring; Jørgensen, A.; Christensen, C.B.

    1997-01-01

    relationship to the lipophilicity of the compounds. In the in vitro studies the optimal permeation was achieved for the prodrug morphine-3-propionate having a log P value of approximately 0.7. In contrast to that optimal in vivo absorption was obtained for the prodrug morphine-3-acetate having a log P value...... Improved by using ester prodrugs with higher lipophilicity than morphine itself. However, the enzymatic stability of the prodrugs in saliva also play an important role for the overall improvement in absorption properties....

  10. The Flavin Reductase MsuE Is a Novel Nitroreductase that Can Efficiently Activate Two Promising Next-Generation Prodrugs for Gene-Directed Enzyme Prodrug Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Green, Laura K.; Storey, Mathew A. [School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140 (New Zealand); Williams, Elsie M. [School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140 (New Zealand); Victoria University Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Patterson, Adam V.; Smaill, Jeff B. [Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1142 (New Zealand); Auckland Cancer Society Research Centre, University of Auckland, Grafton, Auckland 1142 (New Zealand); Copp, Janine N.; Ackerley, David F., E-mail: david.ackerley@vuw.ac.nz [School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140 (New Zealand); Victoria University Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1142 (New Zealand)

    2013-08-08

    Bacterial nitroreductase enzymes that can efficiently catalyse the oxygen-independent reduction of prodrugs originally developed to target tumour hypoxia offer great potential for expanding the therapeutic range of these molecules to aerobic tumour regions, via the emerging cancer strategy of gene-directed enzyme prodrug therapy (GDEPT). Two promising hypoxia prodrugs for GDEPT are the dinitrobenzamide mustard PR-104A, and the nitrochloromethylbenzindoline prodrug nitro-CBI-DEI. We describe here use of a nitro-quenched fluorogenic probe to identify MsuE from Pseudomonas aeruginosa as a novel nitroreductase candidate for GDEPT. In SOS and bacteria-delivered enzyme prodrug cytotoxicity assays MsuE was less effective at activating CB1954 (a first-generation GDEPT prodrug) than the “gold standard” nitroreductases NfsA and NfsB from Escherichia coli. However, MsuE exhibited comparable levels of activity with PR-104A and nitro-CBI-DEI, and is the first nitroreductase outside of the NfsA and NfsB enzyme families to do so. These in vitro findings suggest that MsuE is worthy of further evaluation in in vivo models of GDEPT.

  11. The Flavin Reductase MsuE Is a Novel Nitroreductase that Can Efficiently Activate Two Promising Next-Generation Prodrugs for Gene-Directed Enzyme Prodrug Therapy

    International Nuclear Information System (INIS)

    Green, Laura K.; Storey, Mathew A.; Williams, Elsie M.; Patterson, Adam V.; Smaill, Jeff B.; Copp, Janine N.; Ackerley, David F.

    2013-01-01

    Bacterial nitroreductase enzymes that can efficiently catalyse the oxygen-independent reduction of prodrugs originally developed to target tumour hypoxia offer great potential for expanding the therapeutic range of these molecules to aerobic tumour regions, via the emerging cancer strategy of gene-directed enzyme prodrug therapy (GDEPT). Two promising hypoxia prodrugs for GDEPT are the dinitrobenzamide mustard PR-104A, and the nitrochloromethylbenzindoline prodrug nitro-CBI-DEI. We describe here use of a nitro-quenched fluorogenic probe to identify MsuE from Pseudomonas aeruginosa as a novel nitroreductase candidate for GDEPT. In SOS and bacteria-delivered enzyme prodrug cytotoxicity assays MsuE was less effective at activating CB1954 (a first-generation GDEPT prodrug) than the “gold standard” nitroreductases NfsA and NfsB from Escherichia coli. However, MsuE exhibited comparable levels of activity with PR-104A and nitro-CBI-DEI, and is the first nitroreductase outside of the NfsA and NfsB enzyme families to do so. These in vitro findings suggest that MsuE is worthy of further evaluation in in vivo models of GDEPT

  12. Biosynthesis of membrane lipids of thermophilic archaebacteria and its implication to early evolution of life

    International Nuclear Information System (INIS)

    Oshima, Tairo

    1995-01-01

    The unit lipid of cell membranes of archaebacteria is unique ether lipids, O-dialkylated glycerol with a polar head group at sn-1 position. The chirality of glycerol moiety of the lipids is opposite to that of other kingdoms. The hydrophobic potion consists of saturated C 20 isoprenoid hydrocarbon backbone and is connected to glycerol by an ether linkage. In addition, cell membrane of some of thermophilic archaebacteria are monolayer (in stead of bilayer) of tetraether lipids in which both tails of hydrocarbon chains of two diether lipids are covalently connected in a tail-to-tail fashion. Although the host cell from which contemporary eukaryotes have been derived by endosymbiosis, is speculated to be an archaebacterium, the unique ether lipids raised a serious question to the idea of archabacterial origin of eukaryote cells; why the unique ether lipids are not used to construct cytoplasmic membranes of eukaryotes? The author and his colleagues have studied biosynthesis of membrane liquids of two thermo-acidophilic archaebacteria, Thermoplasma and Sulfolobus. It was found that origins of stereospecificity of glycerol moiety of archaebacterial ether lipids differs form species to species. In Sulfolobus sn-glycerol-1-phosphate (the abnormal isomer of glycerol phosphate) seems to be directly synthesized from glycerol, whereas in Halobacterium stereospecificity of glycerol phosphate is inverted during the lipid synthesis. Recently we found that specific inhibitors for eukaryotes squalene epoxidase inhibit the condensation of diether lipids to tetraether lipids in cell-free extracts of these thermophilic archaebacteria. The results suggest evolutionary implication of archaebacterial tetraether condensing enzyme to eukaryote sterol biosynthesis. Relationships between chemical structures of membrane lipids and early evolution of life will be discussed. (author). Abstract only

  13. Colon-specific prodrugs of 5-radioiodo-2'-deoxyuridine

    International Nuclear Information System (INIS)

    Baranowska-Kortylewicz, J.; Kortylewicz, Z.P.; Hoffman, D.; Winoto, A.; Lai, J.; Dalrymple, G.V.

    1996-01-01

    Two glycoside-based prodrugs, 125 IUdR-5'-β-D-glucopyranoside and 125 IUdR-5'-β-D-galactopyranoside, were synthesized. This selection was dictated by the abundance of appropriate enzymes in the GI tract of mice and similar levels of β-D-glycosidases in human and rodent large intestine. Studies to establish the ability of colonic microflora to release 125 IUdR were conducted in vitro and in Swiss Webster mice. Both prodrugs released 125 IUdR in the presence of the corresponding enzymes or the GI content homogenates in vitro, and in vivo. Luminal enzymes in the proximal and distal small intestine in mice degraded less than 10% of each prodrug whereas enzymes from the colonic/caecal lumen of mice released nearly 100% of 125 IUdR. 125 IUdR freed by bacterial glycosidases was stable in the GI content. No significant amounts of other metabolites or deiodination products were observed. Total radioactivity recovered as by-products was less than 10%. The efflux of prodrugs from the GI tract after oral administration in mice was slow and limited. Unlike 125 IUdR, prodrugs were not dehalogenated in vivo as indicated by biodistribution and imaging studies. (orig.)

  14. Prodrugs as self-assembled hydrogels: a new paradigm for biomaterials.

    Science.gov (United States)

    Vemula, Praveen Kumar; Wiradharma, Nikken; Ankrum, James A; Miranda, Oscar R; John, George; Karp, Jeffrey M

    2013-12-01

    Prodrug-based self-assembled hydrogels represent a new class of active biomaterials that can be harnessed for medical applications, in particular the design of stimuli responsive drug delivery devices. In this approach, a promoiety is chemically conjugated to a known-drug to generate an amphiphilic prodrug that is capable of forming self-assembled hydrogels. Prodrug-based self-assembled hydrogels are advantageous as they alter the solubility of the drug, enhance drug loading, and eliminate the use of harmful excipients. In addition, self-assembled prodrug hydrogels can be designed to undergo controlled drug release or tailored degradation in response to biological cues. Herein we review the development of prodrug-based self-assembled hydrogels as an emerging class of biomaterials that overcome several common limitations encountered in conventional drug delivery. Published by Elsevier Ltd.

  15. Synthesis, characterization and pharmacological evaluation of amide prodrugs of Flurbiprofen

    International Nuclear Information System (INIS)

    Mishra, Ashutosh; Veerasamy, Ravichandran; Jain, Prateek Kumar; Dixit, Vinod Kumar; Agrawal, Ram Kishor

    2008-01-01

    Flurbiprofen (FB) suffers from the general side effects of NSAIDs, owing to presence of free carboxylic acid group. The study was aimed to retard the adverse effects of gastrointestinal origin. Ten prodrugs of FB were synthesized by amidation with ethyl esters of amino acids, namely, glycine, L-phenylalanine, L-tryptophan, L-valine, L-isoleucine, L-alanine, L-leucine, L-glutamic acid, L-aspartic acid and β alanine. Purified synthesized prodrugs were characterized by m.p., TLC, solubility, partition coefficients, elemental analyses, UV, FTIR, NMR and MS. Synthesized prodrugs were subjected for bioavailability studies, analgesic, anti-inflammatory activities and ulcerogenic index. Marked reduction of ulcerogenic index and comparable analgesic, antiinflammatory activities were obtained in all cases as compared to FB. Among synthesized prodrugs AR-9, AR-10 and AR-2 showing excellent pharmacological response and encouraging hydrolysis rate both in (Simulated Intestinal Fluid) SIF and in 80% human plasma. Prodrugs with increased aliphatic side chain length or introduction of aromatic substituent resulted in enhanced partition coefficient but diminished dissolution and hydrolysis rate. Such prodrugs can be considered for sustained release purpose. (author)

  16. Synthesis, characterization and pharmacological evaluation of amide prodrugs of Flurbiprofen

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Ashutosh; Veerasamy, Ravichandran; Jain, Prateek Kumar; Dixit, Vinod Kumar; Agrawal, Ram Kishor [Dr. H. S. Gour Vishwavidyalaya, Sagar (India). Dept. of Pharmaceutical Sciences. Pharmaceutical Chemistry Research Lab.]. E-mail: dragrawal2001@yahoo.co.in

    2008-07-01

    Flurbiprofen (FB) suffers from the general side effects of NSAIDs, owing to presence of free carboxylic acid group. The study was aimed to retard the adverse effects of gastrointestinal origin. Ten prodrugs of FB were synthesized by amidation with ethyl esters of amino acids, namely, glycine, L-phenylalanine, L-tryptophan, L-valine, L-isoleucine, L-alanine, L-leucine, L-glutamic acid, L-aspartic acid and {beta} alanine. Purified synthesized prodrugs were characterized by m.p., TLC, solubility, partition coefficients, elemental analyses, UV, FTIR, NMR and MS. Synthesized prodrugs were subjected for bioavailability studies, analgesic, anti-inflammatory activities and ulcerogenic index. Marked reduction of ulcerogenic index and comparable analgesic, antiinflammatory activities were obtained in all cases as compared to FB. Among synthesized prodrugs AR-9, AR-10 and AR-2 showing excellent pharmacological response and encouraging hydrolysis rate both in (Simulated Intestinal Fluid) SIF and in 80% human plasma. Prodrugs with increased aliphatic side chain length or introduction of aromatic substituent resulted in enhanced partition coefficient but diminished dissolution and hydrolysis rate. Such prodrugs can be considered for sustained release purpose. (author)

  17. Radiolabeled cholesteryl ethers: A need to analyze for biological stability before use.

    Science.gov (United States)

    Manual Kollareth, Denny Joseph; Chang, Chuchun L; Hansen, Inge H; Deckelbaum, Richard J

    2018-03-01

    Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [ 3 H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [ 3 H]cholesteryl oleoyl ether and [ 3 H]cholesteryl hexadecyl ether from different suppliers, employing in vitro , in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro , in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments.

  18. Radiolabeled cholesteryl ethers: A need to analyze for biological stability before use

    Directory of Open Access Journals (Sweden)

    Denny Joseph Manual Kollareth

    2018-03-01

    Full Text Available Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [3H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [3H]cholesteryl oleoyl ether and [3H]cholesteryl hexadecyl ether from different suppliers, employing in vitro, in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro, in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments. Keywords: Cholesteryl ether, J774 A2 macrophages, Soy oil emulsion, Thin layer chromatography, triDHA emulsion

  19. Synthesis, Bioevaluation and Molecular Dynamic Simulation Studies of Dexibuprofen–Antioxidant Mutual Prodrugs

    Directory of Open Access Journals (Sweden)

    Zaman Ashraf

    2016-12-01

    Full Text Available Dexibuprofen–antioxidant conjugates were synthesized with the aim to reduce its gastrointestinal effects. The esters analogs of dexibuprofen 5a–c were obtained by reacting its –COOH group with chloroacetyl derivatives 3a–c. The in vitro hydrolysis data confirmed that synthesized prodrugs 5a–c were stable in stomach while undergo significant hydrolysis in 80% human plasma and thus release free dexibuprofen. The minimum reversion was observed at pH 1.2 suggesting that prodrugs are less irritating to stomach than dexibuprofen. The anti-inflammatory activity of 5c (p < 0.001 is more significant than the parent dexibuprofen. The prodrug 5c produced maximum inhibition (42.06% of paw-edema against egg-albumin induced inflammation in mice. Anti-pyretic effects in mice indicated that prodrugs 5a and 5b showed significant inhibition of pyrexia (p < 0.001. The analgesic activity of 5a is more pronounced compared to other synthesized prodrugs. The mean percent inhibition indicated that the prodrug 5a was more active in decreasing the number of writhes induced by acetic acid than standard dexibuprofen. The ulcerogenic activity results assured that synthesized prodrugs produce less gastrointestinal adverse effects than dexibuprofen. The ex vivo antiplatelet aggregation activity results also confirmed that synthesized prodrugs are less irritant to gastrointestinal mucosa than the parent dexibuprofen. Molecular docking analysis showed that the prodrugs 5a–c interacts with the residues present in active binding sites of target protein. The stability of drug–target complexes is verified by molecular dynamic simulation study. It exhibited that synthesized prodrugs formed stable complexes with the COX-2 protein thus support our wet lab results. It is therefore concluded that the synthesized prodrugs have promising pharmacological activities with reduced gastrointestinal adverse effects than the parent drug.

  20. Efficacy of oral active ether lipid analogs of cidofovir in a lethal mousepox model

    International Nuclear Information System (INIS)

    Buller, R. Mark; Owens, Gelita; Schriewer, Jill; Melman, Lora; Beadle, James R.; Hostetler, Karl Y.

    2004-01-01

    Cidofovir (CDV) is a highly effective inhibitor of orthopoxvirus replication and may be used intravenously to treat smallpox or complications arising from the smallpox vaccine under an investigational new drug application (IND). However, CDV is absorbed poorly following oral administration and is inactive orally. To improve the bioavailability of CDV, others synthesized alkoxyalkanol esters of CDV and observed >100-fold more activity than unmodified CDV against cowpox, vaccinia, and variola virus (VARV) replication. These ether lipid analogs of CDV have high oral bioavailability in mice. In this study, we compared the oral activity of CDV with the hexadecyloxypropyl (HDP)-, octadecyloxyethyl-, oleyloxypropyl-, and oleyloxyethyl-esters of CDV in a lethal, aerosol ectromelia virus (ECTV) challenge model in A/NCR mice. Octadecyloxyethyl-CDV appeared to be the most potent CDV analog as a dose regimen of 5 mg/kg started 4 h following challenge completely blocked virus replication in spleen and liver, and protected 100% of A/NCR mice, although oral, unmodified CDV was inactive. These results suggest that this family of compounds deserves further evaluation as poxvirus antiviral

  1. Improved Protease-Targeting and Biopharmaceutical Properties of Novel Prodrugs of Ganciclovir.

    Science.gov (United States)

    Sun, Kefeng; Xu, Hao; Hilfinger, John L; Lee, Kyung-Dall; Provoda, Chester J; Sabit, Hairat; Amidon, Gordon L

    2018-02-05

    The prodrug strategy has been frequently employed as a chemical approach for overcoming the disadvantages of existing parent drugs. In this report, we synthesized four monoester prodrugs of ganciclovir, an anticytomegalovirus drug, and demonstrated their potential advantages in protease-targeted activation and biopharmaceutical profiles over the parent compound. We demonstrated that these four prodrugs of ganciclovir, i.e., N-benzyloxycarbonyl-(L)-alanine-ganciclovir (CbzAlaGCV), N-benzyloxycarbonyl-(α,l)-aminobutyric acid-ganciclovir (CbzAbuGCV), N-acetyl-(l)-phenylalanine-(l)-alanine-ganciclovir (AcPheAlaGCV), and N-acetyl-(l)-phenylalanine-(α,l)-aminobutyric acid-ganciclovir (AcPheAbuGCV), are hydrolytically activated by the protease of human cytomegalovirus (hCMV), a serine protease that possesses intrinsic esterase activities. CbzAlaGCV and AcPheAlaGCV were found to be activated at a higher rate by the hCMV protease than CbzAbuGCV and AcPheAbuGCV. These ganciclovir prodrugs could potentially be targeted to selective activation by the hCMV protease which is only present at the viral infection sites, thereby achieving higher efficacy and lower systemic toxicity. The tissue stability, cellular uptake, and trans-epithelial transport of these ganciclovir prodrugs were also characterized. The N-acetylated dipeptide prodrugs of ganciclovir were found to be generally more stable than Cbz-amino acid prodrugs in various tissue matrices. Among the four prodrug candidates, AcPheAbuGCV was the most stable in human cell homogenates, plasma, and pooled liver microsomes. AcPheAbuGCV also possessed a superior cellular uptake profile and permeability across epithelial cell monolayers. Since the targeting and selective activation of a prodrug is determined by not only its rate of hydrolysis catalyzed by the hCMV protease target but also its biopharmaceutical properties, i.e., oral absorption and systemic availability, AcPheAbuGCV is considered the best overall candidate among

  2. In vitro and in vivo plasmalogen replacement evaluations in rhizomelic chrondrodysplasia punctata and Pelizaeus-Merzbacher disease using PPI-1011, an ether lipid plasmalogen precursor

    Directory of Open Access Journals (Sweden)

    Wood Paul L

    2011-10-01

    Full Text Available Abstract Background Childhood peroxisomal disorders and leukodystrophies are devastating diseases characterized by dysfunctional lipid metabolism. Plasmalogens (ether glycerophosphoethanolamine lipids are decreased in these genetic disorders. The biosynthesis of plasmalogens is initiated in peroxisomes but completed in the endoplasmic reticulum. We therefore undertook a study to evaluate the ability of a 3-substituted, 1-alkyl, 2-acyl glyceryl ether lipid (PPI-1011 to replace plasmalogens in rhizomelic chrondrodysplasia punctata type 1 (RCDP1 and rhizomelic chrondrodysplasia punctata type 2 (RCDP2 lymphocytes which possess peroxisomal mutations culminating in deficient plasmalogen synthesis. We also examined plasmalogen synthesis in Pelizaeus-Merzbacher disease (PMD lymphocytes which possess a proteolipid protein-1 (PLP1 missense mutation that results in abnormal PLP1 folding and it's accumulation in the endoplasmic reticulum (ER, the cellular site of the last steps in plasmalogen synthesis. In vivo incorporation of plasmalogen precursor into tissue plasmalogens was also evaluated in the Pex7 mouse model of plasmalogen deficiency. Results In both RCDP1 and RCDP2 lymphocytes, PPI-1011 repleted the target ethanolamine plasmalogen (PlsEtn16:0/22:6 in a concentration dependent manner. In addition, deacylation/reacylation reactions resulted in repletion of PlsEtn 16:0/20:4 in both RCDP1 and RCDP2 lymphocytes, repletion of PlsEtn 16:0/18:1 and PlsEtn 16:0/18:2 in RCDP2 lymphocytes, and partial repletion of PlsEtn 16:0/18:1 and PlsEtn 16:0/18:2 in RCDP1 lymphocytes. In the Pex7 mouse, oral dosing of labeled PPI-1011 demonstrated repletion of tissue levels of the target plasmalogen PlsEtn 16:0/22:6 with phospholipid remodeling also resulting in significant repletion of PlsEtn 16:0/20:4 and PlsEtn 16:0/18:1. Metabolic conversion of PPI-1011 to the target plasmalogen was most active in the liver. Conclusions Our data demonstrate that PPI-1011 is activated

  3. Fabrication of Hyperbranched Block-Statistical Copolymer-Based Prodrug with Dual Sensitivities for Controlled Release.

    Science.gov (United States)

    Zheng, Luping; Wang, Yunfei; Zhang, Xianshuo; Ma, Liwei; Wang, Baoyan; Ji, Xiangling; Wei, Hua

    2018-01-17

    Dendrimer with hyperbranched structure and multivalent surface is regarded as one of the most promising candidates close to the ideal drug delivery systems, but the clinical translation and scale-up production of dendrimer has been hampered significantly by the synthetic difficulties. Therefore, there is considerable scope for the development of novel hyperbranched polymer that can not only address the drawbacks of dendrimer but maintain its advantages. The reversible addition-fragmentation chain transfer self-condensing vinyl polymerization (RAFT-SCVP) technique has enabled facile preparation of segmented hyperbranched polymer (SHP) by using chain transfer monomer (CTM)-based double-head agent during the past decade. Meanwhile, the design and development of block-statistical copolymers has been proven in our recent studies to be a simple yet effective way to address the extracellular stability vs intracellular high delivery efficacy dilemma. To integrate the advantages of both hyperbranched and block-statistical structures, we herein reported the fabrication of hyperbranched block-statistical copolymer-based prodrug with pH and reduction dual sensitivities using RAFT-SCVP and post-polymerization click coupling. The external homo oligo(ethylene glycol methyl ether methacrylate) (OEGMA) block provides sufficient extracellularly colloidal stability for the nanocarriers by steric hindrance, and the interior OEGMA units incorporated by the statistical copolymerization promote intracellular drug release by facilitating the permeation of GSH and H + for the cleavage of the reduction-responsive disulfide bond and pH-liable carbonate link as well as weakening the hydrophobic encapsulation of drug molecules. The delivery efficacy of the target hyperbranched block-statistical copolymer-based prodrug was evaluated in terms of in vitro drug release and cytotoxicity studies, which confirms both acidic pH and reduction-triggered drug release for inhibiting proliferation of He

  4. Enhancing the intestinal membrane permeability of zanamivir: a carrier mediated prodrug approach.

    Science.gov (United States)

    Gupta, Sheeba Varghese; Gupta, Deepak; Sun, Jing; Dahan, Arik; Tsume, Yasuhiro; Hilfinger, John; Lee, Kyung-Dall; Amidon, Gordon L

    2011-12-05

    The purpose of this study was to improve the membrane permeability and oral absorption of the poorly permeable anti-influenza agent, zanamivir. The poor oral bioavailability is attributed to the high polarity (cLogP ∼ -5) resulting from the polar and zwitterionic nature of zanamivir. In order to improve the permeability of zanamivir, prodrugs with amino acids were developed to target the intestinal membrane transporter, hPepT1. Several acyloxy ester prodrugs of zanamivir conjugated with amino acids were synthesized and characterized. The prodrugs were evaluated for their chemical stability in buffers at various pHs and for their transport and tissue activation by enzymes. The acyloxy ester prodrugs of zanamivir were shown to competitively inhibit [(3)H]Gly-Sar uptake in Caco-2 cells (IC(50): 1.19 ± 0.33 mM for L-valyl prodrug of zanamivir). The L-valyl prodrug of zanamivir exhibited ∼3-fold higher uptake in transfected HeLa/hPepT1 cells compared to wild type HeLa cells, suggesting, at least in part, carrier mediated transport by the hPepT1 transporter. Further, enhanced transcellular permeability of prodrugs across Caco-2 monolayer compared to the parent drug (P(app) = 2.24 × 10(-6) ± 1.33 × 10(-7) cm/s for L-valyl prodrug of zanamivir), with only parent zanamivir appearing in the receiver compartment, indicates that the prodrugs exhibited both enhanced transport and activation in intestinal mucosal cells. Most significantly, several of these prodrugs exhibited high intestinal jejunal membrane permeability, similar to metoprolol, in the in situ rat intestinal perfusion system, a system highly correlated with human jejunal permeability. In summary, this mechanistic targeted prodrug strategy, to enhance oral absorption via intestinal membrane carriers such as hPepT1, followed by activation to parent drug (active pharmaceutical ingredient or API) in the mucosal cell, significantly improves the intestinal epithelial cell permeability of zanamivir and has the

  5. [In vitro metabolism of fenbendazole prodrug].

    Science.gov (United States)

    Wen, Ai-Dan; Duan, Li-Ping; Liu, Cong-Shan; Tao, Yi; Xue, Jian; Wu, Ning-Bo; Jiang, Bin; Zhang, Hao-Bing

    2013-02-01

    Synthesized fenbendazole prodrug N-methoxycarbonyl-N'-(2-nitro-4-phenylthiophenyl) thiourea (MPT) was analyzed in vitro in artificial gastric juice, intestinal juice and mouse liver homogenate model by using HPLC method, and metabolic curve was then generated. MPT was tested against Echinococcus granulosus protoscolices in vitro. The result showed that MPT could be metabolized in the three biological media, and to the active compound fenbendazole in liver homogenate, with a metabolic rate of 7.92%. Besides, the prodrug showed a weak activity against E. granulosus protoscolices with a mortality of 45.9%.

  6. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    Science.gov (United States)

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  7. Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria.

    Science.gov (United States)

    Lehouritis, Panos; Stanton, Michael; McCarthy, Florence O; Jeavons, Matthieu; Tangney, Mark

    2016-01-28

    Some chemotherapeutic drugs (prodrugs) require activation by an enzyme for efficacy. We and others have demonstrated the ability of probiotic bacteria to grow specifically within solid tumours following systemic administration, and we hypothesised that the natural enzymatic activity of these tumour-localised bacteria may be suitable for activation of certain such chemotherapeutic drugs. Several wild-type probiotic bacteria; Escherichia coli Nissle, Bifidobacterium breve, Lactococcus lactis and Lactobacillus species, were screened against a panel of popular prodrugs. All strains were capable of activating at least one prodrug. E. coli Nissle 1917 was selected for further studies because of its ability to activate numerous prodrugs and its resistance to prodrug toxicity. HPLC data confirmed biochemical transformation of prodrugs to their toxic counterparts. Further analysis demonstrated that different enzymes can complement prodrug activation, while simultaneous activation of multiple prodrugs (CB1954, 5-FC, AQ4N and Fludarabine phosphate) by E. coli was confirmed, resulting in significant efficacy improvement. Experiments in mice harbouring murine tumours validated in vitro findings, with significant reduction in tumour growth and increase in survival of mice treated with probiotic bacteria and a combination of prodrugs. These findings demonstrate the ability of probiotic bacteria, without the requirement for genetic modification, to enable high-level activation of multiple prodrugs specifically at the site of action. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Synthesis, characterization and in vitro release performance of the pegylated valnemulin prodrug

    Science.gov (United States)

    DONG, Xinrui; SHU, Xueye; WANG, Yingnan; NIU, Zhaohuan; XU, Shixia; ZHANG, Yue; ZHAO, Shuchun

    2017-01-01

    Valnemulin, successfully developed by Sandoz in 1984, is a new generation derivative of pleuromutilin related to tiamulin. Valnemulin has low water-solubility, a short half-life period, low bioavailability, and instability. The application of valnemulin was restricted. Therefore, finding a more moderate delivery system is necessary to improve the shortcomings of valnemulin. The purpose of the study was to improve the strong stability and the irritation caused by of valnemulin hydrochloride power through pegylated-valnemulin prodrug mode. The prepared pegylated-valnemulin prodrug was characterized and evaluated by in vitro release performance under buffer solutions with pH levels of 7.4 and 3.6. The loading rate of valnemulin in PEG-succinic-valnemulin prodrug was determined by ultraviolet spectrophotometer and high performance liquid chromatography (HPLC). HPLC with evaporative light scattering detector was applied to determine the amount of PEG-succinic acid. The loading rate of valnemulin in PEG-succinic-valnemulin prodrug was 6.46%. PEG-succinic-valnemulin prodrug demonstrated a satisfactory solubility of valnemulin with 523 mg·ml−1 and excellent stability verified by the stability experiment. The result of the in vitro release test showed that the prepared PEG-valnemulin prodrug has controlled release ability and the release rate of valnemulin from PEG-valnemulin prodrug with a pH of 7.4 was 64.98%, which was higher than that of pH3.6 with release rate of 31.90%. Therefore, the prepared PEG-succinic-valnemulin prodrug has great application potential. PMID:29187697

  9. Specificity of a prodrug-activating enzyme hVACVase: the leaving group effect.

    Science.gov (United States)

    Sun, Jing; Dahan, Arik; Walls, Zachary F; Lai, Longsheng; Lee, Kyung-Dall; Amidon, Gordon L

    2010-12-06

    Human valacyclovirase (hVACVase) is a prodrug-activating enzyme for amino acid prodrugs including the antiviral drugs valacyclovir and valganciclovir. In hVACVase-catalyzed reactions, the leaving group of the substrate corresponds to the drug moiety of the prodrug, making the leaving group effect essential for the rational design of new prodrugs targeting hVACVase activation. In this study, a series of valine esters, phenylalanine esters, and a valine amide were characterized for the effect of the leaving group on the efficiency of hVACVase-mediated prodrug activation. Except for phenylalanine methyl and ethyl esters, all of the ester substrates exhibited a relatively high specificity constant (k(cat)/K(m)), ranging from 850 to 9490 mM(-1)·s(-1). The valine amide Val-3-APG exhibited significantly higher K(m) and lower k(cat) values compared to the corresponding ester Val-3-HPG, indicating poor specificity for hVACVase. In conclusion, the substrate leaving group has been shown to affect both binding and specific activity of hVACVase-catalyzed activation. It is proposed that hVACVase is an ideal target for α-amino acid ester prodrugs with relatively labile leaving groups while it is relatively inactivate toward amide prodrugs.

  10. Evaluation of diclofenac prodrugs for enhancing transdermal delivery.

    Science.gov (United States)

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2014-03-01

    Abstract Objective: The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD) and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in the Franz diffusion cell were determined on DA-, MD-, ED-, GD- and PD-saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery.

  11. Evaluation of Diclofenac Prodrugs for Enhancing Transdermal Delivery

    Science.gov (United States)

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2016-01-01

    The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD), and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates, and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in Franz diffusion cell were determined on DA, MD, ED, GD, and PD saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Overall, diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery. PMID:24517636

  12. Enhancement of Curcumin Bioavailability Via the Prodrug Approach: Challenges and Prospects.

    Science.gov (United States)

    Ratnatilaka Na Bhuket, Pahweenvaj; El-Magboub, Asma; Haworth, Ian S; Rojsitthisak, Pornchai

    2017-06-01

    Curcumin is a natural product with many interesting pharmacological properties. However, these are offset by the particularly poor biopharmaceutical properties. The oral bioavailability of curcumin in humans is very low, mainly due to low solubility, poor stability, and extensive metabolism. This has led to multiple approaches to improve bioavailability, including administration of curcumin with metabolism inhibitors, formulation into nanoparticles, modification of the curcumin structure, and development of curcumin prodrugs. In this paper, we focus on the pharmacokinetic outcomes of these approaches. Pharmacokinetic parameters of curcumin after release from prodrugs are dependent on the linker between curcumin and the promoiety, and the release itself may depend on the physiological and enzymatic environment at the site of cleavage. This is an area in which more data are required for rational design of improved linkers. Cytotoxicity of curcumin prodrugs seems to correlate well with cellular uptake in vitro, but the in vivo relevance is uncertain. We conclude that improved experimental and theoretical models of absorption of curcumin prodrugs, development of accurate analytical methods for simultaneous measurement of plasma levels of prodrug and released curcumin, and acquisition of more pharmacokinetic data in animal models for dose prediction in humans are required to facilitate movement of curcumin prodrugs into clinical trials.

  13. The Effect of 5-Aminolevulinic Acid on Cytochrome P450-Mediated Prodrug Activation.

    Directory of Open Access Journals (Sweden)

    Mai Miura

    Full Text Available Of late, numerous prodrugs are widely used for therapy. The hemeprotein cytochrome P450 (CYP catalyzes the activation of prodrugs to form active metabolites. Therefore, the activation of CYP function might allow the use of lower doses of prodrugs and decrease toxicity. We hypothesized that the addition of 5-aminolevulinic acid (ALA, a precursor in the porphyrin biosynthetic pathway, enhances the synthesis of heme, leading to the up-regulation of CYP activity. To test this hypothesis, we treated a human gastric cancer cell line with ALA and determined the effect on CYP-dependent prodrug activation. For this purpose, we focused on the anticancer prodrug tegafur, which is converted to its active metabolite 5-fluorouracil (5-FU mainly by CYP2A6. We show here that ALA increased CYP2A6-dependent tegafur activation, suggesting that ALA elevated CYP activity and potentiated the activation of the prodrug.

  14. Amino Acid Prodrugs: An Approach to Improve the Absorption of HIV-1 Protease Inhibitor, Lopinavir

    Directory of Open Access Journals (Sweden)

    Mitesh Patel

    2014-04-01

    Full Text Available Poor systemic concentrations of lopinavir (LPV following oral administration occur due to high cellular efflux by P-glycoprotein (P-gp and multidrug resistance-associated proteins (MRPs and extensive metabolism by CYP3A4 enzymes. In this study, amino acid prodrugs of LPV were designed and investigated for their potential to circumvent efflux processes and first pass effects. Three amino acid prodrugs were synthesized by conjugating isoleucine, tryptophan and methionine to LPV. Prodrug formation was confirmed by the LCMS/MS and NMR technique. Interaction of LPV prodrugs with efflux proteins were carried out in P-gp (MDCK-MDR1 and MRP2 (MDCK-MRP2 transfected cells. Aqueous solubility studies demonstrated that prodrugs generate higher solubility relative to LPV. Prodrugs displayed higher stability under acidic conditions and degraded significantly with rise in pH. Uptake and transport data suggested that prodrugs carry significantly lower affinity towards P-gp and MRP2 relative to LPV. Moreover, prodrugs exhibited higher liver microsomal stability relative to LPV. Hence, amino acid prodrug modification might be a viable approach for enhancing LPV absorption across intestinal epithelial and brain endothelial cells which expresses high levels of P-gp and MRP2.

  15. 1-Arylsulfonyl-2-(Pyridylmethylsulfinyl) Benzimidazoles as New Proton Pump Inhibitor Prodrugs

    Science.gov (United States)

    Shin, Jai Moo; Sachs, George; Cho, Young-moon; Garst, Michael

    2010-01-01

    New arylsulfonyl proton pump inhibitor (PPI) prodrug forms were synthesized. These prodrugs provided longer residence time of an effective PPI plasma concentration, resulting in better gastric acid inhibition. PMID:20032890

  16. Mefenamic acid conjugates based on a hydrophilic biopolymer hydroxypropylcellulose: novel prodrug design, characterization and thermal analysis

    International Nuclear Information System (INIS)

    Hussain, M.A.; Kausar, R.; Amin, M.

    2015-01-01

    Macromolecular prodrugs (MPDs) of mefenamic acid were designed onto a cellulose ether derivative hydroxypropylcellulose (HPC) as ester conjugates. Fabrication of HPC-mefenamic acid conjugates was achieved by using p-toluenesulfonyl chloride as carboxylic acid (a functional group in drug) activator at 80 degree C for 24 h under nitrogen atmosphere. Reaction was preceded under homogeneous reaction conditions as HPC was dissolved before use in DMAc solvent. Imidazole was used as a base. Easy workup reactions resulted in good yields (55-65%) and degree of substitution (DS) of drug (0.37-0.99) onto HPC. The DS was calculated by acid-base titration after saponification and UV/Vis spectrophotometry after hydrolysis. DS by both of the methods was found in good agreement with each other. Aqueous and organic soluble novel prodrugs of mefenamic acid were purified and characterized by different spectroscopic and thermal analysis techniques. The initial, maximum and final degradation temperatures of HPC, mefenamic acid and HPC-mefenamic acid conjugates were drawn from thermogravimetric (TG) and derivative TG curves and compared to access relative thermal stability. The TG analysis has indicated that samples obtained were thermally more stable especially with increased stability of mefenamic acid in HPC-mefenamic acid conjugates. These novel MPDs of mefenamic acid (i.e., HPC-mefenamic acid conjugates) may have potential applications in pharmaceutically viable drug design due to wide range of solubility and extra thermal stability imparted after MPD formation. (author)

  17. JS-K, a Nitric Oxide Prodrug, Has Enhanced Cytotoxicity in Colon Cancer Cells with Knockdown of Thioredoxin Reductase 1

    Science.gov (United States)

    Edes, Kornelia; Cassidy, Pamela; Shami, Paul J.; Moos, Philip J.

    2010-01-01

    Background The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted. Methodology The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured. Conclusions/Significance In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner. PMID:20098717

  18. Formulation and evaluation of co-prodrug of flurbiprofen and methocarbamol

    Directory of Open Access Journals (Sweden)

    Neela Bhatia

    2016-06-01

    Full Text Available The current work envisages synthesis of an ester prodrug of flurbiprofen whereby its carboxylic group was condensed with a skeletal muscle relaxant methocarbamol, with the aim of synergistic activity of two drugs, avoid flurbiprofen mediated gastro-intestinal damage and minimize the ulceration tendency of flurbiprofen. The synthesized prodrug was characterized and confirmed by physicochemical and spectroscopic studies. Solubility and partition coefficient studies indicated an increased lipophilicity and thus better suitability for oral administration than the parent drugs and the protein binding studies revealed a low protein binding capacity of the mutual prodrug. Subsequently, in-vitro hydrolysis was studied in different pH, simulated gastric fluid, simulated intestinal fluid and plasma and quantitative evaluation was performed by high performance liquid chromatography. It was found that the prodrug remained unhydrolyzed in the stomach after absorption however, underwent rapid cleavage by the esterases in blood to give the parent drug. Furthermore, the mutual ester prodrug was evaluated for its anti-inflammatory, analgesic, skeletal muscle relaxation, ulcerogenic and total acid content activity and was found to possess comparable activity with that of the parent drugs. Microscopic structures of the stomach tissues revealed significant reduction in gastric ulcer formation of mice gastric mucosa as compared to parent carboxylic acid drug.

  19. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    Science.gov (United States)

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  20. Advanced Prodrug Strategies in Nucleoside and Non-Nucleoside Antiviral Agents: A Review of the Recent Five Years

    Directory of Open Access Journals (Sweden)

    Hanadi Sinokrot

    2017-10-01

    Full Text Available Background: Poor pharmacokinetic profiles and resistance are the main two drawbacks from which currently used antiviral agents suffer, thus make them excellent targets for research, especially in the presence of viral pandemics such as HIV and hepatitis C. Methods: The strategies employed in the studies covered in this review were sorted by the type of drug synthesized into ester prodrugs, targeted delivery prodrugs, macromolecular prodrugs, other nucleoside conjugates, and non-nucleoside drugs. Results: Utilizing the ester prodrug approach a novel isopropyl ester prodrug was found to be potent HIV integrase inhibitor. Further, employing the targeted delivery prodrug zanamivir and valine ester prodrug was made and shown a sole delivery of zanamivir. Additionally, VivaGel, a dendrimer macromolecular prodrug, was found to be very efficient and is now undergoing clinical trials. Conclusions: Of all the strategies employed (ester, targeted delivery, macromolecular, protides and nucleoside analogues, and non-nucleoside analogues prodrugs, the most promising are nucleoside analogues and macromolecular prodrugs. The macromolecular prodrug VivaGel works by two mechanisms: envelope mediated and receptor mediated disruption. Nucleotide analogues have witnessed productive era in the recent past few years. The era of non-interferon based treatment of hepatitis (through direct inhibitors of NS5A has dawned.

  1. The Dipeptide Monoester Prodrugs of Floxuridine and Gemcitabine—Feasibility of Orally Administrable Nucleoside Analogs

    Directory of Open Access Journals (Sweden)

    Yasuhiro Tsume

    2014-01-01

    Full Text Available Dipeptide monoester prodrugs of floxuridine and gemcitabine were synthesized. Their chemical stability in buffers, enzymatic stability in cell homogenates, permeability in mouse intestinal membrane along with drug concentration in mouse plasma, and anti-proliferative activity in cancer cells were determined and compared to their parent drugs. Floxuridine prodrug was more enzymatically stable than floxuridine and the degradation from prodrug to parent drug works as the rate-limiting step. On the other hand, gemcitabine prodrug was less enzymatically stable than gemcitabine. Those dipeptide monoester prodrugs exhibited 2.4- to 48.7-fold higher uptake than their parent drugs in Caco-2, Panc-1, and AsPC-1 cells. Floxuridine and gemcitabine prodrugs showed superior permeability in mouse jejunum to their parent drugs and exhibited the higher drug concentration in plasma after in situ mouse perfusion. Cell proliferation assays in ductal pancreatic cancer cells, AsPC-1 and Panc-1, indicated that dipeptide prodrugs of floxuridine and gemcitabine were more potent than their parent drugs. The enhanced potency of nucleoside analogs was attributed to their improved membrane permeability. The prodrug forms of 5¢-L-phenylalanyl-l-tyrosyl-floxuridine and 5¢-L-phenylalanyl-L-tyrosyl-gemcitabine appeared in mouse plasma after the permeation of intestinal membrane and the first-pass effect, suggesting their potential for the development of oral dosage form for anti-cancer agents.

  2. The dipeptide monoester prodrugs of floxuridine and gemcitabine-feasibility of orally administrable nucleoside analogs.

    Science.gov (United States)

    Tsume, Yasuhiro; Borras Bermejo, Blanca; Amidon, Gordon L

    2014-01-27

    Dipeptide monoester prodrugs of floxuridine and gemcitabine were synthesized. Their chemical stability in buffers, enzymatic stability in cell homogenates, permeability in mouse intestinal membrane along with drug concentration in mouse plasma, and anti-proliferative activity in cancer cells were determined and compared to their parent drugs. Floxuridine prodrug was more enzymatically stable than floxuridine and the degradation from prodrug to parent drug works as the rate-limiting step. On the other hand, gemcitabine prodrug was less enzymatically stable than gemcitabine. Those dipeptide monoester prodrugs exhibited 2.4- to 48.7-fold higher uptake than their parent drugs in Caco-2, Panc-1, and AsPC-1 cells. Floxuridine and gemcitabine prodrugs showed superior permeability in mouse jejunum to their parent drugs and exhibited the higher drug concentration in plasma after in situ mouse perfusion. Cell proliferation assays in ductal pancreatic cancer cells, AsPC-1 and Panc-1, indicated that dipeptide prodrugs of floxuridine and gemcitabine were more potent than their parent drugs. The enhanced potency of nucleoside analogs was attributed to their improved membrane permeability. The prodrug forms of 5¢-L-phenylalanyl-l-tyrosyl-floxuridine and 5¢-L-phenylalanyl-L-tyrosyl-gemcitabine appeared in mouse plasma after the permeation of intestinal membrane and the first-pass effect, suggesting their potential for the development of oral dosage form for anti-cancer agents.

  3. The Dipeptide Monoester Prodrugs of Floxuridine and Gemcitabine—Feasibility of Orally Administrable Nucleoside Analogs

    Science.gov (United States)

    Tsume, Yasuhiro; Bermejo, Blanca Borras; Amidon, Gordon L.

    2014-01-01

    Dipeptide monoester prodrugs of floxuridine and gemcitabine were synthesized. Their chemical stability in buffers, enzymatic stability in cell homogenates, permeability in mouse intestinal membrane along with drug concentration in mouse plasma, and anti-proliferative activity in cancer cells were determined and compared to their parent drugs. Floxuridine prodrug was more enzymatically stable than floxuridine and the degradation from prodrug to parent drug works as the rate-limiting step. On the other hand, gemcitabine prodrug was less enzymatically stable than gemcitabine. Those dipeptide monoester prodrugs exhibited 2.4- to 48.7-fold higher uptake than their parent drugs in Caco-2, Panc-1, and AsPC-1 cells. Floxuridine and gemcitabine prodrugs showed superior permeability in mouse jejunum to their parent drugs and exhibited the higher drug concentration in plasma after in situ mouse perfusion. Cell proliferation assays in ductal pancreatic cancer cells, AsPC-1 and Panc-1, indicated that dipeptide prodrugs of floxuridine and gemcitabine were more potent than their parent drugs. The enhanced potency of nucleoside analogs was attributed to their improved membrane permeability. The prodrug forms of 5′-l-phenylalanyl-l-tyrosyl-floxuridine and 5′-l-phenylalanyl-l-tyrosyl-gemcitabine appeared in mouse plasma after the permeation of intestinal membrane and the first-pass effect, suggesting their potential for the development of oral dosage form for anti-cancer agents. PMID:24473270

  4. Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy.

    Science.gov (United States)

    Jin, Rong; Guo, Xuelian; Dong, Lingli; Xie, Enyuan; Cao, Aoneng

    2017-10-01

    A group of micelles self-assembled from deoxycholic acid-doxorubicin-conjugated dextran (denoted as Dex-DCA-DOX) prodrugs were designed and prepared for pH-triggered drug release and cancer chemotherapy. These prodrugs could be successfully produced by chemically coupling hydrophobic deoxycholic acid (DCA) to dextran hydrazine (denoted as Dex-NHNH 2 ) and hydrazone linker formation between doxorubicin (DOX) and Dex-NHNH 2 . These Dex-DCA-DOX prodrugs self-assembled to form micelles under physiological conditions with varied particle sizes depending on molecular weight of dextran, degree of substitution (DS) of DCA and DOX. After optimization, Dex10k-DCA9-DOX5.5 conjugate comprising dextran of 10kDa, DCA of DS 9 and DOX loading content of 5.5wt%, formed the micelles with the smallest size (110nm). These prodrug micelles could slowly liberate DOX under physiological conditions but efficiently released the drug at an acidified endosomal pH by the hydrolysis of acid-labile hydrazone linker. In vitro cytotoxicity experiment indicated that Dex10k-DCA9-DOX5.5 micelles exerted marked antitumor activity against MCF-7 and SKOV-3 cancer cells. Besides, intravenous administration of the micelles afforded growth inhibition of SKOV-3 tumor bearing in nude mice at a dosage of 2.5mg per kg with anti-cancer efficacy comparable to free DOX-chemotherapy but low systemic toxicity. This study highlights the feasibility of bio-safe and efficient dextran-based prodrug micelles designed for cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Pharmacological evaluation and preliminary pharmacokinetics studies of a new diclofenac prodrug without gastric ulceration effect.

    Science.gov (United States)

    Santos, Jean Leandro Dos; Moreira, Vanessa; Campos, Michel Leandro; Chelucci, Rafael Consolin; Barbieri, Karina Pereira; de Castro Souto, Pollyana Cristina Maggio; Matsubara, Márcio Hideki; Teixeira, Catarina; Bosquesi, Priscila Longhin; Peccinini, Rosângela Gonçalves; Chin, Chung Man

    2012-11-19

    Long-term nonsteroidal anti-inflammatory drugs (NSAIDs) therapy has been associated with several adverse effects such as gastric ulceration and cardiovascular events. Among the molecular modifications strategies, the prodrug approach is a useful tool to discover new safe NSAIDs. The 1-(2,6-dichlorophenyl)indolin-2-one is a diclofenac prodrug which demonstrated relevant anti-inflammatory properties without gastro ulceration effect. In addition, the prodrug decreases PGE(2) levels, COX-2 expression and cellular influx into peritoneal cavity induced by carrageenan treatment. Preliminary pharmacokinetic studies have shown in vivo bioconversion of prodrug to diclofenac. This prodrug is a new nonulcerogenic NSAID useful to treat inflammatory events by long-term therapy.

  6. Solid lipid nanoparticles by coacervation loaded with a methotrexate prodrug: preliminary study for glioma treatment.

    Science.gov (United States)

    Battaglia, Luigi; Muntoni, Elisabetta; Chirio, Daniela; Peira, Elena; Annovazzi, Laura; Schiffer, Davide; Mellai, Marta; Riganti, Chiara; Salaroglio, Iris Chiara; Lanotte, Michele; Panciani, Pierpaolo; Capucchio, Maria Teresa; Valazza, Alberto; Biasibetti, Elena; Gallarate, Marina

    2017-03-01

    Methotrexate-loaded biocompatible nanoparticles were tested for preliminary efficacy in glioma treatment. Behenic acid nanoparticles, prepared by the coacervation method, were loaded with the ester prodrug didodecylmethotrexate, which was previously tested in vitro against glioblastoma human primary cultures. Nanoparticle conjugation with an ApoE mimicking chimera peptide was performed to obtain active targeting to the brain. Biodistribution studies in healthy rats assessed the superiority of ApoE-conjugated formulation, which was tested on an F98/Fischer glioma model. Differences were observed in tumor growth rate (measured by MRI) between control and treated rats. In vitro tests on F98 cultured cells assessed their susceptibility to treatment, with consequent apoptosis, and allowed us to explain the apoptosis observed in glioma models.

  7. Clickable prodrugs bearing potent and hydrolytically cleavable nicotinamide phosphoribosyltransferase inhibitors

    Directory of Open Access Journals (Sweden)

    Sadrerafi K

    2018-04-01

    Full Text Available Keivan Sadrerafi, Emilia O Mason, Mark W Lee Jr Department of Chemistry, University of Missouri, Columbia, MO, USA Purpose: Our previous study indicated that carborane containing small-molecule 1-(hydroxymethyl-7-(4′-(trans-3″-(3‴-pyridylacrylamidobutyl-1,7-dicarbadodecaborane (hm-MC4-PPEA, was a potent inhibitor of nicotinamide phosphoribosyltransferase (Nampt. Nampt has been shown to be upregulated in most cancers and is a promising target for the treatment of many different types of cancers, including breast cancers. Patients and methods: To increase the selectivity of hm-MC4-PPEA toward cancer cells, three prodrugs were synthesized with different hydrolyzable linkers: ester, carbonate, and carbamate. Using click chemistry a fluorophore was attached to these prodrugs to act as a model for our conjugation strategy and to serve as an aid for prodrug stability studies. The stabilities of these drug conjugates were tested in phosphate-buffered saline (PBS at normothermia (37°C using three different pH levels, 5.5, 7.5, and 9.5, as well as in horse serum at physiological pH. The stability of each was monitored using reversed-phase HPLC equipped with both diode array and fluorescence detection. The inhibitory activity of hm-MC4-PPEA was also measured using a commercially available colorimetric assay. The biological activities of the drug conjugates as well as those of the free drug (hm-MC4-PPEA, were evaluated using the MTT assay against the human breast cancer cell lines T47D and MCF7, as well as the noncancerous, transformed, Nampt-dependent human breast epithelium cell line 184A1.Results: hm-MC4-PPEA showed to be a potent inhibitor of recombinant Nampt activity, exhibiting an IC50 concentration of 6.8 nM. The prodrugs showed great stability towards hydrolytic degradation under neutral, mildly acidic and mildly basic conditions. The carbamate prodrug also showed to be stable in rat serum. However, the carbonate and the ester prodrug

  8. Pharmacological Evaluation and Preliminary Pharmacokinetics Studies of a New Diclofenac Prodrug without Gastric Ulceration Effect

    Directory of Open Access Journals (Sweden)

    Chung Man Chin

    2012-11-01

    Full Text Available Long-term nonsteroidal anti-inflammatory drugs (NSAIDs therapy has been associated with several adverse effects such as gastric ulceration and cardiovascular events. Among the molecular modifications strategies, the prodrug approach is a useful tool to discover new safe NSAIDs. The 1-(2,6-dichlorophenylindolin-2-one is a diclofenac prodrug which demonstrated relevant anti-inflammatory properties without gastro ulceration effect. In addition, the prodrug decreases PGE2 levels, COX-2 expression and cellular influx into peritoneal cavity induced by carrageenan treatment. Preliminary pharmacokinetic studies have shown in vivo bioconversion of prodrug to diclofenac. This prodrug is a new nonulcerogenic NSAID useful to treat inflammatory events by long-term therapy.

  9. Can primary reducing radicals be recruited for prodrug activation in tissue?

    International Nuclear Information System (INIS)

    Kriste, A.G.; Ferry, D.M.; Anderson, R.F.; Wilson, W.R.

    2003-01-01

    We have previously demonstrated that the nitroarylmethyl quaternary ammonium (NMQ) prodrugs of mechlorethamine (HN2) can be activated under anoxia by ionizing radiation (Kriste et al. Radiation Research, 158, 753 - 762, 2002). The HN2 released by these model compounds, however, is insufficiently potent for the prodrugs to be therapeutically useful. To address this concern, NMQ trigger units (4-nitroimidazole, 2-nitropyrrole and 3-nitrothiophene; all demonstrate one-electron release of HN2) were tethered to the DNA intercalator, AMAC (IC 50 values of 1.3 to 66 nM against human and rodent tumour cells). We now report whether AMAC can be radiolytically released from NMQ-AMAC prodrugs in a hypoxic tissue-like environment. Initially radiolysis was investigated in anoxic 0.1 M Formate buffer. Here, the G value for AMAC release was 0.33 ± 0.02μmol/J. In anoxic human plasma, radiolytic release was half as efficient (G(AMAC)= 0.18 ± 0.03μmol/J). To investigate AMAC release in tissue, V79-171b rodent tumour cells were seeded onto Millicell-CM cell culture inserts and grown to 10 - 20 cell diameters. These multicellular layers (MCLs) were equilibrated with prodrug (1μM, 4 hours), and transferred to a gassing chamber (95% nitrogen or oxygen, 2 minutes). MCLs were irradiated (high dose linear accelerator, 0 - 800 Gy, 35 Gy/pulse) and lysed. HPLC analysis indicated that each prodrug was taken up intracellularly to ca. 50 μM. Furthermore, AMAC release was linear with radiation dose and was inhibited under oxia. In this tissue, G values spanned a range from 9.0 to 15 nmol/J. These low values, ca. 5 % of the plasma value, are interpreted as reflecting unfavourable prodrug localization into acidic intracellular endosomes, with no clear E(1) dependance. Whether radiolytic reduction occurs via e aq - or H . abstraction to generate carbon-centred radicals is unknown. MCL studies with NMQ prodrugs that release alternate amine containing cytotoxins are currently in progress

  10. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp.

    Directory of Open Access Journals (Sweden)

    Renil eAnthony

    2015-01-01

    Full Text Available Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (UTEX LB2396. Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. All solvent extracts contained hexadecanoic acid, linoleic acid and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%, cyclohexane (0.14% and hexane (0.11%. This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  11. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    Science.gov (United States)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  12. Selection of suitable prodrug candidates for in vivo studies via in vitro studies; the correlation of prodrug stability in between cell culture homogenates and human tissue homogenates.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-01-01

    To determine the correlations/discrepancies of drug stabilities between in the homogenates of human culture cells and of human tissues. Amino acid/dipeptide monoester prodrugs of floxuridine were chosen as the model drugs. The stabilities (half-lives) of floxuridine prodrugs in human tissues (pancreas, liver, and small intestine) homogenates were obtained and compared with ones in cell culture homogenates (AcPC-1, Capan-2, and Caco-2 cells) as well as human liver microsomes. The correlations of prodrug stability in human small bowel tissue homogenate vs. Caco-2 cell homogenate, human liver tissue homogenate vs. human liver microsomes, and human pancreatic tissue homogenate vs. pancreatic cell, AsPC-1 and Capan-2, homogenates were examined. The stabilities of floxuridine prodrugs in human small bowel homogenate exhibited the great correlation to ones in Caco-2 cell homogenate (slope = 1.0-1.3, r2 = 0.79-0.98). The stability of those prodrugs in human pancreas tissue homogenate also exhibited the good correlations to ones in AsPC-1 and Capan-2 cells homogenates (slope = 0.5-0.8, r2 = 0.58-0.79). However, the correlations of prodrug stabilities between in human liver tissue homogenates and in human liver microsomes were weaker than others (slope = 1.3-1.9, r2 = 0.07-0.24). The correlations of drug stabilities in cultured cell homogenates and in human tissue homogenates were compared. Those results exhibited wide range of correlations between in cell homogenate and in human tissue homogenate (r2 = 0.07 - 0.98). Those in vitro studies in cell homogenates would be good tools to predict drug stabilities in vivo and to select drug candidates for further developments. In the series of experiments, 5'-O-D-valyl-floxuridine and 5'-O-L-phenylalanyl-L-tyrosyl-floxuridine would be selected as candidates of oral drug targeting delivery for cancer chemotherapy due to their relatively good stabilities compared to other tested prodrugs.

  13. Recent advances in macromolecular prodrugs

    DEFF Research Database (Denmark)

    Riber, Camilla Frich; Zelikin, Alexander N.

    2017-01-01

    Macromolecular prodrugs (MP) are high molar mass conjugates, typically carrying several copies of a drug or a drug combination, designed to optimize delivery of the drug, that is — its pharmacokinetics. From its advent several decades ago, design of MP has undergone significant development and es...

  14. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, Renil [Department of Mechanical Engineering, Ohio University, Athens, OH (United States); Stuart, Ben, E-mail: stuart@ohio.edu [Department of Civil Engineering, Ohio University, Athens, OH (United States)

    2015-01-20

    Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates, and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (University of Texas at Austin LB2396). Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. The lipid extracts were derivatized and analyzed using gas chromatography–mass spectroscopy. All solvent extracts contained hexadecanoic acid, linoleic acid, and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%), cyclohexane (0.14%), and hexane (0.11%). This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  15. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp

    International Nuclear Information System (INIS)

    Anthony, Renil; Stuart, Ben

    2015-01-01

    Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates, and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (University of Texas at Austin LB2396). Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. The lipid extracts were derivatized and analyzed using gas chromatography–mass spectroscopy. All solvent extracts contained hexadecanoic acid, linoleic acid, and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%), cyclohexane (0.14%), and hexane (0.11%). This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  16. Chemotherapeutic potential of diazeniumdiolate-based aspirin prodrugs in breast cancer.

    Science.gov (United States)

    Basudhar, Debashree; Cheng, Robert C; Bharadwaj, Gaurav; Ridnour, Lisa A; Wink, David A; Miranda, Katrina M

    2015-06-01

    Diazeniumdiolate-based aspirin prodrugs have previously been shown to retain the anti-inflammatory properties of aspirin while protecting against the common side effect of stomach ulceration. Initial analysis of two new prodrugs of aspirin that also release either nitroxyl (HNO) or nitric oxide (NO) demonstrated increased cytotoxicity toward human lung carcinoma cells compared to either aspirin or the parent nitrogen oxide donor. In addition, cytotoxicity was significantly lower in endothelial cells, suggesting cancer-specific sensitivity. To assess the chemotherapeutic potential of these new prodrugs in treatment of breast cancer, we studied their effect both in cultured cells and in a nude mouse model. Both prodrugs reduced growth of breast adenocarcinoma cells more effectively than the parent compounds while not being appreciably cytotoxic in a related nontumorigenic cell line (MCF-10A). The HNO donor also was more cytotoxic than the related NO donor. The basis for the observed specificity was investigated in terms of impact on metabolism, DNA damage and repair, apoptosis, angiogenesis and metastasis. The results suggest a significant pharmacological potential for treatment of breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Poly(ethylene glycol-Prodrug Conjugates: Concept, Design, and Applications

    Directory of Open Access Journals (Sweden)

    Shashwat S. Banerjee

    2012-01-01

    Full Text Available Poly(ethylene glycol (PEG is the most widely used polymer in delivering anticancer drugs clinically. PEGylation (i.e., the covalent attachment of PEG of peptides proteins, drugs, and bioactives is known to enhance the aqueous solubility of hydrophobic drugs, prolong circulation time, minimize nonspecific uptake, and achieve specific tumor targetability through the enhanced permeability and retention effect. Numerous PEG-based therapeutics have been developed, and several have received market approval. A vast amount of clinical experience has been gained which has helped to design PEG prodrug conjugates with improved therapeutic efficacy and reduced systemic toxicity. However, more efforts in designing PEG-based prodrug conjugates are anticipated. In light of this, the current paper highlights the synthetic advances in PEG prodrug conjugation methodologies with varied bioactive components of clinical relevance. In addition, this paper discusses FDA-approved PEGylated delivery systems, their intended clinical applications, and formulations under clinical trials.

  18. Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity

    Directory of Open Access Journals (Sweden)

    Magdalena Markowicz-Piasecka

    2017-01-01

    Full Text Available The results of epidemiological and pathophysiological studies suggest that type 2 diabetes mellitus (T2DM may predispose to Alzheimer’s disease (AD. The two conditions present similar glucose levels, insulin resistance, and biochemical etiologies such as inflammation and oxidative stress. The diabetic state also contributes to increased acetylcholinesterase (AChE activity, which is one of the factors leading to neurodegeneration in AD. The aim of this study was to assess in vitro the effects of metformin, phenformin, and metformin sulfenamide prodrugs on the activity of human AChE and butyrylcholinesterase (BuChE and establish the type of inhibition. Metformin inhibited 50% of the AChE activity at micromolar concentrations (2.35 μmol/mL, mixed type of inhibition and seemed to be selective towards AChE since it presented low anti-BuChE activity. The tested metformin prodrugs inhibited cholinesterases (ChE at nanomolar range and thus were more active than metformin or phenformin. The cyclohexyl sulfenamide prodrug demonstrated the highest activity towards both AChE (IC50 = 890 nmol/mL, noncompetitive inhibition and BuChE (IC50 = 28 nmol/mL, mixed type inhibition, while the octyl sulfenamide prodrug did not present anti-AChE activity, but exhibited mixed inhibition towards BuChE (IC50 = 184 nmol/mL. Therefore, these two bulkier prodrugs were concluded to be the most selective compounds for BuChE over AChE. In conclusion, it was demonstrated that biguanides present a novel class of inhibitors for AChE and BuChE and encourages further studies of these compounds for developing both selective and nonselective inhibitors of ChEs in the future.

  19. Puromycin-sensitive aminopeptidase: an antiviral prodrug activating enzyme.

    Science.gov (United States)

    Tehler, Ulrika; Nelson, Cara H; Peterson, Larryn W; Provoda, Chester J; Hilfinger, John M; Lee, Kyung-Dall; McKenna, Charles E; Amidon, Gordon L

    2010-03-01

    Cidofovir (HPMPC) is a broad-spectrum antiviral agent, currently used to treat AIDS-related human cytomegalovirus retinitis. Cidofovir has recognized therapeutic potential for orthopox virus infections, although its use is hampered by its inherent low oral bioavailability. Val-Ser-cyclic HPMPC (Val-Ser-cHPMPC) is a promising peptide prodrug which has previously been shown by us to improve the permeability and bioavailability of the parent compound in rodent models (Eriksson et al., 2008. Molecular Pharmaceutics 5, 598-609). Puromycin-sensitive aminopeptidase was partially purified from Caco-2 cell homogenates and identified as a prodrug activating enzyme for Val-Ser-cHPMPC. The prodrug activation process initially involves an enzymatic step where the l-Valine residue is removed by puromycin-sensitive aminopeptidase, a step that is bestatin-sensitive. Subsequent chemical hydrolysis results in the generation of cHPMPC. A recombinant puromycin-sensitive aminopeptidase was generated and its substrate specificity investigated. The k(cat) for Val-pNA was significantly lower than that for Ala-pNA, suggesting that some amino acids are preferred over others. Furthermore, the three-fold higher k(cat) for Val-Ser-cHPMPC as compared to Val-pNA suggests that the leaving group may play an important role in determining hydrolytic activity. In addition to its ability to hydrolyze a variety of substrates, these observations strongly suggest that puromycin-sensitive aminopeptidase is an important enzyme for activating Val-Ser-cHPMPC in vivo. Taken together, our data suggest that puromycin-sensitive aminopeptidase makes an attractive target for future prodrug design.

  20. Increasing oral absorption of polar neuraminidase inhibitors: a prodrug transporter approach applied to oseltamivir analogue.

    Science.gov (United States)

    Gupta, Deepak; Varghese Gupta, Sheeba; Dahan, Arik; Tsume, Yasuhiro; Hilfinger, John; Lee, Kyung-Dall; Amidon, Gordon L

    2013-02-04

    Poor oral absorption is one of the limiting factors in utilizing the full potential of polar antiviral agents. The neuraminidase target site requires a polar chemical structure for high affinity binding, thus limiting oral efficacy of many high affinity ligands. The aim of this study was to overcome this poor oral absorption barrier, utilizing prodrug to target the apical brush border peptide transporter 1 (PEPT1). Guanidine oseltamivir carboxylate (GOCarb) is a highly active polar antiviral agent with insufficient oral bioavailability (4%) to be an effective therapeutic agent. In this report we utilize a carrier-mediated targeted prodrug approach to improve the oral absorption of GOCarb. Acyloxy(alkyl) ester based amino acid linked prodrugs were synthesized and evaluated as potential substrates of mucosal transporters, e.g., PEPT1. Prodrugs were also evaluated for their chemical and enzymatic stability. PEPT1 transport studies included [(3)H]Gly-Sar uptake inhibition in Caco-2 cells and cellular uptake experiments using HeLa cells overexpressing PEPT1. The intestinal membrane permeabilities of the selected prodrugs and the parent drug were then evaluated for epithelial cell transport across Caco-2 monolayers, and in the in situ rat intestinal jejunal perfusion model. Prodrugs exhibited a pH dependent stability with higher stability at acidic pHs. Significant inhibition of uptake (IC(50) 30-fold increase in affinity compared to GOCarb. The l-valyl prodrug exhibited significant enhancement of uptake in PEPT1/HeLa cells and compared favorably with the well-absorbed valacyclovir. Transepithelial permeability across Caco-2 monolayers showed that these amino acid prodrugs have a 2-5-fold increase in permeability as compared to the parent drug and showed that the l-valyl prodrug (P(app) = 1.7 × 10(-6) cm/s) has the potential to be rapidly transported across the epithelial cell apical membrane. Significantly, only the parent drug (GOCarb) appeared in the basolateral

  1. Flurbiprofen–antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling

    Science.gov (United States)

    Ashraf, Zaman; Alamgeer; Kanwal, Munazza; Hassan, Mubashir; Abdullah, Sahar; Waheed, Mamuna; Ahsan, Haseeb; Kim, Song Ja

    2016-01-01

    Flurbiprofen–antioxidant mutual prodrugs were synthesized to reduce the gastrointestinal (GI) effects associated with flurbiprofen. For reducing the GI toxicity, the free carboxylic group (–COOH) was temporarily masked by esterification with phenolic –OH of natural antioxidants vanillin, thymol, umbelliferone, and sesamol. The in vitro hydrolysis of synthesized prodrugs showed that they were stable in buffer solution at pH 1.2, indicating their stability in the stomach. The synthesized prodrugs undergo significant hydrolysis in 80% human plasma and thus release free flurbiprofen. The minimum reversion was observed at pH 1.2, suggesting that prodrugs are less irritating to the stomach than flurbiprofen. The anti-inflammatory, analgesic, antipyretic, and ulcerogenic activities of prodrugs were evaluated. All the synthesized prodrugs significantly (Pflurbiprofen showed 69% inhibition. Antipyretic activity was investigated using brewer’s yeast-induced pyrexia model, and significant (Pflurbiprofen. Molecular docking and simulation studies were carried out with cyclooxygenase (COX-1 and COX-2) proteins, and it was observed that our prodrugs have more potential to selectively bind to COX-2 than to COX-1. It is concluded that the synthesized prodrugs have promising pharmacological activities with reduced GI adverse effects than the parent drug. PMID:27555750

  2. Flurbiprofen-antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling.

    Science.gov (United States)

    Ashraf, Zaman; Alamgeer; Kanwal, Munazza; Hassan, Mubashir; Abdullah, Sahar; Waheed, Mamuna; Ahsan, Haseeb; Kim, Song Ja

    2016-01-01

    Flurbiprofen-antioxidant mutual prodrugs were synthesized to reduce the gastrointestinal (GI) effects associated with flurbiprofen. For reducing the GI toxicity, the free carboxylic group (-COOH) was temporarily masked by esterification with phenolic -OH of natural antioxidants vanillin, thymol, umbelliferone, and sesamol. The in vitro hydrolysis of synthesized prodrugs showed that they were stable in buffer solution at pH 1.2, indicating their stability in the stomach. The synthesized prodrugs undergo significant hydrolysis in 80% human plasma and thus release free flurbiprofen. The minimum reversion was observed at pH 1.2, suggesting that prodrugs are less irritating to the stomach than flurbiprofen. The anti-inflammatory, analgesic, antipyretic, and ulcerogenic activities of prodrugs were evaluated. All the synthesized prodrugs significantly (Pflurbiprofen showed 69% inhibition. Antipyretic activity was investigated using brewer's yeast-induced pyrexia model, and significant (Pflurbiprofen. Molecular docking and simulation studies were carried out with cyclooxygenase (COX-1 and COX-2) proteins, and it was observed that our prodrugs have more potential to selectively bind to COX-2 than to COX-1. It is concluded that the synthesized prodrugs have promising pharmacological activities with reduced GI adverse effects than the parent drug.

  3. Synthesis, In Vitro and In Vivo Evaluation of the N-ethoxycarbonylmorpholine Ester of Diclofenac as a Prodrug

    Directory of Open Access Journals (Sweden)

    Jamal A. Jilani

    2014-04-01

    Full Text Available The N-ethoxycarbonylmorpholine moiety was evaluated as a novel prodrug moiety for carboxylic acid containing drugs represented by diclofenac (1. Compound 2, the N-ethoxycarbonylmorpholine ester of diclofenac was synthesized and evaluated as a potential prodrug. The stability of the synthesized prodrug was evaluated in solutions of pH 1 and 7.4, and in plasma. The ester’s half lives were found to be 8 h, 47 h and 21 min in pH 1, pH 7.4 and plasma, respectively. Equimolar doses of diclofenac sodium and its synthesized prodrug were administered orally to a group of rabbits in a crossover study to evaluate their pharmacokinetic parameters. The prodrug 2 shows a similar rate and extent of absorption as the parent drug (1. The ulcerogenicity of the prepared prodrug was evaluated and compared with the parent drug. The prodrug showed less ulcerogenicity as detected by fewer number and smaller size of ulcers. In conclusion, the newly synthesized N-ethoxycarbonylmorpholine ester of diclofenac prodrug showed appropriate stability properties at different pHs, similar pharmacokinetic profile, and much less ulcerogenecity at the GIT compared to the parent drug diclofenac.

  4. Identification of novel nitroreductases from Bacillus cereus and their interaction with the CB1954 prodrug.

    Science.gov (United States)

    Gwenin, Vanessa V; Poornima, Paramasivan; Halliwell, Jennifer; Ball, Patrick; Robinson, George; Gwenin, Chris D

    2015-12-01

    Directed enzyme prodrug therapy is a form of cancer chemotherapy in which bacterial prodrug-activating enzymes, or their encoding genes, are directed to the tumour before administration of a prodrug. The prodrug can then be activated into a toxic drug at the tumour site, reducing off-target effects. The bacterial nitroreductases are a class of enzymes used in this therapeutic approach and although very promising, the low turnover rate of prodrug by the most studied nitroreductase enzyme, NfnB from Escherichia coli (NfnB_Ec), is a major limit to this technology. There is a continual search for enzymes with greater efficiency, and as part of the search for more efficient bacterial nitroreductase enzymes, two novel enzymes from Bacillus cereus (strain ATCC 14579) have been identified and shown to reduce the CB1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide) prodrug to its respective 2'-and 4'-hydroxylamine products. Both enzymes shared features characteristic of the nitro-FMN-reductase superfamily including non-covalently associated FMN, requirement for the NAD(P)H cofactor, homodimeric, could be inhibited by Dicoumarol (3,3'-methylenebis(4-hydroxy-2H-chromen-2-one)), and displayed ping pong bi bi kinetics. Based on the biochemical characteristics and nucleotide alignment with other nitroreductase enzymes, one enzyme was named YdgI_Bc and the other YfkO_Bc. Both B. cereus enzymes had greater turnover for the CB1954 prodrug compared with NfnB_Ec, and in the presence of added NADPH cofactor, YfkO_Bc had superior cell killing ability, and produced mainly the 4'-hydroxylamine product at low prodrug concentration. The YfkO_Bc was identified as a promising candidate for future enzyme prodrug therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. New Lipids From Cultured Archaea and Environmental Samples

    Science.gov (United States)

    Summons, R. E.; Meyer-Dombard, D. R.; Bradley, A. S.; Hebting, Y.; Jahnke, L. L.; Embaye, T.; Orphan, V. J.

    2006-12-01

    The intact polar lipids of Archaea comprise cores with isoprenoid hydrocarbon chains with 20, 25 or 40 carbon atoms linked through ether bonds to glycerol. These cores can take the form of diethers or membrane- spanning tetraethers. Together with their wide array of polar head groups, these compounds are structurally diverse and potentially very useful as taxonomic markers for making assessments of microbial diversity independently of genomic approaches. Furthermore, the recalcitrant hydrocarbon chains of these lipids are the only really effective means to identify the presence of Archaea in ancient sedimentary environments. The advent of new LC-MS methods has enabled ready identification and quantification of intact polar lipids in cultures and environmental samples based on comparisons with appropriate standard compounds [1, 2]. However, these LC-MS analyses of intact lipids have also revealed the presence of additional compounds and it is likely that many of these represent chemical structures that are new to science. Elucidating these structures is a major analytical challenge because, generally, only minute amounts of material available for chemical characterization. In order to study these potentially new structures, one layer of information can be obtained by chemical degradation to remove and identify the polar head groups [2]. Cleavage of the ether bonds releases the hydrocarbon chains for their further characterization. One class of core lipids, the 3-hydroxyarchaeols, escaped detection for many years because strong acid treatments in the analysis protocols had destroyed hydroxyl-containing isoprenoid chains. We have now re-examined the lipids of a thermophilic methanogen, M. thermolithotrophicus, using mild procedures and avoiding strong acids. As well as the known compounds archaeol, sn-2-hydroxyarchaeol and sn-3-hydroxyarchaeol, we encountered dihydroxyarchaeol. Moreover, the hydroxylated archaeols were found to exist as a very complex mixture of

  6. Evaluation of factors affecting on lipid extraction for recovery of fatty acids from Nannochloropsis oculata micro-algae to biodiesel production

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2014-11-01

    Full Text Available Background: This study aimed at determining the appropriate method for dewatering and drying biomass and selecting a suitable organic solvent for lipid extraction. Methods: NannochloropsisOculata was cultured in Gillard F/2 medium and after reaching the end of the stationary growth phase, algal biomass was separated from aqueous by centrifuge and dried through three methods: Oven, Air-dried and Lyophilized. Soxhlet apparatus achieved lipid extraction of all samples: diethyl ether, n-hexane and n-pentane using three solvents. At each stage, the quantity and quality of the extracted lipids were determined by Gas Chromatography. Results: In all three drying methods, palmitic acid and palmitoleic acid, and most significantly fatty acid composition of microalgae were extracted. The fatty acid composition of palmitic acid extracted by Diethyl ether was significantly more than the other two solvents. Maximum production of triglyceride was observed in Lyophilized and air-dried microalgae where lipid extraction was performed with diethyl ether solvents and are 75.03% and 76.72% of fatty acid. Conclusion: The use of Lyophilized method for dewatering and drying of biomass and Diethyl ether as solvent for the extraction of lipids from biomass, studied in this paper, as compared to other methods, had higher yields and researches proved that the production of biodiesel from microalgae’s lipid was more efficient.

  7. Digestibility of energy and lipids and oxidative stress in nursery pigs fed commercially available lipids

    Science.gov (United States)

    An experiment was conducted to evaluate the impact of lipid source on GE and ether extract (EE) digestibility, oxidative stress, and gut integrity in nursery pigs fed diets containing 10% of soybean oil (SO), choice white grease (CWG), palm oil (PO), or 2 different distillers corn oils (DCO-1 and DC...

  8. Click and Release: A Chemical Strategy toward Developing Gasotransmitter Prodrugs by Using an Intramolecular Diels-Alder Reaction.

    Science.gov (United States)

    Ji, Xingyue; Zhou, Cheng; Ji, Kaili; Aghoghovbia, Robert E; Pan, Zhixiang; Chittavong, Vayou; Ke, Bowen; Wang, Binghe

    2016-12-19

    Prodrug strategies have been proven to be a very effective way of addressing delivery problems. Much of the chemistry in prodrug development relies on the ability to mask an appropriate functional group, which can be removed under appropriate conditions. However, developing organic prodrugs of gasotransmitters represent unique challenges. This is especially true with carbon monoxide, which does not have an easy "handle" for bioreversible derivatization. By taking advantage of an intramolecular Diels-Alder reaction, we have developed a prodrug strategy for preparations of organic CO prodrugs that are stable during synthesis and storage, and yet readily release CO with tunable release rates under near physiological conditions. The effectiveness of the CO prodrug system in delivering a sufficient quantity of CO for possible therapeutic applications has been studied using a cell culture anti-inflammatory assay and a colitis animal model. These studies fully demonstrate the proof of concept, and lay a strong foundation for further medicinal chemistry work in developing organic CO prodrugs. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparison of Properties among Dendritic and Hyperbranched Poly(ether ether ketones and Linear Poly(ether ketones

    Directory of Open Access Journals (Sweden)

    Atsushi Morikawa

    2016-02-01

    Full Text Available Poly(ether ether ketone dendrimers and hyperbranched polymers were prepared from 3,5-dimethoxy-4′-(4-fluorobenzoyldiphenyl ether and 3,5-dihydroxy-4′-(4-fluorobenzoyldiphenyl ether through aromatic nucleophilic substitution reactions. 1-(tert-Butyldimethylsiloxy-3,5-bis(4-fluorobenzoylbenzene was polycondensed with bisphenols, followed by cleavage of the protective group to form linear poly(ether ketones having the same hydroxyl groups in the side chains as the chain ends of the dendrimer and hyperbranched polymers. Their properties, such as solubilities, reduced viscosities, and thermal properties, were compared with one another. Similar comparisons were also carried out among the corresponding methoxy group polymers, and the size of the molecules was shown to affect the properties.

  10. Clinical Advances of Hypoxia-Activated Prodrugs in Combination With Radiation Therapy.

    Science.gov (United States)

    Mistry, Ishna N; Thomas, Matthew; Calder, Ewen D D; Conway, Stuart J; Hammond, Ester M

    2017-08-01

    With the increasing incidence of cancer worldwide, the need for specific, effective therapies is ever more urgent. One example of targeted cancer therapeutics is hypoxia-activated prodrugs (HAPs), also known as bioreductive prodrugs. These prodrugs are inactive in cells with normal oxygen levels but in hypoxic cells (with low oxygen levels) undergo chemical reduction to the active compound. Hypoxia is a common feature of solid tumors and is associated with a more aggressive phenotype and resistance to all modes of therapy. Therefore, the combination of radiation therapy and bioreductive drugs presents an attractive opportunity for synergistic effects, because the HAP targets the radiation-resistant hypoxic cells. Hypoxia-activated prodrugs have typically been precursors of DNA-damaging agents, but a new generation of molecularly targeted HAPs is emerging. By targeting proteins associated with tumorigenesis and survival, these compounds may result in greater selectivity over healthy tissue. We review the clinical progress of HAPs as adjuncts to radiation therapy and conclude that the use of HAPs alongside radiation is vastly underexplored at the clinical level. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Bystander or No Bystander for Gene Directed Enzyme Prodrug Therapy

    Directory of Open Access Journals (Sweden)

    Adam V. Patterson

    2009-11-01

    Full Text Available Gene directed enzyme prodrug therapy (GDEPT of cancer aims to improve the selectivity of chemotherapy by gene transfer, thus enabling target cells to convert nontoxic prodrugs to cytotoxic drugs. A zone of cell kill around gene-modified cells due to transfer of toxic metabolites, known as the bystander effect, leads to tumour regression. Here we discuss the implications of either striving for a strong bystander effect to overcome poor gene transfer, or avoiding the bystander effect to reduce potential systemic effects, with the aid of three successful GDEPT systems. This review concentrates on bystander effects and drug development with regard to these enzyme prodrug combinations, namely herpes simplex virus thymidine kinase (HSV-TK with ganciclovir (GCV, cytosine deaminase (CD from bacteria or yeast with 5-fluorocytodine (5-FC, and bacterial nitroreductase (NfsB with 5-(azaridin-1-yl-2,4-dinitrobenzamide (CB1954, and their respective derivatives.

  12. The influence of water mixtures on the dermal absorption of glycol ethers

    International Nuclear Information System (INIS)

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M.

    2007-01-01

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a corresponding increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents

  13. Design of optimized hypoxia-activated prodrugs using pharmacokinetic/pharmacodynamic modeling

    Directory of Open Access Journals (Sweden)

    Annika Bettina Foehrenbacher

    2013-12-01

    Full Text Available Hypoxia contributes to resistance of tumors to some cytotoxic drugs and to radiotherapy, but can in principle be exploited with hypoxia-activated prodrugs (HAP. HAP in clinical development fall into two broad groups. Class I HAP (like the benzotriazine N-oxides tirapazamine and SN30000, are activated under relatively mild hypoxia. In contrast, Class II HAP (such as the nitro compounds PR-104A or TH-302 are maximally activated only under extreme hypoxia, but their active metabolites (effectors diffuse to cells at intermediate O2 and thus also eliminate moderately hypoxic cells. Here, we use a spatially resolved pharmacokinetic/pharmacodynamic (SR-PK/PD model to compare these two strategies and to identify the features required in an optimal Class II HAP. The model uses a Green’s function approach to calculate spatial and longitudinal gradients of O2, prodrug and effector concentrations, and resulting killing in a digitized 3D tumor microregion to estimate activity as monotherapy and in combination with radiotherapy. An analogous model for a normal tissue with mild hypoxia and short intervesssel distances (based on a cremaster muscle microvessel network was used to estimate tumor selectivity of cell killing. This showed that Class II HAP offer advantages over Class I including higher tumor selectivity and greater freedom to vary prodrug diffusibility and rate of metabolic activation. The model suggests that the largest gains in class II HAP antitumor activity could be realized by optimizing effector stability and prodrug activation rates. We also use the model to show that diffusion of effector into blood vessels is unlikely to materially increase systemic exposure for realistic tumor burdens and effector clearances. However, we show that the tumor selectivity achievable by hypoxia-dependent prodrug activation alone is limited if dose-limiting normal tissues are even mildly hypoxic

  14. Numerical analysis of spray characteristics of dimethyl ether and diethyl ether fuel

    International Nuclear Information System (INIS)

    Mohan, Balaji; Yang, Wenming; Yu, Wenbin; Tay, Kun Lin

    2017-01-01

    Highlights: • Thermo-physical properties of liquid DME and DEE are reported. • Ether fuels tend to cavitate higher compared to that of diesel fuel. • Spray tip penetration and SMD are found to be lesser for ether fuels. • Ether fuels shows excellent atomization behavior. - Abstract: In this work, the spray characteristics of ether fuels such as dimethyl ether (DME) and diethyl ether (DEE) have been numerically investigated using KIVA-4 CFD code. A new hybrid spray model developed by coupling the standard KHRT model to cavitation sub model was used. The detailed thermo-physical properties of ether fuels have been predicted and validated with experimental results available from literature. The cavitation inception inside the injector nozzle hole has been studied for ether fuels in comparison with diesel fuel. It was found that ether fuels cavitates higher compared to that of conventional diesel fuel because of its low viscosity. The spray tip penetration of diesel fuel was longer than that of ether fuels due to high viscosity and density of diesel fuel. Ether fuels characterized by low Ohnesorge number and high Reynolds number showed better atomization behavior compared to that of the diesel fuel.

  15. The development of orally administrable gemcitabine prodrugs with D-enantiomer amino acids: enhanced membrane permeability and enzymatic stability.

    Science.gov (United States)

    Tsume, Yasuhiro; Incecayir, Tuba; Song, Xueqin; Hilfinger, John M; Amidon, Gordon L

    2014-04-01

    Gemcitabine prodrugs with D- and L-configuration amino acids were synthesized and their chemical stability in buffers, resistance to glycosidic bond metabolism, enzymatic activation, permeability in Caco-2 cells and mouse intestinal membrane, anti-proliferation activity in cancer cell were determined and compared to that of parent drug, gemcitabine. Prodrugs containing D-configuration amino acids were enzymatically more stable than ones with L-configuration amino acids. The activation of all gemcitabine prodrugs was 1.3-17.6-fold faster in cancer cell homogenate than their hydrolysis in buffer, suggesting enzymatic action. The enzymatic activation of amino acid monoester prodrugs containing D-configuration amino acids in cell homogenates was 2.2-10.9-fold slower than one of amino acid monoester prodrugs with L-configuration amino acids. All prodrugs exhibited enhanced resistance to glycosidic bond metabolism by thymidine phosphorylase compared to parent gemcitabine. Gemcitabine prodrugs showed superior the effective permeability in mouse jejunum to gemcitabine. More importantly, the high plasma concentration of d-amino acid gemcitabine prodrugs was observed more than one of L-amino acid gemcitabine prodrugs. In general, the 5'-mono-amino acid monoester gemcitabine prodrugs exhibited higher permeability and uptake than their parent drug, gemcitabine. Cell proliferation assays in AsPC-1 pancreatic ductal cell line indicated that gemcitabine prodrugs were more potent than their parent drug, gemcitabine. The transport and enzymatic profiles of 5'-D-valyl-gemcitabine and 5'-D-phenylalanyl-gemcitabine suggest their potential for increased oral uptake and delayed enzymatic bioconversion as well as enhanced uptake and cytotoxic activity in cancer cells, would facilitate the development of oral dosage form for anti-cancer agents and, hence, improve the quality of life for the cancer patients. Copyright © 2014. Published by Elsevier B.V.

  16. Prodrugs of purine and pyrimidine analogues for the intestinal di/tri-peptide transporter PepT1

    DEFF Research Database (Denmark)

    Thomsen, Anne Engelbrecht; Friedrichsen, Gerda Marie; Sørensen, Arne Hagsten

    2003-01-01

    , novel L-Glu-Sar and D-Glu-Ala ester prodrugs of acyclovir and 1-(2-hydroxyethyl)-linked thymine were synthesized and their affinities for hPepT1 in Caco-2 cells were determined. Furthermore, the degradation of the prodrugs was investigated in various aqueous and biological media and compared...... to the corresponding hydrolysis of the prodrug valaciclovir. Affinity studies showed that the L-Glu-Sar prodrugs had high affinity for hPepT1 (K(i) approximately 0.2-0.3 mM), whereas the D-Glu-Ala prodrugs had poor affinity (K(i) approximately 50 mM). The pH-rate profiles of the prodrugs D-Glu[1-(2-hydroxyethyl......)thymine]-Ala and L-Glu[acyclovir]-Sar showed specific base catalyzed degradation at pH above 4.5 and 5.5, respectively. This implicates that the degradation rates at pH approximately 7.4 (t(1/2) approximately 3.5 and 5.5 h) are approximately 25 times faster than at upper small intestinal pH approximately 6.0. In 10...

  17. Oral bioavailability of the ether lipid plasmalogen precursor, PPI-1011, in the rabbit: a new therapeutic strategy for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Wood Paul L

    2011-12-01

    Full Text Available Abstract Introduction Docosahexaenoic acid (DHA and DHA-containing ethanolamine plasmalogens (PlsEtn are decreased in the brain, liver and the circulation in Alzheimer's disease. Decreased supply of plasmalogen precursors to the brain by the liver, as a result of peroxisomal deficits is a process that probably starts early in the AD disease process. To overcome this metabolic compromise, we have designed an orally bioavailable DHA-containing ether lipid precursor of plasmalogens. PPI-1011 is an alkyl-diacyl plasmalogen precursor with palmitic acid at sn-1, DHA at sn-2 and lipoic acid at sn-3. This study outlines the oral pharmacokinetics of this precursor and its conversion to PlsEtn and phosphatidylethanolamines (PtdEtn. Methods Rabbits were dosed orally with PPI-1011 in hard gelatin capsules for time-course and dose response studies. Incorporation into PlsEtn and PtdEtn was monitored by LC-MS/MS. Metabolism of released lipoic acid was monitored by GC-MS. To monitor the metabolic fate of different components of PPI-1011, we labeled the sn-1 palmitic acid, sn-2 DHA and glycerol backbone with13C and monitored their metabolic fates by LC-MS/MS. Results PPI-1011 was not detected in plasma suggesting rapid release of sn-3 lipoic acid via gut lipases. This conclusion was supported by peak levels of lipoic acid metabolites in the plasma 3 hours after dosing. While PPI-1011 did not gain access to the plasma, it increased circulating levels of DHA-containing PlsEtn and PtdEtn. Labeling experiments demonstrated that the PtdEtn increases resulted from increased availability of DHA released via remodeling at sn-2 of phospholipids derived from PPI-1011. This release of DHA peaked at 6 hrs while increases in phospholipids peaked at 12 hr. Increases in circulating PlsEtn were more complex. Labeling experiments demonstrated that increases in the target PlsEtn, 16:0/22:6, consisted of 2 pools. In one pool, the intact precursor received a sn-3

  18. Pharmacokinetics of intravitreal 5-flurouracil prodrugs in silicone oil. Experimental studies in pigs

    DEFF Research Database (Denmark)

    Laugesen, Caroline S; Steffansen, Bente; Scherfig, Erik

    2005-01-01

    PURPOSE: To examine the in vivo pharmacokinetics of intravitreal 5-Fluorouracil (5-FU) following tamponade with 5-FU prodrug silicone oil formulations. METHOD: Two different alkoxycarbonyl 5-FU prodrugs denoted C12 and C18 were synthesized and formulated as silicone oil suspensions. A total of 26...

  19. Paclitaxel prodrugs, method for preparation as well as their use in selective chemotherapy

    NARCIS (Netherlands)

    de Bont, Hendricus BA; Leenders, Ruben GG; Scheeren, Johan W; Haisma, Hidde J; de Vos, Dick

    1998-01-01

    A paclitaxel prodrug has a paclitaxel portion coupled to a cleavable N-(aliphatic or aromatic)-O-glycosyl carbamate spacer group, and can be administered orally, topically or by injection to provide an anti-tumor effect, the prodrug being activated by a hydrolizing enzyme, an endogeneous enzyme or

  20. Pharmacological Evaluation and Preliminary Pharmacokinetics Studies of a New Diclofenac Prodrug without Gastric Ulceration Effect

    OpenAIRE

    dos Santos, Jean Leandro [UNESP; Moreira, Vanessa; Campos, Michel Leandro [UNESP; Chelucci, Rafael Consolin [UNESP; Barbieri, Karina Pereira [UNESP; Maggio de Castro Souto, Pollyana Cristina; Matsubara, Marcio Hideki; Teixeira, Catarina; Bosquesi, Priscila Longhin [UNESP; Peccinini, Rosangela Goncalves [UNESP; Chin, Chung Man [UNESP

    2012-01-01

    Long-term nonsteroidal anti-inflammatory drugs (NSAIDs) therapy has been associated with several adverse effects such as gastric ulceration and cardiovascular events. Among the molecular modifications strategies, the prodrug approach is a useful tool to discover new safe NSAIDs. The 1-(2,6-dichlorophenyl)indolin-2-one is a diclofenac prodrug which demonstrated relevant anti-inflammatory properties without gastro ulceration effect. In addition, the prodrug decreases PGE(2) levels, COX-2 expres...

  1. Flurbiprofen–antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling

    Directory of Open Access Journals (Sweden)

    Ashraf Z

    2016-07-01

    Full Text Available Zaman Ashraf,1,2 Alamgeer,3 Munazza Kanwal,1 Mubashir Hassan,2 Sahar Abdullah,3 Mamuna Waheed,3 Haseeb Ahsan,3 Song Ja Kim2 1Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan; 2Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea; 3Department of Pharmacology, Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan Abstract: Flurbiprofen–antioxidant mutual prodrugs were synthesized to reduce the gastrointestinal (GI effects associated with flurbiprofen. For reducing the GI toxicity, the free carboxylic group (–COOH was temporarily masked by esterification with phenolic –OH of natural antioxidants vanillin, thymol, umbelliferone, and sesamol. The in vitro hydrolysis of synthesized prodrugs showed that they were stable in buffer solution at pH 1.2, indicating their stability in the stomach. The synthesized prodrugs undergo significant hydrolysis in 80% human plasma and thus release free flurbiprofen. The minimum reversion was observed at pH 1.2, ­suggesting that prodrugs are less irritating to the stomach than flurbiprofen. The anti-inflammatory, analgesic, antipyretic, and ulcerogenic activities of prodrugs were evaluated. All the synthesized prodrugs significantly (P<0.001 reduced the inflammation against carrageenan and egg albumin-induced paw edema at 4 hours of study. The reduction in the size of the inflamed paw showed that most of the compounds inhibited the later phase of inflammation. The prodrug 2-oxo-2H-chromen-7-yl-2-(2-fluorobiphenyl-4-ylpropanoate (4b showed significant reduction in paw licking with percentage inhibition of 58%. It also exhibited higher analgesic activity, reducing the number of writhes with a percentage of 75%, whereas flurbiprofen showed 69% inhibition. Antipyretic activity was investigated using brewer’s yeast-induced pyrexia model, and significant (P<0.001 reduction in rectal temperature was shown by all

  2. Effective gene silencing activity of prodrug-type 2'-O-methyldithiomethyl siRNA compared with non-prodrug-type 2'-O-methyl siRNA.

    Science.gov (United States)

    Hayashi, Junsuke; Nishigaki, Misa; Ochi, Yosuke; Wada, Shun-Ichi; Wada, Fumito; Nakagawa, Osamu; Obika, Satoshi; Harada-Shiba, Mariko; Urata, Hidehito

    2018-07-01

    Small interfering RNAs (siRNAs) are an active agent to induce gene silencing and they have been studied for becoming a biological and therapeutic tool. Various 2'-O-modified RNAs have been extensively studied to improve the nuclease resistance. However, the 2'-O-modified siRNA activities were often decreased by modification, since the bulky 2'-O-modifications inhibit to form a RNA-induced silencing complex (RISC). We developed novel prodrug-type 2'-O-methyldithiomethyl (MDTM) siRNA, which is converted into natural siRNA in an intracellular reducing environment. Prodrug-type 2'-O-MDTM siRNAs modified at the 5'-end side including 5'-end nucleotide and the seed region of the antisense strand exhibited much stronger gene silencing effect than non-prodrug-type 2'-O-methyl (2'-O-Me) siRNAs. Furthermore, the resistances for nuclease digestion of siRNAs were actually enhanced by 2'-O-MDTM modifications. Our results indicate that 2'-O-MDTM modifications improve the stability of siRNA in serum and they are able to be introduced at any positions of siRNA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Nanostructured self-assembly materials from neat and aqueous solutions of C18 lipid pro-drug analogues of Capecitabine—a chemotherapy agent. Focus on nanoparticulate cubosomes™ of the oleyl analogue

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaojuan; Moghaddam, Minoo J.; Sagnella, Sharon M.; Conn, Charlotte E.; Mulet, Xavier; Danon, Stephen J.; Waddington, Lynne J.; Drummond, Calum J.

    2014-09-24

    A series of prodrug analogues based on the established chemotherapy agent, 5-fluorouracil, have been prepared and characterized. C18 alkyl and alkenyl chains with increasing degree of unsaturation were attached to the N4 position of the 5-fluorocytosine (5-FC) base via a carbamate bond. Physicochemical characterization of the prodrug analogues was carried out using a combination of differential scanning calorimetry, cross-polarized optical microscopy, X-ray diffraction and small-angle X-ray scattering. The presence of a monounsaturated oleyl chain was found to promote lyotropic liquid crystalline phase formation in excess water with a fluid lamellar phase observed at room temperature and one or more bicontinuous cubic phases at 37 °C. The bulk phase was successfully dispersed into liposomes or cubosomes at room and physiological temperature respectively. In vitro toxicity of the nanoparticulate 5-FCOle dispersions was evaluated against several normal and cancer cell types over a 48 h period and exhibited an IC50 of -100 μM against all cell types. The in vivo efficacy of 5-FCOle cubosomes was assessed against the highly aggressive mouse 4T1 breast cancer model and compared to Capecitabine (a water-soluble commercially available 5-FU prodrug) delivered at the same dosages. After 21 days of treatment, the 0.5 mmol 5-FCOle treatment group exhibited a significantly smaller average tumour volume than all other treatment groups including Capecitabine at similar dosage. These results exemplify the potential of self-assembled amphiphile prodrugs for delivery of bioactives in vivo.

  4. Dinitrobenzamide mustard prodrugs - hypoxic cytotoxins and dual substrates for E.coli nitroreductase

    International Nuclear Information System (INIS)

    Patterson, A.V.; Hogg, A.; Pullen, S.; Degenkolbe, A.; Li, D.; Chappell, A.; Ying, S.; Atwell, G.J.; Denny, W.A.; Anderson, R.F.; Wilson, W.R.

    2003-01-01

    Conditional replicating adenoviral vectors (CRAds) have received considerable attention as therapeutic tools in combination with radiotherapy. Viral distribution and micro-regional geometry are likely to be important issues in the treatment of human solid tumours with gene therapy, particularly following intravenous virus administration. The use of CRAds that are 'armed' with enzyme/prodrug systems may overcome some of the perceived limitations; CRAds can redistribute and self-amplify in a cytolytic fashion whilst prodrug metabolites may elicit a local bystander effect. Either or both of these cytotoxic properties could have favourable interactions with radiotherapy (IR). Nevertheless, they may be insufficient to avoid pockets of vector-naive tumour cells beyond the diffusion limits of cytotoxic prodrug metabolites, such as when perivascular seeding occurs. Under such circumstances hypoxic tumour cells may represent the least accessible compartment for vector transfection; the same tumour subpopulation that is likely to be radioresistant. E.coli nitroreductase (NTR) can bioactivate dinitrobenzamide mustards (DNBMs) and is a promising enzyme/prodrug system for 'arming' CRAds. Notably DNMBs can also be activated by endogenous human reductases under low oxygen conditions providing an opportunity to identify dual hypoxic cytotoxins/NTR substrates that may circumvent some of the geometry issues and provide complementarity with IR. To identify a prodrug for NTR that is also active as a hypoxic cytotoxin in vivo. From a set of 164 DNB prodrugs, 19 with favourable activity in vitro against a panel of four NTR-expressing cancer cells were selected and screened for activity as hypoxic cytotoxins in vitro. Measured E17 values ranged from -444 to -366 mV. Seven DNBMs possessed acceptable hypoxic selectivity against the human NSCLC cell line A549WT or clones engineered to overexpress either a human single-electron reductase, cytochrome P450 reductase (A549P450R), or oxic

  5. The Prodrug Approach: A Successful Tool for Improving Drug Solubility

    Directory of Open Access Journals (Sweden)

    Daniela Hartmann Jornada

    2015-12-01

    Full Text Available Prodrug design is a widely known molecular modification strategy that aims to optimize the physicochemical and pharmacological properties of drugs to improve their solubility and pharmacokinetic features and decrease their toxicity. A lack of solubility is one of the main obstacles to drug development. This review aims to describe recent advances in the improvement of solubility via the prodrug approach. The main chemical carriers and examples of successful strategies will be discussed, highlighting the advances of this field in the last ten years.

  6. Synthesis and biological evaluation of S-acyl-3-thiopropyl prodrugs of N-phosphonoacetyl-L-aspartate (PALA).

    Science.gov (United States)

    Gagnard, Valérie; Leydet, Alain; Le Mellay, Véronique; Aubenque, Marielle; Morère, Alain; Montero, Jean-Louis

    2003-10-01

    The synthesis of new prodrugs of PALA characterised by the presence of S-acyl-3-thiopropyl, as enzyme-labile groups on the phosphonate moiety of PALA, is reported. The cytotoxic activities of PALA prodrugs were determined against human cell line (SW1573 lung carcinoma cells). A number of prodrugs bearing S-pivaloyl as acyl groups displayed cytotoxic activity in the same order of magnitude of PALA.

  7. Platinum(iv) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy

    Science.gov (United States)

    Shi, Saige; Chen, Xiaolan; Wei, Jingping; Huang, Yizhuan; Weng, Jian; Zheng, Nanfeng

    2016-03-01

    Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The prepared Pd@Au-PEG-Pt nanocomposite showed excellent stability in physiological solutions and efficient Pt(iv) prodrug loading. Once injected into biological tissue, the Pt(iv) prodrug was easily reduced by physiological reductants (e.g. ascorbic acid or glutathione) into its cytotoxic and hydrophilic Pt(ii) form and released from the original nanocomposite, and the NIR laser irradiation could accelerate the release of Pt(ii) species. More importantly, Pd@Au-PEG-Pt has high tumor accumulation (29%ID per g), which makes excellent therapeutic efficiency at relatively low power density possible. The in vivo results suggested that, compared with single therapy the combined thermo-chemotherapy treatment with Pd@Au-PEG-Pt resulted in complete destruction of the tumor tissue without recurrence, while chemotherapy using Pd@Au-PEG-Pt without irradiation or photothermal treatment using Pd@Au-PEG alone did not. Our work highlights the prospects of a feasible drug delivery strategy of the Pt prodrug by using 2D Pd@Au nanoplates as drug delivery carriers for multimode cancer treatment.Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The

  8. Cosmic Ether

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    A prerelativistic approach to particle dynamics is explored in an expanding Robertson-Walker cosmology. The receding galactic background provides a distinguished frame of reference and a unique cosmic time. In this context the relativistic, purely geometric space-time concept is criticized. Physical space is regarded as a permeable medium, the cosmic ether, which effects the world-lines of particles and rays. We study in detail a Robertson-Walker universe with linear expansion factor and negatively curved, open three-space; we choose the permeability tensor of the ether in such a way that the semiclassical approximation is exact. Galactic red-shifts depend on the refractive index of the ether. In the local Minkowskian limit the ether causes a time variation of mass, which scales inversely proportional to cosmic time. In the globally geodesic rest frames of galactic observers the ether manifests itself in an unbounded speed of signal transfer, in bifurcations of world-lines, and in time inversion effects.

  9. Levels and distribution of polybrominated diphenyl ethers in various tissues of birds of prey

    International Nuclear Information System (INIS)

    Voorspoels, Stefan; Covaci, Adrian; Lepom, Peter; Jaspers, Veerle L.B.; Schepens, Paul

    2006-01-01

    In the present study, concentrations and tissue distribution of polybrominated diphenyl ethers (PBDEs; IUPAC nos. 28, 47, 99, 100, 153, 154, 183, and 209) were examined in brain, adipose tissue, liver, muscle, and serum of birds of prey. Median ΣPBDE levels (BDE 28-183) in the tissues of sparrowhawks ranged from 360 to 1900 ng/g lipid weight (lw), which was in general one order of magnitude higher than in the tissues of common buzzards (26-130 ng/g lw). There were no differences in PBDE congener patterns between the various tissues within individuals of a certain species. Inter-species differences in PBDE patterns and in particular the percentage of BDE 99, 100 and 153 were, however, pronounced between sparrowhawk and common buzzard. BDE 209 was detected in nearly all serum and in some liver samples, but not in any other tissues. This observation suggests that exposure to BDE 209 is low or that this congener is poorly accumulated. Passive (lipid content related) diffusion could not completely describe the PBDE tissue distribution, e.g. the lowest PBDE-load was measured in brain, a fairly lipid rich tissue. - Distribution of polybrominated diphenyl ethers in birds of prey is tissue dependent

  10. The Feasibility of Enzyme Targeted Activation for Amino Acid/Dipeptide Monoester Prodrugs of Floxuridine; Cathepsin D as a Potential Targeted Enzyme

    Directory of Open Access Journals (Sweden)

    Gordon L. Amidon

    2012-03-01

    Full Text Available The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5¢-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0–105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5¢-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine and 5¢-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enyzmes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  11. The feasibility of enzyme targeted activation for amino acid/dipeptide monoester prodrugs of floxuridine; cathepsin D as a potential targeted enzyme.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-03-26

    The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5'-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0-105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5'-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5'-O-L-phenylalanyl-L-tyrosylfloxuridine and 5'-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enzymes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5'-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  12. Fabrication and properties of poly(polyethylene glycol n-alkyl ether vinyl ether)s as polymeric phase change materials

    International Nuclear Information System (INIS)

    Pei, Dong-fang; Chen, Sai; Li, Shu-qin; Shi, Hai-feng; Li, Wei; Li, Xuan; Zhang, Xing-xiang

    2016-01-01

    A series of poly(polyethylene glycol n-alkyl ether vinyl ether)s (PC m E n VEs) with various lengths of alkyl chains and polyethylene glycol spacers as side chain (m = 16,18; n = 1,2) were synthesized via two steps. First, monomers-ethylene glycol hexadecyl ether vinyl ether (C 16 E 1 VE), ethylene glycol octadecyl ether vinyl ether (C 18 E 1 VE), diethylene glycol hexadecyl ether vinyl ether (C 16 E 2 VE) and diethylene glycol octadecyl ether vinyl ether (C 18 E 2 VE) were synthesized by a modified Williamson etherification. Then, four new types of phase change materials were successfully fabricated by a living cationic polymerization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were employed to characterize their composition, thermal properties and crystallization behavior. The results show that, the side chains of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are in a hexagonal lattice, and the onset temperatures for melting of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are 39.8 °C, 37.4 °C, 51.0 °C and 48.9 °C, the onset temperatures for crystallization are 36.7 °C, 35.2 °C, 47.4 °C and 46.3 °C, respectively. The enthalpy changes of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 100 J/g; on the contrary, it is 96 J/g for PC 16 E 1 VE. The enthalpy decrease is no more than 11% after 10 heating and cooling cycles. The 5 wt% mass loss temperatures of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 300 °C; on the contrary, it’s 283 °C for PC 16 E 1 VE. Using a weak polarity, flexible alkyl ether chain (-OCH 2 CH 2 O-) as a spacer to link the main chain and side chain is conducive to the crystallization of the alkyl side chain. These new phase change materials can be applied in heat storage, energy conservation, and environmental protection.

  13. Stepwise-activable multifunctional peptide-guided prodrug micelles for cancerous cells intracellular drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing, E-mail: zhangjing@zjut.edu.cn; Li, Mengfei [Zhejiang University of Technology, College of Materials Science and Engineering (China); Yuan, Zhefan [Zhejiang University, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering (China); Wu, Dan; Chen, Jia-da; Feng, Jie, E-mail: fengjie@zjut.edu.cn [Zhejiang University of Technology, College of Materials Science and Engineering (China)

    2016-10-15

    A novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for cancerous cells intracellular drug release. Deca-lysine sequence (K{sub 10}), a type of cell-penetrating peptide, was synthesized and terminated with azido-glycine. Then a new kind of molecule, alkyne modified doxorubicin (DOX) connecting through disulfide bond (DOX-SS-alkyne), was synthesized. After coupling via Cu-catalyzed azide–alkyne cycloaddition (CuAAC) click chemistry reaction, reduction-sensitive peptide-guided prodrug was obtained. Due to the amphiphilic property of the prodrug, it can assemble to form micelles. To prevent the nanocarriers from unspecific cellular uptake, the prodrug micelles were subsequently modified with 2,3-dimethyl maleic anhydride to obtain MPPM with a negatively charged outer shell. In vitro studies showed that MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would be activated by charge reversal of the micelles via hydrolysis of acid-labile β-carboxylic amides and regeneration of K{sub 10}, which enabled efficient internalization of MPPM by tumor cells as well as following glutathione- and protease-induced drug release inside the cancerous cells. Furthermore, since the guide peptide sequences can be accurately designed and synthesized, it can be easily changed for various functions, such as targeting peptide, apoptotic peptide, even aptamers, only need to be terminated with azido-glycine. This method can be used as a template for reduction-sensitive peptide-guided prodrug for cancer therapy.Graphical abstractA novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for selective drug delivery in cancerous cells. MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would

  14. Prodrug Strategies for Paclitaxel

    Directory of Open Access Journals (Sweden)

    Ziyuan Meng

    2016-05-01

    Full Text Available Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective.

  15. Misconceptions about the ether

    International Nuclear Information System (INIS)

    Duffy, M.C.

    1980-01-01

    Several misconceptions concerning the ether concept and ether models are reviewed and clarified so that the relationship between modern ether theory and orthodox relativity may be better understood. The question of the ether's supposed superfluidity as a concept, and its status in modern physics remains to be answered. (author)

  16. A prodrug approach involving in situ depot formation to achieve localized and sustained action of diclofenac after joint injection.

    Science.gov (United States)

    Thing, Mette; Ågårdh, Li; Larsen, Susan; Rasmussen, Rune; Pallesen, Jakob; Mertz, Nina; Kristensen, Jesper; Hansen, Martin; Østergaard, Jesper; Larsen, Claus Selch

    2014-12-01

    Long-acting nonsteroidal anti-inflammatory drug formulations for intra-articular injection might be effective in the management of joint pain and inflammation associated sports injuries and osteoarthritis. In this study, a prodrug-based delivery system was evaluated. The synthesized diclofenac ester prodrug, a weak base (pKa 7.52), has relatively high solubility at low pH (6.5 mg mL(-1) at pH 4) and much lower solubility at physiological pH (4.5 μg mL(-1) at pH 7.4) at 37°C. In biological media including 80% (v/v) human synovial fluid (SF), the prodrug was cleaved to diclofenac mediated by esterases. In situ precipitation of the prodrug was observed upon addition of a concentrated slightly acidic prodrug solution to phosphate buffer or SF at pH 7.4. The degree of supersaturation accompanying the precipitation process was more pronounced in SF than in phosphate buffer. In the rotating dialysis cell model, a slightly acidic prodrug solution was added to the donor cell containing 80% SF resulting in a continuous appearance of diclofenac in the acceptor phase for more than 43 h after an initial lag period of 8 h. Detectable amounts of prodrug were found in the rat joint up to 8 days after knee injection of the acidic prodrug solution. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. The efficacy of the anthracycline prodrug daunorubicin-GA3 in human ovarian cancer xenografts

    NARCIS (Netherlands)

    Houba, PHJ; Boven, E; Erkelens, CAM; Leenders, RGG; Scheeren, JW; Pinedo, HM; Haisma, HJ

    1998-01-01

    The prodrug N-[4-(daunorubicin-N-carbonyl-oxymethyl)phenyl] O-beta-glucuronyl carbamate (DNR-GA3) was synthesized for specific activation by human beta-glucuronidase, released in necrotic areas of tumour lesions. In vitro, DNR-GA3 was 18 times less toxic than daunorubicin (DNR) and the prodrug was

  18. Pharmacokinetics of Curcumin Diethyl Disuccinate, a Prodrug of Curcumin, in Wistar Rats.

    Science.gov (United States)

    Bangphumi, Kunan; Kittiviriyakul, Chuleeporn; Towiwat, Pasarapa; Rojsitthisak, Pornchai; Khemawoot, Phisit

    2016-12-01

    Curcumin is the major bioactive component of turmeric, but has poor oral bioavailability that limits its clinical applications. To improve the in vitro solubility and alkaline stability, we developed a prodrug of curcumin by succinylation to obtain curcumin diethyl disuccinate, with the goal of improving the oral bioavailability of curcumin. The in vivo pharmacokinetic profile of curcumin diethyl disuccinate was compared with that of curcumin in male Wistar rats. Doses of curcumin 20 mg/kg intravenous or 40 mg/kg oral were used as standard regimens for comparison with the prodrug at equivalent doses in healthy adult rats. Blood, tissues, urine, and faeces were collected from time zero to 48 h after dosing to determine the prodrug level, curcumin level and a major metabolite by liquid chromatography-tandem spectrometry. The absolute oral bioavailability of curcumin diethyl disuccinate was not significantly improved compared with curcumin, with both compounds having oral bioavailability of curcumin less than 1 %. The major metabolic pathway of the prodrug was rapid hydrolysis to obtain curcumin, followed by glucuronidation. Interestingly, curcumin diethyl disuccinate gave superior tissue distribution with higher tissue to plasma ratio of curcumin and curcumin glucuronide in several organs after intravenous dosing at 1 and 4 h. The primary elimination route of curcumin glucuronide occurred via biliary and faecal excretion, with evidence of an entry into the enterohepatic circulation. Curcumin diethyl disuccinate did not significantly improve the oral bioavailability of curcumin due to first pass metabolism in the gastrointestinal tract. Further studies on reduction of first pass metabolism are required to optimise delivery of curcumin using a prodrug approach.

  19. Chlorzoxazone esters of some non-steroidal anti-inflammatory (NSAI) carboxylic acids as mutual prodrugs: design, synthesis, pharmacological investigations and docking studies.

    Science.gov (United States)

    Abdel-Azeem, Ahmed Z; Abdel-Hafez, Atef A; El-Karamany, Gamal S; Farag, Hassan H

    2009-05-15

    The discovery of the inducible isoform of cyclooxygenase enzyme (COX-2) spurred the search for anti-inflammatory agents devoid of the undesirable effects associated with classical NSAIDs. New chlorzoxazone ester prodrugs (6-8) of some acidic NSAIDs (1-3) were designed, synthesized and evaluated as mutual prodrugs with the aim of improving the therapeutic potency and retard the adverse effects of gastrointestinal origin. The structure of the synthesized mutual ester prodrugs (6-8) were confirmed by IR, (1)H NMR, mass spectroscopy (MS) and their purity was ascertained by TLC and elemental analyses. In vitro chemical stability revealed that the synthesized ester prodrugs (6-8) are chemically stable in hydrochloric acid buffer pH 1.2 as a non-enzymatic simulated gastric fluid (SGF) and in phosphate buffer pH 7.4 as non-enzymatic simulated intestinal fluid (SIF). In 80% human plasma, the mutual prodrugs were found to be susceptible to enzymatic hydrolysis at relatively faster rate (t(1/2) approximately 37 and 34 min for prodrugs 6 and 7, respectively). Mutual ester prodrugs (6-8) were evaluated for their anti-inflammatory and muscle relaxation activities. Scanning electromicrographs of the stomach showed that the ester prodrugs induced very little irritancy in the gastric mucosa of rats after oral administration for 4days. In addition, docking of the mutual ester prodrugs (6-8) into COX-2 active site was conducted in order to predict the affinity and orientation of these prodrugs at the enzyme active site.

  20. Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides.

    Science.gov (United States)

    Ensminger, M P; Hess, F D

    1985-05-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity.

  1. A Smart Europium-Ruthenium Complex as Anticancer Prodrug: Controllable Drug Release and Real-Time Monitoring under Different Light Excitations.

    Science.gov (United States)

    Li, Hongguang; Xie, Chen; Lan, Rongfeng; Zha, Shuai; Chan, Chi-Fai; Wong, Wing-Yan; Ho, Ka-Lok; Chan, Brandon Dow; Luo, Yuxia; Zhang, Jing-Xiang; Law, Ga-Lai; Tai, William C S; Bünzli, Jean-Claude G; Wong, Ka-Leung

    2017-11-09

    A unique, dual-function, photoactivatable anticancer prodrug, RuEuL, has been tailored that features a ruthenium(II) complex linked to a cyclen-europium chelate via a π-conjugated bridge. Under irradiation at 488 nm, the dark-inactive prodrug undergoes photodissociation, releasing the DNA-damaging ruthenium species. Under evaluation-window irradiation (λ irr = one-photon 350 nm or two-photon 700 nm), the drug delivery process can be quantitatively monitored in real-time because of the long-lived red europium emission. Linear relationships between released drug concentration and ESI-MS or luminescence responses are established. Finally, the efficiency of the new prodrug is demonstrated both in vitro RuEuL anticancer prodrug over some existing ones and open the way for decisive improvements in multipurpose prodrugs.

  2. Tailoring acyclovir prodrugs with enhanced antiviral activity: rational design, synthesis, human plasma stability and in vitro evaluation.

    Science.gov (United States)

    Chayrov, Radoslav L; Stylos, Evgenios K; Chatziathanasiadou, Maria V; Chuchkov, Kiril N; Tencheva, Aleksandra I; Kostagianni, Androniki D; Milkova, Tsenka S; Angelova, Assia L; Galabov, Angel S; Shishkov, Stoyan A; Todorov, Daniel G; Tzakos, Andreas G; Stankova, Ivanka G

    2018-05-19

    Bile acid prodrugs have served as a viable strategy for refining the pharmaceutical profile of parent drugs through utilizing bile acid transporters. A series of three ester prodrugs of the antiherpetic drug acyclovir (ACV) with the bile acids cholic, chenodeoxycholic and deoxycholic were synthesized and evaluated along with valacyclovir for their in vitro antiviral activity against herpes simplex viruses type 1 and type 2 (HSV-1, HSV-2). The in vitro antiviral activity of the three bile acid prodrugs was also evaluated against Epstein-Barr virus (EBV). Plasma stability assays, utilizing ultra-high performance liquid chromatography coupled with tandem mass spectrometry, in vitro cytotoxicity and inhibitory experiments were conducted in order to establish the biological profile of ACV prodrugs. The antiviral assays demonstrated that ACV-cholate had slightly better antiviral activity than ACV against HSV-1, while it presented an eight-fold higher activity with respect to ACV against HSV-2. ACV-chenodeoxycholate presented a six-fold higher antiviral activity against HSV-2 with respect to ACV. Concerning EBV, the highest antiviral effect was demonstrated by ACV-chenodeoxycholate. Human plasma stability assays revealed that ACV-deoxycholate was more stable than the other two prodrugs. These results suggest that decorating the core structure of ACV with bile acids could deliver prodrugs with amplified antiviral activity.

  3. Prodrugs for the Treatment of Neglected Diseases

    Directory of Open Access Journals (Sweden)

    Lorena Blau

    2007-03-01

    Full Text Available Recently, World Health Organization (WHO and Medicins San Frontieres (MSF proposed a classification of diseases as global, neglected and extremely neglected. Global diseases, such as cancer, cardiovascular and mental (CNS diseases represent the targets of the majority of the R&D efforts of pharmaceutical companies. Neglected diseases affect millions of people in the world yet existing drug therapy is limited and often inappropriate. Furthermore, extremely neglected diseases affect people living under miserable conditions who barely have access to the bare necessities for survival. Most of these diseases are excluded from the goals of the R&D programs in the pharmaceutical industry and therefore fall outside the pharmaceutical market. About 14 million people, mainly in developing countries, die each year from infectious diseases. From 1975 to 1999, 1393 new drugs were approved yet only 1% were for the treatment of neglected diseases [3]. These numbers have not changed until now, so in those countries there is an urgent need for the design and synthesis of new drugs and in this area the prodrug approach is a very interesting field. It provides, among other effects, activity improvements and toxicity decreases for current and new drugs, improving market availability. It is worth noting that it is essential in drug design to save time and money, and prodrug approaches can be considered of high interest in this respect. The present review covers 20 years of research on the design of prodrugs for the treatment of neglected and extremely neglected diseases such as Chagas’ disease (American trypanosomiasis, sleeping sickness (African trypanosomiasis, malaria, sickle cell disease, tuberculosis, leishmaniasis and schistosomiasis.

  4. Preparation, characterization and in vitro evaluation of a new nucleotide analogue prodrug cyclodextrin inclusion complexes.

    Science.gov (United States)

    Diab, Roudayna; Jordheim, Lars P; Degobert, Ghania; Peyrottes, Suzanne; Périgaud, Christian; Dumontet, Charles; Fessi, Hatem

    2009-01-01

    Bis(tbutyl-S-acyl-2-thioethyl)-cytidine monophosophate is a new cytotoxic mononucleotide prodrug which have been developed to reverse the cellular resistance to nucleoside analogues. Unfortunately, its in vivo utilisation was hampered by its poor water solubility, raising the need of a molecular vector capable to mask its physicochemical characteristics although without affecting its cytotoxic activity. Hydroxypropyl-beta-cyclodextrin was used to prepare the prodrug inclusion complexes, allowing it to be solubilized in water and hence to be used for in vitro and in vivo experiments. A molar ratio of the cyclodextrin: prodrug of 3 was sufficient to obtain complete solubilization of the prodrug. The inclusion complex was characterized by differential scanning calorimetry, which revealed the disappearance of the melting peak of the prodrug suggesting the formation of inclusion complex. Proton Nuclear Magnetic Resonance spectroscopy provided a definitive proof of the inclusion complex formation, which was evidenced by the large chemical shift displacements observed for protons located in the interior of the hydrophobic cyclodextrin cavity. The complex retained its cytotoxic activity as shown by in vitro cell survival assays on murine leukemia cells. These results provided a basis for potential therapeutic applications of co-formulation of this new nucleotide analogue with hydroxypropyl-beta-CD in cancer therapy.

  5. Smart activatable and traceable dual-prodrug for image-guided combination photodynamic and chemo-therapy.

    Science.gov (United States)

    Hu, Fang; Yuan, Youyong; Mao, Duo; Wu, Wenbo; Liu, Bin

    2017-11-01

    Activatable photosensitizers (PSs) and chemo-prodrugs are highly desirable for anti-cancer therapy to reduce systemic toxicity. However, it is difficult to integrate both together into a molecular probe for combination therapy due to the complexity of introducing PS, singlet oxygen quencher, chemo-drug, chemo-drug inhibitor and active linker at the same time. To realize activatable PS and chemo-prodrug combination therapy, we develop a smart therapeutic platform in which the chemo-prodrug serves as the singlet oxygen quencher for the PS. Specifically, the photosensitizing activity and fluorescence of the PS (TPEPY-SH) are blocked by the chemo-prodrug (Mitomycin C, MMC) in the probe. Meanwhile, the cytotoxicity of MMC is also inhibited by the electron-withdrawing acyl at the nitrogen position next to the linker. Upon glutathione activation, TPEPY-S-MMC can simultaneously release active PS and MMC for combination therapy. The restored fluorescence of TPEPY-SH is also used to report the activation for both PS and MMC as well as to guide the photodynamic therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Prodrugs designed to discriminate pathological (tumour) and physiological (normal tissue) hypoxia

    International Nuclear Information System (INIS)

    Wilson, W.R.; Patterson, A.V.

    2003-01-01

    There is now abundant evidence that hypoxic contributes to treatment failure in radiation therapy. As a target for therapeutic intervention, hypoxia is especially attractive because it is a common feature of most human tumours and therefore a potential 'pan target' across many tumour types. However, attempts to exploit hypoxia face the problem that oxygen concentrations in some normal tissues are also heterogeneous and that O 2 distributions in tumours and normal tissues overlap. Simply adjusting the K value (O 2 concentration for 50% inhibition of activation) does not provide a satisfactory solution. Bioreductive drugs like tirapazamine with high K values are activated significantly in several normal tissues, while nitro compounds and quinones with low K values spare the hypoxic tumour cells at 'intermediate' O 2 tensions (1-10 mM O 2 ) which are considered to be major contributors to tumour radioresistance. A potential strategy for overcoming this dilemma is to design prodrugs that are activated only at very low K values, but give relatively stable cytotoxic metabolites capable of diffusing to cells at higher O 2 concentrations. This approach redefines the therapeutic target as cells adjacent to zones of pathological hypoxia ( 2 ), providing discrimination from physiological hypoxia in normal tissues. Detecting bioreductive prodrugs capable of providing bystander killing of this kind is not straightforward. We have adapted a multicellular layer (MCL) co-culture model for quantifying bystander effects in GDEPT (Wilson et al., Cancer Res., 62: 1425-1432, 2002), and have used this to measure bystander effects of hypoxia-activated prodrugs. This model uses differences in metabolic activation of bioreductive drugs between A459 cell lines with low and high cytochrome P450 reductase activity, rather than O 2 gradients, to effect localised prodrug activation. It shows that TPZ and the nitroimidazole RSU-1069 have little or no bystander effect, but that dinitrobenzamide

  7. Copper-free click-chemistry platform to functionalize cisplatin prodrugs.

    Science.gov (United States)

    Pathak, Rakesh K; McNitt, Christopher D; Popik, Vladimir V; Dhar, Shanta

    2014-06-02

    The ability to rationally design and construct a platform technology to develop new platinum(IV) [Pt(IV)] prodrugs with functionalities for installation of targeting moieties, delivery systems, fluorescent reporters from a single precursor with the ability to release biologically active cisplatin by using well-defined chemistry is critical for discovering new platinum-based therapeutics. With limited numbers of possibilities considering the sensitivity of Pt(IV) centers, we used a strain-promoted azide-alkyne cycloaddition approach to provide a platform, in which new functionalities can easily be installed on cisplatin prodrugs from a single Pt(IV) precursor. The ability of this platform to be incorporated in nanodelivery vehicle and conjugation to fluorescent reporters were also investigated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Prodrugs activated by reactive oxygen species for use in the treatment of inflammatory diseases and cancer

    DEFF Research Database (Denmark)

    2018-01-01

    Prodrugs activated predominantly or exclusively in inflammatory tissue, more particularly prodrugs of methotrexate and derivatives thereof, which are selectively activated by Reactive Oxygen Species (ROS) in inflammatory tissues associated with cancer and inflammatory diseases, as well as method...

  9. Prodrugs available on the Brazilian pharmaceutical market and their corresponding bioactivation pathways

    Directory of Open Access Journals (Sweden)

    Roberto Parise Filho

    2010-09-01

    Full Text Available The aim of this paper was to emphasize the importance of prodrug design to therapy, by examining examples available on the Brazilian pharmaceutical market. The principles of prodrug design are briefly discussed herein. Examples of prodrugs from many important therapeutic classes are shown and their advantages relative to the drugs they are derived from are also discussed. Considering the importance of these therapeutic classes, from both therapy and economic standpoints, prodrug design is a very valuable aspect in the research of new drugs and for the pharmaceutical industry as a whole.O objetivo do trabalho foi ressaltar a importância do planejamento de pró-fármacos para a terapia, por meio de exemplos disponíveis no mercado farmacêutico brasileiro. Os princípios da latenciação são sucintamente discutidos. Apresentam-se exemplos de pró-fármacos de muitas classes terapêuticas importantes e as vantagens relativas aos fármacos dos quais derivam são, também, discutidas. Considerando-se a importância dessas classes terapêuticas, tanto do aspecto terapêutico quanto do econômico, o planejamento de pró-fármacos representa aspecto de grande valor na busca de novos fármacos e na indústria farmacêutica como um todo.

  10. Redox-responsive core cross-linked prodrug micelles prepared by click chemistry for pH-triggered doxorubicin delivery

    Directory of Open Access Journals (Sweden)

    X. T. Cao

    2017-10-01

    Full Text Available A pH-triggered drug delivery system of degradable core cross-linked (CCL prodrug micelles was prepared by click chemistry. Doxorubicin conjugated block copolymers of azido functional poly(ethylene oxide-b-poly(glycidyl methacrylate were synthesized by the combination of RAFT polymerization, epoxide ring-opening reaction, and acid-cleavable hydrazone linkages. The CCL prodrug micelles were produced by the reaction of dipropargyl 3,3′-dithiodipropionate and dipropargyl adipate cross-linking agents with the azido groups of the micellar core via alkyne-azide click reaction, which were denoted as CCL/SS and CCL/noSS, respectively. The TEM images of CCL/SS prodrug micelles showed a spherical shape with the average diameter of 61.0 nm from water, and the shape was maintained with an increased diameter upon dilution with 5-fold DMF. The high DOX conjugation efficiency was 88.4%. In contrast to a very slow DOX release from CCL/SS prodrug micelles under the physiological condition (pH 7.4, the drug release is much faster (90% at pH 5.0 and 10 mM of GSH after 96 h. The cytotoxicity test and confocal laser scanning microscopy analysis revealed that CCL/SS prodrug micelles had much enhanced intracellular drug release capability in HepG2 cells than CCL/noSS prodrug micelles.

  11. Fabrication of Reductive-Responsive Prodrug Nanoparticles with Superior Structural Stability by Polymerization-Induced Self-Assembly and Functional Nanoscopic Platform for Drug Delivery.

    Science.gov (United States)

    Zhang, Wen-Jian; Hong, Chun-Yan; Pan, Cai-Yuan

    2016-09-12

    A highly efficient strategy, polymerization-induced self-assembly (PISA) for fabrication of the polymeric drug delivery systems in cancer chemotherapy is reported. Diblock prodrug copolymer, PEG-b-P(MEO2MA-co-CPTM) was used as the macro-RAFT agent to fabricate prodrug nanoparticles through PISA. The advantages of fabricating intelligent drug delivery system via this approach are as following: (1) Simultaneous fulfillment of polymerization, self-assembly, and drug encapsulation in one-pot at relatively high concentration (100 mg/mL); (2) Almost complete monomer conversion allows direct application of the resultant prodrug nanoparticles without further purification; (3) Robust structures of the resultant prodrug nanoparticles, because the cross-linker was used as the comonomer, resulted in core-cross-linking simultaneously with the formation of the prodrug nanoparticles; (4) The drug content in the resultant prodrug nanoparticles can be accurately modulated just via adjusting the feed molar ratio of MEO2MA/CPTM in the synthesis of PEG-b-P(MEO2MA-co-CPTM). The prodrug nanoparticles with similar diameters but various drug contents were obtained using different prodrug macro-CTA. In consideration of the long-term biological toxicity, the prodrug nanoparticles with higher drug content exhibit more excellent anticancer efficiency due to that lower dosage of them are enough for effectively killing HeLa cells.

  12. A unique highly hydrophobic anticancer prodrug self-assembled nanomedicine for cancer therapy.

    Science.gov (United States)

    Ren, Guolian; Jiang, Mengjuan; Xue, Peng; Wang, Jing; Wang, Yongjun; Chen, Bo; He, Zhonggui

    2016-11-01

    In contrast with common thought, we generated highly hydrophobic anticancer prodrug self-assembled nanoparticles without the aid of surface active substances, based on the conjugation of docetaxel to d-α-tocopherol succinate. The reduction-sensitive prodrug was synthesized with a disulfide bond inserted into the linker and was compared with a control reduction-insensitive prodrug. The morphology and stability of self-assembled nanoparticles were investigated. Cytotoxicity and apoptosis assays showed that the reduction-sensitive nanoparticles had higher anticancer activity than the reduction-insensitive nanoparticles. The reduction-sensitive nanoparticles exhibited favorable in vivo antitumor activity and tolerance compared with docetaxel Tween80-containing formulation and the reduction-insensitive nanoparticles. Taken together, the unique nanomedicine demonstrated a number of advantages: (i) ease and reproducibility of preparation, (ii) high drug payload, (iii) superior stability, (iv) prolonged circulation, and (v) improved therapeutic effect. This highly reproducible molecular assembly strategy should motivate the development of new nanomedicines. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Comparative plasma disposition kinetics of albendazole and its new benzimidazol prodrug in dog.

    Science.gov (United States)

    Khalil, Z; El Karbane, M; Faouzi, M E A; Ansar, M; Azougagh, M; El Harti, J; Taoufik, J

    2016-01-01

    The comparative pharmacokinetic behavior of albendazole (ABZ) and its new benzimidazol prodrug [1-tert-butyloxycarbonyl-5-propylthio-1-H-benzimidazol-2ylcarbamate of methyl] (ABZBoc), following their oral administration (10mg/kg) to healthy dogs was explored. Blood samples were obtained serially over a 24h period after treatment, then the plasma was analyzed by high-performance liquid chromatography (HPLC) to search the albendazole metabolites (ABZSO and ABZSO2). However, the albendazole parent drug was not detectable at any time after both treatments (ABZ and ABZBoc). By albendazole metabolites (ABZSO and ABZSO2) were the analytes recovered in the plasma after oral administration of ABZ and ABZBoc. Furthermore, some amounts of ABZBoc were also available in the plasma samples treated with this new produg. The plasma profile of each analyte followed a similar pattern after both treatments, the active metabolite (ABZSO) was the major analyte recovered in plasma (between 1 and 24h post-treatment). The pharmacokinetic parameters of both groups were calculated (Cmax, Tmax, t1/2, AUC0-›∞), and analyzed using the Student's t-test, Palbendazole metabolites (ABZSO, ABZSO2) between the group treated with albendazole (group A) and that treated with ABZBoc prodrug (group B). Hence, the levels of the various pharmacokinetics parameters were low in the group treated with prodrug, as well they did not reach equivalent concentrations to that of albendazole. These differences between albendazole and its new prodrug may be explained by the fact that ABZBoc prodrug was not effectively reduced in the intestine of dogs. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  14. Saliva-catalyzed hydrolysis of a ketobemidone ester prodrug

    DEFF Research Database (Denmark)

    Hansen, L.B.; Christrup, Lona Louring; Bundgaard, H.

    1992-01-01

    Saliva enzyme-catalysed hydrolysis of ester prodrugs or drugs containing sensitive ester groups may be a limiting factor for the buccal absorption of such compounds. Using the isopropyl carbonate ester of ketobemidone as a model substance of a hydrolysis-sensitive prodrug the esterase activity...... of human saliva has been characterized as a function of various factors. The esterase activity was found to decrease rapidly upon storage of the saliva at 37°C. The activity increased with increasing pH in the range 4.5-7.4 and with increasing salivation flow rate up to a rate of 0.9 ml min. Under resting...... conditions, the flow rate was about 0.2 ml min which implied a greatly decreased esterase activity. The activity was highest after fasting and decreased after intake of a meal. The intraindividual variation in the saliva esterase activity was small whereas a larger interindividual variation was found....

  15. Reproductive toxicity of the glycol ethers.

    Science.gov (United States)

    Hardin, B D

    1983-06-01

    The glycol ethers are an important and widely used class of solvents. Recent studies have demonstrated that ethylene glycol monomethyl ether (EGME), ethylene glycol dimethyl ether (EGdiME), ethylene glycol monoethyl ether (EGEE), and ethylene glycol monoethyl ether acetate (EGEEA) are teratogenic. Other studies have demonstrated that testicular atrophy or infertility follow treatment of males with EGME, ethylene glycol monomethyl ether acetate (EGMEA), EGEE, EGEEA, diethylene glycol dimethyl ether (diEGdiME), and diethylene glycol monoethyl ether (diEGEE). Experimental data are reviewed and structure-activity relationships are speculated upon.

  16. Photosynthesis Involvement in the Mechanism of Action of Diphenyl Ether Herbicides 1

    Science.gov (United States)

    Ensminger, Michael P.; Hess, F. Dan

    1985-01-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity. PMID:16664206

  17. PRODRUGS OF NON- STEROID ANTI - INFLAMMATORY AGENTS (NSAIDS)

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to novel depot formulations (prodrugs) comprising an immobility promoting unit linked via an ester to an active pharmaceutical ingredient, i.a. common NSAIDs. The novel depot formulations are suitable for intra-articular injections and are soluble at slightly acidic p...

  18. Synthesis, In Vitro and In Vivo Evaluation of the N-ethoxycarbonylmorpholine Ester of Diclofenac as a Prodrug

    OpenAIRE

    Jilani, Jamal; Idkaidek, Nasir; Alzoubi, Karem

    2014-01-01

    The N-ethoxycarbonylmorpholine moiety was evaluated as a novel prodrug moiety for carboxylic acid containing drugs represented by diclofenac (1). Compound 2, the N-ethoxycarbonylmorpholine ester of diclofenac was synthesized and evaluated as a potential prodrug. The stability of the synthesized prodrug was evaluated in solutions of pH 1 and 7.4, and in plasma. The ester’s half lives were found to be 8 h, 47 h and 21 min in pH 1, pH 7.4 and plasma, respectively. Equimolar doses of diclofenac...

  19. Design, Synthesis and Biological Evaluation of Brain-Targeted Thiamine Disulfide Prodrugs of Ampakine Compound LCX001

    Directory of Open Access Journals (Sweden)

    Dian Xiao

    2016-04-01

    Full Text Available Ampakine compounds have been shown to reverse opiate-induced respiratory depression by activation of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA glutamate receptors. However, their pharmacological exploitations are hindered by low blood-brain barrier (BBB permeability and limited brain distribution. Here, we explored whether thiamine disulfide prodrugs with the ability of “lock-in” can be used to solve these problems. A series of thiamine disulfide prodrugs 7a–7f of ampakine compound LCX001 was synthesized and evaluated. The trials in vitro showed that prodrugs 7e, 7d, 7f possessed a certain stability in plasma and quickly decomposed in brain homogenate by the disulfide reductase. In vivo, prodrug 7e decreased the peripheral distribution of LCX001 and significantly increased brain distribution of LCX001 after i.v. administration. This compound showed 2.23- and 3.29-fold greater increases in the AUC0-t and MRT0-t of LCX001 in brain, respectively, than did LCX001 itself. A preliminary pharmacodynamic study indicated that the required molar dose of prodrug 7e was only one eighth that of LCX001 required to achieve the same effect in mice. These findings provide an important reference to evaluate the clinical outlook of ampakine compounds.

  20. The antiproliferative cytostatic effects of a self-activating viridin prodrug

    Science.gov (United States)

    Smith, Adam; Blois, Joseph; Yuan, Hushan; Aikawa, Elena; Ellson, Christian; Figueiredo, Jose-Luiz; Weissleder, Ralph; Kohler, Rainer; Yaffe, Michael B.; Cantley, Lewis C.; Josephson, Lee

    2009-01-01

    Although viridins like wortmannin (Wm) have long been examined as anticancer agents, their ability to self-activate has only recently been recognized. Here, we describe the cytostatic effects of a self-activating viridin (SAV), which is an inactive, polymeric prodrug. SAV self-activates to generate a bioactive, fluorescent viridin NBD-Wm with a half-time of 9.2 hours. With cultured A549 cells, 10 µmol/L SAV caused growth arrest without inducing apoptosis or cell death, a cytostatic action markedly different from other chemotherapeutic agents (vinblastine, camptothecin, and paclitaxel). In vivo, a SAV dosing of 1 mg/kg once in 48 hours (i.p.) resulted in growth arrest of an A549 tumor xenograft, with growth resuming when dosing ceased. With a peak serum concentration of SAV of 2.36 µmol/L (at 2 hours post i.p. injection), the concentration of bioactive NBD-Wm was 41 nmol/L based on the partial inhibition of neutrophil respiratory burst. Therefore, SAV was present as an inactive prodrug in serum (peak = 2.36 µmol/L), which generated low concentrations of active viridin (41 nmol/L). SAV is a prodrug, the slowrelease and cytostatic activities of which suggest that it might be useful as a component of metronomic-based chemotherapeutic strategies. PMID:19509266

  1. Circumvention of P-gp and MRP2 mediated efflux of lopinavir by a histidine based dipeptide prodrug.

    Science.gov (United States)

    Mandal, Abhirup; Pal, Dhananjay; Mitra, Ashim K

    2016-10-15

    This study was aimed to develop a novel Histidine-Leucine-Lopinavir (His-Leu-LPV) dipeptide prodrug and evaluate its potential for circumvention of P-gp and MRP2-mediated efflux of lopinavir (LPV) indicated for HIV-1 infection. His-Leu-LPV was synthesized following esterification of hydroxyl group of LPV and was identified by (1)H NMR and LCMS/MS techniques. Aqueous solubility, stability and cell cytotoxicity of prodrug was determined. Uptake and permeability studies were carried out using P-gp (MDCK-MDR1) and MRP2 (MDCK-MRP2) transfected cell lines. To further delineate prodrug uptake, prodrug interaction with influx transporters (PepT1 and PHT1) was determined. Enzymatic hydrolysis and reconversion of His-Leu-LPV to LPV was examined using Caco-2 cell homogenates. Aqueous solubility generated by the prodrug was markedly higher relative to unmodified LPV. Importantly, His-Leu-LPV displayed significantly lower affinity towards P-gp and MRP2 as evident from higher uptake and transport rates. [3H]-GlySar and [3H]-l-His uptake receded to approximately 30% in the presence of His-Leu-LPV supporting the PepT1/PHT1 mediated uptake process. A steady regeneration of LPV and Leu-LPV in Caco-2 cell homogenates indicated His-Leu-LPV undergoes both esterase and peptidase-mediated hydrolysis. Histidine based dipeptide prodrug approach can be an alternative strategy to improve LPV absorption across poorly permeable intestinal barrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Thiazolidinone prodrugs activated by reactive oxygen species for use in the treatment of inflammatory diseases and cancer

    DEFF Research Database (Denmark)

    2018-01-01

    Prodrugs activated predominantly or exclusively in inflammatory tissue, more particularly prodrugs of methotrexate and derivatives thereof, which are selectively activated by Reactive Oxygen Species (ROS) in inflammatory tissues associated with cancer and inflammatory diseases, as well as method...

  3. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation.

    Science.gov (United States)

    Gaudana, Ripal; Parenky, Ashwin; Vaishya, Ravi; Samanta, Swapan K; Mitra, Ashim K

    2011-01-01

    The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine-valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a complexing polymer. A novel, solid in oil in water emulsion method was employed to encapsulate the prodrug in HIP complex form in poly(lactic-co-glycolic acid) matrix. Nanoparticles were characterized with respect to size, zeta potential, crystallinity of entrapped drug and surface morphology. A significant enhancement in the entrapment of the prodrug in nanoparticles was achieved. Finally, a simple yet novel method was developed which can also be applicable to encapsulate other charged hydrophilic molecules, such as peptides and proteins.

  4. Enhanced absorption and growth inhibition with amino acid monoester prodrugs of floxuridine by targeting hPEPT1 transporters.

    Science.gov (United States)

    Tsume, Yasuhiro; Vig, Balvinder S; Sun, Jing; Landowski, Christopher P; Hilfinger, John M; Ramachandran, Chandrasekharan; Amidon, Gordon L

    2008-06-28

    A series of amino acid monoester prodrugs of floxuridine was synthesized and evaluated for the improvement of oral bioavailability and the feasibility of target drug delivery via oligopeptide transporters. All floxuridine 5'-amino acid monoester prodrugs exhibited PEPT1 affinity, with inhibition coefficients of Gly-Sar uptake (IC50) ranging from 0.7 - 2.3 mM in Caco-2 and 2.0 - 4.8 mM in AsPC-1 cells, while that of floxuridine was 7.3 mM and 6.3 mM, respectively. Caco-2 membrane permeabilities of floxuridine prodrugs (1.01 - 5.31 x 10(-6 )cm/sec) and floxuridine (0.48 x 10(-6 )cm/sec) were much higher than that of 5-FU (0.038 x 10(-6) cm/sec). MDCK cells stably transfected with the human oligopeptide transporter PEPT1 (MDCK/hPEPT1) exhibited enhanced cell growth inhibition in the presence of the prodrugs. This prodrug strategy offers great potential, not only for increased drug absorption but also for improved tumor selectivity and drug efficacy.

  5. [The composition of lipids and lipid peroxidation in the pancreas of quails exposed to nitrates and correction by the amaranth's seeds].

    Science.gov (United States)

    Tsekhmistrenko, S I; Ponomarenko, N V

    2013-01-01

    Researches of features of lipid composition, functioning of the system of antioxidant defense, maintenance of lipid peroxidation products in the quail's pancreas on the early postnatal ontogenesis stages are conducted for actions of nitrates and feeding with amaranth's seeds in mixed fodder. The arrival of nitrates in the organism of quails results in the decline of general lipids maintenance and nonetherified fat acids in the pancreas. Using of amaranth's seeds in mixed fodder on the background of the nitrate loading results in the increase of activity of the enzimes system of antioxidant defence, the growth of general lipid level in the quail's pancreas. Thus in correlation with separate classes of lipid maintenance of cholesterol goes down for certain, whereas the maintenance of triacylglycerols and ethers of cholesterol rises. The results obtained in the researches show the ability of amaranth's seeds to avert oxidative stress in quail's pancreas under nitrates influence.

  6. Ocular Pharmacokinetics of Acyclovir Amino Acid Ester Prodrugs in the Anterior Chamber: Evaluation of Their Utility in Treating Ocular HSV Infections

    Science.gov (United States)

    Katragadda, Suresh; Gunda, Sriram; Hariharan, Sudharshan; Mitra, Ashim K.

    2008-01-01

    Purpose To evaluate in vivo corneal absorption of the amino acid prodrugs of acyclovir (ACV) using a topical well model and microdialysis in rabbits. Methods Stability of L-Alanine-ACV (AACV), L-Serine-ACV (SACV), L-Isoleucine-ACV (IACV), γ-Glutamate-ACV (EACV) and L-Valine-ACV (VACV) prodrugs was evaluated in various ocular tissues. Dose dependent toxicity of these prodrugs was also examined in rabbit primary corneal epithelial cell culture (rPCEC) using 96-well based cell proliferation assay. In vivo ocular bioavailability of these compounds was also evaluated with a combination of topical well infusion and aqueous humor microdialysis techniques. Results Among the amino acid ester prodrugs, SACV was most stable in aqueous humor. Enzymatic degradation of EACV was the least compared to all other prodrugs. Cellular toxicity of all the prodrugs was significantly less compared to trifluorothymidine (TFT) at 5mM. Absorption rate constants of all the compounds were found to be lower than the elimination rate constants. All the prodrugs showed similar terminal elimination rate constants (λz). SACV and VACV exhibited approximately two fold increase in area under the curve (AUC) relative to ACV (p cornea at varying rates (ka) thereby leading to varying extents (AUC). The amino acid ester prodrug, SACV owing to its enhanced stability, comparable AUC, and high concentration at last time point (Clast) seems to be a promising candidate for the treatment of ocular HSV infections. PMID:18472234

  7. Hepatoprotective activity of petroleum ether, diethyl ether, and methanol extract of Scoparia dulcis L. against CCl4-induced acute liver injury in mice.

    Science.gov (United States)

    Praveen, T K; Dharmaraj, S; Bajaj, Jitendra; Dhanabal, S P; Manimaran, S; Nanjan, M J; Razdan, Rema

    2009-06-01

    The present study was aimed at assessing the hepatoprotective activity of 1:1:1 petroleum ether, diethyl ether, and methanol (PDM) extract of Scoparia dulcis L. against carbon tetrachloride-induced acute liver injury in mice. The PDM extract (50, 200, and 800 mg/kg, p.o.) and standard, silymarin (100 mg/kg, p.o) were tested for their antihepatotoxic activity against CCl4-induced acute liver injury in mice. The hepatoprotective activity was evaluated by measuring aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and total proteins in serum, glycogen, lipid peroxides, superoxide dismutase, and glutathione reductase levels in liver homogenate and by histopathological analysis of the liver tissue. In addition, the extract was also evaluated for its in vitro antioxidant activity using 1, 1-Diphenyl-2-picrylhydrazyl scavenging assay. The extract at the dose of 800 mg/kg, p.o., significantly prevented CCl4-induced changes in the serum and liver biochemistry (P Scoparia dulcis L. possesses potential hepatoprotective activity, which may be attributed to its free radical scavenging potential, due to the terpenoid constituents.

  8. Anticancer activities of emetine prodrugs that are proteolytically activated by the prostate specific antigen (PSA) and evaluation of in vivo toxicity of emetine derivatives.

    Science.gov (United States)

    Akinboye, Emmanuel S; Rosen, Marc D; Bakare, Oladapo; Denmeade, Samuel R

    2017-12-15

    Emetine is a small molecule protein synthesis inhibitor that is toxic to all cell types and therefore suitable for complete killing of all types of heterogeneous cancer cells within a tumor. It becomes significantly inactive (non-toxic) when derivatized at its N-2' secondary amine. This provides a strategy for targeting emetine to cancerous tumor without killing normal cells. In this report, PSA activatable peptide prodrugs of emetine were synthesized. To overcome steric hindrances and enhance protease specific cleavage, a 2-stage prodrug activation process was needed to release emetine in cancer cells. In this 2-stage process, emetine prodrug intermediates are coupled to PSA peptide substrate (Ac-His-Ser-Ser-Lys-Leu-Gln) to obtain the full prodrug. Both prodrug intermediates 10 (Ala-Pro-PABC-Emetine) and 14 (Ser-Leu-PABC-Emetine) were evaluated for kinetics of hydrolysis to emetine and potency [Where PABC = p-aminobenzyloxycarbonyl]. While both intermediates quantitatively liberate emetine when incubated under appropriate conditions, upon coupling of PSA substrate to give the full prodrugs, only prodrug 16, the prodrug obtained from 14 was hydrolyzable by PSA. Cytotoxicity studies in PSA producing LNCaP and CWR22Rv1 confirm the activation of the prodrug by PSA with an IC 50 of 75 nM and 59 nM respectively. The cytotoxicity of 16 is significantly reduced in cell lines that do not produce PSA. Further, in vivo toxicity studies are done on these prodrugs and other derivatives of emetine. The results show the significance of conformational modulation in obtaining safe emetine prodrugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Qualitative composition of the lipids of the wood of scotch pine

    Energy Technology Data Exchange (ETDEWEB)

    Fuksman, I.L.; Pon' kina, N.A.

    1984-01-01

    The ether extract of Pinus sylvestris contained 87.43% neutral lipids and resin acids, 10.85% galacto lipids, and 1.71% phospholipids. The predominant component of phospholipids was phorphatidylcholine, accounting for 62.10% of the total. The other components of phospholipids were diphosphatidylethanolamine (14.00%), phosphatidylglycerol and phosphatidylethanolamine (together accounting for 14.64%), phosphatidylylinositol (5.78%), and phosphatidic acid (1.04%). The acid part of the extract was determined by gas-liquid chromatography to contain 52 carboxylic acids, of which 44 were fatty acids and 8 were resin acids. The composition of the lipids was determined by thin-layer chromatography.

  10. N,N'-dihydroxyamidines: a new prodrug principle to improve the oral bioavailability of amidines.

    Science.gov (United States)

    Reeh, Christiane; Wundt, Judith; Clement, Bernd

    2007-12-27

    N, N'-dihydroxybenzamdine represents a model compound for a new prodrug principle to improve the oral bioavailability of drugs containing amidine functions. The activation of the prodrug could be demonstrated in vitro by porcine and human subcellular enzyme fractions, the mitochondrial benzamidoxime reducing system, and porcine hepatocytes. In vivo, the bioavailability of benzamidine after oral application of N, N'-dihydroxybenzamidine was about 91% and exceeded that of benzamidine after oral application of benzamidoxime, being about 74% (Liu, L.; Ling, Y.; Havel, C.; Bashnick, L.; Young, W.; Rai, R.; Vijaykumar, D.; Riggs, J. R.; Ton, T.; Shaghafi, M.; Graupe, D.; Mordenti, J.; Sukbuntherng, J. Species comparison of in vitro and in vivo conversion of five N-hydroxyamidine prodrugs of fVIIA inhibitors to their corresponding active amidines. Presented at the 13th North America ISSX Meeting, Maui, HI, 2005).

  11. Synthesis and Evaluation of Hydrogen Peroxide Sensitive Prodrugs of Methotrexate and Aminopterin for the Treatment of Rheumatoid Arthritis

    DEFF Research Database (Denmark)

    Peiró Cadahía, Jorge; Bondebjerg, Jon; Hansen, Christian A.

    2018-01-01

    A series of novel hydrogen peroxide sensitive prodrugs of methotrexate (MTX) and aminopterin (AMT) were synthesized and evaluated for therapeutic efficacy in mice with collagen induced arthritis (CIA) as a model of chronic rheumatoid arthritis (RA). The prodrug strategy selected is based on ROS...... assays. Selected candidates showed moderate to good solubility, high chemical and enzymatic stability, and therapeutic efficacy comparable to the parent drugs in the CIA model. Importantly, the prodrugs displayed the expected safer toxicity profile and increased therapeutic window compared to MTX and AMT...

  12. Novel Polymeric Prodrugs of Valproic Acid as Anti- Epilepsy Drugs ...

    African Journals Online (AJOL)

    Epilepsy Drugs: Synthesis, Characterization and In-vitro ... The release of VPA from polymeric prodrugs was studied using cellophane ... pharmacokinetics and accessibility in market [8]. ..... between the drug and polymer chain can affect.

  13. Ether formulations of relativity

    International Nuclear Information System (INIS)

    Duffy, M.C.

    1980-01-01

    Contemporary ether theories are surveyed and criticised, especially those formally identical to orthodox Relativity. The historical development of Relativity, Special and General, in terms of an ether, is briefly indicated. Classical interpretations of Generalized Relativity using ether are compared to Euclidean formulations using a background space. The history of a sub-group of theories, formulating a 'new' Relativity involving modified transforms, is outlined. According to the theory with which they agree, recent supposed detections of drift are classified and criticised. Cosmological evidence suggesting an ether is mentioned. Only ether theories formally identical to Relativity have been published in depth. They stand criticised as being contrary to the positivist spirit. The history of mechanical analogues is traced, from Hartley's representing gravitating matter as spherical standing waves, to recent suggestions that vortex-sponge might model electromagnetic, quantum, uncertainty and faster-than-light phenomena. Contemporary theories are particular physical theories, themselves 'second interpretations' of a primary mathematical model. Mechanical analogues are auxiliary, not necessary, to other theory, disclosing relationships between classical and non-classical descriptions of assemblies charging state. The ether-relativity polemic, part of a broader dispute about relativity, is founded on mistaken conceptions of the roles of mathematical and physical models, mechanical analogues; and a distored view of history, which indicates that ether theories have become relativistic. (author)

  14. In vitro evaluation of dendrimer prodrugs for oral drug delivery.

    Science.gov (United States)

    Najlah, Mohammad; Freeman, Sally; Attwood, David; D'Emanuele, Antony

    2007-05-04

    Dendrimer-based prodrugs were used to enhance the transepithelial permeability of naproxen, a low solubility model drug. The stability of the dendrimer-naproxen link was assessed. Naproxen was conjugated to G0 polyamidoamine (PAMAM) dendrimers either by an amide bond or an ester bond. The stability of G0 prodrugs was evaluated in 80% human plasma and 50% rat liver homogenate. The cytotoxicity of conjugates towards Caco-2 cells was determined and the transport of the conjugates across Caco-2 monolayers (37 degrees C) was reported. In addition, one lauroyl chain (L) was attached to the surface group of G0 PAMAM dendrimer of the diethylene glycol ester conjugate (G0-deg-NAP) to enhance permeability. The lactic ester conjugate, G0-lact-NAP, hydrolyzed slowly in 80% human plasma and in 50% rat liver homogenate (t(1/2)=180 min). G0-deg-NAP was hydrolyzed more rapidly in 80% human plasma (t(1/2)=51 min) and was rapidly cleaved in 50% liver homogenate (t(1/2)=4.7 min). The conjugates were non-toxic when exposed to Caco-2 cells for 3h. Permeability studies showed a significant enhancement in the transport of naproxen when conjugated to dendrimers; L-G0-deg-NAP yielding the highest permeability. Dendrimer-based prodrugs with appropriate linkers have potential as carriers for the oral delivery of low solubility drugs such as naproxen.

  15. The Role of Bystander Effects in the Antitumor Activity of the Hypoxia-Activated Prodrug PR-104

    Science.gov (United States)

    Foehrenbacher, Annika; Patel, Kashyap; Abbattista, Maria R.; Guise, Chris P.; Secomb, Timothy W.; Wilson, William R.; Hicks, Kevin O.

    2013-01-01

    Activation of prodrugs in tumors (e.g., by bioreduction in hypoxic zones) has the potential to generate active metabolites that can diffuse within the tumor microenvironment. Such “bystander effects” may offset spatial heterogeneity in prodrug activation but the relative importance of this effect is not understood. Here, we quantify the contribution of bystander effects to antitumor activity for the first time, by developing a spatially resolved pharmacokinetic/pharmacodynamic (SR-PK/PD) model for PR-104, a phosphate ester pre-prodrug that is converted systemically to the hypoxia-activated prodrug PR-104A. Using Green’s function methods we calculated concentrations of oxygen, PR-104A and its active metabolites, and resultant cell killing, at each point of a mapped three-dimensional tumor microregion. Model parameters were determined in vitro, using single cell suspensions to determine relationships between PR-104A metabolism and clonogenic cell killing, and multicellular layer (MCL) cultures to measure tissue diffusion coefficients. LC-MS/MS detection of active metabolites in the extracellular medium following exposure of anoxic single cell suspensions and MCLs to PR-104A confirmed that metabolites can diffuse out of cells and through a tissue-like environment. The SR-PK/PD model estimated that bystander effects contribute 30 and 50% of PR-104 activity in SiHa and HCT116 tumors, respectively. Testing the model by modulating PR-104A-activating reductases and hypoxia in tumor xenografts showed overall clonogenic killing broadly consistent with model predictions. Overall, our data suggest that bystander effects are important in PR-104 antitumor activity, although their reach may be limited by macroregional heterogeneity in hypoxia and reductase expression in tumors. The reported computational and experimental techniques are broadly applicable to all targeted anticancer prodrugs and could be used to identify strategies for rational prodrug optimization. PMID

  16. Distribution and pharmacokinetics of the prodrug daunorubicin-GA3 in nude mice bearing human ovarian cancer xenografts

    NARCIS (Netherlands)

    Houba, PHJ; Boven, E; van der Meulen-Muileman, IH; Leenders, RGG; Scheeren, JW; Pinedo, HM; Haisma, HJ

    1999-01-01

    N-[4-daunorubicin-N-carbonyl (oxymethyl)phenyl] O-beta-glucuronyl carbamate (DNR-GA3) is a glucuronide prodrug of daunorubicin (DNR) which induced a better tumor growth delay than DNR when studied at equitoxic doses in three human ovarian cancer xenografts. These results suggested that the prodrug

  17. Antiviral acyclic nucleoside phosphonates: New structures and prodrugs

    Czech Academy of Sciences Publication Activity Database

    Krečmerová, Marcela; Tichý, Tomáš; Pomeisl, Karel; Andrei, G.; Balzarini, J.; Snoeck, R.

    2016-01-01

    Roč. 1, č. 2 (2016), s. 37 [PharmaMed-2016. International Conference on Medicinal and Pharmaceutical Chemistry . 05.12.2016-07.12.2016, Dubai] R&D Projects: GA ČR(CZ) GA14-00522S Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonates * prodrugs * antivirals * 5-azacytosine Subject RIV: CC - Organic Chemistry

  18. Application of Prodrugs to Inflammatory Diseases of the Gut

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Ebersole

    2008-02-01

    Full Text Available Oral delivery is the most common and preferred route of drug administrationalthough the digestive tract exhibits several obstacles to drug delivery including motilityand intraluminal pH profiles. The gut milieu represents the largest mucosal surfaceexposed to microorganisms with 1010-12 colony forming bacteria/g of colonic content.Approximately, one third of fecal dry matter is made of bacteria/ bacterial components.Indeed, the normal gut microbiota is responsible for healthy digestion of dietary fibers(polysaccharides and fermentation of short chain fatty acids such as acetate and butyratethat provide carbon sources (fuel for these bacteria. Inflammatory bowel disease (IBDresults in breakage of the mucosal barrier, an altered microbiota and dysregulated gutimmunity. Prodrugs that are chemically constructed to target colonic release or aredegraded specifically by colonic bacteria, can be useful in the treatment of IBD. Thisreview describes the progress in digestive tract prodrug design and delivery in light of gutmetabolic activities.

  19. Cholesterol-based cationic lipids for gene delivery: contribution of molecular structure factors to physico-chemical and biological properties.

    Science.gov (United States)

    Sheng, Ruilong; Luo, Ting; Li, Hui; Sun, Jingjing; Wang, Zhao; Cao, Amin

    2014-04-01

    In this work, we prepared a series of cholesterol-based cationic (Cho-cat) lipids bearing cholesterol hydrophobe, natural amino acid headgroups (lysine/histidine) and linkage (carbonate ester/ether) bonds. In which, the natural amino acid headgroups made dominant contribution to their physico-chemical and biological properties. Among the lipids, the l-lysine headgroup bearing lipids (Cho-es/et-Lys) showed higher pDNA binding affinity and were able to form larger sized and higher surface charged lipoplexes than that of l-histidine headgroup bearing lipids (Cho-es/et-His), they also demonstrated higher transfection efficacy and higher membrane disruption capacities than that of their l-histidine headgroup bearing counterparts. However, compared to the contributions of the headgroups, the (carbonate ester/ether) linkage bonds showed much less affects. Besides, it could be noted that, Cho-es/et-Lys lipids exhibited very high luciferase gene transfection efficiency that almost reached the transfection level of "gold standard" bPEI-25k, made them potential transfection reagents for practical application. Moreover, the results facilitated the understanding for the structure-activity relationship of the cholesterol-based cationic lipids, and also paved a simple and efficient way for achieving high transfection efficiency by modification of suitable headgroups on lipid gene carriers. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The Design and Evaluation of an l-Dopa–Lazabemide Prodrug for the Treatment of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Monique Hoon

    2017-11-01

    Full Text Available l-Dopa, the metabolic precursor of dopamine, is the treatment of choice for the symptomatic relief of the advanced stages of Parkinson’s disease. The oral bioavailability of l-dopa, however, is only about 10% to 30%, and less than 1% of the oral dose is estimated to reach the brain unchanged. l-Dopa’s physicochemical properties are responsible for its poor bioavailability, short half-life and the wide range of inter- and intrapatient variations of plasma levels. An l-dopa–lazabemide prodrug is proposed to overcome the problems associated with l-dopa absorption. Lazabemide is a monoamine oxidase (MAO-B inhibitor, a class of compounds that slows the depletion of dopamine stores in Parkinson’s disease and elevates dopamine levels produced by exogenously administered l-dopa. l-Dopa was linked at the carboxylate with the primary aminyl functional group of lazabemide via an amide, a strategy which is anticipated to protect l-dopa against peripheral decarboxylation and possibly also enhance the membrane permeability of the prodrug. Selected physicochemical and biochemical properties of the prodrug were determined and included lipophilicity (logD, solubility, passive diffusion permeability, pKa, chemical and metabolic stability as well as cytotoxicity. Although oral and i.p. treatment of mice with the prodrug did not result in enhanced striatal dopamine levels, 3,4-dihydroxyphenylacetic acid (DOPAC levels were significantly depressed compared to saline, l-dopa and carbidopa/l-dopa treatment. Based on the results, further preclinical evaluation of the l-dopa–lazabemide prodrug should be undertaken with the aim of discovering prodrugs that may be advanced to the clinical stages of development.

  1. Degradation kinetics of metronidazole and its mutual prodrug with ...

    African Journals Online (AJOL)

    Dr Renu Chadha

    degradation of the drug and prodrug as a function of concentration, pH and temperature. In terms of enthalpy of ... Keywords: Calorimetry, stability studies, degradation kinetics, ciprofloxacin, metronidazole. ... action of ciprofloxacin to form a broad spectrum ...... Stability testing of pharmaceutical by isothermal heat conduction.

  2. Esterase-sensitive sulfur dioxide prodrugs inspired by modified Julia olefination.

    Science.gov (United States)

    Wang, Wenyi; Wang, Binghe

    2017-09-12

    Sulfur dioxide (SO 2 ) is an endogenously produced gaseous molecule, and is emerging as a potential gasotransmitter. Herein, we describe the first series of esterase-sensitive prodrugs inspired by modified Julia olefination as SO 2 donors.

  3. Potential of amino acid/dipeptide monoester prodrugs of floxuridine in facilitating enhanced delivery of active drug to interior sites of tumors: a two-tier monolayer in vitro study.

    Science.gov (United States)

    Tsume, Yasuhiro; Hilfinger, John M; Amidon, Gordon L

    2011-10-01

    To evaluate the advantages of amino acid/dipeptide monoester prodrugs for cancer treatments by assessing the uptake and cytotoxic effects of floxuridine prodrugs in a secondary cancer cell monolayer following permeation across a primary cancer cell monolayer. The first Capan-2 monolayer was grown on membrane transwell inserts; the second monolayer was grown at the bottom of a plate. The permeation of floxuridine and its prodrugs across the first monolayer and the uptake and cell proliferation assay on secondary layer were sequentially determined. All floxuridine prodrugs exhibited greater permeation across the first Capan-2 monolayer than the parent drug. The correlation between uptake and growth inhibition in the second monolayer with intact prodrug permeating the first monolayer suggests that permeability and enzymatic stability are essential for sustained action of prodrugs in deeper layers of tumors. The correlation of uptake and growth inhibition were vastly superior for dipeptide prodrugs to those obtained with mono amino acid prodrugs. Although a tentative general overall correlation between intact prodrug and uptake or cytotoxic action was obtained, it appears that a mixture of floxuridine prodrugs with varying beneficial characteristics may be more effective in treating tumors.

  4. Preparation, characterization and in vitro evaluation of a new nucleotide analogue prodrug cyclodextrin inclusion complexes.

    OpenAIRE

    Diab , Roudayna; Jordheim , Lars P; Degobert , Ghania; Peyrottes , Suzanne; Périgaud , Christian; Dumontet , Charles; Fessi , Hatem

    2009-01-01

    International audience; Bis(tbutyl-S-acyl-2-thioethyl)-cytidine monophosophate is a new cytotoxic mononucleotide prodrug which have been developed to reverse the cellular resistance to nucleoside analogues. Unfortunately, its in vivo utilisation was hampered by its poor water solubility, raising the need of a molecular vector capable to mask its physicochemical characteristics although without affecting its cytotoxic activity. Hydroxypropyl-beta-cyclodextrin was used to prepare the prodrug in...

  5. Enhanced Absorption and Growth Inhibition with Amino Acid Monoester Prodrugs of Floxuridine by Targeting hPEPT1 Transporters

    Directory of Open Access Journals (Sweden)

    Gordon L. Amidon

    2008-06-01

    Full Text Available A series of amino acid monoester prodrugs of floxuridine was synthesized and evaluated for the improvement of oral bioavailability and the feasibility of target drug delivery via oligopeptide transporters. All floxuridine 5′-amino acid monoester prodrugs exhibited PEPT1 affinity, with inhibition coefficients of Gly-Sar uptake (IC50 ranging from 0.7 – 2.3 mM in Caco-2 and 2.0 – 4.8 mM in AsPC-1 cells, while that of floxuridine was 7.3 mM and 6.3 mM, respectively. Caco-2 membrane permeabilities of floxuridine prodrugs (1.01 – 5.31 x 10-6 cm/sec and floxuridine (0.48 x 10-6 cm/sec were much higher than that of 5-FU (0.038 x 10-6 cm/sec. MDCK cells stably transfected with the human oligopeptide transporter PEPT1 (MDCK/hPEPT1 exhibited enhanced cell growth inhibition in the presence of the prodrugs. This prodrug strategy offers great potential, not only for increased drug absorption but also for improved tumor selectivity and drug efficacy.

  6. Lysosome-Targeting Amplifiers of Reactive Oxygen Species as Anticancer Prodrugs

    Czech Academy of Sciences Publication Activity Database

    Daum, S.; Reshetnikov, M.S.V.; Šíša, Miroslav; Dumych, T.; Lootsik, M. D.; Bilyy, R.; Bila, E.; Janko, C.; Alexiou, C.; Herrmann, M.; Sellner, L.; Mokhir, A.

    2017-01-01

    Roč. 56, č. 49 (2017), s. 15545-15549 ISSN 1433-7851 Institutional support: RVO:61389030 Keywords : aminoferrocene * cancer * lysosomes * prodrugs * reactive oxygen species Subject RIV: ED - Physiology OBOR OECD: Organic chemistry Impact factor: 11.994, year: 2016

  7. Amino Acid Ester Prodrugs of Nucleoside and Nucleotide Antivirals

    Czech Academy of Sciences Publication Activity Database

    Krečmerová, Marcela

    2017-01-01

    Roč. 17, č. 10 (2017), s. 818-833 ISSN 1389-5575 Grant - others:AV ČR(CZ) M200551201 Institutional support: RVO:61388963 Keywords : acyclic nucleoside analogues * antiherpetics * antiretrovirals * cidofovir * peptidomimetics * prodrugs Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.661, year: 2016

  8. Effect of Simvastatin Prodrug on Experimental Periodontitis.

    Science.gov (United States)

    Bradley, Aaron D; Zhang, Yijia; Jia, Zhenshan; Zhao, Gang; Wang, Xiaobei; Pranke, Laura; Schmid, Marian J; Wang, Dong; Reinhardt, Richard A

    2016-05-01

    Local application of statins has shown potential in preventing and regenerating bone loss associated with experimental periodontitis. This study evaluates the effect of a novel simvastatin (SIM) prodrug (capable of delivering high doses to periodontitis inflammatory lesion and cells) on experimental periodontitis bone loss and inflammation. Forty mature female Sprague Dawley rats were subjected to ligature-induced experimental periodontitis between maxillary first and second molars (M1-M2). Equal groups were treated with three weekly doses of: 1) prodrug carrier alone (mPEG); 2) 0.5 mg SIM dose equivalent in carrier (SIM/SIM-mPEG); 3) 1.0 mg SIM/SIM-mPEG; 4) 1.5 mg SIM/SIM-mPEG; or 5) ligature alone. Contralateral molars served as unmanipulated controls. Four weeks after initiation of periodontitis, animals were euthanized, the M1-M2 interproximal was evaluated with microcomputed tomography and histology, and data were analyzed with one-way analysis of variance. Ligature alone caused a mean bone loss of 1.01 ± 0.06 mm from the cemento-enamel junction, whereas all doses of SIM/SIM-mPEG reduced bone loss, especially 1.5 mg SIM/SIM-mPEG (0.68 ± 0.05 mm, P periodontitis bone loss and inflammation in rats.

  9. Ether the nothing that connects everything

    CERN Document Server

    Milutis, Joe

    2006-01-01

    In Ether, the histories of the unseen merge with discussions of the technology of electromagnetism. Navigating more than three hundred years of the ether''s cultural and artistic history, Joe Milutis reveals its continuous reinvention and tangible impact without ever losing sight of its ephemeral, elusive nature. The true meaning of ether, Milutis suggests, may be that it can never be fully grasped.

  10. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles.

    Science.gov (United States)

    Kamalasanan, Kaladhar; Anupriya; Deepa, M K; Sharma, Chandra P

    2014-10-01

    A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release

  11. Usage of the word 'ether'

    International Nuclear Information System (INIS)

    Duffy, M.C.

    1980-01-01

    Confusion has been caused by scientists using the one word 'ether' to classify models differing from each other in important respects. Major roles assigned to the word are examined, and the nature of modern ether theories surveyed. The part played by the several meanings attached to the word, in the ether concept, is outlined. (author)

  12. Modification of concomitant drug release from oil vehicles using drug-prodrug combinations to achieve sustained balanced analgesia after joint installation

    DEFF Research Database (Denmark)

    Thing, Mette; Jensen, Sabrine Smedegaard; Larsen, Claus Selch

    2012-01-01

    Intra-articular injection of two drugs in a sustained drug delivery system combining the use of lipophilic solution with the prodrug approach may provide efficient and prolonged postoperative pain treatment after arthroscopic procedures. In the present study, the concomitant release of N...... using buffer. In both release models, the use of ropivacaine-prodrug combination provided concomitant release from the oil into synovial fluid with ropivacaine being released faster than naproxen. The use of lipophilic prodrugs that are converted fast to the parent drug in synovial fluid seems...

  13. The failure of poly (ether ether ketone) in high speed contacts

    Science.gov (United States)

    Briscoe, B. J.; Stuart, B. H.; Sebastian, S.; Tweedale, P. J.

    1993-04-01

    The paper describes an experimental study, with an associated analysis incorporating supplementary data, of the anti-boundary lubricating action of an alkane-aliphatic carboxylic acid lubricant system in a poly (ether ether ketone)-mild steel contact. The experiments involve progressively increasing the load in a contact formed between a polymer plate and a rotating steel shaft and estimating the frictional work dissipated. Scuffing is identified when a rapid increase in frictional work is noted at a characteristic normal load. It is shown that the additive induces premature scuffing. Subsidiary data is provided using Raman spectroscopy and hardness probes, and confirms that certain additives such as decanoic acid and dodecylamine will induce surface plasticization in poly (ether ether ketone). The trends in the frictional data have been interpreted using the adhesive model of friction in conjunction with temperature-dependent interfacial theology and bulk mechanical property data. It is proposed that the scuffing process is induced prematurely as a consequence of excessive additive-induced subsurface plasticization. Restricted surface plasticization in this system provides an enhanced self-lubricating capacity.

  14. Prodrugs of Pyrazolo[3,4-d]pyrimidines: From Library Synthesis to Evaluation as Potential Anticancer Agents in an Orthotopic Glioblastoma Model.

    Science.gov (United States)

    Vignaroli, Giulia; Iovenitti, Giulia; Zamperini, Claudio; Coniglio, Federica; Calandro, Pierpaolo; Molinari, Alessio; Fallacara, Anna Lucia; Sartucci, Andrea; Calgani, Alessia; Colecchia, David; Mancini, Andrea; Festuccia, Claudio; Dreassi, Elena; Valoti, Massimo; Musumeci, Francesca; Chiariello, Mario; Angelucci, Adriano; Botta, Maurizio; Schenone, Silvia

    2017-07-27

    Pyrazolo[3,4-d]pyrimidines are potent protein kinase inhibitors with promising antitumor activity but suboptimal aqueous solubility, consequently worth being further optimized. Herein, we present the one-pot two-step procedure for the synthesis of a set of pyrazolo[3,4-d]pyrimidine prodrugs (1a-8a and 9a-e) with higher aqueous solubility and enhanced pharmacokinetic and therapeutic properties. ADME studies demonstrated for the most promising prodrugs a better aqueous solubility, a favorable hydrolysis in human and murine serum, and an increased ability to cross cell membranes with respect to the parental drugs, explaining their better 24 h in vitro cytotoxicity against human glioblastoma U87 cell line. Finally, the 4-4a couple of drug/prodrug was also evaluated in vivo, revealing a profitable pharmacokinetic profile of the prodrug associated with a good efficacy. The application of the prodrug approach demonstrated to be a successful strategy for improving aqueous solubility of the parental drugs, determining a positive impact also in their biological efficacy.

  15. Phospholipid studies of marine organisms: 14. Ether lipids of the sponge Tethya aurantia

    International Nuclear Information System (INIS)

    Smith, G.M.; Djerassi, C.

    1987-01-01

    The novel unesterified alkyl glycerol monoethers, (2S)-1-(hexadecyloxy)-2,3-propanediol (1), (2S)-1-(16-methylheptadecyloxy)-2,3-propanediol (2) and (2S)-1-(15-methylheptadecyloxy)-2,3-propanediol (3) were isolated from the marine sponge Tethya aurantia and were characterized by spectroscopic methods. These three saturated ethers as well as a series of alk-1'-enyl glycerol monoethers were also encountered in the phospholipids of the same sponge after reduction with LiAlH4. Incorporation experiments with dissociated cells of T. aurantia indicated that [1- 14 C]-hexadecanol was incorporated into the unesterified alkyl glycerol monoethers

  16. Quantitative modeling of the dynamics and intracellular trafficking of far-red light-activatable prodrugs: implications in stimuli-responsive drug delivery system.

    Science.gov (United States)

    Li, Mengjie; Thapa, Pritam; Rajaputra, Pallavi; Bio, Moses; Peer, Cody J; Figg, William D; You, Youngjae; Woo, Sukyung

    2017-12-01

    The combination of photodynamic therapy (PDT) with anti-tumor agents is a complimentary strategy to treat local cancers. We developed a unique photosensitizer (PS)-conjugated paclitaxel (PTX) prodrug in which a PS is excited by near-infrared wavelength light to site-specifically release PTX while generating singlet oxygen (SO) to effectively kill cancer cells with both PTX and SO. The aim of the present study was to identify the determinants influencing the combined efficacy of this light-activatable prodrug, especially the bystander killing effects from released PTX. Using PS-conjugated PTX as a model system, we developed a quantitative mathematical model describing the intracellular trafficking. Dynamics of the prodrug and the model predictions were verified with experimental data using human cancer cells in vitro. The sensitivity analysis suggested that parameters related to extracellular concentration of released PTX, prodrug uptake, target engagement, and target abundance are critical in determining the combined killing efficacy of the prodrug. We found that released PTX cytotoxicity was most sensitive to the retention time of the drug in extracellular space. Modulating drug internalization and conjugating the agents targeted to abundant receptors may provide a new strategy for maximizing the killing capacity of the far-red light-activatable prodrug system. These results provide guidance for the design of the PDT combination study in vivo and have implications for other stimuli-responsive drug delivery systems.

  17. Evaluation of Diclofenac Prodrugs for Enhancing Transdermal Delivery

    OpenAIRE

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2013-01-01

    The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD), and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates, and bioconversion rates. ...

  18. Improved synthesis of N-benzylaminoferrocene-based prodrugs and evaluation of their toxicity and antileukemic activity.

    Science.gov (United States)

    Daum, Steffen; Chekhun, Vasiliy F; Todor, Igor N; Lukianova, Natalia Yu; Shvets, Yulia V; Sellner, Leopold; Putzker, Kerstin; Lewis, Joe; Zenz, Thorsten; de Graaf, Inge A M; Groothuis, Geny M M; Casini, Angela; Zozulia, Oleksii; Hampel, Frank; Mokhir, Andriy

    2015-02-26

    We report on an improved method of synthesis of N-benzylaminoferrocene-based prodrugs and demonstrate its applicability by preparing nine new aminoferrocenes. Their effect on the viability of selected cancer cells having different p53 status was studied. The obtained data are in agreement with the hypothesis that the toxicity of aminoferrocenes is not dependent upon p53 status. Subsequently the toxicity of a selected prodrug (4) was investigated ex vivo using rat precision cut liver slices and in vivo on hybrid male mice BDF1. In both experiments no toxicity was observed: ex vivo, up to 10 μM; in vivo, up to 6 mg/kg. Finally, prodrug 4 was shown to extend the survival of BDF1 mice carrying L1210 leukemia from 13.7 ± 0.6 days to 17.5 ± 0.7 days when injected daily 6 times at a dose of 26 μg/kg starting from the second day after injection of L1210 cells.

  19. In Vitro and In Vivo Evaluation of Microparticulate Drug Delivery Systems Composed of Macromolecular Prodrugs

    Directory of Open Access Journals (Sweden)

    Yoshiharu Machida

    2008-08-01

    Full Text Available Macromolecular prodrugs are very useful systems for achieving controlled drug release and drug targeting. In particular, various macromolecule-antitumor drug conjugates enhance the effectiveness and improve the toxic side effects. Also, polymeric micro- and nanoparticles have been actively examined and their in vivo behaviors elucidated, and it has been realized that their particle characteristics are very useful to control drug behavior. Recently, researches based on the combination of the concepts of macromolecular prodrugs and micro- or nanoparticles have been reported, although they are limited. Macromolecular prodrugs enable drugs to be released at a certain controlled release rate based on the features of the macromolecule-drug linkage. Micro- and nanoparticles can control in vivo behavior based on their size, surface charge and surface structure. These merits are expected for systems produced by the combination of each concept. In this review, several micro- or nanoparticles composed of macromolecule-drug conjugates are described for their preparation, in vitro properties and/or in vivo behavior.

  20. Synthesis of mutual azo prodrugs of anti-inflammatory agents and peptides facilitated by α-aminoisobutyric acid.

    Science.gov (United States)

    Kennedy, David A; Vembu, Nagarajan; Fronczek, Frank R; Devocelle, Marc

    2011-12-02

    Reported is the synthesis of azo mutual prodrugs of the nonsteroidal anti-inflammatory agents (NSAIDs) 4-aminophenylacetic acid (4-APAA) or 5-aminosalicylic acid (5-ASA) with peptides, including an antibiotic peptide temporin analogue modified at the amino terminal by an α-aminoisobutyric acid (Aib) residue. These prodrugs are designed for colonic delivery of two agents to treat infection and inflammation by the bacterial pathogen Clostridium difficile . © 2011 American Chemical Society

  1. Transdermal delivery and cutaneous targeting of antivirals using a penetration enhancer and lysolipid prodrugs.

    Science.gov (United States)

    Diblíková, Denisa; Kopečná, Monika; Školová, Barbora; Krečmerová, Marcela; Roh, Jaroslav; Hrabálek, Alexandr; Vávrová, Kateřina

    2014-04-01

    In this work, we investigate prodrug and enhancer approaches for transdermal and topical delivery of antiviral drugs belonging to the 2,6-diaminopurine acyclic nucleoside phosphonate (ANP) group. Our question was whether we can differentiate between transdermal and topical delivery, i.e., to control the delivery of a given drug towards either systemic absorption or retention in the skin. The in vitro transdermal delivery and skin concentrations of seven antivirals, including (R)- and (S)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine (PMPDAP), (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine ((S)-HPMPDAP), its 8-aza analog, and their cyclic and hexadecyloxypropyl (HDP) prodrugs, was investigated with and without the penetration enhancer dodecyl-6-(dimethylamino)hexanoate (DDAK) using human skin. The ability of ANPs to cross the human skin barrier was very low (0.5-1.4 nmol/cm(2)/h), and the majority of the compounds were found in the stratum corneum, the uppermost skin layer. The combination of antivirals and the penetration enhancer DDAK proved to be a viable approach for transdermal delivery, especially in case of (R)-PMPDAP, an anti-HIV effective drug (30.2 ± 2.3 nmol/cm(2)/h). On the other hand, lysophospholipid-like HDP prodrugs, e.g., HDP-(S)-HPMPDAP, reached high concentrations in viable epidermis without significant systemic absorption. By using penetration enhancers or lysolipid prodrugs, it is possible to effectively target systemic diseases by the transdermal route or to target cutaneous pathologies by topical delivery.

  2. The extraction of total lipids from parsley: Petroselinum crispum (mill. Nym. Ex. A.W. Hill seeds

    Directory of Open Access Journals (Sweden)

    Stanković Mihajlo Z.

    2004-01-01

    Full Text Available The kinetics of extraction of total lipids from ground parsley (Petroselinum crispum (Mill. Nym. ex. A.W. Hill seeds with a mixture of ethanol or methanol with non-polar organic solvents, chloroform, carbon tetrachloride, trichloroethylene and petroleum ether, at various temperatures were studied. The maceration technique with reflux was used. The kinetic parameters were determined in extraction kinetic equations, as well as the optimal operation conditions for total lipids extraction. The maximum total lipids yield under optimal conditions was 33.7 g per 100 g of dry parsley seeds. Nine lipid fractions of the total lipids were separated by thin layer chromatography among which were phospholipids, sterol, mono-, di- and triacylglycerol, free fatty acids and carbohydrates.

  3. The lipidome in major depressive disorder: Shared genetic influence for ether-phosphatidylcholines, a plasma-based phenotype related to inflammation, and disease risk.

    Science.gov (United States)

    Knowles, E E M; Huynh, K; Meikle, P J; Göring, H H H; Olvera, R L; Mathias, S R; Duggirala, R; Almasy, L; Blangero, J; Curran, J E; Glahn, D C

    2017-06-01

    The lipidome is rapidly garnering interest in the field of psychiatry. Recent studies have implicated lipidomic changes across numerous psychiatric disorders. In particular, there is growing evidence that the concentrations of several classes of lipids are altered in those diagnosed with MDD. However, for lipidomic abnormalities to be considered potential treatment targets for MDD (rather than secondary manifestations of the disease), a shared etiology between lipid concentrations and MDD should be demonstrated. In a sample of 567 individuals from 37 extended pedigrees (average size 13.57 people, range=3-80), we used mass spectrometry lipidomic measures to evaluate the genetic overlap between twenty-three biologically distinct lipid classes and a dimensional scale of MDD. We found that the lipid class with the largest endophenotype ranking value (ERV, a standardized parametric measure of pleiotropy) were ether-phosphodatidylcholines (alkylphosphatidylcholine, PC(O) and alkenylphosphatidylcholine, PC(P) subclasses). Furthermore, we examined the cluster structure of the twenty-five species within the top-ranked lipid class, and the relationship of those clusters with MDD. This analysis revealed that species containing arachidonic acid generally exhibited the greatest degree of genetic overlap with MDD. This study is the first to demonstrate a shared genetic etiology between MDD and ether-phosphatidylcholine species containing arachidonic acid, an omega-6 fatty acid that is a precursor to inflammatory mediators, such as prostaglandins. The study highlights the potential utility of the well-characterized linoleic/arachidonic acid inflammation pathway as a diagnostic marker and/or treatment target for MDD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Occurrence, bioaccumulation and potential sources of polybrominated diphenyl ethers in typical freshwater cultured fish ponds of South China

    International Nuclear Information System (INIS)

    Zhang Baozhong; Ni Honggang; Guan Yufeng; Zeng, Eddy Y.

    2010-01-01

    To determine the potential input sources of polybrominated diphenyl ethers (PBDEs) to fish farming environments in South China, samples of seven various environmental matrices were collected from October 2006-September 2007. Tri- to deca-BDEs were detected in all samples analyzed, with mean concentrations (±standard deviations) at 5.7 ± 3.6 ng/L in pond water, 15 ± 11 ng/g dry wt. in pond sediment, 12 ± 3.8 ng/g dry wt. in bank soil, 21 ± 20 ng/g lipid wt. in fish, and 93 ± 62 ng/g lipid wt. in fish feeds. In addition, BDE-209 was the major constituent in all samples except fish and BDE-47 was predominant in fish samples. Relatively high abundances of BDE-49 were detected in all the samples compared to those in the penta-BDE technical products. Several bioaccumulation factors were evaluated. Finally, statistical analyses suggested that fish feed, as well as pond water at a lesser degree, may have been the major source of PBDEs in freshwater farmed fish. - Occurrence and sources of polybrominated diphenyl ethers in typical freshwater cultured fish ponds of the Pearl River Delta, South China are examined.

  5. Comparative pharmacokinetics of two prodrugs of zidovudine in rabbits: enhanced levels of zidovudine in brain tissue.

    Science.gov (United States)

    Lupia, R H; Ferencz, N; Lertora, J J; Aggarwal, S K; George, W J; Agrawal, K C

    1993-04-01

    The pharmacokinetics of two prodrugs of zidovudine (AZT), 1,4-dihydro-1-methyl-3-[(pyridylcarbonyl)oxy] ester and isoleucinyl ester (DPAZT and IAZT, respectively), were investigated in a rabbit model to determine their potential utility as drugs against human immunodeficiency virus. Drugs were administered by intravenous infusion over 5 min at doses equal to 10 mg of AZT per kg of body weight. The levels of the prodrugs and of released AZT in plasma, cerebrospinal fluid (CSF), and brain were determined by high-performance liquid chromatography analysis. DPAZT disappeared rapidly from plasma, whereas IAZT maintained a sustained level in plasma for up to 4 h. The levels in plasma of AZT released from DPAZT were consistently lower than the levels of AZT released from IAZT or AZT itself. At 75 min after infusion of AZT, DPAZT, and IAZT, the CSF plasma AZT ratios were 0.23, 0.30, and 0.25, while the brain/CSF AZT ratios were 0.32, 0.63, and 0.64, respectively. These results indicate that the administration of each of the prodrugs produced a higher concentration of AZT in the brain than did the direct administration of AZT. Both prodrugs therefore may be superior to AZT itself with respect to achieving anti-human immunodeficiency virus concentrations within the central nervous system.

  6. Silane Cross-Linked Sulfonted Poly(Ether Ketone/Ether Benzimidazoles for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Zilu Yao

    2017-11-01

    Full Text Available γ-(2,3-epoxypropoxy propyltrimethoxysilane (KH-560 was incorporated in various proportions into side-chain-type sulfonated poly(ether ketone/ether benzimidazole (SPEKEBI as a crosslinker, to make membranes with high ion exchange capacities and excellent performance for direct methanol fuel cells (DMFCs. Systematical measurements including Fourier transform infrared (FT-IR, scanning electron microscopy-energy-dispersive and X-ray photoelectron spectroscopy (XPS proved the complete disappearance of epoxy groups in KH-560 and the existence of Si in the membranes. The resulting membranes showed increased mechanical strength and thermal stability compared to the unmodified sulfonated poly(ether ketone/ether benzimidazole membrane in appropriate doping amount. Meanwhile, the methanol permeability has decreased, leading to the increase of relative selectivities of SPEKEBI-x-SiO2 membranes. Furthermore, the H2/O2 cell performance of SPEKEBI-2.5-SiO2 membrane showed a much higher peak power density compared with the pure SPEKEBI memrbrane.

  7. Critical properties of some aliphatic symmetrical ethers

    International Nuclear Information System (INIS)

    Nikitin, Eugene D.; Popov, Alexander P.; Bogatishcheva, Nataliya S.

    2014-01-01

    Highlights: • Critical properties of simple aliphatic ethers were measured. • The ethers decompose at near-critical temperatures. • Pulse-heating method with short residence times was used. -- Abstract: The critical temperatures T c and the critical pressures p c of dihexyl, dioctyl, and didecyl ethers have been measured. According to the measurements, the coordinates of the critical points are T c = (665 ± 7) K, p c = (1.44 ± 0.04) MPa for dihexyl ether, T c = (723 ± 7) K, p c = (1.19 ± 0.04) MPa for dioctyl ether, and T c = (768 ± 8) K, p c = (1.03 ± 0.03) MPa for didecyl ether. All the ethers studied degrade chemically at near-critical temperatures. A pulse-heating method applicable to measuring the critical properties of thermally unstable compounds has been used. The times from the beginning of a heating pulse to the moment of reaching the critical temperature were from 0.06 to 0.46 ms. The short residence times provide little decomposition of the substances in the course of the experiments. The critical properties of the ethers investigated in this work have been discussed together with those of methyl to butyl ethers. The experimental critical constants of the ethers have been compared with those estimated by the group-contribution methods of Wilson and Jasperson and Marrero and Gani. The Wilson/Jasperson method provides a better estimation of the critical temperatures and pressures of simple aliphatic ethers in comparison with the Marrero/Gani method if reliable normal boiling temperatures are used in the method of Wilson and Jasperson

  8. Radiation-induced cationic curing of vinyl ethers

    International Nuclear Information System (INIS)

    Lapin, S.C.

    1992-01-01

    Recently there has been an increasing interest in nonacrylate radiation-curable coatings. Vinyl ethers are particularly reactive under cationic polymerization reaction conditions. The high efficiency of the photoacid initiators combined with the high reactivity of vinyl ether monomers makes this a potentially very useful system. This chapter discusses the preparation of vinyl ethers, introduces vinyl ether-functional monomers and oligomers, describes radiation-induced cationic polymerization of vinyl ethers, and discusses various coating systems. Throughout the chapter, an emphasis is placed on radiation-curable coating applications. 64 refs., 5 figs., 11 tabs

  9. Targeting (cellular) lysosomal acid ceramidase by B13: design, synthesis and evaluation of novel DMG-B13 ester prodrugs.

    Science.gov (United States)

    Bai, Aiping; Szulc, Zdzislaw M; Bielawski, Jacek; Pierce, Jason S; Rembiesa, Barbara; Terzieva, Silva; Mao, Cungui; Xu, Ruijuan; Wu, Bill; Clarke, Christopher J; Newcomb, Benjamin; Liu, Xiang; Norris, James; Hannun, Yusuf A; Bielawska, Alicja

    2014-12-15

    Acid ceramidase (ACDase) is being recognized as a therapeutic target for cancer. B13 represents a moderate inhibitor of ACDase. The present study concentrates on the lysosomal targeting of B13 via its N,N-dimethylglycine (DMG) esters (DMG-B13 prodrugs). Novel analogs, the isomeric mono-DMG-B13, LCL522 (3-O-DMG-B13·HCl) and LCL596 (1-O-DMG-B13·HCl) and di-DMG-B13, LCL521 (1,3-O, O-DMG-B13·2HCl) conjugates, were designed and synthesized through N,N-dimethyl glycine (DMG) esterification of the hydroxyl groups of B13. In MCF7 cells, DMG-B13 prodrugs were efficiently metabolized to B13. The early inhibitory effect of DMG-B13 prodrugs on cellular ceramidases was ACDase specific by their lysosomal targeting. The corresponding dramatic decrease of cellular Sph (80-97% Control/1h) by DMG-B13 prodrugs was mainly from the inhibition of the lysosomal ACDase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Poly (ether ether ketone) membranes for fuel cells

    International Nuclear Information System (INIS)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D.; Hui, Wang S.; Oliveira, Vivianna S. de

    2015-01-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  11. Cationic polymeric gene delivery of beta-glucuronidase for doxorubicin prodrug therapy

    NARCIS (Netherlands)

    Fonseca, MJ; Storm, G; Hennink, WE; Gerritsen, WR; Haisma, HJ

    1999-01-01

    Background An approach to improve current chemotherapy is the selective transduction of tumor cells with suicide genes to sensitize these cells to prodrugs of cytostatic agents; Methods In this study, gene transfer was accomplished with the cationic polymer poly(2-(dimethylamino)ethyl methacrylate)

  12. The Use of Radioactive Marker as a Tool to Evaluate the Drug Release in Plasma and Particle Biodistribution of Block Copolymer Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sharon Johnstone

    2011-01-01

    Full Text Available Diblock copolymer nanoparticles encapsulating a paclitaxel prodrug, Propac 7, have been used to demonstrate the usefulness of a nonmetabolizable radioactive marker, cholesteryl hexadecyl ether (CHE, to evaluate nanoparticle formulation variables. Since CHE did not exchange out of the nanoparticles, the rate of clearance of the CHE could be used as an indicator of nanoparticle stability in vivo. We simultaneously monitored prodrug circulation and carrier circulation in the plasma and the retention of CHE relative to the retention of prodrug in the plasma was used to distinguish prodrug release from nanoparticle plasma clearance. Nanoparticles labelled with CHE were also used to evaluate accumulation of nanoparticles in the tumour. This marker has provided relevant data which we have applied to optimise our nanoparticle formulations.

  13. Ion-Selective Ionic Polymer Metal Composite (IPMC) actuator based on crown ether containing sulfonated Poly(Arylene Ether Ketone)

    NARCIS (Netherlands)

    Tas, S.; Zoetebier, B.; Sukas, O.S.; Bayraktar, M.; Hempenius, M.; Vancso, G.J.; Nijmeijer, K.

    2017-01-01

    This study introduces the concept of ion selective actuation in polymer metal composite actuators, employing crown ether bearing aromatic polyether materials. For this purpose, sulfonated poly(arylene ether ketone) (SPAEK) and crown ether containing SPAEK with molar masses suitable for membrane

  14. Acyclovir prodrug for the intestinal di/tri-peptide transporter PEPT1

    DEFF Research Database (Denmark)

    Thomsen, Anne Engelbrecht; Christensen, Michael Søberg; Bagger, Morten Aavad

    2004-01-01

    It has previously been shown that the prodrug Glu(acyclovir)-Sar has a high affinity for PEPT1 in Caco-2 cells. However, affinity does not necessarily lead to translocation by the transporter which is necessary for achieving an increased oral bioavailability. Therefore i.v. and p.o. doses of Glu......(acyclovir)-Sar, acyclovir and valacyclovir were given to rats and the collected blood samples were analysed via LC-MS-MS. Furthermore, Caco-2 cell monolayers were exposed apically to Glu(acyclovir)-Sar, acyclovir, and valacyclovir and the concentration of drug and prodrugs in the cell extracts were determined and taken...... as a measure for intracellular accumulation. In addition, bi-directional transport studies of Glu(acyclovir)-Sar across Caco-2 cell monolayers and in vitro metabolism studies of Glu(acyclovir)-Sar in various media of rat origin were performed. For these purposes HPLC-UV analysis was applied. Oral...

  15. Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications.

    Science.gov (United States)

    Massaro, M; Amorati, R; Cavallaro, G; Guernelli, S; Lazzara, G; Milioto, S; Noto, R; Poma, P; Riela, S

    2016-04-01

    Covalently functionalized halloysite nanotubes (HNTs) were successfully employed as dual-responsive nanocarriers for curcumin (Cur). Particularly, we synthesized HNT-Cur prodrug with a controlled curcumin release on dependence of both intracellular glutathione (GSH) and pH conditions. In order to obtain HNT-Cur produgs, halloysite was firstly functionalized with cysteamine through disulphide linkage. Afterwards, curcumin molecules were chemically conjugated to the amino end groups of halloysite via Schiff's base formation. The successful functionalization of halloysite was proved by thermogravimetric analysis, FT-IR spectroscopy, dynamic light scattering and scanning electron microscopy. Experimental data confirmed the presence of curcumin on HNT external surface. Moreover, we investigated the kinetics of curcumin release by UV-vis spectroscopy, which highlighted that HNT-Cur prodrug possesses dual stimuli-responsive ability upon exposure to GSH-rich or acidic environment. In vitro antiproliferative and antioxidant properties of HNT-Cur prodrug were studied with the aim to explore their potential applications in pharmaceutics. This work puts forward an efficient strategy to prepare halloysite based nanocarriers with controlled drug delivery capacity through direct chemical grafting with stimuli-responsive linkage. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Photo-triggered fluorescent theranostic prodrugs as DNA alkylating agents for mechlorethamine release and spatiotemporal monitoring.

    Science.gov (United States)

    Cao, Yanting; Pan, Rong; Xuan, Weimin; Wei, Yongyi; Liu, Kejian; Zhou, Jiahong; Wang, Wei

    2015-06-28

    We describe a new theranostic strategy for selective delivery and spatiotemporal monitoring of mechlorethamine, a DNA alkylating agent. A photo-responsive prodrug is designed and composed of a photolabile o-nitrophenylethyl group, a DNA alkylating mechlorethamine drug and a coumarin fluorophore. Masking of the "N" in mechlorethamine in a positively charged state in the prodrug renders it inactive, non-toxic, selective and non-fluorescent. Indeed, the stable prodrug shows negligible cytotoxicity towards normal cells with and without UV activation and is completely non-fluorescent. However, upon photo-irradiation, the active mechlorethamine is released and induces efficient DNA cross-links, accompanied by a strong fluorescence enhancement (152 fold). Furthermore, DNA cross-linking activity from the release can be transformed into anticancer activity observed in in vitro studies of tumor cells. Importantly, the drug release progress and the movement can be conveniently monitored by fluorescence spectroscopy. The mechanistic study proves that the DNA cross-linking activity is mainly due to the release of DNA alkylating mechlorethamine. Altogether, the studies show the power of the theranostic strategy for efficient therapy in cancer treatment.

  17. Synthesis and biological evaluation of novel 10-substituted-7-ethyl-10-hydroxycamptothecin (SN-38) prodrugs.

    Science.gov (United States)

    Zhou, Mo; Liu, Meixia; He, Xinhua; Yu, Hong; Wu, Di; Yao, Yishan; Fan, Shiyong; Zhang, Ping; Shi, Weiguo; Zhong, Bohua

    2014-11-27

    In an attempt to improve the antitumor activity and reduce the side effects of irinotecan (2), novel prodrugs of SN-38 (3) were prepared by conjugating amino acids or dipeptides to the 10-hydroxyl group of SN-38 via a carbamate linkage. The synthesized compounds completely generated SN-38 in pH 7.4 buffer or in human plasma, while remaining stable under acidic conditions. All prodrug compounds demonstrated much greater in vitro antitumor activities against HeLa cells and SGC-7901 cells than irinotecan. The most active compounds, 5h, 7c, 7d, and 7f, exhibited IC50 values that were 1000 times lower against HeLa cells and 30 times lower against SGC-7901 cells than those of irinotecan, and the inhibitory activities of these prodrugs against acetylcholinesterase (AchE) were significantly reduced, with IC50 values more than 6.8 times greater than that of irinotecan. In addition, compound 5e exhibited the same level of tumor growth inhibitory activity as irinotecan (CPT-11) in a human colon xenograft model in vivo.

  18. Synthesis and Biological Evaluation of Novel 10-Substituted-7-ethyl-10-hydroxycamptothecin (SN-38 Prodrugs

    Directory of Open Access Journals (Sweden)

    Mo Zhou

    2014-11-01

    Full Text Available In an attempt to improve the antitumor activity and reduce the side effects of irinotecan (2, novel prodrugs of SN-38 (3 were prepared by conjugating amino acids or dipeptides to the 10-hydroxyl group of SN-38 via a carbamate linkage. The synthesized compounds completely generated SN-38 in pH 7.4 buffer or in human plasma, while remaining stable under acidic conditions. All prodrug compounds demonstrated much greater in vitro antitumor activities against HeLa cells and SGC-7901 cells than irinotecan. The most active compounds, 5h, 7c, 7d, and 7f, exhibited IC50 values that were 1000 times lower against HeLa cells and 30 times lower against SGC-7901 cells than those of irinotecan, and the inhibitory activities of these prodrugs against acetylcholinesterase (AchE were significantly reduced, with IC50 values more than 6.8 times greater than that of irinotecan. In addition, compound 5e exhibited the same level of tumor growth inhibitory activity as irinotecan (CPT-11 in a human colon xenograft model in vivo.

  19. Novel Polymeric Prodrugs of Valproic Acid as Anti- Epilepsy Drugs ...

    African Journals Online (AJOL)

    The release of VPA from polymeric prodrugs was studied using cellophane membrane dialysis bags containing aqueous buffer solutions (pH 1, 7 and 10) at 37 oC. The quantity of released drug was detected by ultraviolet (UV) spectroscopy. Results: 1H-NMR and elemental analyses data for calculating mole composition of ...

  20. Polybrominated Diphenyl Ether Exposure and Thyroid Function Tests in North American Adults.

    Science.gov (United States)

    Makey, Colleen M; McClean, Michael D; Braverman, Lewis E; Pearce, Elizabeth N; He, Xue-Mei; Sjödin, Andreas; Weinberg, Janice M; Webster, Thomas F

    2016-04-01

    Polybrominated diphenyl ethers (PBDEs) are flame-retardant chemicals that are added to many consumer products. Multiple animal studies have shown PBDEs to be thyroid hormone (TH) disruptors. Epidemiologic evidence of PBDE exposure associated with TH disruption has been inconclusive. We used repeated measures to estimate associations between serum PBDE concentrations and THs in a North American adult cohort. From 2010 to 2011, we collected ≤ 3 serum samples at approximately 6-month intervals from 52 healthy adult office workers from Boston, Massachusetts, for analysis of PBDE congeners and THs. The geometric mean sum concentrations of the most prevalent PBDE congeners (BDE-28, BDE-47, BDE-99, BDE-100, and BDE-153) were 22 ng/g lipid in winter 2010, 23 ng/g lipid in summer 2010, and 19 ng/g lipid in winter 2011. BDE-47 was the predominant congener. Based on a multivariable mixed regression model, we estimated that on average, a 1-ng/g serum increase in BDE-47 was associated with a 2.6-μg/dL decrease in total thyroxine (T4) (95% CI: -4.7, -0.35). Total T4 was inversely associated with each PBDE congener. Serum concentrations of PBDEs were not strongly associated with total triiodothyronine (T3), free T4, or thyroid-stimulating hormone (TSH). These results are consistent with those from animal studies showing that exposure to PBDEs is associated with a decrease in serum T4. Because the other TH concentrations did not appear to be associated with BDE exposures, our findings do not indicate effects on the pituitary-thyroid axis. Taken together, our findings suggest that PBDE exposure might decrease the binding of T4 to serum T4 binding proteins. Makey CM, McClean MD, Braverman LE, Pearce EN, He XM, Sjödin A, Weinberg JM, Webster TF. 2016. Polybrominated diphenyl ether exposure and thyroid function tests in North American adults. Environ Health Perspect 124:420-425; http://dx.doi.org/10.1289/ehp.1509755.

  1. Human glutathione transferases catalyzing the bioactivation of anticancer thiopurine prodrugs.

    Science.gov (United States)

    Eklund, Birgitta I; Gunnarsdottir, Sjofn; Elfarra, Adnan A; Mannervik, Bengt

    2007-06-01

    cis-6-(2-Acetylvinylthio)purine (cAVTP) and trans-6-(2-acetylvinylthio)guanine (tAVTG) are thiopurine prodrugs provisionally inactivated by an alpha,beta-unsaturated substituent on the sulfur of the parental thiopurines 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG). The active thiopurines are liberated intracellularly by glutathione (GSH) in reactions catalyzed by glutathione transferases (GSTs) (EC 2.5.1.18). Catalytic activities of 13 human GSTs representing seven distinct classes of soluble GSTs have been determined. The bioactivation of cAVTP and tAVTG occurs via a transient addition of GSH to the activated double bond of the S-substituent of the prodrug, followed by elimination of the thiopurine. The first of these consecutive reactions is rate-limiting for thiopurine release, but GST-activation of this first addition is shifting the rate limitation to the subsequent elimination. Highly active GSTs reveal the transient intermediate, which is detectable by UV spectroscopy and HPLC analysis. LC/MS analysis of the reaction products demonstrates that the primary GSH conjugate, 4-glutathionylbuten-2-one, can react with a second GSH molecule to form the 4-(bis-glutathionyl)butan-2-one. GST M1-1 and GST A4-4 were the most efficient enzymes with tAVTG, and GST M1-1 and GST M2-2 had highest activity with cAVTP. The highly efficient GST M1-1 is polymorphic and is absent in approximately half of the human population. GST P1-1, which is overexpressed in many cancer cells, had no detectable activity with cAVTP and only minor activity with tAVTG. Other GST-activated prodrugs have targeted GST P1-1-expressing cancer cells. Tumors expressing high levels of GST M1-1 or GST A4-4 can be predicted to be particularly vulnerable to chemotherapy with cAVTP or tAVTG.

  2. All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone

    International Nuclear Information System (INIS)

    Sivaraman, P.; Kushwaha, R.K.; Shashidhara, K.; Hande, V.R.; Thakur, A.P.; Samui, A.B.; Khandpekar, M.M.

    2010-01-01

    All solid supercapacitor based on polyaniline (PANI) and crosslinked sulfonated poly[ether ether ketone] (XSPEEK,) is reported in this paper. The crosslinker used for sulfonated poly[ether ether ketone] (SPEEK) is 1,4-bis(hydroxymethyl) benzene. The XSPEEK is used as both solid electrolyte and separator membrane. Supercapacitors are fabricated using various PANI/XSPEEK weight ratios. These are characterized by cyclic voltammetry and galvanostatic charge-discharge studies. The supercapacitor with PANI/XSPEEK weight ratio 1:0.5, exhibit a specific capacitance of 480 F g -1 of PANI. To the best of authors' knowledge, the value reported here is the highest for a supercapacitor based on a proton conducting solid polymer electrolyte and PANI. Detailed electrochemical impedance spectroscopy analysis is carried out. The analysis shows that the complex capacitance of the supercapacitor depends on the XSPEEK content. The time constant (t 0 ), derived from the imaginary part of complex capacitance decreases with increase in the XSPEEK content in the supercapacitor. Cycle life characteristics of the supercapacitor show a decrease in specific capacitance during initial cycles and get stabilized during later cycles.

  3. Hydrogen storage by functionalised Poly(ether ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, R.; Giacoppo, G.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Messina (Italy). Inst. for Advanced Energy Technologies

    2010-07-01

    In this work a functionalised polymer was studied as potential material for hydrogen storage in solid state. A Poly(ether ether ketone) (PEEK) matrix was modified by a manganese oxide in situ formation. Here we report the functionalisation process and the preliminary results on hydrogen storage capability of the synthesised polymer. The polymer was characterized by Scanning Electron Microscopy, X-ray diffraction, Transmission Electron Microscopy and Gravimetric Hydrogen Adsorption measurements. In the functionalised PEEK, morphological changes occur as a function of oxide precursor concentration and reaction time. Promising results by gravimetric measurements were obtained with a hydrogen sorption of 0.24%wt/wt at 50 C and 60 bar, moreover, reversibility hydrogen adsorption and desorption in a wide range of both temperature and pressure was confirmed. (orig.)

  4. Pharmacokinetics of penciclovir after oral administration of its prodrug famciclovir to horses.

    Science.gov (United States)

    Tsujimura, Koji; Yamada, Masayuki; Nagata, Shun-ichi; Yamanaka, Takashi; Nemoto, Manabu; Kondo, Takashi; Kurosawa, Masahiko; Matsumura, Tomio

    2010-03-01

    We investigated the pharmacokinetics of penciclovir after oral administration of its prodrug famciclovir to horses. Following an oral dose of famciclovir at 20 mg/kg, maximum plasma concentrations of penciclovir occurred between 0.75 and 1.5 hr (mean 0.94 + or - 0.38 hr) after dosing and were in the range 2.22 to 3.56 microg/ml (mean 2.87 + or - 0.61 microg/ml). The concentrations of penciclovir declined in a biphasic manner after the peak concentration was attained. The mean half-life of the rapid elimination phase was 1.73 + or - 0.34 hr whereas that of the slow elimination phase was 34.34 + or - 13.93 hr. These pharmacokinetic profiles observed were similar to those of another antiherpesvirus drug, acyclovir, previously reported in horses following oral dosing of its prodrug valacyclovir.

  5. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-07-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy.

  6. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    International Nuclear Information System (INIS)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2007-01-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy

  7. Ultrasound extraction and thin layer chromatography-flame ionization detection analysis of the lipid fraction in marine mucilage samples.

    Science.gov (United States)

    Mecozzi, M; Amici, M; Romanelli, G; Pietrantonio, E; Deluca, A

    2002-07-19

    This paper reports an analytical procedure based on ultrasound to extract lipids in marine mucilage samples. The experimental conditions of the ultrasound procedure (solvent and time) were identified by a FT-IR study performed on different standard samples of lipids and of a standard humic sample, before and after the sonication treatment. This study showed that diethyl ether was a more suitable solvent than methanol for the ultrasonic extraction of lipids from environmental samples because it allowed to minimize the possible oxidative modifications of lipids due to the acoustic cavitation phenomena. The optimized conditions were applied to the extraction of total lipid amount in marine mucilage samples and TLC-flame ionization detection analysis was used to identify the relevant lipid sub-fractions present in samples.

  8. Developing a novel dual PI3K–mTOR inhibitor from the prodrug of a metabolite

    Directory of Open Access Journals (Sweden)

    Zhou Y

    2017-10-01

    Full Text Available Yan Zhou,1,2 Genyan Zhang,2 Feng Wang,2 Jin Wang,2 Yanwei Ding,2 Xinyu Li,2 Chongtie Shi,2 Jiakui Li,2 Chengkon Shih,2 Song You1 1The School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, 2Department of Project Management, Medicinal Chemistry, Pharmacology, Drug Metabolism, and Pharmacokinetics, Toxicology, Xuanzhu Pharma, Jinan, China Abstract: This study presents a process of developing a novel PI3K–mTOR inhibitor through the prodrug of a metabolite. The lead compound (compound 1 was identified with similar efficacy as that of NVP-BEZ235 in a tumor xenograft model, but the exposure of compound 1 was much lower than that of NVP-BEZ235. After reanalysis of the blood sample, a major metabolite (compound 2 was identified. Compound 2 exerted similar in vitro activity as compound 1, which indicated that compound 2 was an active metabolite and that the in vivo efficacy in the animal model came from compound 2 instead of compound 1. However, compound 1 was metabolized into compound 2 predominantly in the liver microsomes of mouse, but not in the liver microsomes of rat, dog, or human. In order to translate the efficacy in the animal model into clinical development or predict the pharmacokinetic/pharmacodynamic parameters in the clinical study using a preclinical model, we developed the metabolite (compound 2 instead of compound 1. Due to the low bioavailability of compound 2, its prodrug (compound 3 was designed and synthesized to improve the solubility. The prodrug was quickly converted to compound 2 through both intravenous and oral administrations. Because the prodrug (compound 3 did not improve the oral exposure of compound 2, developing compound 3 as an intravenous drug was considered by our team, and the latest results will be reported in the future. Keywords: PI3K, mTOR, NVP-BEZ235, prodrug, metabolite, antitumor

  9. LipidPioneer : A Comprehensive User-Generated Exact Mass Template for Lipidomics

    Science.gov (United States)

    Ulmer, Candice Z.; Koelmel, Jeremy P.; Ragland, Jared M.; Garrett, Timothy J.; Bowden, John A.

    2017-03-01

    Lipidomics, the comprehensive measurement of lipid species in a biological system, has promising potential in biomarker discovery and disease etiology elucidation. Advances in chromatographic separation, mass spectrometric techniques, and novel substrate applications continue to expand the number of lipid species observed. The total number and type of lipid species detected in a given sample are generally indicative of the sample matrix examined (e.g., serum, plasma, cells, bacteria, tissue, etc.). Current exact mass lipid libraries are static and represent the most commonly analyzed matrices. It is common practice for users to manually curate their own lists of lipid species and adduct masses; however, this process is time-consuming. LipidPioneer, an interactive template, can be used to generate exact masses and molecular formulas of lipid species that may be encountered in the mass spectrometric analysis of lipid profiles. Over 60 lipid classes are present in the LipidPioneer template and include several unique lipid species, such as ether-linked lipids and lipid oxidation products. In the template, users can add any fatty acyl constituents without limitation in the number of carbons or degrees of unsaturation. LipidPioneer accepts naming using the lipid class level (sum composition) and the LIPID MAPS notation for fatty acyl structure level. In addition to lipid identification, user-generated lipid m/z values can be used to develop inclusion lists for targeted fragmentation experiments. Resulting lipid names and m/z values can be imported into software such as MZmine or Compound Discoverer to automate exact mass searching and isotopic pattern matching across experimental data.

  10. Activity relationships for aromatic crown ethers

    International Nuclear Information System (INIS)

    Wilson, Mark James

    1998-01-01

    This thesis involves an investigation of aromatic crown ethers and a study of their binding constants for alkali metals. The study was motivated by the current needs of the semiconductor industry to improve the scavenging of mobile ions from fabricated circuits. A number of aromatic crown ethers have been sulphonated in an attempt to improve their water solubility and cation binding activity. These materials have been extensively studied and their binding activity determined. In collaboration with a molecular modelling study, the effect of ionisable sulphonate groups on the macrocycles' behaviour has been investigated. The broader issue of the effect of substituents in aromatic crown ethers has also been studied with the preparation of a wide range of substituted crown ethers. The cation binding activity of these materials has been found to bear a simple relationship to the electron withdrawing nature of the aromatic substituents. This relationship can be accurately monitored using electronic charge densities from molecular modelling and this rational has been applied to the study of proton ionisable and lariating crown ethers. The incorporation of crown ethers into polyamic acid and polyimide frameworks has also been investigated, where the resulting materials have been found to exhibit unusual cation binding and uptake properties. These results imply that the combination of the crown ethers' macrocycle and adjacent carboxylic acid residues, from the polyamic acids, are conducive to effective cationic binding. NMR measurements, in conjunction with molecular modelling, have been used to explore the geometry changes encountered as the crown ether goes from it's uncomplexed to its complexed state. The energy requirement for these geometry changes has subsequently been used to examine the cation selectivity of these materials. The electronic charge changes associated with the complexation have also been investigated and correlated with the theoretical results. (author)

  11. Biaxial deformation behaviour of poly-ether-ether-ketone

    Science.gov (United States)

    Turner, Josh; Menary, Gary; Martin, Peter

    2018-05-01

    The biaxial tensile properties of thin poly-ether-ether-ketone (PEEK) films are presented. Investigation into the biaxial mechanical behaviour of PEEK films will provide a preliminary insight into the anticipated stress/strain response, and potential suitability, to the possible fabrication of thin walled parts through stretch blow moulding and thermoforming processes - with the multi-axial state of strain imposed onto the heated thermoplastic sheet representative of the expected strain history experienced during these material forming processes. Following identification of the prospective forming temperature window, the biaxial mechanical behaviour of the material is characterized under differing modes of deformation, at a nominal strain rate of 1 s-1. The temperature dependence is outlined within - with an appreciable increase in flow behaviour correlated with specimen temperature exceeding its glass transition temperature (Tg).

  12. Simple and fast analysis of tetrabromobisphenol A, hexabromocyclododecane isomers, and polybrominated diphenyl ethers in serum using solid-phase extraction or QuEChERS extraction followed by tandem mass spectrometry coupled to HPLC and GC.

    Science.gov (United States)

    Li, Jian; Chen, Tian; Wang, Yuwei; Shi, Zhixiong; Zhou, Xianqing; Sun, Zhiwei; Wang, Dejun; Wu, Yongning

    2017-02-01

    Two simplified sample preparation procedures for simultaneous extraction and clean-up of tetrabromobisphenol A, α-, β-, and γ-hexabromocyclododecane and polybrominated diphenyl ethers in human serum were developed and validated. The first procedure was based on solid-phase extraction. Sample extraction, purification, and lipid removal were carried out directly on an Oasis HLB cartridge. The second procedure was a quick, easy, cheap, effective, rugged, and safe-based approach using octadecyl-modified silica particles as a sorbent. After sample extraction and cleanup, tetrabromobisphenol A/hexabromocyclododecane was separated from polybrominated diphenyl ethers by using a Si-based cartridge. Tetrabromobisphenol A and hexabromocyclododecane were then detected by high-performance liquid chromatography coupled to tandem mass spectrometry, while polybrominated diphenyl ethers were detected by gas chromatography coupled to tandem mass spectrometry. The results of the spike recovery test using fetal bovine serum showed that the average recoveries of the analytes ranged from 87.3 to 115.3% with relative standard deviations equal to or lower than 13.4 %. Limits of detection of the analytes were in the range of 0.4-19 pg/mL except for decabromodiphenyl ether. The developed method was successfully applied to routine analysis of human serum samples from occupational workers and the general population. Extremely high serum polybrominated diphenyl ethers levels up to 3.32 × 10 4 ng/g lipid weight were found in occupational workers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis and evaluation of macromolecule-bound derivatives of a peptidyl-1-beta-D-arabinofuranosylcytosine prodrug.

    Science.gov (United States)

    Balajthy, Zoltan

    2008-04-01

    Macromolecule-bound Val-Leu-Lys-ara-C (1) prodrugs were synthesized with spacers (-HN-(CH(2))(x)-CO-; x =1,3,5) between the dextran carrier (T-70) and 1, in order to achieve a sustained-release drug delivery system dextran-NH-(CH(2))(x:1,3,5)-CO-Val-Leu-Lys-ara-C (5, 6 and 7). The conjugation increased the stability of 1 in aqueous buffer solutions by three times (t((1/2)) 53.0 h, pH 7.4). The length of spacer also regulated the rate of hydrolysis of the prodrugs in serum. The shortest spacer (-HN-(CH(2))-CO-, (2)) in 5 provided the best protection of 1 against the hydrolyzing ability of proteinase- alpha(2)-macroglobulin complexes, increasing its half-life approximately 30-fold. The conjugation procedure resulted in a growth arrest ability for macromolecular-bound prodrugs 5, 6 and 7 against L1210 with IC(50) of 0.01 microM in vitro, which is significantly lower than that of other ara-C-macromolecule conjugates. 5 and 6 arrested cell growth in a broader range of concentration, between 1 x 10(-5)-1.0 microM, than ara-C could.

  14. Novel crosslinked membranes based on sulfonated poly(ether ether ketone) for direct methanol fuel cells.

    Science.gov (United States)

    Zhu, Yuanqin; Zieren, Shelley; Manthiram, Arumugam

    2011-07-14

    Novel covalently crosslinked membranes based on sulfonated poly(ether ether ketone) and carboxylated polysulfone exhibit much lower methanol crossover and better performance in direct methanol fuel cells at 65 °C in 1 and 2 M methanol solutions compared to Nafion 115 membranes.

  15. Preparation and Characterization of Sulfonated Poly (ether ether ...

    African Journals Online (AJOL)

    NJD

    2007-08-10

    Aug 10, 2007 ... Preparation and Characterization of Sulfonated Poly (ether ... Currently perfluori- ... with phosphoric acid solution according to the method described earlier.11,12 ... where A is the membrane area available for diffusion; CA is.

  16. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.-F.; Su, S.-H., E-mail: minimono42@gmail.com

    2013-10-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO{sub 4} were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO{sub 4}, the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance.

  17. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    International Nuclear Information System (INIS)

    Chiu, K.-F.; Su, S.-H.

    2013-01-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO 4 were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO 4 , the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance

  18. Hardness and wear properties of boron-implanted poly(ether-ether-ketone) and poly-ether-imide

    International Nuclear Information System (INIS)

    Lee Youngchul; Lee, E.H.; Mansur, L.K.

    1992-01-01

    The effects of boron beam irradiation on the hardness, friction, and wear of polymer surfaces were investigated. Typical high-performance thermoplastics, poly(ether-ether-ketone) (PEEK) and a poly-ether-imide (Ultem) were studied after 200 keV boron ion beam treatment at ambient temperature to doses of 2.3x10 14 , 6.8x10 14 , and 2.2x10 15 ions cm -2 . The hardnesses of pristine and boron-implanted materials were characterized by a conventional Knoop method and a load-depth sensing nanoindentation technique. Both measurements showed a significant increase in hardness with increasing dose. The increase in hardness was also found to depend on the penetration depth of the diamond indenter. Wear and friction properties were characterized by a reciprocating sliding friction tester with an SAE 52100 high-carbon, chrome steel ball at 0.5 and 1 N normal loads. Wear and frictional properties varied in a complex fashion with polymer type and dose, but not much with normal load. A substantial reduction in friction coefficient was observed for PEEK at the highest dose but no reduction was observed for Ultem. The wear damage was substantially reduced at the highest dose for both Ultem and PEEK. For the system studied, the highest dose, 2.2x10 15 ions cm -2 , appears to be optimum in improving wear resistance for both PEEK and Ultem. (orig.)

  19. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, B.T.; Nijmeijer, K.; Benes, N.E.

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (≤5 wt%) and not too low spin speeds

  20. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, Beata; Nijmeijer, Dorothea C.; Benes, Nieck Edwin

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (B5 wt%) and not too low spin speeds

  1. pH-sensitive pHluorins as a molecular sensor for in situ monitoring of enzyme-catalyzed prodrug activation.

    Science.gov (United States)

    Liu, Hui; Cao, Xiaodan; Wang, Ping; Ma, Xingyuan

    2017-07-01

    This work examines the feasibility of using a pH-sensitive fluorescent protein as a molecular reporter for enzyme-catalyzed prodrug activation reaction. Specifically, a ratiometric pHluorins was examined for detection of the activity of horseradish peroxidase (HRP) for the activation of indole-3-acetic acid. The pHluorins and HRP were conjugated chemically, forming a biocatalyst with a self-reporting function. Results showed that the characteristic fluorescence intensity ratio of the conjugate shifted from 1.47 to 1.40 corresponding to the progress of the prodrug activation reaction. The effectiveness of applying the conjugate for inhibition of the growth of Bcap-37 cells was also demonstrated simultaneously with reaction monitoring. The results reveal a very promising approach to realizing in situ monitoring of enzyme activities based on pH shifting for enzyme-based prodrug therapy applications. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  2. Poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mi-Lim; Choi, Jisun; Woo, Hyun-Su; Kumar, Vinod; Sohn, Joon-Yong; Shin, Junhwa, E-mail: shinj@kaeri.re.kr

    2014-02-15

    Highlights: • PEEK-g-PVBSA, a polymer electrolyte membrane was prepared by a radiation grafting technique. • Poly(ether ether ketone) (PEEK), an aromatic hydrocarbon polymer was used as a grafting backbone film. • The water uptake, proton conductivity, and methanol permeability of the membranes were evaluated. • PEEK-g-PVBSA membranes show considerably lower methanol permeability compared to a Nafion membrane. -- Abstract: In this study, an aromatic hydrocarbon based polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) (PEEK-g-PVBSA), has been prepared by the simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a PEEK film and subsequent sulfonation. Each chemical conversion was monitored by FT-IR and SEM–EDX instruments. The physicochemical properties including IEC, water uptake, proton conductivity, and methanol permeability of the prepared membranes were also investigated and found that the values of these properties increase with the increase of degree of grafting. It was observed that the IEC values of the prepared PEEK-g-PVBSA membranes with 32%, 58%, and 80% DOG values were 0.50, 1.05, and 1.22 meq/g while the water uptakes were 14%, 20%, and 21%, respectively. The proton conductivities (0.0272–0.0721 S/cm at 70 °C) were found to be somewhat lower than Nafion 212 (0.126 S/cm at 70 °C) at a relative humidity of 90%. However, the prepared membranes showed a considerably lower methanol permeability (0.61–1.92 × 10{sup −7} cm{sup 2}/s) compared to a Nafion 212 membrane (5.37 × 10{sup −7} cm{sup 2}/s)

  3. Thermal stability of sulfonated Poly(Ether Ether Ketone) films : on the role of Protodesulfonation

    NARCIS (Netherlands)

    Koziara, B.T.; Kappert, E.J.; Ogieglo, W.; Nijmeijer, Kitty; Hempenius, M.A.; Benes, N.E.

    Thin film and bulk, sulfonated poly(ether ether ketone) (SPEEK) have been subjected to a thermal treatment at 160–250 °C for up to 15 h. Exposing the films to 160 °C already causes partial desulfonation, and heating to temperatures exceeding 200 °C results in increased conjugation in the material,

  4. Dietary Tributyrin Supplementation Attenuates Insulin Resistance and Abnormal Lipid Metabolism in Suckling Piglets with Intrauterine Growth Retardation

    Science.gov (United States)

    He, Jintian; Dong, Li; Xu, Wen; Bai, Kaiwen; Lu, Changhui; Wu, Yanan; Huang, Qiang; Zhang, Lili; Wang, Tian

    2015-01-01

    Intrauterine growth retardation (IUGR) is associated with insulin resistance and lipid disorder. Tributyrin (TB), a pro-drug of butyrate, can attenuate dysfunctions in body metabolism. In this study, we investigated the effects of TB supplementation on insulin resistance and lipid metabolism in neonatal piglets with IUGR. Eight neonatal piglets with normal birth weight (NBW) and 16 neonatal piglets with IUGR were selected, weaned on the 7th day, and fed basic milk diets (NBW and IUGR groups) or basic milk diets supplemented with 0.1% tributyrin (IT group, IUGR piglets) until day 21 (n = 8). Relative parameters for lipid metabolism and mRNA expression were measured. Piglets with IUGR showed higher (P insulin in the serum, higher (P insulin, HOMA-IR, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in the serum, and the concentrations of TG and NEFA in the liver, and increased (P insulin signal transduction pathway and hepatic lipogenic pathway (including transcription factors and nuclear factors) was significantly (P insulin resistance and abnormal lipid metabolism in IUGR piglets by increasing enzyme activities and upregulating mRNA expression, leading to an early improvement in the metabolic efficiency of IUGR piglets. PMID:26317832

  5. Metabolic incorporation of unsaturated fatty acids into boar spermatozoa lipids and de novo formation of diacylglycerols

    DEFF Research Database (Denmark)

    Svetlichnyy, V.; Müller, P.; Günther-Pomorski, Thomas

    2014-01-01

    Lipids play an important role in the maturation, viability and function of sperm cells. In this study, we examined the neutral and polar lipid composition of boar spermatozoa by thin-layer chromatography/mass spectrometry. Main representatives of the neutral lipid classes were diacylglycerols...... containing saturated (myristoyl, palmitoyl and stearoyl) fatty acyl residues. Glycerophosphatidylcholine and glycerophosphatidylethanolamine with alk(en)yl ether residues in the sn-1 position and unsaturated long chained fatty acyl residues in sn-2 position were identified as the most prominent polar lipids....... The only glycoglycerolipid was sulfogalactosylglycerolipid carrying 16:0-alkyl- and 16:0-acyl chains. Using stable isotope-labelling, the metabolic incorporation of exogenously supplied fatty acids was analysed. Boar spermatozoa incorporated hexadecenoic (16:1), octadecenoic (18:1), octadecadienoic (18...

  6. Syntheses of prodrug-type phosphotriester oligonucleotides responsive to intracellular reducing environment for improvement of cell membrane permeability and nuclease resistance.

    Science.gov (United States)

    Hayashi, Junsuke; Samezawa, Yusuke; Ochi, Yosuke; Wada, Shun-Ichi; Urata, Hidehito

    2017-07-15

    We synthesized prodrug-type phosphotriester (PTE) oligonucleotides containing the six-membered cyclic disulfide moiety by using phosphoramidite chemistry. Prodrug-type oligonucleotides named "Reducing-Environment-Dependent Uncatalyzed Chemical Transforming (REDUCT) PTE oligonucleotides" were converted into natural oligonucleotides under cytosol-mimetic reductive condition. Furthermore, the REDUCT PTE oligonucleotides were robust to nuclease digestion and exhibited good cell membrane permeability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer.

    Science.gov (United States)

    Levy, Oren; Brennen, W Nathaniel; Han, Edward; Rosen, David Marc; Musabeyezu, Juliet; Safaee, Helia; Ranganath, Sudhir; Ngai, Jessica; Heinelt, Martina; Milton, Yuka; Wang, Hao; Bhagchandani, Sachin H; Joshi, Nitin; Bhowmick, Neil; Denmeade, Samuel R; Isaacs, John T; Karp, Jeffrey M

    2016-06-01

    Despite considerable advances in prostate cancer research, there is a major need for a systemic delivery platform that efficiently targets anti-cancer drugs to sites of disseminated prostate cancer while minimizing host toxicity. In this proof-of-principle study, human mesenchymal stem cells (MSCs) were loaded with poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) that encapsulate the macromolecule G114, a thapsigargin-based prostate specific antigen (PSA)-activated prodrug. G114-particles (∼950 nm in size) were internalized by MSCs, followed by the release of G114 as an intact prodrug from loaded cells. Moreover, G114 released from G114 MP-loaded MSCs selectively induced death of the PSA-secreting PCa cell line, LNCaP. Finally, G114 MP-loaded MSCs inhibited tumor growth when used in proof-of-concept co-inoculation studies with CWR22 PCa xenografts, suggesting that cell-based delivery of G114 did not compromise the potency of this pro-drug in-vitro or in-vivo. This study demonstrates a potentially promising approach to assemble a cell-based drug delivery platform, which inhibits cancer growth in-vivo without the need of genetic engineering. We envision that upon achieving efficient homing of systemically infused MSCs to cancer sites, this MSC-based platform may be developed into an effective, systemic 'Trojan Horse' therapy for targeted delivery of therapeutic agents to sites of metastatic PCa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Leveraging Hypoxia-Activated Prodrugs to Prevent Drug Resistance in Solid Tumors.

    Directory of Open Access Journals (Sweden)

    Danika Lindsay

    2016-08-01

    Full Text Available Experimental studies have shown that one key factor in driving the emergence of drug resistance in solid tumors is tumor hypoxia, which leads to the formation of localized environmental niches where drug-resistant cell populations can evolve and survive. Hypoxia-activated prodrugs (HAPs are compounds designed to penetrate to hypoxic regions of a tumor and release cytotoxic or cytostatic agents; several of these HAPs are currently in clinical trial. However, preliminary results have not shown a survival benefit in several of these trials. We hypothesize that the efficacy of treatments involving these prodrugs depends heavily on identifying the correct treatment schedule, and that mathematical modeling can be used to help design potential therapeutic strategies combining HAPs with standard therapies to achieve long-term tumor control or eradication. We develop this framework in the specific context of EGFR-driven non-small cell lung cancer, which is commonly treated with the tyrosine kinase inhibitor erlotinib. We develop a stochastic mathematical model, parametrized using clinical and experimental data, to explore a spectrum of treatment regimens combining a HAP, evofosfamide, with erlotinib. We design combination toxicity constraint models and optimize treatment strategies over the space of tolerated schedules to identify specific combination schedules that lead to optimal tumor control. We find that (i combining these therapies delays resistance longer than any monotherapy schedule with either evofosfamide or erlotinib alone, (ii sequentially alternating single doses of each drug leads to minimal tumor burden and maximal reduction in probability of developing resistance, and (iii strategies minimizing the length of time after an evofosfamide dose and before erlotinib confer further benefits in reduction of tumor burden. These results provide insights into how hypoxia-activated prodrugs may be used to enhance therapeutic effectiveness in the

  9. A prodrug strategy based on chitosan for efficient intracellular anticancer drug delivery

    International Nuclear Information System (INIS)

    Chen, Cheng; Zhou, Jiang-Ling; Han, Xue; Song, Fei; Wang, Xiu-Li; Wang, Yu-Zhong

    2014-01-01

    Doxorubicin (DOX), one of the most widely used anticancer drugs, is restricted in clinical application due to its severe side effects and inefficient cellular uptake. To overcome the drawbacks, herein, an endosomal pH-activated prodrug was designed and fabricated by conjugating DOX with chitosan via an acid-cleavable hydrazone bond. The resulting DOX conjugates can self-assemble into nano-sized particles, which were very stable and presented no burst release of DOX at a neutral pH condition. Notably, the nanoparticles exhibited excellent cell uptake properties and a remarkable drug accumulation in tumor cells. Once internalized into the cells, moreover, DOX can be fast released from the nanoparticles, and the release mechanism changed from the anomalous transport at pH 7.4 to the combination pattern of diffusion- and erosion-controlled release at pH 6.0 or 5.0. The prodrugs showed obvious cytotoxicity for HeLa cells with fairly low IC 50 values, offering a new platform for targeted cancer therapy. (papers)

  10. On new physical reality (on ψ-ether)

    International Nuclear Information System (INIS)

    Isaev, P.S.

    2002-01-01

    It is shown that there exists a new physical reality - the ψ-ether. All the achievements of quantum mechanics and quantum field theory are due to the fact that both the theories include the influence of ψ-ether on the physical processes occurring in the Universe. Physics of the XX century was first of all the physics of ψ-ether

  11. Comparison of two self-assembled macromolecular prodrug micelles with different conjugate positions of SN38 for enhancing antitumor activity

    Directory of Open Access Journals (Sweden)

    Liu Y

    2015-03-01

    Full Text Available Yi Liu,1 Hongyu Piao,1 Ying Gao,1 Caihong Xu,2 Ye Tian,1 Lihong Wang,1 Jinwen Liu,1 Bo Tang,1 Meijuan Zou,1 Gang Cheng1 1Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People’s Republic of China; 2Department of Food Science, Shenyang Normal University, Shenyang, Liaoning Province, People’s Republic of China Abstract: 7-Ethyl-10-hydroxycamptothecin (SN38, an active metabolite of irinotecan (CPT-11, is a remarkably potent antitumor agent. The clinical application of SN38 has been extremely restricted by its insolubility in water. In this study, we successfully synthesized two macromolecular prodrugs of SN38 with different conjugate positions (chitosan-(C10-OHSN38 and chitosan-(C20-OHSN38 to improve the water solubility and antitumor activity of SN38. These prodrugs can self-assemble into micelles in aqueous medium. The particle size, morphology, zeta potential, and in vitro drug release of SN38 and its derivatives, as well as their cytotoxicity, pharmacokinetics, and in vivo antitumor activity in a xenograft BALB/c mouse model were studied. In vitro, chitosan-(C10-OHSN38 (CS-(10sSN38 and chitosan-(C20-OHSN38 (CS-(20sSN38 were 13.3- and 25.9-fold more potent than CPT-11 in the murine colon adenocarcinoma cell line CT26, respectively. The area under the curve (AUC0–24 of SN38 after intravenously administering CS-(10sSN38 and CS-(20sSN38 to Sprague Dawley rats was greatly improved when compared with CPT-11 (both P<0.01. A larger AUC0–24 of CS-(20sSN38 was observed when compared to CS-(10sSN38 (P<0.05. Both of the novel self-assembled chitosan-SN38 prodrugs demonstrated superior anticancer activity to CPT-11 in the CT26 xenograft BALB/c mouse model. We have also investigated the differences between these macromolecular prodrug micelles with regards to enhancing the antitumor activity of SN38. CS-(20sSN38 exhibited better in vivo antitumor activity than CS-(10sSN38 at a dose of 2.5 mg/kg (P<0

  12. Interaction of dipeptide prodrugs of saquinavir with multidrug resistance protein-2 (MRP-2): evasion of MRP-2 mediated efflux.

    Science.gov (United States)

    Jain, Ritesh; Agarwal, Sheetal; Mandava, Nanda Kishore; Sheng, Ye; Mitra, Ashim K

    2008-10-01

    Saquinavir (SQV), the first protease inhibitor approved by FDA to treat HIV-1 infection. This drug is a well-known substrate for multidrug resistance protein-2 (MRP-2). The objective of this study was to investigate whether derivatization of SQV to dipeptide prodrugs, valine-valine-saquinavir (Val-Val-SQV) and glycine-valine-saquinavir (Gly-Val-SQV), targeting peptide transporter can circumvent MRP-2 mediated efflux. Uptake and transport studies were carried out across MDCKII-MRP2 cell monolayers to investigate the interaction of SQV and its prodrugs with MRP-2. In situ single pass intestinal perfusion experiments in rat jejunum were performed to calculate intestinal absorption rate constants and permeabilities of SQV, Val-Val-SQV and Gly-Val-SQV. Uptake studies demonstrated that the prodrugs have significantly lower interaction with MRP-2 relative to SQV. Transepithelial transport of Val-Val-SQV and Gly-Val-SQV across MDCKII-MRP2 cells exhibited an enhanced absorptive flux and reduced secretory flux as compared to SQV. Intestinal perfusion studies revealed that synthesized prodrugs have higher intestinal permeabilities relative to SQV. Enhanced absorption of Val-Val-SQV and Gly-Val-SQV relative to SQV can be attributed to their translocation by the peptide transporter in the jejunum. In the presence of MK-571, a MRP family inhibitor, there was a significant increase in the permeabilities of SQV and Gly-Val-SQV indicating that these compounds are probably substrates for MRP-2. However, there was no change in the permeability of Val-Val-SQV with MK-571 indicating lack of any interaction of Val-Val-SQV with MRP-2. In conclusion, peptide transporter targeted prodrug modification of MRP-2 substrates may lead to shielding of these drug molecules from MRP-2 efflux pumps.

  13. Biodegradability of fuel-ethers in environment; Biodegradabilite des ethers-carburants dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, F

    2005-04-01

    Fuel ethers (methyl tert-butyl ether or MTBE, ethyl tert-butyl ether or ETBE and tert-amyl methyl ether or TAME have been used as gasoline additives since about twenty years in order to meet the requirements for the octane index and to limit the polluting emission in exhaust pipe gas (unburnt hydrocarbons and carbon monoxide). The high water solubility and the poor biodegradability of these compounds make them pollutants frequently encountered in aquifers. The present manuscript summarizes the knowledge concerning the biodegradability of fuel ethers obtained both at IFP and during collaborations with the Pasteur Institute (Paris), the Biotechnology Research Institute (Montreal, Canada) and the Center for Environmental Biotechnology (University of Tennessee, USA). Rhodococcus ruber IFP 2001 and Mycobacterium austroafricanum IFP 2012, two microorganisms isolated at IFP for their ability to grow, respectively, on ETBE and MTBE, were studied in order to determine the intermediates produced during MTBE and ETBE biodegradation and the enzymes required for each biodegradation step, thus allowing us to propose MTBE and ETBE catabolic pathways. A proteomic approach, from the protein induced during the degradation of ETBE or MTBE to the genes encoding these different enzymes, was carried out. The isolation of such genes is required:1) to use them for help in determining the bio-remediation capacities in polluted aquifers (DNA micro-arrays), 2) to monitor the microorganisms isolated for their degradative capacities during bio-remediation processes (fluorescent in situ hybridization or FISH) and 3) to create new tools for the detection and the quantification of ETBE or MTBE in contaminated aquifers (bio-sensor). The manuscript also describes the different ways for the adaptation of microorganisms to the presence of a xenobiotic compound. (author)

  14. Sulfonated poly(ether ether ketone) membranes for electric double layer capacitors

    International Nuclear Information System (INIS)

    Kim, Wan Ju; Kim, Dong-Won

    2008-01-01

    Sulfonated poly(ether ether ketone) (S-PEEK) with different degree of sulfonation (DS) has been prepared and evaluated as a proton conducting membrane for electric double layer capacitor (EDLC). The polymer electrolytes prepared with S-PEEK membrane exhibited ionic conductivities about 1.2 x 10 -3 -4.5 x 10 -3 S cm -1 at room temperature, which depended on both soaking solvent and degree of sulfonation. The quasi-solid-state EDLCs consisted of activated carbon electrodes and S-PEEK membrane were assembled, and their electrochemical characteristics were studied by cyclic voltammetry and charge-discharge cycle tests. The effect of DS on the electrochemical performances of EDLCs has been investigated

  15. Promoting environmentally sound management of polybrominated diphenyl ethers in Asia.

    Science.gov (United States)

    Li, Jinhui; Zhao, Nana; Liu, Xue; Wu, Xiaoyang

    2014-06-01

    Polybrominated diphenyl ethers with persistent organic pollutant properties are required to be controlled by the Stockholm Convention. Recently, polybrominated diphenyl ether contamination has become widespread in Asia, mainly because of the disposal and recycling processes of polybrominated diphenyl ether-containing wastes. The management status, production, usage, import/export, treatment, and disposal, as well as implementation deficiencies for the environmentally sound management of polybrominated diphenyl ethers and polybrominated diphenyl ether-containing materials in ten Asian countries were investigated and assessed in this study. This information could help the participating countries implement the Stockholm Convention and could promote the regional environmentally sound management of polybrominated diphenyl ether-containing articles and products. The results obtained were as follows. (1) Most of the countries studied lacked environmental policies and regulations, or even standards of polybrominated diphenyl ether pollution management and emission control actions. Accurate data on the consumption and importation of polybrominated diphenyl ether-containing materials, however, were not available for all the participating countries. In addition, there were no special treatment or disposal systems for polybrominated diphenyl ether-containing materials, or emission-cutting measures for the treatment of waste in these countries, owing to the lack of sufficient funding or technologies. (2) The improper dismantling of e-waste is a major source of polybrominated diphenyl ether emissions in these countries. (3) Proper e-waste management could result in a breakthrough in the environmentally sound management of this major polybrominated diphenyl ether-containing material flow, and could significantly reduce polybrominated diphenyl ether emissions. Finally, based on the study results, this article puts forward some recommendations for improving the environmentally

  16. Dipeptidyl peptidase IV as a potential target for selective prodrug activation and chemotherapeutic action in cancers.

    Science.gov (United States)

    Dahan, Arik; Wolk, Omri; Yang, Peihua; Mittal, Sachin; Wu, Zhiqian; Landowski, Christopher P; Amidon, Gordon L

    2014-12-01

    The efficacy of chemotherapeutic drugs is often offset by severe side effects attributable to poor selectivity and toxicity to normal cells. Recently, the enzyme dipeptidyl peptidase IV (DPPIV) was considered as a potential target for the delivery of chemotherapeutic drugs. The purpose of this study was to investigate the feasibility of targeting chemotherapeutic drugs to DPPIV as a strategy to enhance their specificity. The expression profile of DPPIV was obtained for seven cancer cell lines using DNA microarray data from the DTP database, and was validated by RT-PCR. A prodrug was then synthesized by linking the cytotoxic drug melphalan to a proline-glycine dipeptide moiety, followed by hydrolysis studies in the seven cell lines with a standard substrate, as well as the glycyl-prolyl-melphalan (GP-Mel). Lastly, cell proliferation studies were carried out to demonstrate enzyme-dependent activation of the candidate prodrug. The relative RT-PCR expression levels of DPPIV in the cancer cell lines exhibited linear correlation with U95Av2 Affymetrix data (r(2) = 0.94), and with specific activity of a standard substrate, glycine-proline-p-nitroanilide (r(2) = 0.96). The significantly higher antiproliferative activity of GP-Mel in Caco-2 cells (GI₅₀ = 261 μM) compared to that in SK-MEL-5 cells (GI₅₀ = 807 μM) was consistent with the 9-fold higher specific activity of the prodrug in Caco-2 cells (5.14 pmol/min/μg protein) compared to SK-MEL-5 cells (0.68 pmol/min/μg protein) and with DPPIV expression levels in these cells. Our results demonstrate the great potential to exploit DPPIV as a prodrug activating enzyme for efficient chemotherapeutic drug targeting.

  17. Chemoselective Deprotection of Triethylsilyl Ethers

    Science.gov (United States)

    Chandra, Tilak; Broderick, William E.; Broderick, Joan B.

    2009-01-01

    An efficient and selective method was developed for the deprotection of triethylsilyl (TES) ethers using formic acid in methanol (5–10%) or in methylene chloride 2–5%) with excellent yields. TES ethers are selectively deprotected to the corresponding alcohols in high yields using formic acid in methanol under mild reaction conditions. Other hydroxyl protecting groups like t-butyldimethylsilyl (TBDMS) remain unaffected. PMID:20183570

  18. Polybrominated diphenyl ethers: a case study for using biomonitoring data to address risk assessment questions.

    Science.gov (United States)

    Birnbaum, Linda S; Cohen Hubal, Elaine A

    2006-11-01

    The use of biomonitoring data holds promise for characterizing exposure and informing risk assessment. Biomonitoring data have been used successfully to track population trends, identify susceptible populations, and provide indications of emerging environmental health issues. However, there remain challenges associated with interpreting biomonitoring data for risk assessment. An international biomonitoring workshop was convened in September 2004 to explore the use of biomonitoring data in the context of risk assessment. Six compounds were examined as case studies for this workshop, including polybrominated diphenyl ethers (PBDEs). The PBDE case study was developed to provide an example of a persistent compound for which relatively few data are available for human exposure, biomonitoring, and health outcomes. PBDEs are used in hard plastics, electronics, textiles, and polyurethane foam products. The congener pattern downstream of production facilities often resembles the commercial mixture. However, because these compounds persist in the environment and in biota, the patterns of congeners evolve. PBDEs partition into body lipids, and direct measurement of bromodiphenyl ether congeners in biologic specimens provides a good marker of exposure. Data indicate significant variability (> 100-fold range) in lipid-adjusted levels for PBDEs in the general population. It is hypothesized that both exposure and pharmacokinetics may play a role in observed congener profiles. Significant gaps in our ability to interpret PBDE biomonitoring data to address public health and risk assessment questions include limited knowledge of environmental fate and transport of PBDE congeners, limited population-based data for adults, and lack of data for potentially vulnerable populations such as children.

  19. Flame retardant exposure: polybrominated diphenyl ethers in blood from Swedish workers.

    Science.gov (United States)

    Sjödin, A; Hagmar, L; Klasson-Wehler, E; Kronholm-Diab, K; Jakobsson, E; Bergman, A

    1999-08-01

    Polybrominated diphenyl ethers (PBDEs) are used as additives in polymers and textiles to prohibit the development of fires. Because of the production and use of PBDEs, their lipophilic characteristics, and persistence, these compounds have become ubiquitous environmental contaminants. The aim of the present study was to determine potential exposures of PBDEs to clerks working full-time at computer screens and personnel at an electronics-dismantling plant, with hospital cleaners as a control group. Five PBDE congeners--2,2',4,4'-tetraBDE; 2,2',4,4',5,5'-hexaBDE; 2,2',4,4',5, 6'-hexaBDE; 2,2',3,4,4',5',6-heptaBDE; and decaBDE--were quantified in blood serum from all three categories of workers. Subjects working at the dismantling plant showed significantly higher levels of all PBDE congeners in their serum as compared to the control group. Decabromodiphenyl ether is present in concentrations of 5 pmol/g lipid weight (lw) in the personnel dismantling electronics; these concentrations are comparable to the concentrations of 2,2',4, 4'-tetraBDE. The latter compound was the dominating PBDE congener in the clerks and cleaners. The major compound in personnel at the dismantling plant was 2,2',3,4,4',5',6-heptaBDE. Concentrations of this PBDE congener are almost twice as high as for 2,2',4, 4'-tetraBDE in these workers and seventy times the level of this heptaBDE in cleaners. The total median PBDE concentrations in the serum from workers at the electronics-dismantling plant, clerks, and cleaners were 37, 7.3, and 5.4 pmol/g lw, respectively. The results show that decabromodiphenyl ether is bioavailable and that occupational exposure to PBDEs occurs at the electronics-dismantling plant.

  20. [STUDY OF LIPIDS SEED'S OIL OF VITEX AGNUS CASTUS GROWING IN GEORGIA].

    Science.gov (United States)

    Kikalishvili, B; Zurabashvili, D; Sulakvelidze, Ts; Malania, M; Turabelidze, D

    2016-07-01

    There was established the lipid composition of the seeds of Vitex agnus castus L. by the qualitative and quantitative methods of analyses. There were received neutral lipids from the seeds by extraction with hexane in the yield 10%, counted on dry material. For the divide of neutral lipids there was used silica gel plates LS 5/40 in the systems of solvents: 1. petroleum ether-diethylether-acidum aceticum (85:14:1), 2. hexane-diethylether (1:1). After obtaining neutral lipids from the residual plant shrot pollar lipids was extracted with the mixture of chloroform-methanol (2:1) and was divided on silica gel plates LS 5/40, mobile phase: 1. chloroform-methanol-25% ammonium hydrate 2. chloroform-methanol icy acetic acid-water (170:25:25:6). In the sum of polar lipids qualitatively were established phospholipids: lisophosphatidylcholine, phosphatidylinosit, phospatidylethanolamine and N-acylphosphatidylethanolamine, in neutral lipids, hydrocarbons, triglycerids, free fatty acids and sterines. By the method of high performance liquid chromatography analyses there were identified following free fatty acids: lauric, myristic, palmitic, stearic, linolic, linolenic, arachidic and begenic, unsaturated oleic and polyunsaturated linolic and linolenic acids. obtained oil with unique composition from the seeds of Vitex agnus-castus indicates to its high biological activity and importance for usage in medicine.

  1. Synthesis and validation of novel cholesterol-based fluorescent lipids designed to observe the cellular trafficking of cationic liposomes.

    Science.gov (United States)

    Kim, Bieong-Kil; Seu, Young-Bae; Choi, Jong-Soo; Park, Jong-Won; Doh, Kyung-Oh

    2015-09-15

    Cholesterol-based fluorescent lipids with ether linker were synthesized using NBD (Chol-E-NBD) or Rhodamine B (Chol-E-Rh), and the usefulnesses as fluorescent probes for tracing cholesterol-based liposomes were validated. The fluorescent intensities of liposomes containing these modified lipids were measured and observed under a microscope. Neither compound interfered with the expression of GFP plasmid, and live cell images were obtained without interferences. Changes in the fluorescent intensity of liposomes containing Chol-E-NBD were followed by flow cytometry for up to 24h. These fluorescent lipids could be useful probes for trafficking of cationic liposome-mediated gene delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Early contributions from Erlangen to the theory and practice of ether and chloroform anesthesia. 1. Heyfelder's clinical trial with ether and chloroform].

    Science.gov (United States)

    Hintzenstern, U v; Schwarz, W

    1996-02-01

    The era of modern anaesthesia in Germany began on January 24th, 1847. This day, professor in ordinary Johann Ferdinand Heyfelder anaesthetized a patient with sulphuric ether in the clinic of surgery and ophthalmology of the University of Erlangen. By March 17th, 1847, Heyfelder had performed 121 surgical procedures under ether. The operations in majority were teeth-extractions, and a few more complex operations such as the treatment of a harelip or of lip cancer or the resection of the shoulder joint. Heyfelder described in detail 108 of these inhalations in a little book entitled The experiments with sulphuric ether. This monograph published in March, 1847, represents one of the first complete dissertations on sulphuric ether in the German literature. In a special chapter he analyzed the development of various physiological and psychological parameters during etherization. Heyfelder also examined blood and urine of some etherized patients and reported that he did not find any important or specific alterations. In 1847, Heyfelder was probably the first to apply salt-ether in man. After 4 administrations he concluded that salt ether acted more quickly but shorter than sulphuric ether. Advantageous were its application without problems and ease of induction. Disadvantageous were its high volatility, its price and the difficulty of getting it in a pure form. From December, 1847, on Heyfelder started to use chloroform. He was now able to perform more major operations, for example, the total resection of the hip-joint. In his book The experiments with sulphuric ether, salt ether, and chloroform he describes a great number of anaesthetic administrations using these 3 agents. In his summary Heyfelder concluded, that chloroform was undoubtly superior to sulphuric ether mainly because it was a quicker acting and longer lasting agent and leads to deeper narcosis. Moreover its application was much easier for it needed no special apparatus. However, because of its great

  3. Molecular structure impacts on secondary organic aerosol formation from glycol ethers

    Science.gov (United States)

    Li, Lijie; Cocker, David R.

    2018-05-01

    Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA

  4. Pt(IV) complexes as prodrugs for cisplatin.

    Science.gov (United States)

    Shi, Yi; Liu, Shu-An; Kerwood, Deborah J; Goodisman, Jerry; Dabrowiak, James C

    2012-02-01

    The antitumor effects of platinum(IV) complexes, considered prodrugs for cisplatin, are believed to be due to biological reduction of Pt(IV) to Pt(II), with the reduction products binding to DNA and other cellular targets. In this work we used pBR322 DNA to capture the products of reduction of oxoplatin, c,t,c-[PtCl(2)(OH)(2)(NH(3))(2)], 3, and a carboxylate-modified analog, c,t,c-[PtCl(2)(OH)(O(2)CCH(2)CH(2)CO(2)H)(NH(3))(2)], 4, by ascorbic acid (AsA) or glutathione (GSH). Since carbonate plays a significant role in the speciation of platinum complexes in solution, we also investigated the effects of carbonate on the reduction/DNA-binding process. In pH 7.4 buffer in the absence of carbonate, both 3 and 4 are reduced by AsA to cisplatin (confirmed using ((195))Pt NMR), which binds to and unwinds closed circular DNA in a manner consistent with the formation of the well-known 1, 2 intrastrand DNA crosslink. However, when GSH is used as the reducing agent for 3 and 4, ((195))Pt NMR shows that cisplatin is not produced in the reaction medium. Although the Pt(II) products bind to closed circular DNA, their effect on the mobility of Form I DNA is different from that produced by cisplatin. When physiological carbonate is present in the reduction medium, ((13))C NMR shows that Pt(II) carbonato complexes form which block or impede platinum binding to DNA. The results of the study vis-à-vis the ability of the Pt(IV) complexes to act as prodrugs for cisplatin are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meng [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Gutiérrez, Oliver Y. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 85748 Garching Germany

    2018-03-06

    Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.

  6. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  7. pH- and NIR Light-Responsive Polymeric Prodrug Micelles for Hyperthermia-Assisted Site-Specific Chemotherapy to Reverse Drug Resistance in Cancer Treatment.

    Science.gov (United States)

    Li, Zuhong; Wang, Haibo; Chen, Yangjun; Wang, Yin; Li, Huan; Han, Haijie; Chen, Tingting; Jin, Qiao; Ji, Jian

    2016-05-01

    Despite the exciting advances in cancer chemotherapy over past decades, drug resistance in cancer treatment remains one of the primary reasons for therapeutic failure. IR-780 loaded pH-responsive polymeric prodrug micelles with near infrared (NIR) photothermal effect are developed to circumvent the drug resistance in cancer treatment. The polymeric prodrug micelles are stable in physiological environment, while exhibit fast doxorubicin (DOX) release in acidic condition and significant temperature elevation under NIR laser irradiation. Phosphorylcholine-based biomimetic micellar shell and acid-sensitive drug conjugation endow them with prolonged circulation time and reduced premature drug release during circulation to conduct tumor site-specific chemotherapy. The polymeric prodrug micelles combined with NIR laser irradiation could significantly enhance intracellular DOX accumulation and synergistically induce the cell apoptosis in DOX-resistant MCF-7/ADR cells. Meanwhile, the tumor site-specific chemotherapy combined with hyperthermia effect induces significant inhibition of MCF-7/ADR tumor growth in tumor-bearing mice. These results demonstrate that the well-designed IR-780 loaded polymeric prodrug micelles for hyperthermia-assisted site-specific chemotherapy present an effective approach to reverse drug resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thapsigargin, origin, chemistry, structure-activity relationships and prodrug development

    DEFF Research Database (Denmark)

    Doan, Thi Quynh Nhu; Christensen, Søren Brøgger

    2015-01-01

    Thapsigargin was originally isolated from the roots of the Mediterranean umbelliferous plant Thapsia garganica in order to characterize the skin irritant principle. The biological activity was related to the subnanomolar affinity for the sarco-endoplasmic reticulum calcium ATPase. Prolonged......) targeted against prostate cancer. Conjugation to a peptide, which only is a substrate for prostate specific membrane antigen enabled development of a prodrug (G202), which is targeted towards a number of cancer diseases including hepatocellular carcinoma. G202 has under the name of mipsagargin in clinical...

  9. Microwave sintering of poly-ether-ether-ketone (PEEK) based coatings deposited on metallic substrate

    International Nuclear Information System (INIS)

    Zhang, G.; Leparoux, S.; Liao, H.; Coddet, C.

    2006-01-01

    In this paper, the feasibility of microwave (MW) sintering PEEK (poly-ether-ether-ketone) based coatings was investigated. Three coatings were studied: pure PEEK, micron-SiC and nano-SiC particles filled (wt.10%) PEEK coatings. The results indicate that, for the two composite coatings, the SiC particles distributed in the polymer matrix, as a good MW susceptor, could be heated preferentially by MW radiation. Consequently, the polymer matrix was heated by these particles

  10. Biodegradability of fuel-ethers in environment; Biodegradabilite des ethers-carburants dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, F.

    2005-04-01

    Fuel ethers (methyl tert-butyl ether or MTBE, ethyl tert-butyl ether or ETBE and tert-amyl methyl ether or TAME have been used as gasoline additives since about twenty years in order to meet the requirements for the octane index and to limit the polluting emission in exhaust pipe gas (unburnt hydrocarbons and carbon monoxide). The high water solubility and the poor biodegradability of these compounds make them pollutants frequently encountered in aquifers. The present manuscript summarizes the knowledge concerning the biodegradability of fuel ethers obtained both at IFP and during collaborations with the Pasteur Institute (Paris), the Biotechnology Research Institute (Montreal, Canada) and the Center for Environmental Biotechnology (University of Tennessee, USA). Rhodococcus ruber IFP 2001 and Mycobacterium austroafricanum IFP 2012, two microorganisms isolated at IFP for their ability to grow, respectively, on ETBE and MTBE, were studied in order to determine the intermediates produced during MTBE and ETBE biodegradation and the enzymes required for each biodegradation step, thus allowing us to propose MTBE and ETBE catabolic pathways. A proteomic approach, from the protein induced during the degradation of ETBE or MTBE to the genes encoding these different enzymes, was carried out. The isolation of such genes is required:1) to use them for help in determining the bio-remediation capacities in polluted aquifers (DNA micro-arrays), 2) to monitor the microorganisms isolated for their degradative capacities during bio-remediation processes (fluorescent in situ hybridization or FISH) and 3) to create new tools for the detection and the quantification of ETBE or MTBE in contaminated aquifers (bio-sensor). The manuscript also describes the different ways for the adaptation of microorganisms to the presence of a xenobiotic compound. (author)

  11. Computational modeling and in-vitro/in-silico correlation of phospholipid-based prodrugs for targeted drug delivery in inflammatory bowel disease

    Science.gov (United States)

    Dahan, Arik; Markovic, Milica; Keinan, Shahar; Kurnikov, Igor; Aponick, Aaron; Zimmermann, Ellen M.; Ben-Shabat, Shimon

    2017-11-01

    Targeting drugs to the inflamed intestinal tissue(s) represents a major advancement in the treatment of inflammatory bowel disease (IBD). In this work we present a powerful in-silico modeling approach to guide the molecular design of novel prodrugs targeting the enzyme PLA2, which is overexpressed in the inflamed tissues of IBD patients. The prodrug consists of the drug moiety bound to the sn-2 position of phospholipid (PL) through a carbonic linker, aiming to allow PLA2 to release the free drug. The linker length dictates the affinity of the PL-drug conjugate to PLA2, and the optimal linker will enable maximal PLA2-mediated activation. Thermodynamic integration and Weighted Histogram Analysis Method (WHAM)/Umbrella Sampling method were used to compute the changes in PLA2 transition state binding free energy of the prodrug molecule (ΔΔGtr) associated with decreasing/increasing linker length. The simulations revealed that 6-carbons linker is the optimal one, whereas shorter or longer linkers resulted in decreased PLA2-mediated activation. These in-silico results were shown to be in excellent correlation with experimental in-vitro data. Overall, this modern computational approach enables optimization of the molecular design of novel prodrugs, which may allow targeting the free drug specifically to the diseased intestinal tissue of IBD patients.

  12. Actinide/crown ether chemistry

    International Nuclear Information System (INIS)

    Benning, M.M.

    1988-01-01

    A structural survey of actinide/crown ether compounds was conducted in order to investigate the solid state chemistry of these complexes. Several parameters - the metal size, crown type, counterion, solvent systems and reaction and crystallization conditions - were varied to correlate their importance in complexation. Under atmospheric conditions, two types of complexes were isolated, those containing only hydrogen-bonded crown interactions and instances where the crown interacts directly with the metal center. In both cases, water seems to play a very important role. When coordinated to the metal, water molecules exhibit the necessary donor properties required for the formation of hydrogen-bonded contacts. The water molecules also provide fierce competition with the crown ethers for metal-binding sites and in most cases prohibit the formation of complexes in which direct metal-ligand association exists. The results of this study indicate that direct interaction between the metal atoms and the crown ethers, in the presence of water, can only occur with polyether conformations which limit the steric replusions within the metal coordination sphere

  13. Design and Synthesis of Archaea-Inspired Tetraether Lipids

    Science.gov (United States)

    Koyanagi, Takaoki

    Maintaining the correct ion homeostasis across membranes is a major challenge in both nature and artificial systems. Archaea, have evolved to solve membrane permeability problems to survive in extreme environments by incorporating unique structural features found in their lipid. Specifically, inclusion of phytanyl side chains, ether glycerol linkages, tethering of lipids, cycloalkanes, and different polar lipid headgroups into their lipid membrane are believed to contribute to membrane stability. We sought to gain a better understanding of the functional benefits attributed to these structural features to membrane stability to design a new class of synthetic Archaea inspired lipid membranes that can be used to overcome limitations (i.e. unstable in serum environment, high background leakage, and prone to hydrolysis) found in current lipid based technologies. Leakage experiments revealed liposomes made from GMGTPC (glycerol monoalkyl glycerol tetraether lipid with phosphatidylcholine headgroup) demonstrated a two order magnitude reduction in membrane leakage to small ions when compared with liposomes made from EggPC. Additionally, liposomes composed of GMGTPC-CH (cyclohexane integrated) lipid displayed an additional 40% decrease in membrane leakage to small ions when compared with liposomes made from GMGTPC lipids. Furthermore, leakage experiments revealed a higher degree of tolerance to headgroup modifications to membrane leakage for liposomes made from GMGT lipid analogs when compared with liposomes made from POPC. After designing an optimal tetraether lipid scaffold that incorporates key Archaeal structural features for membrane leakage, we explored to integrate strategies employed by eukaryotes to improve membrane properties (i.e. addition of cholesterol). Liposomes made from the hybrid lipid, GcGTPC-CH, displayed a five-fold decrease in membrane leakage when compared with liposomes made from GMGTPC-CH, while maintaining functional membrane properties similar to

  14. Rearrangements of Cycloalkenyl Aryl Ethers

    Directory of Open Access Journals (Sweden)

    Mercedesz Törincsi

    2016-04-01

    Full Text Available Rearrangement reactions of cycloalkenyl phenol and naphthyl ethers and the acid-catalyzed cyclization of the resulting product were investigated. Claisen rearrangement afforded 2-substituted phenol and naphthol derivatives. Combined Claisen and Cope rearrangement resulted in the formation of 4-substituted phenol and naphthol derivatives. In the case of cycloocthylphenyl ether the consecutive Claisen and Cope rearrangements were followed by an alkyl migration. The mechanism of this novel rearrangement reaction is also discussed.

  15. Ether: Bitcoin's competitor or ally?

    OpenAIRE

    Bouoiyour, Jamal; Selmi, Refk

    2017-01-01

    Although Bitcoin has long been dominant in the crypto scene, it is certainly not alone. Ether is another cryptocurrency related project that has attracted an intensive attention because of its additional features. This study seeks to test whether these cryptocurrencies differ in terms of their volatile and speculative behaviors, hedge, safe haven and risk diversification properties. Using different econometric techniques, we show that a) Bitcoin and Ether are volatile and relatively more resp...

  16. Depositional characteristics of atmospheric polybrominated diphenyl ethers on tree barks.

    Science.gov (United States)

    Chun, Man Young

    2014-07-17

    This study was conducted to determine the depositional characteristics of several tree barks, including Ginkgo (Ginkgo biloba), Pine (Pinus densiflora), Platanus (Platanus), and Metasequoia (Metasequoia glyptostroboides). These were used as passive air sampler (PAS) of atmospheric polybrominated diphenyl ethers (PBDEs). Tree barks were sampled from the same site. PBDEs were analyzed by highresolution gas chromatography/high-resolution mass spectrometer, and the lipid content was measured using the gravimetric method by n-hexane extraction. Gingko contained the highest lipid content (7.82 mg/g dry), whereas pine (4.85 mg/g dry), Platanus (3.61 mg/g dry), and Metasequoia (0.97 mg/g dry) had relatively lower content. The highest total PBDEs concentration was observed in Metasequoia (83,159.0 pg/g dry), followed by Ginkgo (53,538.4 pg/g dry), Pine (20,266.4 pg/g dry), and Platanus (12,572.0 pg/g dry). There were poor correlations between lipid content and total PBDE concentrations in tree barks (R(2)=0.1011, p =0.682). Among the PBDE congeners, BDE 206, 207 and 209 were highly brominated PBDEs that are sorbed to particulates in ambient air, which accounted for 90.5% (84.3-95.6%) of the concentration and were therefore identified as the main PBDE congener. The concentrations of particulate PBDEs deposited on tree barks were dependent on morphological characteristics such as surface area or roughness of barks. Therefore, when using the tree barks as the PAS of the atmospheric PBDEs, samples belonging to same tree species should be collected to reduce errors and to obtain reliable data.

  17. The HSP90 inhibitor 17-AAG potentiates the antileishmanial activity of the ether lipid edelfosine.

    Science.gov (United States)

    Varela-M, Rubén E; Mollinedo-Gajate, Cristina; Muro, Antonio; Mollinedo, Faustino

    2014-03-01

    HSP90 is an abundant protein in Leishmania parasites that plays a major role in the parasite survival under stress conditions. Here we found that the HSP90 inhibitor 17-AAG (≥100nM 17-AAG) induced cell cycle arrest at G0/G1 in Leishmania infantum and Leishmania panamensis promastigotes, and highly potentiated the induction of cell death by an apoptotic-like process mediated by the ether phospholipid edelfosine (5-20μM). These data suggest that the combined treatment of 17-AAG and edelfosine might be a novel and effective approach of combination therapy in the treatment of leishmaniasis. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Polybrominated diphenyl ethers in the serum and breast milk of the resident population from production area, China.

    Science.gov (United States)

    Jin, Jun; Wang, Ying; Yang, Congqiao; Hu, Jicheng; Liu, Weizhi; Cui, Jian; Tang, Xiaoyan

    2009-10-01

    Polybrominated diphenyl ethers (PBDEs) have been produced in the south coast area of Laizhou Bay, Shandong Province in China, but little is known about the PBDE exposure level of residents to these compounds. We set out to assess potential health risks of PBDEs in the south coast area of the Laizhou Bay by determining the concentrations of PBDEs in serum and breast milk. We measured concentrations of eight PBDE congeners in serum and breast milk. The arithmetic means of Sigma(8)PBDE in pooled serum and breast milk were 613 ng/g lipid and 81.5 ng/g lipid, respectively. The highest concentration for Sigma(8)PBDE in all serum pools was 1830 ng/g lipid from the 41-50 year old female group. BDE-209 was the predominant congener, with the mean concentrations of 403 ng/g lipid in serum and 45.6 ng/g lipid in breast milk, respectively. BDE-209 averagely accounted for 65.8% and 54.2% of the total PBDEs, respectively. Our results suggest that high exposures to PBDEs have led to very high PBDE concentrations in serum and breast milk from the residents living in the south coast area of Laizhou Bay. High PBDE concentrations in human serum, particularly in women, pose a potential public health threat to local residents.

  19. Catalytic hydroprocessing of lignin β-O-4 ether bond model compound phenethyl phenyl ether over ruthenium catalysts

    NARCIS (Netherlands)

    Gomez-Monedero, B.; Faria, J.; Bimbela, F.; Ruiz, M.P.

    2017-01-01

    The catalytic hydroprocessing of phenethyl phenyl ether (PPE), a model compound of one of the most significant ether linkages within lignin structure, β-O-4, has been studied. Reactions were carried out using two ruthenium-based catalysts, supported on different materials: 3.8 wt.% Ru/C and 3.9 wt.%

  20. The In-Situ One-Step Synthesis of a PDC Macromolecular Pro-Drug and the Fabrication of a Novel Core-Shell Micell.

    Science.gov (United States)

    Yu, Cui-Yun; Yang, Sa; Li, Zhi-Ping; Huang, Can; Ning, Qian; Huang, Wen; Yang, Wen-Tong; He, Dongxiu; Sun, Lichun

    2016-01-01

    The development of slow release nano-sized carriers for efficient antineoplastic drug delivery with a biocompatible and biodegradable pectin-based macromolecular pro-drug for tumor therapy has been reported in this study. Pectin-doxorubicin conjugates (PDC), a macromolecular pro-drug, were prepared via an amide condensation reaction, and a novel amphiphilic core-shell micell based on a PDC macromolecular pro-drug (PDC-M) was self-assembled in situ, with pectin as the hydrophilic shell and doxorubicin (DOX) as the hydrophobic core. Then the chemical structure of the PDC macromolecular pro-drug was identified by both Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ((1)H-NMR), and proved that doxorubicin combined well with the pectin and formed macromolecular pro-drug. The PDC-M were observed to have an unregularly spherical shape and were uniform in size by scanning electron microscopy (SEM). The average particle size of PDC-M, further measured by a Zetasizer nanoparticle analyzer (Nano ZS, Malvern Instruments), was about 140 nm. The encapsulation efficiency and drug loading were 57.82% ± 3.7% (n = 3) and 23.852% ±2.3% (n = 3), respectively. The in vitro drug release behaviors of the resulting PDC-M were studied in a simulated tumor environment (pH 5.0), blood (pH 7.4) and a lysosome media (pH 6.8), and showed a prolonged slow release profile. Assays for antiproliferative effects and flow cytometry of the resulting PDC-M in HepG2 cell lines demonstrated greater properties of delayed and slow release as compared to free DOX. A cell viability study against endothelial cells further revealed that the resulting PDC-M possesses excellent cell compatibilities and low cytotoxicities in comparison with that of the free DOX. Hemolysis activity was investigated in rabbits, and the results also demonstrated that the PDC-M has greater compatibility in comparison with free DOX. This shows that the resulting PDC-M can ameliorate the

  1. Prolonged naproxen joint residence time after intra-articular injection of lipophilic solutions comprising a naproxen glycolamide ester prodrug in the rat

    DEFF Research Database (Denmark)

    Thing, Mette; Lu, Yi; Agårdh, Li

    2013-01-01

    time. Two oils, medium-chain triglycerides and castor oil, differing with respect to viscosity were tested. After intra-articular administration of oil prodrug solutions, a significant increase in the time to maximum naproxen serum concentration from around 40 to 245min, an increase in the MRTj from......Intra-articular injection of oil solutions of lipophilic prodrugs that rapidly degrade to their parent compound in synovial fluid may constitute a feasible approach to increase the joint residence time of non-steroidal anti-inflammatory drugs. In this in vivo study, oil solutions of the N......,N-diethyl glycolamide ester prodrug of naproxen (16mg/ml) were injected into the rat knee joint by dosing 6μl formulation per 100g body weight. The sustained release properties were compared to those of intra-articularly injected aqueous and oil solutions of naproxen by monitoring the naproxen serum concentrations over...

  2. The Spectrophotometric Sulfo-Phospho-Vanillin Assessment of Total Lipids in Human Meibomian Gland Secretions

    Science.gov (United States)

    McMahon, Anne; Lu, Hua

    2013-01-01

    Human meibomian gland secretions (meibum) are the major lipid component of the human preocular tear film. The predominant lipid classes found in meibum include waxes (WE), cholesteryl esters (CE), and varying amounts of cholesterol (Chl). The classical sulfo-phospho-vanillin assay (SPVA), adapted for a microplate reader, was used to quantitate lipids in meibum. To account for varying reactivities of different lipids in SPVA, a model meibomian lipid mixture (MMx) that approximated the WE/CE/Chl composition of meibum was developed and used to quantitate meibomian lipids. The overall SPV responses of MMx and meibum were found to be close, with similar intermediate and final reaction products for both. Saturated WE that had not been expected to be reactive were found to be SPV-positive. A reaction mechanism for these compounds in SPVA which involves the formation of alkenyl ethers is proposed and discussed. Tested proteins were non-reactive in SPVA. Thus, by comparing the results of gravimetric analyses of meibum samples with the results of a properly calibrated SPVA, it was estimated that the SPV-reactive lipid content of dry meibum in tested samples was about 78 % (w/w). The SPV method can also be adopted for analyzing other types of complex lipids secretions, such as sebum, as well as whole lipid extracts from other lipid-enriched organs and tissues, if proper standards are chosen. PMID:23345137

  3. A paclitaxel prodrug with bifunctional folate and albumin binding moieties for both passive and active targeted cancer therapy.

    Science.gov (United States)

    Shan, Lingling; Zhuo, Xin; Zhang, Fuwu; Dai, Yunlu; Zhu, Guizhi; Yung, Bryant C; Fan, Wenpei; Zhai, Kefeng; Jacobson, Orit; Kiesewetter, Dale O; Ma, Ying; Gao, Guizhen; Chen, Xiaoyuan

    2018-01-01

    Folate receptor (FR) has proven to be a valuable target for chemotherapy using folic acid (FA) conjugates. However, FA-conjugated chemotherapeutics still have low therapeutic efficacy accompanied with side effects, resulting from complications such as short circulation half-life, limited tumor delivery, as well as high kidney accumulation. Herein, we present a novel FA-conjugated paclitaxel (PTX) prodrug which was additionally conjugated with an Evans blue (EB) derivative for albumin binding. The resulting bifunctional prodrug prolonged blood circulation, enhanced tumor accumulation, and consequently improved tumor therapeutic efficacy. Methods: Fmoc-Cys(Trt)-OH was coupled onto PTX at the 7'-OH position for further synthesis of ester prodrug FA-PTX-EB. The targeting ability was investigated using confocal microscopy and flow cytometry. The pharmacokinetics of this bifunctional compound was also studied. Meanwhile, cell viability was evaluated in normal cells and three cancer cell lines by MTT assay. In vivo therapeutic effect was tested on FR-α overexpressing MDA-MB-231 tumor model. Results: Compared with free PTX, the FA-PTX, PTX-EB and FA-PTX-EB prodrugs increased circulation half-life in mice from 2.19 to 3.82, 4.41, and 7.51 h, respectively. Pharmacokinetics studies showed that the FA-PTX-EB delivered more PTX to tumors than FA-PTX and free PTX. In vitro and in vivo studies demonstrated that FA-EB-conjugated PTX induced potent antitumor activity. Conclusion: FA-PTX-EB showed prolonged blood circulation, enhanced drug accumulation in tumors, higher therapeutic index, and lower side effects than either free PTX or monofunctional FA-PTX and EB-PTX. The results support the potential of using EB for the development of long-acting therapeutics.

  4. Numerical investigation on the effect of injection pressure on the internal flow characteristics for diethyl ether, dimethyl ether and diesel fuel injectors using CFD

    Directory of Open Access Journals (Sweden)

    Vijayakumar Thulasi

    2011-01-01

    Full Text Available The spray characteristics of the diesel fuel are greatly affected by the cavitation formed inside the injector due to the high pressure differential across the nozzle. Many researchers across the globe are exploring the potential of using diethyl ether and dimethyl ether as an alternate for diesel fuel to meet the strict emission norms. Due to the variation in the fuel properties the internal flow characteristics in injectors for ether fuels are expected to be different from that of the diesel fuel. In this paper computational technique is used to study and compare the internal flow characteristics of diethyl ether, dimethyl ether and diesel fuel. The two phase flow model considering the fuel as a mixture of liquid and vapor is adopted for the simulation study. The injection pressure is varied from 100 to 400 bar and the flow characteristics of all three fuels are simulated and compared. Results indicate that all three fuels have distinct cavitating patterns owing to different property values. The dimethyl ether is found to be more cavitating than diesel and diethyl ether fuels as expected. The mass of fuel injected are found to be decreasing for the ether fuels when compared with diesel fuel at all injection pressures.

  5. Construction of dual-functional polymer nanomaterials with near-infrared fluorescence imaging and polymer prodrug by RAFT-mediated aqueous dispersion polymerization.

    Science.gov (United States)

    Tian, Chun; Niu, Jinyun; Wei, Xuerui; Xu, Yujie; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2018-05-31

    The performance of functional polymer nanomaterials is a vigorously discussed topic in polymer science. We devoted ourselves to investigating polymer nanomaterials based on near-infrared (NIR) fluorescence imaging and polymer prodrug in this study. Aza-boron dipyrromethene (BODIPY) is an important organic dye, having characteristics such as environmental resistance, light resistance, high molar extinction coefficient, and fluorescence quantum yield. We incorporated it into our target monomer, which can be polymerized without changing its parent structure in a polar solvent and copolymerized with water-soluble monomer to improve the solubility of the dye in an aqueous solution. At the same time, the hydrophobic drug camptothecin (CPT) was designed as a prodrug monomer, and the polymeric nanoparticles (NPs) with NIR fluorescence imaging and prodrug were synthesized in situ in reversible addition-fragmentation chain transfer (RAFT)-mediated aqueous dispersion polymerization. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed the final uniform size of the dual-functional polymeric NPs morphology. The dual-functional polymeric NPs had a strong absorption and emission signal in the NIR region (>650 nm) based on the fluorescence tests. In consideration of the long-term biological toxicity, confocal laser scanning microscopy (CLSM) results indicated that the dual-functional NPs with controlled drug content exhibited effective capability of killing HeLa cells. In addition, in vivo imaging of the dual-functional NPs was observed in real time, and the fluorescent signals clearly demonstrated the dynamic process of prodrug transfer.

  6. Design and in vitro evaluation of self-assembled indometacin prodrug nanoparticles for sustained/controlled release and reduced normal cell toxicity

    Science.gov (United States)

    Lin, Jinyan; Pan, Zhou; Song, Liang; Zhang, Yanmei; Li, Yang; Hou, Zhenqing; Lin, Changjian

    2017-12-01

    Despite the great efficacy of indomethacin (IND) as an anti-inflammatory agent, its clinical translation has been obstructed by the water insolubility, severe side effects, and exceedingly low bioavailability. Indomethacin prodrug-based nanoparticles (NPs) combining the strengths of both nanotechnology and prodrugs that might overcome this crucial problem are presented. Here, using the carbodiimide-mediated couple reaction, IND was conjugated to clinically approved poly(ethylene glycol) (PEG) polymer via peptide linkage that was cleavaged in the presence of cathepsin B, which was significantly induced after inflammatory. The synthesized IND-PEG-IND conjugate was characterized by UV-vis, FTIR, 1H NMR, XRD, and MALDI-TOF-MS analyses. For its intrinsic amphiphilic property, the IND prodrug self-assembled into NPs in aqueous solution and served two roles-as an anti-inflammatory prodrug and a drug carrier. The constructed IND-PEG-IND NPs had naoscaled particle size of approximately 80 nm, negative surface, spherical shape, good water-dispersity, and high and fixed drug-loading content of 20.1 wt%. In addition, IND-PEG-IND NPs demonstrated sustained and cathepsin B-controlled drug release behavior. More importantly, IND-PEG-IND NPs significantly reduced the acute totoxicity agaist normal osteoblast cells and displayed the more potent anti-inflammatory effect against macrophage cells compared to the free IND. Taken together, the nanoprodrug might exhibit increased potency for nanomedicine-prospective therapeutic use in clinical treatement of implant inflammatory diseases.

  7. AIRBORNE POLYBROMINATED DIPHENYL ETHERS IN A COMPUTER CLASSROOM OF COLLEGE IN TAIWAN

    Directory of Open Access Journals (Sweden)

    F. H. Chang ، C. R. Yang ، C. Y. Tsai ، W. C. Lin

    2009-04-01

    Full Text Available This study characterized the airborne exposure of students to thirty polybrominated diphenyl ether congeners inside and outside a computer classroom in a southern Taiwan college. Arithmetic mean values of total indoor and outdoor polybrominated diphenyl ether concentrations were 125.0 pg/m3 (89.8 to 203.9 pg/m3 and 110.3 pg/m3 (83.5 to 157.0 pg/m3, respectively. Total indoor polybrominated diphenyl ether concentrations were one order of magnitude lower than those detected in homes in Birmingham, United Kingdom and in Ottawa, Canada but were several times higher than those measured in the ambient air in Ottawa, Canada and from the Bohai Sea to the Arctic. The five highest indoor concentrations of polybrominated diphenyl ether congeners were decabromodiphenyl ether (23.0 pg/m3, 4,4’-dibromodiphenyl ether (15.9 pg/m3, 2,2’,3,4,4’,5,5’,6-octabromodiphenyl ether (10.6 pg/m3, 2,4-dibromodiphenyl ether (10.3 pg/m3 and 2,2’,3,4,4’,5’,6-heptabromodiphenyl ether (10.0 pg/m3. Although indoor and outdoor total polybrominated diphenyl ether concentrations did not significantly differ, the indoor concentrations of 2,4-dibromodiphenyl ether, 2,2’,4-tribromodiphenyl ether, 2,4,4’-tribromodiphenyl ether, 2,2’,4,5’-tetrabromodiphenyl ether and 2,3’,4’,6-tetrabromodiphenyl ether were significantly higher than their outdoor concentrations. This study suggests the following measures: 1 to increase the air exchange rate and open classroom doors and windows for several minutes before classes to reduce indoor PBDE concentrations; 2 to reduce polybrominated diphenyl ether emissions from new devices, it’s better to use computer-related products that meet the Restriction of Hazardous Substances Directive adopted by the European Union.

  8. Thermally reversible cross-linked poly(ether-urethanes

    Directory of Open Access Journals (Sweden)

    V. Gaina

    2013-07-01

    Full Text Available Cross-linked poly(ether-urethanes were prepared by Diels-Alder (DA reaction of the furan-containing poly(ether-urethane to bismaleimides and showed thermal reversibility evidenced by differential scanning calorimetry and attenuated total reflectance in conjunction with Fourier transform infrared spectroscopy (ATR-FTIR. The furan-containing poly(ether-urethanes were synthesized by the polyaddition reaction of 1,6-hexamethylene diisocyanate (HMDI or 4,4'- dibenzyl diisocyanate (DBDI to poly(tetramethylene ether glycol (PTMEG having Mn = 250, 650, 1000, 1500 and 2000 and 2-[N,N-bis(2-methyl-2-hydroxyethylamino]furfuryl as chain extender by the solution prepolymer method. The molar ratio of isocyanate: PTMEG:chain extender varied from 2:1:1 to 4:1:3, which produces a molar concentration of furyl group ranging between 3.65•10–4 and 1.25•10–3 mol/g.

  9. The Design, Synthesis and Screening of Potential Pyridinium Oxime Prodrugs.

    Science.gov (United States)

    1985-07-31

    copper sulfate pentahydrate , and 15 g (87 mol) of the mixture of bromo- picolines 13c and 131. The combined reactions produced 27 g (96%) of a brown...extracted with ethyl ether. The ether extracts were washed with brine, dried with sodium sulfate , filtered and flashed. The residue was then purified by...stirring to the reaction mix. The addition was exothermic as the copper complexes decomposed. The cooled mixture was extracted with several 20 ml

  10. Thermal Stability of Sulfonated Poly(Ether Ether Ketone) Films: on the Role of Protodesulfonation

    OpenAIRE

    Koziara, Beata; Kappert, Emiel; Ogieglo, Wojciech; Nijmeijer, Dorothea C.; Hempenius, Mark A.; Benes, Nieck Edwin

    2016-01-01

    Thin film and bulk, sulfonated poly(ether ether ketone) (SPEEK) have been subjected to a thermal treatment at 160–250 °C for up to 15 h. Exposing the films to 160 °C already causes partial desulfonation, and heating to temperatures exceeding 200 °C results in increased conjugation in the material, most likely via a slight cross-linking by H-substitution. It is well-known that the sulfonate proton plays a major role in the desulfonation reactions, and exchanging the protons with other cations ...

  11. α-Diazo oxime ethers for N-heterocycle synthesis.

    Science.gov (United States)

    Choi, Subin; Ha, Sujin; Park, Cheol-Min

    2017-06-01

    This Feature Article introduces the preparation and synthetic utility of α-diazo oxime ethers. α-Oximino carbenes are useful synthons for N-heterocycles, and can be easily prepared from α-diazo oxime ethers as precursors. We begin with the preparation of α-diazo oxime ethers and their application in [3+2] cycloaddition. It turns out that the nature of metals bound to carbenes plays a crucial role in modulating the reactivity of α-oximino carbenes, in which copper carbenes smoothly react with enamines, whereas the less reactive enol ethers and nitriles require gold carbenes. In Section 3.2, a discussion on N-O and C-H bond activation is presented. Carbenes derived from diazo oxime ethers show unique reactivity towards N-O and C-H bond activation, in which the proximity of the two functionalities, carbene and oxime ether, dictates the preferred reaction pathways toward pyridines, pyrroles, and 2H-azirines. In Section 3.3, the development of tandem reactions based on α-diazo oxime ethers is discussed. The nature of carbenes in which whether free carbenes or metal complexes are involved dissects the pathway and forms different types of 2H-azirines. The 2H-azirine formation turned out to be an excellent platform for the tandem synthesis of N-heterocycles including pyrroles and pyridines. In the last section, we describe the electrophilic activation of 2H-azirines with vinyl carbenes and oximino carbenes. The resulting azirinium species undergo rapid ring expansion rearrangements to form pyridines and pyrazines.

  12. Dual delivery systems based on polyamine analog BENSpm as prodrug and gene delivery vectors

    Science.gov (United States)

    Zhu, Yu

    -SS-BEN) capable of intracellular release of BENSpm using thiolytically sensitive dithiobenzyl carbamate linker. Similar activity on SSAT enzyme induction by Lipo-SS-BEN compared with BENSpm free drug verified the success of this prodrug design. Biodegradability of Lipo-SS-BEN contributed to decreased toxicity compared with nondegradable control LipoBEN. However, decreased enhancement of TRAIL activity was observed for Lipo-SS-BEN when compared with BENSpm, indicating that the lipid-related toxicity diminished the synergism. In addition, compared with LipoBEN and DOTAP, decreased transfection efficiency of Lipo-SS-BEN demonstrated instability of Lipo-SS-BEN in extracellular environment. In order to design a dual delivery vector with reduced vector toxicity and improved linker stability, we employed dendritic polyglycerol (PG) as a safe carrier backbone, onto which BENSpm was conjugated through carbamate linkage (PG-BEN). Polymers with norspermine (PG-Nor) shell and amine-terminated PG (PG-NH2) were synthesized as controls. The BENSpm dual vector PG-BEN demonstrated superior gene delivery function, and showed decreased toxicity compared with the control polymers. However, compared with BENSpm, which depleted all natural polyamines, PG-BEN only down-regulated intracellular putrescine levels. In addition, no free BENSpm was detected in PG-BEN treated cells. These results suggested that in order to take full advantage of BENSpm anticancer activity, alternative linker chemistry needs to be further explored. We then incorporated bis(2-hydroxyethyl) disulfide as a self-immolative linker to synthesize polymer prodrugs of BENSpm (DSS-BEN). The proposed mechanism of BENSpm release from DSS-BEN contains two steps: disulfide bond is first cleaved in the reducing intracellular space, then the intermediate further undergoes slow intramolecular cyclization to release free BENSpm. Cell line-dependent BENSpm release after DSS-BEN treatment was observed using HPLC analysis, demonstrating the

  13. The nitric oxide prodrug JS-K and its structural analogues as cancer therapeutic agents.

    Science.gov (United States)

    Maciag, Anna E; Saavedra, Joseph E; Chakrapani, Harinath

    2009-09-01

    Nitric oxide (NO) prodrugs of the diazeniumdiolate class are routinely used as reliable sources of nitric oxide in chemical and biological laboratory settings. O(2)-(2,4-dinitrophenyl) diazeniumdiolates, which are derivatized forms of ionic diazeniumdiolates, have been found to show potent anti-proliferative activity in a variety of cancer cells, presumably through the effects of NO. One important member of this class of diazeniumdiolates, O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K), has shown promise as a novel cancer therapeutic agent in a number of animal models. This review describes the developments in chemical and biochemical characterization and structure-activity relationship of JS-K and its analogues. In addition, some molecular mechanistic insights into the observed anti-proliferative activity of JS-K are discussed. Finally, a structural motif is presented for O(2)-(aryl) diazeniumdiolate nitric oxide prodrugs that show potency comparable with that of JS-K.

  14. Ether lipid vesicle-based antigens impart protection against experimental listeriosis

    Directory of Open Access Journals (Sweden)

    Ansari MA

    2012-06-01

    Full Text Available Mairaj Ahmed Ansari,1 Swaleha Zubair,2 Saba Tufail,1 Ejaj Ahmad,1 Mohsin Raza Khan,1 Zainuddin Quadri,1 Mohammad Owais,11Interdisciplinary Biotechnology Unit, 2Women's College, Aligarh Muslim University, Aligarh, UP, IndiaBackground: Incidence of food-borne infections from Listeria monocytogenes, a parasite that has adapted intracellular residence to avoid antibody onslaught, has increased dramatically in the past few years. The apparent lack of an effective vaccine that is capable of evoking the desired cytotoxic T cell response to obliterate this intracellular pathogen has encouraged the investigation of alternate prophylactic strategies. It should also be noted that Archaebacteria (Archae lipid-based adjuvants enhance the efficacy of subunit vaccines. In the present study, the adjuvant properties of archaeosomes (liposomes prepared from total polar lipids of archaebacteria, Halobacterium salinarum combined with immunogenic culture supernatant antigens of L. monocytogenes have been exploited in designing a vaccine candidate against experimental listeriosis in murine model.Methods: Archaeosome-entrapped secretory protein antigens (SAgs of L. monocytogenes were evaluated for their immunological responses and tendency to deplete bacterial burden in BALB/c mice challenged with sublethal listerial infection. Various immunological studies involving cytokine profiling, lymphocyte proliferation assay, detection of various surface markers (by flowcytometric analysis, and antibody isotypes (by enzyme-linked immunosorbent assay were used for establishing the vaccine potential of archaeosome-entrapped secretory proteins.Results: Immunization schedule involving archaeosome-encapsulated SAgs resulted in upregulation of Th1 cytokine production along with boosted memory in BALB/c mice. It also showed protective effect by reducing listerial burden in various vital organs (liver and spleen of the infected mice. However, the soluble form of the antigens (SAgs

  15. Occurrence of polybrominated diphenyl ethers (PBDEs) in brown trout bile and liver from Swiss rivers

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Paul C. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland); Burkhardt-Holm, Patricia [Department of Environmental Science, University of Basel, Vesalgasse 1, 4051 Basel (Switzerland)]. E-mail: patricia.holm@unibas.ch; Giger, Walter [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland)]. E-mail: giger@eawag.ch

    2007-03-15

    The ranges of total polybrominated diphenyl ethers (PBDEs) in fish from four Swiss rivers were 0.8-240 ng/g in the bile and 16-7400 ng/g lipid in the liver. PBDE concentrations varied within each river and among the various rivers. Female fish tended to have higher concentrations in the liver, while the male fish had higher concentrations in the bile. From the resulting PBDE concentrations in fish it could not be infered that these contaminants contribute to the causes of the observed fish catch decline in Swiss rivers. - PBDEs with the most abundant BDE-47 were determined in brown trout bile and liver from Swiss rivers.

  16. Occurrence of polybrominated diphenyl ethers (PBDEs) in brown trout bile and liver from Swiss rivers

    International Nuclear Information System (INIS)

    Hartmann, Paul C.; Burkhardt-Holm, Patricia; Giger, Walter

    2007-01-01

    The ranges of total polybrominated diphenyl ethers (PBDEs) in fish from four Swiss rivers were 0.8-240 ng/g in the bile and 16-7400 ng/g lipid in the liver. PBDE concentrations varied within each river and among the various rivers. Female fish tended to have higher concentrations in the liver, while the male fish had higher concentrations in the bile. From the resulting PBDE concentrations in fish it could not be infered that these contaminants contribute to the causes of the observed fish catch decline in Swiss rivers. - PBDEs with the most abundant BDE-47 were determined in brown trout bile and liver from Swiss rivers

  17. Dimethyl ether as a drift-chamber gas

    International Nuclear Information System (INIS)

    Bari, G.; Basile, M.; Bonvicini, G.; Cara Romeo, G.; Casaccia, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; D'Ali, G.; Del Papa, C.; Focardi, S.; Iacobucci, G.; Maccarrone, G.; Massam, T.; Motta, F.; Nania, R.; Palmonari, F.; Prisco, G.; Sartorelli, G.; Susinno, G.; Votano, L.; Zichichi, A.; Istituto Nazionale di Fisica Nucleare, Bologna; European Organization for Nuclear Research, Geneva; Istituto Nazionale di Fisica Nucleare, Frascati; Michigan Univ., Ann Arbor; Palermo Univ.

    1986-01-01

    We have continued the testing of dimethyl ether as a drift-chamber gas in order to improve the understanding of its properties. In particular, we report on measurement accuracy, on systematic effects, and some preliminary data on the ageing of a detector filled with dimethyl ether. (orig.)

  18. Process for making propenyl ethers and photopolymerizable compositions containing them

    Science.gov (United States)

    Crivello, James V.

    1996-01-01

    Propenyl ether monomers of formula V A(OCH.dbd.CHCH.sub.3).sub.n wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  19. RATE CONSTANTS FOR THE REACTIONS OF OH RADICALS AND CL ATOMS WITH DI-N-PROPYL ETHER AND DI-N-BUTYL ETHER AND THEIR DEUTERATED ANALOGS. (R825252)

    Science.gov (United States)

    Using relative rate methods, rate constants for the gas-phase reactions of OH radicals and Cl atoms with di-n-propyl ether, di-n-propyl ether-d14, di-n-butyl ether and di-n-butyl ether-d18 have been measured at 296 ? 2 K and atmos...

  20. Synthesis of alkyl-ether glycerophospholipids in rat glomerular mesangial cells: evidence for alkyldihydroxyacetone phosphate synthase activity

    International Nuclear Information System (INIS)

    Zanglis, A.; Lianos, E.A.

    1987-01-01

    We studied the ability of rat glomerular mesangial cells and their microsomal fractions to incorporate 1-[ 14 C]hexadecanol to glycerophospholipids via an O-alkyl ether linkage and assessed the presence and activity of the required enzyme: alkyl-dihydroxy acetone phosphate synthase. Suspensions of cultured mesangial cells incorporated 1-[ 14 C]hexadecanol to the phosphatidyl ethanolamine and phosphatidyl choline lipid pools, via a bond resistant to acid and base hydrolysis. When cell homogenates or microsomal fractions were incubated with palmitoyl-DHAP and 1-[ 14 C]hexadecanol, alkyl-DHAP and 1-O-alkyl glycerol were formed (alkyl:hexadecyl). The activity of the enzyme responsible for the O-alkyl product formation was calculated to be 2.5 +/- 0.3 and 544 +/- 50 pmoles/min/mg protein for mesangial cell homogenates and mesangial cell microsomes, respectively. These observations provide evidence that mesangial cells may elaborate either linked lipid precursors de novo for the biosynthesis of O-alkyl glycerophospholipids

  1. Selective crystallization of cations with crown ethers

    International Nuclear Information System (INIS)

    Heffels, Dennis Egidius

    2014-01-01

    The aim of this work was to study the selectivity and preferences of the incorporation of differently sized cations in the cavities of various crown ethers and the characterization of the resulting compounds. The coordination preferences of crown ethers with different cavities have long been known, and the impact of other effects on the structure formation have increasingly become the focus of attention. In this work a comparative overview of the coordination preferences depending on various factors was undertaken. The focus was mainly on the variation of the cavity of the crown ether in the presence of differently sized cations. In addition, the effects of the solvent and differently coordinating anions have been investigated. Within the framework of this work, basic coordination preferences could be detected with rare earth nitrates, which are affected particularly by the choice of the solvent. The formation of different types of structures could be controlled by varying the conditions such that the incorporation of the cation in the cavity of the crown ether was influenced and the formation of a particular type of structure can be influenced partly by the choice of solvent. In this case no direct preferences for the incorporation into the cavity of the crown ether in relation to the cation size were observed for rare earth cations. However, the coordination of the crown ether leads in each case - for lanthanides - to rather high coordination numbers. A total of five new rare earth complexes and two structural variants could be observed with crown ethers. In the study of the selectivity of the incorporation into the cavity, known structures were also reproduced and further structures were characterized but the crystal structures not entirely solved. With the use of monovalent cations such as potassium, lithium or silver a total of nine new compounds could be synthesized, while no clear preferences for the incorporation of certain cations were detected. The

  2. Radiation-induced transformations of cellulose ethers

    International Nuclear Information System (INIS)

    Nud'ga, L.A.; Petropavlovskii, G.S.; Plisko, E.A.; Isakova, O.V.; Ershov, B.G.

    1988-01-01

    The purpose of this investigation was to study the transformation which take place under the action of γ-radiation in a number of cellulose ethers containing both saturated (carboxymethyl, hydroxyethyl) and unsaturated (allyl, methacryloyl) groups. Irradiation was carried out on a 60 Co unit in air at 77 and 300 K; the dose rate was 37 and 50 kGy/h respectively. The EPR spectra of γ-irradiated hydroxyethyl- and allylhydroxyethylcelluloses are identical. Under the action of γ-radiation extensive changes took place in cellulose ethers which are exhibited in degradation or the formation of three-dimensional structures and are accompanied by a change in the functional composition. The efficiency in the formation of radicals and their localization are determined by the nature and number of substituents in the cellulose ethers

  3. Lipases as Tools in the Synthesis of Prodrugs from Racemic 9-(2,3-Dihydroxypropyl)adenine

    Czech Academy of Sciences Publication Activity Database

    Brabcová, Jana; Blažek, Jiří; Janská, Lucie; Krečmerová, Marcela; Zarevúcka, Marie

    2012-01-01

    Roč. 17, č. 12 (2012), s. 13813-13824 ISSN 1420-3049 Grant - others:AV ČR(CZ) M200551203 Institutional support: RVO:61388963 Keywords : lipase * transesterification * prodrug * immobilization of enzymes Subject RIV: CC - Organic Chemistry Impact factor: 2.428, year: 2012

  4. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  5. Depositional characteristics of atmospheric polybrominated diphenyl ethers on tree barks

    Directory of Open Access Journals (Sweden)

    Man Young Chun

    2014-07-01

    Full Text Available Objectives This study was conducted to determine the depositional characteristics of several tree barks, including Ginkgo (Ginkgo biloba, Pine (Pinus densiflora, Platanus (Platanus, and Metasequoia (Metasequoia glyptostroboides. These were used as passive air sampler (PAS of atmospheric polybrominated diphenyl ethers (PBDEs. Methods Tree barks were sampled from the same site. PBDEs were analyzed by highresolution gas chromatography/high-resolution mass spectrometer, and the lipid content was measured using the gravimetric method by n-hexane extraction. Results Gingko contained the highest lipid content (7.82 mg/g dry, whereas pine (4.85 mg/g dry, Platanus (3.61 mg/g dry, and Metasequoia (0.97 mg/g dry had relatively lower content. The highest total PBDEs concentration was observed in Metasequoia (83,159.0 pg/g dry, followed by Ginkgo (53,538.4 pg/g dry, Pine (20,266.4 pg/g dry, and Platanus (12,572.0 pg/g dry. There were poor correlations between lipid content and total PBDE concentrations in tree barks (R2=0.1011, p =0.682. Among the PBDE congeners, BDE 206, 207 and 209 were highly brominated PBDEs that are sorbed to particulates in ambient air, which accounted for 90.5% (84.3-95.6% of the concentration and were therefore identified as the main PBDE congener. The concentrations of particulate PBDEs deposited on tree barks were dependent on morphological characteristics such as surface area or roughness of barks. Conclusions Therefore, when using the tree barks as the PAS of the atmospheric PBDEs, samples belonging to same tree species should be collected to reduce errors and to obtain reliable data.

  6. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    International Nuclear Information System (INIS)

    Tewatia, Arya; Hendrix, Justin; Dong, Zhizhong; Taghon, Meredith; Tse, Stephen; Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas; Lynch, Jennifer

    2017-01-01

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  7. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tewatia, Arya; Hendrix, Justin [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Dong, Zhizhong [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Taghon, Meredith [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Tse, Stephen [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Lynch, Jennifer, E-mail: jklynch@rci.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States)

    2017-02-15

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  8. The effect of virtual cross linking on the oxidative stability and lipid uptake of aliphatic poly(urethane urea).

    Science.gov (United States)

    Thomas, Vinoy; Jayabalan, Muthu

    2002-01-01

    In vitro oxidative degradation and lipid sorption of aliphatic, low elastic modulus and virtually cross-linked poly(urethane urea)s based on 4,4' methylene bis(cyclohexyl isocyanate), hydroxy terminated poly butadiene and hexamethylene diamine were evaluated. The aged samples revealed no weight loss in the oxidation medium. The IR spectral analyses revealed the stability of unsaturated double bonds at 964 cm(-1) (characteristic for polybutadiene soft segment) with no change in peak intensity. The poly(tetramethylene glycol) (PTMG)-added poly(ether urethane urea) polymer also revealed no disappearance of IR peaks for ether and unsaturated double bonds in samples aged in vitro oxidation medium. All the polymers have shown increase in weight due to lipid up take in lipid-rich medium (palm oil) but it was rather low in Dulbecco's modified eagle medium (DMEM) cholesterol. The slight change in mechanical properties of the present polymers in oxidation and DMEM is due to the rearrangement of molecular structure with virtual cross links of hydrogen bonding (physical cross linking) without degradation and plasticization effect of lipid. The influence of these media on the rearrangement of virtual cross links has been observed. Higher the virtual cross-link density, lesser is the loss of tensile properties of poly(urethane urea)s in the oxidation medium and vice versa. On the other hand, higher the virtual cross-link density of poly(urethane urea), higher is the loss of ultimate tensile strength and stress at 100% strain and vice versa in DMEM medium.

  9. On the ether-like Lorentz-breaking actions

    International Nuclear Information System (INIS)

    Petrov, A.Yu; Nascimento, J.R.; Gomes, M.; Silva, A. J. da

    2011-01-01

    We demonstrate the generation of the CPT-even, ether-like Lorentz-breaking actions for the scalar and electro-magnetic fields via their appropriate Lorentz-breaking coupling to spinor fields in three, four and five space-time dimensions. Besides, we show that the ether-like terms for the spinor field also can be generated as a consequence of the same couplings. The key result which will be presented here is the finiteness of the ether-like term for the electromagnetic field not only in three and five space-time dimensions where it is natural due to known effects of the dimensional regularization but also in four space-time dimensions. Moreover, we present the calculation of the last result within different calculational schemes and conclude that the result for the four-dimensional ether-like term for the electromagnetic field essentially depending on the calculation scheme, similarly to the result for the Carroll-Field-Jackiw (CFJ) term which probably signalizes a possibility for arising of a new anomaly. Also we discuss the dispersion relations in the theories with ether-like Lorentz-breaking terms which allows to discuss the consistency of the Lorentz-breaking modified theories for different (space-like or time-like) Lorentz-breaking vectors and find the tree-level effective (Breit) potential for fermion scattering and the one-loop effective potential corresponding to the action of the scalar field. (author)

  10. Skin secretion of Siphonops paulensis (Gymnophiona, Amphibia forms voltage-dependent ionic channels in lipid membranes

    Directory of Open Access Journals (Sweden)

    E.F. Schwartz

    2003-09-01

    Full Text Available The effect of the skin secretion of the amphibian Siphonops paulensis was investigated by monitoring the changes in conductance of an artificial planar lipid bilayer. Skin secretion was obtained by exposure of the animals to ether-saturated air, and then rinsing the animals with distilled water. Artificial lipid bilayers were obtained by spreading a solution of azolectin over an aperture of a Delrin cup inserted into a cut-away polyvinyl chloride block. In 9 of 12 experiments, the addition of the skin secretion to lipid bilayers displayed voltage-dependent channels with average unitary conductance of 258 ± 41.67 pS, rather than nonspecific changes in bilayer conductance. These channels were not sensitive to 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid or tetraethylammonium ion, but the experimental protocol used does not permit us to specify their characteristics.

  11. Characterization of Microsolvated Crown Ethers from Broadband Rotational Spectroscopy

    Science.gov (United States)

    Perez, Cristobal; Schnell, Melanie; Blanco, Susana; Lopez, Juan Carlos

    2016-06-01

    Since they were first synthetized, crown ethers have been extensively used in organometallic chemistry due to their unparalleled binding selectivity with alkali metal cations. From a structural point of view, crown ethers are heterocycles containing oxygen and/or other heteroatoms, although the most common ones are formed from ethylene oxide unit. Crown ethers are conventionally seen as being hydrophilic inside and hydrophobic outside when the structures found for the metal cation complexes are considered. However, crown ethers are extremely flexible and in isolation may present a variety of stable conformations so that their structure may be easily adapted in presence of a strong ligand as an alkali metal cation minimize the energy of the resulting complex. Water can be considered a soft ligand which interacts with crown ethers through moderate hydrogen bonds. It is thus interesting to investigate which conformers are selected by water to form complexes, the preferred interaction sites and the possible conformational changes due to the presence of one or more water molecules. Previous studies identified microsolvated crown ethers but in all cases with a chromophore group attached to the structure. Here we present a broadband rotational spectroscopy study of microsolvated crown ethers produced in a pulsed molecular jet expansion. Several 1:1 and 1:2 crown ether:water aggregates are presented for 12-crown-4, 15-crown-5 and 18-crown-6. Unambiguous identification of the structures has been achieved using isotopic substitution within the water unit. The subtle changes induced in the structures of the crown ether monomer upon complexation and the hydrogen-bonding network that hold them together will be also discussed. F. Gámez, B. Martínez-Haya, S. Blanco,J. C. López and J. L. Alonso, Phys. Chem. Chem. Phys. 2014, 14 12912-12918 V. A. Shubert, C.W. Müller and T. Zwier, J. Phys. Chem. A 2009, 113 8067-8079

  12. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Yohei; Nagamatsu, Yusuke [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Miyamoto, Tomofumi [Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582 (Japan); Matsunaga, Naoyuki; Okino, Nozomu; Yamaguchi, Kuniko [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Ito, Makoto, E-mail: makotoi@agr.kyushu-u.ac.jp [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2014-10-03

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria.

  13. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    International Nuclear Information System (INIS)

    Ishibashi, Yohei; Nagamatsu, Yusuke; Miyamoto, Tomofumi; Matsunaga, Naoyuki; Okino, Nozomu; Yamaguchi, Kuniko; Ito, Makoto

    2014-01-01

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria

  14. The lipid content of cisplatin- and doxorubicin-resistant MCF-7 human breast cancer cells.

    Science.gov (United States)

    Todor, I N; Lukyanova, N Yu; Chekhun, V F

    2012-07-01

    To perform the comparative study both of qualitative and quantitative content of lipids in parental and drug resistant breast cancer cells. Parental (MCF-7/S) and resistant to cisplatin (MCF-7/CP) and doxorubicin (MCF-7/Dox) human breast cancer cells were used in the study. Cholesterol, total lipids and phospholipids content were determined by means of thin-layer chromatography. It was found that cholesterol as well as cholesterol ethers content are significantly higher but diacylglycerols, triacyl-glycerols content are significantly lower in resistant cell strains than in parental (sensitive) cells. Moreover the analysis of individual phospholipids showed the increase of sphingomyelin, phosphatidylserine, cardiolipin, phosphatidic acid and the decrease of phosphatidy-lethanolamine, phosphatidylcholine in MCF-7/CP and MCF-7/Dox cells. Obtained results allow to suggest that the lipid profile changes can mediate the modulation of membrane fluidity in drug resistant MCF-7 breast cancer cells.

  15. Electrospun poly-l-lactide scaffold for the controlled and targeted delivery of a synthetically obtained Diclofenac prodrug to treat actinic keratosis.

    Science.gov (United States)

    Piccirillo, Germano; Bochicchio, Brigida; Pepe, Antonietta; Schenke-Layland, Katja; Hinderer, Svenja

    2017-04-01

    Actinic Keratosis' (AKs) are small skin lesions that are related to a prolonged sun-damage, which can develop into invasive squamous cell carcinoma (SCC) when left untreated. Effective, specific and well tolerable therapies to cure AKs are still of great interest. Diclofenac (DCF) is the current gold standard for the local treatment of AKs in terms of costs, effectiveness, side effects and tolerability. In this work, an electrospun polylactic acid (PLA) scaffold loaded with a synthetic DCF prodrug was developed and characterized. Specifically, the prodrug was successfully synthetized by binding DCF to a glycine residue via solid phase peptide synthesis (SPPS) and then incorporated in an electrospun PLA scaffold. The drug encapsulation was verified using multiphoton microscopy (MPM) and its scaffold release was spectrophotometrically monitored and confirmed with MPM. The scaffold was further characterized with scanning electron microscopy (SEM), tensile testing and contact angle measurements. Its biocompatibility was verified by performing a cell proliferation assay and compared to PLA scaffolds containing the same amount of DCF sodium salt (DCFONa). Finally, the effect of the electrospun scaffolds on human dermal fibroblasts (HDFs) morphology and metabolism was investigated by combining MPM with fluorescence lifetime imaging microscopy (FLIM). The obtained results suggest that the obtained scaffold could be suitable for the controlled and targeted delivery of the synthesized prodrug for the treatment of AKs. Electrospun scaffolds are of growing interest as materials for a controlled drug delivery. In this work, an electrospun polylactic acid scaffold containing a synthetically obtained Diclofenac prodrug is proposed as a novel substrate for the topical treatment of actinic keratosis. A controlled drug delivery targeted to the area of interest could enhance the efficacy of the therapy and favor the healing process. The prodrug was synthesized via solid phase

  16. Strategy for Imidazotetrazine Prodrugs with Anticancer Activity Independent of MGMT and MMR

    Science.gov (United States)

    2012-01-01

    The imidazotetrazine ring is an acid-stable precursor and prodrug of highly reactive alkyl diazonium ions. We have shown that this reactivity can be managed productively in an aqueous system for the generation of aziridinium ions with 96% efficiency. The new compounds are potent DNA alkylators and have antitumor activity independent of the O6-methylguanine-DNA methyltransferase and DNA mismatch repair constraints that limit the use of Temozolomide. PMID:24900418

  17. Transdermal Delivery and Cutaneous Targeting of Antivirals using a Penetration Enhancer and Lysolipid Prodrugs

    Czech Academy of Sciences Publication Activity Database

    Diblíková, D.; Kopečná, M.; Školová, B.; Krečmerová, Marcela; Roh, J.; Hrabálek, A.; Vávrová, K.

    2014-01-01

    Roč. 31, č. 4 (2014), s. 1071-1081 ISSN 0724-8741 Grant - others:GA ČR(CZ) GAP207/11/0365 Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonate antivirals * lysolipid prodrug * penetration enhancer * skin absorption * transdermal drug delivery Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.420, year: 2014

  18. Thermogravimetric analysis of the polymer acrylate-vinyl ether mixture cured by radiation

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    1998-01-01

    An experiment on thermal stability of the polymer acrylate-vinyl ether mixture cured by radiation have been done using thermogravimetric analysis. Three kinds of acrylic oligomers i.e., epoxy acrylate, urethane acrylate, and polypropylene glycol diacrylate, and vinyl ether monomers i.e., triethylene glycol divinyl ether (DVE-3), 1,4-cyclohexane dimethanol divinyl ether (CHVE), and butanediol monovinyl ether (HBVE) were used in the experiment. Reaction was taken via radical and cationic polymerisation. In case of cationic polymerisation, diphenyliodonium hexafluorophosphate fotoinisiator was used in the formulation. Thermogravimetric analysis was conducted in a nitrogen atmosphere at a flow rate of 40 ml/minute with a constant heating rate 10 o C and evaluation range were done from 25 to 500 o C. The results of thermogravimetric analysis showed that acrylate and DVE-3 mixture produced the polymer films with higher thermal stability than the mixture of acrylate with CHVE or HBVE. The composition of acrylate-vinyl ether mixture and degree of unsaturation of vinyl ether monomers influenced the thermal stability of polymer. The mixture of epoxy acrylate-vinyl ether and polypropylene glycol diacrylate-vinyl ether have 1 initial decomposition temperature whereas the urethane acrylate-vinyl ether mixture has 2 initial decomposition temperatures. (authors)

  19. Improved Synthesis of N-Benzylaminoferrocene-Based Prodrugs and Evaluation of Their Toxicity and Antileukemic Activity

    NARCIS (Netherlands)

    Daum, Steffen; Chekhun, Vasiliy F; Todor, Igor N; Lukianova, Natalia Yu; Shvets, Yulia V; Sellner, Leopold; Putzker, Kerstin; Lewis, Joe; Zenz, Thorsten; de Graaf, Inge A M; Groothuis, Geny M M; Casini, Angela; Zozulia, Oleksii; Hampel, Frank; Mokhir, Andriy

    2015-01-01

    We report on an improved method of synthesis of N-benzylaminoferrocene-based prodrugs and demonstrate its applicability by preparing nine new aminoferrocenes. Their effect on the viability of selected cancer cells having different p53 status was studied. The obtained data are in agreement with the

  20. Discovery of Orally Available Prodrugs of the Glutamate Carboxypeptidase II (GCPII) Inhibitor 2-Phosphonomethylpentanedioic Acid (2-PMPA)

    Czech Academy of Sciences Publication Activity Database

    Majer, Pavel; Jančařík, Andrej; Krečmerová, Marcela; Tichý, Tomáš; Tenora, Lukáš; Wozniak, K.; Wu, Y.; Pommier, E.; Ferraris, D.; Rais, R.; Slusher, B. S.

    2016-01-01

    Roč. 59, č. 6 (2016), s. 2810-2819 ISSN 0022-2623 Institutional support: RVO:61388963 Keywords : glutamate carboxypeptidase II * glutamate * 2-PMPA * prodrug Subject RIV: CC - Organic Chemistry Impact factor: 6.259, year: 2016

  1. Spatiotemporal Control of Doxorubicin Delivery from “Stealth-Like” Prodrug Micelles

    Science.gov (United States)

    Kong, Li; Schneider, Gregory F.; Campbell, Frederick

    2017-01-01

    In the treatment of cancer, targeting of anticancer drugs to the tumor microenvironment is highly desirable. Not only does this imply accurate tumor targeting but also minimal drug release en route to the tumor and maximal drug release once there. Here we describe high-loading, “stealth-like” doxorubicin micelles as a pro-drug delivery system, which upon light activation, leads to burst-like doxorbicin release. Through this approach, we show precise spatiotemporal control of doxorubicin delivery to cells in vitro. PMID:28937592

  2. Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes

    International Nuclear Information System (INIS)

    Silva, V.S.; Ruffmann, B.; Vetter, S.; Boaventura, M.; Mendes, A.M.; Madeira, L.M.; Nunes, S.P.

    2006-01-01

    Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion[reg] 112 was used as reference material. DMFC tests were also performed at 50 deg. C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion[reg] 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD = 71% showed to have similar performance, or even better, as that of Nafion[reg] 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD = 52%

  3. Aspartic acid based nucleoside phosphoramidate prodrugs as potent inhibitors of hepatitis C virus replication.

    Science.gov (United States)

    Maiti, Munmun; Maiti, Mohitosh; Rozenski, Jef; De Jonghe, Steven; Herdewijn, Piet

    2015-05-14

    In view of a persistent threat to mankind, the development of nucleotide-based prodrugs against hepatitis C virus (HCV) is considered as a constant effort in many medicinal chemistry groups. In an attempt to identify novel nucleoside phosphoramidate analogues for improving the anti-HCV activity, we have explored, for the first time, aspartic acid (Asp) and iminodiacetic acid (IDA) esters as amidate counterparts by considering three 2'-C-methyl containing nucleosides, 2'-C-Me-cytidine, 2'-C-Me-uridine and 2'-C-Me-2'-fluoro-uridine. Synthesis of these analogues required protection for the vicinal diol functionality of the sugar moiety and the amino group of the cytidine nucleoside to regioselectively perform phosphorylation reaction at the 5'-hydroxyl group. Anti-HCV data demonstrate that the Asp-based phosphoramidates are ∼550 fold more potent than the parent nucleosides. The inhibitory activity of the Asp-ProTides was higher than the Ala-ProTides, suggesting that Asp would be a potential amino acid candidate to be considered for developing novel antiviral prodrugs.

  4. Anti-HIV therapy with AZT prodrugs: AZT phosphonate derivatives, current state and prospects.

    Science.gov (United States)

    Khandazhinskaya, Anastasiya; Matyugina, Elena; Shirokova, Elena

    2010-06-01

    AIDS, a disease caused by human immunodeficiency virus, was called 'plague of the twentieth century'. 3'-Azido-3'-deoxythymidine (AZT), the first compound approved for the treatment of HIV, is still a mandatory component of treatment schemes. However, its toxicity stimulated a search for new agents. This review presents the history and current state of the design of AZT prodrugs based on its phosphonate derivatives. Although every effort was made to include as many AZT structures bearing phosphonate residues and demonstrate the variety they offer, we also concentrated on the studies performed in our laboratory. Special attention was also paid to AZT 5'-H-phosphonate (phosphazide, Nikavir) approved in the Russian Federation as a drug for the prevention and treatment of HIV infection. The prodrug strategy applied to AZT phosphonate derivatives enriched chemistry, biology and medicine not only with new knowledge, methods and structures, but also with a new anti-HIV drug Nikavir. Currently, study of another phosphonate, AZT 5'-aminocarbonylphosphonate, is underway. Slow release of AZT following oral administration and penetration into cells, decreased toxicity and the lack of cumulative properties make the compounds of this group promising as extended-release forms of AZT.

  5. Hypoxia-Inducible Regulation of a Prodrug-Activating Enzyme for Tumor-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Toru Shibata

    2002-01-01

    Full Text Available Previous studies have suggested that tumor hypoxia could be exploited for cancer gene therapy. Using hypoxia-responsive elements derived from the human vascular endothelial growth factor gene, we have generated vectors expressing a bacterial nitroreductase. (20NTR gene that can activate the anticancer prodrug CB1954. Stable transfectants of human HT1080 tumor cells with hypoxia-inducible vectors were established with G418 selection. Hypoxic induction of NTR protein correlated with increased sensitivity to in vitro exposure of HT 1080 cells to the prodrug. Growth delay assays were performed with established tumor xenografts derived from the same cells to detect the in vivo efficacy of CB1954 conversion to its cytotoxic form. Significant antitumor effects were achieved with intraperitoneal injections of CB1954 both in tumors that express NTR constitutively or with a hypoxia-inducible promoter. In addition, respiration of 10% O2 increased tumor hypoxia in vivo and enhanced the antitumor effects. Taken together, these results demonstrate that hypoxia-inducible vectors may be useful for tumor-selective gene therapy, although the problem of delivery of the vector to the tumors, particularly to the hypoxic cells in the tumors, is not addressed by these studies.

  6. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Zhensheng; Bi, Cheng; Dai, Hua [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Huamin; Li, Xianfeng [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China)

    2011-01-01

    Sulfonated poly(tetramethydiphenyl ether ether ketone) (SPEEK) with various degree of sulfonation is prepared and first used as ion exchange membrane for vanadium redox flow battery (VRB) application. The vanadium ion permeability of SPEEK40 membrane is one order of magnitude lower than that of Nafion 115 membrane. The low cost SPEEK membranes exhibit a better performance than Nafion at the same operating condition. VRB single cells with SPEEK membranes show very high energy efficiency (>84%), comparable to that of the Nafion, but at much higher columbic efficiency (>97%). In the self-discharge test, the duration of the cell with the SPEEK membrane is two times longer than that with Nafion 115. The membrane keeps a stable performance after 80-cycles charge-discharge test. (author)

  7. Analysis of electron-irradiated poly-ether ether ketone by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Oyabu, Matashige; Kobayashi, Yoshinori; Seguchi, Tadao; Sasuga, Tsuneo; Kudoh, Hisaaki.

    1995-01-01

    Organic polymers used in atomic power plants or space are damaged by ionizing irradiation. Radicals produced by irradiation cause oxidation, chain scission and crosslinking, all of which lead to degradation of the material. In this paper, the surface of electron-irradiated poly-ether ether ketone (PEEK) was studied by X-ray photoelectron spectroscopy (XPS). The irradiation in air was found to oxidize the PEEK surface producing carboxyl groups, the content of which dependant on the dose. Carboxyl groups were not produced in helium gas. Quantitative spectral analysis indicated that the aromatic structure might be decomposed. Some comparison was made between the semicrystalline and amorphous samples. The oxygen content resulting from irradiation, of semicrystalline PEEK increased more than that of amorphous PEEK. (author)

  8. Selective transfer of a lipophilic prodrug of 5-fluorodeoxyuridine from immunoliposomes to colon cancer cells

    NARCIS (Netherlands)

    Koning, GA; Morselt, HWM; Donga, J; Gorter, A; Allen, TM; Zalipsky, S; Kamps, JAAM; Scherphof, GL

    1999-01-01

    A monoclonal antibody against the rat colon carcinoma CC531 was covalently coupled to liposomes containing a dipalmitoylated derivative of the anticancer drug FUdR as a prodrug in their bilayers. We investigated the in vitro interaction of these liposomes with CC531 target cells and the mechanism by

  9. Determination of dopaminergic prodrugs by high-performance liquid chromatography followed by post-column ion-pair extraction

    NARCIS (Netherlands)

    Haas, M; Moolenaar, Frits; Kluppel, A.C A; Dijkstra, D.; Meijer, D.K F; de Zeeuw, D

    1997-01-01

    One possibility to optimize the therapeutic application of dopaminergic compounds with a catechol function is the reversible protection of this moiety using a prodrug approach. Important features in this respect are a proper chemical stability in the gastrointestinal tract, an adequate release rate

  10. Synthesis and biological properties of prodrugs of (S)-3-(adenin-9-yl)-2-(phosphonomethoxy)propanoic acid

    Czech Academy of Sciences Publication Activity Database

    Kaiser, Martin Maxmilian; Poštová Slavětínská, Lenka; Dračínský, Martin; Lee, Y. J.; Tian, Y.; Janeba, Zlatko

    2016-01-01

    Roč. 108, Jan 27 (2016), s. 374-380 ISSN 0223-5234 R&D Projects: GA MV VG20102015046 Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonates * (S)-CPMEA * antiviral * HCV * prodrugs Subject RIV: CC - Organic Chemistry Impact factor: 4.519, year: 2016

  11. Application of simplified PC-SAFT to glycol ethers

    DEFF Research Database (Denmark)

    Avlund, Ane Søgaard; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2012-01-01

    The simplified PC-SAFT (sPC-SAFT) equation of state is applied for binary glycol ether-containing mixtures, and it is investigated how the results are influenced by inclusion of intramolecular association in the association theory. Three different glycol ethers are examined: 2-methoxyethanol, 2...

  12. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    International Nuclear Information System (INIS)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang; Boyer, François; Olivier, Philippe; Sapelkin, Andrei; King, Stephen; Heenan, Richard; Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri

    2014-01-01

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  13. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    Energy Technology Data Exchange (ETDEWEB)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang, E-mail: wolfgang.bacsa@cemes.fr [CEMES-CNRS and University of Toulouse, 29 Jeanne Marvig, 31055 Toulouse (France); Boyer, François; Olivier, Philippe [Université de Toulouse, Institut Clément Ader, I.U.T. Université Paul Sabatier - 133C Avenue de Rangueil - B.P. 67701, 31077 Toulouse CEDEX 4 (France); Sapelkin, Andrei [School of Physics and Astronomy, Queen Mary, University of London, Mile End Road, E1 4NS London (United Kingdom); King, Stephen; Heenan, Richard [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri [AIRBUS FRANCE (B.E. M and P Toulouse), 316 Route de Bayonne, 31060 Toulouse (France)

    2014-06-21

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  14. Radiation chemistry of alternative fuel oxygenates - substituted ethers

    International Nuclear Information System (INIS)

    Mezyk, S. P.; Cooper, W. J.; Bartels, D. M.; Tobien, T.; O'Shea, K. E.

    1999-01-01

    The electron beam process, an advanced oxidation and reduction technology, is based in the field of radiation chemistry. Fundamental to the development of treatment processes is an understanding of the underlying chemistry. The authors have previously evaluated the bimolecular rate constants for the reactions of methyl tert-butyl ether (MTBE) and with this study have extended their studies to include ethyl tert-butyl ether (ETBE), di-isopropyl ether (DIPE) and tert-amyl methyl ether (TAME) with the hydroxyl radical, hydrogen atom and solvated electron using pulse radiolysis. For all of the oxygenates the reaction with the hydroxyl radical appears to be of primary interest in the destruction of the compounds in water. The rates with the solvated electron are limiting values as the rates appear to be relatively low. The hydrogen atom rate constants are relatively low, coupled with the low yield in radiolysis, they concluded that these are of little significance in the destruction of the alternative fuel oxygenates (and MTBE)

  15. Diethyl Ether Production as a Substitute for Gasoline

    Directory of Open Access Journals (Sweden)

    Alviany Riza

    2018-01-01

    Full Text Available Diethyl ether is one of alternative fuel that could be used as a significant component of a blend or as a complete replacement for transportation fuel. The aim of this research is to produce diethyl ether through dehydration reaction of ethanol with fixed bed reactor using nanocrystalline γ-Al2O3 catalyst. Nanocrystalline γ-Al2O3 catalyst was synthesized by precipitation method using Al(NO33.9H2O as precursors and NH4OH as the precipitating agent. Dehydration reaction was performed at temperature range of 125 to 225°C. The result shows that synthesized γ-Al2O3 catalyst gave higher ethanol conversion and diethyl ether yield than that of commercial Al2O3 catalyst. The use of synthesized γ-Al2O3 catalyst could reach ethanol conversion as high as 94.71% and diethyl ether yield as high as 11,29%.

  16. A highly sensitive and selective dimethyl ether sensor based on cataluminescence.

    Science.gov (United States)

    Zhang, Runkun; Cao, Xiaoan; Liu, Yonghui; Peng, Yan

    2010-07-15

    A sensor for detecting dimethyl ether was designed based on the cataluminescence phenomenon when dimethyl ether vapors were passing through the surface of the ceramic heater. The proposed sensor showed high sensitivity and selectivity to dimethyl ether at an optimal temperature of 279 degrees C. Quantitative analysis were performed at a wavelength of 425 nm, the flow rate of carrier air is around 300 mL/min. The linear range of the cataluminescence intensity versus concentration of dimethyl ether is 100-6.0x10(3) ppm with a detection limit of 80 ppm. The sensor response time is 2.5 s. Under the optimized conditions, none or only very low levels of interference were observed while the foreign substances such as benzene, formaldehyde, ammonia, methanol, ethanol, acetaldehyde, acetic acid, acrolein, isopropyl ether, ethyl acetate, glycol ether and 2-methoxyethanol were passing through the sensor. Since the sensor does not need to prepare and fix up the granular catalyst, the simple technology reduces cost, improves stability and extends life span. The method can be applied to facilitate detection of dimethyl ether in the air. The possible mechanism of cataluminescence from the oxidation of dimethyl ether on the surface of ceramic heater was discussed based on the reaction products. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Unitary information ether and its possible applications

    International Nuclear Information System (INIS)

    Horodecki, R.

    1991-01-01

    The idea of information ether as the unitary information field is developed. It rests on the assumption that the notion of information is a fundamental category in the description of reality and that it can be defined independently from the notion of probability itself. It is shown that the information ether provides a deterministic background for the nonlinear wave hypothesis and quantum cybernetics. (orig.)

  18. The Ether Wind and the Global Positioning System.

    Science.gov (United States)

    Muller, Rainer

    2000-01-01

    Explains how students can perform a refutation of the ether theory using information from the Global Positioning System (GPS). Discusses the functioning of the GPS, qualitatively describes how position determination would be affected by an ether wind, and illustrates the pertinent ideas with a simple quantitative model. (WRM)

  19. Synthesis of Poly(vinyl ether) Thermoplastic Elastomers Having Functional Soft Segments

    OpenAIRE

    今枝, 嗣人; 漆崎, 美智遠; 阪口, 壽一; 橋本, 保; Tsuguto, IMAEDA; Michio, URUSHISAKI; Toshikazu, SAKAGUCHI; Tamotsu, HASHIMOTO

    2013-01-01

    The ABA-type triblock copolymers consisting of poly(2-adarnantyl vinyl ether) [poly(2-AdVE) as outer hard segments and poly(6-acetoxyhexyl vinyl ether) [poly(AcHVE)] poly(6-hydroxyhexyl vinyl ether) [poly(H HVE)], or poly(2-(2-methoxyethoxy)ethyl vinyl ether [poly(MOEOVE)] as inner soft segments were synthesized by sequential living cationic polymerization. Despite the presence of polar functional groups such as ester, hydroxy, and oxyethylene units in their soft segments, the two polymer seg...

  20. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    Directory of Open Access Journals (Sweden)

    Koichi Fujie

    2012-03-01

    Full Text Available Supercritical fluid extraction (SFE was used in the analysis of bacterial respiratory quinone (RQ, bacterial phospholipid fatty acid (PLFA, and archaeal phospholipid ether lipid (PLEL from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC. Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS. The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile.

  1. The breakdown of vinyl ethers as a two-center synchronous reaction

    Science.gov (United States)

    Pokidova, T. S.; Shestakov, A. F.

    2009-11-01

    The experimental data on the molecular decomposition of vinyl ethers of various structures to alkanes and the corresponding aldehydes or ketones in the gas phase were analyzed using the method of intersecting parabolas. The enthalpies and kinetic parameters of decomposition were calculated for 17 reactions. The breakdown of ethers is a two-center concerted reaction characterized by a very high classical potential barrier to the thermally neutral reaction (180-190 kJ/mol). The kinetic parameters (activation energies and rate constants) of back reactions of the formation of vinyl ethers in the addition of aldehydes or ketones to alkanes were calculated using the method of intersecting parabolas. The factors that influenced the activation energy of the decomposition and formation of ethers were discussed. Quantum-chemical calculations of several vinyl ether decomposition reactions were performed. Ether formation reactions were compared with the formation of unsaturated alcohols as competitive reactions, which can occur in the interaction of carbonyl compounds with alkenes.

  2. Fast liquid chromatography-tandem mass spectrometry for the analysis of bisphenol A-diglycidyl ether, bisphenol F-diglycidyl ether and their derivatives in canned food and beverages.

    Science.gov (United States)

    Gallart-Ayala, H; Moyano, E; Galceran, M T

    2011-03-25

    In this work a fast liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method using a C18 Fused Core™ column, was developed for the simultaneous analysis of bisphenol A diglycidyl ether (BADGE), bisphenol A (2,3-dihydroxypropyl) glycidyl ether (BADGE·H(2)O), bisphenol A bis(2,3-dihydroxypropyl) ether (BADGE·2H(2)O), bisphenol A (3-chloro-2-hydroxypropyl) glycidyl ether (BADGE·HCl), bisphenol A bis(3-chloro-2-hydroxypropyl) ether (BADGE·2HCl) and bisphenol A (3-chloro-2-hydroxypropyl)(2,3-dihydroxypropyl ether) (BADGE·HCl·H(2)O) and bisphenol F diglycidyl ether (BFDGE), bisphenol F bis(2,3-dihydroxypropyl) ether (BFDGE·2H(2)O), bisphenol F bis(3-chloro-2-hydroxypropyl) ether (BFDGE·2HCl). The LC method was coupled with a triple quadrupole mass spectrometer, using an ESI source in positive mode and using the [M+NH(4)](+) adduct as precursor ion for tandem mass spectrometry experiments. The method developed was applied to the determination of these compounds in canned soft drinks and canned food. OASIS HLB solid phase extraction (SPE) cartridges were used for the analysis of soft drinks, while solid canned food was extracted with ethyl acetate. Method limits of quantitation ranged from 0.13 μgL(-1) to 1.6 μgL(-1) in soft drinks and 1.0 μgkg(-1) to 4.0 μgkg(-1) in food samples. BADGE·2H(2)O was detected in all the analyzed samples, while other BADGEs such as BADGE·H(2)O, BADGE·HCl·H(2)O, BADGE·HCl and BADGE·2HCl were also detected in canned foods. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Effect of p-amino-diphenyl ethers on hepatic microsomal cytochrome P450.

    Science.gov (United States)

    Jiang, Huidi; Xuan, Guida

    2003-09-01

    The present paper aims to investigate whether p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450. Mice were given daily intraperitoneal (ip) injections of p-amino-2',4'-dichlorodiphenyl ether (0.25 mmol/kg) or p-amino-4'-methyldiphenyl ether (0.25 mmol/kg) for 4 days and tested at 24 h and 48 h after the last dose injection. The results showed the mice pentobarbital sleeping time was shorter and the P450 content of hepatic microsome increased significantly in the group pretreated with p-amino-4'-methyldiphenyl ether when compared with the control group, while in mice pretreated with p-amino-2',4'-dichlorodiphenyl ether the hepatic microsome P450 content increased but the pentobarbital sleeping time was extended in clear contrast to the control group. The sleeping time of the phenobarbital group (80 mg/kg daily ip injection for 4 days) was shortened at 24 h after the last injection with increased P450 content of hepatic microsome, but it showed no difference at 48 h. The zoxazolamine-paralysis times of mice treated with p-amino-2',4'-dichlorodiphenyl ether were longer than those of the control mice, while the same dose of zoxazolamine did not lead to paralysis in mice pretreated with BNF. p-Amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether inhibited the activity of 7-ethoxyresorufin O-deethylase from rat hepatic microsome induced by BNF in vitro by 70.0% and 50.1% respectively. These results suggest that p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450.

  4. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea.

    Science.gov (United States)

    Zhu, Chun; Wakeham, Stuart G; Elling, Felix J; Basse, Andreas; Mollenhauer, Gesine; Versteegh, Gerard J M; Könneke, Martin; Hinrichs, Kai-Uwe

    2016-12-01

    Membrane lipids of marine planktonic archaea have provided unique insights into archaeal ecology and paleoceanography. However, past studies of archaeal lipids in suspended particulate matter (SPM) and sediments mainly focused on a small class of fully saturated glycerol dibiphytanyl glycerol tetraether (GDGT) homologues identified decades ago. The apparent low structural diversity of GDGTs is in strong contrast to the high diversity of metabolism and taxonomy among planktonic archaea. Furthermore, adaptation of archaeal lipids in the deep ocean remains poorly constrained. We report the archaeal lipidome in SPM from diverse oceanic regimes. We extend the known inventory of planktonic archaeal lipids to include numerous unsaturated archaeal ether lipids (uns-AELs). We further reveal (i) different thermal regulations and polar headgroup compositions of membrane lipids between the epipelagic (≤ 100 m) and deep (>100 m) populations of archaea, (ii) stratification of unsaturated GDGTs with varying redox conditions, and (iii) enrichment of tetra-unsaturated archaeol and fully saturated GDGTs in epipelagic and deep oxygenated waters, respectively. Such stratified lipid patterns are consistent with the typical distribution of archaeal phylotypes in marine environments. We, thus, provide an ecological context for GDGT-based paleoclimatology and bring about the potential use of uns-AELs as biomarkers for planktonic Euryarchaeota. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Poly(mono/diethylene glycol n-tetradecyl ether vinyl ethers with Various Molecular Weights as Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Dongfang Pei

    2018-02-01

    Full Text Available At present, research on the relationship of comb-like polymer phase change material structures and their heat storage performance is scarce. Therefore, this relationship from both micro and macro perspectives will be studied in this paper. In order to achieve a high phase change enthalpy, ethylene glycol segments were introduced between the vinyl and the alkyl side chains. A series of poly(mono/diethylene glycol n-tetradecyl ether vinyl ethers (PC14EnVEs (n = 1, 2 with various molecular weights were polymerized by living cationic polymerization. The results of PC14E1VE and PC14E2VE showed that the minimum number of carbon atoms required for side-chain crystallization were 7.7 and 7.2, which were lower than that reported in the literature. The phase change enthalpy 89 J/g (for poly(mono ethylene glycol n-tetradecyl ether vinyl ethers and 86 J/g (for poly(hexadecyl acrylate were approximately equal. With the increase of molecular weight, the melting temperature, the melting enthalpy, and the initial thermal decomposition temperature of PC14E1VE changed from 27.0 to 28.0 °C, from 95 to 89 J/g, and from 264 to 287 °C, respectively. When the number average molar mass of PC14EnVEs exceeded 20,000, the enthalpy values remained basically unchanged. The introduction of the ethylene glycol chain was conducive to the crystallization of alkyl side chains.

  6. Sulfonated polyphenyl ether by electropolymerization

    International Nuclear Information System (INIS)

    Hou Hongying; Vacandio, Florence; Di Vona, Maria Luisa; Knauth, Philippe

    2012-01-01

    Highlights: ► Sulfonated polyphenyl ether was for the first time electropolymerized. ► This technique allows the economical preparation of ionomeric membranes for electrochemical energy technologies. ► The mechanism of electropolymerization was discussed in detail. - Abstract: Electropolymerization of sulfonated phenol was for the first time achieved and studied by cyclic voltammetry (CV) and chronoamperometry on stainless steel substrates. The obtained sulfonated polyphenyl ether was characterized in terms of impedance spectroscopy, nuclear magnetic resonance (NMR), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and Fourier-Transform Infrared (FTIR) spectroscopy. Dense films of micrometer thickness can be obtained; the proton conductivity is about 3 mS/cm at room temperature.

  7. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat Widayat

    2012-12-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20. [Keywords:  catalyst; ethanol conversion; dehydration process; yield of diethyl ether; natural zeolite].

  8. Enhanced Brain Delivery of 2-(Phosphonomethyl)pentanedioic Acid Following Intranasal Administration of Its gamma-Substituted Ester Prodrugs

    Czech Academy of Sciences Publication Activity Database

    Nedelcovych, M.; Dash, R. P.; Tenora, Lukáš; Zimmermann, S. C.; Gadiano, A. J.; Garrett, C.; Alt, J.; Hollinger, K. R.; Pommier, E.; Jančařík, Andrej; Rojas, C.; Thomas, A. G.; Wu, Y.; Wozniak, K.; Majer, Pavel; Slusher, B. S.; Rais, R.

    2017-01-01

    Roč. 14, č. 10 (2017), s. 3248-3257 ISSN 1543-8384 Institutional support: RVO:61388963 Keywords : 2-PMPA * glutamate carboxypeptidase II * neurological disease * intranasal * pharmacokinetics * prodrugs Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 4.440, year: 2016

  9. Acetal-Linked Paclitaxel Polymeric Prodrug Based on Functionalized mPEG-PCL Diblock Polymer for pH-Triggered Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yinglei Zhai

    2017-12-01

    Full Text Available The differences in micro-environment between cancer cells and the normal ones offer the possibility to develop stimuli-responsive drug-delivery systems for overcoming the drawbacks in the clinical use of anticancer drugs, such as paclitaxel, doxorubicin, and etc. Hence, we developed a novel endosomal pH-sensitive paclitaxel (PTX prodrug micelles based on functionalized poly(ethylene glycol-poly(ε-caprolactone (mPEG-PCL diblock polymer with an acid-cleavable acetal (Ace linkage (mPEG-PCL-Ace-PTX. The mPEG-PCL-Ace-PTX5 with a high drug content of 23.5 wt % was self-assembled in phosphate buffer (pH 7.4, 10 mM into nanosized micelles with an average diameter of 68.5 nm. The in vitro release studies demonstrated that mPEG-PCL-Ace-PTX5 micelles was highly pH-sensitive, in which 16.8%, 32.8%, and 48.2% of parent free PTX was released from mPEG-PCL-Ace-PTX5 micelles in 48 h at pH 7.4, 6.0, and 5.0, respectively. Thiazolyl Blue Tetrazolium Bromide (MTT assays suggested that the pH-sensitive PTX prodrug micelles displayed higher therapeutic efficacy against MCF-7 cells compared with free PTX. Therefore, the PTX prodrug micelles with acetal bond may offer a promising strategy for cancer therapy.

  10. Preliminary Investigation of Poly-Ether-Ether-Ketone Based on Fused Deposition Modeling for Medical Applications

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2018-02-01

    Full Text Available Poly-ether-ether-ketone (PEEK fabricated by fused deposition modeling for medical applications was evaluated in terms of mechanical strength and in vitro cytotoxicity in this study. Orthogonal experiments were firstly designed to investigate the significant factors on tensile strength. Nozzle temperature, platform temperature, and the filament diameter were tightly controlled for improved mechanical strength performance. These sensitive parameters affected the interlayer bonding and solid condition in the samples. Fourier transform infrared (FTIR spectrometry analysis was secondly conducted to compare the functional groups in PEEK granules, filaments, and printed parts. In vitro cytotoxicity test was carried out at last, and no toxic substances were introduced during the printing process.

  11. Temporal trend studies on tetra- and pentabrominated diphenyl ethers and hexabromocyclododecane in guillemot egg from the Baltic Sea.

    Science.gov (United States)

    Sellström, Ulla; Bignert, Anders; Kierkegaard, Amelie; Häggberg, Lisbeth; de Wit, Cynthia A; Olsson, Mats; Jansson, Bo

    2003-12-15

    Guillemot eggs from the Baltic Sea, sampled between 1969 and 2001, were analyzed for tetra- and pentabromodiphenyl ethers (2,2',4,4'-tetraBDE (BDE-47), 2,2',4,4',5-pentaBDE (BDE-99), and 2,2',4,4',6-pentaBDE (BDE-100)), and hexabromocyclododecane (HBCD). This temporal trend study indicates that the concentrations of the polybrominated diphenyl ether compounds increased from the 1970s to the 1980s, peaking around the mid- to the late-1980s. These peaks are then followed by a rapid decrease in concentrations during the rest of the study period, with the concentrations of the major BDE congener below 100 ng/g lipid weight at the end of the period. This corresponds to less than 10% of its peak values. The concentrations of HBCD show a different pattern over time. After a peak in the middle of the 1970s followed by a decrease, the concentrations increased during the latter part of the 1980s. During the recent 10-yr period no significant change has occurred, and the annual mean concentrations are more or less stable at a higher level as compared to the beginning of the study period.

  12. Densely quaternized poly(arylene ether)s with distinct phase separation for highly anion-conductive membranes

    Science.gov (United States)

    Hu, Yuanfang; Wang, Bingxi; Li, Xiao; Chen, Dongyang; Zhang, Weiying

    2018-05-01

    To develop high performance anion exchange membranes (AEMs), a novel bisphenol monomer bearing eight benzylmethyl groups at the outer edge of the molecule was synthesized, which after condensation polymerization with various amounts of 4,4‧-dihydroxydiphenylsulfone and 4,4‧-difluorobenzophenone yielded novel poly(arylene ether)s with densely located benzylmethyl groups. These benzylmethyl groups were then converted to quaternary ammonium groups by radical-initiated bromination and quaternization in tandem, leading to the emergence of densely quaternized poly(arylene ether sulfone)s (QA-PAEs) with controlled ion exchange capacities (IECs) ranging from 1.61 to 2.32 mmol g-1. Both small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) studies revealed distinct phase separation in the QA-PAEs. The QA-PAE-40 with an IEC of 2.32 mmol g-1 exhibited a Br- conductivity of 9.2 mS cm-1 and a SO42- conductivity of 14.0 mS cm-1 at room temperature, much higher than those of a control membrane with a similar IEC but without obvious phase separation. Therefore, phase separation of AEMs was validated to be advantageous for the efficient conducting of anions. The experimental results also showed that the QA-PAEs were promising AEM materials, especially for non-alkaline applications.

  13. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...

  14. Design and synthesis of brain-targeted prodrugs of the glutamine antagonist 6-Diazo-5-oxo-L-norleucine

    Czech Academy of Sciences Publication Activity Database

    Tenora, Lukáš; Novotná, Kateřina; Monincová, Lenka; Jančařík, Andrej; Nedelcovych, M.; Alt, J.; Rais, R.; Slusher, B. S.; Majer, Pavel

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 344 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] Institutional support: RVO:61388963 Keywords : 6-Diazo-5-oxo-L-norleucine * prodrugs Subject RIV: CE - Biochemistry

  15. Design and synthesis of brain-targeted prodrugs of the glutamine antagonist 6-Diazo-5-oxo-L-norleucine

    Czech Academy of Sciences Publication Activity Database

    Tenora, Lukáš; Novotná, Kateřina; Monincová, Lenka; Jančařík, Andrej; Gadiano, A. J.; Dash, R.; Rais, R.; Alt, J.; Slusher, B. S.; Majer, Pavel

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 345 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] Institutional support: RVO:61388963 Keywords : 6-Diazo-5-oxo-L-norleucine * prodrugs Subject RIV: CE - Biochemistry

  16. Congenital malformations and maternal occupational exposure to glycol ethers

    NARCIS (Netherlands)

    Cordier, S; Bergeret, A; Goujard, J; Ha, MC; Ayme, S; Calzolari, E; DeWalle, HEK; KnillJones, R; Candela, S; Dale, [No Value; Dananche, B; deVigan, C; Fevotte, J; Kiel, G; Mandereau, L

    Glycol ethers are found in a wide range of domestic and industrial products, many of which are used in women's work environments. Motivated by concern about their potential reproductive toxicity, we have evaluated the risk of congenital malformations related to glycol ether exposure during preg

  17. Direct transformation of silyl enol ethers into functionalized allenes.

    Science.gov (United States)

    Langer, P; Döring, M; Seyferth, D; Görls, H

    2001-02-02

    The first elimination reactions of silyl enol ethers to lithiated allenes are reported. These reactions allow a direct transformation of readily available silyl enol ethers into functionalized allenes. The action of three to four equivalents of lithium diisopropylamide (LDA) on silyl enol ethers results in the formation of lithiated allenes by initial allylic lithiation, subsequent elimination of a lithium silanolate, and finally, lithiation of the allene thus formed. Starting with amide-derived silyl imino ethers, lithiated ketenimines are obtained. A variety of reactions of the lithiated allenes with electrophiles (chlorosilanes, trimethylchlorostannane, dimethyl sulfate and ethanol) were carried out. Elimination of silanolate is observed only for substrates that contain the hindered SiMe2tBu or Si(iPr)3 moiety, but not for the SiMe3 group. The reaction of 1,1-dilithio-3,3-diphenylallene with ketones provides a convenient access to novel 1,1-di(hydroxymethyl)allenes which undergo a domino Nazarov-Friedel-Crafts reaction upon treatment with p-toluenesulfonic acid.

  18. Extract of mangosteen increases high density lipoprotein levels in rats fed high lipid

    Directory of Open Access Journals (Sweden)

    Dwi Laksono Adiputro

    2013-04-01

    Full Text Available Background In cardiovascular medicine, Garcinia mangostana has been used as an antioxidant to inhibit oxidation of low density lipoproteins and as an antiobesity agent. The effect of Garcinia mangostana on hyperlipidemia is unknown. The aim of this study was to evaluate the effect of an ethanolic extract of Garcinia mangostana pericarp on lipid profile in rats fed a high lipid diet. Methods A total of 40 rats were divided into five groups control, high lipid diet, and high lipid diet + ethanolic extract of Garcinia mangostana pericarp at dosages of 200, 400, and 800 mg/kg body weight. The control group received a standard diet for 60 days. The high lipid diet group received standard diet plus egg yolk, goat fat, cholic acid, and pig fat for 60 days with or without ethanolic extract of Garcinia mangostana pericarp by the oral route. After 60 days, rats were anesthesized with ether for collection of blood by cardiac puncture. Analysis of blood lipid profile comprised colorimetric determination of cholesterol, triglyceride, low density lipoprotein (LDL, and high density lipoprotein (HDL. Results From the results of one-way ANOVA it was concluded that there were significant between-group differences in cholesterol, trygliceride, LDL, and HDL levels (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly decreased cholesterol, trygliceride, and LDL levels, starting at 400 mg/kg body weight (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly increased HDL level starting at 200 mg/kg body weight (p=0.000. Conclusion Ethanolic extract of Garcinia mangostana pericarp has a beneficial effect on lipid profile in rats on a high lipid diet.

  19. Extract of mangosteen increases high density lipoprotein levels in rats fed high lipid

    Directory of Open Access Journals (Sweden)

    Dwi Laksono Adiputro

    2015-12-01

    Full Text Available BACKGROUND In cardiovascular medicine, Garcinia mangostana has been used as an antioxidant to inhibit oxidation of low density lipoproteins and as an antiobesity agent. The effect of Garcinia mangostana on hyperlipidemia is unknown. The aim of this study was to evaluate the effect of an ethanolic extract of Garcinia mangostana pericarp on lipid profile in rats fed a high lipid diet. METHODS A total of 40 rats were divided into five groups control, high lipid diet, and high lipid diet + ethanolic extract of Garcinia mangostana pericarp at dosages of 200, 400, and 800 mg/kg body weight. The control group received a standard diet for 60 days. The high lipid diet group received standard diet plus egg yolk, goat fat, cholic acid, and pig fat for 60 days with or without ethanolic extract of Garcinia mangostana pericarp by the oral route. After 60 days, rats were anesthesized with ether for collection of blood by cardiac puncture. Analysis of blood lipid profile comprised colorimetric determination of cholesterol, triglyceride, low density lipoprotein (LDL, and high density lipoprotein (HDL. RESULTS From the results of one-way ANOVA it was concluded that there were significant between-group differences in cholesterol, trygliceride, LDL, and HDL levels (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly decreased cholesterol, trygliceride, and LDL levels, starting at 400 mg/kg body weight (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly increased HDL level starting at 200 mg/kg body weight (p=0.000. CONCLUSION Ethanolic extract of Garcinia mangostana pericarp has a beneficial effect on lipid profile in rats on a high lipid diet.

  20. Williamson alkylation approach to the synthesis of poly(alkyl vinyl ether) copolymers

    International Nuclear Information System (INIS)

    Markova, D.; Christova, D.; Velichkova, R.

    2008-01-01

    A method for synthesis of poly(alkyl vinyl ether-co-vinyl alcohol) copolymers was developed based on the Williamson's alkylation of poly(vinyl acetate) (PVAc) with alkyl iodides. The influence of the alkylating agent and the reaction conditions on the efficiency of the modification reaction was investigated. The copolymers obtained were characterized by means of 1 H NMR and GPC. It was proved that by applying the proposed method copolymers of different composition and properties containing methyl vinyl ether, ethyl vinyl ether as well as n-butyl vinyl ether units could be prepared. Poly(methyl vinyl ether-co-vinyl alcohol)s of high degree of methylation exhibit sharp temperature response at 38-39 deg C in aqueous solution typical of the so-called smart polymers. (authors)

  1. Polysarcosine-Based Lipids: From Lipopolypeptoid Micelles to Stealth-Like Lipids in Langmuir Blodgett Monolayers

    Directory of Open Access Journals (Sweden)

    Benjamin Weber

    2016-12-01

    Full Text Available Amphiphiles and, in particular, PEGylated lipids or alkyl ethers represent an important class of non-ionic surfactants and have become key ingredients for long-circulating (“stealth” liposomes. While poly-(ethylene glycol (PEG can be considered the gold standard for stealth-like materials, it is known to be neither a bio-based nor biodegradable material. In contrast to PEG, polysarcosine (PSar is based on the endogenous amino acid sarcosine (N-methylated glycine, but has also demonstrated stealth-like properties in vitro, as well as in vivo. In this respect, we report on the synthesis and characterization of polysarcosine based lipids with C14 and C18 hydrocarbon chains and their end group functionalization. Size exclusion chromatography (SEC and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS analysis reveals that lipopeptoids with a degree of polymerization between 10 and 100, dispersity indices around 1.1, and the absence of detectable side products are directly accessible by nucleophilic ring opening polymerization (ROP. The values for the critical micelle concentration for these lipopolymers are between 27 and 1181 mg/L for the ones with C18 hydrocarbon chain or even higher for the C14 counterparts. The lipopolypeptoid based micelles have hydrodynamic diameters between 10 and 25 nm, in which the size scales with the length of the PSar block. In addition, C18PSar50 can be incorporated in 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC monolayers up to a polymer content of 3%. Cyclic compression and expansion of the monolayer showed no significant loss of polymer, indicating a stable monolayer. Therefore, lipopolypeptoids can not only be synthesized under living conditions, but my also provide a platform to substitute PEG-based lipopolymers as excipients and/or in lipid formulations.

  2. Potentiation of intraocular absorption and drug metabolism of N-acetylcarnosine lubricant eye drops: drug interaction with sight threatening lipid peroxides in the treatment for age-related eye diseases.

    Science.gov (United States)

    Babizhayev, Mark A

    2009-01-01

    lenses obtained from patients with senile and complicated cataracts as compared to normal donors. Utilizing the pharmacokinetic studies and the specific purity N-acetylcarnosine (NAC) ingredient as a source of pharmacological principal L-carnosine, we have created an ophthalmic time-release prodrug form combined with a muco-adhesive lubricant compound carboxymethylcellulose and other essential corneal absorption promoter excipients tailoring the increased intraocular absorption of L-carnosine in the aqueous humor and optimizing its specific effect in producing the basic antioxidant activity in vivo and reducing toxic effects of lipid peroxides to the crystalline lens. L-Carnosine that finds its way into the aqueous humor can accumulate in the lens tissue for a reasonable period of time. However, administration of pure L-carnosine (1% solution) to the rabbit eye (instillation, subconjunctival injection) does not lead to accumulation of this natural compound in the aqueous humor over 30 min in concentration exceeding that in the placebo-treated matched eyes, and its effective concentration is exhausted more rapidly. The NAC prodrug eye drops optimize the clinical effects for the treatment of ophthalmic disorders (such as prevention and reversal of cataracts in human and animal [canine] eyes). The data provided predict a particular NAC ophthalmic prodrug's clinical effect; the suitable magnitude and duration of this effect suggest dose-related bioavailability of L-camosine released from NAC in the aqueous humor of the anterior eye segment. The ophthalmic NAC drug shows promise in the treatment of a range of ophthalmic disorders which have a component of oxidative stress in their genesis (including cataract and after-cataract, glaucoma, dry eye, vitreous floaters, inflammatory disorders, corneal, retinal and systemic diseases [such as diabetes mellitus and its ophthalmic complications]). The clinical efficacy of N-acetylcarnosine lubricant eye drops in ripe cataracts and

  3. Formation Rate-Limited Pharmacokinetics of Biologically Active Epoxy Transformers of Prodrug Treosulfan.

    Science.gov (United States)

    Romański, Michał; Kasprzyk, Anna; Karbownik, Agnieszka; Szałek, Edyta; Główka, Franciszek K

    2016-05-01

    A prodrug treosulfan (TREO) is being evaluated in clinical trials as a myeloablative agent before hematopoietic stem cell transplantation. The active derivatives of TREO, monoepoxide (EBDM), and diepoxide (DEB) are formed in a pH-dependent nonenzymatic reaction. The aim of the study was to investigate pharmacokinetics of the TREO epoxy transformers in a rabbit model and explain the causes of low plasma concentrations of EBDM and DEB observed in patients receiving high-dose TREO before hematopoietic stem cell transplantation. New Zealand white rabbits (n = 5 per cohort) received an intravenous infusion of TREO (group I), injection of DEB (group II), and injection of a solution containing EBDM (group III). When EBDM and DEB were administered to the rabbits, they underwent a very rapid elimination (half-life 0.069 and 0.046 h) associated with a high systemic clearance (10.0 and 14.0 L h(-1) kg(-1)). After administration of TREO, the t1/2 of EBDM was statistically equal to the t1/2 of the prodrug (1.6 h). To conclude, after administration of TREO, its epoxy transformers demonstrate a formation-limited elimination. Then EBDM and DEB have the same elimination half-life as TREO, but the levels of EBDM and DEB in the body, including plasma, are much lower than TREO on account of their inherently high clearance. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. The synthesis of amphipathic prodrugs of 1,2-diol drugs with saccharide conjugates by high regioselective enzymatic protocol.

    Science.gov (United States)

    Quan, Jing; Chen, Zhichun; Han, Chengyou; Lin, Xianfu

    2007-02-15

    A facile, high regioselective enzymatic synthesis approach for the preparation of amphipathic prodrugs with saccharides of mephenesin and chlorphenesin was developed. Firstly, transesterification of two drugs with divinyl dicarboxylates with different carbon chain length was performed under the catalysis of Candida antarctica lipase acrylic resin and Lipozyme in anhydrous acetone at 50 degrees C, respectively. A series of lipophilic derivatives with vinyl groups of mephenesin and chlorphenesin were prepared. The influences of different organic solvents, enzyme sources, reaction time, and the acylation reagents on the synthesis of vinyl esters were investigated. And then, protease-catalyzed high regioselective acylation of D-glucose and D-mannose with vinyl esters of mephenesin and chlorphenesin gave drug-saccharide derivatives in good yields. The studies of lipophilicity and hydrolysis in vitro of prodrugs verified that drug-saccharide derivatives had amphipathic properties, and both lipophilic and amphipathic drug derivatives had obvious controlled release characteristics.

  5. Planck's constant and the three waves (TWs) of Einstein's covariant ether

    Science.gov (United States)

    Kostro, L.

    1985-11-01

    The implications of a three-wave model for elementary particles, satisfying the principles of both quantum mechanics and General Relativity (GR), are discussed. In GR, the ether is the fundamental source of all activity, where particles (waves) arise at singularities. Inertia and gravity are field properties of the ether. In flat regions of the space-time geodesic, wave excitations correspond to the presence of particles. A momentum-carrying excitation which occurs in the ether is a superluminal radiation (phase- or B-waves) which transports neither energy nor mass. Superposition of the B-waves produces soliton-like excitations on the ether to form C-waves, i.e., particles. The particle-waves travel through space-time on D-waves, and experience reflection, refraction and interference only where B-waves have interacted with the ether. The original particles, photons-maximons, existed at the Big Bang and had physical properties which are describable in terms of Planck's quantities.

  6. Oil recovery with sulfomethylated poly (lower alkyl vinyl ether/maleic anhydride)

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-05-22

    Lower alkyl vinyl ether e.g., methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, hexyl vinyl ether, is copolymerized conventionally with maleic anhydride, the resulting copolymer is treated with ammonia or ammonium hydroxide to form the partial amide-ammonium salt, and this salt is in turn treated with formaldehyde and thereafter or simultaneously with ammonium or alkali metal salt sulfite (including bisulfites, etc.) to form an at least partially sulfomethylated copolymer. Aqueous solutions of the sulfomethylated copolymer are useful in increasing the viscosity of drive fluids used in the supplemented recovery of petroleum from subterranean formations. In general, enhancing the polyionic character of mobility control agents used in supplemented recovery of petroleum provides enhanced recovery. Achieving this enhancement of polyionic character through use of sulfonate groups provides a mobility control agent with good ability to sustain viscosity in the presence of brine and lime, usually present in the connate waters of petroleum-bearing formations. (7 claims)

  7. Gene expression profiling for nitric oxide prodrug JS-K to kill HL-60 myeloid leukemia cells.

    Science.gov (United States)

    Liu, Jie; Malavya, Swati; Wang, Xueqian; Saavedra, Joseph E; Keefer, Larry K; Tokar, Erik; Qu, Wei; Waalkes, Michael P; Shami, Paul J

    2009-07-01

    The nitric oxide (NO) prodrug JS-K is shown to have anticancer activity. To profile the molecular events associated with the anticancer effects of JS-K, HL-60 leukemia cells were treated with JS-K and subjected to microarray and real-time RT-PCR analysis. JS-K induced concentration- and time-dependent gene expression changes in HL-60 cells corresponding to the cytolethality effects. The apoptotic genes (caspases, Bax, and TNF-alpha) were induced, and differentiation-related genes (CD14, ITGAM, and VIM) were increased. For acute phase protein genes, some were increased (TP53, JUN) while others were suppressed (c-myc, cyclin E). The expression of anti-angiogenesis genes THBS1 and CD36 and genes involved in tumor cell migration such as tissue inhibitors of metalloproteinases, were also increased by JS-K. Confocal analysis confirmed key gene changes at the protein levels. Thus, multiple molecular events are associated with JS-K effects in killing HL-60, which could be molecular targets for this novel anticancer NO prodrug.

  8. An improved synthesis process of calixcrown ethers and synthesis of novel calixcrown ether

    International Nuclear Information System (INIS)

    Wang Hairong; Zhang Ping; Wang Chunmiao; Wang Jianchen; Chen Jing

    2007-01-01

    The synthesis method of calixcrown ethers was simplified and improved, and 10 L- scale synthesis was carried out. In the synthesis of the intermediates of the first three steps, the synthesis of 5, 11, 17, 23-tetra-tert-butyl-25, 26, 27, 28-tetrahydroxyl-calix[4] and its dehydroxylation were considered together, the purification procedures of the former, including re-crystallization in toluene and decolorization with activated carbon, were cancelled, and thus these steps were simplified. In the synthesis of oligoethylene glycol ditosylate, the purification method was also improved and the time-consuming column chromatography was left out. In the final step, impurities were removed by repeating stirring-settlement steps, by following recrystallization, the pure product was obtained. With these measures, the whole process could be implemented easily. The industrial scale production of calixcrown ethers could be fulfilled with the improved process. In addition, a new extracant, 25, 27-bis (n-propyloxy)calix[4]-26, 28-crown-6, is prepared and identified. (authors)

  9. Carrier-Mediated Prodrug Uptake to Improve the Oral Bioavailability of Polar Drugs: An Application to an Oseltamivir Analogue.

    Science.gov (United States)

    Incecayir, Tuba; Sun, Jing; Tsume, Yasuhiro; Xu, Hao; Gose, Tomoka; Nakanishi, Takeo; Tamai, Ikumi; Hilfinger, John; Lipka, Elke; Amidon, Gordon L

    2016-02-01

    The goal of this study was to improve the intestinal mucosal cell membrane permeability of the poorly absorbed guanidino analogue of a neuraminidase inhibitor, oseltamivir carboxylate (GOC) using a carrier-mediated strategy. Valyl amino acid prodrug of GOC with isopropyl-methylene-dioxy linker (GOC-ISP-Val) was evaluated as the potential substrate for intestinal oligopeptide transporter, hPEPT1 in Xenopus laevis oocytes heterologously expressing hPEPT1, and an intestinal mouse perfusion system. The diastereomers of GOC-ISP-Val were assessed for chemical and metabolic stability. Permeability of GOC-ISP-Val was determined in Caco-2 cells and mice. Diastereomer 2 was about 2 times more stable than diastereomer 1 in simulated intestinal fluid and rapidly hydrolyzed to the parent drug in cell homogenates. The prodrug had a 9 times-enhanced apparent permeability (P(app)) in Caco-2 cells compared with the parent drug. Both diastereomer exhibited high effective permeability (P(eff)) in mice, 6.32 ± 3.12 and 5.20 ± 2.81 × 10(-5) cm/s for diastereomer 1 and 2, respectively. GOC-ISP-Val was found to be a substrate of hPEPT1. Overall, this study indicates that the prodrug, GOC-ISP-Val, seems to be a promising oral anti-influenza agent that has sufficient stability at physiologically relevant pHs before absorption, significantly improved permeability via hPEPT1 and potentially rapid activation in the intestinal cells. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Investigation of ammonium trinitratouranylate complexing with diethyl ether

    International Nuclear Information System (INIS)

    Khod'ko, N.N.; Kolevich, T.A.; Umrejko, D.S.

    1989-01-01

    Interaction of ammonium trinitratouranylate (ATNU) with diethyl ether is investigated. It is shown, that adduct of UO 2 (NO 3 ) 2 · 2(C 2 H 5 ) 2 O coposition is formed in the indicated solvent due to incongruent solubility of ANTU. Analogous compound is obtained at ether effect on uranyl anhydrous nitrate. The matter is determined and investigated by means of chemical, thermal analyses and oscillating spectroscopy

  11. Radiation- and Photo-induced Activation of 5-Fluorouracil Prodrugs as a Strategy for the Selective Treatment of Solid Tumors

    Directory of Open Access Journals (Sweden)

    Sei-ichi Nishimoto

    2008-10-01

    Full Text Available 5-Fluorouracil (5-FU is used widely as an anticancer drug to treat solid cancers, such as colon, breast, rectal, and pancreatic cancers, although its clinical application is limited because 5-FU has gastrointestinal and hematological toxicity. Many groups are searching for prodrugs with functions that are tumor selective in their delivery and can be activated to improve the clinical utility of 5-FU as an important cancer chemotherapeutic agent. UV and ionizing radiation can cause chemical reactions in a localized area of the body, and these have been applied in the development of site-specific drug activation and sensitization. In this review, we describe recent progress in the development of novel 5-FU prodrugs that are activated site specifically by UV light and ionizing radiation in the tumor microenvironment. We also discuss the chemical mechanisms underlying this activation.

  12. A novel class of antitumor prodrug, 1-(2'-oxopropyl)-5-fluorouracil (OFU001), that releases 5-fluorouracil upon hypoxic irradiation

    International Nuclear Information System (INIS)

    Shibamoto, Yuta; Zhou, Ling; Hatta, Hiroshi; Mori, Mayuko; Nishimoto, Sei-ichi

    2000-01-01

    We have been developing prodrugs of anticancer agents such as 5-fluorouracil (5-FU) that are activated by irradiation under hypoxic conditions via one-electron reduction. Among them, OFU001 [1-(2'-oxopropyl)-5-fluorouracil] is a prototype radiation-activated prodrug. In this study, we investigated the radiation chemical reactivity and the biological effects of OFU001. This prodrug is presumed to release 5-FU through incorporation of hydrated electrons into the antibonding σ * orbital of the C(1')-N(1) bond. Hydrated electrons are active species derived from radiolysis of water, but are readily deactivated by O 2 into superoxide anion radicals (O 2 - ·) under conditions of aerobic irradiation. Therefore, 5-FU release occurs highly specifically upon irradiation under hypoxic conditions. OFU001 dissolved in phosphate buffer released 5-FU with a G-value (mol number of molecules that are decomposed or produced by 1 J of absorbed radiation energy) of 1.9 x 10 -7 mol/J following hypoxic irradiation, while the G-value for 5-FU release was 1.0 x 10 -8 mol/J following aerobic irradiation. However, the G-values for decomposition of OFU001 were almost the same, i.e., 3.4 x 10 -7 mol/J following hypoxic irradiation and 2.5 x 10 -7 mol/J following aerobic irradiation. When hypoxically irradiated (7.5-30 Gy) OFU001 was added to murine SCCVII cells for 1-24 h, a significant cell-killing effect was observed. The degree of this cytotoxicity was consistent with that of authentic 5-FU at the corresponding concentrations. On the other hand, cytotoxicity was minimal when the cells were treated with aerobically irradiated or unirradiated OFU001. This compound had no radiosensitizing effect against SCCVII cells under either aerobic or hypoxic conditions when the drug was removed immediately after irradiation. Since hypoxia is generally most marked in tumors and irradiation is applied at the tumor site, this concept of prodrug design appears to be potentially useful for selective tumor

  13. Validation and implementation of liquid chromatographic-mass spectrometric (LC-MS) methods for the quantification of tenofovir prodrugs.

    Science.gov (United States)

    Hummert, Pamela; Parsons, Teresa L; Ensign, Laura M; Hoang, Thuy; Marzinke, Mark A

    2018-04-15

    The nucleotide reverse transcriptase inhibitor tenofovir (TFV) is widely administered in a disoproxil prodrug form (tenofovir disoproxil fumarate, TDF) for HIV management and prevention. Recently, novel prodrugs tenofovir alafenamide fumarate (TAF) and hexadecyloxypropyl tenofovir (CMX157) have been pursued for HIV treatment while minimizing adverse effects associated with systemic TFV exposure. Dynamic and sensitive bioanalytical tools are required to characterize the pharmacokinetics of these prodrugs in systemic circulation. Two parallel methods have been developed, one to combinatorially quantify TAF and TFV, and a second method for CMX157 quantification, in plasma. K 2 EDTA plasma was spiked with TAF and TFV, or CMX157. Following the addition of isotopically labeled internal standards and sample extraction via solid phase extraction (TAF and TFV) or protein precipitation (CMX157), samples were subjected to liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis. For TAF and TFV, separation occurred using a Zorbax Eclipse Plus C18 Narrow Bore RR, 2.1 × 50 mm, 3.5 μm column and analytes were detected on an API5000 mass analyzer; CMX157 was separated using a Kinetex C8, 2.1 × 50 mm, 2.6 μm column and quantified using an API4500 mass spectrometer. Methods were validated according to FDA Bioanalytical Method Validation guidelines. Analytical methods: were optimized for the multiplexed monitoring of TAF and TFV, and CMX157 in plasma. The lower limits of quantification (LLOQs) for TAF, TFV, and CMX157 were 0.03, 1.0, and 0.25 ng/mL, respectively. Calibration curves were generated via weighted linear regression of standards. Intra- and inter-assay precision and accuracy studies demonstrated %CVs ≤ 14.4% and %DEVs ≤ ± 7.95%, respectively. Stability and matrix effects studies were also performed. All results were acceptable and in accordance with the recommended guidelines for bioanalytical methods. Assays were also

  14. Metal ion separations with proton-ionizable Lariat Ethers and their polymers

    International Nuclear Information System (INIS)

    Bartsch, R.A.

    1993-01-01

    The preparation of novel and specific organic complexing agents may lead to the development of new separation systems for aqueous metal ions. Thus the introduction of highly lipophilic oximes led to the current utilization of these compounds as commercial extractants for the hydrometallurgy of nonferrous metals. Crown ethers (macrocyclic polyethers) have been employed in the laboratory-scale solvent extraction of alkali-metal, alkaline-earth, and other metal cations into organic phases. Attachment of side arms to crown ethers gives lariat ethers. The presence of one or more potential coordination sites in the side arm of the lariat ether may produce substantial changes in the selectivity and efficiency of metal ion complexation. It has been demonstrated that concomitant transfer of an aqueous phase anion into the organic medium is not required for metal ion extraction. This factor is of immense importance to potential practical applications of these proton-ionizable crown ethers in which the common, hard, aqueous phase anions would be involved. Another advantage of proton-ionizable lariat ethers is the ease with which extracted metal ions may be stripped from the organic phase by shaking with aqueous mineral acid. Thus both metal ion extraction and stripping are facilitated by pendent proton-ionizable groups. Most of the hazardous metal ion species in the Hanford Site tank wastes are members of the alkali-metal, alkaline-earth, lanthanide, and actinide families. These hard metal ion species prefer association with hard donor atoms, such as oxygens. Therefore, crown and lariat ethers are well-suited for complexation with such metal ion species

  15. Levels and congener profiles of polybrominated diphenyl ethers (PBDEs) in Zebra mussels (D. polymorpha) from Lake Maggiore (Italy).

    Science.gov (United States)

    Binelli, A; Guzzella, L; Roscioli, C

    2008-06-01

    Several congeners of polybrominated diphenyl ethers (PBDEs) were monitored in 14 different sampling stations of Lake Maggiore, the second largest Italian lake in regard to surface, volume and average depth, using the sentinel-organism Zebra mussel (Dreissena polymorpha). Results revealed a moderate contamination with summation operatorPBDE levels (BDE-17, -28, -47, -66, -71, -85, -99, -100, -138, -153, -154, -183, -190 and -209) ranging from 40 to 447ngg(-1) lipid weight which are similar to those found in environments polluted by deposition or atmospheric transport. The general order of decreasing congener contribution to the total load was BDE-47>-99>-100>-209, which closely reflected patterns observed in mussels collected in freshwater ecosystems worldwide.

  16. Spontaneous Generation of Chirality in Simple Diaryl Ethers.

    Science.gov (United States)

    Lennartson, Anders; Hedström, Anna; Håkansson, Mikael

    2015-07-01

    We studied the spontaneous formation of chiral crystals of four diaryl ethers, 3-phenoxybenzaldehyde, 1; 1,3-dimethyl-2-phenoxybenzene, 2; di(4-aminophenyl) ether, 3; and di(p-tolyl) ether, 4. Compounds 1, 3, and 4 form conformationally chiral molecules in the solid state, while the chirality of 2 arises from the formation of supramolecular helices. Compound 1 is a liquid at ambient temperature, but 2-4 are crystalline, and solid-state CD-spectroscopy showed that they could be obtained as optically active bulk samples. It should be noted that the optical activity arise upon crystallization, and no optically active precursors were used. Indeed, even commercial samples of 3 and 4 were found to be optically active, giving evidence for the ease at which total spontaneous resolution may occur in certain systems. © 2015 Wiley Periodicals, Inc.

  17. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  18. A Prodrug Approach Involving In Situ Depot Formation to Achieve Localized and Sustained Action of Diclofenac After Joint Injection

    DEFF Research Database (Denmark)

    Thing, Mette; Agårdh, Li; Larsen, Susan

    2014-01-01

    Long-acting nonsteroidal anti-inflammatory drug formulations for intra-articular injection might be effective in the management of joint pain and inflammation associated sports injuries and osteoarthritis. In this study, a prodrug-based delivery system was evaluated. The synthesized diclofenac...

  19. Poly (ether ether ketone) derivatives: Synthetic route and characterization of nitrated and sulfonated polymers

    International Nuclear Information System (INIS)

    Conceicao, T.F.; Bertolino, J.R.; Barra, G.M.O.; Pires, A.T.N.

    2009-01-01

    Nitrated and sulfonated poly (ether ether ketone) [SNPEEK] samples were prepared through sulfonation of nitrated PEEK (NPEEK) at different temperatures resulting in polymers with distinct sulfonation degrees (SD). The sulfonation occurred preferentially in the hydroquinone segment even after 81% of this moiety had been nitrated. Sulfonation in the benzophenone moiety was achieved only in 16% of this segment at the reaction temperature of 80 deg. C. The substitution degree was obtained through the TG curves, and values were in agreement with 1 H NMR data when SD is much higher as ND (nitration degree). The highest SD obtained was 72%. Membranes of the sulfonated and nitrated PEEK (SNPEEK) were prepared by casting and showed good ductility depending on the substitution degree, with proton conductivity in the order of 10 -2 S cm -1 , an important characteristic in some applications, such as in fuel cells

  20. Poly (ether ether ketone) derivatives: Synthetic route and characterization of nitrated and sulfonated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, T.F.; Bertolino, J.R. [Grupo de Estudo em Materiais Polimericos-Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Barra, G.M.O. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Pires, A.T.N. [Grupo de Estudo em Materiais Polimericos-Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil)], E-mail: alfredotiburcio@pq.cnpq.br

    2009-03-01

    Nitrated and sulfonated poly (ether ether ketone) [SNPEEK] samples were prepared through sulfonation of nitrated PEEK (NPEEK) at different temperatures resulting in polymers with distinct sulfonation degrees (SD). The sulfonation occurred preferentially in the hydroquinone segment even after 81% of this moiety had been nitrated. Sulfonation in the benzophenone moiety was achieved only in 16% of this segment at the reaction temperature of 80 deg. C. The substitution degree was obtained through the TG curves, and values were in agreement with {sup 1}H NMR data when SD is much higher as ND (nitration degree). The highest SD obtained was 72%. Membranes of the sulfonated and nitrated PEEK (SNPEEK) were prepared by casting and showed good ductility depending on the substitution degree, with proton conductivity in the order of 10{sup -2} S cm{sup -1}, an important characteristic in some applications, such as in fuel cells.

  1. Interpolymer complexses of vinyl ether copolymer with polyacrylic and polymethacrylic acids

    Directory of Open Access Journals (Sweden)

    E. Shaikhutdinov

    2012-03-01

    Full Text Available The interactions between macromolecules of copolymers based on vinyl ethers (vinyl ether of monoethanolamine and vinyl buthyl ether and 2-acryloilamido-2-methylpropanesulphonic acid with polyacrylic and polymethacrylic acid and, as well as study the effect of interpolymer interactions in the adsorption of polymers at the aqueous solution-air interface were investigated. The observed synergistic increase in surface activity of macromolecules into polyelectrolyte mixtures explained by the formation of interpolymer complexes polyacid - copolymer.

  2. Absorption of decabromodiphenyl ether and other organohalogen chemicals by grey seals (Halichoerus grypus)

    International Nuclear Information System (INIS)

    Thomas, Gareth O.; Moss, Simon E.W.; Asplund, Lillemor; Hall, Ailsa J.

    2005-01-01

    An input-output balance study was performed for polybrominated diphenyl ethers, polychlorinated biphenyls and some organochlorine pesticides on three captive, juvenile grey seals (Halichoerus grypus). The animals were fed a diet of herring for six months, during the last three months of which this study was performed. A supplement of decabromodiphenyl ether was included in the diet during the second month of the study. Consistently high absorption (>89%) was observed for all of the chemicals studied, whereas work on other animals has generally shown high (>80%) net absorption at log K OW OW , and very low absorption of decabromodiphenyl ether. The half-life of decabromodiphenyl ether in blood was estimated to be between 8.5 and 13 days. Measurable concentrations of decabromodiphenyl ether were detected in seal blubber at the end of the study, indicating that this chemical can be stored in adipose and may bioaccumulate. Current understanding of the mechanism of absorption of organohalogen chemicals and the potential for accumulation of decabromodiphenyl ether will need reassessing in the light of these results. - Decabromodiphenyl ether is absorbed effectively from the diet by grey seals, and can be stored in the blubber even after exposure ceases

  3. In vitro optimization of non-small cell lung cancer activity with troxacitabine, L-1,3-dioxolane-cytidine, prodrugs

    NARCIS (Netherlands)

    Radi, Marco; Adema, Auke D.; Daft, Jonathan R.; Cho, Jong H.; Hoebe, Eveline K.; Alexander, Lou-Ella M. M.; Peters, Godefridus J.; Chu, Chung K.

    2007-01-01

    l-1,3-Dioxolane-cytidine, a potent anticancer agent against leukemia, has limited efficacy against solid tumors, perhaps due to its hydrophilicity. Herein, a library of prodrugs were synthesized to optimize in vitro antitumor activity against non-small cell lung cancer. N4-Substituted fatty acid

  4. The enzymatic degradation and transport of leucine-enkephalin and 4-imidazolidinone enkephalin prodrugs at the blood-brain barrier

    DEFF Research Database (Denmark)

    Lund, L.; Bak, A.; Friis, G.J.

    1998-01-01

    In this study, the stability in and transport across a cell culture model of the blood-brain barrier (BBB) is investigated for leucine-enkephalin (Leu-enkephalin) and four 4-imidazolidinone prodrugs of Leu-enkephalin. The results show that Leu-enkephalin is degraded in the cell culture model...

  5. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    Science.gov (United States)

    Jahnke, Linda L.; Edger, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; DesMarais, David J.; Cady, Sherry; Hope, Janet M.; Summons, Roger E.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarkers and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber. "Thermocrinis sp. HI", Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyls. The fatty acids of all cultured organisms were dominated by a very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as CIS() monoethers with the expection of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known 'pink-streamers community' (PSC), siliceous filaments of a microbial consortia growing in the upper outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic Aquificales n-C-20:1 and cy-C-21, and in addition, a series of iso-branched fatty acids from i-C-15:0 to i-C-21:0, With i-C-17:0 dominant in the PSC and i-C-19:0 in the biofilm, suggesting the presence of two major bacterial groups. Bacteriohopanepolyols were absent and the minute quantities of archaeol detected showed that Archaea were only minor constituents. Carbon isotopic compositions of the PSC yielded information about community structure and likely physiology. Biomass was C-13-depleted (10.9%) relative to available

  6. Efficacy of DA-7218, a New Oxazolidinone Prodrug, in the Treatment of Experimental Actinomycetoma Produced by Nocardia brasiliensis

    Directory of Open Access Journals (Sweden)

    Lucio Vera-Cabrera

    2008-01-01

    Full Text Available Two recently synthesized oxazolidinones: (R-3-(4-(2-(2-methyltetrazol-5-yl-pyridin-5-yl-3-fluorophenyl-5-hydroxymethyloxazolidin-2-one (DA-7157 and itscorresponding pro-drug (R-3-(4-(2-(2-methyltetrazol-5-yl-pyridin-5-yl-3-fluorophenyl-2-oxo-5-oxazolidinyl methyl disodium phosphate (DA-7218, have shown very goodactivity against several Gram positive bacteria, including Nocardia and Mycobacterium. Inthe present work we evaluated the therapeutic in vivo effects of DA-7218 on Nocardiabrasiliensis. We first determined the plasma concentration of the prodrug in BALB/c miceusing several doses and then tested its activity in an in vivo experimental actinomycetomamurine model. At the end of treatment, there was a statistically significant differencebetween the three drug receiving groups (25, 12.5 and 5 mg/kg and the control group(saline solution (p=0.001, proving that DA-7218 is effective for the treatment of experimental murine actinomycetoma. This compound could be a potential option forpatients affected with mycetoma by Nocardia brasiliensis.

  7. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    Science.gov (United States)

    Smith, L.A. Jr.; Jones, E.M. Jr.; Hearn, D.

    1984-05-08

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150 to 250 F at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C[sub 3] to C[sub 6] and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom. 2 figs.

  8. Concentrations of Polybrominated Diphenyl Ethers (PBDEs) and 2,4,6-Tribromophenol in Human Placental Tissues

    Science.gov (United States)

    Leonetti, Christopher; Butt, Craig M.; Hoffman, Kate; Miranda, Marie Lynn; Stapleton, Heather M.

    2015-01-01

    Legacy environmental contaminants such as polybrominated diphenyl ethers (PBDEs) are widely detected in human tissues. However, few studies have measured PBDEs in placental tissues, and there are no reported measurements of 2,4,6-tribromophenol (2,4,6-TBP) in placental tissues. Measurements of these contaminants are important for understanding potential fetal exposures, as these compounds have been shown to alter thyroid hormone regulation in vitro and in vivo. In this study, we measured a suite of PBDEs and 2,4,6-TBP in 102 human placental tissues collected between 2010–2011 in Durham County, North Carolina, USA. The most abundant PBDE congener detected was BDE-47, with a mean concentration of 5.09 ng/g lipid (range: 0.12–141 ng/g lipid; detection frequency 91%); however, 2,4,6-TBP was ubiquitously detected and present at higher concentrations with a mean concentration of 15.4 ng/g lipid (range:1.31–316 ng/g lipid; detection frequency 100%). BDE-209 was also detected in more than 50% of the samples, and was significantly associated with 2,4,6-TBP in placental tissues, suggesting they may have a similar source, or that 2,4,6-TBP may be a degradation product of BDE-209. Interestingly, BDE-209 and 2,4,6-TBP were negatively associated with age (rs=−0.16; p=0.10 and rs=−0.17; p=0.08, respectively). The results of this work indicate that PBDEs and 2,4,6-TBP bioaccumulate in human placenta tissue and likely contribute to prenatal exposures to these environmental contaminants. Future studies are needed to determine if these joint exposures are associated with any adverse health measures in infants and children. PMID:26700418

  9. Method of determining of polybrominated diphenyl ethers in fish and fish products by the method of liquid chromatography

    Directory of Open Access Journals (Sweden)

    O.N. Timofeeva

    2016-09-01

    Full Text Available The aim of the work was to develop a methodology for determining of polybrominated diphenyl ethers (PBDE in fish and fish products for the control of impurities content in the food and environmental objects in general. The conditions of chromatography (temperature conditions, the impact of the speed and magnitude of dividing of the gas-carrier stream using a HP-1 capillary columns, the DB-5, HP-50 +, DB-1; and lipids destructive and non-destructive cleaning methods of extract during the determination of PBDEs. The method of determination of 2,2,4,4-Tetrabromodiphenyl ether (BDE-47, 2,2,4,4,5-pentabromodiphenyl ether (BDE-99 and decabromodiphenyl ether (BDE-209 in fish and fish products by the liquid chromatography with electron detector was suggested. The method of PBDE is based on the extraction of samples with hexane-acetone (3:1, purification of the extract with concentrated sulfuric acid (phase ratio hexane-sulfuric acid – 5:1. The second purification step is carried out by using solid phase extraction cartridges «SiOH-H2SO4/SA» and hexane as the eluent. Gas chromatographic analysis of the determination of BDE-47 and BDE-99 is carried out on low-polar capillary column DB-5 (30 m x0.25 mm x0.25 mum with the programming of the column temperature. In determining the BDE-209 a DB-1 nonpolar capillary column was used (15 m x 0.25 mm x 0.1 mum with the column temperature programming. Calculation of the content of BDE-47 and BDE-99 is carried out with the internal standard (2,2, 3,4,4-pentabromodiphenyl ether (BDE-85, BDE-209 by absolute calibration. In determining the BDE-209 the calibration matrix was used. The range of concentrations of the calibration solutions for the determination of BDE-47 and BDE-99 is 0.005–0.05 g/cm 3 , for BDE-209 0.05–0.3 g/cm 3 . The technique allows the measurement of BDE-47 and BDE-99 in the range of 0.0002–0.05 mg/kg of the product concerned; BDE-209 – in the range of 0.002–0.3 mg/kg. The metrological

  10. Nikola Tesla, the Ether and his Telautomaton

    Science.gov (United States)

    Milar, Kendall

    2014-03-01

    In the nineteenth century physicists' understanding of the ether changed dramatically. New developments in thermodynamics, energy physics, and electricity and magnetism dictated new properties of the ether. These have traditionally been examined from the perspective of the scientists re-conceptualizing the ether. However Nikola Tesla, a prolific inventor and writer, presents a different picture of nineteenth century physics. Alongside the displays that showcased his inventions he presented alternative interpretations of physical, physiological and even psychical research. This is particularly evident in his telautomaton, a radio remote controlled boat. This invention and Tesla's descriptions of it showcase some of his novel interpretations of physical theories. He offered a perspective on nineteenth century physics that focused on practical application instead of experiment. Sometimes the understanding of physical theories that Tesla reached was counterproductive to his own inventive work; other times he offered new insights. Tesla's utilitarian interpretation of physical theories suggests a more scientifically curious and invested inventor than previously described and a connection between the scientific and inventive communities.

  11. Effect of ethylene glycol monomethyl ether and diethylene glycol monomethyl ether on hepatic metabolizing enzymes.

    Science.gov (United States)

    Kawamoto, T; Matsuno, K; Kayama, F; Hirai, M; Arashidani, K; Yoshikawa, M; Kodama, Y

    1990-06-01

    Glycol ethers have been extensively used in industry over the past 40-50 years. Numerous studies on the toxicity of glycol ethers have been performed, however, the effects of glycol ethers on the hepatic drug metabolizing enzymes are still unknown. We studied the changes of the putative metabolic enzymes, that is, the hepatic microsomal mixed function oxidase system and cytosolic alcohol dehydrogenase, by the oral administration of diEGME and EGME. Adult male Wistar rats were used. DiEGME was administered orally; 500, 1000, 2000 mg/kg for 1, 2, 5 or 20 days and EGME was 100, 300 mg/kg for 1, 2, 5 or 20 days. Decreases in liver weights were produced by highest doses of diEGME (2000 mg/kg body wt/day for 20 days) and EGME (300 mg/kg body wt/day for 20 days). DiEGME increased hepatic microsomal protein contents and induced cytochrome P-450, but not cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was not affected by diEGME administration. On the other hand, EGME did not change cytochrome P-450, cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was increased by repeated EGME treatment. Therefore it is suspected that the enzyme which takes part in the metabolism of diEGME is different from that of EGME, although diEGME is a structural homologue of EGME.

  12. The preparation and intramolecular radical cyclisation reactions of chiral oxyme ethers

    International Nuclear Information System (INIS)

    Booth, Susan E.; Jenkins, Paul R.

    1998-01-01

    Chiral oxime ether 2 and Oxime ester 4 have been prepared by alkylation and esterification of the oxime 1. Racemic hydroxylamine 6 and chiral hydroxylamine 10 have been synthesised from N-hydroxysuccinimide and the corresponding alcohol in the presence of diethyl azo dicarboxylate, the two product were converted into the oxime ethers 7 and 11 respectively. The intramolecular radical cyclisation reactions of these oxime ethers and esters has been studied, successful reaction was observed to produce alkyl hydroxylamines 3,8 and 12. (author)

  13. The Preparation and Intramolecular Radical Cyclisation Reactions of Chiral Oxime Ethers

    Directory of Open Access Journals (Sweden)

    Booth Susan E.

    1998-01-01

    Full Text Available Chiral oxime ether 2 and Oxime ester 4 have been prepared by alkylation and esterification of the oxime 1. Racemic hydroxylamine 6 and chiral hydroxylamine 10 have been synthesised from N-hydroxysuccinimide and the corresponding alcohol in the presence of diethylazodicarboxylate, the two products were converted into the oxime ethers 7 and 11 respectively. The intramolecular radical cyclisation reactions of these oxime ethers and esters has been studied, successful reaction was observed to produce alkyl hydroxylamines 3, 8 and 12.

  14. Enzymatic network for production of ether amines from alcohols

    DEFF Research Database (Denmark)

    Palacio, Cyntia M.; Crismaru, Ciprian G.; Bartsch, Sebastian

    2016-01-01

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production...... of the desired ether amines from the corresponding ether alcohols with inorganic ammonium as the only additional substrate. To examine conversion, individual and overall reaction equilibria were established. Using these data, it was found that the experimentally observed conversions of up to 60% observed...... for reactions containing 10mM alcohol and up to 280mM ammonia corresponded well to predicted conversions. The results indicate that efficient amination can be driven by high concentrations of ammonia and may require improving enzyme robustness for scale-up....

  15. Basic randomness of nature and ether-drift experiments

    International Nuclear Information System (INIS)

    Consoli, M.; Pluchino, A.; Rapisarda, A.

    2011-01-01

    Highlights: ► We re-consider the idea of a basic randomness of nature. ► We adopt Stochastic Electro Dynamics as a heuristic model. ► We represent the vacuum as a form of turbulent ether. ► This picture can be tested with forthcoming ether-drift experiments. - Abstract: We re-consider the idea that quantum fluctuations might reflect the existence of an ‘objective randomness’, i.e. a basic property of the vacuum state which is independent of any experimental accuracy of the observations or limited knowledge of initial conditions. Besides being responsible for the observed quantum behavior, this might introduce a weak, residual form of ‘noise’ which is intrinsic to natural phenomena and could be important for the emergence of complexity at higher physical levels. By adopting Stochastic Electro Dynamics as a heuristic model, we are driven to a picture of the vacuum as a form of highly turbulent ether, which is deep-rooted into the basic foundational aspects of both quantum physics and relativity, and to search for experimental tests of this scenario. An analysis of the most precise ether-drift experiments, operating both at room temperature and in the cryogenic regime, shows that, at present, there is some ambiguity in the interpretation of the data. In fact the average amplitude of the signal has precisely the magnitude expected, in a ‘Lorentzian’ form of relativity, from an underlying stochastic ether and, as such, might not be a spurious instrumental effect. This puzzle, however, should be solved in a next future with the use of new cryogenically cooled optical resonators whose stability should improve by about two orders of magnitude. In these new experimental conditions, the persistence of the present amplitude would represent a clean evidence for the type of random vacuum we are envisaging.

  16. A MONOCLONAL ANTIBODY-BETA-GLUCURONIDASE CONJUGATE AS ACTIVATOR OF THE PRODRUG EPIRUBICIN-GLUCURONIDE FOR SPECIFIC TREATMENT OF CANCER

    NARCIS (Netherlands)

    Haisma, Hidde; BOVEN, E; VANMUIJEN, M; DEJONG, J; VANDERVIJGH, WJF; PINEDO, HM

    The anti-pan carcinoma monoclonal antibody (MAb) 323/A3, linked to E. coli-derived beta-glucuronidase (GUS) was used to study the tumour-site-selective activation of the prodrug Epirubicin-glucuronide (Epi-glu). Epi-glu was isolated from the urine of patients treated with Epirubicin (Epi) by

  17. Enhanced osteogenic activity of poly ether ether ketone using calcium plasma immersion ion implantation.

    Science.gov (United States)

    Lu, Tao; Qian, Shi; Meng, Fanhao; Ning, Congqin; Liu, Xuanyong

    2016-06-01

    As a promising implantable material, poly ether ether ketone (PEEK) possesses similar elastic modulus to that of cortical bones yet suffers from bio-inertness and poor osteogenic properties, which limits its application as orthopedic implants. In this work, calcium is introduced onto PEEK surface using calcium plasma immersion ion implantation (Ca-PIII). The results obtained from scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirm the modified layer with varying contents of calcium are formed on PEEK surfaces. Water contact angle measurements reveal the increasing hydrophobicity of both Ca-PIII treated surfaces. In vitro cell adhesion, viability assay, alkaline phosphatase activity and collagen secretion analyses disclose improved the adhesion, proliferation, and osteo-differentiation of rat bone mesenchymal stem cells (bMSCs) on Ca-PIII treated surfaces. The obtained results indicate that PEEK surface with enhanced osteogenic activity can be produced by calcium incorporation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Bioactivation antioxidant and transglycating properties of N-acetylcarnosine autoinduction prodrug of a dipeptide L-carnosine in mucoadhesive drug delivery eye-drop formulation: powerful eye health application technique and therapeutic platform.

    Science.gov (United States)

    Babizhayev, Mark A

    2012-06-01

    A considerable interest in N-acetylcarnosine ocular drug design for eye health is based on clinical strategies to improve ocular drug delivery through metabolic enzymatic activation. Human biology aspects of ocular N-acetylcarnosine deacetylation during its pass through the cornea to the aqueous humor and dipeptide hydrolyzing enzymes are characterized. Novel approaches to ocular drug delivery increasing intraocular bioavailability of N-acetylcarnosine biologically activated metabolite carnosine become an integral development ensuring prolonged retention of the medication in the mucoadhesive precorneal area and facilitating transcorneal penetration of the natural dipeptide with the corneal promoters. A comprehensive list of techniques for peptide drug design, synthesis, purification, and biological analyses was considered: liquid chromatography (LC), high performance liquid chromatography (HPLC), (1) H and (13) C nuclear magnetic resonance (NMR), electrospray ionization (ESI) mass spectroscopy, and spectrophotometry. The antioxidant activity of therapeutics-targeted molecules was studied in aqueous solution and in a lipid membrane environment. A deglycation therapeutic system was developed involving removal, by transglycation of sugar or aldehyde moieties from Schiff bases by histidyl-hydrazide compounds or aldehyde scavenger L-carnosine. Clinical studies included ophthalmoscopy, visual acuity (VA), halometer disability glare tests, slit-image, and retro-illumination photography. N-acetylcarnosine 1% lubricant eye drops are considered as an auto-induction prodrug and natural ocular redox state balance therapies with implications in prevention and treatment of serious eye diseases that involve pathways of continuous oxidative damage to ocular tissues(cataracts, primary open-angle glaucoma, age-related macular degeneration) and sight-threatening glycosylation processes (diabetic retinopathy and consequent visual impairment) important for public health. The results of

  19. Gold-catalyzed alkylation of silyl enol ethers with ortho-alkynylbenzoic acid esters

    Directory of Open Access Journals (Sweden)

    Yoshinori Yamamoto

    2011-05-01

    Full Text Available Unprecedented alkylation of silyl enol ethers has been developed by the use of ortho-alkynylbenzoic acid alkyl esters as alkylating agents in the presence of a gold catalyst. The reaction probably proceeds through the gold-induced in situ construction of leaving groups and subsequent nucleophilic attack on the silyl enol ethers. The generated leaving compound abstracts a proton to regenerate the silyl enol ether structure.

  20. Amidate Prodrugs of 9-[2-(Phosphonomethoxy)Ethyl]Adenine as Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis

    Czech Academy of Sciences Publication Activity Database

    Šmídková, Markéta; Dvořáková, Alexandra; Tloušťová, Eva; Česnek, Michal; Janeba, Zlatko; Mertlíková-Kaiserová, Helena

    2014-01-01

    Roč. 58, č. 2 (2014), s. 664-671 ISSN 0066-4804 R&D Projects: GA MV VG20102015046 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24016 Institutional support: RVO:61388963 Keywords : Bordetella pertussis * adenylate cyclase toxin * ACT * inhibitors * PMEA * amidate prodrugs Subject RIV: CC - Organic Chemistry Impact factor: 4.476, year: 2014

  1. Structuring of poly ether ether ketone by ArF excimer laser radiation in different atmospheres

    International Nuclear Information System (INIS)

    Feng, Y.; Gottmann, J.; Kreutz, E.W.

    2003-01-01

    Structuring of poly ether ether ketone (PEEK) by 193 nm ArF excimer laser radiation has been investigated. Experiments were carried out in different atmospheres (air, vacuum, Ar, O 2 ) in order to study its influence on the quality of the structures and the formation of the debris. Repetition rate makes little effect on the ablation rate and roughness of the structure in presence of any kind of atmosphere, indicating for the structuring of PEEK by ArF laser radiation a large window of processing. The roughness at the bottom of the structures and the morphology of the side walls are strongly affected by the properties of the atmosphere. The smallest roughness is achieved at 0.6 J/cm 2 for all kinds of processing gases. Debris around the structures can be diminished by structuring in vacuum. Plasma expansion speed has been measured by using high speed photography

  2. A mild and efficient procedure for the synthesis of ethers from various alkyl halides

    Directory of Open Access Journals (Sweden)

    Mosstafa Kazemi

    2013-10-01

    Full Text Available A simple, mild and practical procedure has been developed for the synthesis of symmetrical and unsymmetrical ethers by using DMSO, TBAI in the presence of K2CO3. We extended the utility of Potassium carbonate as an efficient base for the preparation of ethers. A wide range of alkyl aryl and dialkyl ethers are synthezied from treatment of aliphatic alcohols and phenols with various alkyl halides in the prescence of efficient base Potassium carbonate. Secondary alkyl halides were easily converted to corresponding ethers in releatively good yields . This is a mild, simple and practical procedure for the preparation of ethers in high yields and suitable times under mild condition.

  3. Induced production of halogenated diphenyl ethers from the marine-derived fungus Penicillium chrysogenum.

    Science.gov (United States)

    Yang, Guohua; Yun, Keumja; Nenkep, Viviane N; Choi, Hong Dae; Kang, Jung Sook; Son, Byeng Wha

    2010-11-01

    Manipulation of the fermentation of the marine-derived fungus Penicillium chrysogenum by addition of CaBr(2) resulted in induced production of bromodiphenyl ether analogs. Two new free-radical-scavenging polybrominated diphenyl ethers, 1 and 2, and three known diphenyl ethers, 3,3'-dihydroxy-5,5'-dimethyldiphenyl ether (3), and an inseparable mixture of violacerol-I (4) and violacerol-II (5) were isolated. The structures of the two new polybromodiphenyl ethers 1 and 2 were assigned by combined spectroscopic-data analysis, including deuterium-induced isotope effect. Compounds 1-3, and a mixture of 4 and 5 exhibited radical-scavenging activities against 1,1-diphenyl-2-picrylhydrazyl with IC(50) values of 18, 15, 42, and 6 μM, respectively. With the exception of 3, the compounds were, therefore, more active than the positive control, ascorbic acid (IC(50) 20 μM).

  4. Model prodrugs for the intestinal peptide transporter. a synthetic approach for coupling of hydroxy-containing compounds to dieptides

    DEFF Research Database (Denmark)

    Friedrichsen, G; Nielsen, Carsten Uhd; Steffansen, Bente

    2001-01-01

    The human peptide transporter, hPepT1, situated in the small intestine, may be exploited to increase absorption of drugs or model drugs by attaching them to a dipeptide, which is recognised by hPepT1. A synthetic protocol for this kind of model prodrugs was developed, in which model drugs...

  5. Acidolysis small molecular phenolic ether used as accelerator in photosensitive diazonaphthaquinone systems

    Science.gov (United States)

    Zhou, Haihua; Zou, Yingquan

    2006-03-01

    The photosensitive compounds in the photosensitive coatings of positive PS plates are the diazonaphthaquinone derivatives. Some acidolysis small molecular phenolic ethers, which were synthesized by some special polyhydroxyl phenols with vinyl ethyl ether, are added in the positive diazonaphthaquinone photosensitive composition to improve its sensitivity, composed with photo-acid-generators. The effects to the photosensitivity, anti-alkali property, anti-isopropyl alcohol property, dot resolution and line resolution of the coatings are studied with different additive percent of the special phenolic ethers. In the conventional photosensitive diazonaphthaquinone systems for positive PS plates, the photosensitivity is improved without negative effects to resolution, anti-alkali and anti-isopropyl alcohol properties when added about 5% of the special acidolysis phenolic ethers, EAAE or DPHE, composed with photo-acid-generators.

  6. The simple ethers of glycerin

    International Nuclear Information System (INIS)

    Kimsanov, B.Kh.; Karimov, M.B.

    1998-01-01

    From glycerin derivatives the considerable interest is present simple ethers because many of them are biological active and found wide practical using as an effect drugs, inters for thin organic synthesis, vehicle for injections, regulators of plants growth, reagents, components for perfumery-cosmetic goods and etc

  7. The PROMETHEE multiple criteria decision making analysis for selecting the best membrane prepared from sulfonated poly(ether ketone)s and poly(ether sulfone)s for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Nikouei, Mohammad Ali; Oroujzadeh, Maryam; Mehdipour-Ataei, Shahram

    2017-01-01

    Proton exchange membrane as the heart of fuel cell has been the topic of many research activities in recent years. Finding a suitable alternative for Nafion membranes is one of the most important issues of interest. This study is dedicated to sulfonated poly(ether ketone) and poly(ether sulfone) membranes. For synthesis of these two groups of polymers, two different isomeric biphenols (meta- and para-) were used and each group of membranes with three different degree of sulfonation (25, 35, and 45%) was synthesized. In this way, twelve different membrane samples were obtained and their properties were evaluated. Since each membrane had some strong and some weak points of properties in comparison to the other ones, using a rational analysis for choosing the best membrane between prepared samples was inevitable. For this purpose a PROMETHEE based multiple criteria decision making approach was applied and for evaluation of the weight of each criterion, Shannon entropy method was used. Final results showed that poly(ether ketone) membranes in selected criteria were better than poly(ether sulfone) membranes and as expected, membranes with the highest degree of sulfonation (45%) were placed at the top ranking levels. - Highlights: • Sulfonated poly(ether ketone)s and Poly(ether sulfone)s were synthesized. • Related membranes for PEMFC were prepared. • The properties of membranes were measured. • Multiple criteria decision making approach was used to ranking the membranes. • PROMETHEE based approach selected poly(ether ketone)s as better choices.

  8. Preparation of poly(ether ether ketone)-based polymer electrolytes for fuel cell membranes using grafting technique

    International Nuclear Information System (INIS)

    Hasegawa, Shin; Suzuki, Yasuyuki; Maekawa, Yasunari

    2008-01-01

    Poly(ether ether ketone) (PEEK)-based polymer electrolyte membranes (PEMs) was successfully prepared by radiation grafting of a styrene monomer into PEEK films and the consequent selective sulfonation of the grafting chains in the film state. Using milder sulfonation, the sulfonation reactions proceeded at the grafted chains in preference to the phenylene rings of PEEK main chains; as a result, the grafted films could successfully transform to a PEM with conductivity of more than 0.1 S/cm. The ion exchange capacity (IEC) and conductivity of the grafted PEEK electrolyte membranes were controlled to the ranges of 1.2-2.9 mmol/g and 0.03-0.18 S/cm by changing the grafting degree. It should be noted that this is the first example of directly transforming super-engineering plastic films into a PEM using radiation grafting

  9. Sulfonated Poly(Ether Ether Ketone)/Functionalized Carbon Nanotube Composite Membrane for Vanadium Redox Flow Battery Applications

    International Nuclear Information System (INIS)

    Jia, Chuankun; Cheng, Yuanhang; Ling, Xiao; Wei, Guanjie; Liu, Jianguo; Yan, Chuanwei

    2015-01-01

    A novel sulfonated poly(ether ether ketone) (SPEEK) membrane embedded with the short-carboxylic multi-walled carbon nanotube (we name it as SPEEK/SCCT membrane) for vanadium redox flow battery (VRB) has been prepared with low capacity loss, low cost and high energy efficiency. The mechanical strength, vanadium ions permeability and performance of the membrane in the VRB single cell were characterized. Results showed that the SPEEK/SCCT membrane possessed low permeability of vanadium ions, accompanied by higher mechanical strength than the Nafion 212 membrane. The VRB single cell with SPEEK/SCCT membrane showed 7% higher coulombic efficiency (CE), 6% higher energy efficiency (EE) but lower capacity loss in comparison with the one with Nafion 212. The good cell performance, low capacity loss and high vanadium ions barrier properties of the blend membrane is of significant interest for VRB applications

  10. Influence of structure of crown ethers on their radiation stability

    International Nuclear Information System (INIS)

    Grigor'ev, E.I.; Myasoedova, T.G.; Nesterov, S.V.; Trakhtenberg, L.I.

    1988-01-01

    Primary products of γ-radiolysis of crown ethers with the same size of the macrocyclic ring and different substituents were studied by EPR and mass spectrometry. It was shown that introduction of substituents into the polyether ring increases the radiation stability of crown ethers due to intramolecular transfer of energy from the polyether ring to a substituent

  11. Degradation of Perfluorinated Ether Lubricants on Pure Aluminum Surfaces: Semiempirical Quantum Chemical Modeling

    Science.gov (United States)

    Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.

    1997-01-01

    The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.

  12. Efficacy of DA-7218, a new oxazolidinone prodrug, in the treatment of experimental actinomycetoma produced by Nocardia brasiliensis.

    Science.gov (United States)

    Espinoza-González, Nelly Alejandra; Welsh, Oliverio; de Torres, Noemi Waksman; Cavazos-Rocha, Norma; Ocampo-Candiani, Jorge; Said-Fernandez, Salvador; Lozano-Garza, Gerardo; Choi, Sung-Hak; Vera-Cabrera, Lucio

    2008-01-11

    Two recently synthesized oxazolidinones: (R)-3-(4-(2-(2-methyltetrazol-5-yl)-pyridin-5-yl)-3-fluorophenyl)-5-hydroxymethyloxazolidin-2-one (DA-7157) and its corresponding pro-drug (R)-3-(4-(2-(2-methyltetrazol-5-yl)-pyridin-5-yl)-3-fluorophenyl)-2-oxo-5-oxazolidinyl) methyl disodium phosphate (DA-7218), have shown very good activity against several Gram positive bacteria, including Nocardia and Mycobacterium. In the present work we evaluated the therapeutic in vivo effects of DA-7218 on Nocardia brasiliensis. We first determined the plasma concentration of the prodrug in BALB/c mice using several doses and then tested its activity in an in vivo experimental actinomycetoma murine model. At the end of treatment, there was a statistically significant difference between the three drug receiving groups (25, 12.5 and 5 mg/kg) and the control group(saline solution) (p=0.001), proving that DA-7218 is effective for the treatment of experimental murine actinomycetoma. This compound could be a potential option for patients affected with mycetoma by Nocardia brasiliensis.

  13. Increasing the thermopower of crown-ether-bridged anthraquinones

    Science.gov (United States)

    Ismael, Ali K.; Grace, Iain; Lambert, Colin J.

    2015-10-01

    We investigate strategies for increasing the thermopower of crown-ether-bridged anthraquinones. The novel design feature of these molecules is the presence of either (1) crown-ether or (2) diaza-crown-ether bridges attached to the side of the current-carrying anthraquinone wire. The crown-ether side groups selectively bind alkali-metal cations and when combined with TCNE or TTF dopants, provide a large phase-space for optimising thermoelectric properties. We find that the optimum combination of cations and dopants depends on the temperature range of interest. The thermopowers of both 1 and 2 are negative and at room temperature are optimised by binding with TTF alone, achieving thermpowers of -600 μV K-1 and -285 μV K-1 respectively. At much lower temperatures, which are relevant to cascade coolers, we find that for 1, a combination of TTF and Na+ yields a maximum thermopower of -710 μV K-1 at 70 K, whereas a combination of TTF and Li+ yields a maximum thermopower of -600 μV K-1 at 90 K. For 2, we find that TTF doping yields a maximum thermopower of -800 μV K-1 at 90 K, whereas at 50 K, the largest thermopower (of -600 μV K-1) is obtain by a combination TTF and K+ doping. At room temperature, we obtain power factors of 73 μW m-1 K-2 for 1 (in combination with TTF and Na+) and 90 μW m-1 K-2 for 2 (with TTF). These are higher or comparable with reported power factors of other organic materials.We investigate strategies for increasing the thermopower of crown-ether-bridged anthraquinones. The novel design feature of these molecules is the presence of either (1) crown-ether or (2) diaza-crown-ether bridges attached to the side of the current-carrying anthraquinone wire. The crown-ether side groups selectively bind alkali-metal cations and when combined with TCNE or TTF dopants, provide a large phase-space for optimising thermoelectric properties. We find that the optimum combination of cations and dopants depends on the temperature range of interest. The

  14. Synthesis and antimalarial evaluation of prodrugs of novel fosmidomycin analogues.

    Science.gov (United States)

    Faísca Phillips, Ana Maria; Nogueira, Fátima; Murtinheira, Fernanda; Barros, Maria Teresa

    2015-01-01

    The continuous development of drug resistance by Plasmodium falciparum, the agent responsible for the most severe forms of malaria, creates the need for the development of novel drugs to fight this disease. Fosmidomycin is an effective antimalarial and potent antibiotic, known to act by inhibiting the enzyme 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), essential for the synthesis of isoprenoids in eubacteria and plasmodia, but not in humans. In this study, novel constrained cyclic prodrug analogues of fosmidomycin were synthesized. One, in which the hydroxamate function is incorporated into a six-membered ring, was found have higher antimalarial activity than fosmidomycin against the chloroquine and mefloquine resistant P. falciparum Dd2 strain. In addition, it showed very low cytotoxicity against cultured human cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Development and characterization of poli composites (ether ether ketone)(PEEK)(Hydroxyapatite(HA)

    International Nuclear Information System (INIS)

    Ferreira, V.P.; Santos, F.S.F.; Sa, M.D. de; Fook, M.V.L.

    2016-01-01

    The objective of this work was to develop PEEK / HA composites, combining the biological activity of the ceramic phase with the properties of the polymer phase, the materials used in this research were Poly (ether-ether-ketone) (PEEK) and Hydroxyapatite (HA) (50, 60, 70 and 80% m / v HA), this material was subjected to a load of two tons followed by a thermal treatment at 390 ° for a period of 30 minutes. Then they were characterized by FTIR, DRX and MO. In the physical-chemical characterization of FTIR and XRD, it was not possible to identify significant alterations. In the FTIR spectra of the composites, there is no formation of new identifiable chemical bonds. In the composites XRD diffractograms a profile similar to the ceramic phase was observed, with peaks increasing in intensity and narrowing proportional to the increase of the hydroxyapatite concentration in the composites. In optical microscopy it is possible to observe surfaces with heterogeneous morphology, with signs of roughness and in the cross section we observe a heterogeneous aspect, rich in regions with large agglomerates and lighter particles. Considering the processing aspects, the technique proved to be effective for the development of PEEK /HA composites. (author)

  16. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Zhang, Gang; Wu, Jing; Zhao, Chengji; Zhang, Yang; Shao, Ke; Han, Miaomiao; Lin, Haidan; Zhu, Jing; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, Jilin (China)

    2010-10-01

    A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and {sup 1}H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 x 10{sup 4} S s cm{sup -3}, which indicates that it is a suitable candidate for applications in direct methanol fuel cells. (author)

  17. Rheological, mechanical and tribological properties of carbon-nanofibre reinforced poly (ether ether ketone composites

    Directory of Open Access Journals (Sweden)

    Volker Altstaedt

    2003-12-01

    Full Text Available Poly(ether ether ketone nanocomposites containing vapour-grown carbon nanofibres (CNF were produced using standard polymer processing techniques. At high shear rates no significant increase in resin viscosity was observed. Nevertheless, the addition of the CNFs results in a higher melt strength at 360°C. Electron microscopy confirmed the homogeneous dispersion and alignment of nanofibres in the polymer matrix. Evaluation of the mechanical composite properties revealed a linear increase in tensile stiffness and strength with nanofibre loading fractions up to 15 wt% whilst matrix ductility was maintained up to 10 wt%. An interpretation of the composite performance by short-fibre theory resulted in rather low intrinsic stiffness properties of the vapour-grown CNF. Differential scanning calorimetry was used to investigate crystallization kinetics and degree of crystallinity. The CNFs were found not to act as nucleating sites. Furthermore, unidirectional sliding tests against two different counterpart materials (100Cr6 martensitic bearing steel, X5CrNi18-10 austenitic stainless steel were performed. The carbon nanofibres were found to reduce the wear rate of PEEK significantly.

  18. Ether gas-sensor based on Au nanoparticles-decorated ZnO microstructures

    Directory of Open Access Journals (Sweden)

    Roberto López

    Full Text Available An ether gas-sensor was fabricated based on gold nanoparticles (Au-NPs decorated zinc oxide microstructures (ZnO-MS. Scanning electron microscope (SEM and high-resolution transmission electron microscope (HRTEM measurements were performed to study morphological and structural properties, respectively, of the ZnO-MS. The gas sensing response was evaluated in a relatively low temperature regime, which ranged between 150 and 250 °C. Compared with a sensor fabricated from pure ZnO-MS, the sensor based on Au-NPs decorated ZnO-MS showed much better ether gas response at the highest working temperature. In fact, pure ZnO-MS based sensor only showed a weak sensitivity of about 25%. The improvement of the ether gas response for sensor fabricated with Au-NPs decorated ZnO-MS was attributed to the catalytic activity of the Au-NPs. Keywords: ZnO microstructures, Au nanoparticles, Ether, Gas sensor

  19. LipidPedia: a comprehensive lipid knowledgebase.

    Science.gov (United States)

    Kuo, Tien-Chueh; Tseng, Yufeng Jane

    2018-04-10

    Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3,923 lipids and more than 400,000 annotations of associated diseases, pathways, functions, and locations that are essential for interpreting lipid functions and mechanisms from over 1,400,000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. LipidPedia is available at http://lipidpedia.cmdm.tw. yjtseng@csie.ntu.edu.tw. Supplementary data are available at Bioinformatics online.

  20. Biomedical potentials of crown ethers: prospective antitumor agents.

    Science.gov (United States)

    Kralj, Marijeta; Tusek-Bozić, Ljerka; Frkanec, Leo

    2008-10-01

    Crown ethers are of enormous interest and importance in chemistry, biochemistry, materials science, catalysis, separation, transport and encapsulated processes, as well as in the design and synthesis of various synthetic systems with specific properties, diverse capabilities, and programmable functions. Classical crown ethers are macrocyclic polyethers that contain 3-20 oxygen atoms separated from each other by two or more carbon atoms. They are exceptionally versatile in selectively binding a range of metal ions and a variety of organic neutral and ionic species. Crown ethers are currently being studied and used in a variety of applications beyond their traditional place in chemistry. This review presents additional applications and the ever-increasing biomedical potentials of these intriguing compounds, with particular emphasis on the prospects of their relevance as anticancer agents. We believe that further research in this direction should be encouraged, as crown compounds could either induce toxicities that are different from those of conventional antitumor drugs, or complement drugs in current use, thereby providing a valuable adjunct to therapy.

  1. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat

    2013-01-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20.

  2. Proton-conducting membranes based on benzimidazole-containing sulfonated poly(ether ether ketone) compared with their carboxyl acid form

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Wu, Jing; Zhao, Chengji; Zhang, Gang; Zhang, Yang; Shao, Ke; Xu, Dan; Lin, Haidan; Han, Miaomiao; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2009-10-15

    A series of sulfonated poly(ether ether ketone) containing pendant carboxyl (C-SPEEKs) have been synthesized using a nucleophilic polycondesation reaction. A condensation reaction between 1,2-diaminobenzene and carboxyl resulted in a new series of copolymers containing benzimidazole groups (SPEEK-BIms). The expected structures of the sulfonated copolymers are confirmed by {sup 1}H NMR. The dependence of ion exchange capacity, water uptake, proton conductivity and methanol diffusion coefficient of SPEEK-BIm membranes has been studied and compared with their carboxyl acid form. The results suggest that the introduction of benzimidazole groups may be responsible for many excellent properties of the membranes for fuel cell. It is noticeable that the markedly improved oxidative stability is benefit for the application of membrane. (author)

  3. Protective effects of ether, oxygen and their mixture for radiation in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Megumi, Tsuneo; Tsujii, Yukio; Gamo, Sumiko

    1992-01-01

    Protective effects of ether mixed with air or oxygen against ionizing radiation damages were demonstrated in adult flies of Drosophila melanogaster. The protective effects against knock-down on the second day and lethality on the eighth day after irradiation were not affected by the radiation sensitivity and DNA repair capacity of the strains. Ether (4.2%) in oxygen was more effective than ether in air for both endpoints. The protective effects may be due to damages not involving cell division, since no mitotic cells are observed in adult flies except in gonadal glands. A change in the orderliness of the cell membrane by ether is suggested to be the cause of the protective effects. (author). 16 refs.; 3 tabs

  4. Synthesis and evaluation of mutual azo prodrug of 5-aminosalicylic acid linked to 2-phenylbenzoxazole-2-yl-5-acetic acid in ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Jilani JA

    2013-07-01

    Full Text Available Jamal A Jilani,1 Maha Shomaf,2 Karem H Alzoubi3 1Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, Jordan; 2Department of Pathology, Jordan University, Amman, Jordan; 3Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan Abstract: In this study, the syntheses of 4-aminophenylbenzoxazol-2-yl-5-acetic acid, (an analogue of a known nonsteroidal anti-inflammatory drug [NSAID] and 5-[4-(benzoxazol-2-yl-5-acetic acidphenylazo]-2-hydroxybenzoic acid (a novel mutual azo prodrug of 5-aminosalicylic acid [5-ASA] are reported. The structures of the synthesized compounds were confirmed using infrared (IR, hydrogen-1 nuclear magnetic resonance (1H NMR, and mass spectrometry (MS spectroscopy. Incubation of the azo compound with rat cecal contents demonstrated the susceptibility of the prepared azo prodrug to bacterial azoreductase enzyme. The azo compound and the 4-aminophenylbenzoxazol-2-yl-5-acetic acid were evaluated for inflammatory bowel diseases, in trinitrobenzenesulfonic acid (TNB-induced colitis in rats. The synthesized diazo compound and the 4-aminophenylbenzoxazol-2-yl-5-acetic acid were found to be as effective as 5-aminosalicylic acid for ulcerative colitis. The results of this work suggest that the 4-aminophenylbenzoxazol-2-yl-5-acetic acid may represent a new lead for treatment of ulcerative colitis. Keywords: benzoxazole acetic acid, azo prodrug, colon drug delivery

  5. Mouse Mammary Tumor Virus Promoter-Containing Retroviral Promoter Conversion Vectors for Gene-Directed Enzyme Prodrug Therapy are Functional in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Reinhard Klein

    2008-01-01

    Full Text Available Gene directed-enzyme prodrug therapy (GDEPT is an approach for sensitization of tumor cells to an enzymatically activated, otherwise nontoxic, prodrug. Cytochrome P450 2B1 (CYP2B1 metabolizes the prodrugs cyclophosphamide (CPA and ifosfamide (IFA to produce the cytotoxic substances phosphoramide mustard and isophosphoramide mustard as well as the byproduct acrolein. We have constructed a retroviral promoter conversion (ProCon vector for breast cancer GDEPT. The vector allows expression of CYP2B1 from the mouse mammary tumor virus (MMTV promoter known to be active in the mammary glands of transgenic animals. It is anticipated to be used for the generation of encapsulated viral vector producing cells which, when placed inside or close to a tumor, will act as suppliers of the therapeutic CYP2B1 protein as well as of the therapeutic vector itself. The generated vector was effectively packaged by virus producing cells and allowed the production of high levels of enzymatically active CYP2B1 in infected cells which sensitized them to killing upon treatment with both IFA and CPA. Determination of the respective IC50 values demonstrated that the effective IFA dose was reduced by sixteen folds. Infection efficiencies in vivo were determined using a reporter gene-bearing vector in a mammary cancer cell-derived xenograft tumor mouse model.

  6. Radiolytic decomposition of 4-bromodiphenyl ether

    International Nuclear Information System (INIS)

    Tang Liang; Xu Gang; Wu Wenjing; Shi Wenyan; Liu Ning; Bai Yulei; Wu Minghong

    2010-01-01

    Polybrominated diphenyl ethers (PBDEs) spread widely in the environment are mainly removed by photochemical and anaerobic microbial degradation. In this paper, the decomposition of 4-bromodiphenyl ether (BDE -3), the PBDEs homologues, is investigated by electron beam irradiation of its ethanol/water solution (reduction system) and acetonitrile/water solution (oxidation system). The radiolytic products were determined by GC coupled with electron capture detector, and the reaction rate constant of e sol - in the reduction system was measured at 2.7 x 10 10 L · mol -1 · s -1 by pulsed radiolysis. The results show that the BDE-3 concentration affects strongly the decomposition ratio in the alkali solution, and the reduction system has a higher BDE-3 decomposition rate than the oxidation system. This indicates that the BDE-3 was reduced by effectively capturing e sol - in radiolytic process. (authors)

  7. Spino ether and its vortices: leptons and hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Skorski, R [College of Engineering, Univ. of Alabama, Alabama (USA)

    1977-03-01

    According to the theory advanced by the author, space is occupied by a spino ether lattice. Where no spino lattice exists, there are black holes. The spino is a kind of massive neutrino with a rest mass of about 7.39x10/sup -47/g and a diameter of 4.56x10/sup -34/cm. The distance between spinos in the spino lattice is about 2x10/sup -10/cm. Spino ether is ubiquitous in all matter, pervades atoms and their nuclei and penetrates matter with no resistance. In fact, hadrons and leptons are shown to be vortices of the spino ether. About one km/sup 3/ of space contains spino ether having a mass equal to 10/sup 80/ baryons, equivalent to the total mass of our universe. If the distances between spinos equaled their diameters, 4.56x10/sup -34/cm instead of 2x10/sup -10/cm, then the diameter of the mass equivalent to our universe would be about 2cm. This is in agreement with the size of the premordial universe, before its explosion, as calculated earlier by other theories. It is conjectured that explosions of energy and mass in space are more frequent on a smaller scale than those in the universe, for example novas, or even on a still smaller scale usually associated with the birth of different nuclei. The abundance of iron in the solar corona, on the surface of Mars, and in the Martin sky appears to be due to hadron formation from space itself.

  8. Dimethylzinc-Initiated Radical Coupling of β-Bromostyrenes with Ethers and Amines

    DEFF Research Database (Denmark)

    Sølvhøj, Amanda Birgitte; Ahlburg, Andreas; Madsen, Robert

    2015-01-01

    A new coupling reaction has been developed in which β-bromostyrenes react with ethers and tertiary amines to introduce the styryl group in the α-position. The transformation is mediated by Me2Zn/O2 with 10 % MnCl2 and is believed to proceed by a radical addition-elimination mechanism. The ether...... and the amine are employed as solvent and the coupling takes place through the most stable α radical for unsymmetrical substrates. The products are obtained in moderate to good yields as the pure E isomers. The coupling can be achieved with a range of smaller cyclic and acyclic ethers/amines as well as various...

  9. Poly (ether ether ketone) membranes for fuel cells; Membranas de poli (eter eter cetona) sulfonado para celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D., E-mail: jacquecosta@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Hui, Wang S. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil); Oliveira, Vivianna S. de [Escola Tecnica Rezende-Rammel, Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  10. IRON(III) NITRATE-CATALYZED FACILE SYNTHESIS OF DIPHENYLMETHYL (DPM) ETHERS FROM ALCOHOLS

    Science.gov (United States)

    Diphenyl methyl (DPM) ethers constitute important structural portion of some pharmaceutical entities and also as protective group for hydroxyl groups in synthetic chemistry. DPM ethers are normally prepared using concentrated acids or base as catalysts, which may result in the fo...

  11. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy

    DEFF Research Database (Denmark)

    Denmeade, Samuel R; Mhaka, Annastasiah M; Rosen, D Marc

    2012-01-01

    adenosine triphosphatase (SERCA) pump, whose proper function is required by all cell types for viability. To achieve targeted inhibition, we took advantage of the unique expression of the carboxypeptidase prostate-specific membrane antigen (PSMA) by tumor endothelial cells within the microenvironment...... of solid tumors. We generated a prodrug, G202, consisting of a PSMA-specific peptide coupled to an analog of the potent SERCA pump inhibitor thapsigargin. G202 produced substantial tumor regression against a panel of human cancer xenografts in vivo at doses that were minimally toxic to the host...

  12. Thermal and oxidative degradation studies of formulated C-ethers by gel-permeation chromatography

    Science.gov (United States)

    Jones, W. R., Jr.; Morales, W.

    1982-01-01

    Gel-permeation chromatography was used to analyze C-ether lubricant formulations from high-temperature bearing tests and from micro-oxidation tests. Three mu-styragel columns (one 500 and two 100 A) and a tetrahydrofuran mobile phase were found to adequately separate the C-ether degradation products. The micro-oxidation tests yielded degradation results qualitatively similar to those observed from the bearing tests. Micro-oxidation tests conducted in air yielded more degradation than did tests in nitrogen. No great differences were observed between the thermal-oxidative stabilities of the two C-ether formulations or between the catalytic degradation activities of silver and M-50 steel. C-ether formulation I did yield more degradation than did formulation II in 111- and 25-hour bearing tests, respectively.

  13. Levels and congener profiles of polybrominated diphenyl ethers (PBDEs) in Zebra mussels (D. polymorpha) from Lake Maggiore (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Binelli, A. [Department of Biology, Via Celoria 26, University of Milan, 20133 Milan (Italy)], E-mail: andrea.binelli@unimi.it; Guzzella, L.; Roscioli, C. [IRSA-CNR, 20047 Brugherio (Milan) (Italy)

    2008-06-15

    Several congeners of polybrominated diphenyl ethers (PBDEs) were monitored in 14 different sampling stations of Lake Maggiore, the second largest Italian lake in regard to surface, volume and average depth, using the sentinel-organism Zebra mussel (Dreissena polymorpha). Results revealed a moderate contamination with {sigma}PBDE levels (BDE-17, -28, -47, -66, -71, -85, -99, -100, -138, -153, -154, -183, -190 and -209) ranging from 40 to 447 ng g{sup -1} lipid weight which are similar to those found in environments polluted by deposition or atmospheric transport. The general order of decreasing congener contribution to the total load was BDE-47 > -99 > -100 > -209, which closely reflected patterns observed in mussels collected in freshwater ecosystems worldwide. - This study shows the first data of PBDE contamination in freshwater invertebrates from Mediterranean basin.

  14. Levels and congener profiles of polybrominated diphenyl ethers (PBDEs) in Zebra mussels (D. polymorpha) from Lake Maggiore (Italy)

    International Nuclear Information System (INIS)

    Binelli, A.; Guzzella, L.; Roscioli, C.

    2008-01-01

    Several congeners of polybrominated diphenyl ethers (PBDEs) were monitored in 14 different sampling stations of Lake Maggiore, the second largest Italian lake in regard to surface, volume and average depth, using the sentinel-organism Zebra mussel (Dreissena polymorpha). Results revealed a moderate contamination with ΣPBDE levels (BDE-17, -28, -47, -66, -71, -85, -99, -100, -138, -153, -154, -183, -190 and -209) ranging from 40 to 447 ng g -1 lipid weight which are similar to those found in environments polluted by deposition or atmospheric transport. The general order of decreasing congener contribution to the total load was BDE-47 > -99 > -100 > -209, which closely reflected patterns observed in mussels collected in freshwater ecosystems worldwide. - This study shows the first data of PBDE contamination in freshwater invertebrates from Mediterranean basin

  15. Direct dimethyl ether fueling of a high temperature polymer fuel cell

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Vassiliev, Anton; Olsen, M.I.

    2012-01-01

    Direct dimethyl ether (DME) fuel cells suffer from poor DME–water miscibility and so far peak powers of only 20–40 mW cm−2 have been reported. Based on available literature on solubility of dimethyl ether (DME) in water at ambient pressure it was estimated that the maximum concentration of DME at...

  16. Synthesis of Novel Bibrachial Lariat Ethers (BiBLEs) Containing [1,2 ...

    African Journals Online (AJOL)

    NICO

    A practical and regioselective method for the synthesis of cis-diastereomers of bibrachial lariat ethers (BiBLEs) bearing ester and amide groups is reported. The novel bibrachial lariat ethers (BiBLEs) 3a–d with neutral side chains were prepared by reaction of the corresponding aza-crown macrocycles 1a–b with ethyl ...

  17. Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures

    International Nuclear Information System (INIS)

    Hani, Rachida; Solimando, Roland; Negadi, Latifa; Jose, Jacques; Ait Kaci, Ahmed

    2012-01-01

    Highlights: ► Vapor pressures of (1-hexene + methyl butyl ether) or (1-hexene + methyl tert-butyl ether) are reported between (263 and 363) K. ► The two mixtures exhibit positive G E . ► Additionally, molar excess enthalpies, H E , for the two binary systems have been measured at 303.15. - Abstract: The vapor pressures of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary mixtures and of the three pure components were measured by means of a static device at temperatures between (263 and 333) K. The data were correlated with the Antoine equation. From these data, excess Gibbs functions were calculated for several constant temperatures and fitted to a third-order Redlich–Kister equation using the Barker’s method. Additionally, molar excess enthalpies, H E , for the two binary systems have been measured at 303.15 K using an isothermal flow calorimeter.

  18. Metabolism of nitrodiphenyl ether herbicides by dioxin-degrading bacterium Sphingomonas wittichii RW1.

    Science.gov (United States)

    Keum, Young Soo; Lee, Young Ju; Kim, Jeong-Han

    2008-10-08

    Nitrodiphenyl ether herbicides, including chlomethoxyfen, nitrofen, and oxyfluorfen are potent herbicides. Some metabolites and parent compounds are considered as possible mutagens and endocrine disruptors. Both properties pose serious hygienic and environmental risks. Sphingomonas wittichii RW1 is a well-known degrader of polychlorinated dibenzo- p-dioxins, dibenzofurans, and diphenyl ethers. However, no detailed research of its metabolic activity has been performed against pesticides with a diphenyl ether scaffold. In this study, we report S. wittichii RW1 as a very potent diphenyl ether herbicide-metabolizing bacterium with broad substrate specificity. The structures of metabolites were determined by instrumental analysis and synthetic standards. Most pesticides were rapidly removed from the culture medium in the order of nitrofen > oxyfluorfen > chlomethoxyfen. In general, herbicides were degraded through the initial reduction and N-acetylation of nitro groups, followed by ether bond cleavage. Relatively low concentrations of phenolic and catecholic metabolites throughout the study suggested that these metabolites were rapidly metabolized and incorporated into primary metabolism. These results indicate that strain RW1 has very versatile metabolic activities over a wide range of environmental contaminants.

  19. Children's exposure to polybrominated diphenyl ethers.

    NARCIS (Netherlands)

    Zuurbier, M.; Leijs, M.; Schoeters, G.; Tusscher, G. Ten; Koppe, J.G.

    2006-01-01

    Background: Polybrominated biphenyl ethers (PBDEs), a class of brominated flame retardants, are frequently used in consumer products. PBDEs levels in environmental and human samples have increased in recent decades. Children are exposed to PBDEs through diet, mainly through fish, meat and milk.

  20. Mechanical properties and chemical stability of pivalolactone-based poly(ether ester)s

    NARCIS (Netherlands)

    Tijsma, E.J.; Tijsma, E.J.; van der Does, L.; Bantjes, A.; Bantjes, A.; Vulic, I.

    1994-01-01

    The processing, mechanical and chemical properties of poly(ether ester)s, prepared from pivalolactone (PVL), 1,4-butanediol (4G) and dimethyl terephthalate (DMT), were studied. The poly(ether ester)s could easily be processed by injection moulding, owing to their favourable rheological and thermal

  1. Flourimetric and prototropic studies on the inclusion complexation of 2-amino and 4-aminodiphenyl ethers with {beta}-cyclodextrin: Unusual behavior of 4-aminodiphenyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Enoch, Israel V. Muthu Vijayan [Department of Chemistry, Annamalai University, Annamalainagar 608 002, Tamil Nadu (India); Swaminathan, Meenakshisundaram [Department of Chemistry, Annamalai University, Annamalainagar 608 002, Tamil Nadu (India)], E-mail: chemsam@yahoo.com

    2007-12-15

    The fluorescence characteristics of diphenyl ether (DPE), 2-aminodiphenyl ether (2ADPE) and 4-aminodiphenyl ether (4ADPE) and prototropic behavior of 2ADPE and 4ADPE on inclusion complexation with {beta}-cyclodextrin have been investigated. DPE forms 1:1 complex whereas 2ADPE and 4ADPE form 1:2 complex with {beta}-CDx. The fluorimetric and prototropic behaviors of 4ADPE in {beta}-CDx are different from those in aqueous solution. The dual fluorescence of 4ADPE in {beta}-CDx is found to be due to twisted intramolecular charge transfer (TICT) character induced by inclusion complexation. The two equilibria viz. monocation{r_reversible}monocation solvent exciplex{r_reversible}neutral reported for 4ADPE in aqueous solution are not observed in presence of {beta}-CDx. The ground and excited state pK{sub a} values for monocation-neutral equilibrium of 2ADPE and 4ADPE have been reported.

  2. Synthesis and Properties of a New Water-Soluble Prodrug of the Adenosine A2A Receptor Antagonist MSX-2

    Directory of Open Access Journals (Sweden)

    Christa E. Müller

    2008-02-01

    Full Text Available The compound L-valine-3-{8-[(E-2-[3-methoxyphenylethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4 was synthesized as an aminoacid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to bestable in artificial gastric acid, but readily cleaved by pig liver esterase.

  3. Synthesis and properties of a new water-soluble prodrug of the adenosine A 2A receptor antagonist MSX-2.

    Science.gov (United States)

    Vollmann, Karl; Qurishi, Ramatullah; Hockemeyer, Jörg; Müller, Christa E

    2008-02-12

    The compound L-valine-3-{8-[(E)-2-[3-methoxyphenyl)ethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4) was synthesized as an amino acid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to be stable in artificial gastric acid, but readily cleaved by pig liver esterase.

  4. High Resolution Rotational Spectroscopy of a Flexible Cyclic Ether

    Science.gov (United States)

    Gámez, F.; Martínez-Haya, B.; Blanco, S.; López, J. C.; Alonso, J. L.

    2011-06-01

    Crown ethers stand as one cornerstone molecular class inhost-guest Supramolecular Chemistry and constitute building blocks for a broad range of modern materials. We report here the first high resolution rotational study of a crown ether: 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5 ether,15c5). Molecular beam Fourier transform microwave spectroscopy has been employed. The liquid sample of 15c5 has been vaporized using heating methods. The considerable size of 15c5 and the broad range of conformations allowed by the flexibility of its backbone pose important challenges to spectroscopy approaches. In fact, the ab-initio computational study for isolated 15c5, yields at least six stable conformers with relative free energies within 2 kJ Mol-1 (167 Cm-1). Nevertheless, in this investigation it has been possible to identify and characterize in detail one stable rotamer of the 15c5 molecule and to challenge different quantum methods for the accurate description of this system. The results pave the ground for an extensive description of the conformational landscape of 15c5 and related cyclic ethers in the near term. J. L. Alonso, F. J. Lorenzo, J. C. López, A. Lesarri, S. Mata and H. Dreizler, Chem. Phys., 218, 267 (1997) S. Blanco, J.C López, J.L. Alonso, P. Ottaviani, W. Caminati, J. Chem. Phys. 119, 880 (2003) S.E. Hill, D. Feller, Int. J. Mass Spectrom. 201, 41 (2000)

  5. Solvent Effects on Cesium Complexation with Crown Ethers from Liquid to Supercritical Fluids

    International Nuclear Information System (INIS)

    Wai, Chien M.; Rustenholtz, Anne; Wang, Shaofen; Lee, Su-Chen; Herman, Jamie; Porter, Richard A.

    2004-01-01

    Nuclear magnetic resonance (NMR) techniques were used to study crown ether-water interactions in solvents of low dielectric constants such as chloroform and carbon tetrachloride. Water forms a 1:1 complex with a number of crown ethers including 12-crown-4, 15-crown-5, 18-crown-6, dicyclohexano-18=crown-6, dicyclohexano-24-crown 8, and dibenzl-24-crown-8 in chloroform. Among these crown ethers, the 18-crown-6-H2 complex has the largest equilibrium constant (K=545) and 97% of the crown is complexed to water in chloroform. Addition of carbon tetrachloride to chloroform lowers the equilibrium constants of the crown-water complexes. The partition coefficients of crown ethers (D=crown in water/crown in solvent) between water and organic solvent also vary with solvent composition

  6. Polychlorinated dioxins, furans, and biphenyls, and polybrominated diphenyl ethers in a U.S. meat market basket and estimates of dietary intake.

    Science.gov (United States)

    Huwe, Janice K; Larsen, Gerald L

    2005-08-01

    Persistent environmental contaminants including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), non-ortho-polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) were analyzed in 65 meat samples collected from supermarkets across the U.S. in 2001. The samples included hamburger, sirloin steaks, pork chops, bacon, and whole chickens from nine different cities. The average PCDD/F/non-ortho-PCB toxic equivalency (TEQ) for all the samples was 0.55 pg/g of lipid (nd (nondetect) = DL (detection limit)/2) with a range from nondetectable to 3.21 pg/g of lipid. For PBDEs, eight congeners were routinely found in the meat samples with an average sum of 1.71 ng/g of lipid (nd = DL/2) and a range from nondetectable to 16.6 ng/g of lipid. While average TEQs were similar to recent values reported in Europe and Asia, the sums of PBDEs in chicken and pork were 3-20 times higher than levels reported in Spain and Japan for these foods. The presence of a few outliers raised the average PBDE sums and indicated that isolated sources of contamination may exist that, if identified, could be removed from the U.S. animal production chain. Using these TEQ and PBDE values and USDA food consumption data, the estimated dietary intake ranges from meat products were 5.3-16.0 pg TEQ and 14.9-44.7 ng of PBDEs/d or 0.1-0.3 pg TEQ and 0.3-0.5 (ng of PBDEs/kg of body mass)/d for an average individual, similar to intakes in other countries.

  7. Molecular modeling of the voltammetric oxidation at a glassy carbon electrode of the antimalarial drug primaquine and its prodrugs succinylprimaquine and maleylprimaquine

    Energy Technology Data Exchange (ETDEWEB)

    La-Scalea, Mauro A [Lapen, Laboratorio de Planejamento e Sintese de Quimioterapicos Potencialmente Ativos Contra Endemias Tropicais, Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 580 Bl. 13 sup., 05508-900 Sao Paulo (Brazil); Menezes, Carla M.S. [Lapen, Laboratorio de Planejamento e Sintese de Quimioterapicos Potencialmente Ativos Contra Endemias Tropicais, Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 580 Bl. 13 sup., 05508-900 Sao Paulo (Brazil); Matsutami, Guilherme C [Lapen, Laboratorio de Planejamento e Sintese de Quimioterapicos Potencialmente Ativos Contra Endemias Tropicais, Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 580 Bl. 13 sup., 05508-900 Sao Paulo (Brazil); Polli, Michelle C [Lapen, Laboratorio de Planejamento e Sintese de Quimioterapicos Potencialmente Ativos Contra Endemias Tropicais, Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 580 Bl. 13 sup., 05508-900 Sao Paulo (Brazil); Serrano, Silvia H.P. [Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 748 Bl. 2 sup., 05508-90 Sao Paulo (Brazil); Ferreira, Elizabeth I [Lapen, Laboratorio de Planejamento e Sintese de Quimioterapicos Potencialmente Ativos Contra Endemias Tropicais, Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 580 Bl. 13 sup., 05508-900 Sao Paulo (Brazil)

    2006-07-15

    The 8-aminoquinoline primaquine (PQ) is the only antimalarial drug used as tissue schizonticide and relapsing malaria. Antichagasic activity was also reported. Nevertheless, as it also shows serious side effects, prodrugs such as succinyl and maleyl derivatives have been proposed to decrease its toxicity. Although PQ mechanism of action has not been completely elucidated, the promotion of oxidative stress is an advanced hypothesis that could explain its activity in both plasmodia and trypanosome parasites. The oxidation of PQ and its prodrugs, maleylprimaquine (MPQ) and succinylprimaquine (SPQ), was studied by cyclic voltammetry using glassy carbon electrode. All compounds were oxidized in aqueous medium, with the charge transfer process being pH-dependent in acidic medium and pH-independent in a weak basic medium, being the neutral form more easily oxidized. This indicated that the protonation of the nitrogen atoms displays a determinant role in the voltammetric oxidation, being both prodrugs more easily oxidized than PQ protonated forms, in the order: SPQ < MPQ < PQ. For a better understanding of this behavior, a molecular modeling study was performed using the AM1 semi-empirical method from Spartan 04 for Linux (v.119, Wavefunction Inc.). The medium pH showed to be fundamental not only to the electronic density of the quinoline ring but also to the rearrangement of the nitrogen side chain. The electronic density of primaquine non-protonated quinoline ring is higher than that in its protonated and diprotonated species. Also, the use of prodrugs and the degree of saturation of the carriers (maleic or succinic acid) interfere with this feature. SPQ and MPQ have a slight increase in the quinoline electronic density in comparison to PQ. Nevertheless, the carrier in the side chain of SPQ is closer to the quinoline ring than it is in MPQ, which accounts for the higher electronic density in the former. The most significant effect occurs in the correspondent protonated

  8. Molecular modeling of the voltammetric oxidation at a glassy carbon electrode of the antimalarial drug primaquine and its prodrugs succinylprimaquine and maleylprimaquine

    International Nuclear Information System (INIS)

    La-Scalea, Mauro A.; Menezes, Carla M.S.; Matsutami, Guilherme C.; Polli, Michelle C.; Serrano, Silvia H.P.; Ferreira, Elizabeth I.

    2006-01-01

    The 8-aminoquinoline primaquine (PQ) is the only antimalarial drug used as tissue schizonticide and relapsing malaria. Antichagasic activity was also reported. Nevertheless, as it also shows serious side effects, prodrugs such as succinyl and maleyl derivatives have been proposed to decrease its toxicity. Although PQ mechanism of action has not been completely elucidated, the promotion of oxidative stress is an advanced hypothesis that could explain its activity in both plasmodia and trypanosome parasites. The oxidation of PQ and its prodrugs, maleylprimaquine (MPQ) and succinylprimaquine (SPQ), was studied by cyclic voltammetry using glassy carbon electrode. All compounds were oxidized in aqueous medium, with the charge transfer process being pH-dependent in acidic medium and pH-independent in a weak basic medium, being the neutral form more easily oxidized. This indicated that the protonation of the nitrogen atoms displays a determinant role in the voltammetric oxidation, being both prodrugs more easily oxidized than PQ protonated forms, in the order: SPQ < MPQ < PQ. For a better understanding of this behavior, a molecular modeling study was performed using the AM1 semi-empirical method from Spartan 04 for Linux (v.119, Wavefunction Inc.). The medium pH showed to be fundamental not only to the electronic density of the quinoline ring but also to the rearrangement of the nitrogen side chain. The electronic density of primaquine non-protonated quinoline ring is higher than that in its protonated and diprotonated species. Also, the use of prodrugs and the degree of saturation of the carriers (maleic or succinic acid) interfere with this feature. SPQ and MPQ have a slight increase in the quinoline electronic density in comparison to PQ. Nevertheless, the carrier in the side chain of SPQ is closer to the quinoline ring than it is in MPQ, which accounts for the higher electronic density in the former. The most significant effect occurs in the correspondent protonated

  9. Amino acid derivatives of 5-ASA as novel prodrugs for intestinal drug delivery.

    Science.gov (United States)

    Clerici, C; Gentili, G; Boschetti, E; Santucci, C; Aburbeh, A G; Natalini, B; Pellicciari, R; Morelli, A

    1994-12-01

    In an attempt to obtain site-specific delivery of 5-ASA in the intestinal tract, we have determined the extent of absorption and metabolism of a number of novel 5-ASA derivatives, namely, (N-L-glutamyl)-amino-2-salicylic acid (1), (N-L-aspartyl)-amino-2-salicylic-acid (2), 5-aminosalicyl-L-proline-L-leucine (3), and 5-(N-L-glutamyl)-aminosalicyl-L-proline-L-leucine (4), which are selectively cleaved by intestinal brush border aminopeptidase A and carboxypeptidases. These novel prodrugs, 5-ASA, and sulfasalazine were administered to adult Fisher rats (N = 30) and to animals that had undergone prior colostomy (N = 30). Urine and feces were collected at timed intervals for 48 hr and the metabolites, 5-ASA, and N-acetyl-5-ASA were measured by high-performance liquid chromatography. The absorption and metabolism of all compounds were essentially identical in colostomized and normal animals. 5-ASA exhibited a rapid proximal intestinal absorption as evidenced by the high cumulative urinary excretion (> 65%) and low fecal excretion. Sulfasalazine, as expected, exhibited a lower urinary recovery (metabolite. The novel glutamate and aspartate derivatives (1 and 2) behaved similarly to sulfasalazine, while administration of the proline-leucine derivative (3) resulted in urinary and fecal recovery values intermediate with respect to those observed with 5-ASA and sulfasalazine. 5-(N-L-Glutamyl)-aminosalicyl-L-proline-L-leucine yielded the highest fecal recovery of 5-ASA and its N-acetyl derivative, indicating a more efficient delivery to the distal bowel. Amino acid derivatives of 5-ASA appear to be potentially useful prodrugs for the site-specific delivery of 5-ASA to different regions of the intestinal tract.

  10. Radiation-induced glycoside bond breaking in cellulose methyl ethers

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Boltromeyuk, V.V.; Kovalenko, N.I.; Shadyro, O.I.

    1988-01-01

    Radiation-induced destruction of cellulose methyl ethers of different degree of esterification in aqueous solutions with and without acceptors: (N 2 O, O 2 , H 2 O + , Co(2), Cu(2)) is investigated. It is established that OH radicals make main contribution into radiolytic transformations of cellulose ethers in aqueous solutions. Reactions of radicals with free valency on carbon atoms containing secondary nonsubstituted hydroxyl groups lead also to glycoside bond breaking besides the reaction of β-fragmentation and hydrolysis of radicals with an unpaired electron localized near C 1 , C 4 , C 5 aroms

  11. Preclinical Evaluation of Promitil, a Radiation-Responsive Liposomal Formulation of Mitomycin C Prodrug, in Chemoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xi; Warner, Samuel B.; Wagner, Kyle T.; Caster, Joseph M. [Laboratory of Nano- and Translational Medicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Zhang, Tian [Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Ohana, Patricia [Lipomedix Pharmaceuticals, Jerusalem (Israel); Gabizon, Alberto A. [Lipomedix Pharmaceuticals, Jerusalem (Israel); Shaare Zedek Medical Center, Jerusalem (Israel); Wang, Andrew Z., E-mail: zawang@med.unc.edu [Laboratory of Nano- and Translational Medicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States)

    2016-11-01

    Purpose: To examine the effect of radiation on in vitro drug activation and release of Promitil, a pegylated liposomal formulation of a mitomycin C (MMC) lipid-based prodrug; and examine the efficacy and toxicity of Promitil with concurrent radiation in colorectal cancer models. Methods and Materials: Promitil was obtained from Lipomedix Pharmaceuticals (Jerusalem, Israel). We tested the effects of radiation on release of active MMC from Promitil in vitro. We next examined the radiosensitization effect of Promitil in vitro. We further evaluated the toxicity of a single injection of free MMC or Promitil when combined with radiation by assessing the effects on blood counts and in-field skin and hair toxicity. Finally, we compared the efficacy of MMC and Promitil in chemoradiotherapy using mouse xenograft models. Results: Mitomycin C was activated and released from Promitil in a controlled-release profile, and the rate of release was significantly increased in medium from previously irradiated cells. Both Promitil and MMC potently radiosensitized HT-29 cells in vitro. Toxicity of MMC (8.4 mg/kg) was substantially greater than with equivalent doses of Promitil (30 mg/kg). Mice treated with human-equivalent doses of MMC (3.3 mg/kg) experienced comparable levels of toxicity as Promitil-treated mice at 30 mg/kg. Promitil improved the antitumor efficacy of 5-fluorouracil–based chemoradiotherapy in mouse xenograft models of colorectal cancer, while equitoxic doses of MMC did not. Conclusions: We demonstrated that Promitil is an attractive agent for chemoradiotherapy because it demonstrates a radiation-triggered release of active drug. We further demonstrated that Promitil is a well-tolerated and potent radiosensitizer at doses not achievable with free MMC. These results support clinical investigations using Promitil in chemoradiotherapy.

  12. Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists

    DEFF Research Database (Denmark)

    Mohsen, Amal M Y; Mandour, Yasmine M; Sarukhanyan, Edita

    2016-01-01

    of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment...

  13. Celecoxib coupled to dextran via a glutamic acid linker yields a polymeric prodrug suitable for colonic delivery.

    Science.gov (United States)

    Lee, Yonghyun; Kim, Jungyun; Kim, Wooseong; Nam, Joon; Jeong, Seongkeun; Lee, Sunyoung; Yoo, Jin-Wook; Kim, Min-Soo; Jung, Yunjin

    2015-01-01

    Celecoxib, a selective cyclooxygenase-2 inhibitor, is potentially useful for the treatment of colonic diseases such as colorectal cancer and colitis. However, the cardiovascular toxicity of celecoxib limits its routine use in the clinic. Generally, colon-specific delivery of a drug both increases the therapeutic availability in the large intestine and decreases the systemic absorption of the drug, most likely resulting in enhanced therapeutic effects against colonic diseases such as colitis and reduced systemic side effects. To develop a colon-specific prodrug of celecoxib that could reduce its cardiovascular toxicity and improve its therapeutic activity, dextran-glutamic acid-celecoxib conjugate (glutam-1-yl celecoxib-dextran ester [G1CD]) was prepared and evaluated. While stable in pH 1.2 and 6.8 buffer solutions and small-intestinal contents, G1CD efficiently released celecoxib in cecal contents. Oral administration of G1CD to rats delivered a larger amount of celecoxib to the large intestine than free celecoxib. G1CD prevented the systemic absorption of celecoxib and did not decrease the serum level of 6-ketoprostaglandin F1α, an inverse indicator of cardiovascular toxicity of celecoxib. Collectively, G1CD may be a polymeric colon-specific celecoxib prodrug with therapeutic and toxicological advantages.

  14. Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models.

    Science.gov (United States)

    Benito, Juliana; Ramirez, Marc S; Millward, Niki Zacharias; Velez, Juliana; Harutyunyan, Karine G; Lu, Hongbo; Shi, Yue-Xi; Matre, Polina; Jacamo, Rodrigo; Ma, Helen; Konoplev, Sergej; McQueen, Teresa; Volgin, Andrei; Protopopova, Marina; Mu, Hong; Lee, Jaehyuk; Bhattacharya, Pratip K; Marszalek, Joseph R; Davis, R Eric; Bankson, James A; Cortes, Jorge E; Hart, Charles P; Andreeff, Michael; Konopleva, Marina

    2016-04-01

    To characterize the prevalence of hypoxia in the leukemic bone marrow, its association with metabolic and transcriptional changes in the leukemic blasts and the utility of hypoxia-activated prodrug TH-302 in leukemia models. Hyperpolarized magnetic resonance spectroscopy was utilized to interrogate the pyruvate metabolism of the bone marrow in the murine acute myeloid leukemia (AML) model. Nanostring technology was used to evaluate a gene set defining a hypoxia signature in leukemic blasts and normal donors. The efficacy of the hypoxia-activated prodrug TH-302 was examined in the in vitro and in vivo leukemia models. Metabolic imaging has demonstrated increased glycolysis in the femur of leukemic mice compared with healthy control mice, suggesting metabolic reprogramming of hypoxic bone marrow niches. Primary leukemic blasts in samples from AML patients overexpressed genes defining a "hypoxia index" compared with samples from normal donors. TH-302 depleted hypoxic cells, prolonged survival of xenograft leukemia models, and reduced the leukemia stem cell pool in vivo In the aggressive FLT3/ITD MOLM-13 model, combination of TH-302 with tyrosine kinase inhibitor sorafenib had greater antileukemia effects than either drug alone. Importantly, residual leukemic bone marrow cells in a syngeneic AML model remain hypoxic after chemotherapy. In turn, administration of TH-302 following chemotherapy treatment to mice with residual disease prolonged survival, suggesting that this approach may be suitable for eliminating chemotherapy-resistant leukemia cells. These findings implicate a pathogenic role of hypoxia in leukemia maintenance and chemoresistance and demonstrate the feasibility of targeting hypoxic cells by hypoxia cytotoxins. ©2015 American Association for Cancer Research.

  15. Stabilization of the nitric oxide (NO) prodrugs and anticancer leads, PABA/NO and Double JS-K, through incorporation into PEG-protected nanoparticles.

    Science.gov (United States)

    Kumar, Varun; Hong, Sam Y; Maciag, Anna E; Saavedra, Joseph E; Adamson, Douglas H; Prud'homme, Robert K; Keefer, Larry K; Chakrapani, Harinath

    2010-02-01

    We report the stabilization of the nitric oxide (NO) prodrugs and anticancer lead compounds, PABA/NO (O(2)-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl} 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate) and "Double JS-K" 1,5-bis-{1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diol-2-ato}-2,4-dinitrobenzene, through their incorporation into polymer-protected nanoparticles. The prodrugs were formulated in block copolymer-stabilized nanoparticles with sizes from 220 to 450 nm by a novel rapid precipitation process. The block copolymers, with polyethylene glycol (PEG) soluble blocks, provide a steric barrier against NO prodrug activation by glutathione. Too rapid activation and NO release has been a major barrier to effective administration of this class of compounds. The nanoparticle stabilized PABA/NO are protected from attack by glutathione as evidenced by a significant increase in time taken for 50% decomposition from 15 min (unformulated) to 5 h (formulated); in the case of Double JS-K, the 50% decomposition time was extended from 4.5 min (unformulated) to 40 min (formulated). The more hydrophobic PABA/NO produced more stable nanoparticles and correspondingly more extended release times in comparison with Double JS-K. The hydrophobic blocks of the polymer were either polystyrene or polylactide. Both blocks produced nanoparticles of approximately the same size and release kinetics. This combination of PEG-protected nanoparticles with sizes appropriate for cancer targeting by enhanced permeation and retention (EPR) and delayed release of NO may afford enhanced therapeutic benefit.

  16. Nickel-catalyzed direct synthesis of dialkoxymethane ethers

    Indian Academy of Sciences (India)

    MURUGAN SUBARAMANIAN

    Nickel catalysis; alcohol; paraformaldehyde; ether; solvent-free condition. 1. Introduction ..... oxidation and Dopamine Release with Protective Effects. Against Central ... P, Ghosh A, Saha R and Saha B 2016 A Review on the. Advancement of ...

  17. Enhancing the intestinal absorption of molecules containing the polar guanidino functionality: a double-targeted prodrug approach.

    Science.gov (United States)

    Sun, Jing; Dahan, Arik; Amidon, Gordon L

    2010-01-28

    A prodrug strategy was applied to guanidino-containing analogues to increase oral absorption via hPEPT1 and hVACVase. l-Valine, l-isoleucine, and l-phenylalanine esters of [3-(hydroxymethyl)phenyl]guanidine (3-HPG) were synthesized and evaluated for transport and activation. In HeLa/hPEPT1 cells, Val-3-HPG and Ile-3-HPG exhibited high affinity to hPEPT1 (IC(50): 0.65 and 0.63 mM, respectively), and all three l-amino acid esters showed higher uptake (2.6- to 9-fold) than the parent compound 3-HPG. Val-3-HPG and Ile-3-HPG demonstrated remarkable Caco-2 permeability enhancement, and Val-3-HPG exhibited comparable permeability to valacyclovir. In rat perfusion studies, Val-3-HPG and Ile-3-HPG permeabilities were significantly higher than 3-HPG and exceeded/matched the high-permeability standard metoprolol, respectively. All the l-amino acid 3-HPG esters were effectively activated in HeLa and Caco-2 cell homogenates and were found to be good substrates of hVACVase (k(cat)/K(m) in mM(-1) x s(-1): Val-3-HPG, 3370; Ile-3-HPG, 1580; Phe-3-HPG, 1660). In conclusion, a prodrug strategy is effective at increasing the intestinal permeability of polar guanidino analogues via targeting hPEPT1 for transport and hVACVase for activation.

  18. Synthesis and evaluation of water-soluble poly(vinyl alcohol)-paclitaxel conjugate as a macromolecular prodrug

    International Nuclear Information System (INIS)

    Kakinoki, Atsufumi; Kaneo, Yoshiharu; Tanaka, Tetsuro; Hosokawa, Yoshitsugu

    2008-01-01

    Paclitaxel (PTX) is an antitumor agent for the treatment of various human cancers. Cremophor EL and ethanol are used to formulate PTX in commercial injection solutions, because of its poor solubility in water. However, these agents cause severe allergic reaction upon intravenous administration. The aim of this study is to synthesize water-soluble macromolecular prodrugs of PTX for enhancing the therapeutic efficacy. Poly (vinyl alcohol) (PVA, 80 kDa), water-soluble synthetic polymer, was used as a drug carrier which is safe and stable in the body. The 2'-hydroxyl group of PTX was reacted with succinic anhydride and then carboxylic group of the succinyl spacer was coupled to PVA via ethylene diamine spacer, resulting the water-soluble prodrug of poly (vinyl alcohol)-paclitaxel conjugate (PVA-SPTX). The solubility of PTX was greatly enhanced by the conjugation to PVA. The release of PTX from the conjugate was accelerated at the neutral to basic conditions in in vitro release experiment. [ 125 I]-labeled PVA-SPTX was retained in the blood circulation for several days and was gradually distributed into the tumorous tissue after intravenous injection to the tumor-bearing mice. PVA-SPTX inhibited the growth of sarcoma 180 cells subcutaneously inoculated in mice. It was suggested that the water-solubility of PTX was markedly enhanced by the conjugation to PVA, and PVA-SPTX effectively delivered PTX to the tumorous tissue due to the enhanced permeability and retention (EPR) effect. (author)

  19. Reproductive Effects of Two Polybrominated Diphenyl Ethers on the Rotifer Brachionus plicatilis.

    Science.gov (United States)

    Zhang, Jing; Wang, You; Zhou, Bin; Sun, Kai-Ming; Tang, Xuexi

    2016-08-01

    The effects of two polybrominated diphenyl ethers (PBDEs) on the reproduction of the rotifer Brachionus plicatilis were investigated. Results showed that sexual maturation was promoted by tetra-brominated diphenyl ether-47 (BDE-47) and deca-brominated diphenyl ether-209 (BDE-209), whereas fecundity was inhibited by BDE-47, but promoted by BDE-209. Additionally, both PBDEs affected the expression of two genes, vasa and nanos mRNA, related to rotifer reproduction. This suggests a possible regulatory molecular mechanism at the transcriptional level. Our research extends the current knowledge of the ecotoxicological mechanism induced by PBDEs and provides further essential information for assessing the risks of PBDE contamination in marine ecosystems.

  20. Amended final report on the safety assessment of PPG-40 butyl ether with an addendum to include PPG-2, -4, -5, -9, -12, -14, -15, -16, -17, -18, -20, -22, -24, -26, -30, -33, -52, and -53 butyl ethers.

    Science.gov (United States)

    Lanigan, R S

    2001-01-01

    The Polypropylene Glycol (PPG) Butyl Ethers function as skinand hair-conditioning agents in cosmetics. Intestinal absorption of the PPG Butyl Ethers was inversely proportional to the molecular weight. In general, the toxicity of the PPG Butyl Ethers decreased as the molecular weight increased. In acute studies, moderate intraperitoneal (IP) doses of various PPG Butyl Ethers caused convulsive seizures in mice and anesthetized dogs, and large oral doses caused decreased activity, anuria, renal tubular swelling and necrosis, and hepatic swelling and necrosis. PPG-2 Butyl Ether vapors were nontoxic by the inhalation route. PPG-2 Butyl Ether was nontoxic in short-term feeding and dermal exposure studies in rats. In animal irritation studies, PPG-2 Butyl Ether caused minor, transient erythema and desquamation; in addition, erythema, edema, ecchymosis, necrosis, and other changes were observed during an acute percutaneous study. PPG-2 Butyl Ether also caused minor to moderate conjunctival irritation and minor corneal injury. PPG-2 Butyl Ether when dermally applied was nontoxic to pregnant rats and was nonteratogenic at doses up to 1.0 ml/kg/day. PPG BE800 at concentrations of 0.001% to 0.26% in feed was noncarcinogenic to rats after 2 years of treatment. In clinical studies, PPG BE800 was nonirritating and nonsensitizing to the skin when tested using 200 subjects. PPG-40 Butyl Ether was neither an irritant nor a sensitizer in a repeat-insult patch test using 112 subjects. Although clinical testing did not indicate significant skin irritation is produced by these ingredients, the animal test data did indicate the potential that these ingredients can be irritating. Therefore, it was concluded that the PPG Butyl Ethers can be used safely in cosmetic products if they are formulated to avoid irritation. Data on the component ingredients, Propylene Glycol, PPG, and n-Butyl Alcohol, from previous cosmetic ingredient safety assessments were also considered and found to support

  1. Increased diacylglycerols characterize hepatic lipid changes in progression of human nonalcoholic fatty liver disease; comparison to a murine model.

    Science.gov (United States)

    Gorden, D Lee; Ivanova, Pavlina T; Myers, David S; McIntyre, J Oliver; VanSaun, Michael N; Wright, J Kelly; Matrisian, Lynn M; Brown, H Alex

    2011-01-01

    The spectrum of nonalcoholic fatty liver disease (NAFLD) includes steatosis, nonalcoholic steatohepatitis (NASH), and progression to cirrhosis. While differences in liver lipids between disease states have been reported, precise composition of phospholipids and diacylglycerols (DAG) at a lipid species level has not been previously described. The goal of this study was to characterize changes in lipid species through progression of human NAFLD using advanced lipidomic technology and compare this with a murine model of early and advanced NAFLD. Utilizing mass spectrometry lipidomics, over 250 phospholipid and diacylglycerol species (DAGs) were identified in normal and diseased human and murine liver extracts. Significant differences between phospholipid composition of normal and diseased livers were demonstrated, notably among DAG species, consistent with previous reports that DAG transferases are involved in the progression of NAFLD and liver fibrosis. In addition, a novel phospholipid species (ether linked phosphatidylinositol) was identified in human cirrhotic liver extracts. Using parallel lipidomics analysis of murine and human liver tissues it was determined that mice maintained on a high-fat diet provide a reproducible model of NAFLD in regards to specificity of lipid species in the liver. These studies demonstrated that novel lipid species may serve as markers of advanced liver disease and importantly, marked increases in DAG species are a hallmark of NAFLD. Elevated DAGs may contribute to altered triglyceride, phosphatidylcholine (PC), and phosphatidylethanolamine (PE) levels characteristic of the disease and specific DAG species might be important lipid signaling molecules in the progression of NAFLD.

  2. Ether-Directed ortho-C–H Olefination with a PdII/MPAA Catalyst**

    Science.gov (United States)

    Li, Gang; Leow, Dasheng; Wan, Li; Yu, Jin-Quan

    2013-01-01

    Weak coordination is powerful! A PdII-catalyzed olefination of ortho-C–H bonds of arenes directed by weakly coordinating ethers is developed using mono-protected amino acid (MPAA) ligands. This finding provides a method for chemically modifying ethers, which are abundant in natural products and drug molecules. PMID:23239120

  3. Photolytic degradation of polybromodiphenyl ethers under UV-lamp and solar irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Yang-hsin, E-mail: yhs@nchu.edu.tw [Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Wang, Chun-Kang [Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan (China)

    2009-06-15

    Polybromodiphenyl ethers (PBDEs) are widely used flame retardant additives and have been mainly used in polymers for many plastic and electronic products. PBDEs have been found to bioaccumulate in both aquatic and terrestrial ecosystems and even human bodies. The technical product with the highest use is decabrominated diphenyl ether (BDE-209). Therefore, we chose to examine the solar and UV-lamp degradation of BDE-209. A linear increase of the photodegradation rate constant for BDE-209 was observed with the solar light intensity. The degradation reactions follow the pseudo-first-order kinetics. The photodegradation of BDE-209 produced other less brominated diphenyl ethers under ultraviolet light exposure, suggesting that the photodegradation of BDE-209 is a sequential dehalogenation mechanism. BDE-209 underwent rapid reductive debromination in these photodecomposition experiments. The formation rate constants of three nonabromodiphenyl ethers increase with the order of BDE-206, BDE-207 and BDE-208, indicating debromination mainly occurred at para > meta > ortho positions. These findings of the process properties and reductive debromination mechanism of the photolytic degradation of PBDEs can facilitate the design of remediation processes and also aid in predicting their fate in the environment.

  4. Hydrolysis of strained bridgehead bicyclic vinyl ethers and sulfides

    International Nuclear Information System (INIS)

    Chwang, W.K.; Kresge, A.J.; Wiseman, J.R.

    1979-01-01

    Rates of hydrolysis of the bridgehead bicyclic vinyl ether 9-oxabicyclo[3.3.1]non-1-ene(6) and its vinyl sulfide counterpart 9-thiabicyclo[3.3.1]non-1-ene(7), catalyzed by the hydronium ion, were measured in H 2 O and in D 2 O solution. These data give isotope effects, k/sub H//k/sub D/ = 2.4 and 1.9 respectively, which show that these reactions occur by the normal, rate-determining carbon protonation, mechanism. The vinyl ether 6 is less reactive than its olefin analogue, bicyclo[3.3.1]non-1-ene (relative rate 1:1/1400), as may have been expected for a constrained bicyclic system such as this, where stabilization of the bridgehead carbocation intermediate by conjugation with oxygen is severely impaired. The vinyl sulfide 7, however, is even less reactive than the vinyl ether (relative rates 1:1/140); this is a remarkable result in view of the fact that conjugation between the sulfur atom and the cationic center is presumably also strongly inhibited. 1 figure, 3 tables

  5. [Visualisation methods for etheric formative forces].

    Science.gov (United States)

    Burkhard, B; Kittel, R

    2009-09-01

    Rudolf Steiner, the founder of anthroposophy, suggested the development of visualisation methods for "etheric formative forces". The essential methods, their "spiritual scientific" basis and indications are described and their claims critically tested. The methods are not validated, the key criteria for diagnostic tests (reproducibility, sensitivity, specifity) are not given.

  6. Biosynthesis of ether-phospholipids including plasmalogens, peroxisomes and human disease: new insights into an old problem

    NARCIS (Netherlands)

    Wanders, Ronald J. A.; Brites, Pedro

    2010-01-01

    Ether-phospholipids represent an important subclass of phospholipids in animal cell membranes characterized by the presence of an ether bond at the sn-I position and the enrichment of PUFAs at the sn-2 position. Of the different ether-phospholipids, plasmalogens are the most abundant form and their

  7. Convenient procedures for the α-metallation of vinylic ethers and thioethers

    NARCIS (Netherlands)

    Verkruijsse, H.D.; Brandsma, L.; Schleyer, P. von R.

    1987-01-01

    Ethyl vinyl ether H2C=CHOC2H5 and the analogous cyclic vinylic ethers dehydrofuran and 2,3-dihydropyran can be potassiated at −20°C in the α-position with a 1/1/1 molar mixture of BuLi, t-BuOK and TMEDA in hexane. Methyl vinyl sulfide is potassiated very smoothly by a 1/1 molar mixture of BuLi and

  8. Polybrominated diphenyl ethers and polychlorinated biphenyls in human adipose tissue from New York.

    Science.gov (United States)

    Johnson-Restrepo, Boris; Kannan, Kurunthachalam; Rapaport, David P; Rodan, Bruce D

    2005-07-15

    Human adipose tissue samples (n=52) collected in New York City during 2003-2004 were analyzed for the presence of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs). Concentrations of PBDEs in adipose tissues ranged from 17 to 9630 ng/g, lipid wt (median: 77; mean: 399 ng/g, lipid wt; sum all di- through hexaBDE congeners). Average PBDE concentrations in human adipose tissues from New York City were 10- to 100-times greater than those reported for European countries. A concentration of 9630 ng/g, lipid wt, found in a sample of adipose tissue, is one of the highest concentrations reported to date. PBDE 47 (2,2',4,4'-tetraBDE) was the major congener detected in human tissues, followed by PBDE congeners #99 (2,2',4,4',5-penta BDE), 100 (2,2',4,4',6-pentaBDE), and 153 (2,2',4,4',5,5'-hexaBDE). A few individuals contained PBDE 153 as the predominant congener in total PBDE concentrations, suggesting alternative exposure sources, possibly occupational. Principal component analysis of PBDE congener composition in human adipose tissues revealed the presence of five clusters, each characterized by varying composition. No significant difference was found in the concentrations of PBDEs between gender. Concentrations of PBDEs were, on average, similar to those for PCBs in human adipose tissues, and substantially higher when PBDE outliers were retained. PBDE and PCB concentrations were not correlated. PBDE concentrations did not increase with increasing age of the subjects, whereas concentrations of PCBs increased with increasing age in males but not in females in this study. These results suggest differences between PBDEs and PCBs in their sources or time course of exposure and disposition. The presence of comparable or greater concentrations of PBDEs, relative to PCBs, highlights the importance of recentvoluntary and regulatory effortsto cease production of commercial penta- and octa-BDE in North America, although these efforts do not address

  9. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    International Nuclear Information System (INIS)

    Cao, Zongshuang; Qiu, Li; Yang, Yongzhen; Chen, Yongkang; Liu, Xuguang

    2015-01-01

    Graphical abstract: Multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites incorporating surface modified multi-walled carbon nanotubes (MWCNTs) as fillers were fabricated in a solution blending method in order to explore the dynamic mechanical and tribological properties of MWCNT/PEEK composites systematically. It is evident that surface modifications of MWCNTs have a significant impact on dispersibility of MWCNTs in PEEK, dynamic mechanical and tribological properties of MWCNT/PEEK composites. Typically, a clear effect of surface modifications of MWCNTs on tribological properties of MWCNT/PEEK composites was observed. A significant reduction in frictional coefficient of MWCNT/PEEK composites with the MWCNTs modified with ethanolamine has been achieved and the self-lubricating film on their worn surfaces was also observed. - Highlights: • The dispersibility of surface modified MWCNTs in PEEK has been studied. • MWCNTs modified with ethanolamine have showed a good dispersion in PEEK. • Surface modifications of MWCNTs have a significant impact on both dynamic mechanical and tribological properties of MWCNT/PEEK composites. - Abstract: The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e

  10. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zongshuang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center of Advanced Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Qiu, Li [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center of Advanced Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Chen, Yongkang, E-mail: y.k.chen@herts.ac.uk [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); University of Hertfordshire, School of Engineering and Technology, Hatfield, Hertfordshire AL10 9AB (United Kingdom); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-10-30

    Graphical abstract: Multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites incorporating surface modified multi-walled carbon nanotubes (MWCNTs) as fillers were fabricated in a solution blending method in order to explore the dynamic mechanical and tribological properties of MWCNT/PEEK composites systematically. It is evident that surface modifications of MWCNTs have a significant impact on dispersibility of MWCNTs in PEEK, dynamic mechanical and tribological properties of MWCNT/PEEK composites. Typically, a clear effect of surface modifications of MWCNTs on tribological properties of MWCNT/PEEK composites was observed. A significant reduction in frictional coefficient of MWCNT/PEEK composites with the MWCNTs modified with ethanolamine has been achieved and the self-lubricating film on their worn surfaces was also observed. - Highlights: • The dispersibility of surface modified MWCNTs in PEEK has been studied. • MWCNTs modified with ethanolamine have showed a good dispersion in PEEK. • Surface modifications of MWCNTs have a significant impact on both dynamic mechanical and tribological properties of MWCNT/PEEK composites. - Abstract: The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e

  11. Glycerol tertiary butyl ethers via etherification of glycerol with isobutene

    Energy Technology Data Exchange (ETDEWEB)

    Behr, A. [Dortmund Univ. (Germany). Chair of Chemical Process Development/Technical Chemistry A

    2007-07-01

    Glycerol and isobutene can react to a mixture of glycerol tertiary butyl ethers (GTBE) which can be used as additives for gasoline, diesel or biodiesel. This reaction was investigated in lab scale yielding a proposal for a process flow diagram containing reaction, extraction, flash and rectification units. This process has the advantages that only the suitable higher ethers are formed and that both glycerol and isobutene are fully converted. The homogeneous acid catalyst is low-priced and can be completely recycled. (orig.)

  12. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    Energy Technology Data Exchange (ETDEWEB)

    Montero, Juan F.D. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C. [Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900 (Brazil); Benfatti, Cesar A.M.; Magini, Ricardo S. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Pimenta, Andréa L. [Integrated Laboratories Technologies (InteLAB), Dept. Chemical Engineering (EQA), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-970 (Brazil); Department of Biologie, Université de Cergy Pontoise, 2, Av. Adolphe Chauvin, 95302 Cergy Pontoise (France); Souza, Júlio C.M., E-mail: julio.c.m.souza@ufsc.br [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Center for Microelectromechanical Systems (CMEMS), Dept. Mechanical Engineering (DEM), Campus Azurém, 4800-058 Guimarães (Portugal)

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL{sup −1}) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL{sup −1} was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  13. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    International Nuclear Information System (INIS)

    Montero, Juan F.D.; Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C.; Benfatti, Cesar A.M.; Magini, Ricardo S.; Pimenta, Andréa L.; Souza, Júlio C.M.

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL −1 ) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL −1 was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  14. Radium separation through complexation by aqueous crown ethers and ion exchange or solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chiarizia, R.; Dietz, M.L.; Horwitz, E.P. [Argonne National Lab., IL (United States). Chemistry Div.; Burnett, W.C. [Florida State Univ., Tallahassee, FL (United States). Dept. of Oceanography

    1997-11-01

    The effect of three water-soluble, unsubstituted crown ethers (15-crown-5 (15C5), 18-crown-6 (18C6) and 21-crown-7 (21C7)) on the uptake of Ca, Sr, Ba and Ra cations by a sulfonic acid cation exchange resin, and on the extraction of the same cations by xylene solutions of dinonylnaphthalenesulfonic acid (HDNNS) from aqueous hydrochloric acid solutions has been investigated. The crown ethers enhance the sorption of the larger cations by the ion exchange resin, thereby improving the resin selectivity over calcium, a result of a synergistic interaction between the crown ether and the ionic functional groups of the resin. Similarly, the extraction of the larger alkaline earth cations into xylene by HDNNS is strongly synergized by the presence of the crown ethers in the aqueous phase. Promising results for intra-Group IIa cation separations have been obtained using each of the three crown ethers as the aqueous ligands and the sulfonic acid cation exchange resin. Even greater separation factors for the radium-calcium couple have been measured with the crown-ethers and HDNNS solutions in the solvent extraction mode. The application of the uptake and extraction results to the development of radium separation schemes is discussed and a possible flowchart for the determination of {sup 226}Ra/{sup 228}Ra in natural waters is presented.

  15. TRANSDERMAL ADMINISTRATION OF THE DOPAMINE AGONIST N-0437 AND 7 ESTER PRODRUGS - COMPARISON WITH ORAL-ADMINISTRATION IN THE 6-OHDA TURNING MODEL

    NARCIS (Netherlands)

    DENDAAS, [No Value; TEPPER, PG; ROLLEMA, H; HORN, AS

    1990-01-01

    The potent and selective D2-agonist N-0437 [2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetralin] undergoes considerable first-pass metabolism after oral administration due to glucuronidation of the phenolic group. In an attempt to improve its bioavailability, seven ester prodrugs of N-0437 were

  16. Temporal variability of polybrominated diphenyl ether (PBDE) serum concentrations over one year.

    Science.gov (United States)

    Makey, Colleen M; McClean, Michael D; Sjödin, Andreas; Weinberg, Janice; Carignan, Courtney C; Webster, Thomas F

    2014-12-16

    Polybrominated diphenyl ethers (PBDEs) are flame retardant chemicals used in consumer products. They are common contaminants in human serum and associated with adverse health effects. Our objectives were to characterize PBDE serum concentrations in a New England cohort and assess temporal variability of this exposure biomarker over a one-year period. We collected three repeated measurements at six-month intervals from 52 office workers from the greater Boston (MA, United States) area from 2010 to 2011. The intraclass correlation coefficient for BDEs 28, 47, 99, 100, and 153 ranged from 0.87 to 0.99, indicating that a single serum measurement can reliably estimate exposure over a one-year period. This was true for both lipid adjusted and nonlipid adjusted concentrations. The kappa statistics, quantifying the level of agreement of categorical exposure classification, based on medians, tertiles, or quartiles ranged from 0.67 to 0.90. Some congeners showed nonsignificant increases from sampling round 1 (winter) to round 2 (summer) and significant decreases from round 2 to round 3 (winter). This study highlights the high reliability of a single serum PBDE measurement for use in human epidemiologic studies.

  17. [Ether Day--no laughing matter. The birth of modern anaesthesia].

    Science.gov (United States)

    Goerig, Michael; Wulf, Hinnerk

    2013-10-01

    Since centuries the first public demonstration of the anaesthetic properties of ether by William Thomas Green Morton at the Massachusetts General Hospital in Boston on October 16th 1846 is celebrated as "Ether Day" world-wide. The news of the beneficial effects, primarily disposed as a "Yankee Invention", spread over all continents quickly. This was the result of an article, published in the Boston Medical and Surgical Journal on November 18th, 1846. It is mentioning worth that this article was written when Morton had disclosed that the used "preparation", later named as "Nostrum" or "Letheon", was sulphuric ether. The important discovery later became a patent case and was overshadowed by a long lasting priority claim. Nevertheless the readers of the New England Journal of Medicine voted in a survey that this article was the most important publication in the 200 years journals history ever. © Georg Thieme Verlag Stuttgart · New York.

  18. A Review on Polychlorinated Biphenyls (PCBs) and Polybrominated Diphenyl Ethers (PBDEs) in South Asia with a Focus on Malaysia.

    Science.gov (United States)

    Kaw, Han Yeong; Kannan, Narayanan

    Malaysia is a developing country in Southeast Asia, with rapid industrial and economic growth. Speedy population growth and aggressive consumerism in the past five decades have resulted in environmental pollution issues, including products containing polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). PCBs and PBDEs are classified as persistent organic pollutants (POPs) by the Stockholm Convention due to their persistence, bioaccumulation in the environment and toxicity to humans and wildlife. These compounds are known to cause liver dysfunction, thyroid toxicity, developmental neuro-toxicity and possibly cancer. PCBs in air, mussels, pellets, seawater, fresh water, and human breast milk samples were analyzed in Malaysia, while studies on the pollution level of PBDEs in Malaysia were conducted on mussels, soils, leachate and sediment samples. PCBs in breast milk collected from Malaysia was the highest among Asian developing countries, with mean concentration of 80 ng/g lipid weight. On the other hand, the mean concentration of PCBs in mussels collected from Malaysia recorded the second lowest, with 56 ng/g and 89 ng/g lipid weight in two studies respectively. The concentrations of PBDEs in mussels taken from Malaysia fall in the range of 0.84-16 ng/g lipid weight, which is considerably low compared to 104.5 ng/g lipid weight in Philippines and 90.59 ng/g in Korea. Nevertheless, there are limited studies on these compounds in Malaysia, particularly there is no research on PBDEs in breast milk and sediment samples. This review will summarize the contamination levels of PCBs and PBDEs in different samples collected from Asian countries since 1988 until 2010 with a focus on Malaysia and will provide needed information for further research in this field.

  19. Designing of molecular architecture, synthesis and properties of the next generation of state-of-the-art high-performance thermoplastic fluoro-poly(ether amide)s, (6F-PEA), fluoro-poly(ether amide-imide)s (6F-PEAI), and their co-polymers

    International Nuclear Information System (INIS)

    Vora, Rohitkumar H.

    2010-01-01

    Graphical abstract: Molecular architectures of next generation of high-performance advanced heat stable thermoplastic polymer compositions of fluoro-poly(ether amide) (6F-PA) and fluoro-poly(ether amide-imide) (6F-PEAI) having di-ether diamines moieties were designed based on fluoro-polyimide (6F-PI) chemistry, and polymers were synthesized using two novel state-of-the-art 2-(3,4'-carboxy anhydrophenyl-2(4-carboxyphenyl) hexafluoropropane (6FTMA) and 2,2'-bis(4-carboxyphenyl) hexafluropropane (6F-DAc) monomers. Their copolymers: fluoro-copoly(ether amide-(ether imide))s (6F-co(PEA-PEI)), fluoro-copoly(ether amide-(ether amide-imide))s (6F-co(PEA-PEAI)) and fluoro-copoly(ether amide-imide-(ether imide))s (6F-co(PEAI-PEI)) were also designed and synthesized using 2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydrides (6FDA) for the advanced aerospace, defense and industrial engineering applications. -- Abstract: A new generation of high-performance polymers for the advanced industrial, aerospace and defense engineering applications are being investigated in the academic and industrial research institutions throughout the world. Fluoro-polyimides (6F-PI) are one such sub-class of high-performance polyimide polymers. In the last 25 years a number of fluoro-polyimides have been reported but only a handful of them have been commercialized. This paper describes the 6F-polyimide chemistry-based designed molecular architectures and synthesis of two series of next generation of heat stable thermoplastic polymer compositions having di-ether diamines moieties, such as fluoro-poly(ether amide) (6F-PA) and fluoro-poly(ether amide-imide) (6F-PEAI) using the novel state-of-the-art 2-(3,4'-carboxy anhydrophenyl-2(4-carboxyphenyl) hexafluoropropane (6F-TMA) and 2,2'-bis(4-carboxyphenyl) hexafluoropropane (6F-DAc) monomers. Their co-polymers: fluoro-copoly(ether amide-(ether imide))s (6F-co(PEA-PEI)), fluoro-copoly(ether amide-(ether amide-imide))s (6F-co(PEA-PEAI)) and fluoro-copoly(ether

  20. Combined effects of dissolved humic acids and tourmaline on the accumulation of 2, 2', 4, 4', 5, 5'- hexabrominated diphenyl ether (BDE-153) in Lactuca sativa.

    Science.gov (United States)

    Wang, Cuiping; Ma, Chuanxin; Jia, Weili; Wang, Dong; Sun, Hongwen; Xing, Baoshan

    2017-12-01

    In order to investigate the effects of dissolved humic acid (DHA) and tourmaline on uptake of 2, 2', 4, 4', 5, 5'- hexabrominated diphenyl ether (BDE-153) by Lactuca sativa, different fractions of DHA, including DHA 1 and DHA 4 , as well as different doses of tourmaline were introduced into BDE-153 contaminated solutions for plant growth. The levels of BDE-153 in L. sativa tissues were positively correlated with the Fe levels (R 2  = 0.9264) in seedings of the treatments with different doses of tourmaline. However, when adding DHA 1 and DHA 4 into the system, the correlation coefficients (R 2 ) decreased to 0.6976 and 0.5451 from 0.9264, respectively. In contrast with the Fe contents, the presence of DHAs didn't affect the R 2 between the levels of BDE-153 and the lipid contents in plant tissues. Our results indicated that both DHA 1 and DHA 4 could severely alter the BDE-153 uptake by L. sativa through reducing the Fe uptake instead of the lipid contents. Additionally, DHA 4 exhibited much stronger abilities to alter the BDE-153 accumulation than DHA 1 . Transmission electron microscopy (TEM) observations indicated that either DHA 1 or tourmaline or co-treatment with DHA and tourmaline had no negative impact on L. sativa at the cellular level. The present study provides important information for the impacts of different fractions of DHA extracted from soil on the BDE-153 migration in plant systems. Moreover, we elucidated the importance of the iron in tourmaline for migration of the polybrominated diphenyl ethers (PBDEs) in plant systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modeling of a Reaction-Distillation-Recycle System to Produce Dimethyl Ether through Methanol Dehydration

    Science.gov (United States)

    Muharam, Y.; Zulkarnain, L. M.; Wirya, A. S.

    2018-03-01

    The increase in the dimethyl ether yield through methanol dehydration due to a recycle integration to a reaction-distillation system was studied in this research. A one-dimensional phenomenological model of a methanol dehydration reactor and a shortcut model of distillation columns were used to achieve the aim. Simulation results show that 10.7 moles/s of dimethyl ether is produced in a reaction-distillation system with the reactor length being 4 m, the reactor inlet pressure being 18 atm, the reactor inlet temperature being 533 K, the reactor inlet velocity being 0.408 m/s, and the distillation pressure being 8 atm. The methanol conversion is 90% and the dimethyl ether yield is 48%. The integration of the recycle stream to the system increases the dimethyl ether yield by 8%.

  2. Mono-, di- and trimethylated homologues of isoprenoid tetraether lipid cores in archaea and environmental samples: mass spectrometric identification and significance.

    Science.gov (United States)

    Knappy, Chris; Barillà, Daniela; Chong, James; Hodgson, Dominic; Morgan, Hugh; Suleman, Muhammad; Tan, Christine; Yao, Peng; Keely, Brendan

    2015-12-01

    Higher homologues of widely reported C(86) isoprenoid diglycerol tetraether lipid cores, containing 0-6 cyclopentyl rings, have been identified in (hyper)thermophilic archaea, representing up to 21% of total tetraether lipids in the cells. Liquid chromatography-tandem mass spectrometry confirms that the additional carbon atoms in the C(87-88) homologues are located in the etherified chains. Structures identified include dialkyl and monoalkyl ('H-shaped') tetraethers containing C(40-42) or C(81-82) hydrocarbons, respectively, many representing novel compounds. Gas chromatography-mass spectrometric analysis of hydrocarbons released from the lipid cores by ether cleavage suggests that the C(40) chains are biphytanes and the C(41) chains 13-methylbiphytanes. Multiple isomers, having different chain combinations, were recognised among the dialkyl lipids. Methylated tetraethers are produced by Methanothermobacter thermautotrophicus in varying proportions depending on growth conditions, suggesting that methylation may be an adaptive mechanism to regulate cellular function. The detection of methylated lipids in Pyrobaculum sp. AQ1.S2 and Sulfolobus acidocaldarius represents the first reported occurrences in Crenarchaeota. Soils and aquatic sediments from geographically distinct mesotemperate environments that were screened for homologues contained monomethylated tetraethers, with di- and trimethylated structures being detected occasionally. The structural diversity and range of occurrences of the C(87-89) tetraethers highlight their potential as complementary biomarkers for archaea in natural environments. Copyright © 2015 John Wiley & Sons, Ltd.

  3. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Science.gov (United States)

    2010-07-01

    ... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl... glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols polyglycidyl ethers (generic name). 721.6980... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky...

  4. Slow self-activation enhances the potency of viridin prodrugs.

    Science.gov (United States)

    Blois, Joseph; Yuan, Hushan; Smith, Adam; Pacold, Michael E; Weissleder, Ralph; Cantley, Lewis C; Josephson, Lee

    2008-08-14

    When the viridin wortmannin (Wm) is modified by reaction with certain nucleophiles at the C20 position, the compounds obtained exhibit an improved antiproliferative activity even though a covalent reaction between C20 and a lysine in the active site of PI3 kinase is essential to Wm's ability to inhibit this enzyme. Here we show that this improved potency results from an intramolecular attack by the C6 hydroxyl group that slowly converts these inactive prodrugs to the active species Wm over the 48 h duration of the antiproliferative assay. Our results provide a guide for selecting Wm-like compounds to maximize kinase inhibition with the variety of protocols used to assess the role of PI3 kinase in biological systems, or for achieving optimal therapeutic effects in vivo . In addition, the slow self-activation of WmC20 derivatives provides a mechanism that can be exploited to obtain kinase inhibitors endowed with physical and pharmacokinetic properties far different from man-made kinase inhibitors because they do not bind to kinase active sites.

  5. Assessment of ether and alcohol fuels from coal. Volume 2. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A unique route for the indirect liquefaction of coal to produce transportation fuel has been evaluated. The resultant fuel includes alkyl tertiary alkyl ethers and higher alcohols, all in the gasoline boiling range. When blended into gasoline, the ether fuel provides several advantages over the lower alcohols: (1) lower chemical oxygen content, (2) less-severe water-separation problems, and (3) reduced front-end volatility effects. The ether fuel also has high-octane quality. Further, it can be utilized as a gasoline substitute in all proportions. Production of ether fuel combines several steps, all of which are or have been practiced on an industrial scale: (1) coal gasification, (2) gas cleanup and shift to desired H/sub 2/:CO ratio, (3) conversion of synthesis gas to isobutanol, methanol, and higher alcohols, (4) separation of alcohols, (5) chemical dehydration of isobutanol to isobutylene, and (6) etherification of isobutylene with methanol. A pilot-plant investigation of the isobutanol synthesis step was performed. Estimates of ether-fuel manufacturing costs indicate this process route is significantly more costly than synthesis of methanol. However, the fuel performance features provide incentive for developing the necessary process and catalyst improvements. Co-production of higher-molecular-weight co-solvent alcohols represents a less-drastic form of methanol modification to achieve improvement in the performance of methanol-gasoline blends. Costs were estimated for producing several proportions of methanol plus higher alcohols from coal. Estimated fuel selling price increases regularly but modestly with higher alcohol content.

  6. Polyene-lipids: a new tool to image lipids

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Ejsing, Christer S.; Ekroos, Kim

    2005-01-01

    conjugated double bonds as a new type of lipid tag. Polyene-lipids exhibit a unique structural similarity to natural lipids, which results in minimal effects on the lipid properties. Analyzing membrane phase partitioning, an important biophysical and biological property of lipids, we demonstrated......Microscopy of lipids in living cells is currently hampered by a lack of adequate fluorescent tags. The most frequently used tags, NBD and BODIPY, strongly influence the properties of lipids, yielding analogs with quite different characteristics. Here, we introduce polyene-lipids containing five...... the superiority of polyene-lipids to both NBD- and BODIPY-tagged lipids. Cells readily take up various polyene-lipid precursors and generate the expected end products with no apparent disturbance by the tag. Applying two-photon excitation microscopy, we imaged the distribution of polyene-lipids in living...

  7. SYNTHESIS OF ALLYL PHENYL ETHER AND CLAISEN REARRANGEMENT

    Directory of Open Access Journals (Sweden)

    Gagik Torosyan

    2011-12-01

    Full Text Available It has been established the possibility for phenol allylation on natural zeolites and them analogs. Here is demonstrated the synthesis of allyl phenol, which has wide industrial applications. The offered method in comparison with the traditional methods has more advantages – higher selectivity, smaller material and power resources consumption. It has been obtained the mixture of allylating phenols (30% in general with allyl phenyl ether (1 with 80% yields. At 600 K is obtained allylphenyl ether, at 700 K beginning the formation of allyl phenols, which is the result of direct C-allylation of the aromatic ring. It has been investigated the possibility of Claisen rearrangement in the same conditions. All of that are established by gas-liquid chromatography and liquid chromatography data.

  8. Ether in Kant and akasa in Prasastapada: Philosophy in comparative perspective

    Directory of Open Access Journals (Sweden)

    Fernando Tola

    2015-02-01

    Full Text Available The study of Indian and Western systems of Philosophy reveals many points of thematic and methodological coincidences between them. We have collected a good number of these coincidences in our recent books, where we have included many philosophical texts in Sanskrit and in European languages which contain the expression of astonishing similar ideas and theses. In the present article we add a new instance of coincidence between Indian and Western thought in relation to akasa in India (limited to the Indian philosophical system Vaisesika and ether (Aether or Äther in German in the Opus postumum of Kant. The inexistence of both akasa and ether has been established by Modern Science. Akasa and ether in India and the West, respectively, constitute a notorious example of asrayasiddha, the well-known logical defect considered by Indian Logic.

  9. Occurrence of organochlorine pesticides (OCPs) and their enantiomeric signatures, and concentrations of polybrominated diphenyl ethers (PBDEs) in the Adelie penguin food web, Antarctica

    International Nuclear Information System (INIS)

    Corsolini, Simonetta; Covaci, Adrian; Ademollo, Nicoletta; Focardi, Silvano; Schepens, Paul

    2006-01-01

    Concentrations and enantiomeric signatures of organochlorine pesticides were determined in Antarctic krill, emerald rockcod and Adelie penguin from the Ross Sea, Antarctica. HCB and DDTs were prevalent contaminants in penguin eggs. The highest concentrations of ΣHCHs (1.35 ± 0.72 ng/g) were found in the rockcod muscle, where γ-HCH (1.23 ± 0.67 ng/g) was the principal isomer. The ratio γ-HCH/α-HCH was evaluated. Enantioselective gas chromatography was used for the evaluation of enantiomeric fractions (EFs) for α-HCH and oxychlordane. An increase of 14% in the (+)α-HCH enantiomer was found from krill through penguin, suggesting the enantioselective biotrasformation increased proportionately with trophic level. Polybrominated diphenyl ethers (PBDEs) were measured and their concentrations were 5.6 ± 1.12, 5.81 ± 2.32, 4.57 ± 0.17 and 3.06 ± 3.27 ng/g lipids in krill, rockcod muscle, rockcod homogenate and penguin eggs, respectively. The detection of BDE28, BDE47, BDE99 and BDE100 in Antarctic organisms confirmed their global transport and distribution; the detection of lower brominated congeners suggested a potential long-range transport. - Enantiomeric signature and accumulation of polybrominated diphenyl ethers in the Adelie Penguin food chain are discussed

  10. Selective crystallization of cations with crown ethers; Selektive Kristallisation von Kationen mit Kronenethern

    Energy Technology Data Exchange (ETDEWEB)

    Heffels, Dennis Egidius

    2014-07-04

    The aim of this work was to study the selectivity and preferences of the incorporation of differently sized cations in the cavities of various crown ethers and the characterization of the resulting compounds. The coordination preferences of crown ethers with different cavities have long been known, and the impact of other effects on the structure formation have increasingly become the focus of attention. In this work a comparative overview of the coordination preferences depending on various factors was undertaken. The focus was mainly on the variation of the cavity of the crown ether in the presence of differently sized cations. In addition, the effects of the solvent and differently coordinating anions have been investigated. Within the framework of this work, basic coordination preferences could be detected with rare earth nitrates, which are affected particularly by the choice of the solvent. The formation of different types of structures could be controlled by varying the conditions such that the incorporation of the cation in the cavity of the crown ether was influenced and the formation of a particular type of structure can be influenced partly by the choice of solvent. In this case no direct preferences for the incorporation into the cavity of the crown ether in relation to the cation size were observed for rare earth cations. However, the coordination of the crown ether leads in each case - for lanthanides - to rather high coordination numbers. A total of five new rare earth complexes and two structural variants could be observed with crown ethers. In the study of the selectivity of the incorporation into the cavity, known structures were also reproduced and further structures were characterized but the crystal structures not entirely solved. With the use of monovalent cations such as potassium, lithium or silver a total of nine new compounds could be synthesized, while no clear preferences for the incorporation of certain cations were detected. The

  11. Chemical Composition and Cytotoxic Activities of Petroleum Ether ...

    African Journals Online (AJOL)

    Methods: The composition of petroleum ether extract was analyzed by gas ... acids, sterides, pregnanones, terpenes, alkaloids, alkenes, alcohols, ketones, aldehydes and other compounds. .... and mass spectra with those obtained from the.

  12. Photodegradation of poly(ether sulphone). Part 2

    DEFF Research Database (Denmark)

    Norrman, K.; Krebs, Frederik C

    2004-01-01

    The photodegradation of poly(ether sulphone) (PES) was investigated systematically by time-of-flight SIMS (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS). The effect of varying the irradiation dose, wavelength and the atmosphere was studied along with mechanistic photooxidation studies using...

  13. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  14. Gold-catalyzed intermolecular coupling of sulfonylacetylene with allyl ethers: [3,3]- and [1,3]-rearrangements

    Directory of Open Access Journals (Sweden)

    Jungho Jun

    2013-08-01

    Full Text Available Gold-catalyzed intermolecular couplings of sulfonylacetylenes with allyl ethers are reported. A cooperative polarization of alkynes both by a gold catalyst and a sulfonyl substituent resulted in an efficient intermolecular tandem carboalkoxylation. Reactions of linear allyl ethers are consistent with the [3,3]-sigmatropic rearrangement mechanism, while those of branched allyl ethers provided [3,3]- and [1,3]-rearrangement products through the formation of a tight ion–dipole pair.

  15. Evaluation of hepatic biotransformation of polybrominated diphenyl ethers in the polar bear (Ursus maritimus).

    Science.gov (United States)

    Krieger, Lisa K; Szeitz, András; Bandiera, Stelvio M

    2016-03-01

    Polar bears are at the top of the Arctic marine food chain and are subject to exposure and bioaccumulation of environmental chemicals of concern such as polybrominated diphenyl ethers (PBDEs), which were widely used as flame retardants. The aim of the present study was to evaluate the in vitro oxidative metabolism of 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) and 2,2',4,4',5-pentabrominated diphenyl ether (BDE-99) by polar bear liver microsomes. The identification and quantification of the hydroxy-brominated diphenyl ethers formed were assessed using an ultra-high performance liquid chromatography-tandem mass spectrometry-based method. Incubation of BDE-47 with archived individual liver microsomes, prepared from fifteen polar bears from northern Canada, produced a total of eleven hydroxylated metabolites, eight of which were identified using authentic standards. The major metabolites were 4'-hydroxy-2,2',4,5'-tetrabromodiphenyl ether and 5'-hydroxy-2,2',4,4'-tetrabromodiphenyl ether. Incubation of BDE-99 with polar bear liver microsomes produced a total of eleven hydroxylated metabolites, seven of which were identified using authentic standards. The major metabolites were 2,4,5-tribromophenol and 4-hydroxy-2,2',3,4',5-pentabromodiphenyl ether. Among the CYP specific antibodies tested, anti-rat CYP2B was found to be the most active in inhibiting the formation of hydroxylated metabolites of both BDE-47 and BDE-99, indicating that CYP2B was the major CYP enzyme involved in the oxidative biotransformation of these two congeners. Our study shows that polar bears are capable of forming multiple hydroxylated metabolites of BDE-47 and BDE-99 in vitro and demonstrates the role of CYP2B in the biotransformation and possibly in the toxicity of BDE-47 and BDE-99 in polar bears. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. HPLC-MS-Based Metabonomics Reveals Disordered Lipid Metabolism in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Xinjie Zhao

    2011-12-01

    Full Text Available Ultra-high performance liquid chromatography/ quadrupole time of flight mass spectrometry-based metabonomics platform was employed to profile the plasma metabolites of patients with metabolic syndrome and the healthy controls. Data analysis revealed lots of differential metabolites between the two groups, and most of them were identified as lipids. Several fatty acids and lysophosphatidylcholines were of higher plasma levels in the patient group, indicating the occurrence of insulin resistance and inflammation. The identified ether phospholipids were decreased in the patient group, reflecting the oxidative stress and some metabolic disorders. These identified metabolites can also be used to aid diagnosis of patients with metabolic syndrome. These results showed that metabonomics was a promising and powerful method to study metabolic syndrome.

  17. New ether-functionalized ionic liquids for lipase-catalyzed synthesis of biodiesel.

    Science.gov (United States)

    Zhao, Hua; Song, Zhiyan; Olubajo, Olarongbe; Cowins, Janet V

    2010-09-01

    Ionic liquids (ILs) are being explored as solvents for the enzymatic methanolysis of triglycerides. However, most available ILs (especially hydrophobic ones) have poor capability in dissolving lipids, while hydrophilic ILs tend to cause enzyme inactivation. Recently, we synthesized a new type of ether-functionalized ionic liquids (ILs) carrying anions of acetate or formate; they are capable of dissolving a variety of substrates and are also lipase-compatible (Green Chem., 2008, 10, 696-705). In the present study, we carried out the lipase-catalyzed transesterifications of Miglyol oil 812 and soybean oil in these novel ILs. These ILs are capable of dissolving oils at the reaction temperature (50 degrees C); meanwhile, lipases maintained high catalytic activities in these media even in high concentrations of methanol (up to 50% v/v). High conversions of Miglyol oil were observed in mixtures of IL and methanol (70/30, v/v) when the reaction was catalyzed by a variety of lipases and different enzyme preparations (free and immobilized), especially with the use of two alkylammonium ILs 2 and 3. The preliminary study on the transesterification of soybean oil in IL/methanol mixtures further confirms the potential of using oil-dissolving and lipase-stabilizing ILs in the efficient production of biodiesels.

  18. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants.

    Science.gov (United States)

    Lee, Woo-Taek; Koak, Jai-Young; Lim, Young-Jun; Kim, Seong-Kyun; Kwon, Ho-Beom; Kim, Myung-Joo

    2012-05-01

    The poly-ether-ether-ketone (PEEK) polymer is of great interest as an alternative to titanium in orthopedics because of its biocompatibility and low elastic modulus. This study evaluated the fatigue limits of PEEK and the effects of the low elastic modulus PEEK in relation to existing dental implants. Compressive loading tests were performed with glass fiber-reinforced PEEK (GFR-PEEK), carbon fiber-reinforced PEEK (CFR-PEEK), and titanium rods. Among these tests, GFR-PEEK fatigue tests were performed according to ISO 14801. For the finite element analysis, three-dimensional models of dental implants and bone were constructed. The implants in the test groups were coated with a 0.5-mm thick and 5-mm long PEEK layer on the upper intrabony area. The strain energy densities (SED) were calculated, and the bone resorption was predicted. The fatigue limits of GFR-PEEK were 310 N and were higher than the static compressive strength of GFR-PEEK. The bone around PEEK-coated implants showed higher levels of SED than the bone in direct contact with the implants, and the wider diameter and stiffer implants showed lower levels of SED. The compressive strength of the GFR-PEEK and CFR-PEEK implants ranged within the bite force of the anterior and posterior dentitions, respectively, and the PEEK implants showed adequate fatigue limits for replacing the anterior teeth. Dental implants with PEEK coatings and PEEK implants may reduce stress shielding effects. Dental implant application of PEEK polymer-fatigue limit and stress shielding. Copyright © 2012 Wiley Periodicals, Inc.

  19. Synthesis of ester prodrugs of 9-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine (HPMPDAP) as anti-poxvirus agents

    Czech Academy of Sciences Publication Activity Database

    Krečmerová, Marcela; Holý, Antonín; Andrei, G.; Pomeisl, Karel; Tichý, Tomáš; Břehová, Petra; Masojídková, Milena; Dračínský, Martin; Pohl, Radek; Laflamme, G.; Naesens, L.; Hui, H.; Cihlař, T.; Neyts, J.; De Clercq, E.; Balzarini, J.; Snoeck, R.

    2010-01-01

    Roč. 53, č. 19 (2010), s. 6825-6837 ISSN 0022-2623 R&D Projects: GA MŠk 1M0508; GA MŠk(CZ) ME10040 Grant - others:NIH(US) 1UC1 AI062540-01 Institutional research plan: CEZ:AV0Z40550506 Keywords : phosphonates * prodrugs * poxvirus * herpes virus * bioterrorism Subject RIV: CC - Organic Chemistry Impact factor: 5.207, year: 2010

  20. Mesenchymal stromal cells retrovirally transduced with prodrug-converting genes are suitable vehicles for cancer gene therapy.

    Science.gov (United States)

    Ďuriniková, E; Kučerová, L; Matúšková, M

    2014-01-01

    Mesenchymal stem/stromal cells (MSC) possess a set of several fairly unique properties which make them ideally suitable both for cellular therapies and regenerative medicine. These include: relative ease of isolation, the ability to differentiate along mesenchymal and non-mesenchymal lineages in vitro and the ability to be extensively expanded in culture without a loss of differentiative capacity. MSC are not only hypoimmunogenic, but they mediate immunosuppression upon transplantation, and possess pronounced anti-inflammatory properties. They are able to home to damaged tissues, tumors, and metastases following systemic administration. The ability of homing holds big promise for tumor-targeted delivery of therapeutic agents. Viruses are naturally evolved vehicles efficiently transferring their genes into host cells. This ability made them suitable for engineering vector systems for the delivery of genes of interest. MSC can be retrovirally transduced with genes encoding prodrug-converting genes (suicide genes), which are not toxic per se, but catalyze the formation of highly toxic metabolites following the application of a nontoxic prodrug. The homing ability of MSC holds advantages compared to virus vehicles which display many shortcomings in effective delivery of the therapeutic agents. Gene therapies mediated by viruses are limited by their restricted ability to track cancer cells infiltrating into the surrounding tissue, and by their low migratory capacity towards tumor. Thus combination of cellular therapy and gene delivery is an attractive option - it protects the vector from immune surveillance, and supports targeted delivery of a therapeutic gene/protein to the tumor site.