WorldWideScience

Sample records for ethanol production potential

  1. Ethanol production in China: Potential and technologies

    International Nuclear Information System (INIS)

    Li, Shi-Zhong; Chan-Halbrendt, Catherine

    2009-01-01

    Rising oil demand in China has resulted in surging oil imports and mounting environmental pollution. It is projected that by 2030 the demand for fossil fuel oil will be 250 million tons. Ethanol seems to be an attractive renewable alternative to fossil fuel. This study assesses China's ethanol supply potential by examining potential non-food crops as feedstock; emerging conversion technologies; and cost competitiveness. Results of this study show that sweet sorghum among all the non-food feedstocks has the greatest potential. It grows well on the available marginal lands and the ASSF technology when commercialized will shorten the fermentation time which will lower the costs. Other emerging technologies such as improved saccharification and fermentation; and cellulosic technologies will make China more competitive in ethanol production in the future. Based on the estimated available marginal lands for energy crop production and conversion yields of the potential feedstocks, the most likely and optimistic production levels are 19 and 50 million tons of ethanol by 2020. In order to achieve those levels, the roadmap for China is to: select the non-food feedstock most suitable to grow on the available marginal land; provide funding to support the high priority conversion technologies identified by the scientists; provide monetary incentives to new and poor farmers to grow the feedstocks to revitalize rural economy; less market regulation and gradual reduction of subsidies to producers for industry efficiency; and educate consumers on the impact of fossil fuel on the environment to reduce consumption. Since the share of ethanol in the overall fuel demand is small, the impact of ethanol on lowering pollution and enhancing fuel security will be minimal. (author)

  2. Potential feedstock sources for ethanol production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Mohammad [Univ. of Florida, Gainesville, FL (United States); Hodges, Alan [Univ. of Florida, Gainesville, FL (United States)

    2015-10-01

    This study presents information on the potential feedstock sources that may be used for ethanol production in Florida. Several potential feedstocks for fuel ethanol production in Florida are discussed, such as, sugarcane, corn, citrus byproducts and sweet sorghum. Other probable impacts need to be analyzed for sugarcane to ethanol production as alternative uses of sugarcane may affect the quantity of sugar production in Florida. While citrus molasses is converted to ethanol as an established process, the cost of ethanol is higher, and the total amount of citrus molasses per year is insignificant. Sorghum cultivars have the potential for ethanol production. However, the agricultural practices for growing sweet sorghum for ethanol have not been established, and the conversion process must be tested and developed at a more expanded level. So far, only corn shipped from other states to Florida has been considered for ethanol production on a commercial scale. The economic feasibility of each of these crops requires further data and technical analysis.

  3. The potential of lignocellulosic ethanol production in the Mediterranean Basin

    Energy Technology Data Exchange (ETDEWEB)

    Faraco, Vincenza [Department of Organic Chemistry and Biochemistry, University of Naples ' ' Federico II' ' , Naples (Italy); School of Biotechnological Sciences, University of Naples ' ' Federico II' ' , Naples (Italy); Hadar, Yitzhak [Department of Microbiology and Plant Pathology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot (Israel)

    2011-01-15

    This review provides an overview of the potential of bioethanol fuel production from lignocellulosic residues in the Mediterranean Basin. Residues from cereal crops, olive trees, and tomato and grape processing are abundant lignocellulosic wastes in France, Italy, Spain, Turkey and Egypt, where their use as raw materials for ethanol production could give rise to a potential production capacity of 13 Mtoe of ethanol. Due to the lack of sufficient amounts of agricultural residues in all of the other Mediterranean countries, use of the cellulosic content of municipal solid waste (MSW) as feedstock for ethanol fuel production is also proposed. A maximum potential production capacity of 30 Mtoe of ethanol could be achieved from 50% of the 180 million tons of waste currently produced annually in the Mediterranean Basin, the management of which has become a subject of serious concern. However, to make large-scale ethanol production from agricultural residues and MSW a medium-term feasible goal in the Mediterranean Basin, huge efforts are needed to achieve the required progress in cellulose ethanol technologies and to overcome several foreseeable constraints. (author)

  4. The productive potentials of sweet sorghum ethanol in China

    International Nuclear Information System (INIS)

    Zhang, Caixia; Xie, Gaodi; Li, Shimei; Ge, Liqiang; He, Tingting

    2010-01-01

    As one of the important non-grain energy crops, sweet sorghum has attracted the attention of scientific community and decision makers of the world since decades. But insufficient study has been done about the spatial suitability distribution and ethanol potential of sweet sorghum in China. This paper attempts to probe into the spatial distribution and ethanol potential of sweet sorghum in China by ArcGIS methods. Data used for the analysis include the spatial data of climate, soil, topography and land use, and literatures relevant for sweet sorghum studies. The results show that although sweet sorghum can be planted in the majority of lands in China, the suitable unused lands for large-scale planting (unit area not less than 100 hm 2 ) are only as much as 78.6 x 10 4 hm 2 ; and the productive potentials of ethanol from these lands are 157.1 x 10 4 -294.6 x 10 4 t/year, which can only meet 24.8-46.4% of current demand for E10 (gasoline mixed with 10% ethanol) in China (assumption of the energy efficiency of E10 is equivalent to that of pure petroleum). If all the common grain sorghum at present were replaced by sweet sorghum, the average ethanol yield of 244.0 x 10 4 t/year can be added, and thus the productive potentials of sweet sorghum ethanol can satisfy 63.2-84.9% of current demand for E10 of China. In general, Heilongjiang, Jilin, Inner Mongolia and Liaoning rank the highest in productive potentials of sweet sorghum ethanol, followed by Hebei, Shanxi, Sichuan, and some other provinces. It is suggested that these regions should be regarded as the priority development zones for sweet sorghum ethanol in China.

  5. Analysis of ethanol production potential from cellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J E

    1982-03-01

    This report provides a comprehensive and scientific overview of results emerging from research on ethanol producton from cellulosic materials and indicates those areas which appear to warrant additional support. Many published economic analyses of production costs are examined, but the emphasis of the report is on research and on its potential for reducing the cost of ethanol production. The author concludes that the uncertainty surrounding the cost of producing ethanol from cellulosic feedstocks via enzymatic hydrolysis will not be resolved until a pilot plant has been built of sufficient size to produce realistic engineering data. He gives five reasons why Canada should build such a pilot plant: Canada's apparent leadership in developing a steam pre-treatment process, the desirability of encouraging developments and building a cadre of experts in biotechnology, the absence of a pilot plant in Canada where the various organisms and biochemical processes involved in ethanol production and by-product utilization can be developed on a reasonably large scale, Canadian expertise in lignin chemistry which might be used to capitalize upon the reactive lignin residue, and research in progress at National Research Council and elsewhere on the conversion of C/sub 5/ sugars to ethanol. 37 refs., 2 figs., 4 tabs.

  6. An economic assessment of potential ethanol production pathways in Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Deverell, Rory; McDonnell, Kevin; Ward, Shane; Devlin, Ger [Department of Biosystems Engineering, Agriculture and Food Science Building, University College Dublin 4, Belfield (Ireland)

    2009-10-15

    An economic assessment was conducted on five biomass-to-ethanol production pathways utilising the feedstock: wheat, triticale, sugarbeet, miscanthus and straw. The analysis includes the costs and margins for all the stakeholders along the economic chain. This analysis reveals that under current market situations in Ireland, the production of ethanol under the same tax regime as petrol makes it difficult to compete against that fuel, with tax breaks, however, it can compete against petrol. On the other hand, even under favourable tax breaks it will be difficult for indigenously produced ethanol to compete against cheaper sources of imported ethanol. Therefore, the current transport fuel market has no economic reason to consume indigenously produced ethanol made from the indigenously grown feedstock analysed at a price that reflects all the stakeholders' costs. To deliver a significant penetration of indigenous ethanol into the market would require some form of compulsory inclusion or else considerable financial supports to feedstock and ethanol producers. (author)

  7. An economic assessment of potential ethanol production pathways in Ireland

    International Nuclear Information System (INIS)

    Deverell, Rory; McDonnell, Kevin; Ward, Shane; Devlin, Ger

    2009-01-01

    An economic assessment was conducted on five biomass-to-ethanol production pathways utilising the feedstock: wheat, triticale, sugarbeet, miscanthus and straw. The analysis includes the costs and margins for all the stakeholders along the economic chain. This analysis reveals that under current market situations in Ireland, the production of ethanol under the same tax regime as petrol makes it difficult to compete against that fuel, with tax breaks, however, it can compete against petrol. On the other hand, even under favourable tax breaks it will be difficult for indigenously produced ethanol to compete against cheaper sources of imported ethanol. Therefore, the current transport fuel market has no economic reason to consume indigenously produced ethanol made from the indigenously grown feedstock analysed at a price that reflects all the stakeholders' costs. To deliver a significant penetration of indigenous ethanol into the market would require some form of compulsory inclusion or else considerable financial supports to feedstock and ethanol producers.

  8. Membrane bioreactors' potential for ethanol and biogas production: a review.

    Science.gov (United States)

    Ylitervo, Päivi; Akinbomia, Julius; Taherzadeha, Mohammad J

    2013-01-01

    Companies developing and producing membranes for different separation purposes, as well as the market for these, have markedly increased in numbers over the last decade. Membrane and separation technology might well contribute to making fuel ethanol and biogas production from lignocellulosic materials more economically viable and productive. Combining biological processes with membrane separation techniques in a membrane bioreactor (MBR) increases cell concentrations extensively in the bioreactor. Such a combination furthermore reduces product inhibition during the biological process, increases product concentration and productivity, and simplifies the separation of product and/or cells. Various MBRs have been studied over the years, where the membrane is either submerged inside the liquid to be filtered, or placed in an external loop outside the bioreactor. All configurations have advantages and drawbacks, as reviewed in this paper. The current review presents an account of the membrane separation technologies, and the research performed on MBRs, focusing on ethanol and biogas production. The advantages and potentials of the technology are elucidated.

  9. The Potential of Cellulosic Ethanol Production from Grasses in Thailand

    Directory of Open Access Journals (Sweden)

    Jinaporn Wongwatanapaiboon

    2012-01-01

    Full Text Available The grasses in Thailand were analyzed for the potentiality as the alternative energy crops for cellulosic ethanol production by biological process. The average percentage composition of cellulose, hemicellulose, and lignin in the samples of 18 types of grasses from various provinces was determined as 31.85–38.51, 31.13–42.61, and 3.10–5.64, respectively. The samples were initially pretreated with alkaline peroxide followed by enzymatic hydrolysis to investigate the enzymatic saccharification. The total reducing sugars in most grasses ranging from 500–600 mg/g grasses (70–80% yield were obtained. Subsequently, 11 types of grasses were selected as feedstocks for the ethanol production by simultaneous saccharification and cofermentation (SSCF. The enzymes, cellulase and xylanase, were utilized for hydrolysis and the yeasts, Saccharomyces cerevisiae and Pichia stipitis, were applied for cofermentation at 35°C for 7 days. From the results, the highest yield of ethanol, 1.14 g/L or 0.14 g/g substrate equivalent to 32.72% of the theoretical values was obtained from Sri Lanka ecotype vetiver grass. When the yields of dry matter were included in the calculations, Sri Lanka ecotype vetiver grass gave the yield of ethanol at 1,091.84 L/ha/year, whereas the leaves of dwarf napier grass showed the maximum yield of 2,720.55 L/ha/year (0.98 g/L or 0.12 g/g substrate equivalent to 30.60% of the theoretical values.

  10. Ethanol production potential of local yeast strains isolated from ripe ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... ... of these studies, the preferred candidate for industrial production of ethanol ... The yeast strains were isolated using the method of Ameh et al. (1989), on ... gas in the Durham tube during the incubation period. Fermentation ...

  11. Ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Kolleurp, F; Daugulis, A J

    1985-05-01

    Extractive fermentation is a technique that can be used to reduce the effect of end-product inhibition through the use of a water-immiscible phase which removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation, and have developed a computer model predicting the productivity enhancement possible with this technique. The model predicts an ethanol productivity of 82.6 g/L-h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a dilution rate of 5.0 h . This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. In light of this, a systematic approach to extractive fermentation has been undertaken involving the screening of more than 1,000 solvents for their extractive properties. UNIFAC and UNIQUAC estimates of distribution coefficients and selectivities were compiled and ranked in a database, together with other important physical properties, such as density, surface tension and viscosity. Preliminary shake-flask and chemostat biocompatibility studies on the most promising solvents have been undertaken. The previous predictive, data base and experimental results are discussed.

  12. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation.

    Science.gov (United States)

    Nishimura, Hiroto; Tan, Li; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji; Morimura, Shigeru

    2016-02-01

    Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Ethanol production potential of local yeast strains isolated from ripe ...

    African Journals Online (AJOL)

    The ability of different yeast strains isolated from ripe banana peels to produce ethanol was investigated. Of the 8 isolates screened for their fermentation ability, 5 showed enhanced performance and were subsequently identified and assessed for important ethanol fermentation attributes such as ethanol producing ability, ...

  14. The potential for second generation bio-ethanol production from ...

    African Journals Online (AJOL)

    A review of possible bio-sources that can be used for bioethanol production with emphasis on those that have potential of replacing conventional fuels with little or minor modification of existing biomass production capacity and trend is presented. Data analysis indicates that the straw from maize, sorghum and wheat can ...

  15. Sugar palm (Argena pinnata). Potential of sugar palm for bio-ethanol production

    OpenAIRE

    Elbersen, H.W.; Oyen, L.P.A.

    2010-01-01

    The energetic and economic feasibility of bioethanol production from sugar palm is virtually unknown. A positive factor are the potentially very high yields while the long non-productive juvenile phase and the high labor needs can be seen as problematic. Expansion to large scale sugar palm cultivation comes with risks. Small-scale cultivation of sugar palm perfectly fits into local farming systems. In order to make a proper assessment of the value palm sugar as bio-ethanol crop more informati...

  16. Determining the potential of inedible weed biomass for bio-energy and ethanol production

    Directory of Open Access Journals (Sweden)

    Siripong Premjet

    2013-02-01

    Full Text Available Surveys of indigenous weeds in six provinces located in the low northern part of Thailand were undertaken to determine the potential of weed biomass for bio-energy and bio-ethanol. The results reveal that most of the weed samples had low moisture contents and high lower heating values (LHVs. The LHVs at the highest level, ranging from 17.7 to 18.9 Mg/kg, and at the second highest level, ranging from 16.4 to 17.6 Mg/kg, were obtained from 11 and 31 weed species, respectively. It was found that most of the collected weed samples contained high cellulose and low lignin contents. Additionally, an estimate of the theoretical ethanol yields based on the amount of cellulose and hemicellulose in each weed species indicated that a high ethanol yield resulted from weed biomasses with high cellulose and hemicellulose contents. Among the collected weed species, the highest level of ethanol yield, ranging from 478.9 to 548.5 L/ton (substrate, was achieved from 11 weed species. It was demonstrated that most of the collected weed species tested have the potential for thermal conversion and can be used as substrates for ethanol production.

  17. Implications of increased ethanol production

    International Nuclear Information System (INIS)

    1992-06-01

    The implications of increased ethanol production in Canada, assuming a 10% market penetration of a 10% ethanol/gasoline blend, are evaluated. Issues considered in the analysis include the provision of new markets for agricultural products, environmental sustainability, energy security, contribution to global warming, potential government cost (subsidies), alternative options to ethanol, energy efficiency, impacts on soil and water of ethanol crop production, and acceptance by fuel marketers. An economic analysis confirms that ethanol production from a stand-alone plant is not economic at current energy values. However, integration of ethanol production with a feedlot lowers the break-even price of ethanol by about 35 cents/l, and even further reductions could be achieved as technology to utilize lignocellulosic feedstock is commercialized. Ethanol production could have a positive impact on farm income, increasing cash receipts to grain farmers up to $53 million. The environmental impact of ethanol production from grain would be similar to that from crop production in general. Some concerns about ethanol/gasoline blends from the fuel industry have been reduced as those blends are now becoming recommended in some automotive warranties. However, the concerns of the larger fuel distributors are a serious constraint on an expansion of ethanol use. The economics of ethanol use could be improved by extending the federal excise tax exemption now available for pure alcohol fuels to the alcohol portion of alcohol/gasoline blends. 9 refs., 10 tabs

  18. Evaluation of the Potential for the Production of Lignocellulosic Based Ethanol at Existing Corn Ethanol Facilities: Final Subcontract Report, 2 March 2000 - 30 March 2002

    Energy Technology Data Exchange (ETDEWEB)

    2002-07-01

    Subcontract report on opportunities to explore the business potential provided by converting biomass to products such as ethanol. The goals of this study were: (1) To provide the opportunity to explore the business potential provided by converting biomass to products such as ethanol. (2) To take advantage of the grain-processing infrastructure by investigating the co-location of additional biomass conversion facilities at an existing plant site.

  19. Polygalacturonase and ethanol production in Kluyveromyces marxianus: potential use of polygalacturonase in foodstuffs.

    Science.gov (United States)

    Serrat, Manuel; Bermúdez, Rosa C; Villa, Tomás G

    2004-04-01

    The coproduction of ethanol and polygalacturonase (PG) in a pilot-scale batch fermentor using yeast extract--glucose (YD)--and sugar beet molasses (SBM)-based media was implemented utilizing a new high-PG-producing strain of Kluyveromyces marxianus. A certain growth inhibition was observed in SBM medium, causing ethanol and PG production to be lower. Ethanol productivity and accumulation values of 1.94 g/(L x h) and 40 g/L, respectively, were attained in YD, whereas the best fermentation efficiency (95.1%) was achieved with SBM medium. Maximal PG synthesis occurred at the end of cell growth, with values of 1.08 and 0.46 U/(mg x h) for the YD and SBM media, respectively. When the cultures reached stationary phase, PG production stopped. The highest accumulation level (17 U/mL) occurred in YD medium, in agreement with previous laboratory-scale studies carried out for this strain. The potential applications of the crude enzyme preparations were evaluated with different fruit juices and vegetable slices. The enzyme was able to increase the filtration rate of orange, pear, and apple juices by twofold. Additionally, complete clarification of apple juice was readily accomplished, whereas cucumber, carrot, and banana tissues were macerated to a lesser extent. Copyright 2004 Humana Press Inc.

  20. Investigating the potential of thermophilic species for ethanol production from industrial spent sulfite liquor

    Directory of Open Access Journals (Sweden)

    Michaela Weissgram

    2015-10-01

    Full Text Available Thermophilic microorganisms hold a great potential for bioethanol production on waste biomass, due to their ability to utilize pentoses and hexoses alike. However, to date hardly any data on thermophiles growing directly on industrial substrates like spent sulfite liquor (SSL are available. This contribution investigates the ability of Thermoanaerobacter species to utilize the main sugars in the used SSL (mannose, glucose and xylose and the effect of process parameters (pH, temperature and sugar concentration on their growth. Based on these results the strain T. mathranii was chosen for further studies. The ability of T. mathranii to grow directly on SSL was investigated and the effect of several inhibiting substances on growth was elucidated. Furthermore it was tested whether pretreatment with activated charcoal can increase the fermentability of SSL. The fermentations were evaluated based on yields and specific rates. It could be shown that T. mathranii was able to ferment all sugars in the investigated softwood SSL and fermented diluted, untreated SSL (up to 2.7% (w/w dry matter. Pretreatment with activated charcoal could slightly reduce the amount of phenols in the substrate and thus facilitate growth and ethanol production on higher SSL concentrations (up to 4.7% (w/v dry matter. Ethanol yields of 0.29-0.44 Cmmol of ethanol per Cmmol sugar were obtained on untreated and pretreated spent sulfite liquor, respectively. These results on an industrial substrate strengthen the claim that thermophilic microorganisms might be the optimal candidates for forest biorefinery.

  1. Establishing an ethanol production business

    International Nuclear Information System (INIS)

    1993-01-01

    Many Saskatchewan communities are interested in the potential benefits of establishing an ethanol production facility. A guide is presented to outline areas that communities should consider when contemplating the development of an ethanol production facility. Political issues affecting the ethanol industry are discussed including environmental impacts, United States legislation, Canadian legislation, and government incentives. Key success factors in starting a business, project management, marketing, financing, production, physical requirements, and licensing and regulation are considered. Factors which must be taken into consideration by the project manager and team include markets for ethanol and co-products, competent business management staff, equity partners for financing, production and co-product utilization technologies, integration with another facility such as a feedlot or gluten plant, use of outside consultants, and feedstock, water, energy, labour, environmental and site size requirements. 2 figs., 2 tabs

  2. Ethanol production potential from fermented rice noodle wastewater treatment using entrapped yeast cell sequencing batch reactor

    Science.gov (United States)

    Siripattanakul-Ratpukdi, Sumana

    2012-03-01

    Fermented rice noodle production generates a large volume of starch-based wastewater. This study investigated the treatment of the fermented rice noodle wastewater using entrapped cell sequencing batch reactor (ECSBR) compared to traditional sequencing batch reactor (SBR). The yeast cells were applied because of their potential to convert reducing sugar in the wastewater to ethanol. In present study, preliminary treatment by acid hydrolysis was performed. A yeast culture, Saccharomyces cerevisiae, with calcium alginate cell entrapment was used. Optimum yeast cell loading in batch experiment and fermented rice noodle treatment performances using ECSBR and SBR systems were examined. In the first part, it was found that the cell loadings (0.6-2.7 × 108 cells/mL) did not play an important role in this study. Treatment reactions followed the second-order kinetics with the treatment efficiencies of 92-95%. In the second part, the result showed that ECSBR performed better than SBR in both treatment efficiency and system stability perspectives. ECSBR maintained glucose removal of 82.5 ± 10% for 5-cycle treatment while glucose removal by SBR declined from 96 to 40% within the 5-cycle treatment. Scanning electron microscopic images supported the treatment results. A number of yeast cells entrapped and attached onto the matrix grew in the entrapment matrix.

  3. Survey of potential health and safety hazards of commercial-scale ethanol production facilities

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.; Smith, J.G.; Elmore, J.L.

    1982-04-01

    Generic safety and health aspects of commercial-scale (60 to 600 million L/y) anhydrous ethanol production were identified. Several common feedstocks (grains, roots and fibers, and sugarcane) and fuels (coal, natural gas, wood, and bagasse) were evaluated throughout each step of generic plant operation, from initial milling and sizing through saccharification, fermentation, distillation, and stillage disposal. The fermentation, digestion, or combustion phases are not particularly hazardous, although the strong acids and bases used for hydrolysis and pH adjustment should be handled with the same precautions that every industrial solvent deserves. The most serious safety hazard is that of explosion from grain dust or ethanol fume ignition and boiler/steam line overpressurization. Inhalation of ethanol and carbon dioxide vapors may cause intoxication or asphyxiation in unventilated areas, which could be particularly hazardous near equipment controls and agitating vats. Contact with low-pressure process steam would produce scalding burns. Benzene, used in stripping water from ethanol in the final distillation column, is a suspected leukemogen. Substitution of this fluid by alternative liquids is addressed.

  4. Evaluation of potential salivary acetaldehyde production from ethanol in oral cancer patients and healthy subjects.

    Science.gov (United States)

    Kocaelli, H; Apaydin, A; Aydil, B; Ayhan, M; Karadeniz, A; Ozel, S; Yılmaz, E; Akgün, B; Eren, B

    2014-01-01

    Acetaldehyde has been implicated as a major factor in oral carcinogenesis associated with alcohol consumption. In this study, saliva samples from oral cancer patients and healthy individuals were incubated in vitro with ethanol in order to investigate factors which can influence salivary acetaldehyde production. A total of 66 individuals (40 males and 26 females, mean age 52 years) participated in the study. Participants were classified into three groups: Group 1 (oral cancer patients [n = 20]); Group 2 (poor dental health status [n = 25]) and Group 3 (good dental health status [n=21]). Every patient chewed a 1g piece of paraffin chewing gum for 1 minute then saliva samples were collected from all individuals. After in vitro incubation of the samples with ethanol, the levels of salivary acetaldehyde production was measured by head space gas chromatography. Kruskal-Wallis and Mann-Whitney tests and Spearman's Correlations analysis were performed for statistical analyses. The salivary acetaldehyde production was significantly higher (p oral hygiene habits and dental visits, smoking and presence of a dental prosthesis were significant parameters for increased levels of salivary acetaldehyde production from alcohol. The evaluation of salivary acetaldehyde production after in vitro incubation with ethanol may be useful for early detection of oral cancer. According to the results of this study, the significantly higher levels of salivary acetaldehyde production in oral cancer patients and individuals with poor dental health status may suggest a possible link between increased salivary acetaldehyde production and oral cancer. Improved oral hygiene can effectively decrease the level of salivary acetaldehyde production in oral cavity. Hippokratia 2014; 18 (3): 269-274.

  5. Investigation of potential of agro-industrial residues for ethanol production by using Candida tropicalis and Zymomonas mobilis

    Science.gov (United States)

    Patle, Sonali

    India is becoming more susceptible regarding energy security with increasing world prices of crude oil and increasing dependence on imports. Based on experiments by the Indian Institute of Petroleum, a 10% ethanol blend with gasoline is being considered for use in vehicles in at least one state and it will be mandatory for all oil companies to blend petrol with 10% ethanol from October 2008. In view of the above, the Government has already started supply of 5% ethanol blended petrol from 2003 in nine states and four contiguous Union Territories. Currently, fuel ethanol is produced mainly from molasses, corn, wheat and sugar beets. The production cost of ethanol from these agro-feedstocks is more than twice the price of gasoline. The high feedstock cost poses a major obstacle to large scale implementation of ethanol as a transportation fuel. Molasses could be in short supply due to the implementation of 10% blending norm. A reduction in import duty for industrial alcohol from7.5% to 5% has been suggested. The use of lignocellulosic energy crops, and particularly low cost biomass residues, offers excellent perspectives for application of ethanol in transportation fuels (Ridder, 2000). These materials will increase the ethanol production capacity and reduce the production cost to a competitive level. There is a huge demand (500 million litres) of ethanol to meet the 5% blending in India. With the present infrastructure, only 90 million litres of ethanol was produced till November 2006 and could reach up to 140 million litres (around) till October 2007. Bioethanol from these materials provides a highly cost effective option for CO2 emission reduction in the transportation sector. The aim of the present investigation was to evaluate the potential of biomass as feedstock for ethanol production. The dedicated energy crops would require thorough support as well as planning efforts such as assessing resources, availability and utilization. Furthermore, applied research is

  6. From potential to reality. Yeasts derived from ethanol production for animal nutrition

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.; Trevizam, A.B.; Nepomuceno, N.; Amorim, H.V.

    1998-01-01

    The high costs of cereals and vegetable protein supplements used for animal nutrition have directed much attention toward non-conventional alternative protein sources. Brazil has a significant potential to provide such material, since it is the world's largest producer of ethanol (13 billion liters per year) derived from fermentation by yeasts (sugar cane being the basic raw material). Distilleries are recovering surplus yeast to produce dry yeast for use in animal food formulations. With regard to the yeast biomass elemental composition, INAA analyses performed on a pool of samples from various different fermentations have shown the presence of various trace elements, e.g. As, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Na, Rb, Sc, Sm, Th, and Zn. This reinforces the need for additional studies concerning the suitability of yeast in terms of maximum tolerable levels of these elements in formulations for domestic animals. (author)

  7. BECCS potential in Brazil: Achieving negative emissions in ethanol and electricity production based on sugar cane bagasse and other residues

    International Nuclear Information System (INIS)

    Moreira, José Roberto; Romeiro, Viviane; Fuss, Sabine; Kraxner, Florian; Pacca, Sérgio A.

    2016-01-01

    Highlights: • Demonstrates the cost competitiveness of sugarcane based bioenergy carbon capture and storage (BECCS). • Evaluates BECCS based on emissions from sugar fermentation, which is the low hanging fruit technology available. • Determines the BECCS cost premium of CO_2, ethanol and electricity. • Determines the full mitigation potential of this BECCS technology in Brazil. • Discusses polices to enable BECCS deployment by society. - Abstract: Stabilization at concentrations consistent with keeping global warming below 2 °C above the pre-industrial level will require drastic cuts in Greenhouse Gas (GHG) emissions during the first half of the century; net negative emissions approaching 2100 are required in the vast majority of current emission scenarios. For negative emissions, the focus has been on bioenergy with carbon capture and storage (BECCS), where carbon-neutral bioenergy would be combined with additional carbon capture thus yielding emissions lower than zero. Different BECCS technologies are considered around the world and one option that deserves special attention applies CCS to ethanol production. It is currently possible to eliminate 27.7 million tonnes (Mt) of CO_2 emissions per year through capture and storage of CO_2 released during fermentation, which is part of sugar cane-based ethanol production in Brazil. Thus, BECCS could reduce the country’s emissions from energy production by roughly 5%. Such emissions are additional to those due to the substitution of biomass-based electricity for fossil-fueled power plants. This paper assesses the potential and cost effectiveness of negative emissions in the joint production system of ethanol and electricity based on sugar cane, bagasse, and other residues in Brazil. An important benefit is that CO_2 can be captured twice along the proposed BECCS supply chain (once during fermentation and once during electricity generation). This study only considers BECCS from fermentation because capturing

  8. Sugar palm (Argena pinnata). Potential of sugar palm for bio-ethanol production

    NARCIS (Netherlands)

    Elbersen, H.W.; Oyen, L.P.A.

    2010-01-01

    The energetic and economic feasibility of bioethanol production from sugar palm is virtually unknown. A positive factor are the potentially very high yields while the long non-productive juvenile phase and the high labor needs can be seen as problematic. Expansion to large scale sugar palm

  9. Potential of giant reed (Arundo donax L. for second generation ethanol production

    Directory of Open Access Journals (Sweden)

    Claudia Fernanda Lemons e Silva

    2015-01-01

    Conclusions: The fermentability of the pretreated biomass was performed successfully through the conception of simultaneous saccharification and fermentation resulting in approximately 75 L of ethanol per ton of cellulose.

  10. Evaluation of the Green Microalga Monoraphidium sp. Dek19 Growth Utilizing Ethanol Plant Side Streams and Potential for Biofuel Production

    Science.gov (United States)

    Colson, David Michael

    similar increase in cell count as before at 12.59% increase in cell count over the control. The 2% concentration algae growth cultures were grown exclusively alongside of the control group of DSD effluent grown algae. The solutions were grown to carrying capacity and the algae biomass was extracted from the solution by centrifugation and air drying in a dehydrator. This was repeated until enough biomass was collected to conduct rehydration and a typical anaerobic fermentation process. The resuspended algae were pH adjusted to a pH of 5.2 ±0.2. The algae were treated with a combination of cellulase and alpha-amylase, and put through a liquefaction process at 80°C for 3 hours. The resulting solutions were analyzed using High Performance Liquid Chromatography (HPLC) to evaluate the sugar profile of each treatment. The liquefaction solutions were treated with further enzymes, nutrients, and yeast and ran through an anaerobic fermentation process. The fermentations were allowed to progress for 72 hours, and were again analyzed using an HPLC for ethanol and sugar profile. The fermentation results showed a potential of up to 0.587%w/v ethanol production in a 10% solids microalgae slurry. The remaining fermentation products were analyzed using a petroleum ether lipid extraction unit. This analysis showed that the DSD effluent microalgae had an average of 15.53% lipid content on a dry matter basis, and the methanator effluent with 2% thin stillage added resulted in 28.02% lipid content on a dry matter basis. The fermentation products were also treated with a demulsifier, spun down with a centrifuge, and examination of a released lipid layer was conducted. This analysis showed that there was a thin layer of oil on almost all treatments of the algae solutions when spun down in a centrifuge. These. results indicate that the cellulosic enzymes broke down the cell wall material sufficiently for the quick extraction of the oil without the use of hexane. The entirety of the

  11. Effect of ethanol on differential protein production and expression of potential virulence functions in the opportunistic pathogen Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Chika C Nwugo

    Full Text Available Acinetobacter baumannii persists in the medical environment and causes severe human nosocomial infections. Previous studies showed that low-level ethanol exposure increases the virulence of A. baumannii ATCC 17978. To better understand the mechanisms involved in this response, 2-D gel electrophoresis combined with mass spectrometry was used to investigate differential protein production in bacteria cultured in the presence or absence of ethanol. This approach showed that the presence of ethanol significantly induces and represses the production of 22 and 12 proteins, respectively. Although over 25% of the ethanol-induced proteins were stress-response related, the overall bacterial viability was uncompromised when cultured under these conditions. Production of proteins involved in lipid and carbohydrate anabolism was increased in the presence of ethanol, a response that correlates with increased carbohydrate biofilm content, enhanced biofilm formation on abiotic surfaces and decrease bacterial motility on semi-solid surfaces. The presence of ethanol also induced the acidification of bacterial cultures and the production of indole-3-acetic acid (IAA, a ubiquitous plant hormone that signals bacterial stress-tolerance and promotes plant-bacteria interactions. These responses could be responsible for the significantly enhanced virulence of A. baumannii ATCC 17978 cells cultured in the presence of ethanol when tested with the Galleria mellonella experimental infection model. Taken together, these observations provide new insights into the effect of ethanol in bacterial virulence. This alcohol predisposes the human host to infections by A. baumannii and could favor the survival and adaptation of this pathogen to medical settings and adverse host environments.

  12. African perspective on cellulosic ethanol production

    DEFF Research Database (Denmark)

    Bensah, Edem Cudjoe; Kemausuor, Francis; Miezah, Kodwo

    2015-01-01

    A major challenge to commercial production of cellulosic ethanol pertains to the cost-effective breakdown of the complex and recalcitrant structure of lignocellulose into its components via pretreatment, the cost of enzymes for hydrolysis and fermentation, and the conversion rate of C5 sugars...... to ethanol, among others. While the industrialized and some emerging countries are gradually breaking grounds in cellulosic ethanol, most African countries have made little effort in research and development even though the continent is rich in lignocellulosic biomass. The paper estimates residues from...... widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most...

  13. Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw

    DEFF Research Database (Denmark)

    Lindedam, Jane; Andersen, Sven Bode; DeMartini, J.

    2012-01-01

    Optimizing cellulosic ethanol yield depends strongly on understanding the biological variation of feedstocks. Our objective was to study variation in capacity for producing fermentable sugars from straw of winter wheat cultivars with a high-throughput pretreatment and hydrolysis well......-plate technique. This technique enabled us to estimate cultivar-related and environmental correlations between sugar yield, chemical composition, agronomic qualities, and distribution of botanical plant parts of wheat straw cultivars. Straws from 20 cultivars were collected in duplicates on two sites in Denmark....... Following hydrothermal pretreatment (180 °C for 17.6 min) and co-hydrolysis, sugar release and sugar conversion were measured. Up to 26% difference in sugar release between cultivars was observed. Sugar release showed negative cultivar correlation with lignin and ash content, whereas sugar release showed...

  14. Production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-10

    Ethanol is produced by fermentation with a photohardening resin-immobilized yeast preparation. The ethanol producing yeast may be selected from Saccharomyces, Zygosaccharomyces, or Schizosaccharomyces. The photohardening resin for yeast immobilization is a hydrophilic unsaturated compound, especially polyurethane acrylate, with an average molecular weight of 300-80,000 and containing at least 2 photopolymerizable ethylene groups. The immobilized yeast preparation is prepared by irradiating an aqueous suspension of yeast and a photohardening resin with UV light; the average size of the immobilized yeast is 0.1-3.0 mm and with various shapes. Thus, an aqueous suspension containing Saccharomyces formosensis cells (5 parts), a poly(ethylene glycol)isopharone diisocyanate-2-hydroxyethyl methacrylate copolymer (50 parts), and benzoin ethyl ether (0.5 parts) was homogenized, spread on a polypropylene tray (1.0 mm depth), and irradiated with a 3600 A Hg lamp for 5-10 minutes to form a yeast-containing polyurethane acrylate sheet (1.0 mm thickness), which was then sliced into bits of approximately 1.0 mm. When a molasses substrate solution (pH 4.5-5.0) was passed through a column (200 x 20 mm) packed with the polyurethane acrylate-immobilized yeast preparation, eluates containing 7% (weight/volume) ethanol were produced for >3000 hours.

  15. Greenprint on ethanol production in Saskatchewan

    International Nuclear Information System (INIS)

    2002-04-01

    Investment in Saskatchewan's ethanol industry is being actively promoted by the provincial government. This document represents the provincial strategy in support of the ethanol industry, which will result in significant environmental benefits for the province and the residents through the increased use of ethanol as an additive to conventional gasoline. The big advantage offered by ethanol is a more complete fuel combustion, thereby reducing emissions of greenhouse gases by as much as 30 per cent. The production costs of ethanol have decreased in the last twenty years by 50 per cent. The competitiveness of ethanol should increase due to ongoing research and development progress being made. The agricultural sector should benefit through the creation of meaningful jobs in the sector, as well as offering new marketing opportunities to the grain producers of the province and the wood-product companies. A renewable resource, ethanol reduces carbon dioxide exhaust emissions bu up to 20 per cent, reduces the smog-creating compounds up to 15 per cent, and achieves a net reduction of up to 10 per cent in carbon dioxide emissions. The abundance of raw materials and resources required for the production of ethanol, Saskatchewan possesses an obvious advantage for becoming a world leader in the field. The government of Saskatchewan has developed its strategy, outlined in this document. It calls for tax incentives, the mandating of ethanol blend, opening up markets, working with communities. The industry size, economic impact, export potential, and future opportunities were briefly discussed in the last section of the document. 1 tab., 3 figs

  16. Production of ethanol from cellulose (sawdust)

    OpenAIRE

    Otulugbu, Kingsley

    2012-01-01

    The production of ethanol from food such as corn, cassava etc. is the most predominate way of producing ethanol. This has led to a shortage in food, inbalance in food chain, increased food price and indirect land use. This thesis thus explores using another feed for the production of ethanol- hence ethanol from cellulose. Sawdust was used to carry out the experiment from the production of ethanol and two methods were considered: SHF (Separate Hydrolysis and Fermentation) and SSF (Simultaneous...

  17. Cellulosic ethanol. Potential, technology and development status

    Energy Technology Data Exchange (ETDEWEB)

    Rarbach, M. [Sued-Chemie AG, Muenchen (Germany)

    2012-07-01

    In times of rising oil prices and a growing energy demand, sustainable alternative energy sources are needed. Cellulosic ethanol is a sustainable biofuel, made from lignocellulosic feedstock such as agricultural residues (corn stover, cereal straw, bagasse) or dedicated energy crops. Its production is almost carbon neutral, doesn't compete with food or feed production and induces no land use changes. It constitutes a new energy source using an already existing renewable feedstock without needing any further production capacity and can thus play a major role on the way to more sustainability in transport and the chemical industry and reducing the dependence on the import of fossil resources. The potential for cellulosic ethanol is huge: In the US, the annual production of agricultural residues (cereal straw and corn stover) reached almost 384 million tons in 2009 and Brazil alone produced more than 670 million tons of sugar cane in 2009 yielding more than 100 million tons of bagasse (dry basis). And alone in the European Union, almost 300 million tons of crop straw are produced annually. The last years have seen success in the development and deployment in the field of cellulosic ethanol production. The main challenge thereby remains to demonstrate that the technology is economically feasible for the up-scaling to industrial scale. Clariant has developed the sunliquid {sup registered} process, a proprietary cellulosic ethanol technology that reaches highest greenhouse gas (GHG) emission savings while cutting production costs to a minimum. The sunliquid {sup registered} process for cellulosic ethanol matches the ambitious targets for economically and ecologically sustainable production and greenhouse gas reduction. It was developed using an integrated design concept. Highly optimized, feedstock and process specific biocatalysts and microorganisms ensure a highly efficient process with improved yields and feedstock-driven production costs. Integrated, on

  18. Ethanol production using hemicellulosic hydrolyzate and sugarcane ...

    African Journals Online (AJOL)

    The use of vegetable biomass as substrate for ethanol production could reduce the existing usage of fossil fuels, thereby minimizing negative environmental impacts. Due to mechanical harvesting of sugarcane, the amount of pointer and straw has increased in sugarcane fields, becoming inputs of great energy potential.

  19. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  20. Ethanol Demand in United States Gasoline Production

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  1. Biofilm reactors for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Vega, J L; Clausen, E C; Gaddy, J L

    1988-07-01

    Whole cell immobilization has been studied in the laboratory during the last few years as a method to improve the performance and economics of most fermentation processes. Among the various techniques available for cell immobilization, methods that provide generation of a biofilm offer reduced diffusional resistance, high productivities, and simple operation. This paper reviews some of the important aspects of biofilm reactors for ethanol production, including reactor start-up, steady state behavior, process stability, and mathematical modeling. Special emphasis is placed on covalently bonded Saccharomyces cerevisiae in packed bed reactors.

  2. Possibilities for sustainable biorefineries based on agricultural residues – A case study of potential straw-based ethanol production in Sweden

    International Nuclear Information System (INIS)

    Ekman, Anna; Wallberg, Ola; Joelsson, Elisabeth; Börjesson, Pål

    2013-01-01

    Highlights: ► Biorefineries can produce ethanol, biogas, heat and power efficiently with profit. ► Location of plant is decided by raw material supply in the region. ► Increased production of high value compounds affects profitability. ► Energy efficiency is increased by availability of heat sinks. ► Several locations may be suitable for construction of a biorefinery plant. -- Abstract: This study presents a survey of the most important techno-economic factors for the implementation of biorefineries based on agricultural residues, in the form of straw, and biochemical conversion into ethanol and biogas, together with production of electricity and heat. The paper suggests locations where the necessary conditions can be met in Sweden. The requirements identified are regional availability of feedstock, the possibility to integrate with external heat sinks, appropriate process design and the scale of the plant. The scale of the plant should be adapted to the potential, regional, raw-material supply, but still be large enough to give economies of scale. The integration with heat sinks proved to be most important to achieve high energy-efficiency, but it was of somewhat less importance for the profitability. Development of pentose fermentation, leading to higher ethanol yields, was important to gain high profitability. Promising locations were identified in the county of Östergötland where integration with an existing 1st generation ethanol plant and district heating systems (DHSs) is possible, and in the county of Skåne where both a significant, potential straw supply and integration potential with DHSs are available.

  3. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Olsson, Lisbeth; Thomsen, A.B.

    2003-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/L sodium carbonate and 12 bar oxygen at 195degreesC) was used as pretreatment method for wheat straw (60 g/L), resulting in a hydrolysate and a cellulosic solid fraction. The hydrolysate consisted of soluble hemicellulose (8 g/L), low......-molecular-weight carboxylic acids (3.9 g/L), phenols (0.27 g/L = 1.7 mM) and 2-furoic acid (0.007 g/L). The wet oxidized wheat straw hydrolysate caused no inhibition of ethanol production by Saccharomyces cerevisiae ATCC 96581. Nine phenols and 2-furoic acid, identified to be present in the hydrolysate, were each tested...

  4. Feasibility Study for Co-Locating and Integrating Ethanol Production Plants from Corn Starch and Lignocellulosic Feedstocks (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R.; Ibsen, K.; McAloon, A.; Yee, W.

    2005-01-01

    Analysis of the feasibility of co-locating corn-grain-to-ethanol and lignocellulosic ethanol plants and potential savings from combining utilities, ethanol purification, product processing, and fermentation. Although none of the scenarios identified could produce ethanol at lower cost than a straight grain ethanol plant, several were lower cost than a straight cellulosic ethanol plant.

  5. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

    DEFF Research Database (Denmark)

    Chang, Tinghong; Yao, Shuo

    2011-01-01

    of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes...... for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering......, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic...

  6. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  7. Characterization of wine yeasts for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Benitez, T.

    1986-11-01

    Selected wine yeasts were tested for their ethanol and sugar tolerance, and for their fermentative capacity. Growth (..mu..) and fermentation rates (..nu..) were increasingly inhibited by increasing ethanol and glucose concentrations, ''flor'' yeasts being the least inhibited. Except in the latter strains, the ethanol production rate was accelerated by adding the glucose stepwise. The best fermenting strains selected in laboratory medium were also the best at fermenting molasses. Invertase activity was not a limiting step in ethanol production, ..nu.. being accelerated by supplementing molasses with ammonia and biotine, and by cell recycle.

  8. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures.

    Science.gov (United States)

    Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Schaap, Joris D; Kampman, Christel; Buisman, Cees J N

    2010-01-01

    Biological acetate reduction with hydrogen is a potential method to convert wet biomass waste into ethanol. Since the ethanol concentration and reaction rates are low, this research studies the feasibility of using an electrode, in stead of hydrogen, as an electron donor for biological acetate reduction in conjunction of an electron mediator. Initially, the effect of three selected mediators on metabolic flows during acetate reduction with hydrogen was explored; subsequently, the best performing mediator was used in a bioelectrochemical system to stimulate acetate reduction at the cathode with mixed cultures at an applied cathode potential of -550 mV. In the batch test, methyl viologen (MV) was found to accelerate ethanol production 6-fold and increased ethanol concentration 2-fold to 13.5 +/- 0.7 mM compared to the control. Additionally, MV inhibited n-butyrate and methane formation, resulting in high ethanol production efficiency (74.6 +/- 6%). In the bioelectrochemical system, MV addition to an inoculated cathode led directly to ethanol production (1.82 mM). Hydrogen was coproduced at the cathode (0.0035 Nm(3) hydrogen m(-2) d(-1)), so it remained unclear whether acetate was reduced to ethanol by electrons supplied by the mediator or by hydrogen. As MV reacted irreversibly at the cathode, ethanol production stopped after 5 days.

  9. Rewiring Lactococcus lactis for Ethanol Production

    DEFF Research Database (Denmark)

    Solem, Christian; Dehli, Tore Ibsen; Jensen, Peter Ruhdal

    2013-01-01

    to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only...... small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase...... genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed...

  10. Ethanol production using engineered mutant E. coli

    Science.gov (United States)

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  11. Ethanol production using hemicellulosic hydrolyzate and sugarcane ...

    African Journals Online (AJOL)

    Juliana

    2015-02-11

    Feb 11, 2015 ... The use of vegetable biomass as substrate for ethanol production could reduce the ... Fermentation was performed in a laboratory scale using the J10 and FT858 ... Key words: Hydrolysis of sugarcane straw and pointers, sugarcane juice, ..... Ethanol: An Overview about Composition, Pretreatment Methods,.

  12. Feasibility study for co-locating and integrating ethanol production plants from corn starch and lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibsen, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); McAloon, Andrew [U.S. Department of Agriculture, Washington, D.C. (United States); Yee, Winnie [U.S. Department of Agriculture, Washington, D.C. (United States)

    2005-01-01

    Analysis of the feasibility of co-locating corn-grain-to-ethanol and lignocellulosic ethanol plants and potential savings from combining utilities, ethanol purification, product processing, and fermentation.

  13. Process integration study of a kraft pulp mill converted to an ethanol production plant – Part A: Potential for heat integration of thermal separation units

    International Nuclear Information System (INIS)

    Fornell, Rickard; Berntsson, Thore

    2012-01-01

    Energy efficiency is an important parameter for the profitability of biochemical ethanol production from lignocellulosic raw material. The yield of ethanol is generally low due to the limited amount of fermentable compounds in the raw material. Increasing energy efficiency leads to possibilities of exporting more by-products, which in turn might reduce the net production cost of ethanol. Energy efficiency is also an important issue when discussing the repurposing of kraft pulp mills to biorefineries, since the mills in question most likely will be old and inefficient. Investing in energy efficiency measures might therefore have a large effect on the economic performance. This paper discusses energy efficiency issues related to the repurposing of a kraft pulp mill into a lignocellulosic ethanol production plant. The studied process is a typical Scandinavian kraft pulp mill that has been converted to a biorefinery with ethanol as main product. A process integration study, using pinch analysis and process simulations, has been performed in order to assess alternative measures for improving the energy efficiency. The improvements found have also been related to the possibilities for by-product sales from the plant (electricity and/or lignin). In a forthcoming paper, which is the second part of this process integration study, an economic analysis based on the results from this paper will be presented. - Highlights: ► Conversion of a kraft pulp mill to ethanol production. ► Heat integration of distillation/evaporation in a lignocellulosic ethanol plant. ► Advanced pinch curves used to find new integration possibilities. ► 35–40% reduction of steam demand.

  14. Secondary liquefaction in ethanol production

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase.......The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase....

  15. Production of ethanol from wheat straw

    Directory of Open Access Journals (Sweden)

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  16. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes.

    Science.gov (United States)

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr; Jørgensen, Henning; Felby, Claus

    2013-11-01

    Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50°C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50°C, though ideal for ethanol yield, should be kept short or carried out at lower temperature to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose a challenge for applicable methods in enzyme recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Thomsen, A.B.; Ahring, Birgitte Kiær

    2001-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/l sodium carbonate, and 12 bar oxygen at 195 degreesC) was used for pre-treating wheat straw (60 g/l), resulting in a hemicellulose-rich hydrolysate and a cellulose-rich solid fraction. The hydrolysate consisted of soluble hemicellulose (9 g....../l), aliphatic carboxylic acids (6 g/l), phenols (0.27 g/l or 1.7 mM), and 2-furoic acid (0.007 g/l). The wet-oxidized wheat straw hydrolysate caused no inhibition of ethanol yield by the anaerobic thermophilic bacterium Thermoanaerobacter mathranii. Nine phenols and 2-furoic acid, identified to be present...

  18. Ethanol production using nuclear petite yeast mutants

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, A.; Oliver, S.G. [Department of Biomolecular Sciences, UMIST, Manchester (United Kingdom)

    1998-12-31

    Two respiratory-deficient nuclear petites, FY23{Delta}pet191 and FY23{Delta}cox5a, of the yeast Saccharomyces cerevisiae were generated using polymerase-chain-reaction-mediated gene disruption, and their respective ethanol tolerance and productivity assessed and compared to those of the parental grande, FY23WT, and a mitochondrial petite, FY23{rho}{sup 0}. Batch culture studies demonstrated that the parental strain was the most tolerant to exogenously added ethanol with an inhibition constant. K{sub i}, of 2.3% (w/v) and a specific rate of ethanol production, q{sub p}, of 0.90 g ethanol g dry cells{sup -1} h{sup -1}. FY23{rho}{sup 0} was the most sensitive to ethanol, exhibiting a K{sub i} of 1.71% (w/v) and q{sub p} of 0.87 g ethanol g dry cells{sup -1} h{sup -1}. Analyses of the ethanol tolerance of the nuclear petites demonstrate that functional mitochondria are essential for maintaining tolerance to the toxin with the 100% respiratory-deficient nuclear petite, FY23{Delta}pet191, having a K{sub i} of 2.14% (w/v) and the 85% respiratory-deficient FY23{Delta}cox5a, having a K{sub i} of 1.94% (w/v). The retention of ethanol tolerance in the nuclear petites as compared to that of FY23{rho}{sup 0} is mirrored by the ethanol productivities of these nuclear mutants, being respectively 43% and 30% higher than that of the respiratory-sufficient parent strain. This demonstrates that, because of their respiratory deficiency, the nuclear petites are not subject of the Pasteur effect and so exhibit higher rates of fermentation. (orig.)

  19. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    Energy Technology Data Exchange (ETDEWEB)

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  20. Furfural and ethanol production from corn stover by dilute phosphoric acid pretreatment

    Science.gov (United States)

    Lignocellulosic biomass is the most abundant carbohydrate source in the world and has potential for economical production of biofuels, especially ethanol. However, its composition is an obstacle for the production of ethanol by the conventional ethanol producing yeast Saccharomyces cerevisiae as it...

  1. Production of 16% ethanol from 35% sucrose

    International Nuclear Information System (INIS)

    Breisha, Gaber Z.

    2010-01-01

    A strain of Saccharomyces cerevisiae, which showed marked fermentation activity, ethanol and temperature tolerance and good flocculation ability, was selected for ethanol production. A stuck fermentation occurred at sucrose concentration of 25%. Increasing the yeast inoculum volume from 3% to 6% showed positive effects on fermentation from 25% sucrose. The ratio of added nitrogen to sucrose, which gave the best results (for the selected yeast strain), was determined. It was concluded that this ratio (nitrogen as ammonium sulphate at a rate of 5 mg g -1 of consumed sucrose) is constant at various sugar concentrations. Addition of nitrogen at this ratio produced 11.55% ethanol with complete consumption of 25% sucrose after 48 h of fermentation. However fermentation of 30% sucrose at the above optimum conditions was not complete. Addition of yeast extract at a level of 6 g l -1 together with thiamine at a level of 0.2 g l -1 led to complete utilization of 30% sucrose with resultant 14% ethanol production. However the selected yeast strain was not able to ferment 35% sucrose at the same optimum conditions. Addition of air at a rate of 150 dm 3 min -1 m 3 of reactor volume during the first 12 h of fermentation led to complete consumption of 35% sucrose and 16% ethanol was produced. This was approximately the theoretical maximum for ethanol production.

  2. Production of 16% ethanol from 35% sucrose

    Energy Technology Data Exchange (ETDEWEB)

    Breisha, Gaber Z. [Department of Agricultural Microbiology, Faculty of Agriculture, Minia University, Minia (Egypt)

    2010-08-15

    A strain of Saccharomyces cerevisiae, which showed marked fermentation activity, ethanol and temperature tolerance and good flocculation ability, was selected for ethanol production. A stuck fermentation occurred at sucrose concentration of 25%. Increasing the yeast inoculum volume from 3% to 6% showed positive effects on fermentation from 25% sucrose. The ratio of added nitrogen to sucrose, which gave the best results (for the selected yeast strain), was determined. It was concluded that this ratio (nitrogen as ammonium sulphate at a rate of 5 mg g{sup -1} of consumed sucrose) is constant at various sugar concentrations. Addition of nitrogen at this ratio produced 11.55% ethanol with complete consumption of 25% sucrose after 48 h of fermentation. However fermentation of 30% sucrose at the above optimum conditions was not complete. Addition of yeast extract at a level of 6 g l{sup -1} together with thiamine at a level of 0.2 g l{sup -1} led to complete utilization of 30% sucrose with resultant 14% ethanol production. However the selected yeast strain was not able to ferment 35% sucrose at the same optimum conditions. Addition of air at a rate of 150 dm{sup 3} min{sup -1} m{sup 3} of reactor volume during the first 12 h of fermentation led to complete consumption of 35% sucrose and 16% ethanol was produced. This was approximately the theoretical maximum for ethanol production. (author)

  3. The sustainability of ethanol production from sugarcane

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Coelho, Suani Teixeira; Guardabassi, Patricia

    2008-01-01

    The rapid expansion of ethanol production from sugarcane in Brazil has raised a number of questions regarding its negative consequences and sustainability. Positive impacts are the elimination of lead compounds from gasoline and the reduction of noxious emissions. There is also the reduction of CO 2 emissions, since sugarcane ethanol requires only a small amount of fossil fuels for its production, being thus a renewable fuel. These positive impacts are particularly noticeable in the air quality improvement of metropolitan areas but also in rural areas where mechanized harvesting of green cane is being introduced, eliminating the burning of sugarcane. Negative impacts such as future large-scale ethanol production from sugarcane might lead to the destruction or damage of high-biodiversity areas, deforestation, degradation or damaging of soils through the use of chemicals and soil decarbonization, water resources contamination or depletion, competition between food and fuel production decreasing food security and a worsening of labor conditions on the fields. These questions are discussed here, with the purpose of clarifying the sustainability aspects of ethanol production from sugarcane mainly in Sao Paulo State, where more than 60% of Brazil's sugarcane plantations are located and are responsible for 62% of ethanol production. (author)

  4. Availability of crop cellulosics for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R.D.

    1982-10-01

    Past estimates of cellulosic resources available from Canadian agriculture totalled over 23 million tonnes of cereal grain straw and corn stover residues surplus to soil and animal requirements. A new much reduced estimate, based on four detailed regional studies that also include previously unassessed resources such as chaff, oilseed hulls, and food processing wastes, is suggested. Eleven million tonnes are currently available from all residue sources for energy conversion by different processes. Only five million tonnes are identified as potentially usable in ethanol production plants were they to be constructed. Additional resource opportunities may become available in future from currently underutilized land, especially saline soils, novel processing techniques of conventional grains and forages, innovative cropping systems that may increase the yield of agricultural biomass, and new food/feed/fuel (i.e. multi-purpose) crops such as kochia, milkweed, and Jerusalem artichoke. 27 refs., 1 fig., 1 tab.

  5. Prospects for ethanol production from whey

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, K R

    1978-05-01

    Whey is a by-product of the manufacture of cheese and casein. Casein whey is not as fully utilized as cheese whey although in the last five years commercial processes have been developed to recover the whey proteins, either in denatured form as lactalbumin or in their soluble form as Solac. The removal of the whey proteins makes little difference to the polluting strength or volume of the whey and a crude lactose solution - serum or permeate - remains to be processed. Many processes have been evaluated for the use of this crude lactose solution; one is microbial transformation to produce products such as methane, ethanol, acetone and butanol and etc. The technologies for these processes are well known and it is the economic evaluation which ultimately determines the feasibility of the process being considered. For the purposes of this paper, the prospects for ethanol production have been evaluated. Unless there is a significant reduction in capital costs, it is concluded that ethanol production from whey is not a viable proposition as an energy source for New Zealand. Industrial ethanol (annual imports; 3.5 x 10/sup 6/ 1 CIF value 32 c/1) and potable ethanol production may be worth contemplating.

  6. Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China

    International Nuclear Information System (INIS)

    Dai Du; Hu Zhiyuan; Pu Gengqiang; Li He; Wang Chengtao

    2006-01-01

    The Guangxi Zhuang autonomous region has plentiful cassava resources, which is an ideal feedstock for fuel ethanol production. The Guangxi government intends to promote cassava fuel ethanol as a substitute for gasoline. The purpose of this study was to quantify the energy efficiency and potentials of a cassava fuel ethanol project in the Guangxi region based on a 100 thousand ton fuel ethanol demonstration plant at Qinzhou of Guangxi. The net energy value (NEV) and net renewable energy value (NREV) are presented to assess the energy and renewable energy efficiency of the cassava fuel ethanol system during its life cycle. The cassava fuel ethanol system was divided into five subsystems including the cassava plantation/treatment, ethanol conversion, denaturing, refueling and transportation. All the energy and energy related materials inputs to each subsystem were estimated at the primary energy level. The total energy inputs were allocated between the fuel ethanol and its coproducts with market value and replacement value methods. Available lands for a cassava plantation were investigated and estimated. The results showed that the cassava fuel ethanol system was energy and renewable energy efficient as indicated by positive NEV and NREV values that were 7.475 MJ/L and 7.881 MJ/L, respectively. Cassava fuel ethanol production helps to convert the non-liquid fuel into fuel ethanol that can be used for transportation. Through fuel ethanol production, one Joule of petroleum fuel, plus other forms of energy inputs such as coal, can produce 9.8 J of fuel ethanol. Cassava fuel ethanol can substitute for gasoline and reduce oil imports. With the cassava output in 2003, it can substitute for 166.107 million liters of gasoline. With the cassava output potential, it can substitute for 618.162 million liters of gasoline. Cassava fuel ethanol is more energy efficient than gasoline, diesel fuel and corn fuel ethanol but less efficient than biodiesel

  7. Bio ethanol production from oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Loh Soh Kheang; Muhammad Asyraf Kasim; Nasrin Abu Bakar

    2010-01-01

    Full text: The oil palm industry has an abundance of oil palm biomass. The type of biomass generated includes empty fruit bunches (EFB), oil palm trunk (OPT), kernel, shell and fronds. Generally, ligno celluloses biomass derived from oil palm has great potential to be converted into various forms of renewable energy. In this study, EFB in pulverized form was used as a feedstock for bio ethanol production. EFB contains lignin, hemicelluloses and cellulose which can be converted into fermentable sugar and bio ethanol. The EFB was initially pre-treated with 1% NaOH followed by acid hydrolysis with 0.7% sulfuric acid and enzyme prior to fermentation process with Saccharomyces cerevisea. The various process parameters for bio ethanol production was optimized i.e. pH, temperature, rate of agitation and initial feedstock concentration. The fermentation of EFB hydrolysate was at pH 4, 30 degree Celsius and 100 rpm within 72 hours of incubation yielded 10.48 g/L of bio ethanol from 50 g/L of EFB. The bio ethanol production in a 6-L bioreactor showed 36% conversion of fermentable sugar from EFB into bio ethanol. (author)

  8. The state of autotrophic ethanol production in Cyanobacteria.

    Science.gov (United States)

    Dexter, J; Armshaw, P; Sheahan, C; Pembroke, J T

    2015-07-01

    Ethanol production directly from CO2 , utilizing genetically engineered photosynthetic cyanobacteria as a biocatalyst, offers significant potential as a renewable and sustainable source of biofuel. Despite the current absence of a commercially successful production system, significant resources have been deployed to realize this goal. Utilizing the pyruvate decarboxylase from Zymomonas species, metabolically derived pyruvate can be converted to ethanol. This review of both peer-reviewed and patent literature focuses on the genetic modifications utilized for metabolic engineering and the resultant effect on ethanol yield. Gene dosage, induced expression and cassette optimizat-ion have been analyzed to optimize production, with production rates of 0·1-0·5 g L(-1) day(-1) being achieved. The current 'toolbox' of molecular manipulations and future directions focusing on applicability, addressing the primary challenges facing commercialization of cyanobacterial technologies are discussed. © 2015 The Society for Applied Microbiology.

  9. An Indirect Route for Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Eggeman, T.; Verser, D.; Weber, E.

    2005-04-29

    The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

  10. Performances comparison between three technologies for continuous ethanol production from molasses

    International Nuclear Information System (INIS)

    Bouallagui, Hassib; Touhami, Youssef; Hanafi, Nedia; Ghariani, Amine; Hamdi, Moktar

    2013-01-01

    Molasses are a potential feedstock for ethanol production. The successful application of anaerobic fermentation for ethanol production from molasses is critically dependent to the development and the use of high rate bioreactors. In this study the fermentation of sugar cane molasses by Saccharomyces cerevisiae for the ethanol production in a continuously stirred tank reactor (CSTR), an immobilised cell reactor (ICR) and a membrane reactor (MBR) was investigated. Ethanol production and reactor productivities were compared under different dilution rates (D). When using the CSTR, a decent ethanol productivity (Qp) of 6.8 g L −1 h −1 was obtained at a dilution rate of 0.5 h −1 . The Qp was improved by 48% and the residual sugar concentration was reduced by using the ICR. Intensifying the production of ethanol was investigated in the MBR to achieve a maximum ethanol concentration and a Qp of 46.5 g L −1 and 19.2 g L −1 h −1 , respectively. The achieved results in the MBR worked with high substrate concentration are promising for the scale up operation. -- Highlights: ► We compare three reactors for ethanol production from sugar cane molasses. ► The ethanol productivity of 6.8 g L -1 h -1 was obtained using the CSTR. ► The ethanol productivity was improved by 48% by using the ICR. ► Intensifying ethanol productivity (19.2 g L -1 h -1 ) was investigated in the MBR

  11. Utilization of biomass in the U.S. for the production of ethanol fuel as a gasoline replacement. I - Terrestrial resource potential. II - Energy requirements, with emphasis on lignocellulosic conversion

    Science.gov (United States)

    Ferchak, J. D.; Pye, E. K.

    The paper assesses the biomass resource represented by starch derived from feed corn, surplus and distressed grain, and high-yield sugar crops planted on set-aside land in the U.S. It is determined that the quantity of ethanol produced may be sufficient to replace between 5 to 27% of present gasoline requirements. Utilization of novel cellulose conversion technology may in addition provide fermentable sugars from municipal, agricultural and forest wastes, and ultimately from highly productive silvicultural operations. The potential additional yield of ethanol from lignocellulosic biomass appears to be well in excess of liquid fuel requirements of an enhanced-efficiency transport sector at present mileage demands. No conflict with food production would be entailed. A net-energy assessment is made for lignocellulosic biomass feedstocks' conversion to ethanol and an almost 10:1 energy yield/energy cost ratio determined. It is also found that novel cellulose pretreatment and enzymatic conversion methods still under development may significantly improve even that figure, and that both chemical-feedstocks and energy-yielding byproducts such as carbon dioxide, biogas and lignin make ethanol production potentially energy self-sufficient. A final high-efficiency production approach incorporates site-optimized, nonpolluting energy sources such as solar and geothermal.

  12. Ethanol production using hemicellulosic hydrolyzate and sugarcane ...

    African Journals Online (AJOL)

    Juliana

    2015-02-11

    Feb 11, 2015 ... Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License · 4.0 International .... Statistical analysis. The results of cell viability and ethanol production were subjected to analysis of variance by the F test, and the comparison of the means.

  13. Environmental aspects of eucalyptus based ethanol production and use

    International Nuclear Information System (INIS)

    González-García, Sara; Moreira, Ma. Teresa; Feijoo, Gumersindo

    2012-01-01

    A renewable biofuel economy is projected as a pathway to decrease dependence on fossil fuels as well as to reduce greenhouse gases (GHG) emissions. Ethanol produced on large-scale from lignocellulosic materials is considered the automotive fuel with the highest potential. In this paper, a life cycle assessment (LCA) study was developed to evaluate the environmental implications of the production of ethanol from a fast-growing short rotation crop (SRC): eucalyptus as well as its use in a flexi-fuel vehicle (FFV). The aim of the analysis was to assess the environmental performance of three ethanol based formulations: E10, E85 and E100, in comparison with conventional gasoline. The standard framework of LCA from International Standards Organization was followed and the system boundaries included the cultivation of the eucalyptus biomass, the processing to ethanol conversion, the blending with gasoline (when required) and the final use of fuels. The environmental results show reductions in all impact categories under assessment when shifting to ethanol based fuels, excluding photochemical oxidant formation, eutrophication as well as terrestrial and marine ecotoxicity which were considerably influenced by upstream activities related to ethanol manufacture. The LCA study remarked those stages where the researchers and technicians need to work to improve the environmental performance. Special attention must be paid on ethanol production related activities, such as on-site energy generation and distillation, as well as forest activities oriented to the biomass production. The use of forest machinery with higher efficiency levels, reduction of fertilizers dose and the control of diffuse emissions from the conversion plant would improve the environmental profile. -- Highlights: ► The identification of the environmental implications of the production and use of eucalyptus based ethanol was carried out. ► Eucalyptus is a Spanish common and abundant fast-growing short

  14. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  15. Metabolic engineering of ethanol production in Thermoanaerobacter mathranii

    Energy Technology Data Exchange (ETDEWEB)

    Shou Yao

    2010-11-15

    Strain BG1 is a xylanolytic, thermophilic, anaerobic, Gram-positive bacterium originally isolated from an Icelandic hot spring. The strain belongs to the species Thermoanaerobacter mathranii. The strain ferments glucose, xylose, arabinose, galactose and mannose simultaneously and produces ethanol, acetate, lactate, CO{sub 2}, and H2 as fermentation end-products. As a potential ethanol producer from lignocellulosic biomass, tailor-made BG1 strain with the metabolism redirected to produce ethanol is needed. Metabolic engineering of T. mathranii BG1 is therefore necessary to improve ethanol production. Strain BG1 contains four alcohol dehydrogenase (ADH) encoding genes. They are adhA, adhB, bdhA and adhE encoding primary alcohol dehydrogenase, secondary alcohol dehydrogenase, butanol dehydrogenase and bifunctional alcohol/acetaldehyde dehydrogenase, respectively. The presence in an organism of multiple alcohol dehydrogenases with overlapping specificities makes the determination of the specific role of each ADH difficult. Deletion of each individual adh gene in the strain revealed that the adhE deficient mutant strain fails to produce ethanol as the fermentation product. The bifunctional alcohol/acetaldehyde dehydrogenase, AdhE, is therefore proposed responsible for ethanol production in T. mathranii BG1, by catalyzing sequential NADH-dependent reductions of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. Moreover, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Over-expression of AdhE in strain BG1E1 with xylose as a substrate facilitates the production of ethanol at an increased yield. With a cofactor-dependent ethanol production pathway in T. mathranii BG1, it may become crucial to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol

  16. RECTIFIED ETHANOL PRODUCTION COST ANALYSIS

    Directory of Open Access Journals (Sweden)

    Nikola J Budimir

    2011-01-01

    Full Text Available This paper deals with the impact of the most important factors of the total production costs in bioethanol production. The most influential factors are: total investment costs, price of raw materials (price of biomass, enzymes, yeast, and energy costs. Taking into account these factors, a procedure for estimation total production costs was establish. In order to gain insight into the relationship of production and selling price of bioethanol, price of bioethanol for some countries of the European Union and the United States are given.

  17. Ethanol Production from Different Intermediates of Sugar Beet Processing

    OpenAIRE

    Mladen Pavlečić; Ivna Vrana; Kristijan Vibovec; Mirela Ivančić Šantek; Predrag Horvat; Božidar Šantek

    2010-01-01

    In this investigation, the production of ethanol from the raw sugar beet juice and raw sugar beet cossettes has been studied. For ethanol production from the raw sugar beet juice, batch and fed-batch cultivation techniques in the stirred tank bioreactor were used, while batch ethanol production from the raw sugar beet cossettes was carried out in horizontal rotating tubular bioreactor (HRTB). In both cases, Saccharomyces cerevisiae was used as a production microorganism. During batch ethanol ...

  18. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    International Nuclear Information System (INIS)

    Lythcke-Jørgensen, Christoffer; Haglind, Fredrik; Clausen, Lasse R.

    2014-01-01

    Highlights: • We model a system where lignocellulosic ethanol production is integrated with a combined heat and power (CHP) plant. • We conduct an exergy analysis for the ethanol production in six different system operation points. • Integrated operation, district heating (DH) production and low CHP loads all increase the exergy efficiency. • Separate operation has the largest negative impact on the exergy efficiency. • Operation is found to have a significant impact on the exergy efficiency of the ethanol production. - Abstract: Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible, and a gas boiler is used as back-up when integration is not possible. The system was evaluated according to six operation points that alternate on the following three different operation parameters: Load in the CHP unit, integrated versus separate operation, and inclusion of district heating production in the ethanol facility. The calculated standard exergy efficiency of the ethanol facility varied from 0.564 to 0.855, of which the highest was obtained for integrated operation at reduced CHP load and full district heating production in the ethanol facility, and the lowest for separate operation with zero district heating production in the ethanol facility. The results suggest that the efficiency of integrating lignocellulosic ethanol production in CHP plants is highly dependent on operation, and it is therefore suggested that the

  19. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  20. Production of Biocellulosic Ethanol from Wheat Straw

    Directory of Open Access Journals (Sweden)

    Ismail

    2012-01-01

    Full Text Available Wheat straw is an abundant lignocellulosic feedstock in many parts of the world, and has been selected for producing ethanol in an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses.Two-stage acid hydrolysis was carried out with concentrates of perchloric acid, using wheat straw. The hydrolysate was concentrated by vacuum evaporation to increase the concentration of fermentable sugars, and was detoxified by over-liming to decrease the concentration of fermentation inhibitors. After two-stage acid hydrolysis, the sugars and the inhibitors were measured. The ethanol yields obtained from by converting hexoses and pentoses in the hydrolysate with the co-culture of Saccharomyces cerevisiae and Pichia stipites were higher than the ethanol yields produced with a monoculture of S. cerevisiae. Various conditions for hysdrolysis and fermentation were investigated. The ethanol concentration was 11.42 g/l in 42 h of incubation, with a yield of 0.475 g/g, productivity of 0.272 gl ·h, and fermentation efficiency of 92.955 %, using a co-culture of Saccharomyces cerevisiae and Pichia stipites

  1. On the Use of Potential Denaturing Agents for Ethanol in Direct Ethanol Fuel Cells

    OpenAIRE

    Domnik Bayer; Florina Jung; Birgit Kintzel; Martin Joos; Carsten Cremers; Dierk Martin; Jörg Bernard; Jens Tübke

    2011-01-01

    Acidic or alkaline direct ethanol fuel cells (DEFCs) can be a sustainable alternative for power generation if they are fuelled with bio-ethanol. However, in order to keep the fuel cheap, ethanol has to be exempted from tax on spirits by denaturing. In this investigation the potential denaturing agents fusel oil, tert-butyl ethyl ether, and Bitrex were tested with regard to their compatibility with fuel cells. Experiments were carried out both in sulphuric acid and potassium hydroxide solution...

  2. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.

    Science.gov (United States)

    Hon, Shuen; Olson, Daniel G; Holwerda, Evert K; Lanahan, Anthony A; Murphy, Sean J L; Maloney, Marybeth I; Zheng, Tianyong; Papanek, Beth; Guss, Adam M; Lynd, Lee R

    2017-07-01

    Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Production of bio ethanol from waste potatoes

    Science.gov (United States)

    Jaber Noufal, Mohamad; Li, Baizhan; Maalla, Zena Ali

    2017-03-01

    In this research, production of ethanol from waste potatoes fermentation was studied using Saccharomyces cerevisiae. Potato Flour prepared from potato tubers after cooking and drying at 85°C. A homogenous slurry of potato flour prepared in water at solid-liquid ratio 1:10. Liquefaction of potato starch slurry was done with α-amylase at 80°C for 40 min followed by saccharification process which was done with glucoamylase at 65°C for two hr. Fermentation of hydrolysate with Saccharomyces cerevisiae at 35°C for two days resulted in the production of 33 g/l ethanol. The following parameters have been analysed: temperature, time of fermentation and pH. It found that Saccharification process is affected by enzyme Amylase 300 concentration and concentration of 1000μl/100ml gives the efficient effect of the process. The best temperature for fermentation process was found to be about 35°C. Also, it noticed that ethanol production increased as a time of fermentation increased but after 48 hr further growth in fermentation time did not have an appreciable effect. Finally, the optimal value of pH for fermentation process was about 5 to 6.

  4. Techno-economic analysis of fuel ethanol production from cassava ...

    African Journals Online (AJOL)

    Moncada Botero, J. (Jonathan)

    Key words: Fuel-ethanol, cassava, Tanzania, process modelling. INTRODUCTION ..... mathematical calculations such as Matlab, Octave and Polymath were also ... models. To start the different simulation procedures in ethanol production, a.

  5. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol.

    Science.gov (United States)

    Liu, Gang; Bao, Jie

    2017-12-01

    Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bio-Ethanol Production from Poultry Manure

    African Journals Online (AJOL)

    john

    ethanol. Fuel ethanol is known as bio-ethanol, since it is produced from plant materials by biological processes. Bioethanol is mainly produced by fermentation of sugar containing crops like corn, maize, wheat, sugar cane, sugar beet, potatoes, ...

  7. Vinasse from Sugarcane Ethanol Production: Better Treatment or Better Utilization?

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Reis, Cristiano E.; Hu, Bo, E-mail: bhu@umn.edu [Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN (United States)

    2017-04-10

    Ethanol production from sugarcane in Brazil is a well-established industry, with relatively simple operations and high yield. The ethanol primarily serves as a renewable fuel blending with gasoline and diesel to increase the energy security in Brazil. Several environmental concerns are emerged around the by-products from this industry. Vinasse, the liquid fraction generated from the rectification and distillation operations of ethanol, is a sulfur-rich, low pH, dark-colored, and odorous effluent, produced at volumes as high as 20-fold of ethanol. Traditional wastewater treatments, such as bioprocessing, advanced oxidative processes, anaerobic digestion (AD), and chemical-based processes, have been applied to vinasse management. Despite most of its utilization being in fertirrigation practices, vinasse may represent a key factor in enhancing profitability and environmental outcomes of a sugarcane-to-ethanol plant. The application of some upgrade solutions to sugarcane-derived vinasse may represent additional sources of energy, production of animal feed components, and reduction in water consumption within a plant. The use of mature technologies, yet not widespread in the sugarcane-to-ethanol industry, could help attenuate environmental concerns. Oxidation and chemical processes, AD, and microbial fermentation have been presented as alternative impactful alternatives to (i) reduce its organic and mineral load, converting it to a feedstock with fewer environmental applications when applied as fertilizer and (ii) to convert organic matter and nutrients to a nutritious biomass, simultaneously increasing water reclamation potential by plants. This mini-review article provides a critical and comprehensive summary of the alternatives developed or under development to vinasse management.

  8. Immobilization of Saccharomyces Cerevisiae in Rice Hulls for Ethanol Production

    Directory of Open Access Journals (Sweden)

    Edita Martini

    2011-05-01

    Full Text Available The whole cell immobilization in ethanol fermentation can be done by using natural carriers or through synthetic carriers. All of these methods have the same purpose of retaining high cell concentrations within a certain defined region of space which leads to higher ethanol productivity. Lignocellulosic plant substance represents one of highly potential sources in ethanol production. Some studies have found that cellulosic substances substances can also be used as a natural carrier in cell immobilization by re-circulating pre-culture medium into a reactor. In this experiment, rice hulls without any treatment were used to immobilize Saccharomyces cerevisiae through semi solid state incubation combined with re-circulating pre-culture medium. The scanning electron microscopy (SEM pictures of the carrier show that the yeast cells are absorbed and embedded to the rice hull pore. In liquid batch fermentation system with an initial sugar concentration of 50 g/L, nearly 100% total sugar was consumed after 48 hours. This resulted in an ethanol yield of 0.32 g ethanol/g glucose, which is 62.7% of the theoretical value. Ethanol productivity of 0.59 g/(L.h is 2.3 fold higher than that of free cells which is 0.26 g/(L.h. An effort to reuse the immobilized cells in liquid fermentation system showed poor results due to cell desorption in the first batch which led to high sugar concentration inhibitory effect in the second batch fermentation. This might be solved by using semi solid fermentation process in the future work.

  9. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    2014-01-01

    production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible...... district heating production in the ethanol facility. The results suggest that the efficiency of integrating lignocellulosic ethanol production in CHP plants is highly dependent on operation, and it is therefore suggested that the expected operation pattern of such polygeneration system is taken......Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol...

  10. Energy, carbon dioxide and water use implications of hydrous ethanol production

    International Nuclear Information System (INIS)

    Saffy, Howard A.; Northrop, William F.; Kittelson, David B.; Boies, Adam M.

    2015-01-01

    Highlights: • We use a chemical refinery model and exergy analysis to determine the impact of hydrous ethanol. • The process is 70% efficient with 86% of the losses from fermentation, steam generation and drying. • We found that producing 86 wt% ethanol is optimal for thermal energy consumption. • Hydrous ethanol production can reduce energy costs and emissions by ∼8%. • Hydrous ethanol reduces water use by decreasing evaporation in cooling towers. - Abstract: Sub-azeotropic hydrous ethanol has been demonstrated as an effective diesel fuel replacement when used in dual-fuel compression ignition engines. Previous studies have also suggested that hydrous ethanol may be more efficient to produce from corn than anhydrous ethanol. In this study, we investigate corn ethanol production from a dry-mill, natural gas-fired corn ethanol refinery, producing ethanol with a range of ethanol concentrations from 58 wt% to 100 wt% to determine the effect on energy use, water consumption and greenhouse gas (GHG) emissions in the refining stage of the corn ethanol lifecycle. A second law (exergy) analysis of anhydrous ethanol refining revealed the overall process to be 70% efficient, whereby 86% of the exergy losses could be accounted for by three processes: fermentation (34%), steam generation (29%) and distiller’s grains and solubles drying (23%). We found that producing 86 wt% ethanol is optimal as thermal energy consumption decreases by a maximum of 10% (from 7.7 MJ/L to 6.9 MJ/L). These savings have the potential to reduce energy costs by approximately 8% ($0.34/L) and reduce refinery emissions by 8% (2 g CO 2 e/MJ). Production of hydrous ethanol reduced refinery water use due to decreased evaporative losses in the cooling towers, leading to water savings of between 3% and 6% at 86 wt% ethanol.

  11. Market for ethanol feed joint products

    Energy Technology Data Exchange (ETDEWEB)

    Hertzmark, D.; Gould, B.

    1979-10-01

    This report presents results of econometric estimations and mathematical simulations of markets for joint feed products of motor ethanol. The major issues considered are the nature of current market price relationships, effects on prices, including feed substitutes prices, and effects of demands for increased use of distillers' grains and gluten meal. The econometric section shows that soybean meal was by far the dominant force in the pricing of the two products. However, neither one could be adequately explained without the inclusion of corn in the estimating equations. Later research shows that this was due to the importance of both feeds for metabolizable energy as well as for protein in livestock diets. Current ration formulations would require some discounting of the value of the protein content of the two feeds. Careful siting of the ethanol facilities, and flexible design of the plants so that a maximum number of products may be extracted from the feedstock, seem necessary. Finally, the analysis indicates that substitution in animal diets of these joint products for the corn or milo used originally requires that additional energy be supplied to the animal by some type of forage crop. This implies that additional land may be required for energy production, for such marginal crops as hay and alfalfa, rather than for row crops.

  12. Ethanol and Protein from Ethanol Plant By-Products Using Edible Fungi Neurospora intermedia and Aspergillus oryzae.

    Science.gov (United States)

    Bátori, Veronika; Ferreira, Jorge A; Taherzadeh, Mohammad J; Lennartsson, Patrik R

    2015-01-01

    Feasible biorefineries for production of second-generation ethanol are difficult to establish due to the process complexity. An alternative is to partially include the process in the first-generation plants. Whole stillage, a by-product from dry-mill ethanol processes from grains, is mostly composed of undegraded bran and lignocelluloses can be used as a potential substrate for production of ethanol and feed proteins. Ethanol production and the proteins from the stillage were investigated using the edible fungi Neurospora intermedia and Aspergillus oryzae, respectively. N. intermedia produced 4.7 g/L ethanol from the stillage and increased to 8.7 g/L by adding 1 FPU of cellulase/g suspended solids. Saccharomyces cerevisiae produced 0.4 and 5.1 g/L ethanol, respectively. Under a two-stage cultivation with both fungi, up to 7.6 g/L of ethanol and 5.8 g/L of biomass containing 42% (w/w) crude protein were obtained. Both fungi degraded complex substrates including arabinan, glucan, mannan, and xylan where reductions of 91, 73, 38, and 89% (w/v) were achieved, respectively. The inclusion of the current process can lead to the production of 44,000 m(3) of ethanol (22% improvement), around 12,000 tons of protein-rich biomass for animal feed, and energy savings considering a typical facility producing 200,000 m(3) ethanol/year.

  13. Ethanol and Protein from Ethanol Plant By-Products Using Edible Fungi Neurospora intermedia and Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Veronika Bátori

    2015-01-01

    Full Text Available Feasible biorefineries for production of second-generation ethanol are difficult to establish due to the process complexity. An alternative is to partially include the process in the first-generation plants. Whole stillage, a by-product from dry-mill ethanol processes from grains, is mostly composed of undegraded bran and lignocelluloses can be used as a potential substrate for production of ethanol and feed proteins. Ethanol production and the proteins from the stillage were investigated using the edible fungi Neurospora intermedia and Aspergillus oryzae, respectively. N. intermedia produced 4.7 g/L ethanol from the stillage and increased to 8.7 g/L by adding 1 FPU of cellulase/g suspended solids. Saccharomyces cerevisiae produced 0.4 and 5.1 g/L ethanol, respectively. Under a two-stage cultivation with both fungi, up to 7.6 g/L of ethanol and 5.8 g/L of biomass containing 42% (w/w crude protein were obtained. Both fungi degraded complex substrates including arabinan, glucan, mannan, and xylan where reductions of 91, 73, 38, and 89% (w/v were achieved, respectively. The inclusion of the current process can lead to the production of 44,000 m3 of ethanol (22% improvement, around 12,000 tons of protein-rich biomass for animal feed, and energy savings considering a typical facility producing 200,000 m3 ethanol/year.

  14. Biological pretreatment and ethanol production from olive cake

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Baroi, George Nabin

    2010-01-01

    Olive oil is one of the major Mediterranean products, whose nutritional and economic importance is well-known. However the extraction of olive oil yields a highly contaminating residue that causes serious environmental concerns in the olive oil producing countries. The olive cake (OC) coming out...... of the three-phase olive oil production process could be used as low price feedstock for lignocellulosic ethanol production due to its high concentration in carbohydrates. However, the binding of the carbohydrates with lignin may significantly hinder the necessary enzymatic hydrolysis of the polymeric sugars...... before ethanol fermentation. Treatment with three white rot fungi, Phaneroachaete chrysosporium, Ceriporiopsis subvermispora and Ceriolopsis polyzona has been applied on olive cake in order to investigate the potential for performing delignification and thus enhancing the efficiency of the subsequent...

  15. Optimization of fermentation conditions for ethanol production from whey

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, F J; Izaguirre, M F; Michelena, V; Moreno, B

    1982-01-01

    Optimal conditions for ethanol production in 7% whey solutions by the yeast Candida pseudotropicalis ATCC 8619 included an initial pH of 4.57 and 30 degrees. Complete fermentation of the available lactose took place without supplementary nutrients; additions of N and P salts, yeast extract, or corn steep liquor resulted in increased yeast production and lower ethanol yields. A possible correlation was observed between increases in yeast inocula and lactose utilization and ethanol production rates; 8.35 g ethanol/L was obtained within 22 hours by using a yeast inoculum of 13.9 g/L. No differences in fermentation rates or ethanol yields were observed when whole or deproteinized whey solutions were used. Concentrated whey permeates, obtained after removal of the valuable proteins from whey, can be effectively fermented for ethanol production.

  16. Grain sorghum is a viable feedstock for ethanol production.

    Science.gov (United States)

    Wang, D; Bean, S; McLaren, J; Seib, P; Madl, R; Tuinstra, M; Shi, Y; Lenz, M; Wu, X; Zhao, R

    2008-05-01

    Sorghum is a major cereal crop in the USA. However, sorghum has been underutilized as a renewable feedstock for bioenergy. The goal of this research was to improve the bioconversion efficiency for biofuels and biobased products from processed sorghum. The main focus was to understand the relationship among "genetics-structure-function-conversion" and the key factors impacting ethanol production, as well as to develop an energy life cycle analysis model (ELCAM) to quantify and prioritize the saving potential from factors identified in this research. Genetic lines with extremely high and low ethanol fermentation efficiency and some specific attributes that may be manipulated to improve the bioconversion rate of sorghum were identified. In general, ethanol yield increased as starch content increased. However, no linear relationship between starch content and fermentation efficiency was found. Key factors affecting the ethanol fermentation efficiency of sorghum include protein digestibility, level of extractable proteins, protein and starch interaction, mash viscosity, amount of phenolic compounds, ratio of amylose to amylopectin, and formation of amylose-lipid complexes in the mash. A platform ELCAM with a base case showed a positive net energy value (NEV) = 25,500 Btu/gal EtOH. ELCAM cases were used to identify factors that most impact sorghum use. For example, a yield increase of 40 bu/ac resulted in NEV increasing from 7 million to 12 million Btu/ac. An 8% increase in starch provided an incremental 1.2 million Btu/ac.

  17. An Update on Ethanol Production and Utilization in Thailand, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Bloyd, Cary N.; Foster, Nikolas A.F.

    2014-09-01

    In spite of the recent political turmoil, Thailand has continued to develop its ethanol based alternative fuel supply and demand infrastructure. Its support of production and sales of ethanol contributed to more than doubling the production over the past five years alone. In April 2014, average consumption stood at 3.18 million liter per day- more than a third on its way to its domestic consumption goal of 9 million liters per day by 2021. Strong government incentives and the phasing out of non-blended gasoline contributed substantially. Concurrently, exports dropped significantly to their lowest level since 2011, increasing the pressure on Thai policy makers to best balance energy independency goals with other priorities, such as Thailand’s trade balance and environmental aspirations. Utilization of second generation biofuels might have the potential to further expand Thailand’s growing ethanol market. Thailand has also dramatically increased its higher ethanol blend vehicle fleet, with all new vehicles sold in the Thai market now being E20 capable and the number of E85 vehicles increasing three fold in the last year from 100,000 in 2013 to 300,000 in 2014.

  18. Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025.

    Science.gov (United States)

    Rocha, Maria Valderez Ponte; Rodrigues, Tigressa Helena Soares; Melo, Vania M M; Gonçalves, Luciana R B; de Macedo, Gorete Ribeiro

    2011-08-01

    The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated in this work. This strain was preliminarily cultivated in a synthetic medium containing glucose and xylose and was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pretreatment and used as fermentation media. This hydrolysate is rich in glucose, xylose, and arabinose and contains traces of formic acid and acetic acid. In batch fermentations of CABH at pH 4.5, the strain produced only ethanol. The effects of temperature on the kinetic parameters of ethanol fermentation by K. marxianus CE025 using CABH were also evaluated. Maximum specific growth rate (μ(max)), overall yields of ethanol based on glucose consumption [Formula: see text] and based on glucose + xylose consumption (Y ( P/S )), overall yield of ethanol based on biomass (Y ( P/X )), and ethanol productivity (P (E)) were determined as a function of temperature. Best results of ethanol production were achieved at 30°C, which is also quite close to the optimum temperature for the formation of biomass. The process yielded 12.36 ± 0.06 g l(-1) of ethanol with a volumetric production rate of 0.257 ± 0.002 g l(-1) h(-1) and an ethanol yield of 0.417 ± 0.003 g g(-1) glucose.

  19. Ethanol yield and energy potential of stems from a spectrum of sorghum biomass types

    Energy Technology Data Exchange (ETDEWEB)

    McBee, G.G.; Creelman, R.A.; Miller, F.R.

    1988-01-01

    Sorghum biomass is a renewable resource that offers significant potential for energy utilization. Six sorghum cultivars, representing an array of stem types, were evaluated for ethanol yield. Ethanol production was individually obtained for both the total stem and the pith of each type by anaerobic yeast fermentation. Value of the energy contained in the rind was determined by calorimetry. The highest yield of ethanol from total stem fermentation was 3418.3 liters ha/sup -1/ produced from Rio. Fermentation of Rio pith to ethanol and combustion of the rind resulted in the highest total energy value of the cultivars. The least and greatest energy values were 6.3 and 44.3 x 10/sup 6/ kcal ha/sup -1/ for SC0056-14 and Rio, respectively. Conversion ratios of potentially fermentable carbohydrates (within the vegetative biomass) to ethanol produced, averaged 0.438 for the pith and 0.406 for total stems.

  20. Ethanol production from paper sludge using Kluyveromyces marxianus

    International Nuclear Information System (INIS)

    Madrid, Lina Maria; Quintero Diaz, Juan Carlos

    2011-01-01

    Recycled paper sludge is a promising raw material for ethanol production. In this study, we first evaluated the effects of ethanol concentration, solids load, and cellulose crystallinity on the enzymatic hydrolysis of cellulose to produce reducing sugars. We then evaluated the production of ethanol by either saccharification and simultaneous fermentation (SSF) or separated hydrolysis and fermentation (SHF) using the yeast Kluyveromyces marxianus ATCC 36907. We found that cellulose hydrolysis decreased as ethanol concentrations increased; at 40 g/L ethanol, the reducing sugar production was decreased by 79 %. Hydrolysis also decreased as solids load increased; at 9 % of solids, the cellulose conversion was 76 % of the stoichiometric production. The ethanol yield and cellulose conversion rate were higher with SSF as opposed to SHF processes at 72 h of treatment.

  1. Scale up of ethanol production using pulp mill wastewater sludge by cellulase and saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kunchada Sangasintu; Petchporn Chawakitchareon

    2010-01-01

    This study aimed to evaluate the potential use of pulp mill wastewater sludge as substrate in ethanol production. The simultaneous saccharification and fermentation process was conducted by using Saccharomyces cerevisiae TISTR 5339 under optimum proportion of cellulase and pulp mill wastewater sludge. The ethanol production from cellulosic materials in simultaneous saccharification and fermentation needs cooperation between cellulase and yeast. The cellulase hydrolyzes cellulose to sugar while yeast utilizes sugar to produce ethanol. The pulp mill wastewater sludge has an average content of 73.3 % hemi cellulose, 67.1 % alpha cellulose, 4.7 % beta cellulose and 1.4 % gamma cellulose. The experimental results indicated that the volume of the ethanol tend to increase with time, providing the maximum ethanol yield of 0.69 g/g on the 7"t"h day, the last day of the experiment. The ethanol production was scaled up in 5 L fermentor under optimum proportion and increased the fermentation period. It was found that the ethanol production gave the maximum ethanol yield of 1.14 g/g on the 9"t"h day of the totally 13 days experimentation. These results showed that the cellulose from pulp mill wastewater sludge was as effective substrate for ethanol production and alternative energy for the future. (author)

  2. Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions

    Directory of Open Access Journals (Sweden)

    Liu Chen-Guang

    2012-08-01

    Full Text Available Abstract Background Very high gravity (VHG fermentation using medium in excess of 250 g/L sugars for more than 15% (v ethanol can save energy consumption, not only for ethanol distillation, but also for distillage treatment; however, stuck fermentation with prolonged fermentation time and more sugars unfermented is the biggest challenge. Controlling redox potential (ORP during VHG fermentation benefits biomass accumulation and improvement of yeast cell viability that is affected by osmotic pressure and ethanol inhibition, enhancing ethanol productivity and yield, the most important techno-economic aspect of fuel ethanol production. Results Batch fermentation was performed under different ORP conditions using the flocculating yeast and media containing glucose of 201 ± 3.1, 252 ± 2.9 and 298 ± 3.8 g/L. Compared with ethanol fermentation by non-flocculating yeast, different ORP profiles were observed with the flocculating yeast due to the morphological change associated with the flocculation of yeast cells. When ORP was controlled at −100 mV, ethanol fermentation with the high gravity (HG media containing glucose of 201 ± 3.1 and 252 ± 2.9 g/L was completed at 32 and 56 h, respectively, producing 93.0 ± 1.3 and 120.0 ± 1.8 g/L ethanol, correspondingly. In contrast, there were 24.0 ± 0.4 and 17.0 ± 0.3 g/L glucose remained unfermented without ORP control. As high as 131.0 ± 1.8 g/L ethanol was produced at 72 h when ORP was controlled at −150 mV for the VHG fermentation with medium containing 298 ± 3.8 g/L glucose, since yeast cell viability was improved more significantly. Conclusions No lag phase was observed during ethanol fermentation with the flocculating yeast, and the implementation of ORP control improved ethanol productivity and yield. When ORP was controlled at −150 mV, more reducing power was available for yeast cells to survive, which in turn improved their viability and VHG

  3. Environmental sustainability assessment of bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2009-01-01

    Bio-ethanol is playing an important role in renewable energy for transport according to Thai government policy. This study aims to evaluate the energy efficiency and renewability of bio-ethanol system and identify the current significant environmental risks and availability of feedstocks in Thailand. Four of the seven existing ethanol plants contributing 53% of the total ethanol fuel production in Thailand have been assessed by the net energy balance method and Life Cycle Assessment (LCA). A renewability and net energy ratio portfolio has been used to indicate whether existing bio-ethanol production systems have net energy gain and could help reduce dependency on fossil energy. In addition, LCA has been conducted to identify and evaluate the environmental hotspots of 'cradle to gate' bio-ethanol production. The results show that there are significant differences of energy and environmental performance among the four existing production systems even for the same feedstock. The differences are dependent on many factors such as farming practices, feedstock transportion, fuel used in ethanol plants, operation practices and technology of ethanol conversion and waste management practices. Recommendations for improving the overall energy and environmental performance of the bio-ethanol system are suggested in order to direct the bio-ethanol industry in Thailand towards environmental sustainability.

  4. Pilot plant study for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J S [Korea Inst. of Science and Technology, Seoul (Korea, Republic of)

    1996-02-01

    Most of domestic alcohol fermentation factory adopt batch process of which productivity is lower than continuous fermentation process. They have made great effort to increase productivity by means of partial unit process automatization and process improvement with their accumulated experience but there is technical limitation in productivity of batch fermentation process. To produce and supply fuel alcohol, economic aspects must be considered first of all. Therefore, development of continuous fermentation process, of which productivity is high, is prerequisite to produce and use fuel alcohol but only a few foreign company possess continuous fermentation technic and use it in practical industrial scale fermentation. We constructed pilot plant (5 Stage CSTR 1 kl 99.5 v/v% ethanol/Day scale) to study some aspects stated below and our ultimate aims are production of industrial scale fuel alcohol and construction of the plant by ourselves. Some study concerned with energy saving separation and contamination control technic were entrusted to KAIST, A-ju university and KIST respectively. (author) 67 refs., 100 figs., 58 tabs.

  5. Ethanol Production from Different Intermediates of Sugar Beet Processing

    Directory of Open Access Journals (Sweden)

    Mladen Pavlečić

    2010-01-01

    Full Text Available In this investigation, the production of ethanol from the raw sugar beet juice and raw sugar beet cossettes has been studied. For ethanol production from the raw sugar beet juice, batch and fed-batch cultivation techniques in the stirred tank bioreactor were used, while batch ethanol production from the raw sugar beet cossettes was carried out in horizontal rotating tubular bioreactor (HRTB. In both cases, Saccharomyces cerevisiae was used as a production microorganism. During batch ethanol production from the raw sugar beet juice, ethanol yield was 59.89 g/L and production efficiency 78.8 %, and in fed-batch process the yield was 92.78 g/L and efficiency 93.4 %. At the same time, ethanol production in HRTB from the raw sugar beet cossettes with inoculum of 16.7 % V/m (raw sugar beet cossettes resulted in the highest ethanol yield of 54.53 g/L and production efficiency of 79.5 %. The obtained results clearly show that both intermediates of sugar beet processing can be successfully used for ethanol production.

  6. On the Use of Potential Denaturing Agents for Ethanol in Direct Ethanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Domnik Bayer

    2011-01-01

    Full Text Available Acidic or alkaline direct ethanol fuel cells (DEFCs can be a sustainable alternative for power generation if they are fuelled with bio-ethanol. However, in order to keep the fuel cheap, ethanol has to be exempted from tax on spirits by denaturing. In this investigation the potential denaturing agents fusel oil, tert-butyl ethyl ether, and Bitrex were tested with regard to their compatibility with fuel cells. Experiments were carried out both in sulphuric acid and potassium hydroxide solution. Beside, basic electrochemical tests, differential electrochemical mass spectrometry (DEMS and fuel cell tests were conducted. It was found that fusel oil is not suitable as denaturing agent for DEFC. However, tert-butyl ethyl ether does not seem to hinder the ethanol conversion as much. Finally, a mixture of tert-butyl ethyl ether and Bitrex can be proposed as promising candidate as denaturing agent for use in acidic and alkaline DEFC.

  7. Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth

    Energy Technology Data Exchange (ETDEWEB)

    Luebbehuesen, T.L.; Nielsen, J.; McIntyre, M. [Center for Process Biotechnology, BioCentrum-DTU, Technical Univ. of Denmark, Lyngby (Denmark)

    2004-07-01

    The dimorphic organism Mucor circinelloides is currently being investigated as a potential host for heterologous protein production. The production of ethanol on pentose and hexose sugars was studied in submerged batch cultivations to further the general knowledge of Mucor physiology, with a view to the minimisation or elimination of the by-product ethanol for future process design. Large amounts of ethanol were produced during aerobic growth on glucose under non-oxygen limiting conditions, which is indicative of M. circinelloides being a Crabtree-positive organism. Ethanol production on galactose or xylose was less significant. The response of the organism to increased ethanol concentrations, both as the sole carbon source and in the presence of a sugar, was investigated in terms of biomass formation and morphology. (orig.)

  8. Process Alternatives for Second Generation Ethanol Production from Sugarcane Bagasse

    DEFF Research Database (Denmark)

    F. Furlan, Felipe; Giordano, Roberto C.; Costa, Caliane B. B.

    2015-01-01

    on the economic feasibility of the process. For the economic scenario considered in this study, using bagasse to increase ethanol production yielded higher ethanol production costs compared to using bagasse for electric energy production, showing that further improvements in the process are still necessary.......In ethanol production from sugarcane juice, sugarcane bagasse is used as fuel for the boiler, to meet the steam and electric energy demand of the process. However, a surplus of bagasse is common, which can be used either to increase electric energy or ethanol production. While the first option uses...... already established processes, there are still many uncertainties about the techno-economic feasibility of the second option. In this study, some key parameters of the second generation ethanol production process were analyzed and their influence in the process feasibility assessed. The simulated process...

  9. Fuel ethanol production from sweet sorghum bagasse using microwave irradiation

    International Nuclear Information System (INIS)

    Marx, Sanette; Ndaba, Busiswa; Chiyanzu, Idan; Schabort, Corneels

    2014-01-01

    Sweet sorghum is a hardy crop that can be grown on marginal land and can provide both food and energy in an integrated food and energy system. Lignocellulose rich sweet sorghum bagasse (solid left over after starch and juice extraction) can be converted to bioethanol using a variety of technologies. The largest barrier to commercial production of fuel ethanol from lignocellulosic material remains the high processing costs associated with enzymatic hydrolysis and the use of acids and bases in the pretreatment step. In this paper, sweet sorghum bagasse was pretreated and hydrolysed in a single step using microwave irradiation. A total sugar yield of 820 g kg −1 was obtained in a 50 g kg −1 sulphuric acid solution in water, with a power input of 43.2 kJ g −1 of dry biomass (i.e. 20 min at 180 W power setting). An ethanol yield based on total sugar of 480 g kg −1 was obtained after 24 h of fermentation using a mixed culture of organisms. These results show the potential for producing as much as 0.252 m 3  tonne −1 or 33 m 3  ha −1 ethanol using only the lignocellulose part of the stalks, which is high enough to make the process economically attractive. - Highlights: • Different sweet sorghum cultivars were harvested at 3 and 6 months. • Sweet sorghum bagasse was converted to ethanol. • Microwave pretreatment and hydrolysis was done in a single step. • Sugar rich hydrolysates were converted to ethanol using co-fermentation

  10. Cellulosic ethanol production from agricultural residues in Nigeria

    International Nuclear Information System (INIS)

    Iye, Edward; Bilsborrow, Paul

    2013-01-01

    Nigeria′s Biofuels Policy introduced in 2007 mandates a 10% blend (E10) of bioethanol with gasoline. This study investigates the potential for the development of a cellulosic ethanol industry based on the availability of agricultural residues and models the number of commercial processing facilities that could be sited in the six Geo-political zones. The potential for cellulosic ethanol production from agricultural residues in Nigeria is 7556 km 3 per annum exceeding the mandate of 10% renewable fuel required and providing the potential for 12 large- and 11 medium-scale processing facilities based on the use of a single feedstock. Cassava and yam peelings provided in excess of 80% of the process residues available with enough feedstock to supply 10 large-scale facilities with a fairly even distribution across the zones. Sorghum straw, millet straw and maize stalks represented 75% of the potential resource available from field residues with the potential to supply 2 large- and 7 medium-scale processing facilities, all of which would be located in the north of the country. When a multi-feedstock approach is used, this provides the potential for either 29 large- or 58 medium-scale facilities based on outputs of 250 and 125 km 3 per annum respectively. - Highlights: • Nigeria′s Biofuels Policy mandates a 10% blend of bioethanol with gasoline. • Total bioethanol production from agricultural residues was 7556 km 3 per annum. • Process residues offer the greatest potential accounting for 62% of production. • Nigeria has the potential for 12 large- and 11 medium scale commercial. • The use of mixed feedstocks significantly increases the potential for production

  11. Effect of the presence of initial ethanol on ethanol production in sugar cane juice fermented by Zymomonas mobilis

    OpenAIRE

    Tano,Marcia Sadae; Buzato,João Batista

    2003-01-01

    Ethanol production in sugar cane juice in high initial sugar concentration, fermented by Z. mobilis in the presence and absence of ethanol, was evaluated. Ethanol production was low in both media. The presence of initial ethanol in the sugar cane juice reduced ethanol production by 48.8%, biomass production by 25.0% and the total sugar consumption by 28.3%. The presence of initial ethanol in the medium did not affect significantly levan production and biomass yield coefficient (g biomass/g su...

  12. Biofuel excision and the viability of ethanol production in the Green Triangle, Australia

    International Nuclear Information System (INIS)

    Rodriguez, Luis C.; May, Barrie; Herr, Alexander; Farine, Damien; O'Connell, Deborah

    2011-01-01

    The promotion and use of renewable energy sources are established priorities worldwide as a way to reduce emissions of Greenhouse Gases and promote energy security. Australia is committed to reach a target of 350 ML of biofuels per year by 2010, and incentives targeted to producers and consumers have been placed. These incentives include zero excise until 2011 for the ethanol produced in Australia and gradual increase of the taxation rates reaching the full excise of 0.125 AUD per litre by 2015. This paper analyses the viability of the second generation ethanol industry in the Green Triangle, one of the most promising Australian regions for biomass production, by comparing the energy adjusted pump prices of petrol and the produced ethanol under different taxation rates and forecasted oil prices. Major findings suggest that under the current conditions of zero fuel excise and oil prices around 80US$ per barrel ethanol production is viable using biomass with a plant gate cost of up to 74 AUD per ton. Moreover, the forecasted increase in oil prices have a higher impact on the price of petrol than the increased ethanol excise on the pump price of the biofuel. Thus, by 2016 feedstock with a plant gate cost of up to 190 AUD per ton might be used for ethanol production, representing a flow of 1.7 million tons of biomass per year potentially mitigating 1.2 million tons of CO 2 by replacing fossil fuels with ethanol. - Research highlights: →We assessed the potential for ethanol production in the Green Triangle. → Despite of increased ethanol taxation, higher oil prices promote ethanol production. → Currently, ethanol from biomass with a plant gate cost of up to 74 AUD/ton is viable. →Forecasted oil prices suggest biomass of 190 AUD/ton might be used by 2016.

  13. Understanding the reductions in US corn ethanol production costs: An experience curve approach

    International Nuclear Information System (INIS)

    Hettinga, W.G.; Junginger, H.M.; Dekker, S.C.; Hoogwijk, M.; McAloon, A.J.; Hicks, K.B.

    2009-01-01

    The US is currently the world's largest ethanol producer. An increasing percentage is used as transportation fuel, but debates continue on its costs competitiveness and energy balance. In this study, technological development of ethanol production and resulting cost reductions are investigated by using the experience curve approach, scrutinizing costs of dry grind ethanol production over the timeframe 1980-2005. Cost reductions are differentiated between feedstock (corn) production and industrial (ethanol) processing. Corn production costs in the US have declined by 62% over 30 years, down to 100$ 2005 /tonne in 2005, while corn production volumes almost doubled since 1975. A progress ratio (PR) of 0.55 is calculated indicating a 45% cost decline over each doubling in cumulative production. Higher corn yields and increasing farm sizes are the most important drivers behind this cost decline. Industrial processing costs of ethanol have declined by 45% since 1983, to below 130$ 2005 /m 3 in 2005 (excluding costs for corn and capital), equivalent to a PR of 0.87. Total ethanol production costs (including capital and net corn costs) have declined approximately 60% from 800$ 2005 /m 3 in the early 1980s, to 300$ 2005 /m 3 in 2005. Higher ethanol yields, lower energy use and the replacement of beverage alcohol-based production technologies have mostly contributed to this substantial cost decline. In addition, the average size of dry grind ethanol plants increased by 235% since 1990. For the future it is estimated that solely due to technological learning, production costs of ethanol may decline 28-44%, though this excludes effects of the current rising corn and fossil fuel costs. It is also concluded that experience curves are a valuable tool to describe both past and potential future cost reductions in US corn-based ethanol production

  14. Ethanol production from Dekkera bruxellensis in synthetic media with pentose

    Directory of Open Access Journals (Sweden)

    Carolina B. Codato

    Full Text Available Abstract Ethanol is obtained in Brazil from the fermentation of sugarcane, molasses or a mixture of these. Alternatively, it can also be obtained from products composed of cellulose and hemicellulose, called “second generation ethanol - 2G”. The yeast Saccharomyces cerevisiae, commonly applied in industrial ethanol production, is not efficient in the conversion of pentoses, which is present in high amounts in lignocellulosic materials. This study aimed to evaluate the ability of a yeast strain of Dekkera bruxellensis in producing ethanol from synthetic media, containing xylose or arabinose, xylose and glucose as the sole carbon sources. The results indicated that D. bruxellensis was capable of producing ethanol from xylose and arabinose, with ethanol concentration similar for both carbon sources, 1.9 g L-1. For the fermentations performed with xylose and glucose, there was an increase in the concentration of ethanol to 5.9 g L-1, lower than the standard yeast Pichia stipitis (9.3 g L-1, but with similar maximum yield in ethanol (0.9 g g TOC-1. This proves that the yeast D. bruxellensis produced lower amounts of ethanol when compared with P. stipitis, but showed that is capable of fermenting xylose and can be a promising alternative for ethanol conversion from hydrolysates containing glucose and xylose as carbon source.

  15. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion

    Directory of Open Access Journals (Sweden)

    Atiya Techaparin

    Full Text Available Abstract The application of high-potential thermotolerant yeasts is a key factor for successful ethanol production at high temperatures. Two hundred and thirty-four yeast isolates from Greater Mekong Subregion (GMS countries, i.e., Thailand, The Lao People's Democratic Republic (Lao PDR and Vietnam were obtained. Five thermotolerant yeasts, designated Saccharomyces cerevisiae KKU-VN8, KKU-VN20, and KKU-VN27, Pichia kudriavzevii KKU-TH33 and P. kudriavzevii KKU-TH43, demonstrated high temperature and ethanol tolerance levels up to 45 °C and 13% (v/v, respectively. All five strains produced higher ethanol concentrations and exhibited greater productivities and yields than the industrial strain S. cerevisiae TISTR5606 during high-temperature fermentation at 40 °C and 43 °C. S. cerevisiae KKU-VN8 demonstrated the best performance for ethanol production from glucose at 37 °C with an ethanol concentration of 72.69 g/L, a productivity of 1.59 g/L/h and a theoretical ethanol yield of 86.27%. The optimal conditions for ethanol production of S. cerevisiae KKU-VN8 from sweet sorghum juice (SSJ at 40 °C were achieved using the Box-Behnken experimental design (BBD. The maximal ethanol concentration obtained during fermentation was 89.32 g/L, with a productivity of 2.48 g/L/h and a theoretical ethanol yield of 96.32%. Thus, the newly isolated thermotolerant S. cerevisiae KKU-VN8 exhibits a great potential for commercial-scale ethanol production in the future.

  16. Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil

    International Nuclear Information System (INIS)

    Jonker, J.G.G.; Junginger, H.M.; Verstegen, J.A.; Lin, T.; Rodríguez, L.F.; Ting, K.C.; Faaij, A.P.C.; Hilst, F. van der

    2016-01-01

    Highlights: • Optimal location & scale of ethanol plants for expansion in Goiás until 2030. • Ethanol costs from sugarcane vary between 710 and 752 US$/m"3 in 2030. • For eucalyptus-based ethanol production costs vary between 543 and 560 US$/m"3 in 2030. • System-wide optimization has a marginal impact on overall production costs. • The overall GHG emission intensity is mainly impacted by former land use. - Abstract: The expansion of the ethanol industry in Brazil faces two important challenges: to reduce total ethanol production costs and to limit the greenhouse gas (GHG) emission intensity of the ethanol produced. The objective of this study is to economically optimize the scale and location of ethanol production plants given the expected expansion of biomass supply regions. A linear optimization model is utilized to determine the optimal location and scale of sugarcane and eucalyptus industrial processing plants given the projected spatial distribution of the expansion of biomass production in the state of Goiás between 2012 and 2030. Three expansion approaches evaluated the impact on ethanol production costs of expanding an existing industry in one time step (one-step), or multiple time steps (multi-step), or constructing a newly emerging ethanol industry in Goiás (greenfield). In addition, the GHG emission intensity of the optimized ethanol supply chains are calculated. Under the three expansion approaches, the total ethanol production costs of sugarcane ethanol decrease from 894 US$/m"3 ethanol in 2015 to 752, 715, and 710 US$/m"3 ethanol in 2030 for the multi-step, one step and greenfield expansion respectively. For eucalyptus, ethanol production costs decrease from 635 US$/m"3 in 2015 to 560 and 543 US$/m"3 in 2030 for the multi-step and one-step approach. A general trend is the use of large scale industrial processing plants, especially towards 2030 due to increased biomass supply. We conclude that a system-wide optimization as a marginal

  17. The Canadian Petroleum Products Institute : position on ethanol

    International Nuclear Information System (INIS)

    2002-01-01

    A brief overview of the Canadian Petroleum Products Institute (CPPI), an industry association which represents Canadian Petroleum Refiners and Marketers is provided. It is not against nor for the use of ethanol as a fuel. Ethanol blends are marketed by some CPPI members. It is mentioned that consumers accept ethanol fuels when the price is competitive with the price of non-ethanol fuel. Mandating the use of ethanol in fuels is not an issue supported by the CPPI. A subsidy is required in order for ethanol to be an economically attractive option, and the consumers would be forced to bear subsidy costs if the use of ethanol in fuels were to be mandated. The technology is still some years away for ethanol from cellulose to be an attractive option. It is difficult to finance new plants, and 50 million of the 240 million litres of ethanol blended has to be imported. The advantages of ethanol as a fuel are marginal and not cost effective. Some changes to the gasoline distribution system would be required, as ethanol must be added near the consumer, and it may not be appropriate for some older vehicles and some off-road equipment. The gasoline industry's flexibility would be reduced by provincial mandates. Several questions have not yet been answered, such as what is the real purpose of mandating ethanol in motor fuels? when will new technology be available? The CPPI makes four recommendations: (1) the development of a clear understanding of and the articulation of the objectives of a new ethanol policy, (2) support the development of new cellulose based technology, (3) take a prudent and gradual approach to development of a new policy, and (4) CPPI does not believe that an ethanol mandate is in the best interests of all Canadians

  18. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?

    Science.gov (United States)

    Dogaris, Ioannis; Mamma, Diomi; Kekos, Dimitris

    2013-02-01

    Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa.

  19. Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario.

    Science.gov (United States)

    Mishra, Archana; Kumar, Akash; Ghosh, Sanjoy

    2018-03-01

    Impact of second-generation ethanol (2G) use in transportation sector mainly depends upon energy efficiency of entire production process. The objective of present study was to determine energy efficiency of a potential lignocellulosic feedstock; wheat straw and its conversion into cellulosic ethanol in Indian scenario. Energy efficiency was determined by calculating Net energy ratio (NER), i.e. ratio of output energy obtained by ethanol and input energy used in ethanol production. Energy consumption and generation at each step is calculated briefly (11,837.35 MJ/ha during Indian dwarf irrigated variety of wheat crop production and 7.1148 MJ/kg straw during ethanol production stage). Total energy consumption is calculated as 8.2988 MJ/kg straw whereas energy generation from ethanol is 15.082 MJ/kg straw; resulting into NER > 1. Major portion of agricultural energy input is contributed by diesel and fertilisers whereas refining process of wheat straw feedstock to ethanol and by-products require mainly in the form of steam and electricity. On an average, 1671.8 kg water free ethanol, 930 kg lignin rich biomass (for combustion), and 561 kg C5-molasses (for fodder) per hectare are produced. Findings of this study, net energy ratio (1.81) and figure of merit (14.8028 MJ/nil kg carbon) proves wheat straw as highest energy efficient lignocellulosic feedstock for the country.

  20. Modifying yeast tolerance to inhibitory conditions of ethanol production processes

    Directory of Open Access Journals (Sweden)

    Luis eCaspeta

    2015-11-01

    Full Text Available Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated –omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose.

  1. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes

    DEFF Research Database (Denmark)

    Caspeta, Luis; Castillo, Tania; Nielsen, Jens

    2015-01-01

    Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S....... cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular...... functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose....

  2. Ethanol production from alfalfa fiber fractions by saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sreenath, H.K. [University of Wisconsin, Madison, WI (United States). Dept. of Biological Systems Engineering; USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Koegel, R.G. [US Department of Agriculture, Madison, WI (United States). Dairy Forage Research Center; Moldes, A.B. [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Universidade de Vigo, Ourense (Spain); Jeffries, T.W. [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Straub, R.J. [University of Wisconsin, Madison, WI (United States). Dept. of Biological Systems Engineering

    2001-07-01

    This work describes ethanol production from alfalfa fiber using separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) with and without liquid hot water (LHW) pretreatment. Candida shehatae FPL-702 produced 5 and 6.4 g/l ethanol with a yield of 0.25 and 0.16 g ethanol/g sugar respectively by SHF and SSF from alfalfa fiber without pretreatment. With LHW pretreatment using SSF, C. shehatae FPL-702 produced 18.0 g/l ethanol, a yield of 0.45 g ethanol/g sugar from cellulosic solids or 'raffinate'. Using SHF, it produced 9.6 g/l ethanol, a yield of 0.47 g ethanol/g sugar from raffinate. However, the soluble extract fraction containing hemicelluloses was poorly fermented in both SHF and SSF due to the presence of inhibitors. Addition of dilute acid during LHW pretreatment of alfalfa fiber resulted in fractions that were poorly saccharified and fermented. These results show that unpretreated alfalfa fiber produced a lower ethanol yield. Although LHW pretreatment can increase ethanol production from raffinate fiber fractions, it does not increase production from the hemicellulosic and pectin fractions. (author)

  3. Life cycle assessment of sugarcane ethanol production in India in comparison to Brazil

    NARCIS (Netherlands)

    Tsiropoulos, Ioannis; Faaij, André P C; Seabra, Joaquim E A; Lundquist, Lars; Schenker, Urs; Briois, Jean François; Patel, Martin K.

    2014-01-01

    Purpose: India's biofuel programme relies on ethanol production from sugarcane molasses. However, there is limited insight on environmental impacts across the Indian ethanol production chain. This study closes this gap by assessing the environmental impacts of ethanol production from sugarcane

  4. Bioethanol production potential from Brazilian biodiesel co-products

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Evan Michael; Filho, Delly Oliveira; Martins, Marcio Aredes [Departamento de Engenharia Agricola, Universidade Federal de Vicosa, Campus Universitario 36570-000 Vicosa, MG (Brazil); Steward, Brian L. [Department of Agricultural and Biosystems Engineering, Iowa State University, 214D Davidson Hall, Ames, IA 50011 (United States)

    2011-01-15

    One major problem facing the commercial production of cellulosic ethanol is the challenge of economically harvesting and transporting sufficient amounts of biomass as a feedstock at biorefinery plant scales. Oil extraction for biodiesel production, however, yields large quantities of biomass co-products rich in cellulose, sugar and starch, which in many cases may be sufficient to produce enough ethanol to meet the alcohol demands of the transesterification process. Soybean, castor bean, Jatropha curcas, palm kernel, sunflower and cottonseed were studied to determine ethanol production potential from cellulose found in the oil extraction co-products and also their capacity to meet transesterification alcohol demands. All crops studied were capable of producing enough ethanol for biodiesel production and, in the case of cottonseed, 470% of the transesterification demand could be met with cellulosic ethanol production from oil extraction co-products. Based on Brazilian yields of the crops studied, palm biomass has the highest potential ethanol yield of 108 m{sup 3} km{sup -2} followed by J. curcas with 40 m{sup 3} km{sup -2}. A total of 3.5 hm{sup 3} could be produced from Brazilian soybean oil extraction co-products. (author)

  5. Investigation of ethanol productivity of cassava crop as a sustainable ...

    African Journals Online (AJOL)

    The ethanol productivity of cassava crop was investigated in a laboratory experiment by correlating volumes and masses of ethanol produced to the masses of samples used. Cassava tubers (variety TMS 30555) were peeled, cut and washed. 5, 15, 25 and 35 kg samples of the tubers were weighed in three replicates, ...

  6. Preliminary studies on ethanol production from Garcinia kola (bitter ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    A study on yeast fermentation of bitter kola pod( agricultural waste) was ... optimization of the ethanol production were investigated. ... components of biomass to produce a liquid .... Mani, S., Tabil, L. G. and Opoku, A. (2002). Ethanol from Agricultural crop residues-An. Overview. ... Effect of acid hydrolysis of Garcinia kola.

  7. Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock.

    Science.gov (United States)

    Macrelli, Stefano; Galbe, Mats; Wallberg, Ola

    2014-02-21

    production. A combined 1G + 2G ethanol plant could potentially outperform a 1G plant in terms of NPV, depending on market wholesale prices of ethanol and electricity. Therefore, although it is more expensive than 1G ethanol production, 2G ethanol production can make the integrated 1G + 2G process more profitable.

  8. Potentiality of Yeasts in the Direct Conversion of Starchy Materials to Ethanol and Its Relevance in the New Millennium

    Science.gov (United States)

    Reddy, L. V. A.; Reddy, O. V. S.; Basappa, S. C.

    In recent years, the use of renewable and abundantly available starchy and cellulosic materials for industrial production of ethanol is gaining importance, in view of the fact, that ethanol is one of the most prospective future motor fuels, that can be expected to replace fossil fuels, which are fast depleting in the world scenario. Although, the starch and the starchy substrates could be converted successfully to ethanol on industrial scales by the use of commercial amylolytic enzymes and yeast fermentation, the cost of production is rather very high. This is mainly due to the non-enzymatic and enzymatic conversion (gelatinization, liquefaction and saccharification) of starch to sugars, which costs around 20 % of the cost of production of ethanol from starch. In this context, the use of amylolytic yeasts, that can directly convert starch to ethanol by a single step, are potentially suited to reduce the cost of production of ethanol from starch. Research advances made in this direction have shown encouraging results, both in terms of identifying the potentially suited yeasts for the purpose and also their economic ethanol yields. This chapter focuses on the types of starch and starchy substrates and their digestion to fermentable sugars, optimization of fermentation conditions to ethanol from starch, factors that affect starch fermentation, potential amylolytic yeasts which can directly convert starch to ethanol, genetic improvement of these yeasts for better conversion efficiency and their future economic prospects in the new millennium.

  9. Ethanol and its potential for downsized engine concepts; Ethanol und sein Potenzial fuer Downsizing-Motorenkonzepte

    Energy Technology Data Exchange (ETDEWEB)

    Schwaderlapp, Markus; Adomeit, Philipp; Kolbeck, Andreas [FEV GmbH, Aachen (Germany); Thewes, Matthias [RWTH Aachen (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen

    2012-02-15

    The intense discussion of e-mobility has withdrawn the public attention from alternative fuels - which appears inadequate when the properties and potentials of ethanol fuels for combustion engines are considered. FEV and RWTH Aachen University investigated to which extent this alternative fuel could be conducive to CO{sub 2} reduction. (orig.)

  10. Bioelectrochemical Ethanol Production through Mediated Acetate Reduction by Mixed Cultures

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Schaap, J.D.; Kampman, C.; Buisman, C.J.N.

    2010-01-01

    Biological acetate reduction with hydrogen is a potential method to convert wet biomass waste into ethanol. Since the ethanol concentration and reaction rates are low, this research studies the feasibility of using an electrode, in stead of hydrogen, as an electron donor for biological acetate

  11. Second Generation Ethanol Production from Brewers’ Spent Grain

    Directory of Open Access Journals (Sweden)

    Rossana Liguori

    2015-03-01

    Full Text Available Ethanol production from lignocellulosic biomasses raises a global interest because it represents a good alternative to petroleum-derived energies and reduces the food versus fuel conflict generated by first generation ethanol. In this study, alkaline-acid pretreated brewers’ spent grain (BSG was evaluated for ethanol production after enzymatic hydrolysis with commercial enzymes. The obtained hydrolysate containing a glucose concentration of 75 g/L was adopted, after dilution up to 50 g/L, for fermentation by the strain Saccharomyces cerevisiae NRRL YB 2293 selected as the best producer among five ethanologenic microorganims. When the hydrolysate was supplemented with yeast extract, 12.79 g/L of ethanol, corresponding to 0.28 g of ethanol per grams of glucose consumed (55% efficiency, was obtained within 24 h, while in the non-supplemented hydrolysate, a similar concentration was reached within 48 h. The volumetric productivity increased from 0.25 g/L·h in the un-supplemented hydrolysate to 0.53 g/L h in the yeast extract supplemented hydrolysate. In conclusion, the strain S. cerevisiae NRRL YB 2293 was shown able to produce ethanol from BSG. Although an equal amount of ethanol was reached in both BSG hydrolysate media, the nitrogen source supplementation reduced the ethanol fermentation time and promoted glucose uptake and cell growth.

  12. Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case

    International Nuclear Information System (INIS)

    Quintero, J.A.; Montoya, M.I.; Sanchez, O.J.; Giraldo, O.H.; Cardona, C.A.

    2008-01-01

    The Colombian government has defined the use of bioethanol as a gasoline enhancer to reduce greenhouse gases, gasoline imports, and to boost the rural economy. To meet the projected fuel ethanol demand needed to oxygenate the gasoline in the whole country, the construction of about five additional ethanol production plants is required. For this, a comparative analysis of the technological options using different feedstocks should be performed. In this work, a comparison of the economical and environmental performance of the ethanol production process from sugarcane and corn under Colombian conditions has been carried out. Net present value and total output rate of potential environmental impact were used as the economical and environmental indicators, respectively. Through the integration of these indicators into one index by using the analytical hierarchy process (AHP) approach, sugarcane ethanol process was determined as the best choice for Colombian ethanol production facilities. AHP scores obtained in this study for sugarcane and corn ethanol were 0.571 and 0.429, respectively. However, starchy crops like corn, cassava or potatoes used as feedstock for ethanol production could potentially cause a higher impact on the rural communities and boost their economies if social matters are considered

  13. Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process.

    Science.gov (United States)

    Oberoi, Harinder Singh; Vadlani, Praveen V; Saida, Lavudi; Bansal, Sunil; Hughes, Joshua D

    2011-07-01

    Dried and ground banana peel biomass (BP) after hydrothermal sterilization pretreatment was used for ethanol production using simultaneous saccharification and fermentation (SSF). Central composite design (CCD) was used to optimize concentrations of cellulase and pectinase, temperature and time for ethanol production from BP using SSF. Analysis of variance showed a high coefficient of determination (R(2)) value of 0.92 for ethanol production. On the basis of model graphs and numerical optimization, the validation was done in a laboratory batch fermenter with cellulase, pectinase, temperature and time of nine cellulase filter paper unit/gram cellulose (FPU/g-cellulose), 72 international units/gram pectin (IU/g-pectin), 37 °C and 15 h, respectively. The experiment using optimized parameters in batch fermenter not only resulted in higher ethanol concentration than the one predicted by the model equation, but also saved fermentation time. This study demonstrated that both hydrothermal pretreatment and SSF could be successfully carried out in a single vessel, and use of optimized process parameters helped achieve significant ethanol productivity, indicating commercial potential for the process. To the best of our knowledge, ethanol concentration and ethanol productivity of 28.2 g/l and 2.3 g/l/h, respectively from banana peels have not been reported to date. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Ethanol production by immobilized cells with forced substrate supply

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Y.; Nishizawa, Y.; Nagai, S.

    1984-01-01

    Ethanol fermentation by a forced substrate supply into an immobilized cell layer was carried out to increase the ethanol production rate and to eliminate the diffusion dependency of substrate supply in an ordinary immobilized cell reaction. Saccharomyces cerevisiae IFO 2347 was immobilized in a mixture of k-carrageenan, locust bean gum, and celite (2: 0.5: 40 wt/vol %). A glucose minimal medium was fed into the immobilized cell layer (5 to 22 mm in thickness) at retention times between 0.6 and 2.8 h under pressure. The stable ethanol fermentation could be maintained for more than 3 weeks with an ethanol yield of 0.48 g ethanol/g glucose and ethanol productivity of 63 g.(l gel)/sup -1/.h/sup -1/ at a retention time of 1.5 h. The yeast cells were well distributed through the gel layer with a vertical gradient, and an average cell density was ca. 8.0 X 10/sup 9/ cells/ml gel, 4-fold higher than that of ordinary immobilized cells. A small filter press reactor was constructed to examine the applicability of ethanol fermentation with this forced substrate supply. The operation could be continued for a month at a retention time of 2 h yielding 96 g/l of ethanol from 200 g/l of glucose. 6 references, 5 figures, 3 tables.

  15. Characterization and ethanol potential from giant cassava (Manihot esculenta) stem waste biomass

    Science.gov (United States)

    Septia, E.; Supriadi; Suwinarti, W.; Amirta, R.

    2018-04-01

    Manihot esculenta stem waste biomass is promising material for ethanol production since it is unutilized substance from cassava production. Nowadays, cassava is the most common food in Indonesian society. The aims of this study were to identify availability and characteristic of giant cassava (M. esculenta) stem waste biomass for ethanol feedstock. In term of that, four plots with the size of 5m x 5m were made to calculate the total stem biomass obtained after harvesting process. In this study, various concentrations of alkaline were used to degrade lignin from the substrate. The effects of alkaline pretreatment were investigated using TAPPI method and the ethanol yield was estimated using modified NREL protocol. The results showed that the potential dry stem waste biomass from harvesting of M. esculenta was approximately 10.5 ton/ha. Further, alkaline pretreatment of stem waste biomass with 2% of NaOH coupled with the enzymatic saccharification process using meicelase was showed the highest production of sugar to reach of 38.49 % of total reduction sugar and estimated potentially converted to 2,62 L/ha of ethanol. We suggested M. esculenta stem waste biomass could be used as sustainable feedstock for ethanol production in Indonesia.

  16. Ethanol production from Sorghum bicolor using both separate and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... pre-treatment, enzymatic saccharification, detoxification of inhibitors and fermentation of Sorghum bicolor straw for ethanol production ..... The authors wish to acknowledge financial support from ... Official energy statistics from.

  17. Development of ethanol production from cooking oil glycerol waste ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-10-12

    Oct 12, 2016 ... glycerol waste by mutant Enterobacter aerogenes ... wild type strain was altered for enhancing ethanol production using UV irradiation and chemical method. .... microbial medium analytical methods were of laboratory and.

  18. Ethanol production from biomass: technology and commercialisation status

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R.

    2001-06-01

    Owing to technical improvements in the processes used to produce ethanol from biomass, construction of at least two waste-to-ethanol production plants in the United States is expected to start this year. Although there are a number of robust fermentation microorganisms available, initial pretreatment of the biomass and costly cellulase enzymes remain critical targets for process and cost improvements. A highly efficient, very low-acid pretreatment process is approaching pilot testing, while research on cellulases for ethanol production is expanding at both enzyme and organism level. (Author)

  19. Evaluation of ethanol productivity from cellulose by Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Kurose, N; Yagyu, J; Miyazaki, T; Uchida, M; Hanai, S; Obayashi, A

    1986-01-01

    Clostridium thermocellum, a thermophilic anaerobe, directly converts cellulose to EtOH. To estimate its EtOH production from cellulose, we used a new method based on material balance by which the efficiencies of the enzymes that convert cellulose to ethanol were calculated. Using this method, the maximum efficiency of ethanol production of two strains of C. thermocellum was estimated to be 0.05, with 0.67 as the theoretical maximum. 3 references.

  20. Ethanol production from biomass. Voorlopig nauwelijks ethanolproduktie uit biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Van der Knijff, A; Wildschut, L R [Haskoning Koninklijk Ingenieurs- en Architectenbureau, Nijmegen (Netherlands); Williams, A [Technische Univ. Twente, Enschede (Netherlands)

    1991-04-01

    Fluid fuels, for instance ethanol and methanol, can be produced from agricultural materials and from waste materials. For 37 waste flows (among which scrap from the oil- and fat industry, waste potatoes, withdrawn vegetables, waste wood, straw, roadside grass, vegetables-, fruits- and garden wastes and beet tails) possibilities to produce fuels have been considered. In general, sacchariferous and farinaceous wastes, which could be used for ethanol production, are used for other purposes. Therefore ethanol production from these materials is expensive. Cellulose wastes (for instance straw, wood wastes and paper sludge) can be suitable in the future for ethanol production. But first a cheap method to decompose and hydrolize cellulose has to be developed. 2 figs., 2 ills., 3 refs.

  1. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    International Nuclear Information System (INIS)

    Campiche, Jody L; Bryant, Henry L; Richardson, James W

    2010-01-01

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenue from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. In the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.

  2. Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning

    Science.gov (United States)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.

  3. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis.

    Science.gov (United States)

    Okonkwo, C C; Azam, M M; Ezeji, T C; Qureshi, N

    2016-07-01

    Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L(-1) ethanol with a productivity of 0.17 ± 0.00 g L(-1) h(-1), while xylose plus 3 g L(-1) CaCO3 resulted in the production of 24.68 ± 0.75 g L(-1) ethanol with a productivity of 0.21 ± 0.01 g L(-1) h(-1). Use of xylose plus glucose in combination with 3 g L(-1) CaCO3 resulted in the production of 47.37 ± 0.55 g L(-1) ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L(-1) h(-1). These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L(-1) CaCl2 resulted in the production of 44.84 ± 0.28 g L(-1) ethanol with a productivity of 0.37 ± 0.02 g L(-1) h(-1). Use of glucose plus 3 g L(-1) CaCO3 resulted in the production of 57.39 ± 1.41 g L(-1) ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues.

  4. Granular starch hydrolysis for fuel ethanol production

    Science.gov (United States)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea

  5. Fuel Processing Plants - ETHANOL_PRODUCTION_FACILITIES_IN: Ethanol Production Facilities in Indiana (Indiana Geological Survey, Point Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This GIS layer shows the locations of ethanol production facilities in the state of Indiana. Attributes include the name and address of the facility, and information...

  6. Ethanol production from soybean molasses by Zymomonas mobilis

    International Nuclear Information System (INIS)

    Letti, Luiz Alberto Junior; Karp, Susan Grace; Woiciechowski, Adenise Lorenci; Soccol, Carlos Ricardo

    2012-01-01

    This work deals with the utilization of soybean molasses (a low cost byproduct) to produce ethanol, an important biofuel, using the microorganism Zymomonas mobilis NRRL 806, a gram negative bacterium. At the first part of the work, laboratorial scale tests, using 125 mL flasks were performed to evaluate the effect of three variables on ethanol production: soybean molasses concentration (the sole carbon and nitrogen source), pH and period of previous aerobial phase. The optimal soybean concentration was around 200 g L -1 of soluble solids, pH between 6.0 and 7.0, and the period of previous aerobial phase did not provide significant effect. At the second part, kinetic tests were performed to compare the fermentation yields of Zymomonas mobilis NRRL 806 in flasks and in a bench scale batch reactor (it was obtained respectively 78.3% and 96.0% of the maximum theoretical yields, with productions of 24.2 and 29.3 g L -1 of ethanol). The process with a reactor fermentation using Saccharomyces cerevisiae LPB1 was also tested (it was reached 89.3% of the theoretical maximum value). A detailed kinetic behavior of the molasses sugars metabolism for Z. mobilis was also shown, either in reactor or in flasks. This work is a valuable tool for further works in the subject of ethanol production from agro-industrial by-products. -- Highlights: ► Zymomonas mobilis was able to grow and produce ethanol on diluted soybean molasses. ► Best conditions for ethanol production:200g L -1 of soluble solids; pH around 6,5. ► Z. mobilis had better ethanol production and yield when compared to S. cerevisiae. ► In reactor, Z. mobilis produced 29.3 g L -1 of ethanol, 96.0% of the maximum yield.

  7. Yeast metabolic engineering for hemicellulosic ethanol production

    Science.gov (United States)

    Jennifer Van Vleet; Thomas W. Jeffries

    2009-01-01

    Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of...

  8. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production

    Directory of Open Access Journals (Sweden)

    Murthy Ganti S

    2011-09-01

    Full Text Available Abstract Background While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb was used as a model feedstock. Results Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Conclusions Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for

  9. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by ¤Thermoanaerobacter mathranii¤

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, B.K.

    2001-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/l sodium carbonate, and 12 bar oxygen at 195 degreesC) was used for pre-treating wheat straw (60 g/l), resulting in a hemicellulose-rich hydrolysate and a cellulose-rich solid fraction. The hydrolysate consisted of soluble hemicellulose (9 g....../l), aliphatic carboxylic acids (6 g/l), phenols (0.27 g/l or 1.7 mM), and 2-furoic acid (0.007 g/l). The wet-oxidized wheat straw hydrolysate caused no inhibition of ethanol yield by the anaerobic thermophilic bacterium Thermoanaerobacter mathranii. Nine phenols and 2-furoic acid, identified to be present...

  10. Modelling and simulation of a pervaporation process using tubular module for production of anhydrous ethanol

    Science.gov (United States)

    Hieu, Nguyen Huu

    2017-09-01

    Pervaporation is a potential process for the final step of ethanol biofuel production. In this study, a mathematical model was developed based on the resistance-in-series model and a simulation was carried out using the specialized simulation software COMSOL Multiphysics to describe a tubular type pervaporation module with membranes for the dehydration of ethanol solution. The permeance of membranes, operating conditions, and feed conditions in the simulation were referred from experimental data reported previously in literature. Accordingly, the simulated temperature and density profiles of pure water and ethanol-water mixture were validated based on existing published data.

  11. Production of ethanol from thin stillage by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Gonzalez, Ramon; Campbell, Paul; Wong, Matthew

    2010-03-01

    Thin stillage is a by-product generated in large amounts during the production of ethanol that is rich in carbon sources like glycerol, glucose and maltose. Unfortunately, the fermentation of thin stillage results in a mixture of organic acids and ethanol and minimum utilization of glycerol, the latter a compound that can represent up to 80% of the available substrates in this stream. We report here the efficient production of ethanol from thin stillage by a metabolically engineered strain of Escherichia coli. Simultaneous utilization of glycerol and sugars was achieved by overexpressing either the fermentative or the respiratory glycerol-utilization pathway. However, amplification of the fermentative pathway (encoded by gldA and dhaKLM) led to more efficient consumption of glycerol and promoted the synthesis of reduced products, including ethanol. A previously constructed strain, EH05, containing mutations that prevented the accumulation of competing by-products (i.e. lactate, acetate, and succinate) and overexpressing the fermentative pathway for glycerol utilization [i.e. strain EH05 (pZSKLMgldA)], efficiently converted thin stillage supplemented with only mineral salts to ethanol at yields close to 85% of the theoretical maximum. Ethanol accounted for about 90% (w/w) of the product mixture. These results, along with the comparable performance of strain EH05 (pZSKLMgldA) in 0.5 and 5 l fermenters, indicate a great potential for the adoption of this process by the biofuels industry.

  12. Thermodynamic analysis of ethanol reforming for hydrogen production

    International Nuclear Information System (INIS)

    Sun, Shaohui; Yan, Wei; Sun, Peiqin; Chen, Junwu

    2012-01-01

    This work presents the simulated equilibrium compositions of ethanol steam reforming (SR), partial oxidation (POX) and auto-thermal reforming (ATR) at a large temperature range, steam-to-ethanol and oxygen-to-ethanol molar ratios. The simulation work shows that the moles of hydrogen yield per mole ethanol are of this order: SR > ATR > POX. The results are compared with other simulation works and fitted models, which show that all the simulation results obtained with different methods agree well with each other. And the fitted models are in highly consistency with very small deviations. Moreover, the thermal-neutral point in corresponding to temperature, steam-to-ethanol and oxygen-to-ethanol mole ratios of ethanol ATR is estimated. The result shows that with the increasing of oxygen-to-ethanol mole ratio, the T-N point moves to higher temperatures; with the increasing of steam-to-ethanol mole ratio, the T-N point moves to lower temperatures. Furthermore, the energy exchanges of the reforming process and the whole process and the thermal efficiencies are also analyzed in the present work and that the energy demands and generated in the whole process are greater than the reforming process can be obtained. Finally, the optimum reaction conditions are selected. -- Highlights: ► The equilibrium compositions simulated by different researchers with different methods are compared. ► The simulation results are fitted with polynomials for convenient reference. ► The energy balance and thermal efficiencies are analyzed. ► The optimum reaction conditions of ethanol POX, SR and ATR for hydrogen production are selected.

  13. Ethanol production in Brazil: a bridge between science and industry

    Directory of Open Access Journals (Sweden)

    Mario Lucio Lopes

    Full Text Available ABSTRACT In the last 40 years, several scientific and technological advances in microbiology of the fermentation have greatly contributed to evolution of the ethanol industry in Brazil. These contributions have increased our view and comprehension about fermentations in the first and, more recently, second-generation ethanol. Nowadays, new technologies are available to produce ethanol from sugarcane, corn and other feedstocks, reducing the off-season period. Better control of fermentation conditions can reduce the stress conditions for yeast cells and contamination by bacteria and wild yeasts. There are great research opportunities in production processes of the first-generation ethanol regarding high-value added products, cost reduction and selection of new industrial yeast strains that are more robust and customized for each distillery. New technologies have also focused on the reduction of vinasse volumes by increasing the ethanol concentrations in wine during fermentation. Moreover, conversion of sugarcane biomass into fermentable sugars for second-generation ethanol production is a promising alternative to meet future demands of biofuel production in the country. However, building a bridge between science and industry requires investments in research, development and transfer of new technologies to the industry as well as specialized personnel to deal with new technological challenges.

  14. Ethanol production by extractive fermentation - Process development and technology transfer

    International Nuclear Information System (INIS)

    Daugulis, A.J.; Axford, D.B.; Mau, T.K.

    1991-01-01

    Extractive Fermentation is an ethanol processing strategy in which the operations of fermentation and product recovery are integrated and undertaken simultaneously in a single step. In this process an inert and biocompatible organic solvent is introduced directly into the fermentation vessel to selectively extract the ethanol product. The ethanol is readily recovered from the solvent at high concentration by means of flash vaporization, and the solvent is recycled in a closed loop back to the fermentor. This process is characterized by a high productivity (since ethanol does not build up to inhibitory levels), continuous operation, significantly reduced water consumption, and lower product recovery costs. The technical advantages of this processing strategy have been extensively demonstrated by means of a continuous, fully integrated and computer-controlled Process Demonstration Unit in the authors' laboratory. Numerous features of this technology have been protected by US patent. A thorough economic comparison of Extractive Fermentation relative to modern ethanol technology (continuous with cell recycle) has been completed for both new plants and retrofitting of existing facilities for a capacity of 100 million liters of ethanol per year. Substantial cost savings are possible with Extractive Fermentation ranging, depending on the process configuration, from 5 cents to 16 cents per liter. Activities are under way to transfer this proprietary technology to the private sector

  15. Yeast flocculation: New story in fuel ethanol production.

    Science.gov (United States)

    Zhao, X Q; Bai, F W

    2009-01-01

    Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed.

  16. Selective ethanol production from reducing sugars in a saccharide mixture.

    Science.gov (United States)

    Ohara, Satoshi; Kato, Taku; Fukushima, Yasuhiro; Sakoda, Akiyoshi

    2013-05-01

    Fermentation profiles of four different yeasts reportedly defective in sucrose utilization indicate that all strains tested removed particular sugar via selective conversion to ethanol in a saccharide mixture. At the temperature of pressed sugarcane juice, Saccharomyces dairenensis and Saccharomyces transvaalensis performed better in ethanol production rate and yield, respectively. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Advances in ethanol reforming for the production of hydrogen

    Directory of Open Access Journals (Sweden)

    Laura Guerrero

    2014-06-01

    Full Text Available Catalytic steam reforming of ethanol (SRE is a promising route for the production of renewable hydrogen (H2. This article reviews the influence of doping supported-catalysts used in SRE on the conversion of ethanol, selectivity for H2, and stability during long reaction periods. In addition, promising new technologies such as membrane reactors and electrochemical reforming for performing SRE are presented.

  18. Ethanol Production from Waste Potato Mash by Using Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Gulten Izmirlioglu

    2012-10-01

    Full Text Available Bio-ethanol is one of the energy sources that can be produced by renewable sources. Waste potato mash was chosen as a renewable carbon source for ethanol fermentation because it is relatively inexpensive compared with other feedstock considered as food sources. However, a pretreatment process is needed: specifically, liquefaction and saccharification processes are needed to convert starch of potato into fermentable sugars before ethanol fermentation. In this study, hydrolysis of waste potato mash and growth parameters of the ethanol fermentation were optimized to obtain maximum ethanol production. In order to obtain maximum glucose conversions, the relationship among parameters of the liquefaction and saccharification process was investigated by a response surface method. The optimum combination of temperature, dose of enzyme (α-amylase and amount of waste potato mash was 95 °C, 1 mL of enzyme (18.8 mg protein/mL and 4.04 g dry-weight/100 mL DI water, with a 68.86% loss in dry weight for liquefaction. For saccharification, temperature, dose of enzyme and saccharification time were optimized and optimum condition was determined as 60 °C-72 h-0.8 mL (300 Unit/mL of amyloglucosidase combination, yielded 34.9 g/L glucose. After optimization of hydrolysis of the waste potato mash, ethanol fermentation was studied. Effects of pH and inoculum size were evaluated to obtain maximum ethanol. Results showed that pH of 5.5 and 3% inolculum size were optimum pH and inoculum size, respectively for maximum ethanol concentration and production rate. The maximum bio-ethanol production rate was obtained at the optimum conditions of 30.99 g/L ethanol. Since yeast extract is not the most economical nitrogen source, four animal-based substitutes (poultry meal, hull and fines mix, feather meal, and meat and bone meal were evaluated to determine an economical alternative nitrogen source to yeast extract. Poultry meal and feather meal were able to produce 35 g/L and

  19. Life cycle cost of ethanol production from cassava in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sorapipatana, Chumnong; Yoosin, Suthamma [Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Pracha-Uthit Rd., Tungkru, Bangmod, Bangkok 10140 (Thailand); Center for Energy Technology and Environment, Commission on Higher Education, Ministry of Education, Bangkok (Thailand)

    2011-02-15

    To increase the security of energy supply, lessen dependence on crude oil import and buffer against the impacts of large change in crude oil prices, the Thai government initiated and officially announced the national ethanol fuel program in year 2000. Since then, domestic ethanol demand has grown rapidly. Presently, all commercial ethanol in Thailand is produced from molasses as Thai law prohibits producing it from sugar cane directly. This is likely to limit ethanol supply in the near future. One possible solution is to supply more ethanol from cassava which is widely cultivated in this country. However, its production cost has not yet been known for certain. The objective of this study is to estimate the life cycle cost of ethanol production from cassava and to assess its economic competitiveness with gasoline in the Thai fuel market. Based on the record of cassava prices during the years 2002-2005, it was found that using it as feedstock would share more than 50% of the ethanol from cassava total production cost. It was also found that a bio-ethanol plant, with a capacity of 150,000 l/day, can produce ethanol from cassava in a range of ex-factory costs from 16.42 to 20.83 baht/l of gasoline equivalent (excluding all taxes), with an average cost of 18.15 baht/l of gasoline equivalent (41, 52 and 45 US cents/l gasoline equivalent respectively, based on 2005 exchange rate). In the same years, the range of 95-octane gasoline prices in Thailand varied from 6.18 baht to 20.86 baht/l, with an average price of 11.50 baht/l (15, 52 and 29 US cents/l respectively, based on 2005 exchange rate) which were much cheaper than the costs of ethanol made from cassava. Thus, we conclude that under the scenario of low to normal crude oil price, ethanol from cassava is not competitive with gasoline. The gasoline price has to rise consistently above 18.15 baht (45 US cents)/l before ethanol made from cassava can be commercially competitive with gasoline. (author)

  20. Life cycle cost of ethanol production from cassava in Thailand

    International Nuclear Information System (INIS)

    Sorapipatana, Chumnong; Yoosin, Suthamma

    2011-01-01

    To increase the security of energy supply, lessen dependence on crude oil import and buffer against the impacts of large change in crude oil prices, the Thai government initiated and officially announced the national ethanol fuel program in year 2000. Since then, domestic ethanol demand has grown rapidly. Presently, all commercial ethanol in Thailand is produced from molasses as Thai law prohibits producing it from sugar cane directly. This is likely to limit ethanol supply in the near future. One possible solution is to supply more ethanol from cassava which is widely cultivated in this country. However, its production cost has not yet been known for certain. The objective of this study is to estimate the life cycle cost of ethanol production from cassava and to assess its economic competitiveness with gasoline in the Thai fuel market. Based on the record of cassava prices during the years 2002-2005, it was found that using it as feedstock would share more than 50% of the ethanol from cassava total production cost. It was also found that a bio-ethanol plant, with a capacity of 150,000 l/day, can produce ethanol from cassava in a range of ex-factory costs from 16.42 to 20.83 baht/l of gasoline equivalent (excluding all taxes), with an average cost of 18.15 baht/l of gasoline equivalent (41, 52 and 45 US cents/l gasoline equivalent respectively, based on 2005 exchange rate). In the same years, the range of 95-octane gasoline prices in Thailand varied from 6.18 baht to 20.86 baht/l, with an average price of 11.50 baht/l (15, 52 and 29 US cents/l respectively, based on 2005 exchange rate) which were much cheaper than the costs of ethanol made from cassava. Thus, we conclude that under the scenario of low to normal crude oil price, ethanol from cassava is not competitive with gasoline. The gasoline price has to rise consistently above 18.15 baht (45 US cents)/l before ethanol made from cassava can be commercially competitive with gasoline. (author)

  1. Detoxification and fermentation of pyrolytic sugar for ethanol production.

    Science.gov (United States)

    Wang, Hui; Livingston, Darrell; Srinivasan, Radhakrishnan; Li, Qi; Steele, Philip; Yu, Fei

    2012-11-01

    The sugars present in bio-oil produced by fast pyrolysis can potentially be fermented by microbial organisms to produce cellulosic ethanol. This study shows the potential for microbial digestion of the aqueous fraction of bio-oil in an enrichment medium to consume glucose and produce ethanol. In addition to glucose, inhibitors such as furans and phenols are present in the bio-oil. A pure glucose enrichment medium of 20 g/l was used as a standard to compare with glucose and aqueous fraction mixtures for digestion. Thirty percent by volume of aqueous fraction in media was the maximum additive amount that could be consumed and converted to ethanol. Inhibitors were removed by extraction, activated carbon, air stripping, and microbial methods. After economic analysis, the cost of ethanol using an inexpensive fermentation medium in a large scale plant is approximately $14 per gallon.

  2. Bridging the logistics gap for sustainable ethanol production: the CentroSul ethanol pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Megiolaro, Moacir; Daud, Rodrigo; Pittelli, Fernanda [CentroSul Transportadora Dutoviaria, SP (Brazil); Singer, Eugenio [EMS Consultant, Sao Paulo, SP (Brazil)

    2009-07-01

    The continuous increase of ethanol production and growth in consumption in Brazil is a reality that poses significant logistics challenges both for producers and consumers. The Brazilian local market absorbs a great portion of the country's production of ethanol, but the export market is also experiencing significant expansion so that both local and external market consumption will require more adequate transportation solutions. The alternative routes for Brazilian ethanol exports within the South and Southeast regions of Brazil range from the port of Paranagua, in the state of Parana, to the port of Vitoria, in the state of Espirito Santo. Each of these routes is about 1,000 km distance from the main production areas in the Central South states of Brazil. Brazilian highways and railways systems are overly congested and do not present efficient logistics alternatives for the transportation of large ethanol flows over long distances (cross-country) from the central Midwest regions of the country to the consumer and export markets in the Southeast. In response to the challenge to overcome such logistic gaps, CentroSul Transportadora Dutoviaria 'CentroSul', a company recently founded by a Brazilian ethanol producer group, the Brenco Group, is developing a project for the first fully-dedicated ethanol pipeline to be constructed in Brazil. The ethanol pipeline will transport 3,3 million m{sup 3} of Brenco - Brazilian Renewable Energy Company's ethanol production and an additional 4,7 million cubic meters from other Brazilian producers. The pipeline, as currently projected, will, at its full capacity, displace a daily vehicle fleet equivalent to 500 trucks which would be required to transport the 8,0 million cubic meters from their production origins to the delivery regions. In addition, the project will reduce GHG (trucking) emissions minimizing the project's overall ecological footprint. Key steps including conceptual engineering, environmental

  3. Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth

    DEFF Research Database (Denmark)

    Lübbehüsen, Tina Louise; Nielsen, Jens; Mcintyre, Mhairi

    2004-01-01

    The dimorphic organism Mucor circinelloides is currently being investigated as a potential host for heterologous protein production. The production of ethanol on pentose and hexose sugars was studied in submerged batch cultivations to further the general knowledge of Mucor physiology, with a view...

  4. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  5. Solving ethanol production problems with genetically modified yeast strains

    Directory of Open Access Journals (Sweden)

    A. Abreu-Cavalheiro

    2013-09-01

    Full Text Available The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  6. Solving ethanol production problems with genetically modified yeast strains.

    Science.gov (United States)

    Abreu-Cavalheiro, A; Monteiro, G

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  7. Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Kuloyo, Olukayode O; du Preez, James C; García-Aparicio, Maria del Prado; Kilian, Stephanus G; Steyn, Laurinda; Görgens, Johann

    2014-12-01

    The feasibility of ethanol production using an enzymatic hydrolysate of pretreated cladodes of Opuntia ficus-indica (prickly pear cactus) as carbohydrate feedstock was investigated, including a comprehensive chemical analysis of the cladode biomass and the effects of limited aeration on the fermentation profiles and sugar utilization. The low xylose and negligible mannose content of the cladode biomass used in this study suggested that the hemicellulose structure of the O. ficus-indica cladode was atypical of hardwood or softwood hemicelluloses. Separate hydrolysis and fermentation and simultaneous saccharification and fermentation procedures using Kluyveromyces marxianus and Saccharomyces cerevisiae at 40 and 35 °C, respectively, gave similar ethanol yields under non-aerated conditions. In oxygen-limited cultures K. marxianus exhibited almost double the ethanol productivity compared to non-aerated cultures, although after sugar depletion utilization of the produced ethanol was evident. Ethanol concentrations of up to 19.5 and 20.6 g l(-1) were obtained with K. marxianus and S. cerevisiae, respectively, representing 66 and 70 % of the theoretical yield on total sugars in the hydrolysate. Because of the low xylan content of the cladode biomass, a yeast capable of xylose fermentation might not be a prerequisite for ethanol production. K. marxianus, therefore, has potential as an alternative to S. cerevisiae for bioethanol production. However, the relatively low concentration of fermentable sugars in the O. ficus-indica cladode hydrolysate presents a technical constraint for commercial exploitation.

  8. Engineering microorganisms to increase ethanol production by metabolic redirection

    Science.gov (United States)

    Deng, Yu; Olson, Daniel G.; van Dijken, Johannes Pieter; Shaw, IV, Arthur J.; Argyros, Aaron; Barrett, Trisha; Caiazza, Nicky; Herring, Christopher D.; Rogers, Stephen R.; Agbogbo, Frank

    2017-10-31

    The present invention provides for the manipulation of carbon flux in a recombinant host cell to increase the formation of desirable products. The invention relates to cellulose-digesting organisms that have been genetically modified to allow the production of ethanol at a high yield by redirecting carbon flux at key steps of central metabolism.

  9. Water consumption in the production of ethanol and petroleum gasoline.

    Science.gov (United States)

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  10. Water Consumption in the Production of Ethanol and Petroleum Gasoline

    Science.gov (United States)

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  11. Water and Land Use Efficiency in Current and Potential Future US Corn and Brazilian Sugarcane Ethanol Systems

    Science.gov (United States)

    Warner, E. S.; Zhang, Y.; Newmark, R. L.

    2012-12-01

    Biofuels represent an opportunity for domestic fuel production from renewable energy sources with potential environmental and social benefits such as reducing greenhouse gas (GHG) and promoting rural development. However, as demand for biofuel continues to increase worldwide, concerns about land competition between food and fuel, excessive water usage and other unintended environmental consequences have grown. Through a comparative study between US corn ethanol and Brazilian sugarcane ethanol, we examine the energy, land, water and GHG performance of the two largest industrial fuel ethanol production systems in the world. Our comparisons include current and potential future systems with improved agronomic practices, crop yields, ethanol conversion processes, and utilization of agricultural residues. Our results suggest that the average water footprints of US corn ethanol and Brazilian sugarcane ethanol are fairly close (108 and 110 m3/GJ of ethanol, respectively) while the variations can range from 50 to 250 m3/GJ for sugarcane ethanol and 50 to380 m3/GJ for corn ethanol. Results emphasize the need to examine the water footprint within the context of local and regional climatic variability, water availability, competing uses (e.g. agricultural, industrial, and municipal water needs) and other ecosystem constraints. Research is under way (at the National Renewable Energy Laboratory and other institutions) to develop models to analyze water supply and demand at the watershed-scale for current and future biomass production, and to understand the tradeoffs among water supply, demand and quality due to more intensive agricultural practices and expansion of biofuels. Land use efficiency metrics, with regards to life cycle GHG emissions (without land use change) savings through gasoline displacement with ethanol, illustrate the progression of the biofuel industry and the importance of maximizing bioenergy production by utilizing both the crops and the residues. A recent

  12. Ethanol production from SPORL-pretreated lodgepole pine : preliminary evaluation of mass balance and process energy efficiency

    Science.gov (United States)

    Junyong Zhu; Wenyuan Zhu; Patricia OBryan; Bruce S. Dien; Shen Tian; Roland Gleisner; X.J. Pan

    2010-01-01

    Lodgepole pine from forest thinnings is a potential feedstock for ethanol production. In this study, lodgepole pine was converted to ethanol with a yield of 276 L per metric ton of wood or 72% of theoretical yield. The lodgepole pine chips were directly subjected to sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) pretreatment and then disk-...

  13. Ethanol Production from Hydrothermally-Treated Biomass from West Africa

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2015-08-01

    Full Text Available Despite the abundance of diverse biomass resources in Africa, they have received little research and development focus. This study presents compositional analysis, sugar, and ethanol yields of hydrothermal pretreated (195 °C, 10 min biomass from West Africa, including bamboo wood, rubber wood, elephant grass, Siam weed, and coconut husk, benchmarked against those of wheat straw. The elephant grass exhibited the highest glucose and ethanol yields at 57.8% and 65.1% of the theoretical maximums, respectively. The results show that the glucose yield of pretreated elephant grass was 3.5 times that of the untreated material, while the ethanol yield was nearly 2 times higher. Moreover, the sugar released by the elephant grass (30.8 g/100 g TS was only slightly lower than by the wheat straw (33.1 g/100 g TS, while the ethanol yield (16.1 g/100 g TS was higher than that of the straw (15.26 g/100 g TS. All other local biomass types studied exhibited sugar and ethanol yields below 33% and 35% of the theoretical maximum, respectively. Thus, elephant grass is a highly promising biomass source for ethanol production in Africa.

  14. Production of fuel ethanol from molasses by thermotolerant yeast

    International Nuclear Information System (INIS)

    Hamad, S. H.

    2009-01-01

    A thermotolerant strain of the yeast Kluyveromyces marxians, isolated from Kenana sugar factory in the Sudan, was used for the production of ethanol from molasses. Fermentations were carried out in a bioreactor with 10-litre working volume at three temperatures and three sugar concentrations in batch and at one temperature and three feeding rates in fed-batch processes. In the batch fermentations, the best results were obtained at 40 o C and 20% sugar, where a maximum of 9.2% (w/v) ethanol concentration was produced in 30 hours with a yield of 90% of the theoretical and a maximum ethanol specific productivity of 0.65 g per gramme yeast and hour. In the fed-batch process at 40 o C , the best results were obtained at 0.5 1/h feeding rate of a substrate with 400 g/1 sugar. Under such conditions, the yeast produced up to 9.34% (w/v) ethanol with 91.6% of the theoretical yield in 14 hours of fermentation and a maximum specific ethanol productivity of 0.9 g per gramme yeast and hour. (Author)

  15. Ethanol Production from Lignocellulose by the Dimorphic Fungus Mucor Indicus

    Energy Technology Data Exchange (ETDEWEB)

    Lennartsson, P.R.; Taherzadeh, M.J. (School of Engineering, Univ. of Boraas, SE-50190, Boraas (Sweden)). e-mail: Patrik.Lennartsson@hb.se; Karimi, K. (Dept. of Chemical Engineering, Isfahan Univ. of Technology, 84156-83111, Isfahan (IR)); Edebo, L. (Dept. of Clinical Bacteriology, Univ. of Goeteborg, SE-41346, Goeteborg (Sweden))

    2008-10-15

    Ethanol production from dilute-acid lignocellulosic hydrolyzate by the dimorphic fungus Mucor indicus was investigated. A mixture of different forest wood chips dominated by spruce was hydrolyzed with 0.5 g/L sulfuric acid at 15 bar for 10 min, yielding different sugars including galactose, glucose, mannose, and xylose, but also different fermentation inhibitors such as acetic acid, furfural, hydroxymethyl furfural (HMF), and phenolic compounds. We induced different morphological growth of M. indicus from purely filamentous, mostly filamentous, mostly yeast-like to purely yeast-like. The different forms were then used to ferment the hydrolyzate. They tolerated the presence of the inhibitors under anaerobic batch cultivation well and the ethanol yield was 430-440 g/kg consumed sugars. The ethanol productivity depended on the morphology. Judging from these results, we conclude that M. indicus, is useful for ethanol production from toxic substrates independent of its morphology. Keywords: bio-ethanol, lignocellulosic materials, dilute acid hydrolysis, Mucor indicus, dimorphic fungi

  16. Ethanol, biomass and enzyme production for whey waste abatement

    Energy Technology Data Exchange (ETDEWEB)

    Maiorella, B L; Castillo, F J

    1984-08-01

    Methods of ethanol, biomass, and lactase production are evaluated for the treatment of whey waste. These processes can all reduce the whey BOD load of 35,000 ppm by at least 90%. Plant designs are evaluated at the scale of 25,000 l whey per day, corresponding to the output of a typical independent cheese factory. Ethanol production is the most practical of the alternatives evaluated and the waste treatment would add 7.3 US cents per kilogramme to the cost of cheese manufacture. 57 references.

  17. Process simulation of ethanol production from biomass gasification and syngas fermentation.

    Science.gov (United States)

    Pardo-Planas, Oscar; Atiyeh, Hasan K; Phillips, John R; Aichele, Clint P; Mohammad, Sayeed

    2017-12-01

    The hybrid gasification-syngas fermentation platform can produce more bioethanol utilizing all biomass components compared to the biochemical conversion technology. Syngas fermentation operates at mild temperatures and pressures and avoids using expensive pretreatment processes and enzymes. This study presents a new process simulation model developed with Aspen Plus® of a biorefinery based on a hybrid conversion technology for the production of anhydrous ethanol using 1200tons per day (wb) of switchgrass. The simulation model consists of three modules: gasification, fermentation, and product recovery. The results revealed a potential production of about 36.5million gallons of anhydrous ethanol per year. Sensitivity analyses were also performed to investigate the effects of gasification and fermentation parameters that are keys for the development of an efficient process in terms of energy conservation and ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The feasibility of producing adequate feedstock for year–round cellulosic ethanol production in an intensive agricultural fuelshed

    Science.gov (United States)

    Uden, Daniel R.; Mitchell, Rob B.; Allen, Craig R.; Guan, Qingfeng; McCoy, Tim D.

    2013-01-01

    To date, cellulosic ethanol production has not been commercialized in the United States. However, government mandates aimed at increasing second-generation biofuel production could spur exploratory development in the cellulosic ethanol industry. We conducted an in-depth analysis of the fuelshed surrounding a starch-based ethanol plant near York, Nebraska that has the potential for cellulosic ethanol production. To assess the feasibility of supplying adequate biomass for year-round cellulosic ethanol production from residual maize (Zea mays) stover and bioenergy switchgrass (Panicum virgatum) within a 40-km road network service area of the existing ethanol plant, we identified ∼14,000 ha of marginally productive cropland within the service area suitable for conversion from annual rowcrops to switchgrass and ∼132,000 ha of maize-enrolled cropland from which maize stover could be collected. Annual maize stover and switchgrass biomass supplies within the 40-km service area could range between 429,000 and 752,000 metric tons (mT). Approximately 140–250 million liters (l) of cellulosic ethanol could be produced, rivaling the current 208 million l annual starch-based ethanol production capacity of the plant. We conclude that sufficient quantities of biomass could be produced from maize stover and switchgrass near the plant to support year-round cellulosic ethanol production at current feedstock yields, sustainable removal rates and bioconversion efficiencies. Modifying existing starch-based ethanol plants in intensive agricultural fuelsheds could increase ethanol output, return marginally productive cropland to perennial vegetation, and remove maize stover from productive cropland to meet feedstock demand.

  19. Value Chain Structures that Define European Cellulosic Ethanol Production

    DEFF Research Database (Denmark)

    Gregg, Jay Sterling; Bolwig, Simon; Hansen, Teis

    2017-01-01

    production plants across Europe from a global value chain (GVC) perspective. We find that most CE production plants in the EU focus largely on intellectual property and are therefore only at the pilot or demonstration scale. Crescentino, the largest CE production facility in Europe, is also more interested...... petroleum markets and higher financial risks. We argue that, to increase CE production, policies should consider value chains, promote the wider bio-economy of products and focus on economies of scope. Whereas the EU and its member states have ethanol quotas and blending targets, a more effective policy......Production of cellulosic ethanol (CE) has not yet reached the scale envisaged by the literature and industry. This study explores CE production in Europe to improve understanding of the motivations and barriers associated with this situation. To do this, we conduct a case study-based analysis of CE...

  20. An enzyme to improve the ethanol production; Une enzyme pour ameliorer la production d'ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-07-01

    The American firm Genecor launches a technology which allows to improve the production of ethanol from agricultural resources. This technology involves in particular a decrease of the energy consumption and of the production costs and a best yield. In the process, is used a mixture of enzymes composed of alpha-amylase and gluco-amylase. (O.M.)

  1. The economics of ethanol production by extractive fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Daugulis, A J; Axford, D B; McLellan, P J [Queen' s Univ., Kingston, ON (Canada)

    1991-04-01

    Extractive fermentation is a processing strategy in which reaction and recovery occur simultaneously in a fermentation vessel through the use of a water-immiscible solvent which selectively removes an inhibitory product. An ethanol-extractive fermentation process has been developed, incorporating continuous operation and the ability to ferment concentrated feedstocks. A detailed economic assessment of this process is provided relative to current technology for an annual capacity of 100 million litres of ethanol. Extractive fermentation provides significant economic advantages for both grass roots and retrofitted plants. Total production costs are estimated at 45{cents}/l for a conventional plant and 29.4{cents}/l for a retrofitted plant. The main cost saving achievable by extractive fermentation is in energy, used for evaporation and drying, since the process uses significantly less water in its conversion of concentrated feedstocks. Producing anhydrous ethanol without distillation is also a prospect. 15 refs., 5 fig., 10 tabs.

  2. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Shuvashish; Mohanty, Rama Chandra [Department of Botany, Utkal University, Vanivihar, Bhubaneswar 751004, Orissa (India); Ray, Ramesh Chandra [Microbiology Laboratory, Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar 751019, Orissa (India)

    2010-07-15

    Mahula (Madhuca latifolia L.) flower is a suitable alternative cheaper carbohydrate source for production of bio-ethanol. Recent production of bio-ethanol by microbial fermentation as an alternative energy source has renewed research interest because of the increase in the fuel price. Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria) are two most widely used microorganisms for ethanol production. In this study, experiments were carried out to compare the potential of the yeast S. cerevisiae (CTCRI strain) with the bacterium Z. mobilis (MTCC 92) for ethanol fermentation from mahula flowers. The ethanol production after 96 h fermentation was 149 and 122.9 g kg{sup -1} flowers using free cells of S. cerevisiae and Z. mobilis, respectively. The S. cerevisiae strain showed 21.2% more final ethanol production in comparison to Z. mobilis. Ethanol yield (Yx/s), volumetric product productivity (Qp), sugar to ethanol conversion rate (%) and microbial biomass concentration (X) obtained by S. cerevisiae were found to be 5.2%, 21.1%, 5.27% and 134% higher than Z. mobilis, respectively after 96 h of fermentation. (author)

  3. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis

    International Nuclear Information System (INIS)

    Behera, Shuvashish; Mohanty, Rama Chandra; Ray, Ramesh Chandra

    2010-01-01

    Mahula (Madhuca latifolia L.) flower is a suitable alternative cheaper carbohydrate source for production of bio-ethanol. Recent production of bio-ethanol by microbial fermentation as an alternative energy source has renewed research interest because of the increase in the fuel price. Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria) are two most widely used microorganisms for ethanol production. In this study, experiments were carried out to compare the potential of the yeast S. cerevisiae (CTCRI strain) with the bacterium Z. mobilis (MTCC 92) for ethanol fermentation from mahula flowers. The ethanol production after 96 h fermentation was 149 and 122.9 g kg -1 flowers using free cells of S. cerevisiae and Z. mobilis, respectively. The S. cerevisiae strain showed 21.2% more final ethanol production in comparison to Z. mobilis. Ethanol yield (Yx/s), volumetric product productivity (Qp), sugar to ethanol conversion rate (%) and microbial biomass concentration (X) obtained by S. cerevisiae were found to be 5.2%, 21.1%, 5.27% and 134% higher than Z. mobilis, respectively after 96 h of fermentation. (author)

  4. Engineering Escherichia coli for improved ethanol production from gluconate.

    Science.gov (United States)

    Hildebrand, Amanda; Schlacta, Theresa; Warmack, Rebeccah; Kasuga, Takao; Fan, Zhiliang

    2013-10-10

    We report on engineering Escherichia coli to produce ethanol at high yield from gluconic acid (gluconate). Knocking out genes encoding for the competing pathways (l-lactate dehydrogenase and pyruvate formate lyase A) in E. coli KO11 eliminated lactate production, lowered the carbon flow toward acetate production, and improved the ethanol yield from 87.5% to 97.5% of the theoretical maximum, while the growth rate of the mutant strain was about 70% of the wild type. The corresponding genetic modifications led to a small improvement of ethanol yield from 101.5% to 106.0% on glucose. Deletion of the pyruvate dehydrogenase gene (pdh) alone improved the ethanol yield from 87.5% to 90.4% when gluconate was a substrate. The growth rate of the mutant strain was identical to that of the wild type. The corresponding genetic modification led to no improvements on ethanol yield on glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Design and analysis of fuel ethanol production from raw glycerol

    International Nuclear Information System (INIS)

    Posada, J.A.; Cardona, C.A.

    2010-01-01

    Three configurations for fuel ethanol production from raw glycerol using Escherichia coli were simulated and economically assessed using Aspen Plus and Aspen Icarus, respectively. These assessments considered raw glycerol (60 wt%) purification to both crude glycerol (88 wt%) and pure glycerol (98 wt%). The highest purification cost (PC) was obtained using pure glycerol due to its higher energy consumption in the distillation stage. In addition, the remaining methanol in the raw glycerol stream was recovered and recycled, decreasing the purification costs. The E. coli strain is able to convert crude glycerol (at 10 g/L or 20 g/L), or pure glycerol (at 10 g/L) to ethanol. Among these three glycerol concentrations, the lowest bioconversion cost was obtained when crude glycerol was diluted at 20 g/L. Purification and global production costs were compared with the commercial prices of glycerol and fuel ethanol from corn and sugarcane. Purification costs of raw glycerol were lower than previously reported values due to the methanol recovery. Global production costs for fuel ethanol from glycerol were lower than the reported values for corn-based production and higher than those for cane-based production. (author)

  6. Ethanol production in small- to medium-size facilities

    Science.gov (United States)

    Hiler, E. A.; Coble, C. G.; Oneal, H. P.; Sweeten, J. M.; Reidenbach, V. G.; Schelling, G. T.; Lawhon, J. T.; Kay, R. D.; Lepori, W. A.; Aldred, W. H.

    1982-04-01

    In early 1980 system design criteria were developed for a small-scale ethanol production plant. The plant was eventually installed on November 1, 1980. It has a production capacity of 30 liters per hour; this can be increased easily (if desired) to 60 liters per hour with additional fermentation tanks. Sixty-six test runs were conducted to date in the alcohol production facility. Feedstocks evaluated in these tests include: corn (28 runs); grain sorghum (33 runs); grain sorghum grits (1 run); half corn/half sorghum (1 run); and sugarcane juice (3 runs). In addition, a small bench-scale fermentation and distillation system was used to evaluate sugarcane and sweet sorghum feedstocks prior to their evaluation in the larger unit. In each of these tests, evaluation of the following items was conducted: preprocessing requirements; operational problems; conversion efficiency (for example, liters of alcohol produced per kilogram of feedstock); energy balance and efficiency; nutritional recovery from stillage; solids separation by screw press; chemical characterization of stillage including liquid and solids fractions; wastewater requirements; and air pollution potential.

  7. Farm Deployable Microbial Bioreactor for Fuel Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict [Auburn Univ., Montgomery AL (United States)

    2016-03-30

    Research was conducted to develop a farm and field deployable microbial bioreactor for bioethanol production from biomass. Experiments were conducted to select the most efficient microorganisms for conversion of plant fiber to sugars for fermentation to ethanol. Mixtures of biomass and surface soil samples were collected from selected sites in Alabama black belt counties (Macon, Sumter, Choctaw, Dallas, Montgomery, Lowndes) and other areas within the state of Alabama. Experiments were conducted to determine the effects of culture parameters on key biomass saccharifying enzymes (cellulase, beta-glucosidase, xylanase and beta-xylosidase). A wide-scale sampling of locally-grown fruits in Central Alabama was embarked to isolate potential xylose fermenting microorganisms. Yeast isolates were evaluated for xylose fermentation. Selected microorganisms were characterized by DNA based methods. Factors affecting enzyme production and biomass saccharification were examined and optimized in the laboratory. Methods of biomass pretreatment were compared. Co-production of amylolytic enzymes with celluloytic-xylanolytic enzymes was evaluated; and co-saccharification of a combination of biomass, and starch-rich materials was examined. Simultaneous saccharification and fermentation with and without pre-saccharifcation was studied. Whole culture broth and filtered culture broth simultaneous saccahrifcation and fermentation were compared. A bioreactor system was designed and constructed to employ laboratory results for scale up of biomass saccharification.

  8. Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields

    Science.gov (United States)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.

  9. Effect of Furfural on Saccharomyces carlsbergensis Growth, Physiology and Ethanol Production.

    Science.gov (United States)

    Lopes da Silva, Teresa; Santo, Rui; Reis, Alberto; Passarinho, Paula C

    2017-06-01

    This work described the effect of furfural, a product resulting from the lignocellulosic material pretreatment, on Saccharomyces carlsbergensis growth and ethanol production. Flow cytometry was used to evaluate the yeast membrane potential, membrane integrity, reactive oxygen species production and lipid content. Above 0.3 g/L of furfural, a progressive decrease in the maximal specific growth rate was observed, reaching 53% of the value obtained in the absence of toxic when the cells were grown in the presence of 4 g/L of furfural. In general, the yeast biomass concentration and yield were less affected by the furfural presence than the specific growth rate, and a maximum reduction of 25% was observed for the assay at 4 g/L. The ethanol production was even less affected by the furfural presence than the yeast growth. At 4 g/L of furfural, the maximum ethanol concentration was reduced by only 10% relatively to the maximum ethanol concentration observed in the absence of toxic. At 5 g/L of furfural, the yeast cells were barely able to keep metabolic functions and produced a final ethanol concentration of 0.87 g/L although growth was undetectable. S. carlsbergensis membrane potential was affected by the furfural presence, concomitantly with the ethanol production. However, at 4 g/L, most of the yeast cells (90%) displayed the cytoplasmic membrane depolarized. The proportion of cells with increasing reactive oxygen species (ROS) production levels increased for the experiments at 0-4 g/L. For the experiment at 4.5 g/L of furfural, ROS production was observed for only 11% of the yeast cells. The yeast lipid content was also severely affected by the furfural presence. Both polar and neutral lipids decreased in the presence of furfural, and this reduction was more notorious during the stationary phase.

  10. Environmental benefits of the integrated production of ethanol and biodiesel

    International Nuclear Information System (INIS)

    Souza, Simone Pereira; Seabra, Joaquim E.A.

    2013-01-01

    Highlights: ► Integrated bioenergy systems can favor the sustainability of biofuels. ► We analyzed the integrated production of ethanol and biodiesel in Brazil. ► GHG emissions and fossil energy use in the ethanol life cycle would be reduced. ► Socio-economic and other environmental aspects must be analyzed in future works. -- Abstract: The biorefinery of the future will be an integrated complex that makes a variety of products (e.g., biofuels, chemicals, power and protein) from a variety of feedstocks. The objective of this work was to evaluate the environmental benefits, compared to the traditional sugarcane ethanol system, of the integrated production of ethanol and biodiesel through a sugarcane–soybean biorefinery concept in Brazil. The environmental aspects considered here were the fossil energy use and the greenhouse gases (GHGs) emissions associated with ethanol production. In the Integrated System, soybean would be cultivated in part of the sugarcane reforming areas, which represents ∼17% of the total sugarcane area. Sugarcane and soybean oil would be processed in a combined ethanol–biodiesel plant, which would use only bagasse as fuel. All the demand for utilities of the biodiesel plant would be provided by the distillery. The output products of the combined plant would comprise sugarcane ethanol, soybean biodiesel (which would be used as diesel (B5) substitute in the sugarcane cultivation), bioelectricity and glycerin. The results indicate that the Integrated System can reduce the fossil energy consumption from 75 to 37 kJ/MJ of ethanol, when compared to the traditional system. For GHG emissions, the value would drop from 22.5 to 19.7 g CO 2 eq/MJ of ethanol. This analysis shows that the Integrated System is an important option to contribute to ethanol’s life cycle independence from fossil resources. This is an attractive environmental aspect, but socio-economic (as well as other environmental) aspects should also be analyzed in order to

  11. Bio-ethanol production from non-food parts of Cassava (Manihot esculenta Crantz)

    Energy Technology Data Exchange (ETDEWEB)

    Nuwamanya, Ephraim; Kawuki, Robert S.; Baguma, Yona [National Agricultural Research organization, National Crops Resources Research Inst. (NaCRRI), Kampala (Uganda); Chiwona-Karltun, Linley [Dept. of Urban and Rural Development, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)], email: Linley.karltun@slu.se

    2012-03-15

    Global climate issues and a looming energy crisis put agriculture under pressure in Sub-Saharan Africa. Climate adaptation measures must entail sustainable development benefits, and growing crops for food as well as energy may be a solution, removing people from hunger and poverty without compromising the environment. The present study investigated the feasibility of using non-food parts of cassava for energy production and the promising results revealed that at least 28% of peels and stems comprise dry matter, and 10 g feedstock yields >8.5 g sugar, which in turn produced >60% ethanol, with pH {approx} 2.85, 74-84% light transmittance and a conductivity of 368 mV, indicating a potential use of cassava feedstock for ethanol production. Thus, harnessing cassava for food as well as ethanol production is deemed feasible. Such a system would, however, require supportive policies to acquire a balance between food security and fuel.

  12. Ethanol production in fermentation of mixed sugars containing xylose

    Science.gov (United States)

    Viitanen, Paul V [West Chester, PA; Mc Cutchen, Carol M [Wilmington, DE; Li,; Xu, [Newark, DE; Emptage, Mark [Wilmington, DE; Caimi, Perry G [Kennett Square, PA; Zhang, Min [Lakewood, CO; Chou, Yat-Chen [Lakewood, CO; Franden, Mary Ann [Centennial, CO

    2009-12-08

    Xylose-utilizing Z. mobilis strains were found to have improved ethanol production when grown in medium containing mixed sugars including xylose if sorbitol or mannitol was included in the medium. The effect was seen in concentrations of mixed sugars where no growth lag period occurs, as well as in higher sugars concentrations.

  13. Cassava as feedstock for ethanol production in South Africa | Marx ...

    African Journals Online (AJOL)

    It can be grown on marginal lands where frost is not prevalent. In this study, the production of ethanol from unpeeled Cassava roots and cassava peels were investigated. It was found that temperature; pH and biomass loading had a significant effect on glucose yield during hydrolysis. Simultaneous saccharification and ...

  14. Cassava as feedstock for ethanol production in South Africa

    African Journals Online (AJOL)

    Sanette

    2013-07-31

    Jul 31, 2013 ... Rising crude oil prices, lower crop prices on world ... industrial strategy of South Africa suggests the use of sugar based crops, ... Development of the biofuels industry in South Africa is ... production of ethanol from cassava is both economical ... In the SSF process, the saccharification step and fermentation.

  15. Production, transport, and metabolism of ethanol in eastern cottonwood

    International Nuclear Information System (INIS)

    MacDonald, R.C.

    1991-01-01

    In plant tissues, the production of acetaldehyde and ethanol are usually thought to occur as a mechanism to allow tolerance of hypoxic conditions. Acetaldehyde and ethanol were found to be common in vascular cambium and the transpiration stream of trees. Ethanol concentrations in the vascular cambium of Populus deltoides were not changed by placing logs from nonflooded trees in a pure oxygen environment for as long as 96 h, but increased by almost 3 orders of magnitude when exposed to low external pO 2 s. Ethanol is present in the xylem sap of flooded and nonflooded trees. Because of the constitutive presence of alcohol dehydrogenase in the mature leaves of woody plants, it was hypothesized that the leaves and shoots of trees had the ability to metabolize ethanol supplied by the transpiration stream. 1-[ 14 C]ethanol was supplied to excised leaves and shoots of Populus deltoides Bartr. in short- and long-term experiments. Greater than 99% of the radiolabel was incorporated into plant tissue in short-term experiments, with more than 95% of the label remaining in plant tissue after 24 h. Very little label reached the leaf mesophyll cells of excised shoots, as revealed by autoradiography. Radiolabel appeared primarily in the water- and chloroform-soluble fractions in short-term experiments, while in long-term experiments, label was also incorporated into protein. When labelled ethanol was supplied to excised petioles in a 5 min pulse, 41% of the label was incorporated into organic acids. Some label was also incorporated into amino acids, protein, and the chloroform-soluble fraction, with very little appearing in neutral sugars, starch, or the insoluble pellet. Labelled organic acids were separated by HPLC, and were comprised of acetate, isocitrate, α-ketoglutarate, and succinate. There was no apparent incorporation of label into phosphorylated compounds

  16. Production of ethanol from blackstrap molasses by saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Elahi, S.; Hashmi, Abu-S.; Akhtar, C.M.; Ilahi, A.; Rajoka, M.I.

    1991-01-01

    Blackstrap molasses was analyzed for its composition and its fermentation was brought about by the yeast S. cerevisiae at predetermined optimal environmental conditions such as pH, temperature, Sugar concentration, and incubation period. The results revealed that sugar concentration 17%, pH 4.5, temperature 30 C and incubation period of 72 hours were the optimal conditions for producing maximum (73 g/l) ethanol. Clearance of molasses by 20% single superphosphate enhanced ethanol production by only 0.2%. (author)

  17. Production of Ethanol and Biomass from Thin Stillage Using Food-Grade Zygomycetes and Ascomycetes Filamentous Fungi

    Directory of Open Access Journals (Sweden)

    Jorge A. Ferreira

    2014-06-01

    Full Text Available A starch-based ethanol facility producing 200,000 m3 ethanol/year also produces ca. 2 million m3 thin stillage, which can be used to improve the entire process. In this work, five food-grade filamentous fungi, including a Zygomycete and four Ascomycetes were successfully grown in thin stillage containing 9% solids. Cultivation with Neurospora intermedia led to the production of ca. 16 g·L−1 biomass containing 56% (w/w crude protein, a reduction of 34% of the total solids, and 5 g·L−1 additional ethanol. In an industrial ethanol production process (200,000 m3 ethanol/year, this can potentially lead to the production of 11,000 m3 extra ethanol per year. Cultivation with Aspergillus oryzae resulted in 19 g·L−1 biomass containing 48% (w/w crude protein and the highest reduction of the thin stillage glycerol (54% among the Ascomycetes. Cultivation with Rhizopus sp. produced up to 15 g·L−1 biomass containing 55% (w/w crude protein. The spent thin stillage had been reduced up to 85%, 68% and 21% regarding lactic acid, glycerol and total solids, respectively. Therefore, N. intermedia, in particular, has a high potential to improve the ethanol process via production of additional ethanol and high-quality biomass, which can be considered for animal feed applications such as for fish feed.

  18. Value Chain Structures that Define European Cellulosic Ethanol Production

    Directory of Open Access Journals (Sweden)

    Jay Sterling Gregg

    2017-01-01

    Full Text Available Production of cellulosic ethanol (CE has not yet reached the scale envisaged by the literature and industry. This study explores CE production in Europe to improve understanding of the motivations and barriers associated with this situation. To do this, we conduct a case study-based analysis of CE production plants across Europe from a global value chain (GVC perspective. We find that most CE production plants in the EU focus largely on intellectual property and are therefore only at the pilot or demonstration scale. Crescentino, the largest CE production facility in Europe, is also more interested in technology licensing than producing ethanol. Demonstration-scale plants tend to have a larger variety of feedstocks, whereas forestry-based plants have more diversity of outputs. As scale increases, the diversity of feedstocks and outputs diminishes, and firms struggle with feedstock provisioning, global petroleum markets and higher financial risks. We argue that, to increase CE production, policies should consider value chains, promote the wider bio-economy of products and focus on economies of scope. Whereas the EU and its member states have ethanol quotas and blending targets, a more effective policy would be to seek to reduce the risks involved in financing capital projects, secure feedstock provisioning and support a diversity of end products.

  19. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  20. Lignocellulosic bioethanol potential utilizing subproducts from the biodiesel production process

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Evan Michael; Oliveira Filho, Delly; Toledo, Olga Moraes [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2008-07-01

    Cellulosic ethanol production is one of the most researched fields in today's biofuels industry, and one of the major problems facing the commercial production of cellulosic ethanol is the challenge of collecting biomass. Oil extraction for biodiesel production yields large amounts of cellulose rich biomass sub-products, which in many cases can produce enough ethanol to meet the alcohol demands of transesterification. Soybean, castor bean, Jatropha Curcas, palm kernel, sunflower seed, rapeseed and cottonseed were studied to determine ethanol production potential from their oil extraction co-products and also the capacity to meet transesterification alcohol demands. Nearly all crops studied were capable of producing enough ethanol for biodiesel production and, in the case of palm kernels, 383% of the transesterification demands could be met with cellulosic ethanol production of the proper sub-products. Based on Brazilian yields, Palm kernels have a production potential of 6725 L ha{sup -1} of ethanol followed by Jatropha curcas with 695 L ha{sup -1}. (author)

  1. Optimization of microwave pretreatment on wheat straw for ethanol production

    DEFF Research Database (Denmark)

    Xu, Jian; Chen, Hongzhang; Kádár, Zsófia

    2011-01-01

    An orthogonal design (L9(34)) was used to optimize the microwave pretreatment on wheat straw for ethanol production. The orthogonal analysis was done based on the results obtained from the nine pretreatments. The effect of four factors including the ratio of biomass to NaOH solution, pretreatment...... time, microwave power, and the concentration of NaOH solution with three different levels on the chemical composition, cellulose/hemicellulose recoveries and ethanol concentration was investigated. According to the orthogonal analysis, pretreatment with the ratio of biomass to liquid at 80 g kg−1......, the NaOH concentration of 10 kg m−3, the microwave power of 1000 W for 15 min was confirmed to be the optimal condition. The ethanol yield was 148.93 g kg−1 wheat straw at this condition, much higher than that from the untreated material which was only 26.78 g kg−1....

  2. HPLC mapping of second generation ethanol production with lignocelluloses wastes and diluted sulfuric hydrolysis

    Directory of Open Access Journals (Sweden)

    Diogo José Horst

    2014-09-01

    Full Text Available Wood wastes are potential material for second generation ethanol production within the concept of residual forest bio-refinery. Current paper reports on ethanol production employing an HPLC method for monitoring the chemical content dispersed in the hydrolysate liquor after fermented. The proton-exchange technique was the analytical method employed. Twelve types of wood chips were used as biomass, including Hymenolobium petraeum, Tabebuia cassinoides, Myroxylon peruiferum, Nectandra lanceolata, Ocotea catharinensis, Cedrelinga catenaeformis, Cedrela fissilis Vell, Ocotea porosa, Laurus nobilis, Balfourodendron riedelianum, Pinus Elliotti and Brosimum spp. The influence of diluted sulfuric hydrolysis on the yeast Saccharomyces cerevisiae during the fermentation assay was also investigated. Standard compounds mapped in the analysis comprised fructose, lactic acid, acetic acid, glycerol, glucose and ethanol. The yeast showed ethanol productivity between 0.75 and 1.91 g L-1 h-1, respectively, without the addition of supplementary nutrients or detoxification. The use of these materials for the bioconversion of cellulose into ethanol has been proved. Current analysis contributes towards the production of biofuels by wastes recovery and by process monitoring and optimization.

  3. Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil

    NARCIS (Netherlands)

    Jonker, J. G G; Junginger, H. M.; Verstegen, J. A.; Lin, T.; Rodríguez, L. F.; Ting, K. C.; Faaij, A. P C; van der Hilst, F.

    2016-01-01

    The expansion of the ethanol industry in Brazil faces two important challenges: to reduce total ethanol production costs and to limit the greenhouse gas (GHG) emission intensity of the ethanol produced. The objective of this study is to economically optimize the scale and location of ethanol

  4. Wet oxidation pretreatment of rape straw for ethanol production

    International Nuclear Information System (INIS)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin. The highest ethanol yield obtained was 67% after fermenting the whole slurry produced by WO at 205 °C for 3 min with 12 bar of oxygen gas pressure and featured with presoaking in water. At these conditions after pre-treatment, cellulose and hemicellulose was recovered quantitatively (100%) together with 86% of the lignin. WO treatments of 2–3 min at 205–210 °C with 12 bar of oxygen gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid formation in SSF. -- Highlights: ► Wet Oxidation pretreatment on rape straw for sugar and ethanol production. ► Variables were reaction time, temperature, and oxygen gas pressure. ► Also, other configurations for increase of water and energy efficiency. ► Short Wet oxidation pretreatment (2–3 min) produced highest ethanol yield. ► After these pretreatment conditions recovery of lignin in solids was 86%.

  5. Investigation of Pleurotus ostreatus pretreatment on switchgrass for ethanol production

    Science.gov (United States)

    Slavens, Shelyn Gehle

    Fungal pretreatment using the white-rot fungus Pleurotus ostreatus on switchgrass for ethanol production was studied. In a small-scale storage study, small switchgrass bales were inoculated with fungal spawn and automatically watered to maintain moisture. Sampled at 25, 53, and 81 d, the switchgrass composition was determined and liquid hot water (LHW) pretreatment was conducted. Fungal pretreatment significantly decreased the xylan and lignin content; glucan was not significantly affected by fungal loading. The glucan, xylan, and lignin contents significantly decreased with increased fungal pretreatment time. The effects of the fungal pretreatment were not highly evident after the LHW pretreatment, showing only changes based on sampling time. Although other biological activity within the bales increased cellulose degradation, the fungal pretreatment successfully reduced the switchgrass lignin and hemicellulose contents. In a laboratory-scale nutrient supplementation study, copper, manganese, glucose, or water was added to switchgrass to induce production of ligninolytic enzymes by P. ostreatus. After 40 d, ligninolytic enzyme activities and biomass composition were determined and simultaneous saccharification and fermentation (SSF) was conducted to determine ethanol yield. Laccase activity was similar for all supplements and manganese peroxidase (MnP) activity was significantly less in copper-treated samples than in the other fungal-inoculated samples. The fungal pretreatment reduced glucan, xylan, and lignin content, while increasing extractable sugars content. The lowest lignin contents occurred in the water-fungal treated samples and produced the greatest ethanol yields. The greatest lignin contents occurred in the copper-fungal treated samples and produced the lowest ethanol yields. Manganese-fungal and glucose-fungal treated samples had similar, intermediate lignin contents and produced similar, intermediate ethanol yields. Ethanol yields from switchgrass

  6. Ethanol production by recombinant and natural xylose-utilising yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, Anna

    2000-07-01

    The xylose-fermenting capacity of recombinant Saccharomyces cerevisiae carrying XYL1 and XYL2 from Pichia stipitis, which encode xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, is poor due to high xylitol formation. Whereas, P. stipitis exhibits high ethanol yield on xylose, the tolerance towards inhibitors in the lignocellulosic hydrolysate is low. A recombinant strain possessing the advantageous characteristics of both S. cerevisiae and P. stipitis would constitute a biocatalyst capable of efficient ethanol production from lignocellulosic hydrolysate. In the work presented in this thesis, factors influencing xylose fermentation in recombinant S. cerevisiae and in the natural xylose-fermenting yeast P. stipitis have been identified and investigated. Anaerobic xylulose fermentation was compared in strains of Zygosaccharomyces and S. cerevisiae, mutants and wild-type strains to identify host strain background and genetic modifications beneficial for xylose fermentation. The greatest positive effect was found for over-expression of the gene XKS1 for the pentose phosphate pathway (PPP) enzyme xylulokinase (XK), which increased the ethanol yield by almost 85%. The Zygosaccharomyces strains tested formed large amounts of polyols, making them unsuitable as host strains. The XR/XDH/XK ratio was found to determine whether carbon accumulated in a xylitol pool or was further utilised for ethanol production in recombinant xylose-utilising S. cerevisiae. Simulations, based on a kinetic model, and anaerobic xylose cultivation experiments implied that a 1:{>=}10:{>=}4 relation was optimal in minimising xylitol formation. Ethanol formation increased with decreasing XR/XDH ratio, whereas xylitol formation decreased and XK overexpression was necessary for adequate ethanol formation. Based on the knowledge of optimal enzyme ratios, a stable, xylose-utilising strain, S. cerevisiae TMB 3001, was constructed by chromosomal integration of the XYL1 and XYL2 genes

  7. Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis.

    Science.gov (United States)

    Canilha, Larissa; Carvalho, Walter; Felipe, Maria das Graças de Almeida; Silva, João Batista de Almeida e; Giulietti, Marco

    2010-05-01

    The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L(-1) h(-1). The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L(-1) h(-1). The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L(-1) h(-1).

  8. An Update on Ethanol Production and Utilization in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Bloyd, Cary N.

    2009-10-01

    Thailand has continued to promote domestic biofuel utilization. Production and consumption of biofuel in Thailand have continued to increase at a fast rate due to aggressive policies of the Thai government in reducing foreign oil import and increasing domestic renewable energy utilization. This paper focuses on ethanol production and consumption, and the use of gasohol in Thailand. The paper is an update on the previous paper--Biofuel Infrastructure Development and Utilization in Thailand--in August 2008.

  9. Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies.

    Science.gov (United States)

    Hargreaves, Paulo Iiboshi; Barcelos, Carolina Araújo; da Costa, Antonio Carlos Augusto; Pereira, Nei

    2013-04-01

    This study evaluated the potential of Kappaphycus alvarezii as feedstock for ethanol production, i.e. ethanol 3G. First, aquatic biomass was subjected to a diluted acid pretreatment. This acid pretreatment generated two streams--a galactose-containing liquid fraction and a cellulose-containing solid fraction, which were investigated to determine their fermentability with the following strategies: a single-stream process (simultaneous saccharification and co-fermentation (SSCF) of both fractions altogether), which achieved 64.3 g L(-1) of ethanol, and a two-stream process (fractions were fermented separately), which resulted in 38 g L(-1) of ethanol from the liquid fraction and 53.0 g L(-1) from the simultaneous saccharification and fermentation (SSF) of the solid fraction. Based on the average fermentable carbohydrate concentration, it was possible to obtain 105 L of ethanol per ton of dry seaweed. These preliminaries results indicate that the use of the macro-algae K. alvarezii has a good potential feedstock for bioethanol production. Copyright © 2013. Published by Elsevier Ltd.

  10. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca.

    Science.gov (United States)

    van der Wal, Hetty; Sperber, Bram L H M; Houweling-Tan, Bwee; Bakker, Robert R C; Brandenburg, Willem; López-Contreras, Ana M

    2013-01-01

    Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A hydrolysate was used for the production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum and Clostridium beijerinckii. Hydrolysate-based media were fermentable without nutrient supplementation. C. beijerinckii utilized all sugars in the hydrolysate and produced ABE at high yields (0.35 g ABE/g sugar consumed), while C. acetobutylicum produced mostly organic acids (acetic and butyric acids). These results demonstrate the great potential of U. lactuca as feedstock for fermentation. Interestingly, in control cultures of C. beijerinckii on rhamnose and glucose, 1,2 propanediol was the main fermentation product (9.7 g/L). Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Yeast selection for fuel ethanol production in Brazil.

    Science.gov (United States)

    Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Lopes, Mario L

    2008-11-01

    Brazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil. The present paper reports on a yeast selection program performed during the last 12 years aimed at selecting Saccharomyces cerevisiae strains suitable for fermentation of sugar cane substrates (cane juice and molasses) with cell recycle, as it is conducted in Brazilian bioethanol plants. As a result, some evidence is presented showing the positive impact of selected yeast strains in increasing ethanol yield and reducing production costs, due to their higher fermentation performance (high ethanol yield, reduced glycerol and foam formation, maintenance of high viability during recycling and very high implantation capability into industrial fermenters). Results also suggest that the great yeast biodiversity found in distillery environments could be an important source of strains. This is because during yeast cell recycling, selective pressure (an adaptive evolution) is imposed on cells, leading to strains with higher tolerance to the stressful conditions of the industrial fermentation.

  12. Energy yield for the production of ethanol from corn

    International Nuclear Information System (INIS)

    Chavanne, X.; Frangi, J.P.

    2008-01-01

    This article establishes the primary energy balance for making ethanol out of corn in the USA, calculated from the farm to the fuel station, following a methodology described in Chavanne and Frangi (C. R. Geoscience 339 (2007) 519-535). Raw data (direct energy and material consumption as well as their heat value and external costs) come from published papers related to this topic, technical textbooks, as well as reports from the US Departments of Agriculture and Energy. For the 2001 harvest, over the area producing more than 90% of ethanol and for the 2005 network of working refineries, 100 J of ethanol and recovery of by-products (the energy saved by the replacement of animal feed by these by-products is around 12% of the ethanol heat value) needed 86 ± 3 J of energy spending, of which more than 50 J is natural gas and 62 J is used in refineries. A third of the area of Nebraska corn must be irrigated with water pumped from underground, at an added cost of 26 ± 3 J. In 1996, the extra drying required, because of heavy rains, added 6 J. By comparison, 100 J of gasoline cost less than 25 J to be produced out of crude oil. Complementary studies of resource availability are not performed here. The largest possible reduction in energy costs can be achieved at the refinery stage, by fermenting by-products, gas residues, (from 62 J to around 12 J). The article gives also an expression for the expenditure to enable comparison between different energy systems, including everything from biomass to transport. For the ethanol case, the average cost is 130 J for 100 J of corn grain heat. (authors)

  13. USE OF IONIC LIQUIDS FOR IMPROVEMENT OF CELLULOSIC ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Qijun Wang

    2011-02-01

    Full Text Available Cellulosic ethanol production has drawn much attention in recent years. However, there remain significant technical challenges before such production can be considered as economically feasible at an industrial scale. Among them, the efficient conversion of carbohydrates in lignocellulosic biomass into fermentable sugars is one of the most challenging technical difficulties in cellulosic ethanol production. Use of ionic liquids has opened new avenues to solve this problem by two different pathways. One is pretreatment of lignocellulosic biomass using ionic liquids to increase its enzymatic hydrolysis efficiency. The other is to transform the hydrolysis process of lignocellulosic biomass from a heterogeneous reaction system to a homogeneous one by dissolving it into ionic liquids, thus improving its hydrolysis efficiency.

  14. Influence of temperature, pH and yeast on in-field production of ethanol from unsterilized sweet sorghum juice

    Energy Technology Data Exchange (ETDEWEB)

    Kundiyana, Dimple K.; Bellmer, Danielle D.; Huhnke, Raymond L.; Wilkins, Mark R. [Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Claypool, P.L. [Department of Statistics, Oklahoma State University, Stillwater, OK 74078 (United States)

    2010-10-15

    It is inevitable that ethanol production in the United States will continue to increase. Sweet sorghum has the potential to be used as a renewable energy crop, and is a viable candidate for ethanol production. Previous barriers to commercialization of sweet sorghum to ethanol have primarily been the high capital cost involved in building a central processing plant that may be operated only seasonally. In order to reduce the investment necessary in a central processing facility, the proposed process involves in-field production of ethanol from sweet sorghum. The overall objective of the research was to determine whether fermentation can take place in the environment with no process control. The goals were to evaluate the effects of yeast type, pH, and nutrients on fermentation process efficiency. Results indicated that both strains of Saccharomyces cerevisiae tested were able to perform fermentation within a wide ambient temperature range (10-25 C). Maximum ethanol produced was 7.9% w v{sup -1} in 120 h under ambient temperature conditions. Other process variables such as adding urea or lowering pH did not significantly improve the sugar to ethanol conversion efficiency of yeasts. Results indicate that in-field fermentation of sweet sorghum juice to ethanol is possible with minimal or no process controls and is a feasible process for ethanol production. (author)

  15. Production of ethanol from excess ethylene

    DEFF Research Database (Denmark)

    Kadhim, Adam S.; Carlsen, Kim B.; Bisgaard, Thomas

    2012-01-01

    will focus on the synthetic method, which employs direct hydration of ethylene. A conceptual process design of an ethyl alcohol producing plant is performed in a MSc-level course on Process Design at the Department of Chemical and Biochemical Engineering at DTU. In the designed process, 190 proof ethyl...... alcohol (azeotropic mixture) is produced from excess ethylene containing propylene and methane as impurities. The design work is based on a systematic approach consisting of 12 tasks performed in a specified hierarchy. According to this 12-tasks design procedure, information about the product and process...... of the designed process. The resulting design utilizes 75 million kg/year ethylene feed in order to obtain an ethyl alcohol production of 90.5 million kg/year. The total capital investment has been estimated to 43 million USD and the total product cost without depreciation estimated to 58.5 million USD...

  16. Feasibility of converting a sugar beet plant to fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hammaker, G S; Pfost, H B; David, M L; Marino, M L

    1981-04-01

    This study was performed to assess the feasibility of producing fuel ethanol from sugar beets. Sugar beets are a major agricultural crop in the area and the beet sugar industry is a major employer. There have been some indications that increasing competition from imported sugar and fructose sugar produced from corn may lead to lower average sugar prices than have prevailed in the past. Fuel ethanol might provide an attractive alternative market for beets and ethanol production would continue to provide an industrial base for labor. Ethanol production from beets would utilize much of the same field and plant equipment as is now used for sugar. It is logical to examine the modification of an existing sugar plant from producing sugar to ethanol. The decision was made to use Great Western Sugar Company's plant at Mitchell as the example plant. This plant was selected primarily on the basis of its independence from other plants and the availability of relatively nearby beet acreage. The potential feedstocks assessed included sugar beets, corn, hybrid beets, and potatoes. Markets were assessed for ethanol and fermentation by-products saleability. Investment and operating costs were determined for each prospective plant. Plants were evaluated using a discounted cash flow technique to obtain data on full production costs. Environmental, health, safety, and socio-economic aspects of potential facilities were examined. Three consulting engineering firms and 3 engineering-construction firms are considered capable of providing the desired turn-key engineering design and construction services. It was concluded that the project is technically feasible. (DMC)

  17. Ethanol production from tropical sugar beet juice

    African Journals Online (AJOL)

    Sanette

    2012-07-05

    Jul 5, 2012 ... South Africa and transport costs constitute approximately. 20% of South Africa's gross domestic product (Singh,. 2006). Globally transportation accounts for 30% of the energy demand and is responsible ..... fermentation by wine yeasts in media containing structurally complex nitrogen sources. J. Inst. Brew.

  18. Bio-fuel production potential in Romania

    International Nuclear Information System (INIS)

    Laurentiu, F.; Silvian, F.; Dumitru, F.

    2006-01-01

    The paper is based on the ESTO Study: Techno- Economic Feasibility of Large-Scale Production of Bio-Fuels in EU-Candidate Countries. Bio-fuel production has not been taken into account significantly until now in Romania, being limited to small- scale productions of ethanol, used mostly for various industrial purposes. However the climatic conditions and the quality of the soil are very suitable in the country for development of the main crops (wheat, sugar-beet, sunflower and rape-seed) used in bio-ethanol and bio-diesel production. The paper intended to consider a pertinent discussion of the present situation in Romania's agriculture stressing on the following essential items in the estimation of bio-fuels production potential: availability of feed-stock for bio-fuel production; actual productions of bio-fuels; fuel consumption; cost assessment; SWOT approach; expected trends. Our analysis was based on specific agricultural data for the period 1996-2000. An important ethanol potential (due to wheat, sugar-beet and maize cultures), as well as bio-diesel one (due to sun-flower and rape-seed) were predicted for the period 2005-2010 which could be exploited with the support of an important financial and technological effort, mainly from EU countries

  19. Security of feedstocks supply for future bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2010-01-01

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. - Research highlights: →Bioethanol in Thailand derived from molasses, cassava, sugarcane juice could yield reductions of 64%, 49% and 87% in GHGs when compared to conventional gasoline. →High yields improvement are required for a reliable and sufficient supply of molasses, cassava and sugarcane to satisfy the long-term demands for bio-ethanol and other related industries. →Other factors to enhance long-term security of feedstocks supply for sustainable bioethanol production in Thailand include increasing use of sugarcane juice as feedstock and promoting production of bioethanol derived from agricultural residues.

  20. Integrating enzyme fermentation in lignocellulosic ethanol production: life-cycle assessment and techno-economic analysis.

    Science.gov (United States)

    Olofsson, Johanna; Barta, Zsolt; Börjesson, Pål; Wallberg, Ola

    2017-01-01

    Cellulase enzymes have been reported to contribute with a significant share of the total costs and greenhouse gas emissions of lignocellulosic ethanol production today. A potential future alternative to purchasing enzymes from an off-site manufacturer is to integrate enzyme and ethanol production, using microorganisms and part of the lignocellulosic material as feedstock for enzymes. This study modelled two such integrated process designs for ethanol from logging residues from spruce production, and compared it to an off-site case based on existing data regarding purchased enzymes. Greenhouse gas emissions and primary energy balances were studied in a life-cycle assessment, and cost performance in a techno-economic analysis. The base case scenario suggests that greenhouse gas emissions per MJ of ethanol could be significantly lower in the integrated cases than in the off-site case. However, the difference between the integrated and off-site cases is reduced with alternative assumptions regarding enzyme dosage and the environmental impact of the purchased enzymes. The comparison of primary energy balances did not show any significant difference between the cases. The minimum ethanol selling price, to reach break-even costs, was from 0.568 to 0.622 EUR L -1 for the integrated cases, as compared to 0.581 EUR L -1 for the off-site case. An integrated process design could reduce greenhouse gas emissions from lignocellulose-based ethanol production, and the cost of an integrated process could be comparable to purchasing enzymes produced off-site. This study focused on the environmental and economic assessment of an integrated process, and in order to strengthen the comparison to the off-site case, more detailed and updated data regarding industrial off-site enzyme production are especially important.

  1. Accounting for the water impacts of ethanol production

    International Nuclear Information System (INIS)

    Fingerman, Kevin R; Torn, Margaret S; Kammen, Daniel M; O'Hare, Michael H

    2010-01-01

    Biofuels account for 1-2% of global transportation fuel and their share is projected to continue rising, with potentially serious consequences for water resources. However, current literature does not present sufficient spatial resolution to characterize this localized effect. We used a coupled agro-climatic and life cycle assessment model to estimate the water resource impacts of bioenergy expansion scenarios at a county-level resolution. The study focused on the case of California, with its range of agroecological conditions, water scarcity, and aggressive alternative fuel incentive policies. Life cycle water consumption for ethanol production in California is up to 1000 times that of gasoline due to a cultivation phase that consumes over 99% of life cycle water use for agricultural biofuels. This consumption varies by up to 60% among different feedstocks and by over 350% across regions in California. Rigorous policy analysis requires spatially resolved modeling of water resource impacts and careful consideration of the various metrics that might act to constrain technology and policy options.

  2. Ethanol Production by Soy Fiber Treatment and Simultaneous Saccharification and Co-Fermentation in an Integrated Corn-Soy Biorefinery

    Directory of Open Access Journals (Sweden)

    Jasreen K. Sekhon

    2018-05-01

    Full Text Available Insoluble fiber (IF recovered from the enzyme-assisted aqueous extraction process (EAEP of soybeans is a fraction rich in carbohydrates and proteins. It can be used to enhance ethanol production in an integrated corn-soy biorefinery, which combines EAEP with traditional corn-based ethanol processing. The present study evaluated IF as a substrate for ethanol production. The effects of treatment of IF (soaking in aqueous ammonia (SAA, liquid hot water (LHW, and enzymatic hydrolysis, primarily simultaneous saccharification and co-fermentation (SSCF, as well as scaling up (250 mL to 60 L on ethanol production from IF alone or a corn and IF slurry were investigated. Enzymatic hydrolysis (pectinase, cellulase, and xylanase, each added at 5% soy solids during simultaneous saccharification and fermentation/SSCF was the best treatment to maximize ethanol production from IF. Ethanol yield almost doubled when SSCF of IF was performed with Saccharomyces cerevisiae and Escherichia coli KO11. Addition of IF in dry-grind corn fermentation increased the ethanol production rate (~31%, but low ethanol tolerance of E. coli KO11 was a limiting factor for employing SSCF in combination corn and IF fermentation. Nonlinear Monod modeling accurately predicted the effect of ethanol concentration on E. coli KO11 growth kinetics by Hanes-Woolf linearization. Collectively, the results from this study suggest a potential of IF as a substrate, alone or in dry-grind corn fermentation, where it enhances the ethanol production rate. IF can be incorporated in the current bioethanol industry with no added capital investment, except enzymes.

  3. Viability and application of ethanol production coupled with solar cooling

    International Nuclear Information System (INIS)

    Americano da Costa, Marcus V.; Pasamontes, Manuel; Normey-Rico, Julio E.; Guzmán, José L.; Berenguel, Manuel

    2013-01-01

    Highlights: ► Two types of clean energy were analized together: bioethanol and solar. ► The ethanol fermentation process was modeled. ► An advanced control was implemented in the unit model. ► A real plant of solar energy was operated. ► The experiments were performed using the Hardware in the Loop technique. -- Abstract: This work presents a combined optimization system to use solar energy as support for the ethanol industry. Solar radiation is used to produce energy in order to assist the cooling systems in the fermentation process. The experiments have been performed following a hardware in the loop technique by mixing the solar cooling plant in the Centro de Investigación de Energía Solar (CIESOL) located at the University of Almería (Spain), and a simulator of ethanol fermentation processes in Brazilian factories. The results are analyzed in detail to show the main advantages (important increment in ethanol production and use of clean energies) compared to the mode of operation of the current factories in Brazil.

  4. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi

    2016-06-01

    The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The use of a thermotolerant fermentative Kluyveromyces marxianus IMB3 yeast strain for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Banat, I.M. [Univ. of the United Arab Emirates, Al-Ain (United Arab Emirates). Dept. of Biolology; Singh, D. [Haryana Agriculture Univ., Hisar (India). Dept. of Microbiology; Marchant, R. [Ulster Univ. (United Kingdom). School of Applied Biological and Chemical Sciences

    1996-12-31

    An investigation was carried out on the growth and ethanol production of a novel thermotolerant ethanol-producing Kluyveromyces marxianus IMB3 yeast strain. It grew aerobically on glucose, lactose, cellobiose, xylose and whey permeate and fermented all the above carbon sources to ethanol at 45 C. This strain was capable of growing under anaerobic chemostat fermentation conditions at 45 C and a dilution rate of 0.15 h{sup -1} and produced {<=}0.9 g/l biomass and 1.8% (v/v) ethanol. An increase in biomass (up to 10.0 g/l) and ethanol (up to 4.3% v/v at 45 C and 7.7% v/v at 40 C) were achieved by applying a continuous two-stage fermentation in sequence (one aerobic and one anerobic stage) or a two-stage anaerobic fermentation with cell recycling. Potential applications, involving alcohol production systems, for use in dairy and wood related industries, were discussed. (orig.)

  6. Production of bio-fuel ethanol from distilled grain waste eluted from Chinese spirit making process.

    Science.gov (United States)

    Tan, Li; Sun, Zhaoyong; Zhang, Wenxue; Tang, Yueqin; Morimura, Shigeru; Kida, Kenji

    2014-10-01

    Distilled grain waste eluted from Chinese spirit making is rich in carbohydrates, and could potentially serve as feedstock for the production of bio-fuel ethanol. Our study evaluated two types of saccharification methods that convert distilled grain waste to monosaccharides: enzymatic saccharification and concentrated H2SO4 saccharification. Results showed that enzymatic saccharification performed unsatisfactorily because of inefficient removal of lignin during pretreatment. Concentrated H2SO4 saccharification led to a total sugar recovery efficiency of 79.0 %, and to considerably higher sugar concentrations than enzymatic saccharification. The process of ethanol production from distilled grain waste based on concentrated H2SO4 saccharification was then studied. The process mainly consisted of concentrated H2SO4 saccharification, solid-liquid separation, decoloration, sugar-acid separation, oligosaccharide hydrolysis, and continuous ethanol fermentation. An improved simulated moving bed system was employed to separate sugars from acid after concentrated H2SO4 saccharification, by which 95.8 % of glucose and 85.8 % of xylose went into the sugar-rich fraction, while 83.3 % of H2SO4 went into the acid-rich fraction. A flocculating yeast strain, Saccharomyces cerevisiae KF-7, was used for continuous ethanol fermentation, which produced an ethanol yield of 91.9-98.9 %, based on glucose concentration.

  7. Potential contribution of ethanol fuel to the transport sector of Pakistan

    International Nuclear Information System (INIS)

    Harijan, Khanji; Memon, Mujeebuddin; Uqaili, Mohammad A.; Mirza, Umar K.

    2009-01-01

    Pakistan is an energy-deficient country. The indigenous reserves of oil and gas are limited and the country is heavily dependent on the import of oil. The oil import bill is a serious strain on the country's economy and has been deteriorating the balance of payments situation. The country has become increasingly more dependent on fossil fuels and its energy security hangs on the fragile supply of imported oil that is subject to disruptions and price volatility. The transport sector has a 28% share in the total commercial energy consumption in Pakistan. About 1.15 million tonnes of gasoline was consumed by this sector during 2005-2006. The gasoline consumption in the transport sector is also a major source of environmental degradation especially in urban areas. Consequently, Pakistan needs to develop indigenous, environment-friendly energy resources, such as ethanol, to meet its transport sector's energy needs. Pakistan produces about 54 million tonnes of sugarcane every year. The estimated production potential of ethanol from molasses is about 500 million liters per annum. Ethanol can be used in the transport sector after blending with gasoline, in order to minimize the gasoline consumption and associated economical and environmental impacts. This paper presents the assessment of the potential contribution of ethanol in the transport sector of Pakistan. It is concluded that 5-10% of the annual gasoline consumption in transport sector could be met from ethanol by the year 2030 under different scenarios. About US$200-400 million per annum could be saved along with other environmental and health benefits by using gasol in the transport sector. (author)

  8. Ethanol-drug absorption interaction: potential for a significant effect on the plasma pharmacokinetics of ethanol vulnerable formulations.

    Science.gov (United States)

    Lennernäs, Hans

    2009-01-01

    Generally, gastric emptying of a drug to the small intestine is controlled by gastric motor activity and is the main factor affecting the onset of absorption. Accordingly, the emptying rate from the stomach is mainly affected by the digestive state, the properties of the pharmaceutical formulation and the effect of drugs, posture and circadian rhythm. Variability in the gastric emptying of drugs is reflected in variability in the absorption rate and the shape of the plasma pharmacokinetic profile. When ethanol interacts with an oral controlled release product, such that the mechanism controlling drug release is impaired, the delivery of the dissolved dose into the small intestine and the consequent absorption may result in dangerously high plasma concentrations. For example, the maximal plasma concentration of hydromorphone has individually been shown to be increased as much as 16 times through in vivo testing as a result of this specific pharmacokinetic ethanol-drug formulation interaction. Thus, a pharmacokinetic ethanol-drug interaction is a very serious safety concern when substantially the entire dose from a controlled release product is rapidly emptied into the small intestine (dose dumping), having been largely dissolved in a strong alcoholic beverage in the stomach during a sufficient lag-time in gastric emptying. Based on the literature, a two hour time frame for screening the in vitro dissolution profile of a controlled release product in ethanol concentrations of up to 40% is strongly supported and may be considered as the absolute minimum standard. It is also evident that the dilution, absorption and metabolism of ethanol in the stomach are processes with a minor effect on the local ethanol concentration and that ethanol exposure will be highly dependent on the volume and ethanol concentration of the fluid ingested, together with the rate of intake and gastric emptying. When and in which patients a clinically significant dose dumping will happen is

  9. Sugarcane ethanol production in Malawi: Measures to optimize the carbon footprint and to avoid indirect emissions

    International Nuclear Information System (INIS)

    Dunkelberg, Elisa; Finkbeiner, Matthias; Hirschl, Bernd

    2014-01-01

    Sugarcane ethanol is considered to be one of the most efficient first-generation biofuels in terms of greenhouse gas (GHG) emissions. The carbon footprint (CF), however, increases significantly when taking into account emissions induced by indirect land-use changes (ILUC). This case study investigates sugarcane ethanol production in the Republic of Malawi, in Sub-Sahara Africa (SSA); the research objectives were to identify and quantify direct and indirect emissions and to identify measures to optimize the CF. The CF has been calculated with a life cycle approach and with data obtained from the involved companies; our estimations with regard to ILUC take into account further expansion plans for sugarcane crop production. Under existing production conditions ethanol produced in Malawi leads to GHG emissions expressed as CO 2eq of 116 g MJ −1 of ethanol. However, high optimization potentials exist when the vinasse is used as an input for biogas production and the harvesting switches from pre-harvest burning to green harvesting. ILUC induced by prospective sugarcane expansions in the Southern Region will, according to current planning, probably not occur since these expansions are linked to the implementation of a large-scale irrigation project. However if ILUC takes place, high levels of additional CO 2 emissions of about 77 g MJ −1 of ethanol are to be expected. Although the case study results are only valid for a specific region, some of the findings, such as the high compensation potential regarding ILUC through investments in irrigation systems, may be transferable to other regions in SSA. - Highlights: • We conducted a case study on sugarcane ethanol production in Malawi and calculated its carbon footprint (CF). • The current CF of sugarcane ethanol produced in the Southern Region in Malawi amounts for 116 g MJ −1 of ethanol. • The usage of vinasse in biogas plants would significantly improve the CF. • Another optimization measure is to

  10. Critical analysis of emerging forest biorefinery (FBR) technologies for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.; Janssen, M.; Chambost, V.; Stuart, P. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Chimique. Design Engineering Chair in Process Integration

    2010-05-15

    This article provided a literature review of emerging technologies for ethanol production in Canada. A multi-criteria decision making (MCDM) panel was used to weigh critical metrics for evaluating the potential of emerging forest biorefinery technologies for bio-ethanol production. The 3-step methodology identified key factors for evaluating technology pathways. Key factors were applied to a group of selected technologies in order to collect data. All previous criteria were weighted through the MCDM panel in order to rank the technologies, which included biochemical pathway and thermochemical pathway production processes. Criteria included return on investment; feedstock flexibility; technology risk; energy and integration; products and revenue diversification; potential for additional products; and potential environmental impact. The study showed that techno-economic criteria are the most important barriers to the implementation of ethanol biorefineries. While thermochemical processes are economically feasible and provide greater flexibility, biochemical refining processes may provide for the development of other value-added products. 21 refs., 3 tabs., 7 figs.

  11. Critical analysis of emerging forest biorefinery (FBR) technologies for ethanol production

    International Nuclear Information System (INIS)

    Cohen, J.; Janssen, M.; Chambost, V.; Stuart, P.

    2010-01-01

    This article provided a literature review of emerging technologies for ethanol production in Canada. A multi-criteria decision making (MCDM) panel was used to weigh critical metrics for evaluating the potential of emerging forest biorefinery technologies for bio-ethanol production. The 3-step methodology identified key factors for evaluating technology pathways. Key factors were applied to a group of selected technologies in order to collect data. All previous criteria were weighted through the MCDM panel in order to rank the technologies, which included biochemical pathway and thermochemical pathway production processes. Criteria included return on investment; feedstock flexibility; technology risk; energy and integration; products and revenue diversification; potential for additional products; and potential environmental impact. The study showed that techno-economic criteria are the most important barriers to the implementation of ethanol biorefineries. While thermochemical processes are economically feasible and provide greater flexibility, biochemical refining processes may provide for the development of other value-added products. 21 refs., 3 tabs., 7 figs.

  12. Energy analysis of ethanol production from sweet sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Worley, J.W. (Georgia Univ., Athens, GA (United States). Dept. of Agricultural Engineering); Vaughan, D.H.; Cundiff, J.S. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Agricultural Engineering)

    1992-01-01

    The Piedmont System is a collection of equipment for efficiently removing the juice from sweet sorghum stalks for the production of ethanol. The concept is to separate the whole stalks into pith and rind-leaf fractions, pass only the pith fraction through a screw press, and thus achieve an improvement in juice-expression efficiency and press capacity. An energy analysis was done for two options of this proposed harvesting/processing system: (Option 1) The juice is evaporated to syrup and used throughout the year to produce ethanol, and the by-products are used as cattle feed. (Option 2) The juice is fermented as it is harvested, and the by-products (along with other cellulosic materials) are used as feedstock for the remainder of the year. Energy ratios (energy output/energy input) of 0.9, 1.1 and 0.8 were found for sweet sorghum Option 1, sweet sorghum Option 2, and corn, respectively, as feedstocks for ethanol. If only liquid fuels are considered, the ratios are increased to 3.5, 7.9 and 4.5. (author).

  13. Ethanol from sugar beet in The Netherlands: energy production and efficiency

    NARCIS (Netherlands)

    Langeveld, J.W.A.; Ven, van de G.W.J.; Vries, de S.C.; Brink, van den L.; Visser, de C.L.M.

    2014-01-01

    Prospects for ethanol production from sugar beet in The Netherlands have been analysed using measured production data from two experimental farms and literature on beet to ethanol conversion. The analyses include beet cultivation and harvesting, transport to the factory, conversion into ethanol and

  14. Big Sugar in southern Africa: rural development and the perverted potential of sugar/ethanol exports.

    Science.gov (United States)

    Richardson, Ben

    2010-01-01

    This paper asks how investment in large-scale sugar cane production has contributed, and will contribute, to rural development in southern Africa. Taking a case study of the South African company Illovo in Zambia, the argument is made that the potential for greater tax revenue, domestic competition, access to resources and wealth distribution from sugar/ethanol production have all been perverted and with relatively little payoff in wage labour opportunities in return. If the benefits of agro-exports cannot be so easily assumed, then the prospective 'balance sheet' of biofuels needs to be re-examined. In this light, the paper advocates smaller-scale agrarian initiatives.

  15. Arrowroot as a novel substrate for ethanol production by solid state simultaneous saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tian-xiang; Tang, Qing-li; Zhu, Zuo-hua [School of Chemical Engineering, Guizhou University, Guizhou, Guiyang 550003 (China); Wang, Feng [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-08-15

    Ethanol production from Canna edulis Ker was successfully carried out by solid state simultaneous saccharification and fermentation. The enzymatic hydrolysis conditions of C. edulis were optimized by Plackett-Burman design. The effect of inert carrier (corncob and rice bran) on ethanol fermentation and the kinetics of solid state simultaneous saccharification and fermentation was investigated. It was found that C. edulis was an alternative substrate for ethanol production, 10.1% (v/v) of ethanol concentration can attained when 40 g corncob and 10 g rice bran per 100 g C. edulis powder were added for ethanol fermentation. No shortage of fermentable sugars was observed during solid state simultaneous saccharification and fermentation. There was no wastewater produced in the process of ethanol production from C. edulis with solid state simultaneous saccharification and fermentation and the ethanol yield of more than 0.28 tonne per one tonne feedstock was achieved. This is first report for ethanol production from C. edulis powder. (author)

  16. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources

    DEFF Research Database (Denmark)

    Yin, Yanan; Zhang, Yifeng; Karakashev, Dimitar Borisov

    2017-01-01

    Caproate is a valuable industrial product and chemical precursor. In this study, batch tests were conducted to investigate the fermentative caproate production through chain elongation from acetate and ethanol. The effect of acetate/ethanol ratio and initial ethanol concentration on caproate...... production was examined. When substrate concentration was controlled at 100 mM total carbon, hydrogen was used as an additional electron donor. The highest caproate concentration of 3.11 g/L was obtained at an ethanol/acetate ratio of 7:3. No additional electron donor was needed upon an ethanol/acetate ratio...... ≥7:3. Caproate production increased with the increase of carbon source until ethanol concentration over 700 mM, which inhibited the fermentation process. The highest caproate concentration of 8.42 g/L was achieved from high ethanol strength wastewater with an ethanol/acetate ratio of 10:1 (550 m...

  17. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-04-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternativeclean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended withgasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewableresources and the product has low emission which means environmental friendly. Ethanol can beproduced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentationbatch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivityand cell growth can be overcome by taking the product continuously from the fermentor. Theprocess can be done by using a vacuum fermentation. The objective of this research is toinvestigate the effect of pressure and glucose concentration in ethanol fermentation. The researchwas conducted in laboratory scale and batch process. Equipment consists of fermentor withvacuum system. The observed responses were dried cells of yeast, concentration of glucose, andconcentration of ethanol. Observations were made every 4 hours during a day of experiment. Theresults show that the formation of ethanol has a growth-associated product characteristic undervacuum operation. Vacuum condition can increase the cell formation productivity and the ethanolformation, as it is compared with fermentation under atmospheric condition. The maximum cellsproductivity and ethanol formation in batch operation under vacuum condition was reached at166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivityand the yield of ethanol.

  18. Modelling and simulation of a direct ethanol fuel cell considering multistep electrochemical reactions, transport processes and mixed potentials

    International Nuclear Information System (INIS)

    Meyer, Marco; Melke, Julia; Gerteisen, Dietmar

    2011-01-01

    Highlights: → A DEFC model considering the mixed potential formation at cathode and anode. → The low cell voltage at open circuit is due to the parasitic reaction of ethanol and oxygen. → Under load, only the parasitic oxidation of ethanol is significant. → Inhibiting the parasitic reactions can approximately double the current density. - Abstract: In this work a one-dimensional mathematical model of a direct ethanol fuel cell (DEFC) is presented. The electrochemical oxidation of ethanol in the catalyst layers is described by several reaction steps leading to surface coverage with adsorbed intermediates (CH 3 CO, CO, CH 3 and OH) and to the final products acetaldehyde, acetic acid and CO 2 . A bifunctional reaction mechanism is assumed for the activation of water on a binary catalyst favouring the further oxidation of adsorbates blocking active catalyst sites. The chemical reactions are highly coupled with the charge and reactant transport. The model accounts for crossover of the reactants through the membrane leading to the phenomenon of cathode and anode mixed potentials due to the parasitic oxidation and reduction of ethanol and oxygen, respectively. Polarisation curves of a DEFC were recorded for various ethanol feed concentrations and were used as reference data for the simulation. Based on one set of model parameters the characteristic of electronic and protonic potential, the relative surface coverage and the parasitic current densities in the catalyst layers were studied.

  19. Zymomonas mobilis for fuel ethanol and higher value products.

    Science.gov (United States)

    Rogers, P L; Jeon, Y J; Lee, K J; Lawford, H G

    2007-01-01

    High oil prices, increasing focus on renewable carbohydrate-based feedstocks for fuels and chemicals, and the recent publication of its genome sequence, have provided continuing stimulus for studies on Zymomonas mobilis. However, despite its apparent advantages of higher yields and faster specific rates when compared to yeasts, no commercial scale fermentations currently exist which use Z. mobilis for the manufacture of fuel ethanol. This may change with the recent announcement of a Dupont/Broin partnership to develop a process for conversion of lignocellulosic residues, such as corn stover, to fuel ethanol using recombinant strains of Z. mobilis. The research leading to the construction of these strains, and their fermentation characteristics, are described in the present review. The review also addresses opportunities offered by Z. mobilis for higher value products through its metabolic engineering and use of specific high activity enzymes.

  20. Spittlebug impacts on sugarcane quality and ethanol production

    Directory of Open Access Journals (Sweden)

    Gisele Cristina Ravaneli

    2011-02-01

    Full Text Available The objective of this work was to evaluate the impacts of spittlebug (Mahanarva fimbriolata attack on sugarcane quality and ethanol production. Technological and microbiological parameters of juice and fermentation process were evaluated in ten fermentation cycles and two harvest seasons. Treatments consisted of different spittlebug stalk damage levels: control, with 100% of apparently healthy stalks; medium, with 15% of damaged or dry stalks (DDS; high, with 30% of DDS; and very high, with 60% of DDS. Spittlebug attack caused significant losses in cane quality, reducing total soluble solids, sucrose content, total reducing sugars, and pH, and increasing total phenolic compounds, and total and volatile juice acidity. The fermentation process was also significantly affected, resulting in lower ethanol content in wine. There was an increase in acetaldehyde concentration in the distillate. The spittlebug attack caused negative impacts on sugarcane quality and fermentation process, and these impacts are stronger in late season harvests.

  1. Wet oxidation pretreatment of rape straw for ethanol production

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via...... Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole...... gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid...

  2. A novel spiral reactor for biodiesel production in supercritical ethanol

    International Nuclear Information System (INIS)

    Farobie, Obie; Sasanami, Kazuma; Matsumura, Yukihiko

    2015-01-01

    Highlights: • A novel spiral reactor for biodiesel production in supercritical ethanol was proposed. • The spiral reactor employed in this study successfully recovered heat. • The effects of temperature and time on FAEE yield were investigated. • FAEE yield as high as 0.937 mol/mol was obtained at 350 °C after 30 min. • The second-order kinetic model expressed the experimental yield well. - Abstract: A spiral reactor is proposed as a novel reactor design for biodiesel production under supercritical conditions. Since the spiral reactor serves as a heat exchanger, it offers the advantage of reduced apparatus space compared to conventional supercritical equipment. Experimental investigations were carried out at reaction temperatures of 270–400 °C, pressure of 20 MPa, oil-to-ethanol molar ratio of 1:40, and reaction times of 3–30 min. An FAEE yield of 0.937 mol/mol was obtained in a short reaction time of 30 min at 350 °C and oil-to-ethanol molar ratio of 1:40 under a reactor pressure of 20 MPa. The spiral reactor was not only as effective as conventional reactor in terms of transesterification reactor but also was superior in terms of heat recovery. A second-order kinetic model describing the transesterification of canola oil in supercritical ethanol was proposed, and the reaction was observed to follow Arrhenius behavior. The corresponding reaction rate constants and the activation energies as well as pre-exponential factors were determined

  3. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    Science.gov (United States)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  4. Sicilian potential biogas production

    Directory of Open Access Journals (Sweden)

    Antonio Comparetti

    2013-09-01

    Full Text Available This study is aimed at predicting the Sicilian potential biogas production, using the Organic Fraction of Municipal Solid Waste (OFMSW, animal manure and food industry by-products, in a region where only one biogas plant using MSW and one co-digestion plant are nowadays available. The statistical data about OFMSW, the number of animals bred in medium and large farms and the amounts of by-products of food processing industries were evaluated, in order to compute the Sicilian potential biogas and energy production. The OFMSW produced in Sicily, that is 0.8 million tons ca. per year (37% of MSW, could be used in a bio-reactor, together with other raw materials, for Anaerobic Digestion (AD process, producing biogas and “digestate”. Moreover, 3.03 million tons ca. of manure, collected in medium and large animal husbandry farms (where cows, pigs and poultry are bred, and 350 thousand tons ca. of by-products, collected in food processing industries (pomace from olive oil mills and grape marc from wineries, might be used for AD process. The Sicilian potential biogas production from the AD of the above raw materials is 170.2 millions of m3, that is equal to 1023.4 GWh of energy per year, of which 484 GWh from animal manure, 303 GWh from OFMSW and 236.4 GWh from food industry by-products. The highest biogas production is in the province of Palermo (35.6 millions of m3, Ragusa (30.8 millions of m3 and Catania (22.8 millions of m3, having a potential energy production of 213.8, 185 and 137 GWh, respectively.

  5. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Arvaniti, E

    2010-12-15

    solution was fermented via Simultaneous Saccharification and Fermentation (SSF) assisted by liquefaction step, with Cellubrix L and baker's yeast achieved ethanol yield was 67% based on sugars in raw material (12.5% DM). Optimization of ethanol production from rape straw then focused to enzymatic hydrolysis and benchmarking available commercial enzyme mixtures. It was found that hydrolysis rate increased considerably, if adequate amount of beta-glycosidase is present in enzyme mixture. Best mixture of enzymes was Celluclast 1.5L supplemented by Novozym 188 (5:1 v/v ratio), which in 24 hours it hydrolyzed 77% of pretreated rape straw C6 sugars. In an attempt to produce enzymes from pretreated rape straw, the most promising carbon source was a mixture of cellulose and hemicellulose (81:19 w/w sugars ratio). The produced cellulolytic enzymes in turn hydrolyzed pretreated rape straw by 70% in 24 hours enzyme hydrolysis test. These enzymes were produced after 11 days of fermentation with enzyme yielded 109 FPU/g sugars (pretreated rape straw). Finally, ethanol fermentation was optimized using the selected pretreatment method, and best enzyme mixture. Assessment of optimal fermentation conditions included determination of optimal highest fermenting temperature among three strains; the best pH pattern for maximum ethanol production; and finally assessing potentials of fermentations at increased dry matter. Results have shown that S. cerevisiae has thermotollerance up to 37 deg. C, and that pH was the catalytic factor for the progress of ethanol fermentation as well as contamination by lactic acid bacteria, in both shake flasks and scale up experiments. Highest ethanol yield was 77% achieved with 16% DM at 37 deg. C by an isolate strain from baker' yeast within 120 hours of SSF. (Author)

  6. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Arvaniti, E.

    2010-12-15

    solution was fermented via Simultaneous Saccharification and Fermentation (SSF) assisted by liquefaction step, with Cellubrix L and baker's yeast achieved ethanol yield was 67% based on sugars in raw material (12.5% DM). Optimization of ethanol production from rape straw then focused to enzymatic hydrolysis and benchmarking available commercial enzyme mixtures. It was found that hydrolysis rate increased considerably, if adequate amount of beta-glycosidase is present in enzyme mixture. Best mixture of enzymes was Celluclast 1.5L supplemented by Novozym 188 (5:1 v/v ratio), which in 24 hours it hydrolyzed 77% of pretreated rape straw C6 sugars. In an attempt to produce enzymes from pretreated rape straw, the most promising carbon source was a mixture of cellulose and hemicellulose (81:19 w/w sugars ratio). The produced cellulolytic enzymes in turn hydrolyzed pretreated rape straw by 70% in 24 hours enzyme hydrolysis test. These enzymes were produced after 11 days of fermentation with enzyme yielded 109 FPU/g sugars (pretreated rape straw). Finally, ethanol fermentation was optimized using the selected pretreatment method, and best enzyme mixture. Assessment of optimal fermentation conditions included determination of optimal highest fermenting temperature among three strains; the best pH pattern for maximum ethanol production; and finally assessing potentials of fermentations at increased dry matter. Results have shown that S. cerevisiae has thermotollerance up to 37 deg. C, and that pH was the catalytic factor for the progress of ethanol fermentation as well as contamination by lactic acid bacteria, in both shake flasks and scale up experiments. Highest ethanol yield was 77% achieved with 16% DM at 37 deg. C by an isolate strain from baker' yeast within 120 hours of SSF. (Author)

  7. The cost of ethanol production from lignocellulosic biomass -- A comparison of selected alternative processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grethlein, H.E.; Dill, T.

    1993-04-30

    The purpose of this report is to compare the cost of selected alternative processes for the conversion of lignocellulosic biomass to ethanol. In turn, this information will be used by the ARS/USDA to guide the management of research and development programs in biomass conversion. The report will identify where the cost leverages are for the selected alternatives and what performance parameters need to be achieved to improve the economics. The process alternatives considered here are not exhaustive, but are selected on the basis of having a reasonable potential in improving the economics of producing ethanol from biomass. When other alternatives come under consideration, they should be evaluated by the same methodology used in this report to give fair comparisons of opportunities. A generic plant design is developed for an annual production of 25 million gallons of anhydrous ethanol using corn stover as the model substrate at $30/dry ton. Standard chemical engineering techniques are used to give first order estimates of the capital and operating costs. Following the format of the corn to ethanol plant, there are nine sections to the plant; feed preparation, pretreatment, hydrolysis, fermentation, distillation and dehydration, stillage evaporation, storage and denaturation, utilities, and enzyme production. There are three pretreatment alternatives considered: the AFEX process, the modified AFEX process (which is abbreviated as MAFEX), and the STAKETECH process. These all use enzymatic hydrolysis and so an enzyme production section is included in the plant. The STAKETECH is the only commercially available process among the alternative processes.

  8. A systems approach for the evaluation of ethanol production based on forages

    Energy Technology Data Exchange (ETDEWEB)

    Alvo, P. [McGill Univ., Ste. Anne de Bellevue, PQ (Canada). Macdonald Coll.; Savoie, P. [Agriculture and Agri-Food Canada, Quebec, PQ (Canada). Saine-Foy Research Centre; Tremblay, D. [Laval Univ., Quebec, PQ (Canada). Dept. de Genie Rural; Emond, J.-P.; Turcotte, G. [Laval Univ., Quebec City, PQ (Canada). Dept. de Sciences et Technologie des Aliments

    1996-04-01

    A systems approach is proposed to simultaneously consider the agronomic aspects of forage production and the processing aspects related to the extraction of a glucose or xylose substrate, its fermentation into ethanol and the optimal utilization of co-products (protein meal, fibrous residue). The energy to produce and transport forage on the farm was estimated to be only 375 MJ/t dry matter (DM) when liquid manure was used and 1165 MJ/t DM when mineral fertilizer was used. An additional 126 MJ/t DM would be required to transport it to a processing plant. In contrast, whole-plant corn production using mineral fertilizer required about 3211 MJ/t DM, but it had a potential ethanol yield 3.2 times greater per unit area than perennial forage. A forage system with mechanical juice extraction resulted in 8-20% of the original forage dry matter available in a liquid substrate with subsequent protein meal separation and the fermentation of soluble sugars into ethanol. Another forage system with relatively complete conversion of cellulose and hemicellulose into simple sugars by thermal, acidic and enzymatic treatments was estimated to produce 12-28 times more ethanol per unit area than the mechanically extracted juice. Complete conversion of perennial forages would meet the petroleum industry`s needs more consistently than simple extraction of soluble components. (Author)

  9. Bacterial laminarinase for application in ethanol production from brown algae Sargassum sp. using halotolerant yeast

    Directory of Open Access Journals (Sweden)

    C.M.T. Perez

    2018-03-01

    Full Text Available Macroalgae are known to have many industrial applications, with current research targeting the potential of macroalgal biomass as feedstock in production of biofuels. Marine algal biomass is rich in storage carbohydrates, laminarin, and cellulose, which can be converted to fermentable sugars using appropriate enzymes, for fermentation to ethanol. This study focused on ethanol production from macroalgae using only enzymatic treatment for saccharification of algal biomass. This involved the isolation and identification of cellulase and laminarinase-producing microorganisms from mangrove area in the Philippines and production of partially purified enzymes for algal biomass saccharification. Results showed that the partially purified laminarinase produced from Bacillus sp. was capable of hydrolyzing the laminarin present in the macroalage. Fermentation of the algal hydrolysate yielded only small amount of ethanol due to lack of other pre-treatment methods, however, it was observed that higher ethanol was produced in saccharification treatments using a combination of cellulase and laminarinase which implies a possible synergistic effect between the two enzymes.

  10. Optimization and Scale-Up of Coffee Mucilage Fermentation for Ethanol Production

    Directory of Open Access Journals (Sweden)

    David Orrego

    2018-03-01

    Full Text Available Coffee, one of the most popular food commodities and beverage ingredients worldwide, is considered as a potential source for food industry and second-generation biofuel due to its various by-products, including mucilage, husk, skin (pericarp, parchment, silver-skin, and pulp, which can be produced during the manufacturing process. A number of research studies have mainly investigated the valuable properties of brewed coffee (namely, beverage, functionalities, and its beneficial effects on cognitive and physical performances; however, other residual by-products of coffee, such as its mucilage, have rarely been studied. In this manuscript, the production of bioethanol from mucilage was performed both in shake flasks and 5 L bio-reactors. The use of coffee mucilage provided adequate fermentable sugars, primarily glucose with additional nutrient components, and it was directly fermented into ethanol using a Saccharomyces cerevisiae strain. The initial tests at the lab scale were evaluated using a two-level factorial experimental design, and the resulting optimal conditions were applied to further tests at the 5 L bio-reactor for scale up. The highest yields of flasks and 5 L bio-reactors were 0.46 g ethanol/g sugars, and 0.47 g ethanol/g sugars after 12 h, respectively, which were equal to 90% and 94% of the theoretically achievable conversion yield of ethanol.

  11. Metabolic engineering of Escherichia coli for ethanol production without foreign genes

    Science.gov (United States)

    Kim, Youngnyun

    Worldwide dependence on finite petroleum-based energy necessitates alternative energy sources that can be produced from renewable resources. A successful example of an alternative transportation fuel is bioethanol, produced by microorganisms, from corn starch that is blended with gasoline. However, corn, currently the main feedstock for bioethanol production, also occupies a significant role in human food and animal feed chains. As more corn is diverted to bioethanol, the cost of corn is expected to increase with an increase in the price of food, feed and ethanol. Using lignocellulosic biomass for ethanol production is considered to resolve this problem. However, this requires a microbial biocatalyst that can ferment hexoses and pentoses to ethanol. Escherichia coli is an efficient biocatalyst that can use all the monomeric sugars in lignocellulose, and recombinant derivatives of E. coli have been engineered to produce ethanol as the major fermentation product. In my study, ethanologenic E. coli strains were isolated from a ldhA-, pflB- derivative without introduction of foreign genes. These isolates grew anaerobically and produced ethanol as the main fermentation product. The mutation responsible for anaerobic growth and ethanol production was mapped in the lpdA gene and the mutation was identified as E354K in three of the isolates tested. Another three isolates carried an lpdA mutation, H352Y. Enzyme kinetic studies revealed that the mutated form of the dihydrolipoamide dehydrogenase (LPD) encoded by the lpdA was significantly less sensitive to NADH inhibition than the native LPD. This reduced NADH sensitivity of the mutated LPD was translated into lower sensitivity to NADH of the pyruvate dehydrogenase complex in strain SE2378. The net yield of 4 moles of NADH and 2 moles of acetyl-CoA per mole of glucose produced by a combination of glycolysis and PDH provided a logical basis to explain the production of 2 moles of ethanol per glucose. The development of E

  12. Fed-batch production of concentrated fructose syrup and ethanol using Saccharomyces cerevisiae ATCC 36859

    Energy Technology Data Exchange (ETDEWEB)

    Koren, D W [CANMET, Ottawa, ON (Canada); Duvnjak, Z [Univ. of Ottawa, ON (Canada). Dept. of Chemical Engineering

    1992-01-01

    A fed-batch process is used for the production of concentrated pure fructose syrup and ethanol from various glucose/fructose mixtures by S.cerevisiae ATCC 36859. Applying this technique, glucose-free fructose syrups with over 250 g/l of this sugar were obtained using High Fructose Corn Syrup and hydrolyzed Jerusalem artichoke juice. Bey encouraging ethanol evaporation from the reactor and condensing it, a separate ethanol product with a concentration of up to 350 g/l was also produced. The rates of glucose consumption and ethanol production were higher than in classical batch ethanol fermentation processes. (orig.).

  13. Autohydrolysis pretreatment assessment in ethanol production from agave bagasse.

    Science.gov (United States)

    Rios-González, Leopoldo J; Morales-Martínez, Thelma K; Rodríguez-Flores, María F; Rodríguez-De la Garza, José A; Castillo-Quiroz, David; Castro-Montoya, Agustín J; Martinez, Alfredo

    2017-10-01

    The aim of the present work was to assess the autohydrolysis pretreatment of Agave tequilana bagasse for ethanol production. The pretreatment was conducted using a one-liter high pressure Parr reactor under different severity factors (SF) at a 1:6w/v ratio (solid:liquid) and 200rpm. The solids obtained under the selected autohydrolysis conditions were subjected to enzymatic hydrolysis with a commercial cellulase cocktail, and the enzymatic hydrolysate was fermented using Saccharomyces cerevisiae. The results obtained from the pretreatment process showed that the glucan content in the pretreated solid was mostly preserved, and an increase in the digestibility was observed for the case with a SF of 4.13 (190°C, 30min). Enzymatic hydrolysis of the pretreated solids showed a yield of 74.3%, with a glucose concentration of 126g/L, resulting in 65.26g/L of ethanol after 10h of fermentation, which represent a 98.4% conversion according to the theoretical ethanol yield value. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ethanol production of banana shell and cassava starch

    International Nuclear Information System (INIS)

    Monsalve G, John F; Medina de Perez, Victoria Isabel; Ruiz colorado, Angela Adriana

    2006-01-01

    In this work the acid hydrolysis of the starch was evaluated in cassava and the cellulose shell banana and its later fermentation to ethanol, the means of fermentation were adjusted for the microorganisms saccharomyces cerevisiae nrrl y-2034 and zymomonas mobilis cp4. The banana shell has been characterized, which possesses a content of starch, cellulose and hemicelluloses that represent more than 80% of the shell deserve the study of this as source of carbon. The acid hydrolysis of the banana shell yield 20g/l reducing sugar was obtained as maximum concentration. For the cassava with 170 g/l of starch to ph 0.8 in 5 hours complete conversion is achieved to you reducing sugars and any inhibitory effect is not noticed on the part of the cultivations carried out with banana shell and cassava by the cyanide presence in the cassava and for the formation of toxic compounds in the acid hydrolysis the cellulose in banana shell. For the fermentation carried out with saccharomyces cerevisiae a concentration of ethanol of 7.92± 0.31% it is achieved and a considerable production of ethanol is not appreciated (smaller than 0.1 g/l) for none of the means fermented with zymomonas mobilis

  15. Ethanol production from lignocellulosic byproducts of olive oil extraction.

    Science.gov (United States)

    Ballesteros, I; Oliva, J M; Saez, F; Ballesteros, M

    2001-01-01

    The recent implementation of a new two-step centrifugation process for extracting olive oil in Spain has substantially reduced water consumption, thereby eliminating oil mill wastewater. However, a new high sugar content residue is still generated. In this work the two fractions present in the residue (olive pulp and fragmented stones) were assayed as substrate for ethanol production by the simultaneous saccharification and fermentation (SSF) process. Pretreatment of fragmented olive stones by sulfuric acid-catalyzed steam explosion was the most effective treatment for increasing enzymatic digestibility; however, a pretreatment step was not necessary to bioconvert the olive pulp into ethanol. The olive pulp and fragmented olive stones were tested by the SSF process using a fed-batch procedure. By adding the pulp three times at 24-h intervals, 76% of the theoretical SSF yield was obtained. Experiments with fed-batch pretreated olive stones provided SSF yields significantly lower than those obtained at standard SSF procedure. The preferred SSF conditions to obtain ethanol from olives stones (61% of theoretical yield) were 10% substrate and addition of cellulases at 15 filter paper units/g of substrate.

  16. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept.

    Science.gov (United States)

    Wang, Jie; Chae, Michael; Sauvageau, Dominic; Bressler, David C

    2017-01-01

    The cellulosic ethanol industry has developed efficient strategies for converting sugars obtained from various cellulosic feedstocks to bioethanol. However, any further major improvements in ethanol productivity will require development of novel and innovative fermentation strategies that enhance incumbent technologies in a cost-effective manner. The present study investigates the feasibility of applying self-cycling fermentation (SCF) to cellulosic ethanol production to elevate productivity. SCF is a semi-continuous cycling process that employs the following strategy: once the onset of stationary phase is detected, half of the broth volume is automatically harvested and replaced with fresh medium to initiate the next cycle. SCF has been shown to increase product yield and/or productivity in many types of microbial cultivation. To test whether this cycling process could increase productivity during ethanol fermentations, we mimicked the process by manually cycling the fermentation for five cycles in shake flasks, and then compared the results to batch operation. Mimicking SCF for five cycles resulted in regular patterns with regards to glucose consumption, ethanol titer, pH, and biomass production. Compared to batch fermentation, our cycling strategy displayed improved ethanol volumetric productivity (the titer of ethanol produced in a given cycle per corresponding cycle time) and specific productivity (the amount of ethanol produced per cellular biomass) by 43.1 ± 11.6 and 42.7 ± 9.8%, respectively. Five successive cycles contributed to an improvement of overall productivity (the aggregate amount of ethanol produced at the end of a given cycle per total processing time) and the estimated annual ethanol productivity (the amount of ethanol produced per year) by 64.4 ± 3.3 and 33.1 ± 7.2%, respectively. This study provides proof of concept that applying SCF to ethanol production could significantly increase productivities, which will help strengthen the

  17. Pilot plant studies of the bioconversion of cellulose and production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.

    1977-09-30

    Work for the period July 1 to September 30, 1977 is summarized briefly. Results of the following studies are reported: analysis and evaluation of potential raw materials--chemical analysis of the Kudzu plant and effect of NO/sub x/ pretreatments on the hydrolysis of wheat straw; utilization of hemicellulose sugars; process design and economic studies--hydrolysis process and ethanol fermentation; pilot plant process development and design studies--enhanced cellulase production and continuous hydrolysis. (JGB)

  18. Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

    International Nuclear Information System (INIS)

    Mangmeechai, Aweewan; Pavasant, Prasert

    2013-01-01

    The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510–1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300–2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not only substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs

  19. Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Mangmeechai, Aweewan, E-mail: aweewan.m@nida.ac.th [National Institute of Development Administration, International College (Major in Public Policy and Management) (Thailand); Pavasant, Prasert [Chulalongkorn University, Department of Chemical Engineering, Faculty of Engineering (Thailand)

    2013-12-15

    The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510-1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300-2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not only substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs.

  20. Implications of Industrial Processing Strategy on Cellulosic Ethanol Production at High Solids Concentrations

    DEFF Research Database (Denmark)

    Cannella, David

    The production of cellulosic ethanol is a biochemical process of not edible biomasses which contain the cellulose. The process involves the use of enzymes to hydrolyze the cellulose in fermentable sugars to finally produce ethanol via fermentative microorganisms (i.e. yeasts). These biomasses...... are the leftover of agricultural productions (straws), not edible crops (giant reed) or wood, thus the ethanol so produced is also called second generation (or 2G ethanol), which differs from the first generation produced from starch (sugar beets mostly). In the industrial production of cellulosic ethanol high...... solids strategy resulted critical for its cost effectiveness: high concentration of initial biomass it will lead to high concentration of the final product (ethanol), thus more convenient to isolate. This thesis investigate the implementation of a high solids loading concept into cellulosic ethanol...

  1. Anticonvulsant potentials of ethanolic extract of Eleusine indica

    Directory of Open Access Journals (Sweden)

    Ette Okon Ettebong

    2016-11-01

    Full Text Available Objective: To assess the anticonvulsant potentials of ethanolic extract of Eleusine indica. Methods: Albino Wistar mice were separated into five groups with six animals in each group and thereafter pretreated with distilled water, various doses of the extract (200–600 mg/kg and standard drug diazepam (0.5 mg/kg. Thirty minutes later, pentylenetetrazole (70 mg/kg, aminophylline (280 mg/kg and isoniazid (250 mg/kg were used to induce convulsions by intraperitoneal administration. These mice were then placed in plexiglas cages and monitored for the occurrence of seizures over a thirty-minute time period. The latency of convulsions, duration of tonic convulsions and mortality protection were recorded. Data obtained were analyzed using GraphPad InStat 3.10. Results: The results showed that the extract exhibited a dose-dependent increase in the latency of clonic convulsions and decrease in duration of tonic convulsions as compared to the control and these effects were statistically significant (P < 0.001. The extract also provided protection against the mortality which was similar to that produced by the standard drug diazepam. Conclusions: The significant increase in the latency of clonic convulsions and decrease in duration of tonic convulsions caused by the extract show anticonvulsant activity and corroborate with the claims of the traditional use of the plant as an anticonvulsant remedy.

  2. Power-law approach to modeling biological systems. II. Application to ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Voit, E O; Savageau, M A

    1982-01-01

    The use of the power-law formalism is illustrated by modeling yeast ethanol production in batch culture at high cell densities. Parameter values are estimated from experimental data. The results suggest that ethanol killing of viable cells and lysis of nonviable cells are major determinants of system behavior, whereas catabolism of ethanol and inhibition of cell growth by ethanol appear to be insignificant under these experimental conditions.

  3. Mutants of Pachysolen tannophilus with Improved Production of Ethanol from d-Xylose †

    OpenAIRE

    Lee, Hung; James, Allen P.; Zahab, Diana M.; Mahmourides, George; Maleszka, Ryszard; Schneider, Henry

    1986-01-01

    The conversion of d-xylose to ethanol by the yeast Pachysolen tannophilus is relatively inefficient in batch culture. The inefficiency has been attributed in part to concurrent utilization of ethanol in the presence of appreciable concentrations of d-xylose and to the formation of xylitol and other by-products. To increase the concentration of ethanol accumulated in batch cultures, UV-induced mutants of P. tannophilus were selected on the basis of diminished growth on ethanol. Eleven independ...

  4. Effect of acetic acid on Saccharomyces carlsbergensis ATCC 6269 batch ethanol production monitored by flow cytometry.

    Science.gov (United States)

    Freitas, Cláudia; Neves, Elisabete; Reis, Alberto; Passarinho, Paula C; da Silva, Teresa Lopes

    2012-11-01

    Bioethanol produced from lignocellulosic materials has been considered a sustainable alternative fuel. Such type of raw materials have a huge potential, but their hydrolysis into mono-sugars releases toxic compounds such as weak acids, which affect the microorganisms' physiology, inhibiting the growth and ethanol production. Acetic acid (HAc) is the most abundant weak acid in the lignocellulosic materials hydrolysates. In order to understand the physiological changes of Saccharomyces carlsbergensis when fermenting in the presence of different acetic acid (HAc) concentrations, the yeast growth was monitored by multi-parameter flow cytometry at same time that the ethanol production was assessed. The membrane potential stain DiOC(6)(3) fluorescence intensity decreased as the HAc concentration increased, which was attributed to the plasmic membrane potential reduction as a result of the toxic effect of the HAc undissociated form. Nevertheless, the proportion of cells with permeabilized membrane did not increase with the HAc concentration increase. Fermentations ending at lower external pH and higher ethanol concentrations depicted the highest proportions of permeabilized cells and cells with increased reactive oxygen species levels. Flow cytometry allowed monitoring, near real time (at-line), the physiological states of the yeast during the fermentations. The information obtained can be used to optimize culture conditions to improve bioethanol production.

  5. Plasma-Assisted Pretreatment of Wheat Straw for Ethanol Production

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Kádár, Zsófia; Thomsen, Anne Belinda

    2011-01-01

    (0–7 h), e.g., oxalic acid and acetovanillon. Interestingly, washing had no effect on the ethanol production with pretreatment times up to 1 h. Washing improved the glucose availability with pretreatment times of more than 2 h. One hour of ozonisation was found to be optimal for the use of washed...... carboxylic acids and phenolic compounds were found, e.g., vanillic acid, acetic acid, and formic acid. Some components had the highest concentration at the beginning of the ozonisation process (0.5, 1 h), e.g., 4-hydroxybenzladehyde, while the concentration of others increased during the entire pretreatment...

  6. Assessing the Environmental Performance of Integrated Ethanol and Biogas Production

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Michael; Svensson, Niclas; Fonseca, Jorge (Linkoeping Univ., Environmental Technology and Management, Linkoeping (Sweden)), e-mail: michael.martin@liu.se

    2011-06-15

    As the production of biofuels continues to expand worldwide, criticism about, e.g. the energy output versus input and the competition with food has been questioned. However, biofuels may be optimized to increase the environmental performance through the concepts of industrial symbiosis. This paper offers a quantification of the environmental performance of industrial symbiosis in the biofuel industry through integration of biogas and ethanol processes using a life cycle approach. Results show that although increasing integration is assumed to produce environmental benefits in industrial symbiosis, not all impact categories have achieved this and the results depend upon the allocation methods chosen

  7. Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage.

    Science.gov (United States)

    Kim, Youngmi; Mosier, Nathan S; Hendrickson, Rick; Ezeji, Thaddeus; Blaschek, Hans; Dien, Bruce; Cotta, Michael; Dale, Bruce; Ladisch, Michael R

    2008-08-01

    DDGS and wet distillers' grains are the major co-products of the dry grind ethanol facilities. As they are mainly used as animal feed, a typical compositional analysis of the DDGS and wet distillers' grains mainly focuses on defining the feedstock's nutritional characteristics. With an increasing demand for fuel ethanol, the DDGS and wet distillers' grains are viewed as a potential bridge feedstock for ethanol production from other cellulosic biomass. The introduction of DDGS or wet distillers' grains as an additional feed to the existing dry grind plants for increased ethanol yield requires a different approach to the compositional analysis of the material. Rather than focusing on its nutritional value, this new approach aims at determining more detailed chemical composition, especially on polymeric sugars such as cellulose, starch and xylan, which release fermentable sugars upon enzymatic hydrolysis. In this paper we present a detailed and complete compositional analysis procedure suggested for DDGS and wet distillers' grains, as well as the resulting compositions completed by three different research groups. Polymeric sugars, crude protein, crude oil and ash contents of DDGS and wet distillers' grains were accurately and reproducibly determined by the compositional analysis procedure described in this paper.

  8. High Titer Ethanol and Lignosulfonate Production from SPORL Pretreated Poplar at Pilot Scale

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haifeng [Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao (China); Forest Products Laboratory, USDA Forest Service, Madison, WI (United States); Zhu, J. Y., E-mail: jzhu@fs.fed.us; Gleisner, Roland [Forest Products Laboratory, USDA Forest Service, Madison, WI (United States); Qiu, Xueqing [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Horn, Eric [BioPulping International, Inc., Madison, WI (United States)

    2015-04-27

    Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L.) wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH 1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS). An estimated combined hydrolysis factor (CHF) of 3.3 was used to scale the sulfite pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L{sup -1} with a yield of 247 L tonne wood{sup -1} was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL)-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH) content, though it was less sulfonated and had a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing. The conversion efficiency achieved through process integration and simplification, demonstrated here, has significant importance to the entire supply chain of biofuel production from woody biomass.

  9. Optimization on Pretreatment Conditions of Seaweed Liquid Waste for Bio ethanol Production

    International Nuclear Information System (INIS)

    Nur Zatul-Iffah Zakaria; Dachyar Arbain; Mohd Noor Ahmad; Mohd Irfan Hatim Mohamed Dzahir

    2015-01-01

    Seaweed liquid waste (SLW) from a non-conventional seaweed (Gracilaria sp.) drying process where the seaweed is ruptured and filter-squeezed has been investigated. The liquid contains proteins and minerals which potentially pollute the environment if it is not been properly treated. For that reason, this paper deals with study on the feasibility of SLW utilization as a feedstock for bio ethanol production. The fermentation of bio ethanol production was carried out by Saccharomyces cerevisiae in which ethanol produced was measured by gas chromatography. In order to increase its fermentable sugar content, the SLW was treated with dilute acid. Center composite design of response surface methodology (RSM) had been used to optimize the sugar content by varying the parameters involved in the dilute acid pretreatment conditions. These are sulphuric acid concentration (M), temperature (degree Celsius) and seaweed waste concentration (g/ ml). It was obtained that the R 2 value reached 0.97 indicating that the model is acceptable. The three parameters showed p-value less than 0.05 suggesting their significance interactions. The optimization resulted 25 times improvement of reducing sugar concentration. The reducing sugar resulting from the optimized pretreatment was later used as fermentation medium to produce ethanol up to 123.197 mg/ l. (author)

  10. Optimization of factors affecting the production of biodiesel from crude palm kernel oil and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Kuwornoo, David. K. [Faculty of Chemical and Materials Engineering, Kwame Nkrumah University of Science and Technology (KNUST), Private Mail Bag, Kumasi (Ghana); Ahiekpor, Julius C. [Chemical Engineering Department, Kumasi Polytechnic, P.O. Box 854, Kumasi (Ghana)

    2010-07-01

    Biodiesel, an alternative diesel fuel made from renewable sources such as vegetable oils and animal fats, has been identified by government to play a key role in the socio-economic development of Ghana. The utilization of biodiesel is expected to be about 10% of the total liquid fuel mix of the country by the year 2020. Despite this great potential and the numerous sources from which biodiesel could be developed in Ghana, studies on the sources of biodiesel and their properties as a substitute for fossil diesel have tended to be limited to Jatropha oil. This paper, however, reports the parameters that influences the production of biodiesel from palm kernel oil, one of the vegetable oils obtained from oil palm which is the highest vegetable oil source in Ghana. The parameters studied are; mass ratio of ethanol to oil, reaction temperature, catalyst concentration, and reaction time using completely randomized 24 factorial design. Results indicated that ethanol to oil mass ratio, catalyst concentration and reaction time were the most important factors affecting the ethyl ester yield. There was also an interaction effect between catalyst and time and ethanol- oil ratio and time on the yield. Accordingly, the optimal conditions for the production of ethyl esters from crude palm kernel oil were determined as; 1:5 mass ratio of ethanol to oil, 1% catalyst concentration by weight of oil, 90 minutes reaction time at a temperature of 30 deg C.

  11. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-02-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternative clean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended with gasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewable resources and the product has low emission which means environmental friendly. Ethanol can be produced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentation batch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivity and cell growth can be overcome by taking the product continuously from the fermentor. The process can be done by using a vacuum fermentation. The objective of this research is to investigate the effect of pressure and glucose concentration in ethanol fermentation. The research was conducted in laboratory scale and batch process. Equipment consists of fermentor with vacuum system. The observed responses were dried cells of yeast, concentration of glucose, and concentration of ethanol. Observations were made every 4 hours during a day of experiment. The results show that the formation of ethanol has a growth-associated product characteristic under vacuum operation. Vacuum condition can increase the cell formation productivity and the ethanol formation, as it is compared with fermentation under atmospheric condition. The maximum cells productivity and ethanol formation in batch operation under vacuum condition was reached at 166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at 141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivity and the yield of ethanol.

  12. Recent trends in acetone, butanol, and ethanol (ABE production

    Directory of Open Access Journals (Sweden)

    Keikhosro Karim

    2015-12-01

    Full Text Available Among the renewable fuels considered as a suitable substitute to petroleum-based gasoline, butanol has attracted a great deal of attention due to its unique properties. Acetone, butanol, and ethanol (ABE can be produced biologically from different substrates, including sugars, starch, lignocelluloses, and algae. This process was among the very first biofuel production processes which was commercialized during the First World War. The present review paper discusses the different aspects of the ABE process and the recent progresses made. Moreover, the microorganisms and the biochemistry of the ABE fermentation as well as the feedstocks used are reviewed. Finally, the challenges faced such as low products concentration and products` inhibitory effects on the fermentation are explained and different possible solutions are presented and reviewed.

  13. Intermediate products of radiolytic conversions of 6-aminophenalenone in ethanol

    International Nuclear Information System (INIS)

    Semenova, G.V.; Ponomarev, A.V.; Kartasheva, L.I.; Pikaev, A.K.

    1992-01-01

    Intermediate products of the conversions of 6-aminophenalenone in ethanol were investigated by pulse radiolysis. In alkaline medium the main product is the 6-aminophenalenone radical cation, the optical absorption spectrum of which contains two bands with maxima at 355 and 400 nm. The precursors of this particle are e s , CH 3 CHOH and CH 3 CHO - radicals. In neutral and acid medium, radical cations are protonated in reactions with alcohol and hydrogen ions. The H-adduct of 6-aminophenalenone that arises has optical absorption maxima at 350 and 390 nm. The presence of two maxima is due to two different structures of the product. The molar extinction coefficients of the radical anions and H-adducts of 6-aminophenalenone and the rate constants of the reactions involving them were estimated. 6 refs., 4 figs., 2 tabs

  14. Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae beta-glucosidase and endoglucanase.

    Science.gov (United States)

    Kotaka, Atsushi; Bando, Hiroki; Kaya, Masahiko; Kato-Murai, Michiko; Kuroda, Kouichi; Sahara, Hiroshi; Hata, Yoji; Kondo, Akihiko; Ueda, Mitsuyoshi

    2008-06-01

    Three beta-glucosidase- and two endoglucanase-encoding genes were cloned from Aspergillus oryzae, and their gene products were displayed on the cell surface of the sake yeast, Saccharomyces cerevisiae GRI-117-UK. GRI-117-UK/pUDB7 displaying beta-glucosidase AO090009000356 showed the highest activity against various substrates and efficiently produced ethanol from cellobiose. On the other hand, GRI-117-UK/pUDCB displaying endoglucanase AO090010000314 efficiently degraded barley beta-glucan to glucose and smaller cellooligosaccharides. GRI-117-UK/pUDB7CB codisplaying both beta-glucosidase AO090009000356 and endoglucanase AO090010000314 was constructed. When direct ethanol fermentation from 20 g/l barley beta-glucan as a model substrate was performed with the codisplaying strain, the ethanol concentration reached 7.94 g/l after 24 h of fermentation. The conversion ratio of ethanol from beta-glucan was 69.6% of the theoretical ethanol concentration produced from 20 g/l barley beta-glucan. These results showed that sake yeast displaying A. oryzae cellulolytic enzymes can be used to produce ethanol from cellulosic materials. Our constructs have higher ethanol production potential than the laboratory constructs previously reported.

  15. Ethanol addition enhances acid treatment to eliminate Lactobacillus fermentum from the fermentation process for fuel ethanol production.

    Science.gov (United States)

    Costa, M A S; Cerri, B C; Ceccato-Antonini, S R

    2018-01-01

    Fermentation is one of the most critical steps of the fuel ethanol production and it is directly influenced by the fermentation system, selected yeast, and bacterial contamination, especially from the genus Lactobacillus. To control the contamination, the industry applies antibiotics and biocides; however, these substances can result in an increased cost and environmental problems. The use of the acid treatment of cells (water-diluted sulphuric acid, adjusted to pH 2·0-2·5) between the fermentation cycles is not always effective to combat the bacterial contamination. In this context, this study aimed to evaluate the effect of ethanol addition to the acid treatment to control the bacterial growth in a fed-batch system with cell recycling, using the industrial yeast strain Saccharomyces cerevisiae PE-2. When only the acid treatment was used, the population of Lactobacillus fermentum had a 3-log reduction at the end of the sixth fermentation cycle; however, when 5% of ethanol was added to the acid solution, the viability of the bacterium was completely lost even after the first round of cell treatment. The acid treatment +5% ethanol was able to kill L. fermentum cells without affecting the ethanol yield and with a low residual sugar concentration in the fermented must. In Brazilian ethanol-producing industry, water-diluted sulphuric acid is used to treat the cell mass at low pH (2·0) between the fermentative cycles. This procedure reduces the number of Lactobacillus fermentum from 10 7 to 10 4  CFU per ml. However, the addition of 5% ethanol to the acid treatment causes the complete loss of bacterial cell viability in fed-batch fermentation with six cell recycles. The ethanol yield and yeast cell viability are not affected. These data indicate the feasibility of adding ethanol to the acid solution replacing the antibiotic use, offering a low cost and a low amount of residue in the biomass. © 2017 The Society for Applied Microbiology.

  16. Study of advanced control of ethanol production through continuous fermentation

    Directory of Open Access Journals (Sweden)

    AbdelHamid Ajbar

    2017-01-01

    Full Text Available This paper investigates the control of an experimentally validated model of production of bioethanol. The analysis of the open loop system revealed that the maximum productivity occurred at a periodic point. A robust control was needed to avoid instabilities that may occur when disturbances are injected into the process that may drive it toward or through the unstable points. A nonlinear model predictive controller (NLMPC was used to control the process. Simulation tests were carried out using three controlled variables: the ethanol concentration, the productivity and the inverse of the productivity. In the third configuration, the controller was required to seek the maximum operating point through the optimization capability built in the NLMPC algorithm. Simulation tests presented overall satisfactory closed-loop performance for both nominal servo and regulatory control problems as well as in the presence of modeling errors. The third control configuration managed to steer the process toward the existing maximum productivity even when the process operation or its parameters changed. For comparison purposes, a standard PI controller was also designed for the same control objectives. The PI controller yielded satisfactory performance when the ethanol concentration was chosen as the controlled variable. When, on the other hand, the productivity was chosen as the controlled output, the PI controller did not work properly and needed to be adjusted using gain scheduling. In all cases, it was observed that the closed-loop response suffered from slow dynamics, and any attempt to speed up the feedback response via tuning may result in an unstable behavior.

  17. High-temperature fermentation. How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Banat, Babiker M.A.; Hoshida, Hisashi; Nonklang, Sanom; Akada, Rinji [Yamaguchi Univ. Graduate School of Medicine, Ube (Japan). Dept. of Applied Molecular Bioscience; Ano, Akihiko [Iwata Chemical Co. Ltd. (Japan)

    2010-01-15

    The process of ethanol fermentation has a long history in the production of alcoholic drinks, but much larger scale production of ethanol is now required to enable its use as a substituent of gasoline fuels at 3%, 10%, or 85% (referred to as E3, E10, and E85, respectively). Compared with fossil fuels, the production costs are a major issue for the production of fuel ethanol. There are a number of possible approaches to delivering cost-effective fuel ethanol production from different biomass sources, but we focus in our current report on high-temperature fermentation using a newly isolated thermotolerant strain of the yeast Kluyveromyces marxianus. We demonstrate that a 5 C increase only in the fermentation temperature can greatly affect the fuel ethanol production costs. We contend that this approach may also be applicable to the other microbial fermentations systems and propose that thermotolerant mesophilic microorganisms have considerable potential for the development of future fermentation technologies. (orig.)

  18. Method for producing ethanol and co-products from cellulosic biomass

    Science.gov (United States)

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  19. Ethanol Production from Kitchen Garbage Using Zymomonas mobilis: Optimization of Parameters through Statistical Experimental Designs

    OpenAIRE

    Ma, H.; Wang, Q.; Gong, L.; Wang, X.; Yin, W.

    2008-01-01

    Plackett-Burman design was employed to screen 8 parameters for ethanol production from kitchen garbage by Zymomonas mobilis in simultaneous saccharification and fermentation. The parameters were divided into two parts, four kinds of enzymes and supplementation nutrients. The result indicated that the nutrient inside kitchen garbage could meet the requirement of ethanol production without supplementation, only protease and glucoamylase were needed to accelerate the ethanol production. The opti...

  20. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization.

    Science.gov (United States)

    Mumm, Rita H; Goldsmith, Peter D; Rausch, Kent D; Stein, Hans H

    2014-01-01

    Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles

  1. Comparison of ethanol production from corn cobs and switchgrass following a pyrolysis-based biorefinery approach.

    Science.gov (United States)

    Luque, Luis; Oudenhoven, Stijn; Westerhof, Roel; van Rossum, Guus; Berruti, Franco; Kersten, Sascha; Rehmann, Lars

    2016-01-01

    One of the main obstacles in lignocellulosic ethanol production is the necessity of pretreatment and fractionation of the biomass feedstocks to produce sufficiently pure fermentable carbohydrates. In addition, the by-products (hemicellulose and lignin fraction) are of low value, when compared to dried distillers grains (DDG), the main by-product of corn ethanol. Fast pyrolysis is an alternative thermal conversion technology for processing biomass. It has recently been optimized to produce a stream rich in levoglucosan, a fermentable glucose precursor for biofuel production. Additional product streams might be of value to the petrochemical industry. However, biomass heterogeneity is known to impact the composition of pyrolytic product streams, as a complex mixture of aromatic compounds is recovered with the sugars, interfering with subsequent fermentation. The present study investigates the feasibility of fast pyrolysis to produce fermentable pyrolytic glucose from two abundant lignocellulosic biomass sources in Ontario, switchgrass (potential energy crop) and corn cobs (by-product of corn industry). Demineralization of biomass removes catalytic centers and increases the levoglucosan yield during pyrolysis. The ash content of biomass was significantly decreased by 82-90% in corn cobs when demineralized with acetic or nitric acid, respectively. In switchgrass, a reduction of only 50% for both acids could be achieved. Conversely, levoglucosan production increased 9- and 14-fold in corn cobs when rinsed with acetic and nitric acid, respectively, and increased 11-fold in switchgrass regardless of the acid used. After pyrolysis, different configurations for upgrading the pyrolytic sugars were assessed and the presence of potentially inhibitory compounds was approximated at each step as double integral of the UV spectrum signal of an HPLC assay. The results showed that water extraction followed by acid hydrolysis and solvent extraction was the best upgrading strategy

  2. Study of growth kinetic and modeling of ethanol production by ...

    African Journals Online (AJOL)

    ... coefficient (0.96299). Based on Leudking-Piret model, it could be concluded that ethanol batch fermentation is a non-growth associated process. Key words: Kinetic parameters, simulation, cell growth, ethanol, Saccharomyces cerevisiae.

  3. Screening of Jerusalem artichoke varieties for bio-ethanol production in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Passarinho, P.C.; Oliveira, A.C.; Rosa, M.F. [INETI, Departamento de Energias Renovaveis, Estrada do Paco do Lumiar, Ed. G, 1649-038, Lisboa (Portugal)

    2008-07-01

    The aim of this work was the evaluation of the potential of 9 Jerusalem artichoke varieties for the sustainable production of bio-ethanol in Portugal. The tubers, which are the part of the plant with higher sugar content, were harvested at different stages of development (29 to 55 weeks), and crashed for juice extraction. The two phases obtained were characterized in terms of total sugars, protein, ash and dry matter. The ethanol productivity of the different J. artichoke varieties was then evaluated fermenting juice or mixtures of juice and pulp aqueous extract with a strain of Kluyveromyces marxianus, a yeast able to hydrolyze and ferment inulin polymers. The chamical characteristic more dependable on the harvest period was the amount of total sugars in the tubers. Juices, obtained until 48 weeks development, contained 173 - 235 g/L of total sugars while juices from the last harvest presented markedly lower sugar contents, indicating crop degradation or sugar migration to the soil. Regarding the fermentative process, ethanol yields ranged from 0.3 to 0.5 g/g. The main conclusion of this work indicates C13 variety as the best. Although bearing a lower sugar concentration in tubers, the substantially higher agricultural productivities (kg/m2) after 8 months growing allowed to estimate productions higher than 10 000 L/ha.

  4. High titer ethanol and lignosulfonate production from SPORL pretreated poplar at pilot-scale

    Directory of Open Access Journals (Sweden)

    Junyong (J.Y. eZhu

    2015-04-01

    Full Text Available Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L. wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH  1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS. An estimated combined hydrolysis factor (CHF of 3.3 was used to scale the pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L-1 with a yield of 247 L tonne wood-1 was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from SPORL-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH content although it is less sulfonated and has a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing.

  5. Factors affecting release of ethanol vapour in active modified atmosphere packaging systems for horticultural products

    Directory of Open Access Journals (Sweden)

    Weerawate Utto

    2014-04-01

    Full Text Available The active modified atmosphere packaging (active MAP system , which provides interactive postharvest control , using ethanol vapour controlled release, is one of the current interests in the development of active packaging for horticultural products. A number of published research work have discussed the relationship between the effectiveness of ethanol vapour and its concentration in the package headspace, including its effect on postharvest decay and physiological controls. This is of importance because a controlled release system should release and maintain ethanol vapour at effective concentrations during the desired storage period. A balance among the mass transfer processes of ethanol vapour in the package results in ethanol vapour accumulation in the package headspace. Key factors affecting these processes include ethanol loading, packaging material, packaged product and storage environment (temperature and relative h umidity. This article reviews their influences and discusses future work required to better understand their influences on ethanol vapour release and accumulations in active MAP.

  6. Impacts of facility size and location decisions on ethanol production cost

    International Nuclear Information System (INIS)

    Kocoloski, Matt; Michael Griffin, W.; Scott Matthews, H.

    2011-01-01

    Cellulosic ethanol has been identified as a promising alternative to fossil fuels to provide energy for the transportation sector. One of the obstacles cellulosic ethanol must overcome in order to contribute to transportation energy demand is the infrastructure required to produce and distribute the fuel. Given a nascent cellulosic ethanol industry, locating cellulosic ethanol refineries and creating the accompanying infrastructure is essentially a greenfield problem that may benefit greatly from quantitative analysis. This study models cellulosic ethanol infrastructure investment using a mixed integer program (MIP) that locates ethanol refineries and connects these refineries to the biomass supplies and ethanol demands in a way that minimizes the total cost. For the single- and multi-state regions examined in this study, larger facilities can decrease ethanol costs by $0.20-0.30 per gallon, and placing these facilities in locations that minimize feedstock and product transportation costs can decrease ethanol costs by up to $0.25 per gallon compared to uninformed placement that could result from influences such as local subsidies to encourage economic development. To best benefit society, policies should allow for incentives that encourage these low-cost production scenarios and avoid politically motivated siting of plants. - Research highlights: → Mixed-integer programming can be used to model ethanol infrastructure investment. → Large cellulosic ethanol facilities can decrease production cost by $0.20/gallon. → Optimized facility placement can save $0.25/gallon.

  7. Phytoremediation potential of willow tress for aquifers contaminated with ethanol-blended gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Corseuil, H.X. [Universidade Federal de Santa Catarina, Florianopolis (Brazil). Departamento de Engenharia Sanitaria e Ambiental; Moreno, F.N. [Universidade do Sul de Santa Catarina, Palhoca (Brazil). Centro de Ciencias Agrarias e das Engenharias

    2001-07-01

    Ethanol-blended gasoline has been used in Brazil for 20 years and, probably, is going to be more widely used in North America due to the MtBE environmental effects on groundwater. The potential impacts caused by the presence of ethanol in UST spills are related to the co-solvency effect and the preferential degradation of ethanol over the BTEX compounds. These interactions may increase the length of dissolved hydrocarbon plumes and the costs associated with site remediation. This study investigates the advantages of phytoremediation to overcome the problems associated with the presence of ethanol in groundwater contaminated with gasoline-ethanol mixtures. Experiments were performed under lab conditions with cuttings of Willow tree (Salix babylonica) cultivated hydroponically. Results showed that the cuttings were able to reduce ethanol and benzene concentrations by more than 99% in less than a week. The uptake of both contaminants was confirmed by blank controls and was significantly related to cuttings transpiration capacity. Sorption onto roots biomass also markedly affected the behavior of contaminants in solution. Experiments to evaluate plants' toxicity to ethanol indicated that plants were only affected when aqueous ethanol concentration reached 2000mgl{sup -1}. Results suggest that phytoremediation can be a good complement to intrinsic remediation in shallow aquifer sites contaminated with ethanol-blended gasoline spills. (Author)

  8. Pectin-rich biomass as feedstock for fuel ethanol production.

    Science.gov (United States)

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes.

  9. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  10. Technique of ethanol food grade production with batch distillation and dehydration using starch-based adsorbent

    Science.gov (United States)

    Widjaja, Tri; Altway, Ali; Ni'mah, Hikmatun; Tedji, Namira; Rofiqah, Umi

    2015-12-01

    Development and innovation of ethanol food grade production are becoming the reasearch priority to increase economy growth. Moreover, the government of Indonesia has established regulation for increasing the renewable energy as primary energy. Sorghum is cerealia plant that contains 11-16% sugar that is optimum for fermentation process, it is potential to be cultivated, especially at barren area in Indonesia. The purpose of this experiment is to learn about the effect of microorganisms in fermentation process. Fermentation process was carried out batchwise in bioreactor and used 150g/L initial sugar concentration. Microorganisms used in this experiment are Zymomonas mobilis mutation (A3), Saccharomyces cerevisiae and mixed of Pichia stipitis. The yield of ethanol can be obtained from this experiment. For ethanol purification result, distillation process from fermentation process has been done to search the best operation condition for efficiency energy consumption. The experiment for purification was divided into two parts, which are distillation with structured packing steel wool and adsorption (dehydration) sequencely. In distillation part, parameters evaluation (HETP and pressure drop) of distillation column that can be used for scale up are needed. The experiment was operated at pressure of 1 atm. The distillation stage was carried out at 85 °C and reflux ratio of 0.92 with variety porosities of 20%, 40%, and 60%. Then the adsorption process was done at 120°C and two types of adsorbent, which are starch - based adsorbent with ingredient of cassava and molecular sieve 3A, were used. The adsorption process was then continued to purify the ethanol from impurities by using activated carbon. This research shows that the batch fermentation process with Zymomonas mobilis A3 obtain higher % yield of ethanol of 40,92%. In addition to that, for purification process, the best operation condition is by using 40% of porosity of stuctured packing steel wool in distillation

  11. The development and microbiology of bioprocesses for the production of hydrogen and ethanol by dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, P.

    2008-07-01

    process parameters (pH, HRT) and metabolites (organic acids, ethanol, CO{sub 2}). This study demonstrated the H{sub 2} or ethanol+H{sub 2} production potential by thermophilic dark fermentation. Considering practical applications with the promising thermophilic cultures (AK17 and 33HL), continuous ethanol+H{sub 2} or H{sub 2} production from pentose sugars and real materials (i.e., organic wastes, lignocellulose hydrolysates) materials should be further studied. In this study, better stability and higher H{sub 2} production was obtained by thermophilic dark fermentation processes compared to mesophilic processes. The better stability was related to more stable and less diverse microbial communities in the thermophilic systems compared to mesophilic systems. Further, this study demonstrated ready granulation and high H{sub 2} production efficiency of thermophiles, which form basis for further development of thermophilic, high-rate H{sub 2} production systems. (orig.)

  12. Ethanol production from agricultural wastes using Sacchromyces cervisae

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan

    2014-06-01

    Full Text Available The main objective of this study was production of ethanol from three lignocellulosic biomasses like sugarcane bagasse, rice straw and wheat straw by Sacchromyces cervisae. All the three substrates were ground to powder form (2 mm and pretreated with 3%H2O2 + 2% NaOH followed by steaming at 130 °C for 60 min. These substrates were hydrolyzed by commercial cellulase enzyme. The whole fermentation process was carried out in 500 mL Erlenmeyer flask under anaerobic conditions in submerged fermentation at 30 °C for three days of incubation period. FTIR analysis of the substrates indicated significant changes in the alteration of the structure occurred after pretreatment which leads to efficient saccharification. After pretreatment the substrates were hydrolyzed by commercial cellulase enzyme and maximum hydrolysis was observed in sugarcane bagasse (64% followed by rice straw (40% and wheat straw (34%. Among all these tested substrates, sugarcane bagasse (77 g/L produced more ethanol as compared to rice straw (62 g/L and wheat straw (44 g/L using medium composition of (% 0.25 (NH42SO4, 0.1 KH2PO4, 0.05 MgSO4, 0.25 Yeast extract by S. cervisae.

  13. Utilization of household food waste for the production of ethanol at high dry material content.

    Science.gov (United States)

    Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul

    2014-01-08

    Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall

  14. Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus.

    Science.gov (United States)

    Im, Kyung Hoan; Nguyen, Trung Kien; Choi, Jaehyuk; Lee, Tae Soo

    2016-03-01

    Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.

  15. Antioxidant potential of ethanolic extract of aerial parts of Coleus ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    Sep 26, 2011 ... The IC50 values of the ethanolic extract of C. spicatus and ascorbate were found to be 380 µg/ml and 410 ... cancer, Parkinson's disease, Alzheimer's disease, etc. (Mensor et al., 2001; Parejo et al., 2002; Hou ... biological properties and mechanisms of actions. Natural antioxidants tend to be safer and also ...

  16. Antibacterial activities and toxicological potentials of crude ethanolic ...

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... crude ethanolic extracts of Euphorbia hirta. J. N. Ogbulie1*, C. C. Ogueke2, I. C. Okoli3 and B. N Anyanwu1. 1Department of Industrial Microbiology, Federal University of Technology, Owerri. P. M. B. 1526 Owerri, Nigeria. 2Department of Food Science and Technology, Federal University of Technology, ...

  17. Antitrypanosomal Potentials of Ethanolic Leaf Extracts of Punica ...

    African Journals Online (AJOL)

    Three doses (20mg/kg, 40mg/kg,80mg/kg) of ethanolic extracts of the leaves of Punica granatum were screened for trypanocidal activity against Trypanosoma brucei bruce in Balb Strain Albino mice. Parasitaemia and disappearance of clinical signs were used as parameters to monitor the efficacy of the extracts using the ...

  18. Antibacterial activities and toxicological potentials of crude ethanolic ...

    African Journals Online (AJOL)

    Leaves of Euphorbia hirta used in traditional medicine for the treatments of boils, wounds and control of diarrhoea and dysentery were extracted by maceration in ethanol. The agar diffusion method was used to determine the antibacterial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, ...

  19. Spatial separation of photosynthesis and ethanol production by cell type-specific metabolic engineering of filamentous cyanobacteria.

    Science.gov (United States)

    Ehira, Shigeki; Takeuchi, Takuto; Higo, Akiyoshi

    2018-02-01

    Cyanobacteria, which perform oxygenic photosynthesis, have drawn attention as hosts for the direct production of biofuels and commodity chemicals from CO 2 and H 2 O using light energy. Although cyanobacteria capable of producing diverse chemicals have been generated by metabolic engineering, anaerobic non-photosynthetic culture conditions are often necessary for their production. In this study, we conducted cell type-specific metabolic engineering of the filamentous cyanobacterium Anabaena sp. PCC 7120, which forms a terminally differentiated cell called a heterocyst with a semi-regular spacing of 10-15 cells. Because heterocysts are specialized cells for nitrogen fixation, the intracellular oxygen level of heterocysts is maintained very low even when adjacent cells perform oxygenic photosynthesis. Pyruvate decarboxylase of Zymomonas mobilis and alcohol dehydrogenase of Synechocystis sp. PCC 6803 were exclusively expressed in heterocysts. Ethanol production was concomitant with nitrogen fixation in genetically engineered Anabaena sp. PCC 7120. Engineering of carbon metabolism in heterocysts improved ethanol production, and strain ET14, with an extra copy of the invB gene expressed from a heterocyst-specific promoter, produced 130.9 mg L -1 of ethanol after 9 days. ET14 produced 1681.9 mg L -1 of ethanol by increasing the CO 2 supply. Ethanol production per heterocyst cell was approximately threefold higher than that per cell of unicellular cyanobacterium. This study demonstrates the potential of heterocysts for anaerobic production of biofuels and commodity chemicals under oxygenic photosynthetic conditions.

  20. Study on genotypic variation for ethanol production from sweet sorghum juice

    Energy Technology Data Exchange (ETDEWEB)

    Ratnavathi, C.V.; Suresh, K.; Kumar, B.S. Vijay; Pallavi, M.; Komala, V.V.; Seetharama, N. [Directorate of Sorghum Research, Rajendranagar, Hyderabad 500030, Andhra Pradesh (India)

    2010-07-15

    Sugarcane molasses is the main source for ethanol production in India. Sweet sorghum with its juicy stem containing sugars equivalent to that of sugarcane is a very good alternative for bio-ethanol production to meet the energy needs of the country. Sweet sorghum is drought resistant, water logging resistant and saline-alkaline tolerant. Growing sweet sorghum for ethanol production is relatively easy and economical and ethanol produced from sweet sorghum is eco-friendly. In view of this, it is important to identify superior genotypes for ethanol production in terms of percent juice brix, juice extractability, total fermentable sugars, ethanol yield and fermentation efficiency. This paper presents the study on the variability observed for the production of ethanol by various sweet sorghum genotypes in a laboratory fermentor. Five Sweet Sorghum (Sorghum bicolor L. Moench) genotypes were evaluated for ethanol production from stalk juice (Keller, SSV 84, Wray, NSSH 104 and BJ 248). Sweet sorghum juice differs from cane juice mainly in its higher content of starch and aconitic acid. Data were collected for biomass yield; stalk sugar yield and ethanol production in five genotypes. Maximum ethanol production of 9.0%w/v ethanol was obtained with Keller variety (20% sugar concentration was used), and decreased for other genotypes. A distiller's strain of Saccharomyces cerevisiae (gifted by Seagram Distilleries Ltd.) was employed for fermentation. The fermentation efficiency (FE) was 94.7% for this strain. High biomass of yeast was obtained with BJ 248 variety. When the similar experiments were conducted with unsterile sweet sorghum juice (15% sugar concentration) 6.47%w/v ethanol was produced. (author)

  1. Integrative approach for utilization of olive mill wastewater and lebna's whey for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, M A; Hayek, B O; Al-Hmoud, N; Al-Gogazeh, L

    2009-09-15

    The industry of olive oil extraction in Jordan involves an intensive consumption of water and generates large quantities of olive mill wastewater (OMW). This wastewater has a high pollution risk with biological oxygen demand (BOD). The organic fraction of OMW includes sugars, tannins, polyphenols, polyalcohols, pectins and lipids. The presence of remarkable amounts of aromatic compounds in OMW is responsible for its phytotoxic and antimicrobial effects. The environmental problems and potential hazards caused by OMW had led olive oil producing countries to limit their discharge and to propose and develop new technologies for OMW treatments, such as physicochemical and biological treatments. In the present investigation lebna's whey a local byproduct of widely consumed local yogurt was used with OMW for ethanol production. The obtained results showed that the proteins of lebna's whey can remove substantial amounts of aromatic compounds present in OMW. This was reflected on the reduction of the intensity of black color of OMW and removal of 37% polyphenols. Moreover, the production of ethanol was ascertained in fermentation media composed of whey and in presence of various concentrations of OMW up to 20% OMW. The obtained results showed the possibility to develop a process for improvement and enhancement of ethanol production from whey and olive oil waste in mixed yeast cultures. (au)

  2. Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production.

    Science.gov (United States)

    Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram

    2015-07-22

    The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0-5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus.

  3. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Spyridon Achinas

    2016-09-01

    Full Text Available Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be used as fuel with significant characteristics like high octane number, low cetane number and high heat of vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower vapor pressure, miscibility with water, and toxicity to ecosystems. One crucial problem with bioethanol fuel is the availability of raw materials. The supply of feedstocks for bioethanol production can vary season to season and depends on geographic locations. Lignocellulosic biomass, such as forest-based woody materials, agricultural residues and municipal waste, is prominent feedstock for bioethanol cause of its high availability and low cost, even though the commercial production has still not been established. In addition, the supply and the attentive use of microbes render the bioethanol production process highly peculiar. Many conversion technologies and techniques for biomass-based ethanol production are under development and expected to be demonstrated. In this work a technological analysis of the biochemical method that can be used to produce bioethanol is carried out and a review of current trends and issues is conducted.

  4. Guide to commercial-scale ethanol production and financing

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    This document is designed to lead the potential investor through all the steps necessary to develop a business plan and prepare a feasibility analysis for a site-specific project. Emphasis is placed on marketing, financing, management, and incentives rather than primarily technical matters. The introduction provides an overview of the perspectives and issues in the alcohol fuels industry. Chapter II seeks to surface factors which affect the decisionmaking process. The chapter attempts to lead the investor step-by-step through the series of decisions and choices to be made before reaching the final decision to enter the business. Chapter III describes the types of feedstocks available and relates them to areas within the United States. Trends and fluctuations in the price of the major grain feedstocks are also discussed in terms of their potential use and value compared to other feeds. Chapter IV discusses the market potential of ethanol and its coproducts, and examines how the location of the ethanol markets in relation to those of the feedstock supplies may influence selection of a plant site. Various aspects of plant design are discussed. A 50 million gallon per year plant is analyzed to provide the general technical background and costing data required in analyzing plants of various sizes and designs. Safety aspects and environmental concerns are treated in Chapters VI and VII. The regulations are reviewed and their impact on plant design and operation is discussed. The basic elements of a business plan are described which lead to an approach for development of the feasibility study. Other information on financial assistance, regulations, current legislation, and reference material is given in the Appendices.

  5. Fuel ethanol discussion paper

    International Nuclear Information System (INIS)

    1992-01-01

    In recognition of the potential benefits of ethanol and the merits of encouraging value-added agricultural development, a committee was formed to develop options for the role of the Ontario Ministry of Agriculture and Food in the further development of the ethanol industry in Ontario. A consultation with interested parties produced a discussion paper which begins with an outline of the role of ethanol as an alternative fuel. Ethanol issues which require industry consideration are presented, including the function of ethanol as a gasoline oxygenate or octane enhancer, environmental impacts, energy impacts, agricultural impacts, trade and fiscal implications, and regulation. The ethanol industry and distribution systems in Ontario are then described. The current industry consists of one ethanol plant and over 30 retail stations. The key issue for expanding the industry is the economics of producing ethanol. At present, production of ethanol in the short term depends on tax incentives amounting to 23.2 cents/l. In the longer term, a significant reduction in feedstock costs and a significant improvement in processing technology, or equally significant gasoline price increases, will be needed to create a sustainable ethanol industry that does not need incentives. Possible roles for the Ministry are identified, such as support for ethanol research and development, financial support for construction of ethanol plants, and active encouragement of market demand for ethanol-blended gasolines

  6. Bio-ethanol Production from Green Onion by Yeast in Repeated Batch.

    Science.gov (United States)

    Robati, Reza

    2013-09-01

    Considered to be the cleanest liquid fuel, bio-ethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from Green onion (Allium fistulosum L.) by the yeast "Saccharomyces cerevisiae" in repeated batch. The results showed that the total sugar concentration of onion juice was 68.4 g/l. The maximum rate of productivity, ethanol yield and final bio-ethanol percentage was 7 g/l/h (g ethanol per liter of onion juice per hour), 35 g/l (g ethanol per liter of onion juice) and 90 %, respectively.

  7. Pre-treatment and ethanol fermentation potential of olive pulp at different dry matter concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Haagensen, Frank [Bioprocess Science and Technology group, Biocentrum-DTU, Building 227, Technical University of Denmark, 2800 Lyngby (Denmark); Skiadas, Ioannis V.; Gavala, Hariklia N.; Ahring, Birgitte K. [Bioprocess Science and Technology group, Biocentrum-DTU, Building 227, Technical University of Denmark, 2800 Lyngby (Denmark); Copenhagen Institute of Technology (Aalborg University Copenhagen), Section for Sustainable Biotechnology, Department of Biotechnology, Chemistry and Environmental Engineering, Lautrupvang 15, DK 2750 Ballerup (Denmark)

    2009-11-15

    Renewable energy sources have received increased interest from the international community with biomass being one of the oldest and the most promising ones. In the concept of exploitation of agro-industrial residues, the present study investigates the pre-treatment and ethanol fermentation potential of the olive pulp, which is the semi solid residue generated from the two-phase processing of the olives for olive oil production. Wet oxidation and enzymatic hydrolysis have been applied aiming at the enhancement of carbohydrates' bioavailability. Different concentrations of enzymes and enzymatic durations have been tested. Both wet oxidation and enzymic treatment were evaluated based on the ethanol obtained in a subsequent fermentation step by Saccharomyces cerevisiae and Thermoanaerobacter mathranii. It was found that a four-day hydrolysis time was adequate for a satisfactory release of glucose and xylose. The combination of wet oxidation and enzymatic hydrolysis resulted in the glucose and xylose concentration increase of 138 and 444%, respectively, compared to 33 and 15% with only enzymes added. However, the highest ethanol production was obtained when only enzymic pre-treatment was applied, implying that wet oxidation is not a recommended pre-treatment process for olive pulp at the conditions tested. It was also showed that increased dry matter concentration did not have a negative effect on the release of sugars, indicating that the cellulose and xylan content of the olive pulp is relatively easily available. The results of the experiments in batch processes clearly emphasize that the simultaneous saccharification and fermentation (SSF) mode is advantageous in comparison with the separate hydrolysis and fermentation (SHF) mode concerning process contamination. (author)

  8. Influence of pressure and humidity on ethanol distillery power production

    International Nuclear Information System (INIS)

    Zumalacarregui de Cardenas, Lourdes; Perez Ones, Osney; Rodriguez Ramos, Pedro; Lombardi, Geraldo

    2011-01-01

    A distillery for the Generation of Renewable Energy Integrated to Food Production (GERIPA), that produces 125 000 L/day of ethanol, presents advantages in comparison with the traditional distilleries. In this paper the available thermal energy in sugar cane and sorghum, bagasse and straw, and also in biogas are calculated. This energy produces vapor for the process and electricity, using a boiler with 88 % of efficiency and a two stages with intermediate extraction turbine. The dependence of electric power surplus with vapor pressure is evaluated, finding that between 60 and 100 MPa, the electric power surplus reaches 7.15 to 7.82 MW. This electricity can be send to the electro-energetic system. The effective efficiency is calculated for 6 to 10 MPa finding values lower than 25 %. It is shown that a bagasse dryer can be used to increase the efficiency. (author)

  9. Ethanol production from marine algal hydrolysates using Escherichia coli KO11.

    Science.gov (United States)

    Kim, Nag-Jong; Li, Hui; Jung, Kwonsu; Chang, Ho Nam; Lee, Pyung Cheon

    2011-08-01

    Algae biomass is a potential raw material for the production of biofuels and other chemicals. In this study, biomass of the marine algae, Ulva lactuca, Gelidium amansii,Laminaria japonica, and Sargassum fulvellum, was treated with acid and commercially available hydrolytic enzymes. The hydrolysates contained glucose, mannose, galactose, and mannitol, among other sugars, at different ratios. The Laminaria japonica hydrolysate contained up to 30.5% mannitol and 6.98% glucose in the hydrolysate solids. Ethanogenic recombinant Escherichia coli KO11 was able to utilize both mannitol and glucose and produced 0.4g ethanol per g of carbohydrate when cultured in L. japonica hydrolysate supplemented with Luria-Bertani medium and hydrolytic enzymes. The strategy of acid hydrolysis followed by simultaneous enzyme treatment and inoculation with E. coli KO11 could be a viable strategy to produce ethanol from marine alga biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Integrated Process for Extraction of Wax as a Value-Added Co-Product and Improved Ethanol Production by Converting Both Starch and Cellulosic Components in Sorghum Grains

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2018-02-01

    Full Text Available Grain sorghum is a potential feedstock for fuel ethanol production due to its high starch content, which is equivalent to that of corn, and has been successfully used in several commercial corn ethanol plants in the United States. Some sorghum grain varieties contain significant levels of surface wax, which may interact with enzymes and make them less efficient toward starch hydrolysis. On the other hand, wax can be recovered as a valuable co-product and as such may help improve the overall process economics. Sorghum grains also contain lignocellulosic materials in the hulls, which can be converted to additional ethanol. An integrated process was developed, consisting of the following steps: 1. Extraction of wax with boiling ethanol, which is the final product of the proposed process; 2. Pretreatment of the dewaxed grains with dilute sulfuric acid; 3. Mashing and fermenting of the pretreated grains to produce ethanol. During the fermentation, commercial cellulase was also added to release fermentable sugars from the hulls, which then were converted to additional ethanol. The advantages of the developed process were illustrated with the following results: (1 Wax extracted (determined by weight loss: ~0.3 wt % of total mass. (2 Final ethanol concentration at 25 wt % solid using raw grains: 86.1 g/L. (3 Final ethanol concentration at 25 wt % solid using dewaxed grains: 106.2 g/L (23.3% improvement. (4 Final ethanol concentration at 25 wt % solid using dewaxed and acid-treated grains (1 wt % H2SO4 plus cellulase (CTec2: 117.8 g/L (36.8% improvement.

  11. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    2013-01-01

    produces ethanol, solid biofuel, molasses, and is able to produce district heating hot water. Considering all products equally valuable, the exergy efficiency of the ethanol facility was found to be 0.790 during integrated operation with zero district heating production, and 0.852 during integrated...

  12. Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis

    NARCIS (Netherlands)

    van der Heijden, H.H.J.L.; Ptasinski, K.J.

    2012-01-01

    In this paper an exergy analysis of thermochemical ethanol production from biomass is presented. This process combines a steam-blown indirect biomass gasification of woody feedstock, with a subsequent conversion of produced syngas into ethanol. The production process involves several process

  13. Evaluation of the multi-seeded (msd) mutant of sorghum for ethanol production

    Science.gov (United States)

    Grain sorghum [Sorghum bicolor (L.) Moench], a cost effective crop in semiarid regions, is an underestimated supplement to corn in starch based ethanol production. Twenty three multi-seeded (msd) mutant sorghums and one wild type sorghum BTx623 were evaluated for ethanol production and effect of che...

  14. The sustainability of Brazilian ethanol-An assessment of the possibilities of certified production

    International Nuclear Information System (INIS)

    Smeets, Edward; Junginger, Martin; Faaij, Andre; Walter, Arnaldo; Dolzan, Paulo; Turkenburg, Wim

    2008-01-01

    In this article the environmental and socio-economical impacts of the production of ethanol from sugarcane in the state of Sao Paulo (Brazil) are evaluated. Subsequently, an attempt is made to determine to what extent these impacts are a bottleneck for a sustainable and certified ethanol production. Seventeen environmental and socio-economic areas of concern are analysed. Four parameters are used to evaluate if an area of concern is a bottleneck: (1) the importance of the area of concern, based on the severity of the impact and the frequency of which an aspect is mentioned in the literature as an area of concern, (2) the availability of indicators and criteria, (3) the necessity of improvement strategies to reach compliance with Brazilian and/or (inter) national legislation, standards, guidelines and sustainability criteria, and (4) the impact of these improvement strategies on the costs and potential of ethanol production. Fourteen areas of concern are classified as a minor or medium bottleneck. For 7 areas of concern the additional costs to avoid or reduce undesirable effects have been calculated at ≤+10% for each area of concern. Due to higher yields and overlapping costs the total additional production costs of compliance with various environmental and socio-economic criteria are about +36%. This study also shows that the energy input to output ratio can be increased and the greenhouse gas emissions reduced by increasing the ethanol production per tonne cane and by increasing the use of sugarcane waste for electricity production. A major bottleneck for a sustainable and certified production is the increase in cane production and the possible impacts on biodiversity and the competition with food production. Genetically modified cane is presently being developed, but is at this moment not (yet) applied. Both a ban on and the allowance of the use of genetically modified cane could become a major bottleneck considering the potentially large benefits and

  15. Ethanol production from hydrothermal pretreated corn stover with a loop reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda [National Lab for Sustainable Energy, Biosystems Department, Risoe-DTU, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2010-03-15

    Hydrothermal pretreatment on raw corn stover (RCS) with a loop reactor was investigated at 195 C for different times varying between 10 min and 30 min. After pretreatment, the slurry was separated into water-insoluble solid (WIS) and liquid phase. Glucan and xylan were found in the both phases. The pretreatment condition showed a significant impact on xylan recovery. As the pretreatment time prolonged from 10 min to 30 min, the xylan recovery from liquid phase changed between 39.5% and 45.6% and the total xylan recoveries decreased from 84.7% to 61.6%. While the glucan recovery seemed not sensitive to the different pretreatment times. The glucan recovered from liquid was from 4.9% to 5.6% and the total glucan recoveries from all the pretreatments were higher than 98%. Besides HMF and furfural, acetic, lactic, formic and glycolic acids were also found in the liquid phase. All the concentrations of these potential inhibitors were lower enough not to affect the activity of the Saccharomyces cerevisiae (S. cerevisiae). Compared with the ethanol production of 32.4% from the RCS with S. cerevisiae, all the WISs gave higher ethanol productions ranging between 61.2% and 71.2%. When the xylan was taken into consideration, the best pretreatment condition would be 195 C, 15 min and the estimated total ethanol production was 201 g kg{sup -1} RCS by assuming the fermentation of both C-6 and C-5 with the ethanol yield of 0.51 g g{sup -1} and 0.47 g g{sup -1}, respectively. (author)

  16. Ethanol production from hydrothermal pretreated corn stover with a loop reactor

    International Nuclear Information System (INIS)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    Hydrothermal pretreatment on raw corn stover (RCS) with a loop reactor was investigated at 195 o C for different times varying between 10 min and 30 min. After pretreatment, the slurry was separated into water-insoluble solid (WIS) and liquid phase. Glucan and xylan were found in the both phases. The pretreatment condition showed a significant impact on xylan recovery. As the pretreatment time prolonged from 10 min to 30 min, the xylan recovery from liquid phase changed between 39.5% and 45.6% and the total xylan recoveries decreased from 84.7% to 61.6%. While the glucan recovery seemed not sensitive to the different pretreatment times. The glucan recovered from liquid was from 4.9% to 5.6% and the total glucan recoveries from all the pretreatments were higher than 98%. Besides HMF and furfural, acetic, lactic, formic and glycolic acids were also found in the liquid phase. All the concentrations of these potential inhibitors were lower enough not to affect the activity of the Saccharomyces cerevisiae (S. cerevisiae). Compared with the ethanol production of 32.4% from the RCS with S. cerevisiae, all the WISs gave higher ethanol productions ranging between 61.2% and 71.2%. When the xylan was taken into consideration, the best pretreatment condition would be 195 o C, 15 min and the estimated total ethanol production was 201 g kg -1 RCS by assuming the fermentation of both C-6 and C-5 with the ethanol yield of 0.51 g g -1 and 0.47 g g -1 , respectively.

  17. Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum.

    Science.gov (United States)

    Rasmussen, M L; Shrestha, P; Khanal, S K; Pometto, A L; Hans van Leeuwen, J

    2010-05-01

    Degradation of lignocellulosic biomass to sugars through a purely biological process is a key to sustainable biofuel production. Hydrolysis of the corn wet-milling co-product-corn fiber-to simple sugars by the brown rot fungus Gloeophyllum trabeum was studied in suspended-culture and solid-state fermentations. Suspended-culture experiments were not effective in producing harvestable sugars from the corn fiber. The fungus consumed sugars released by fungal extracellular enzymes. Solid-state fermentation demonstrated up to 40% fiber degradation within 9days. Enzyme activity assays on solid-state fermentation filtrates confirmed the involvement of starch- and cellulose-degrading enzymes. To reduce fungal consumption of sugars and to accelerate enzyme activity, 2- and 3-d solid-state fermentation biomasses (fiber and fungus) were submerged in buffer and incubated at 37 degrees C without shaking. This anaerobic incubation converted up to almost 11% of the corn fiber into harvestable reducing sugars. Sugars released by G. trabeum were fermented to a maximum yield of 3.3g ethanol/100g fiber. This is the first report, to our knowledge, of G. trabeum fermenting sugar to ethanol. The addition of Saccharomyces cerevisiae as a co-culture led to more rapid fermentation to a maximum yield of 4.0g ethanol/100g fiber. The findings demonstrate the potential for this simple fungal process, requiring no pretreatment of the corn fiber, to produce more ethanol by hydrolyzing and fermenting carbohydrates in this lignocellulosic co-product. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production

    International Nuclear Information System (INIS)

    Fan, Senqing; Xiao, Zeyi; Li, Minghai; Li, Sizhong

    2016-01-01

    Graphical abstract: Pervaporation membrane bioreactor with permeate partial condensation and mechanical vapor compression is developed for an energy efficient ethanol production. - Highlights: • PVMBR-MVC for energy efficient ethanol production. • Process separation factor of 20–44 for ethanol achieved by fractional condensation. • Energy production of 20.25 MJ and hourly energy production of 56.25 kJ/h achieved. • Over 50% of energy saved in PVMBR-MVC compared with PVMBR-LTC. • Integrated heat pump with COP of 7–9 for the energy recovery of the permeate. - Abstract: Improved process separation factor and heat integration are two key issues to increase the energy efficiency of ethanol production in a pervaporation membrane bioreactor (PVMBR). A PVMBR with permeate fractional condensation and mechanical vapor compression was developed for energy efficient ethanol production. A condensation model based on the mass balance and thermodynamic equilibrium in the partial vacuum condenser was developed for predicting the purification performance of the permeate vapor. Three runs of ethanol fermentation-pervaporation experiment were carried out and ethanol concentration of higher than 50 wt% could be achieved in the final condensate, with the separation factor of the process for ethanol increased to 20. Ethanol production could be enhanced in the bioreactor and 17.1 MJ of the energy could be produced in per liter of fermentation broth, owing to 27.0 MJ/kg heating value of the recovered ethanol. Compared with the traditional pervaporation process with low temperature condensation for ethanol production, 50% of the energy would be saved in the process. The energy consumption would be further reduced, if the available energy of the permeate vapor was utilized by integrating the mechanical vapor compression heat pump.

  19. A Shortcut to the Production of High Ethanol Concentration from Jerusalem Artichoke Tubers

    Directory of Open Access Journals (Sweden)

    Wei-Guo Zhang

    2005-01-01

    Full Text Available Aspergillus niger SL-09, a newly isolated exoinulinase-hyperproducing strain, and Saccharomyces cerevisiae Z-06, with high ethanol tolerance, were used in a fed-batch process for simultaneous saccharification and fermentation of Jerusalem artichoke tuber mash and flour. S. cerevisiae Z-06 utilized 98 % of the total sugar and produced 19.6 % of ethanol in 48 h. In this process the conversion efficiency of the fermentation of Jerusalem artichoke and the production of ethanol were 90 % of the theoretical ethanol yield and the cost of the production of flour was cut nearly into half.

  20. Effect of xylose and nutrients concentration on ethanol production by a newly isolated extreme thermophilic bacterium

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    An extreme thermophilic ethanol-producing strain was isolated from an ethanol high-yielding mixed culture, originally isolated from a hydrogen producing reactor operated at 70 °C. Ethanol yields were assessed with increasing concentrations of xylose, up to 20 g/l. The ability of the strain to gro...... product under most of the conditions tested, including in media lacking vitamins, peptone and yeast extract. The results indicate that this new organism is a promising candidate for the development of a second generation bio-ethanol production process. © IWA Publishing 2011....

  1. Ethanol and agriculture: Effect of increased production on crop and livestock sectors. Agricultural economic report

    International Nuclear Information System (INIS)

    House, R.; Peters, M.; Baumes, H.; Disney, W.T.

    1993-05-01

    Expanded ethanol production could increase US farm income by as much as $1 billion (1.4 percent) by 2000. Because corn is the primary feedstock for ethanol, growers in the Corn Belt would benefit most from improved ethanol technology and heightened demand. Coproducts from the conversion process (corn gluten meal, corn gluten feed, and others) compete with soybean meal, soybean growers in the South may see revenues decline. The US balance of trade would improve with increased ethanol production as oil import needs decline

  2. Pathway engineering to improve ethanol production by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  3. Development of combined nanofiltration and forward osmosis process for production of ethanol from pretreated rice straw.

    Science.gov (United States)

    Shibuya, Masafumi; Sasaki, Kengo; Tanaka, Yasuhiro; Yasukawa, Masahiro; Takahashi, Tomoki; Kondo, Akihiko; Matsuyama, Hideto

    2017-07-01

    A membrane process combining nanofiltraion (NF) and forward osmosis (FO) was developed for the sugar concentration with the aim of high bio-ethanol production from the liquid fraction of rice straw. The commercial NF membrane, ESNA3, was more adequate for removal of fermentation inhibitors (such as acetic acid) than the FO membrane, whereas the commercial FO membrane, TFC-ES, was more adequate for concentration of the sugars than the NF membrane. The liquid fraction was subjected to the following process: NF concentration with water addition (NF (+H2O) )→enzymatic hydrolysis→FO concentration. This NF (+H2O) -FO hybrid process generated a total sugar content of 107g·L -1 . Xylose-assimilating S. cerevisiae produced 24g·L -1 ethanol from the liquid fraction that was diluted 1.5-fold and then concentrated by the NF (+H2O) -FO hybrid process. The NF (+H2O) -FO hybrid process has the potential for optimized ethanol production from pretreated lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Production of hydrogen from bio-ethanol in catalytic membrane reactor

    International Nuclear Information System (INIS)

    Gernot, E.; Aupretre, F.; Deschamps, A.; Etievant, C.; Epron, F.; Marecot, P.; Duprez, D.

    2006-01-01

    Production of hydrogen from renewable energy sources offers a great potential for CO 2 emission reduction, responsible for global warming. Among renewable energies, liquid biofuels are very convenient hydrogen carriers for decentralized applications such as micro-cogeneration and transports. Ethanol, produced from sugar plants and cereals, allows a reduction of more than 60% of CO 2 emissions in comparison to gasoline. BIOSTAR is an R and D project, co-funded by the French Agency for Environment and Energy Management (ADEME) which aims at developing an efficient source of hydrogen from bio-ethanol, suitable for proton exchange membrane fuel cell systems. The objectives are to obtain, through catalytic process at medium temperature range, an efficient conversion of bio-ethanol into pure hydrogen directly usable for PEMFC. CETH has developed a catalytic membrane reformer (CMR), based on a patented technology, integrating a steam reforming catalyst as well as a combustion catalyst. Both catalysts have been developed and optimized for membrane reactor in partnership with the University of Poitiers. The composite metallic membrane developed by CETH allows hydrogen extraction near the hydrogen production sites, which enhances both efficiency and compactness. (authors)

  5. Analysis of transesterification comparing processes with methanol and ethanol for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Zorzeto, Thais Queiroz; Park, Kil Jin [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@feagri.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    The increasing demand for energy on the industrialized world stimulates researches in a renewable fuel. Biodiesel appears like an alternative and utilizes a vegetable oil or animal fat as raw material. The most common method for conversion of the raw material in fuel that can be utilized in Diesel engines is called transesterification. Brazil has a big agricultural potential to produce grains and oils. One of them is the peanut oil that is predominantly cultivated in the southeast of Brazil. There is a prevision that the peanut production reaches 232 thousand tons this year. In this work was evaluated the methanol transesterification and ethanol transesterification of peanut oil using a basic catalyst. The comparison between reactions with the two alcohols showed that methyl esters yield was greater than ethyl esters, with maximum yield of 88.04% for methanol and 84.64% for ethanol. Besides the higher yield, reactions with methanol are easily conducted than with ethanol, the biodiesel purification treatment of final product is quickly and the separation between esters and glycerol is instantaneous. (author)

  6. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers

    Science.gov (United States)

    Junyong Zhu; Ronald Sabo; Xiaolin Luo

    2011-01-01

    This study demonstrates the feasibility of integrating the production of nano-fibrillated cellulose (NFC), a potentially highly valuable biomaterial, with sugar/biofuel (ethanol) from wood fibers. Commercial cellulase enzymes were used to fractionate the less recalcitrant amorphous cellulose from a bleached Kraft eucalyptus pulp, resulting in a highly crystalline and...

  7. Efficient ethanol production from beetle-killed lodgepole pine using SPORL technology and Saccharomyces cerevisiae without detoxification

    Science.gov (United States)

    Junyong Zhu; Xiaolin Luo; Shen Tian; Roland Gleisner; Jose Negron; Eric Horn

    2011-01-01

    This study applied Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) to evaluate the potential of mountain pine beetle-killed lodgepole pine for ethanol production using conventional Saccharomyces cerevisiae without hydrolysate detoxification. The results indicate that the beetle-killed trees are more susceptible to SPORL pretreatment than live...

  8. Evaluation of mountain beetle-infested lodgepole pine for cellulosic ethanol production by sulfite pretreatment to overcome recalcitrance of lignocellulose

    Science.gov (United States)

    X. Luo; R. Gleisner; S. Tian; J. Negron; W. Zhu; E. Horn; X. J. Pan; J. Y. Zhu

    2010-01-01

    The potentials of deteriorated mountain pine beetle (Dendroctonus ponderosae)-killed lodgepole pine (Pinus contorta) trees for cellulosic ethanol production were evaluated using the sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) process. The trees were harvested from two sites in the United States Arapaho-Roosevelt National Forest, Colorado....

  9. [Optimization of fuel ethanol production from kitchen waste by Plackett-Burman design].

    Science.gov (United States)

    Ma, Hong-Zhi; Gong, Li-Juan; Wang, Qun-Hui; Zhang, Wen-Yu; Xu, Wen-Long

    2008-05-01

    Kitchen garbage was chosen to produce ethanol through simultaneous saccharification and fermentation (SSF) by Zymomonas mobilis. Plackett-Burman design was employed to screen affecting parameters during SSF process. The parameters were divided into two parts, enzymes and nutritions. None of the nutritions added showed significant effect during the experiment, which demonstrated that the kitchen garbage could meet the requirement of the microorganism without extra supplementation. Protease and glucoamylase were determined to be affecting factors for ethanol production. Single factor experiment showed that the optimum usage of these two enzymes were both 100 U/g and the corresponding maximum ethanol was determined to be 53 g/L. The ethanol yield could be as high as 44%. The utilization of kitchen garbage to produce ethanol could reduce threaten of waste as well as improve the protein content of the spent. This method could save the ethanol production cost and benefit for the recycle of kitchen garbage.

  10. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.

    Science.gov (United States)

    Svetlitchnyi, Vitali A; Kensch, Oliver; Falkenhan, Doris A; Korseska, Svenja G; Lippert, Nadine; Prinz, Melanie; Sassi, Jamaleddine; Schickor, Anke; Curvers, Simon

    2013-02-28

    Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermophilic anaerobes at temperatures of 55°C-60°C. We have specifically screened for cellulolytic bacteria growing at temperatures >70°C to enable direct conversion of lignocellulosic materials into ethanol. Seven new strains of extremely thermophilic anaerobic cellulolytic bacteria of the genus Caldicellulosiruptor and eight new strains of extremely thermophilic xylanolytic/saccharolytic bacteria of the genus Thermoanaerobacter isolated from environmental samples exhibited fast growth at 72°C, extensive lignocellulose degradation and high yield ethanol production on cellulose and pretreated lignocellulosic biomass. Monocultures of Caldicellulosiruptor strains degraded up to 89-97% of the cellulose and hemicellulose polymers in pretreated biomass and produced up to 72 mM ethanol on cellulose without addition of exogenous enzymes. In dual co-cultures of Caldicellulosiruptor strains with Thermoanaerobacter strains the ethanol concentrations rose 2- to 8.2-fold compared to cellulolytic monocultures. A co-culture of Caldicellulosiruptor DIB 087C and Thermoanaerobacter DIB 097X was particularly effective in the conversion of cellulose to ethanol, ethanol comprising 34.8 mol% of the total organic products. In contrast, a co-culture of Caldicellulosiruptor saccharolyticus DSM 8903 and Thermoanaerobacter mathranii subsp. mathranii DSM 11426 produced only low amounts of ethanol. The newly discovered Caldicellulosiruptor sp. strain DIB 004C was capable of producing unexpectedly large amounts of ethanol from lignocellulose in fermentors. The established co-cultures of new Caldicellulosiruptor

  11. Fuel ethanol production from sweet sorghum using repeated-batch fermentation.

    Science.gov (United States)

    Chohnan, Shigeru; Nakane, Megumi; Rahman, M Habibur; Nitta, Youji; Yoshiura, Takanori; Ohta, Hiroyuki; Kurusu, Yasurou

    2011-04-01

    Ethanol was efficiently produced from three varieties of sweet sorghum using repeated-batch fermentation without pasteurization or acidification. Saccharomyces cerevisiae cells could be recycled in 16 cycles of the fermentation process with good ethanol yields. This technique would make it possible to use a broader range of sweet sorghum varieties for ethanol production. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Enhanced ethanol production from brewer's spent grain by a Fusarium oxysporum consolidated system

    Directory of Open Access Journals (Sweden)

    Christakopoulos Paul

    2009-02-01

    Full Text Available Abstract Background Brewer's spent grain (BG, a by-product of the brewing process, is attracting increasing scientific interest as a low-cost feedstock for many biotechnological applications. BG in the present study is evaluated as a substrate for lignocellulolytic enzyme production and for the production of ethanol by the mesophilic fungus Fusarium oxysporum under submerged conditions, implementing a consolidated bioconversion process. Fermentation experiments were performed with sugar mixtures simulating the carbohydrate content of BG in order to determine the utilization pattern that could be expected during the fermentation of the cellulose and hemicellulose hydrolysate of BG. The sugar mixture fermentation study focused on the effect of the initial total sugar concentration and on the effect of the aeration rate on fermenting performance of F. oxysporum. The alkali pretreatment of BG and different aeration levels during the ethanol production stage were studied for the optimization of the ethanol production by F. oxysporum. Results Enzyme yields as high as 550, 22.5, 6.5, 3225, 0.3, 1.25 and 3 U per g of carbon source of endoglucanase, cellobiohydrolase, β-D-glucosidase, xylanase, feruloyl esterase, β-D-xylosidase and α-L-arabinofuranosidase respectively, were obtained during the growth stage under optimized submerged conditions. An ethanol yield of 109 g ethanol per kg of dry BG was obtained with alkali-pretreated BG under microaerobic conditions (0.01 vvm, corresponding to 60% of the theoretical yield based on total glucose and xylose content of BG. Conclusion The enzymatic profile of the extracellular extract from F. oxysporum submerged cultures using BG and corn cob as the carbon source was proved efficient for a successful hydrolysis of BG. The fermentation study carried out using sugar mixtures simulating BG's carbohydrates content and consecutively alkali-pretreated and untreated BG, indicates that BG hydrolysis is the bottleneck

  13. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production.

    Science.gov (United States)

    Zhao, X Q; Bai, F W

    2009-10-12

    Yeast strains of Saccharomyces cerevisiae have been extensively studied in recent years for fuel ethanol production, in which yeast cells are exposed to various stresses such as high temperature, ethanol inhibition, and osmotic pressure from product and substrate sugars as well as the inhibitory substances released from the pretreatment of lignocellulosic biomass. An in-depth understanding of the mechanism of yeast stress tolerance contributes to breeding more robust strains for ethanol production, especially under very high gravity conditions. Taking advantage of the "omics" technology, the stress response and defense mechanism of yeast cells during ethanol fermentation were further explored, and the newly emerged tools such as genome shuffling and global transcription machinery engineering have been applied to breed stress resistant yeast strains for ethanol production. In this review, the latest development of stress tolerance mechanisms was focused, and improvement of yeast stress tolerance by both random and rational tools was presented.

  14. Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway

    Science.gov (United States)

    The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...

  15. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    Science.gov (United States)

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production

  16. Characterisation of thermotolerant, ethanol tolerant fermentative Saccharomyces cerevisiae for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Kiransree, N.; Sridhar, M.; Venkateswar Rao, L. [Department of Microbiology, Osmania University, Hyderabad (India)

    2000-03-01

    Of the four thermotolerant, osmotolerant, flocculating yeasts (VS{sub 1}, VS{sub 2}, VS{sub 3} and VS{sub 4}) isolated from the soil samples collected within the hot regions of Kothagudem Thermal Power Plant, located in Khammam Dt., Andhra Pradesh, India, VS{sub 1} and VS{sub 3} were observed as better performers. They were identified as Saccharomyces cerevisiae. VS{sub 1} and VS{sub 3} were tested for their growth characteristics and fermentation abilities on various carbon sources including molasses at 30 C and 40 C respectively. More biomass and fermentation was observed in sucrose, fructose and glucose. Maximum amount of ethanol produced by VS{sub 3} containing 150 (g/l) of these substrates were 74, 73, and 72 (g/l) at 30 C and 64, 61 and 63 (g/l) at 40 C respectively. With molasses containing 14% sugar, the amount of ethanol produced by VS{sub 3} was 53.2 and 45 (g/l) at 30 C and 40 C respectively. VS{sub 3} strain showed 12% W/V ethanol tolerance. VS{sub 3} strain was also characterised for its ethanol producing ability using various starchy substrates in solid state and submerged fermentation. More ethanol was produced in submerged than solid state fermentation. (orig.)

  17. Continuous ethanol production from sugar beet molasses using an osmotolerant mutant strain of zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.C.; Baratti, J.C. (Univ. de Provence, Marseille (France). Centre National de la Recherche Scientifique)

    1992-01-25

    In conventional alcohol fermentation processes using yeast species, the substrate cost represents a major fraction of the total production cost. Therefore, it may be very attractive to use the bacterium Zymomonas mobilis, since it has shown higher ethanol yields than yeasts when grown on a glucose-based medium. A report is made on the use of mutant strain of Zymomonas mobilis for ethanol production from hydrolyzed sugar beet molasses in a two-stage continuous culture which showed high ethanol yield and an ethanol concentration sufficiently high for economical recovery. A single stage continuous culture was first operated in an attempt to reduce the formation of sorbitol. Further on, a second fermentor was added with additional substrate feeding to increase the effluent ethanol concentration. An ethanol concentration of 59.9g/l was obtained at 97% sugar conversion and at high ethanol yield. The volumetric ethanol productivity was superior to that of batch fermentation but inferior to that of a single-stage continuous system with the same medium. However, the ethanol concentration was increased to a level acceptable for economical recovery. 18 refs., 3 figs., 5 tabs.

  18. Utilizing protein-lean coproducts from corn containing recombinant pharmaceutical proteins for ethanol production.

    Science.gov (United States)

    Paraman, Ilankovan; Moeller, Lorena; Scott, M Paul; Wang, Kan; Glatz, Charles E; Johnson, Lawrence A

    2010-10-13

    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were evaluated as a potential feedstock to produce fuel ethanol. The levels of residual r-proteins in the coproduct, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein (r-GFP) and a recombinant subunit vaccine of Escherichia coli enterotoxin (r-LTB), primarily expressed in endosperm, and another two corn lines containing recombinant human collagen (r-CIα1) and r-GFP, primarily expressed in germ, were used as model systems. The kernels were either ground and used for fermentation or dry fractionated to recover germ-rich fractions prior to grinding for fermentation. The finished beers of whole ground kernels and r-protein-spent endosperm solids contained 127-139 and 138-155 g/L ethanol concentrations, respectively. The ethanol levels did not differ among transgenic and normal corn feedstocks, indicating the residual r-proteins did not negatively affect ethanol production. r-Protein extraction and germ removal also did not negatively affect fermentation of the remaining mass. Most r-proteins were inactivated during the mashing process used to prepare corn for fermentation. No functionally active r-GFP or r-LTB proteins were found after fermentation of the r-protein-spent solids; however, a small quantity of residual r-CIα1 was detected in DDGS, indicating that the safety of DDGS produced from transgenic grain for r-protein production needs to be evaluated for each event. Protease treatment during fermentation completely hydrolyzed the residual r-CIα1, and no residual r-proteins were detectable in DDGS.

  19. Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products

    International Nuclear Information System (INIS)

    Ebner, Jacqueline; Babbitt, Callie; Winer, Martin; Hilton, Brian; Williamson, Anahita

    2014-01-01

    Highlights: • Co-fermentation using SSF at ambient temperature has potential as an ethanol pathway. • Bio-refinery GHG emissions are similar to corn and MSW ethanol production processes. • Net production GHG impact is negative with inclusion of waste disposal avoidance. • Food waste diversion from landfills is the largest contributor to GHG benefits. - Abstract: Waste-to-ethanol conversion is a promising technology to provide renewable transportation fuel while mitigating feedstock risks and land use conflicts. It also has the potential to reduce environmental impacts from waste management such as greenhouse gas (GHG) emissions that contribute to climate change. This paper analyzes the life cycle GHG emissions associated with a novel process for the conversion of food processing waste into ethanol (EtOH) and the co-products of compost and animal feed. Data are based on a pilot plant co-fermenting retail food waste with a sugary industrial wastewater, using a simultaneous saccharification and fermentation (SSF) process at room temperature with a grinding pretreatment. The process produced 295 L EtOH/dry t feedstock. Lifecycle GHG emissions associated with the ethanol production process were 1458 gCO 2 e/L EtOH. When the impact of avoided landfill emissions from diverting food waste to use as feedstock are considered, the process results in net negative GHG emissions and approximately 500% improvement relative to corn ethanol or gasoline production. This finding illustrates how feedstock and alternative waste disposal options have important implications in life cycle GHG results for waste-to-energy pathways

  20. Evaluation of ethanol production from pito mash using Zymomonas ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... dinitrosalicylic acid (DNS) method, while analysis of ethanol content was performed using gas chromatography. ... Keywords: Pito mash, agro-industrial wastes, Zymomonas mobilis, ethanol, reducing sugars. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  1. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    OpenAIRE

    G. Morais-Silva; J. Fernandes-Santos; D. Moreira-Silva; M.T. Marin

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex int...

  2. Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom

    OpenAIRE

    Pranay Soni; Surendra H. Bodakhe

    2014-01-01

    Objective: To evaluate the antivenom potential of ethanolic extract of bark of Cordia macleodii against Naja venom induced pharmacological effects such as lethality, hemorrhagic lesion, necrotizing lesion, edema, cardiotoxicity and neurotoxicity. Methods: Wistar strain rats were challenged with Naja venom and treated with the ethanolic extract of Cordia macleodii bark. The effectiveness of the extract to neutralize the lethalities of Naja venom was investigated as recommended by WHO. Re...

  3. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production.

    Science.gov (United States)

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2015-10-01

    The challenges associated with the availability of fossil fuels in the past decades intensified the search for alternative energy sources, based on an ever-increasing demand for energy. In this context, the application of anaerobic digestion (AD) as a core treatment technology in industrial plants should be highlighted, since this process combines the pollution control of wastewaters and the generation of bioenergy, based on the conversion of the organic fraction to biogas, a methane-rich gaseous mixture that may supply the energetic demands in industrial plants. In this context, this work aimed at assessing the energetic potential of AD applied to the treatment of stillage, the main wastewater from ethanol production, in an attempt to highlight the improvements in the energy balance ratio of ethanol by inserting the heating value of methane as a bioenergy source. At least 5-15% of the global energy consumption in the ethanol industry could be supplied by the energetic potential of stillage, regardless the feedstock (i.e. sugarcane, corn or cassava). The association between bagasse combustion and stillage anaerobic digestion in sugarcane-based distilleries could provide a bioenergy surplus of at least 130% of the total fossil fuel input into the ethanol plant, considering only the energy from methane. In terms of financial aspects, the economic gains could reach US$ 0.1901 and US$ 0.0512 per liter of produced ethanol, respectively for molasses- (Brazil) and corn-based (EUA) production chains. For large-scale (∼1000 m(3)EtOH per day) Brazilian molasses-based plants, an annual economic gain of up to US$ 70 million could be observed. Considering the association between anaerobic and aerobic digestion, for the scenarios analyzed, at least 25% of the energetic potential of stillage would be required to supply the energy consumption with aeration, however, more suitable effluents for agricultural application could be produced. The main conclusion from this work

  4. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization

    OpenAIRE

    Izmirlioglu, Gulten; Demirci, Ali

    2015-01-01

    Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium componen...

  5. Effect of Sugar Concentration in Jerusalem Artichoke Extract on Kluyveromyces marxianus Growth and Ethanol Production

    OpenAIRE

    Margaritis, Argyrios; Bajpai, Pratima

    1983-01-01

    The effect of inulin sugars concentration on the growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 was studied. A maximum ethanol concentration of 102 g/liter was obtained from 250 g of sugars per liter initial concentration. The maximum specific growth rate varied from 0.44 h−1 at 50 g of sugar per liter to 0.13 h−1 at 300 g of sugar per liter, whereas the ethanol yield remained almost constant at 0.45 g of ethanol per g of sugars utilized.

  6. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Teixeira Miguel C

    2012-07-01

    Full Text Available Abstract Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC Superfamily and Major Facilitator Superfamily (MFS in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to

  7. Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol.

    Science.gov (United States)

    Silva, Luiziana Ferreira; Taciro, Marilda Keico; Raicher, Gil; Piccoli, Rosane Aparecida Moniz; Mendonça, Thatiane Teixeira; Lopes, Mateus Schreiner Garcez; Gomez, José Gregório Cabrera

    2014-11-01

    Polyhydroxyalkanoates (PHA) are biodegradable and biocompatible bacterial thermoplastic polymers that can be obtained from renewable resources. The high impact of the carbon source in the final cost of this polymer has been one of the major limiting factors for PHA production and agricultural residues, mainly lignocellulosic materials, have gained attention to overcome this problem. In Brazil, production of 2nd generation ethanol from the glucose fraction, derived from sugarcane bagasse hydrolysate has been studied. The huge amounts of remaining xylose will create an opportunity for the development of other bioprocesses, generating new products to be introduced into a biorefinery model. Although PHA production from sucrose integrated to a 1G ethanol and sugar mill has been proposed in the past, the integration of the process of 2G ethanol in the context of a biorefinery will provide enormous amounts of xylose, which could be applied to produce PHA, establishing a second-generation of PHA production process. Those aspects and perspectives are presented in this article. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    OpenAIRE

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from thes...

  9. Evaluation of Cashew Apple Juice for the Production of Fuel Ethanol

    Science.gov (United States)

    Pinheiro, Álvaro Daniel Teles; Rocha, Maria Valderez Ponte; Macedo, Gorete R.; Gonçalves, Luciana R. B.

    A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L-1 of initial sugar concentration was used. Cell yield (Yx/s) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L-1 of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.

  10. A constraint-based model of Scheffersomyces stipitis for improved ethanol production

    Directory of Open Access Journals (Sweden)

    Liu Ting

    2012-09-01

    Full Text Available Abstract Background As one of the best xylose utilization microorganisms, Scheffersomyces stipitis exhibits great potential for the efficient lignocellulosic biomass fermentation. Therefore, a comprehensive understanding of its unique physiological and metabolic characteristics is required to further improve its performance on cellulosic ethanol production. Results A constraint-based genome-scale metabolic model for S. stipitis CBS 6054 was developed on the basis of its genomic, transcriptomic and literature information. The model iTL885 consists of 885 genes, 870 metabolites, and 1240 reactions. During the reconstruction process, 36 putative sugar transporters were reannotated and the metabolisms of 7 sugars were illuminated. Essentiality study was conducted to predict essential genes on different growth media. Key factors affecting cell growth and ethanol formation were investigated by the use of constraint-based analysis. Furthermore, the uptake systems and metabolic routes of xylose were elucidated, and the optimization strategies for the overproduction of ethanol were proposed from both genetic and environmental perspectives. Conclusions Systems biology modelling has proven to be a powerful tool for targeting metabolic changes. Thus, this systematic investigation of the metabolism of S. stipitis could be used as a starting point for future experiment designs aimed at identifying the metabolic bottlenecks of this important yeast.

  11. Understanding the reductions in US corn ethanol production costs: an experience curve approach

    NARCIS (Netherlands)

    Hettinga, W.; Junginger, H.M.; Dekker, S.C.; Hoogwijk, M.; McAloon, A.; Hicks, K.

    2009-01-01

    The US is currently the world's largest ethanol producer. An increasing percentage is used as transportation fuel, but debates continue on its costs competitiveness and energy balance. In this study, technological development of ethanol production and resulting cost reductions are investigated by

  12. Integration of Succinic Acid Production in a Dry Mill Ethanol Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-08-01

    This project seeks to address both issues for a dry mill ethanol biorefinery by lowering the cost of sugars with the development of an advanced pretreatment process, improving the economics of succinic acid (SA), and developing a model of an ethanol dry mill to evaluate the impact of adding different products and processes to a dry mill.

  13. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shoubao [Huainan Normal Univ., Anhui (China). School of Life Science; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao [Chinese Academy of Sciences, Hefei (China). Key Lab. of Ion Beam Bio-engineering of Inst. of Plasma Physics

    2012-05-15

    The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 {+-} 1.86 g/l, an optimal ethanol concentration of 87.91 {+-} 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h. (orig.)

  14. Ethanol Production from Enzymatically Treated Dried Food Waste Using Enzymes Produced On-Site

    Directory of Open Access Journals (Sweden)

    Leonidas Matsakas

    2015-01-01

    Full Text Available The environmental crisis and the need to find renewable fuel alternatives have made production of biofuels an important priority. At the same time, the increasing production of food waste is an important environmental issue. For this reason, production of ethanol from food waste is an interesting approach. Volumes of food waste are reduced and ethanol production does not compete with food production. In this work, we evaluated the possibility of using source-separated household food waste for the production of ethanol. To minimize the cost of ethanol production, the hydrolytic enzymes that are necessary for cellulose hydrolysis were produced in-house using the thermophillic fungus Myceliophthora thermophila. At the initial stage of the study, production of these thermophilic enzymes was studied and optimized, resulting in an activity of 0.28 FPU/mL in the extracellular broth. These enzymes were used to saccharify household food waste at a high dry material consistency of 30% w/w, followed by fermentation. Ethanol production reached 19.27 g/L with a volumetric productivity of 0.92 g/L·h, whereas only 5.98 g/L of ethanol was produced with a volumetric productivity of 0.28 g/L·h when no enzymatic saccharification was used.

  15. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    Directory of Open Access Journals (Sweden)

    G. Morais-Silva

    2016-01-01

    Full Text Available Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol, but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  16. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    Science.gov (United States)

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  17. Hydrogen production by autothermal reforming of ethanol: pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Marin Neto, Antonio Jose; Camargo, Joao Carlos; Lopes, Daniel Gabriel; Ferreira, Paulo F.P. [Hydrogen Technology (HyTron), Campinas, SP (Brazil)], Email: antonio@hytron.com.br; Neves Junior, Newton Pimenta; Pinto, Edgar A. de Godoi Rodrigues; Silva, Ennio Peres da [Universidade Estadual de Campinas (DFA/ IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada; Furlan, Andre Luis [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    This work provides information about the development of an integrated unit for hydrogen production by auto thermal reforming of ethanol with nominal capacity of 1 kg/h H{sub 2} 4.5 (99.995%). The unit is composed by a Fuel Processing Module (FPM), resulting from auto thermal and shift reactor integration, responsible for the thermochemical step, plus an over heater of the liquid input (EtOH and H{sub 2}O), operated recovering thermal energy from PSA blown-down (H{sub 2} Purification Module - MPH2), besides other thermal equipment which completes the integration. Using a computational routine for scaling the process and preliminary performance analysis, it was possible to optimize operating conditions, essential along unit operations design. Likewise, performance estimation of the integrated unit proceeds, which shows efficiency about 72.5% from FPM. Coupled with the PSA recovery rate, 72.7%, the unit could achieve overall energy performance of 52.7%, or 74.4% working in co-generation of hydrogen and heat. (author)

  18. Ethanol production from molasses by immobilized cells of zymomonas mobilis EMCC 1546

    International Nuclear Information System (INIS)

    Meliegy, S.A.; Abdelaziz, A.H.

    2004-01-01

    Ethanol production from beet molasses by zymomonas mobilis EMCC 1546 was studied using continuous processes in which immobilized bacterial cells of Z.mobilis EMCC 1546 was grown on both sodium alginate and polyvinyl alcohol(PVA). The fermentation was performed in a shaking incubation and 1-liter ferment or with final working 750 ml. The initial sugar concentration studied was 50, 100,150, 200 and 250 g/l. The results showed that optimum initial sugar for ethanol production was 200 g/l. In batch fermentation, the highest ethanol concentration was 28.50 g/. Also effect of gamma irradiation was studied to enhance ethanol production. The highest ethanol production at dose dose 0.25 kGy was 34.82 g/l. The results showed that continuous fermentation, at dilution rate 1.36 (I/h), helped to increase the ethanol production significantly and continuous fermentation with immobilized cells in alginate gave higher ethanol production, 35.8 (g/I), as compared with those immobilized in hydrogel (PVA)

  19. Monetary value of the environmental and health externalities associated with production of ethanol from biomass feedstocks

    International Nuclear Information System (INIS)

    Kusiima, Jamil M.; Powers, Susan E.

    2010-01-01

    This research is aimed at monetizing the life cycle environmental and health externalities associated with production of ethanol from corn, corn stover, switchgrass, and forest residue. The results of this study reveal current average external costs for the production of 1 l of ethanol ranged from $0.07 for forest residue to $0.57 for ethanol production from corn. Among the various feedstocks, the external costs of PM 10 , NO X , and PM 2.5 are among the greatest contributors to these costs. The combustion of fossil fuels in upstream fertilizer and energy production processes is the primary source of these emissions and their costs, especially for corn ethanol. The combined costs of emissions associated with the production and use of nitrogen fertilizer also contribute substantially to the net external costs. For cellulosic ethanol production, the combustion of waste lignin to generate heat and power helps to keep the external costs lower than corn ethanol. Credits both for the biogenic carbon combustion and displacement of grid electricity by exporting excess electricity substantially negate many of the emissions and external costs. External costs associated with greenhouse gas emissions were not significant. However, adding estimates of indirect GHG emissions from land use changes would nearly double corn ethanol cost estimates.

  20. A novel cell factory for efficient production of ethanol from dairy waste

    DEFF Research Database (Denmark)

    Liu, Jianming; Dantoft, Shruti Harnal; Würtz, Anders

    2016-01-01

    of cheese whey or various processed forms thereof are generated. Because of their nutrient-rich nature, these substrates are particularly well suited as feedstocks for microbial production. We have generated a Lactococcus lactis strain which produces ethanol as its sole fermentation product from the lactose...... contained in residual whey permeate (RWP), by introducing lactose catabolism into a L. lactis strain CS4435 (MG1363 Δ(3) ldh, Δpta, ΔadhE, pCS4268), where the carbon flow has been directed toward ethanol instead of lactate. To achieve growth and ethanol production on RWP, we added corn steep liquor...

  1. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    Science.gov (United States)

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  2. The composition and impact of stakeholders' agendas on US ethanol production

    International Nuclear Information System (INIS)

    Talamini, Edson; Eduardo Caldarelli, Carlos; Wubben, Emiel F.M.; Dewes, Homero

    2012-01-01

    This paper aims to identify the macro-environmental dimensions under which journalists, scientists and policy-makers have framed the liquid biofuels in the US over time. The number of publications concerning liquid biofuels from mass media, scientific community and government with ethanol production are correlated, seeking for causality between ethanol production and those stakeholders' agendas. Text-mining techniques were used to explore 2016 mass-media news sources, 455 scientific papers and 854 government documents published between 1997 and 2006. Granger-causality tests were performed to analyse the causality concerning stakeholders' agendas. The results indicate that scientists emphasise environmental, agronomic and technological matters, while journalists are more interested in covering economic, environmental, geopolitical and political issues. Although policies on this subject appear to be more in line with science, the trend analysis indicates that the mass media are gaining prominence amongst policy-makers. The causation analysis suggests that ethanol production and public policy present a bi-directional causality at t-2 time lag. At t-1 time lag, ethanol production precedes the publication of scientific documents, which present a bi-directional causality with public policy on ethanol and precedes the mass-media news. In conclusion, ethanol production precedes the presence of liquid biofuels on the agendas of scientists, journalists and policy-makers. - Highlights: ► Composition and impact of stakeholders' agendas on ethanol production were analysed. ► 3325 documents published between 1997 and 2006 were text mined. ► Government agenda and ethanol production present a bi-directional causality. ► Science has played an advisory role in policy-making. ► Ethanol production precedes the stakeholders' agendas.

  3. Cassava as feedstock for ethanol production in South Africa

    African Journals Online (AJOL)

    Sanette

    2013-07-31

    Jul 31, 2013 ... substitute a minimum of 2% of the country's transportation fuel with biomass based fuels. ... and fermentation (SSF) showed the highest ethanol yield and direct ... of co-immobilized yeast cells to ferment cassava starch.

  4. Studies on reaction parameters influence on ethanolic production of coconut oil biodiesel using immobilized lipase as a catalyst

    International Nuclear Information System (INIS)

    Ribeiro, Livia M.O.; Santos, Bruno C. da S.; Almeida, Renata M.R.G.

    2012-01-01

    Biodiesel production by enzymatic catalysis has been the subject of much research for developing processes that can potentially compete with other types of catalysis. The objective of this paper was to study the variables that affect the transesterification of coconut oil in biodiesel production using immobilized enzymes as catalysts and ethanol. The transesterification reactions were carried out in closed glass reactors kept under agitation at 200 rpm and catalyzed by the commercial immobilized lipase Novozym 435. An experimental design with the variables: temperature (40–60 °C), enzyme concentration (3–7%) and oil:ethanol ratio (1:6–1:10) was carried out. The best result – 80.5% conversion – was achieved with the highest temperature, molar ratio and enzyme concentration. -- Highlights: ► Coconut oil was used to produce biodiesel by enzymatic catalysis. ► Variables that interfere in the ethanolic transesterification were studied. ► An experimental design studied: temperature; lipase concentration; oil:ethanol ratio. ► The best result was 80.5% of biodiesel under 60 °C, 7% enzyme and 1:10 of oil:ethanol.

  5. Stillage reflux in food waste ethanol fermentation and its by-product accumulation.

    Science.gov (United States)

    Ma, Hongzhi; Yang, Jian; Jia, Yan; Wang, Qunhui; Tashiro, Yukihiro; Sonomoto, Kenji

    2016-06-01

    Raw materials and pollution control are key issues for the ethanol fermentation industry. To address these concerns, food waste was selected as fermentation substrate, and stillage reflux was carried out in this study. Reflux was used seven times during fermentation. Corresponding ethanol and reducing sugar were detected. Accumulation of by-products, such as organic acid, sodium chloride, and glycerol, was investigated. Lactic acid was observed to accumulate up to 120g/L, and sodium chloride reached 0.14mol/L. Other by-products did not accumulate. The first five cycles of reflux increased ethanol concentration, which prolonged fermentation time. Further increases in reflux time negatively influenced ethanol fermentation. Single-factor analysis with lactic acid and sodium chloride demonstrated that both factors affected ethanol fermentation, but lactic acid induced more effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The impact of ethanol production on US and regional gasoline markets

    International Nuclear Information System (INIS)

    Du Xiaodong; Hayes, Dermot J.

    2009-01-01

    This study quantifies the impact of increasing ethanol production on wholesale/retail gasoline prices employing pooled regional time-series data from January 1995 to March 2008. We find that the growth in ethanol production kept wholesale gasoline prices $0.14/gallon lower than would otherwise have been the case. The negative impact of ethanol on retail gasoline prices is found to vary considerably across regions. The Midwest region has the biggest impact at $0.28/gallon, while the Rocky Mountain region had the smallest impact at $0.07/gallon. The results also indicate that the ethanol-induced reduction in gasoline prices comes at the expense of refiners' profits. We find a net welfare loss of $0.5 billion from the ethanol support policies in multiple markets.

  7. Continuous production of ethanol from hexoses and pentoses using immobilized mixed cultures of Escherichia coli strains

    Science.gov (United States)

    Unrean, Pornkamol; Srienc, Friedrich

    2010-01-01

    We have developed highly efficient ethanologenic E. coli strains that selectively consume pentoses and/or hexoses. Mixed cultures of these strains can be used to selectively adjust the sugar utilization kinetics in ethanol fermentations. Based on the kinetics of sugar utilization, we have designed and implemented an immobilized cell system for the optimized continuous conversion of sugars into ethanol. The results confirm that immobilized mixed cultures support a simultaneous conversion of hexoses and pentoses into ethanol at high yield and at a faster rate than immobilized homogenous cells. Continuous ethanol production has been maintained for several weeks at high productivity with near complete sugar utilization. The control of sugar utilization using immobilized mixed cultures can be adapted to any composition of hexoses and pentoses by adjusting the strain distribution of immobilized cells. The approach, therefore, holds promise for ethanol fermentation from lignocellulosic hydrolysates where the feedstock varies in sugar composition. PMID:20699108

  8. Expanded ethanol production: Implications for agriculture, water demand, and water quality

    International Nuclear Information System (INIS)

    De La Torre Ugarte, Daniel G.; He, Lixia; Jensen, Kimberly L.; English, Burton C.

    2010-01-01

    Feedstock production for large scale development of the U.S. ethanol industry and introduction of cellulose-to-ethanol technology will require extensive changes in land use and field management. Hence, this production will likely have significant impact on water demand and quality. This study compares two 'what if' scenarios for attaining a 227.1 hm 3 of ethanol by 2030 and 3.8 hm 3 of biodiesel by 2012. In the first scenario cellulose-to-ethanol technology is introduced in 2012, while in the second scenario the technology is delayed until 2015. Results show that the timing of introduction of cellulose-to-ethanol technology will affect the water use and water quality related input use in primarily in the eastern part of the nation. Results also suggest policy emphasis on reduced and no-till practices needs to be complementary to increased crop residue use. (author)

  9. Technological trends, global market, and challenges of bio-ethanol production.

    Science.gov (United States)

    Mussatto, Solange I; Dragone, Giuliano; Guimarães, Pedro M R; Silva, João Paulo A; Carneiro, Lívia M; Roberto, Inês C; Vicente, António; Domingues, Lucília; Teixeira, José A

    2010-01-01

    Ethanol use as a fuel additive or directly as a fuel source has grown in popularity due to governmental regulations and in some cases economic incentives based on environmental concerns as well as a desire to reduce oil dependency. As a consequence, several countries are interested in developing their internal market for use of this biofuel. Currently, almost all bio-ethanol is produced from grain or sugarcane. However, as this kind of feedstock is essentially food, other efficient and economically viable technologies for ethanol production have been evaluated. This article reviews some current and promising technologies for ethanol production considering aspects related to the raw materials, processes, and engineered strains development. The main producer and consumer nations and future perspectives for the ethanol market are also presented. Finally, technological trends to expand this market are discussed focusing on promising strategies like the use of microalgae and continuous systems with immobilized cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Changes in carbon footprint when integrating production of filamentous fungi in 1st generation ethanol plants.

    Science.gov (United States)

    Brancoli, Pedro; Ferreira, Jorge A; Bolton, Kim; Taherzadeh, Mohammad J

    2018-02-01

    Integrating the cultivation of edible filamentous fungi in the thin stillage from ethanol production is presently being considered. This integration can increase the ethanol yield while simultaneously producing a new value-added protein-rich biomass that can be used for animal feed. This study uses life cycle assessment to determine the change in greenhouse gas (GHG) emissions when integrating the cultivation of filamentous fungi in ethanol production. The result shows that the integration performs better than the current scenario when the fungal biomass is used as cattle feed for system expansion and when energy allocation is used. It performs worse if the biomass is used as fish feed. Hence, integrating the cultivation of filamentous fungi in 1st generation ethanol plants combined with proper use of the fungi can lead to a reduction of GHG emissions which, considering the number of existing ethanol plants, can have a significant global impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Major Anaerobic Bacteria Responsible for the Production of Carcinogenic Acetaldehyde from Ethanol in the Colon and Rectum.

    Science.gov (United States)

    Tsuruya, Atsuki; Kuwahara, Akika; Saito, Yuta; Yamaguchi, Haruhiko; Tenma, Natsuki; Inai, Makoto; Takahashi, Seiji; Tsutsumi, Eri; Suwa, Yoshihide; Totsuka, Yukari; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Mizukami, Takeshi; Yokoyama, Akira; Shimoyama, Takefumi; Nakayama, Toru

    2016-07-01

    The importance of ethanol oxidation by intestinal aerobes and facultative anaerobes under aerobic conditions in the pathogenesis of ethanol-related colorectal cancer has been proposed. However, the role of obligate anaerobes therein remains to be established, and it is still unclear which bacterial species, if any, are most important in the production and/or elimination of carcinogenic acetaldehyde under such conditions. This study was undertaken to address these issues. More than 500 bacterial strains were isolated from the faeces of Japanese alcoholics and phylogenetically characterized, and their aerobic ethanol metabolism was studied in vitro to examine their ability to accumulate acetaldehyde beyond the minimum mutagenic concentration (MMC, 50 µM). Bacterial strains that were considered to potentially accumulate acetaldehyde beyond the MMC under aerobic conditions in the colon and rectum were identified and referred to as 'potential acetaldehyde accumulators' (PAAs). Ruminococcus, an obligate anaerobe, was identified as a genus that includes a large number of PAAs. Other obligate anaerobes were also found to include PAAs. The accumulation of acetaldehyde by PAAs colonizing the colorectal mucosal surface could be described, at least in part, as the response of PAAs to oxidative stress. Ethanol oxidation by intestinal obligate anaerobes under aerobic conditions in the colon and rectum could also play an important role in the pathogenesis of ethanol-related colorectal cancer. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  12. Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2013-01-01

    Full Text Available Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.

  13. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ye Sun; Jay J Cheng [North Carolina State Univ., Dept. of Biological and Agricultural Engineering, Raleigh, NC (United States)

    2005-09-01

    Ethanol production from lignocellulosic materials provides an alternative energy production system. Rye and bermudagrass that are used in hog farms for nutrient uptake from swine wastewater have the potential for fuel ethanol production because they have a relative high cellulose and hemicellulose content. Dilute sulfuric acid pretreatment of rye straw and bermudagrass before enzymatic hydrolysis of cellulose was investigated in this study. The biomass at a solid loading rate of 10% was pretreated at 121 deg C with different sulfuric acid concentrations (0.6, 0.9, 1.2 and 1.5%, w/w) and residence times (30, 60, and 90 min). Total reducing sugars, arabinose, galactose, glucose, and xylose in the prehydrolyzate were analyzed. In addition, the solid residues were hydrolyzed by cellulases to investigate the enzymatic digestibility. With the increasing acid concentration and residence time, the amount of arabinose and galactose in the filtrates increased. The glucose concentration in the prehydrolyzate of rye straw was not significantly influenced by the sulfuric acid concentration and residence time, but it increased in the prehydrolyzate of bermudagrass with the increase of pretreatment severity. The xylose concentration in the filtrates increased with the increase of sulfuric acid concentration and residence time. Most of the arabinan, galactan and xylan in the biomass were hydrolyzed during the acid pretreatment. Cellulose remaining in the pretreated feedstock was highly digestible by cellulases from Trichoderma reesei. (Author)

  14. Comparing oxidative and dilute acid wet explosion pretreatment of Cocksfoot grass at high dry matter concentration for cellulosic ethanol production

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2013-01-01

    into cellulose monomeric C6 sugars was achieved for WEx condition AC-E (180°C, 15 min, and 0.2% sulfuric acid). For that condition, the highest ethanol yield of 197 g/kg DM (97% of theoretical maximum value) was achieved for SSF process by Saccharomyces cerevisiae. However, the highest concentration...... of hemicellulose C5 sugars was found for WEx pretreatment condition O2-A (160°C, 15 min, and 6 bar O2) which means that the highest potential ethanol yield was found at this moderate pretreatment condition with oxygen added. Increasing the pretreatment temperature to 180–190°C with addition of oxygen or dilute...... was investigated for cellulosic ethanol production. The biomass raw materials were pretreated using wet explosion (WEx) at 25% dry matter concentration with addition of oxygen or dilute sulfuric acid. The enzymatic hydrolysis of cellulose was significantly improved after pretreatment. The highest conversion...

  15. Increased ethanol production by deletion of HAP4 in recombinant xylose-assimilating Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsushika, Akinori; Hoshino, Tamotsu

    2015-12-01

    The Saccharomyces cerevisiae HAP4 gene encodes a transcription activator that plays a key role in controlling the expression of genes involved in mitochondrial respiration and reductive pathways. This work examines the effect of knockout of the HAP4 gene on aerobic ethanol production in a xylose-utilizing S. cerevisiae strain. A hap4-deleted recombinant yeast strain (B42-DHAP4) showed increased maximum concentration, production rate, and yield of ethanol compared with the reference strain MA-B42, irrespective of cultivation medium (glucose, xylose, or glucose/xylose mixtures). Notably, B42-DHAP4 was capable of producing ethanol from xylose as the sole carbon source under aerobic conditions, whereas no ethanol was produced by MA-B42. Moreover, the rate of ethanol production and ethanol yield (0.44 g/g) from the detoxified hydrolysate of wood chips was markedly improved in B42-DHAP4 compared to MA-B42. Thus, the results of this study support the view that deleting HAP4 in xylose-utilizing S. cerevisiae strains represents a useful strategy in ethanol production processes.

  16. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7.

    Science.gov (United States)

    Qiu, Zilong; Jiang, Rongrong

    2017-01-01

    Classical strain engineering methods often have limitations in altering multigenetic cellular phenotypes. Here we try to improve Saccharomyces cerevisiae ethanol tolerance and productivity by reprogramming its transcription profile through rewiring its key transcription component RNA polymerase II (RNAP II), which plays a central role in synthesizing mRNAs. This is the first report on using directed evolution method to engineer RNAP II to alter S. cerevisiae strain phenotypes. Error-prone PCR was employed to engineer the subunit Rpb7 of RNAP II to improve yeast ethanol tolerance and production. Based on previous studies and the presumption that improved ethanol resistance would lead to enhanced ethanol production, we first isolated variant M1 with much improved resistance towards 8 and 10% ethanol. The ethanol titers of M1 was ~122 g/L (96.58% of the theoretical yield) under laboratory very high gravity (VHG) fermentation, 40% increase as compared to the control. DNA microarray assay showed that 369 genes had differential expression in M1 after 12 h VHG fermentation, which are involved in glycolysis, alcoholic fermentation, oxidative stress response, etc. This is the first study to demonstrate the possibility of engineering eukaryotic RNAP to alter global transcription profile and improve strain phenotypes. Targeting subunit Rpb7 of RNAP II was able to bring differential expression in hundreds of genes in S. cerevisiae , which finally led to improvement in yeast ethanol tolerance and production.

  17. Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation

    NARCIS (Netherlands)

    Drissen, R.E.T.; Maas, R.H.W.; Tramper, J.; Beeftink, H.H.

    2009-01-01

    In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between

  18. Development of High-Productivity Continuous Ethanol Production using PVA-Immobilized Zymomonas mobilis in an Immobilized-Cells Fermenter

    Directory of Open Access Journals (Sweden)

    Nurhayati Nurhayati

    2015-07-01

    Full Text Available Ethanol as one of renewable energy was being considered an excellent alternative clean-burning fuel to replace gasoline. Continuous ethanol fermentation systems had offered important economic advantages compared to traditional systems. Fermentation rates were significantly improved, especially when continuous fermentation was integrated with cell immobilization techniques to enrich the cells concentration in fermentor. Growing cells of Zymomonas mobilis immobilized in polyvinyl alcohol (PVA gel beads were employed in an immobilized-cells fermentor for continuous ethanol fermentation from glucose. The glucose loading, dilution rate, and cells loading were varied in order to determine which best condition employed in obtaining both high ethanol production and low residual glucose with high dilution rate. In this study, 20 g/L, 100 g/L, 125 g/L and 150 g/L of glucose concentration and 20% (w/v, 40% (w/v and 50% (w/v of cells loading were employed with range of dilution rate at 0.25 to 1 h-1. The most stable production was obtained for 25 days by employing 100 g/L of glucose loading. Meanwhile, the results also exhibited that 125 g/L of glucose loading as well as 40% (w/v of cells loading yielded high ethanol concentration, high ethanol productivity, and acceptable residual glucose at 62.97 g/L, 15.74 g/L/h and 0.16 g/L, respectively. Furthermore, the dilution rate of 4 hour with 100 g/L and 40% (w/v of glucose and cells loading was considered as the optimum condition with ethanol production, ethanol productivity and residual glucose obtained were 49.89 g/L, 12.47 g/L/h, and 2.04 g/L, respectively. This recent study investigated ethanol inhibition as well. The present research had proved that high sugar concentration was successfully converted to ethanol. These achieved results were promising for further study.

  19. Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3

    OpenAIRE

    Meza, Juan Carlos; Auria, Richard; Lomascolo, A.; Sigoillot, J. C.; Casalot, Laurence

    2007-01-01

    Laccase production by the strain Pycnoporus cinnabarinus ss3 was studied in a solid-state culture on sugar-cane bagasse using chemical compounds as inducers (ethanol, methanol, veratryl alcohol and ferulic acid). Laccase productions were about 5- to 8.5-fold higher than non-induced cultures. Liquid-culture experiments with "Glabeled ethanol were conducted. Ninety-eight percent of the initial amount of C-14 from ethanol was recovered as (CO2)-C-14, C-14-biomass and soluble C-14-compounds (main...

  20. Process model and economic analysis of ethanol production from sugar beet raw juice as part of the cleaner production concept.

    Science.gov (United States)

    Vučurović, Damjan G; Dodić, Siniša N; Popov, Stevan D; Dodić, Jelena M; Grahovac, Jovana A

    2012-01-01

    The batch fermentation process of sugar beet processing intermediates by free yeast cells is the most widely used method in the Autonomous Province of Vojvodina for producing ethanol as fuel. In this study a process and cost model was developed for producing ethanol from raw juice. The model can be used to calculate capital investment costs, unit production costs and operating costs for a plant producing 44 million l of 99.6% pure ethanol annually. In the sensitivity analysis the influence of sugar beet and yeast price, as well as the influence of recycled biomass on process economics, ethanol production costs and project feasibility was examined. The results of this study clearly demonstrate that the raw material costs have a significant influence on the expenses for producing ethanol. Also, the optimal percentage of recycled biomass turned out to be in the range from 50% to 70%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Co-production of hydrogen and ethanol by Escherichia coli SS1 and its recombinant

    Directory of Open Access Journals (Sweden)

    Chiu-Shyan Soo

    2017-11-01

    Conclusions: HybC could improve glycerol consumption rate and ethanol productivity of E. coli despite lower hydrogen and ethanol yields. Higher glycerol consumption rate of recombinant hybC could be an advantage for bioconversion of glycerol into biofuels. This study could serve as a useful guidance for dissecting the role of hydrogenase in glycerol metabolism and future development of effective strain for biofuels production.

  2. Sucrose Fermentation by Brazilian Ethanol Production Yeasts in Media Containing Structurally Complex Nitrogen Sources

    OpenAIRE

    Miranda Junior, Messias [UNESP; Batistote, Margareth [UNESP; Cilli, Eduardo Maffud [UNESP; Ernandes, Jose Roberto [UNESP

    2009-01-01

    Four Saccharomyces cerevisiae Brazilian industrial ethanol production strains were grown, under shaken and static conditions, in media containing 22% (w/v) sucrose supplemented with nitrogen sources varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Sucrose fermentations by Brazilian industrial ethanol production yeasts strains were strongly affected by both the structural complexity of the nitrogen source and the availability o...

  3. Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production

    Directory of Open Access Journals (Sweden)

    Bruton Benny D

    2009-08-01

    Full Text Available Abstract Background Two economic factors make watermelon worthy of consideration as a feedstock for ethanol biofuel production. First, about 20% of each annual watermelon crop is left in the field because of surface blemishes or because they are misshapen; currently these are lost to growers as a source of revenue. Second, the neutraceutical value of lycopene and L-citrulline obtained from watermelon is at a threshold whereby watermelon could serve as starting material to extract and manufacture these products. Processing of watermelons to produce lycopene and L-citrulline, yields a waste stream of watermelon juice at the rate of over 500 L/t of watermelons. Since watermelon juice contains 7 to 10% (w/v directly fermentable sugars and 15 to 35 μmol/ml of free amino acids, its potential as feedstock, diluent, and nitrogen supplement was investigated in fermentations to produce bioethanol. Results Complete watermelon juice and that which did not contain the chromoplasts (lycopene, but did contain free amino acids, were readily fermentable as the sole feedstock or as diluent, feedstock supplement, and nitrogen supplement to granulated sugar or molasses. A minimum level of ~400 mg N/L (~15 μmol/ml amino nitrogen in watermelon juice was required to achieve maximal fermentation rates when it was employed as the sole nitrogen source for the fermentation. Fermentation at pH 5 produced the highest rate of fermentation for the yeast system that was employed. Utilizing watermelon juice as diluent, supplemental feedstock, and nitrogen source for fermentation of processed sugar or molasses allowed complete fermentation of up to 25% (w/v sugar concentration at pH 3 (0.41 to 0.46 g ethanol per g sugar or up to 35% (w/v sugar concentration at pH 5 with a conversion to 0.36 to 0.41 g ethanol per g sugar. Conclusion Although watermelon juice would have to be concentrated 2.5- to 3-fold to serve as the sole feedstock for ethanol biofuel production, the results

  4. Comparison of several ethanol productions using xylanase, inorganic salts, surfactant

    Science.gov (United States)

    Wu, Yan; Lu, Jie; Yang, Rui-feng; Song, Wen-jing; Li, Hai-ming; Wang, Hai-song; Zhou, Jing-hui

    2017-03-01

    Liquid hot water (LHW) pretreatment is an effective and environmentally friendly method to produce bioethanol with lignocellulosic materials. Corn stover was pretreated with liquid hot water (LHW) and then subjected to semi-simultaneous saccharification and fermentation (S-SSF) to obtain high ethanol concentration and yield. The present study aimed to confirm the effect of several additives on the fermentation digestibility of unwashed WIS of corn stover pretreated with LHW. So we also investigated the process, such as enzyme addition, inorganic salts, surfactant and different loading Triton. Results show that high ethanol concentration is necessary to add xylanase in the stage of saccharification. The ethanol concentration increased mainly with magnesium ion on fermentation. Comparing with Tween 80, Span 80 and Polyethylene glycol, Triton is the best surfactant. In contrast to using xylanase and Triton respectively, optimization can make up the lack of stamina and improve effect of single inorganic salts.

  5. Ethanol from sugar cane with simultaneous production of electrical energy and biofertilizer

    Energy Technology Data Exchange (ETDEWEB)

    Filgueiras, G.

    1981-08-04

    A flexible nonpolluting industrial scheme is described for converting sugar cane into fuel-grade ethanol, fertilizer, and electric power. The cleaned cane is treated in a diffuser to separate the juice, which is enzymically hydrolyze d to ethanol, and bagasse containing 65-85% moisture, which is mechanically ground with the rest of the cane plant (leaves and buds) and biochemically digested to provide liquid and solid fertilizers as well as a methane-containing gas, which is burned in a gas turbine to generate electricity. The vinasse from the ethanol fermentation is also cycled to the digestion step. The process conditions can be varied depending upon the desired product ratio; if fuel is preferred, each ton of cane (dry weight) can produce 135 L ethanol, 50 kW electric power, and 150 kg fertilizer; if electric energy is preferred, each ton can give 75 L ethanol, 115 kW power, and 220 kg fertilizer.

  6. Effects of 20 Selected Fruits on Ethanol Metabolism: Potential Health Benefits and Harmful Impacts.

    Science.gov (United States)

    Zhang, Yu-Jie; Wang, Fang; Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Zhang, Jiao-Jiao; Li, Sha; Xu, Dong-Ping; Li, Hua-Bin

    2016-04-01

    The consumption of alcohol is often accompanied by other foods, such as fruits and vegetables. This study is aimed to investigate the effects of 20 selected fruits on ethanol metabolism to find out their potential health benefits and harmful impacts. The effects of the fruits on ethanol metabolism were characterized by the concentrations of ethanol and acetaldehyde in blood, as well as activities of alcohol dehydrogenase and acetaldehyde dehydrogenase in liver of mice. Furthermore, potential health benefits and harmful impacts of the fruits were evaluated by biochemical parameters including aspartate transaminase (AST), alanine transferase (ALT), malondialdehyde, and superoxide dismutase. Generally, effects of these fruits on ethanol metabolism were very different. Some fruits (such as Citrus limon (yellow), Averrhoa carambola, Pyrus spp., and Syzygium samarangense) could decrease the concentration of ethanol in blood. In addition, several fruits (such as Cucumis melo) showed hepatoprotective effects by significantly decreasing AST or ALT level in blood, while some fruits (such as Averrhoa carambola) showed adverse effects. The results suggested that the consumption of alcohol should not be accompanied by some fruits, and several fruits could be developed as functional foods for the prevention and treatment of hangover and alcohol use disorder.

  7. Production of ethanol and furfural from corn stover

    Science.gov (United States)

    Corn stover has potential for economical production of biofuels and value-added chemicals. The conversion of corn stover to sugars involves pretreatment and enzymatic hydrolysis. We have optimized hydrothermal, dilute H2SO4 and dilute H3PO4 pretreatments of corn stover for enzymatic saccharificati...

  8. Continuous ethanol production from Jerusalem artichokes stalks using immobilized cells of Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, P.; Margaritis, A.

    1986-01-01

    Continuous production of ethanol from the extract of Jerusalem artichoke stalks was investigated in a packed bed bioreactor using Kluyveromyces marxianus cells immobilized in calcium alginate gel beds. Maximum conversion of the sugars to ethanol was achieved with a yield of about 98% of the theoretical. Volumetric ethanol productivities of 102 grams of ethanol per litre per hour and 92 grams ethanol per liter per hour were obtained at 87% and 90% conversion respectively for an inlet substrate concentration of 100 gram sugars per liter. The maximum specific ethanol production rate and maximum specific total sugar uptake rate of the immobilized cells were found to be 0.96 gram ethanol per gram immobilized cells per hour and 2.06 gram sugars per gram immobilized cells per hour respectively. The immobilized cell bioreactor was run continuously at a dilution rate of 2.12 per hour for 30 days which resulted in a loss of 30% of the original activity. The half life of the bioreactor was estimated to be about 56 days.

  9. Evaluation of hardboard manufacturing process wastewater as a feedstream for ethanol production.

    Science.gov (United States)

    Groves, Stephanie; Liu, Jifei; Shonnard, David; Bagley, Susan

    2013-07-01

    Waste streams from the wood processing industry can serve as feedstream for ethanol production from biomass residues. Hardboard manufacturing process wastewater (HPW) was evaluated on the basis of monomeric sugar recovery and fermentability as a novel feedstream for ethanol production. Dilute acid hydrolysis, coupled with concentration of the wastewater resulted in a hydrolysate with 66 g/l total fermentable sugars. As xylose accounted for 53 % of the total sugars, native xylose-fermenting yeasts were evaluated for their ability to produce ethanol from the hydrolysate. The strains selected were, in decreasing order by ethanol yields from xylose (Y p/s, based on consumed sugars), Scheffersomyces stipitis ATCC 58785 (CBS 6054), Pachysolen tannophilus ATCC 60393, and Kluyveromyces marxianus ATCC 46537. The yeasts were compared on the basis of substrate utilization and ethanol yield during fermentations of the hydrolysate, measured using an HPLC. S. stipitis, P. tannophilus, and K. marxianus produced 0.34, 0.31, and 0.36 g/g, respectively. The yeasts were able to utilize between 58 and 75 % of the available substrate. S. stipitis outperformed the other yeast during the fermentation of the hydrolysate; consuming the highest concentration of available substrate and producing the highest ethanol concentration in 72 h. Due to its high sugar content and low inhibitor levels after hydrolysis, it was concluded that HPW is a suitable feedstream for ethanol production by S. stipitis.

  10. Characteristics of the products of hydrothermal liquefaction combined with cellulosic bio-ethanol process

    International Nuclear Information System (INIS)

    Li, Rundong; Xie, Yinghui; Yang, Tianhua; Li, Bingshuo; Zhang, Yang; Kai, Xingping

    2016-01-01

    The integration utilization of fermentation residues from cellulosic bio-ethanol has attracted a great deal of attention to balance the total cost of bio-ethanol production while simultaneously dealing with bio-ethanol wastewater. A process of hydrothermal liquefaction (HTL) of intact materials from cellulosic bio-ethanol in a batch reactor was proposed. The effects of the reaction temperature and time on the liquefaction characteristics were examined. The optimum condition for liquefaction fermentation residues was 370 °C (21.25 MPa) and 30 min with a bio-oil yield of 40.79 wt%. GC-MS results indicated that the major chemical species in the bio-oil were phenols, ketones, long-chain hydrocarbons and fatty acids. Supercritical conditions (375 °C, 23.50 MPa) was favored for the low-molecular-weight species formation compared to subcritical conditions (370 °C, 21.25 MPa), as some long-chain species decreased. This work thus can provide a novel idea for bio-oil production from HTL of cellulosic bio-ethanol fermentation residues. - Highlights: • Bio-oil production via HTL combined with cellulosic bio-ethanol process was proposed. • Optimum condition for HTL of materials from cellulosic bio-ethanol was 370 °C and 30 min. • Bio-oil contained higher content of hydrocarbons and lower contents of organic acids.

  11. Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil

    International Nuclear Information System (INIS)

    Seabra, Joaquim E.A.; Macedo, Isaias C.

    2011-01-01

    This work compares the technical, economic and environmental (GHG emissions mitigation) performance of power generation and ethanol production from sugarcane residual biomass, considering conversion plants adjacent to a sugarcane mill in Brazil. Systems performances were simulated for a projected enzymatic saccharification co-fermentation plant (Ethanol option) and for a commercial steam-Rankine power plant (Electricity option). Surplus bagasse from the mill would be used as fuel/raw material for conversion, while cane trash collected from the field would be used as supplementary fuel at the mill. For the Electricity option, the sugarcane biorefinery (mill+adjacent plant) would produce 91 L of ethanol per tonne of cane and export 130 kWh/t of cane, while for the Ethanol option the total ethanol production would be 124 L/t of cane with an electricity surplus of 50 kWh/t cane. The return on investment (ROI) related to the biochemical conversion route was 15.9%, compared with 23.2% for the power plant, for the conditions in Brazil. Considering the GHG emissions mitigation, the environmentally preferred option is the biochemical conversion route: the net avoided emissions associated to the adjacent plants are estimated to be 493 and 781 kgCO 2 eq/t of dry bagasse for the Electricity and Ethanol options, respectively. - Research Highlights: → Power generation would present better profitability than ethanol production from sugarcane residues in Brazil, in the reference scenario adopted here. → The Ethanol option would be able to mitigate more GHG emissions in Brazil. → The economics for the ethanol production technology are more likely to improve in the future.

  12. Ethanol production from food waste at high solids content with vacuum recovery technology.

    Science.gov (United States)

    Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay

    2015-03-18

    Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).

  13. How can we improve the energy balance of ethanol production from wheat?

    Energy Technology Data Exchange (ETDEWEB)

    Jerry D. Murphy; Niamh M. Power [University College Cork, Cork (Ireland). Department of Civil and Environmental Engineering

    2008-08-15

    The gross energy in ethanol using wheat as a feedstock in Ireland is 66 GJ/ha/a. The net energy production is 25 GJ/ha/a. A model is proposed, whereby the ethanol production process is combined with combustion of straw, and digestion of stillage, resulting in two transport fuels; ethanol and biomethane. In the proposed system stillage is not dried, reducing the thermal demand by 35%. A quarter of the straw associated with the wheat grain is sufficient, when combusted, to satisfy the reduced thermal demands. Stillage is digested wet; the biogas is scrubbed, compressed and utilised as a transport fuel. The net energy now is 72 GJ/ha/a. The production cost of biomethane is two thirds that of ethanol. 37 refs., 1 fig., 10 tabs.

  14. Continuous Ethanol Production Using Immobilized-Cell/Enzyme Biocatalysts in Fluidized-Bed Bioreactor (FBR)

    Energy Technology Data Exchange (ETDEWEB)

    Nghiem, NP

    2003-11-16

    The immobilized-cell fluidized-bed bioreactor (FBR) was developed at Oak Ridge National Laboratory (ORNL). Previous studies at ORNL using immobilized Zymomonas mobilis in FBR at both laboratory and demonstration scale (4-in-ID by 20-ft-tall) have shown that the system was more than 50 times as productive as industrial benchmarks (batch and fed-batch free cell fermentations for ethanol production from glucose). Economic analysis showed that a continuous process employing the FBR technology to produce ethanol from corn-derived glucose would offer savings of three to six cents per gallon of ethanol compared to a typical batch process. The application of the FBR technology for ethanol production was extended to investigate more complex feedstocks, which included starch and lignocellulosic-derived mixed sugars. Economic analysis and mathematical modeling of the reactor were included in the investigation. This report summarizes the results of these extensive studies.

  15. Simultaneous production of bio-ethanol and bleached pulp from red algae.

    Science.gov (United States)

    Yoon, Min Ho; Lee, Yoon Woo; Lee, Chun Han; Seo, Yung Bum

    2012-12-01

    The red algae, Gelidium corneum, was used to produce bleached pulp for papermaking and ethanol. Aqueous extracts obtained at 100-140 °C were subjected to saccharification, purification, fermentation, and distillation to produce ethanol. The solid remnants were bleached with chlorine dioxide and peroxide to make pulp. In the extraction process, sulfuric acid and sodium thiosulfate were added to increase the extract yield and to improve de-polymerization of the extracts, as well as to generate high-quality pulp. An extraction process incorporating 5% sodium thiosulfate by dry weight of the algae provided optimal production conditions for the production of both strong pulp and a high ethanol yield. These results suggest that it might be possible to utilize algae instead of trees and starch for pulp and ethanol production, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration

    DEFF Research Database (Denmark)

    Zaldivar, Jesus; Nielsen, Jens; Olsson, Lisbeth

    2001-01-01

    and with the implementation of environmental protection laws in many countries, demand for this fuel is increasing. Efficient ethanol production processes and cheap substrates are needed. Current ethanol production processes using crops such as sugar cane and corn are well-established; however, utilization of a cheaper...... substrate such as lignocellulose could make bioethanol more competitive with fossil fuel. The processing and utilization of this substrate is complex, differing, in many aspects from crop-based ethanol production. One important requirement is an efficient microorganism able to ferment a variety of sugars......With industrial development growing rapidly, there is a need for environmentally sustainable energy sources. Bioethanol (ethanol from biomass) is an attractive, sustainable energy source to fuel transportation. Based on the premise that fuel bioethanol can contribute to a cleaner environment...

  17. Kinetics of ethanol production from Jerusalem artichoke juice with some Kluyveromyces species

    Energy Technology Data Exchange (ETDEWEB)

    Kuvnjak, Z.; Kosaric, N.; Hayes, R.D.

    1981-01-01

    The kinetics of ethanol production by Kluyveromyces marxianus ATCC 12708 and ATCC 10606, K. cicerisporus ATCC 22295 and K. fragilis 105 were studied using raw juice of the Jerusalem artichoke in which the carbohydrates were not hydrolyzed prior to fermentation. This juice contains enough nutrients and can serve as a complete medium without additional nutrients both for growth of the yeasts and for ethanol production. Both specific ethanol productivity and specific glucose uptake rates were the highest with K. marxianus ATCC 12708 (1.68 gg-1 h-1 and 3.78 gg-1h-1, respectively). This microorganism produced an ethanol yield of 87.5% of the theoretical value in 25 hours.

  18. Removal of the Fermentation Inhibitor, Furfural, Using Activated Carbon in Cellulosic-Ethanol Production

    KAUST Repository

    Zhang, Kuang

    2011-12-21

    Ethanol can be produced from lignocellulosic biomass through fermentation; however, some byproducts from lignocellulosics, such as furfural compounds, are highly inhibitory to the fermentation and can substantially reduce the efficiency of ethanol production. In this study, commercial and polymer-derived activated carbons were utilized to selectively remove the model fermentation inhibitor, furfural, from water solution during bioethanol production. The oxygen functional groups on the carbon surface were found to influence the selectivity of sorbents between inhibitors and sugars during the separation. After inhibitors were selectively removed from the broth, the cell growth and ethanol production efficiency was recovered noticeably in the fermentation. A sorption/desorption cycle was designed, and the sorbents were regenerated in a fixed-bed column system using ethanol-containing standard solution. Dynamic mass balance was obtained after running four or five cycles, and regeneration results were stable even after twenty cycles. © 2011 American Chemical Society.

  19. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform.

    Science.gov (United States)

    Enquist-Newman, Maria; Faust, Ann Marie E; Bravo, Daniel D; Santos, Christine Nicole S; Raisner, Ryan M; Hanel, Arthur; Sarvabhowman, Preethi; Le, Chi; Regitsky, Drew D; Cooper, Susan R; Peereboom, Lars; Clark, Alana; Martinez, Yessica; Goldsmith, Joshua; Cho, Min Y; Donohoue, Paul D; Luo, Lily; Lamberson, Brigit; Tamrakar, Pramila; Kim, Edward J; Villari, Jeffrey L; Gill, Avinash; Tripathi, Shital A; Karamchedu, Padma; Paredes, Carlos J; Rajgarhia, Vineet; Kotlar, Hans Kristian; Bailey, Richard B; Miller, Dennis J; Ohler, Nicholas L; Swimmer, Candace; Yoshikuni, Yasuo

    2014-01-09

    The increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways in the standard industrial microbe Saccharomyces cerevisiae. Here we present the discovery of an alginate monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus. The genomic integration and overexpression of the gene encoding this transporter, together with the necessary bacterial alginate and deregulated native mannitol catabolism genes, conferred the ability of an S. cerevisiae strain to efficiently metabolize DEHU and mannitol. When this platform was further adapted to grow on mannitol and DEHU under anaerobic conditions, it was capable of ethanol fermentation from mannitol and DEHU, achieving titres of 4.6% (v/v) (36.2 g l(-1)) and yields up to 83% of the maximum theoretical yield from consumed sugars. These results show that all major sugars in brown macroalgae can be used as feedstocks for biofuels and value-added renewable chemicals in a manner that is comparable to traditional arable-land-based feedstocks.

  20. Potential development of bioethanol production in Vojvodina

    Energy Technology Data Exchange (ETDEWEB)

    Dodic, Sinisa N.; Popov, Stevan D.; Dodic, Jelena M.; Rankovic, Jovana A.; Zavargo, Zoltan Z. [Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, Novi Sad 21000, Vojvodina (RS)

    2009-12-15

    The Autonomous Province of Vojvodina is an Autonomous Province in Serbia, containing about 27% of its total population according to the 2002 Census. Contribution of renewable energy sources in total energy consumption of Vojvodina contemporary amounts to less than 1%, apropos 280 GWh/year. By combining of methods of introduction of new and renewable sources, systematic application of methods for increasing of energetic efficacy, as well as of introduction of the new technologies, percentage of contribution of the non-conventional energy sources in Vojvodina could be increased to as much as 20%. This paper presents the potential of development of bioethanol production in Vojvodina. Production of bioethanol on small farms can be successfully applied for processing of only 30 kg of corn per day, with obtaining of crude ethanol in the so-called 'brandy ladle' and use of lygnocellulosic agricultural wastes as an energy source. In a case of construction of a larger number of such plants, the only possible solution is seen in the principle of construction of the so-called 'satellite plants', which will on small farm produce crude ethanol, with obtaining and consumption of stillage for animal feeding, and consumption of agricultural wastes as energetic fuels. If stillage is to be used as feed in wet feeding, it is estimated that, because of restrictions established by the magnitude of animal farm, the upper limit of capacity of such enterprises that process is at some 10-15 tons of corn per day, and production of 3000-3500 hL of absolute ethanol per day. In such a case, for animal feeding necessary is to have herd with 1300-1700 of milking cows or 5000-25,000 heads of sheep and/or pigs. Technological model of separate grain processing ad bioethanol production from dextrose hydrolysates of starch is interesting for countries possessing plants for bioethanol production from molasses and plants for cereals processing into starch and dextrose hydrolysates

  1. [Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution].

    Science.gov (United States)

    Sun, Bing; Wang, Bo; Zhu, Xiao-mei; Yan, Zhi-yu; Liu, Yong-jun; Liu, Hui

    2016-03-01

    Hydrogen is regarded as a kind of clean energy with high caloricity and non-pollution, which has been studied by many experts and scholars home and abroad. Microwave discharge plasma shows light future in the area of hydrogen production from ethanol solution, providing a new way to produce hydrogen. In order to further improve the technology and analyze the mechanism of hydrogen production with microwave discharge in liquid, emission spectrum of hydrogen production by microwave discharge plasma in ethanol solution was being studied. In this paper, plasma was generated on the top of electrode by 2.45 GHz microwave, and the spectral characteristics of hydrogen production from ethanol by microwave discharge in liquid were being studied using emission spectrometer. The results showed that a large number of H, O, OH, CH, C2 and other active particles could be produced in the process of hydrogen production from ethanol by microwave discharge in liquid. The emission spectrum intensity of OH, H, O radicals generated from ethanol is far more than that generated from pure water. Bond of O-H split by more high-energy particles from water molecule was more difficult than that from ethanol molecule, so in the process of hydrogen production by microwave discharge plasma in ethanol solution; the main source of hydrogen was the dehydrogenation and restructuring of ethanol molecules instead of water decomposition. Under the definite external pressure and temperature, the emission spectrum intensity of OH, H, O radicals increased with the increase of microwave power markedly, but the emission spectrum intensity of CH, C2 active particles had the tendency to decrease with the increase of microwave power. It indicated that the number of high energy electrons and active particles high energy electron energy increased as the increase of microwave power, so more CH, C2 active particles were split more thoroughly.

  2. optimization of the ethanol fermentation of cassava wastewater

    African Journals Online (AJOL)

    Umo

    production would improve the ethanol yield, and thereby reduce the cost of production. KEYWORDS: Ethanol, cassava ... biomass sources are receiving attention globally. .... HYDROLYZED CASSAVA WASTEWATER. A blank solution ..... A Global Overview of Biomass Potentials ... Pretreatment of Lignocellulosic Wastes.

  3. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Mikkelsen, Marie Just

    2010-01-01

    acquired the capability to utilize glycerol as an extra carbon source in the presence of xylose, and utilization of the more reduced substrate glycerol resulted in a higher ethanol yield. Electronic supplementary material The online version of this article (doi:10.1007/s00253-010-2703-3) contains...

  4. Simple and enhanced production of lignocellulosic ethanol by ...

    African Journals Online (AJOL)

    Ethanol can be produced from a fermentation process using raw materials obtained from highly economically important plants such as corn, cassava and sugarcane, and used as an alternative energy source. These economical plants are being used less because their initial cost is still increasing. However, lignocellulosic ...

  5. Ethanol Production from Hydrothermally-Treated Biomass from West Africa

    DEFF Research Database (Denmark)

    Bensah, Edem C.; Kádár, Zsófia; Mensah, Moses Y.

    2015-01-01

    wood, elephant grass, Siam weed, and coconut husk, benchmarked against those of wheat straw. The elephant grass exhibited the highest glucose and ethanol yields at 57.8% and 65.1% of the theoretical maximums, respectively. The results show that the glucose yield of pretreated elephant grass was 3...

  6. Enhanced ethanol production from stalk juice of sweet sorghum by ...

    African Journals Online (AJOL)

    Sweet sorghum (sugar sorghum, Sorghum bicolor) is one kind of non-grain energy crops. As a novel green regenerated high-energy crop with high utility value, high yield of biomass, the sweet sorghum is widely used and developed in China. Stalk juice of sweet sorghum was used as the main substrate for ethanol ...

  7. Novel Biocatalytic Platform for Ethanol Production from Lignocellulosic Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chyi-Shin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tachea, Firehiwot [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffman, Philip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tanjore, Deepti [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gregg, Allison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rolison-Welch, Kristina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shirazi, Fatemeh [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); He, Qian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sun, Ning [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-23

    The goals of the CRADA were achieved by illustrating the scalability of immobilized yeast technology, demonstrating lignocellulosic feedstock consumption by the immobilized cells, and confirming Microvi’s proprietary polymer matrix ethanol toxicity tolerance. We conducted fermentations at 2L and 300L scales. For carbon source, we performed pretreatment and saccharification at 100L scale to produce lignocellulosic sugars with glucose and xylose.

  8. Catalytic steam reforming of ethanol for hydrogen production: Brief status

    Directory of Open Access Journals (Sweden)

    Bineli Aulus R.R.

    2016-01-01

    Full Text Available Hydrogen represents a promising fuel since it is considered as a cleanest energy carrier and also because during its combustion only water is emitted. It can be produced from different kinds of renewable feedstocks, such as ethanol, in this sense hydrogen could be treated as biofuel. Three chemical reactions can be used to achieve this purpose: the steam reforming (SR, the partial oxidation (POX and the autothermal reforming (ATR. In this study, the catalysts implemented in steam reforming of ethanol were reviewed. A wide variety of elements can be used as catalysts for this reaction, such as base metals (Ni, Cu and Co or noble metals (Rh, Pt and Ru usually deposited on a support material that increases surface area and improves catalytic function. The use of Rh, Ni and Pt supported or promoted with CeO2, and/or La2O3 shows excellent performance in ethanol SR catalytic process. The ratio of water to ethanol, reaction temperatures, catalysts loadings, selectivity and activity are also discussed as they are extremely important for high hydrogen yields.

  9. Production of ethanol from mango ( Mangifera indica L.) peel by ...

    African Journals Online (AJOL)

    Mango fruit processing industries generate two types of waste, including solid waste (peel and stones) and liquid waste (juice and wash ... Direct fermentation of mango peel extract gave only 5.13% (w/v) of ethanol. ... HOW TO USE AJOL.

  10. Evaluation of ethanol production from pito mash using Zymomonas ...

    African Journals Online (AJOL)

    Joseph Asankomah Bentil

    technology for the conversion of lignocelluloses to bioethanol should be decided on the basis of overall economics (lowest cost), environmental (pollutants), and energy (higher efficiencies). Many investigations have been performed on the appropriate technology for the conversion of the lignocellulosic to ethanol as well as.

  11. Investigation of ethanol productivity of cassava crop as a sustainable ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... the most dominant among the plant materials are the energy crops. ... even reverse CO2 emissions by taking carbon out of the air and sequestering it in ... ethanol unsuitable for human consumption. Enzymes are used to ...

  12. Ethanol production from Sorghum bicolor using both separate and ...

    African Journals Online (AJOL)

    increase the monomeric sugar during enzymatic hydrolysis and it has been observed that the addition of these surfactants contributed significantly in cellulosic conversion but no effect was shown on hemicellulosic hydrolysis. Fermentability of hydrolyzate was tested using Saccharomyces cerevisiae Ethanol RedTM and it ...

  13. The impact of ethanol production on food prices: The role of interplay between the U.S. and Brazil

    International Nuclear Information System (INIS)

    Monteiro, Nathalia; Altman, Ira; Lahiri, Sajal

    2012-01-01

    Food prices have increased rapidly in recent years, and so has ethanol production. Some studies have claimed that there is a connection between the two. The main purpose of this paper is to add to this literature by examining the influence that the interplay between Brazil and the U.S. in ethanol production has on food prices. Specifically, and controlling for other variables, which have been shown to affect food prices, we investigate whether sugarcane ethanol and corn ethanol production have similar impacts on food prices, and whether ethanol productivity affects food prices. We find a positive significant effect of Brazilian market share in world ethanol market on relative food prices. We also find that an increase of Brazilian cane ethanol area has a negative effect on relative food prices. - Highlights: ► We examine if sugarcane ethanol and corn ethanol have similar impacts on food price. ► We examine if ethanol productivity affects food prices. ► We control for many other variables, which have been shown to affect food prices. ► Brazilian market share in ethanol market has a positive effect on food prices. ► Brazilian cane ethanol area has a negative effect on relative food prices.

  14. Ethanol production from biomass by repetitive solid-state fed-batch fermentation with continuous recovery of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Moukamnerd, Churairat; Kino-oka, Masahiro; Sugiyama, Minetaka; Kaneko, Yoshinobu; Harashima, Satoshi; Katakura, Yoshio [Osaka Univ. (Japan). Dept. of Biotechnology; Boonchird, Chuenchit [Mahidol Univ., Bangkok (Thailand). Dept. of Biotechnology; Noda, Hideo [Kansai Chemical Engineering Co., Ltd., Amagasaki (Japan); Ninomiya, Kazuaki [Kanazawa Univ. (Japan). Inst. of International Environment Technology; Shioya, Suteaki [Sojo Univ., Kumamoto (Japan). Dept. of Applied Life Science

    2010-09-15

    To save cost and input energy for bioethanol production, a consolidated continuous solid-state fermentation system composed of a rotating drum reactor, a humidifier, and a condenser was developed. Biomass, saccharifying enzymes, yeast, and a minimum amount of water are introduced into the system. Ethanol produced by simultaneous saccharification and fermentation is continuously recovered as vapor from the headspace of the reactor, while the humidifier compensates for the water loss. From raw corn starch as a biomass model, 95 {+-} 3, 226 {+-} 9, 458 {+-} 26, and 509 {+-} 64 g l{sup -1} of ethanol solutions were recovered continuously when the ethanol content in reactor was controlled at 10-20, 30-50, 50-70 and 75-85 g kg-mixture{sup -1}, respectively. The residue showed a lesser volume and higher solid content than that obtained by conventional liquid fermentation. The cost and energy for intensive waste water treatment are decreased, and the continuous fermentation enabled the sustainability of enzyme activity and yeast in the system. (orig.)

  15. Presence and biological activity of antibiotics used in fuel ethanol and corn co-product production.

    Science.gov (United States)

    Compart, D M Paulus; Carlson, A M; Crawford, G I; Fink, R C; Diez-Gonzalez, F; Dicostanzo, A; Shurson, G C

    2013-05-01

    Antibiotics are used in ethanol production to control bacteria from competing with yeast for nutrients during starch fermentation. However, there is no published scientific information on whether antibiotic residues are present in distillers grains (DG), co-products from ethanol production, or whether they retain their biological activity. Therefore, the objectives of this study were to quantify concentrations of various antibiotic residues in DG and determine whether residues were biologically active. Twenty distillers wet grains and 20 distillers dried grains samples were collected quarterly from 9 states and 43 ethanol plants in the United States. Samples were analyzed for DM, CP, NDF, crude fat, S, P, and pH to describe the nutritional characteristics of the samples evaluated. Samples were also analyzed for the presence of erythromycin, penicillin G, tetracycline, tylosin, and virginiamycin M1, using liquid chromatography and mass spectrometry. Additionally, virginiamycin residues were determined, using a U.S. Food and Drug Administration-approved bioassay method. Samples were extracted and further analyzed for biological activity by exposing the sample extracts to 10(4) to 10(7) CFU/mL concentrations of sentinel bacterial strains Escherichia coli ATCC 8739 and Listeria monocytogenes ATCC 19115. Extracts that inhibited bacterial growth were considered to have biological activity. Physiochemical characteristics varied among samples but were consistent with previous findings. Thirteen percent of all samples contained low (≤1.12 mg/kg) antibiotic concentrations. Only 1 sample extract inhibited growth of Escherichia coli at 10(4) CFU/mL, but this sample contained no detectable concentrations of antibiotic residues. No extracts inhibited Listeria monocytogenes growth. These data indicate that the likelihood of detectable concentrations of antibiotic residues in DG is low; and if detected, they are found in very low concentrations. The inhibition in only 1 DG

  16. Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Rinnan, Åsmund; Bruun, Sander; Lindedam, Jane

    2017-01-01

    of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000 samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major...

  17. The potential for bioethanol production from wheat in the U.K

    International Nuclear Information System (INIS)

    Batchelor, S.; Booth, E.J.; Walker, K.C.; Cook, P.

    1994-06-01

    Ethanol, currently widely used in cosmetic chemical and pharmaceutical applications, can be manufactured either from petroleum deriviatives (synthetic ethanol), or by the biological fermentation of carbohydrate. This report looks at the United Kingdom potential for production of the latter, so called, bioethanol from wheat. Ethanol from wheat is already produced for the grain spirit industry, and two such bioethanol plants operating in Sweden and France are described. Although there is, at present, no overall cost advantage in using bioethanol from wheat over synthetic ethanol, environmental benefits may sway the balance in its failure. (UK)

  18. Utilization of concentrate after membrane filtration of sugar beet thin juice for ethanol production.

    Science.gov (United States)

    Kawa-Rygielska, Joanna; Pietrzak, Witold; Regiec, Piotr; Stencel, Piotr

    2013-04-01

    The subject of this study was to investigate the feasibility of the concentrate obtained after membrane ultrafiltration of sugar beet thin juice for ethanol production and selection of fermentation conditions (yeast strain and media supplementation). Resulting concentrate was subjected to batch ethanol fermentation using two strains of Saccharomyces cerevisiae (Ethanol Red and Safdistill C-70). The effect of different forms of media supplementation (mineral salts: (NH4)2SO4, K2HPO4, MgCl2; urea+Mg3(PO4)2 and yeast extract) on the fermentation course was also studied. It was stated that sugar beet juice concentrate is suitable for ethanol production yielding, depending on the yeast strain, ca. 85-87 g L(-1) ethanol with ca. 82% practical yield and more than 95% of sugars consumption after 72 h of fermentation. Nutrients enrichment further increased ethanol yield. The best results were obtained for media supplemented with urea+Mg3(PO4)2 yielding 91.16-92.06 g L(-1) ethanol with practical yield ranging 84.78-85.62% and full sugars consumption. Copyright © 2013. Published by Elsevier Ltd.

  19. Production of ethanol from refinery waste gases. Phase 2, technology development, annual report

    Energy Technology Data Exchange (ETDEWEB)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

    1995-07-01

    Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

  20. Enhanced Ethanol Production with Mixed Lignocellulosic Substrates from Commercial Furfural and Cassava Residues

    Directory of Open Access Journals (Sweden)

    Li Ji

    2015-01-01

    Full Text Available Simultaneous saccharification and fermentation (SSF is an attractive process configuration for bio-ethanol production. Further reductions in process cost of SSF are expected with the use of waste agricultural or industrial materials as feedstock. In the current study, two industrial lignocellulosic wastes, cassava residues (CR and furfural residues (FR, were combined during SSF for ethanol production due to their value-added applications and positive environmental impacts. After CR were liquefied and saccharified, saccharification liquid was added to SSF of FR. The effect of substrate fractions was investigated in terms of ethanol yield, byproduct concentration and the number of yeast cells. Besides, a natural surfactant, Gleditsia saponin, was added to investigate the effect of FR lignin on SSF with 20% substrate concentration. The results showed that increasing the ratio of CR/FR improved the ethanol yield and that the ethanol yield was also increased gradually by increasing the substrate concentration from 6% to 12%. A high ethanol concentration of 36.0 g/L was obtained under the condition of CR:FR = 2:1 with 12% substrate concentration, reaching 71.1% of the theoretical yield. However, Gleditsia saponin did not affect the ethanol yield, indicating the insignificant effect of lignin in SSF with low lignin content in the reaction system.

  1. Potentiation of gamma aminobutyric acid receptors (GABAAR by Ethanol: How are inhibitory receptors affected?

    Directory of Open Access Journals (Sweden)

    Benjamin eFörstera

    2016-05-01

    Full Text Available In recent years there has been an increase in the understanding of ethanol actions on the type A -aminobutyric acid chloride channel (GABAAR, a member of the pentameric ligand gated ion channels (pLGICs. However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR, another member of the pLGIC family, as a suitable target for the development of new pharmacological tools.

  2. Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom.

    Science.gov (United States)

    Soni, Pranay; Bodakhe, Surendra H

    2014-05-01

    To evaluate the antivenom potential of ethanolic extract of bark of Cordia macleodii against Naja venom induced pharmacological effects such as lethality, hemorrhagic lesion, necrotizing lesion, edema, cardiotoxicity and neurotoxicity. Wistar strain rats were challenged with Naja venom and treated with the ethanolic extract of Cordia macleodii bark. The effectiveness of the extract to neutralize the lethalities of Naja venom was investigated as recommended by WHO. At the dose of 400 and 800 mg/kg ethanolic extract of Cordia macleodii bark significantly inhibited the Naja venom induced lethality, hemorrhagic lesion, necrotizing lesion and edema in rats. Ethanolic extract of Cordia macleodii bark was effective in neutralizing the coagulant and defibrinogenating activity of Naja venom. The cardiotoxic effects in isolated frog heart and neurotoxic activity studies on frog rectus abdominus muscle were also antagonized by ethanolic extract of Cordia macleodii bark. It is concluded that the protective effect of extract of Cordia macleodii against Naja venom poisoning may be mediated by the cardiotonic, proteolysin neutralization, anti-inflammatory, antiserotonic and antihistaminic activity. It is possible that the protective effect may also be due to precipitation of active venom constituents.

  3. Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie; Fridley, David

    2008-07-17

    California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

  4. Continuous ethanol production using immobilized yeast cells entrapped in loofa-reinforced alginate carriers

    Directory of Open Access Journals (Sweden)

    Phoowit Bangrak

    2011-06-01

    Full Text Available A culture of Saccharomyces cerevisiae M30 entrapped in loofa-reinforced alginate was used for continuous ethanol fermentation in a packed-bed reactor with initial sugar concentrations of 200-248 g/L. Maximum ethanol productivity of 11.5 g/(L·h was obtained at an ethanol concentration of 57.4 g/L, an initial sugar concentration of 220 g/L and a dilution rate (D of 0.2 h-1. However, a maximum ethanol concentration of 82.1 g/L (productivity of 9.0 g/(L·h was obtained at a D of 0.11 h-1. Ethanol productivity in the continuous culture was 6-8-fold higher than that in the batch culture. Due to the developed carrier's high biocompatibility, high porosity, and good mechanical strength, advantages such as cell regeneration, reusability, altered mechanical strength, and high capacity to trap active cells in the reactor were achieved in this study. The immobilized cell reactor was successfully operated for 30 days without any loss in ethanol productivity. The average conversion yield was 0.43-0.45 throughout the entire operation, with an immobilization yield of 47.5%. The final total cell concentration in the reactor was 37.3 g/L (17.7 g/L immobilized cells and 19.6 g/L suspended cells. The concentration of suspended cells in the effluent was 0.8 g/L.

  5. Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse.

    Science.gov (United States)

    Pacheco, Alexandre Monteiro; Gondim, Diego Romão; Gonçalves, Luciana Rocha Barros

    2010-05-01

    In this work, cashew apple bagasse (CAB) was used for Saccharomyces cerevisiae immobilization. The support was prepared through a treatment with a solution of 3% HCl, and delignification with 2% NaOH was also conducted. Optical micrographs showed that high populations of yeast cells adhered to pre-treated CAB surface. Ten consecutive fermentations of cashew apple juice for ethanol production were carried out using immobilized yeasts. High ethanol productivity was observed from the third fermentation assay until the tenth fermentation. Ethanol concentrations (about 19.82-37.83 g L(-1) in average value) and ethanol productivities (about 3.30-6.31 g L(-1) h(-1)) were high and stable, and residual sugar concentrations were low in almost all fermentations (around 3.00 g L(-1)) with conversions ranging from 44.80% to 96.50%, showing efficiency (85.30-98.52%) and operational stability of the biocatalyst for ethanol fermentation. Results showed that cashew apple bagasse is an efficient support for cell immobilization aiming at ethanol production.

  6. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.

    Science.gov (United States)

    Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish

    2017-01-01

    , representing CBP-based fermentation approach. Here, the broad substrate utilization spectrum of isolated cellulolytic thermophilic anaerobic bacterium was shown to be of potential utility. We demonstrated that the co-culture strategy involving novel strains is efficient in improving ethanol production from real substrate.

  7. The potential of crude okara for isoflavone production

    NARCIS (Netherlands)

    Jankowiak, L.; Trifunovic, O.; Boom, R.M.; Goot, van der A.J.

    2014-01-01

    This study describes the extraction of isoflavones from crude okara, a by-product from soymilk production, using industrially relevant conditions. Ethanol and water were chosen as environmentally friendly and non-toxic solvents. A wide range of ethanol concentrations was tested (0–90% ethanol) for

  8. Production of rare sugars from common sugars in subcritical aqueous ethanol.

    Science.gov (United States)

    Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji

    2015-05-15

    A new isomerization reaction was developed to synthesize rare ketoses. D-tagatose, D-xylulose, and D-ribulose were obtained in the maximum yields of 24%, 38%, and 40%, respectively, from the corresponding aldoses, D-galactose, D-xylose, and D-ribose, by treating the aldoses with 80% (v/v) subcritical aqueous ethanol at 180°C. The maximum productivity of D-tagatose was ca. 80 g/(Lh). Increasing the concentration of ethanol significantly increased the isomerization of D-galactose. Variation in the reaction temperature did not significantly affect the production of D-tagatose from D-galactose. Subcritical aqueous ethanol converted both 2,3-threo and 2,3-erythro aldoses to the corresponding C-2 ketoses in high yields. Thus, the treatment of common aldoses in subcritical aqueous ethanol can be regarded as a new method to synthesize the corresponding rare sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Cost estimate for the production of ethanol from spent sulphite liquors and wood residues

    International Nuclear Information System (INIS)

    Nguyen, Q.

    1990-03-01

    A Lotus 1-2-3 spreadsheet model for estimating the production cost of 95 wt % ethanol from spent sulfite liquors (SSL) and from a wood hydrolysis front-end is described. The most economically attractive process is the fermentation of softwood SSL (SSSL) by the yeast Saccharomyces cerevisiae, yielding a production cost estimate of $0.47/liter. The cost of producing ethanol from cellulosic waste (clarifier sludge) via acid hydrolysis is approximately $0.55/liter, still below the market price of ca $0.60/liter for industrial ethanol. Neither the fermentation of hardwood SSL nor the conversion of sawdust to ethanol, using current technology, are economically viable. However, these processes can become commercially viable if acetic acid-tolerant xylose-fermenting yeasts can be found. 17 refs., 12 figs., 16 tabs

  10. Valorization of sunflower meal through the production of ethanol from the hemicellulosic fraction

    Directory of Open Access Journals (Sweden)

    Bruna Tavares

    Full Text Available ABSTRACT Sunflower is among the major oil seeds crop grown in the world and the by-products generated during the seeds processing represent an attractive source of lignocellulosic biomass for bioprocesses. The conversion of lignocellulosic fibers into fermentable sugars has been considered as a promising alternative to increase the demand for ethanol. The present study aimed to establish the fermentation conditions for ethanol production by Scheffersomyces stipitis ATCC 58376 in sunflower meal hemicellulosic hydrolysate, through a 23 CCRD (Central Composite Rotational Design factorial design. Under the selected conditions (pH 5.25, 29 ºC and 198 rpm the final ethanol concentration was 13.92 g L-1 and the ethanol yield was 0.49 g g-1.

  11. Kinetics of ethanol production from Jerusalem artichoke juice with some Klugveromyces species

    Energy Technology Data Exchange (ETDEWEB)

    Duvnjak, Z.; Kosaric, N.; Hayes, R.D.

    1981-01-01

    The kinetics of ethanol produce by Kluyveromyces marxianus ATCC 12708 and ATCC 10606, K. cicerisporus ATCC 22295, and K. fragilis 105 have been studied using raw juice of the Jerusalem artichoke in which the carbohydrates were not hydrolyzed prior to fermentation. The experiments revealed that this juice contains enough nutrients and can serve as a complete medium without additional nutrients both for growth of the yeasts and for ethanol production. It was found that both specific ethanol productivity and specific uptake rates were the highest with K. marxianus ATCC 12708 (1.68 g/g/hour and 3.78 g/g/hour respectively). This microorganism produced an ethanol yield of 87.5% of the theoretical value in 25 hours. (Refs. 15).

  12. Analysis of trickle-bed reactor for ethanol production from syngas using Clostridium ragsdalei

    Science.gov (United States)

    Devarapalli, Mamatha

    dilution and gas flow rates of 0.012 h-1 and 18.9 sccm, respectively. The molar ratio of ethanol to acetic acid of 4:1 was obtained during continuous fermentation which was 7.7 times higher than in semi-continuous fermentations. The improvement of the reactor performance in continuous mode gives scope to explore the TBR as a potential bioreactor design for large scale biofuels production.

  13. Ethanol production from waste processing tomato dry; Producao de etanol a partir de residuo do processamento de tomate seco

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Carla A.P.; Dal Sotto, Jessica; Schutz, Fabiana Costa de Araujo [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], emails: carlaschmidt@utfpr.edu.br, jeh.dalsotto@hotmail.com, fabianaschutz@utfpr.edu.br

    2011-07-01

    The generation of waste increases with the development of a region and increases the power consumption. Research about the reuse of waste for energy generation favors solving these two problems. This study aimed to evaluate the potential use of tomato seeds discarded from the production process of tomato pulp dried in ethanol production. Any product that has sugar or other carbohydrate constituted a feedstock for ethanol production, in this study was observed that approximately 26% by weight of 2kg of tomatoes assessed were represented by seeds. We obtained the juice of tomato seeds by use a blender to grind the product to facilitate the process of fermentation. Added to the fermenting yeast Saccharomyces cerevisiae producing a pre inoculum with Brix and pH adjusted, sterilized at 121 deg C for 15 minutes, which was subsequently incubated at 28-30 deg C until the end of process. Mixed up to follow this pre inoculum to the rest of the must was sterilized and incubated again at 28-30 deg C until the end of the process. The acquisition of ethanol was carried through a distillation. It was concluded that the seed discarded in the process of the product can be used for this purpose. (author)

  14. Ethanol production using xylitol synthesis mutant of xylose-utilizing zymomonas

    Science.gov (United States)

    Viitanen, Paul V.; McCutchen, Carol M.; Emptage, Mark; Caimi, Perry G.; Zhang, Min; Chou, Yat-Chen

    2010-06-22

    Production of ethanol using a strain of xylose-utilizing Zymomonas with a genetic modification of the glucose-fructose oxidoreductase gene was found to be improved due to greatly reduced production of xylitol, a detrimental by-product of xylose metabolism synthesized during fermentation.

  15. Life cycle impacts of ethanol production from spruce wood chips under high-gravity conditions.

    Science.gov (United States)

    Janssen, Matty; Xiros, Charilaos; Tillman, Anne-Marie

    2016-01-01

    Development of more sustainable biofuel production processes is ongoing, and technology to run these processes at a high dry matter content, also called high-gravity conditions, is one option. This paper presents the results of a life cycle assessment (LCA) of such a technology currently in development for the production of bio-ethanol from spruce wood chips. The cradle-to-gate LCA used lab results from a set of 30 experiments (or process configurations) in which the main process variable was the detoxification strategy applied to the pretreated feedstock material. The results of the assessment show that a process configuration, in which washing of the pretreated slurry is the detoxification strategy, leads to the lowest environmental impact of the process. Enzyme production and use are the main contributors to the environmental impact in all process configurations, and strategies to significantly reduce this contribution are enzyme recycling and on-site enzyme production. Furthermore, a strong linear correlation between the ethanol yield of a configuration and its environmental impact is demonstrated, and the selected environmental impacts show a very strong cross-correlation ([Formula: see text] in all cases) which may be used to reduce the number of impact categories considered from four to one (in this case, global warming potential). Lastly, a comparison with results of an LCA of ethanol production under high-gravity conditions using wheat straw shows that the environmental performance does not significantly differ when using spruce wood chips. For this comparison, it is shown that eutrophication potential also needs to be considered due to the fertilizer use in wheat cultivation. The LCA points out the environmental hotspots in the ethanol production process, and thus provides input to the further development of the high-gravity technology. Reducing the number of impact categories based only on cross-correlations should be done with caution. Knowledge of the

  16. Aqueous ethanolic extract of Tinospora cordifolia as a potential candidate for differentiation based therapy of glioblastomas.

    Directory of Open Access Journals (Sweden)

    Rachana Mishra

    Full Text Available Glioblastomas are the most aggressive primary brain tumors and their heterogeneity and complexity often renders them non responsive to various conventional treatments. Search for herbal products having potential anti-cancer activity is an active area of research in the Indian traditional system of medicine i.e., Ayurveda. Tinospora cordifolia, also named as 'heavenly elixir' is used in various ayurvedic decoctions as panacea to treat several body ailments. The current study investigated the anti-brain cancer potential of 50% ethanolic extract of Tinospora cordifolia (TCE using C6 glioma cells. TCE significantly reduced cell proliferation in dose-dependent manner and induced differentiation in C6 glioma cells, resulting in astrocyte-like morphology as indicated by phase contrast images, GFAP expression and process outgrowth data of TCE treated cells which exhibited higher number and longer processes than untreated cells. Reduced proliferation of cells was accompanied by enhanced expression of senescence marker, mortalin and its translocation from perinuclear to pancytoplasmic spaces. Further, TCE showed anti-migratory and anti-invasive potential as depicted by wound scratch assay and reduced expression of plasticity markers NCAM and PSA-NCAM along with MMP-2 and 9. On analysis of the cell cycle and apoptotic markers, TCE treatment was seen to arrest the C6 cells in G0/G1 and G2/M phase, suppressing expression of G1/S phase specific protein cyclin D1 and anti-apoptotic protein Bcl-xL, thus supporting its anti-proliferative and apoptosis inducing potential. Present study provides the first evidence for the presence of anti-proliferative, differentiation-inducing and anti-migratory/anti-metastatic potential of TCE in glioma cells and possible signaling pathways involved in its mode of action. Our primary data suggests that TCE and its active components may prove to be promising phytotherapeutic interventions in gliobalstoma multiformae. 

  17. Ethanol production in an integrated fermentation/membrane system. Process simulations and economics

    Energy Technology Data Exchange (ETDEWEB)

    Groot, W J; Kraayenbrink, M R; Lans, R.G.J.M. van der; Luyben, K C.A.M. [Delft Univ. of Technology (Netherlands). Dept. of Biochemical Engineering

    1993-01-01

    Four systems comprising of an ethanol fermentation integrated with microfiltration and/or pervaporation, and a conventional continuous culture, were compared with respect to the performance of the fermentation and economics. The processes are compared on the basis of the same kinetic model. It is found that cell retention by microfiltration leads to lower production costs, compared to a conventional continuous culture. Pervaporation becomes profitable at a high selectivity of ethanol/water separation and low membrane prices. (orig.).

  18. Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico

    International Nuclear Information System (INIS)

    Garcia, Carlos A.; Fuentes, Alfredo; Hennecke, Anna; Riegelhaupt, Enrique; Manzini, Fabio; Masera, Omar

    2011-01-01

    The purpose of this work was to estimate GHG emissions and energy balances for the future expansion of sugarcane ethanol fuel production in Mexico with one current and four possible future modalities. We used the life cycle methodology that is recommended by the European Renewable Energy Directive (RED), which distinguished the following five system phases: direct Land Use Change (LUC); crop production; biomass transport to industry; industrial processing; and ethanol transport to admixture plants. Key variables affecting total GHG emissions and fossil energy used in ethanol production were LUC emissions, crop fertilization rates, the proportion of sugarcane areas that are burned to facilitate harvest, fossil fuels used in the industrial phase, and the method for allocation of emissions to co-products. The lower emissions and higher energy ratios that were observed in the present Brazilian case were mainly due to the lesser amount of fertilizers applied, also were due to the shorter distance of sugarcane transport, and to the smaller proportion of sugarcane areas that were burned to facilitate manual harvest. The resulting modality with the lowest emissions of equivalent carbon dioxide (CO 2e ) was ethanol produced from direct juice and generating surplus electricity with 36.8 kgCO 2e /GJ ethanol . This was achieved using bagasse as the only fuel source to satisfy industrial phase needs for electricity and steam. Mexican emissions were higher than those calculated for Brazil (27.5 kgCO 2e /GJ ethanol ) among all modalities. The Mexican modality with the highest ratio of renewable/fossil energy was also ethanol from sugarcane juice generating surplus electricity with 4.8 GJ ethanol /GJ fossil .

  19. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw

    DEFF Research Database (Denmark)

    Janssen, Matty; Tillman, Anne-Marie; Cannella, David

    2014-01-01

    Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from...... of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately...

  20. The production of cellulosic ethanol using SMR. A prefeasibility study for the Italian scenario

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancini, Mauro

    2011-01-01

    Small Medium Reactors (SMR) can play an important role in the global nuclear renaissance coupling the production of Electrical Energy (EE) with by-products useful to increase their economic attractiveness and enhance the public acceptability. Light Water Reactors (LWR) have an average thermal efficiency of about 33%-35%, therefore two third of the thermal energy produced by the nuclear reaction is usually wasted. Nowadays there are industries able to use this thermal energy in an efficient way. Among the other the production of cellulosic ethanol seems one of the most attractive for the coupling with a nuclear power plant. This industry can exploit two by-products of a nuclear reactor: the wide area around the plant (the so called Emergency Planning Zone - EPZ) and the residual thermal energy post turbines. Cellulosic ethanol is a bio-fuel produced from non-edible parts of plants or wood. It is produced from lignocellulose the material composing much of the mass of plants. Production of ethanol (that can be used as a fuel) from lignocellulose can avoid the usage of food grain or precious vegetables usable for the human nutrition, but requires an enormous amount of heat in the production process. A SMR can be the ideal source of this thermal energy. The paper presents a prefeasibility study with the economic and strategic assessment of coupling an SMR and a cellulosic ethanol plant in the north of Italy. After an introduction on the ethanol production the papers describe the market of this product and the production process. Then it provides the cost estimation of coupling the SMR with the production plant. The results point out as this combination can be very attractive to enhance the production of ethanol since is really cost competitive and does not produce any green house gases (GHG). (author)

  1. Possibilities of utilization of co-products from corn grain ethanol and starch production

    Directory of Open Access Journals (Sweden)

    Semenčenko Valentina V.

    2013-01-01

    Full Text Available In recent decades, the expansion of alternative fuels production from crops traditionally used for food and animal feed has led to significant changes in the field of energy production, agriculture and food industry. Starch and sugar feedstocks for ethanol production (corn, wheat, sugar beet, sugar cane, etc. require increasing arable land to meet market demands for the biofuel production. Although intensive studies are being carried out in order to identify improved and more cost-effective methods for the utilization of lignocellulosic and communal waste in the production of alcohol fuel, the possibility of using dry distillers’ grains with solubles (DDGS, by-product of bioethanol production from corn and wheat as well as alcoholic beverages industry, is now in focus. Application of DDGS in livestock and poultry diets in concentrations greater than traditional could positively affect the economic viability of this biofuel production, but also stabilize the current imbalance in the food and animal feed market. However, DDGS feedstuff should not be treated as a perfect substitute for corn because the complexity of ration formulation determined at the farm or feedlot level is driven by energy and protein and other nutrient requirements, as well as their relative costs in the ration. Nevertheless, processing of corn by wet milling provides a multitude of co-products suitable for feedstuffs, food industry, pharmaceuticals, chemistry etc. Some of the most important wet milling co-products that have their use in feedstuffs are corn gluten feed and corn gluten meal. The use of DDGS as a substitute for traditional feed could prevent indirect land-use changes associated with biofuel production, and therefore preserve the environmental destruction by saving the forests and permanent pastures. The use of distiller’s grains can be beneficial to biofuel growth as this is an additional, the second largest, source of income accounting of 10-20% total

  2. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia

    The aim of this study was 1) present an oilseed rape whole crop biorefinery; 2) to investigate the best available experimental conditions for production of cellulosic ethanol from rape straw, and included the processes of thermo-chemical pretreatment, enzymatic hydrolysis, and C6 fermentation......, and 3) to couple cellulosic ethanol production to production of cellulolytic enzymes that are needed for cellulosic ethanol production, inside a rape straw biorefinery. For the first is based less on available experiments, and more on literature review. The second and third study conclusions were drawn...... rapeseed biodiesel plant of Europe to an oilseed rape whole-crop biorefinery by 2020 is envisioned and discussed. The description and discussion of this biorefinery is based partly on literature review, and partly on own experimental data, especially on pretreatment of rape straw, and production...

  3. Engineering yeast transcription machinery for improved ethanol tolerance and production.

    Science.gov (United States)

    Alper, Hal; Moxley, Joel; Nevoigt, Elke; Fink, Gerald R; Stephanopoulos, Gregory

    2006-12-08

    Global transcription machinery engineering (gTME) is an approach for reprogramming gene transcription to elicit cellular phenotypes important for technological applications. Here we show the application of gTME to Saccharomyces cerevisiae for improved glucose/ethanol tolerance, a key trait for many biofuels programs. Mutagenesis of the transcription factor Spt15p and selection led to dominant mutations that conferred increased tolerance and more efficient glucose conversion to ethanol. The desired phenotype results from the combined effect of three separate mutations in the SPT15 gene [serine substituted for phenylalanine (Phe(177)Ser) and, similarly, Tyr(195)His, and Lys(218)Arg]. Thus, gTME can provide a route to complex phenotypes that are not readily accessible by traditional methods.

  4. Ethanol production from SPORL-pretreated lodgepole pine. Preliminary evaluation of mass balance and process energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.Y. [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Wisconsin Univ., Madison, WI (United States). Dept. of Biological Systems Engineering; Zhu, Wenyuan [South China Univ. of Technology, Guangzhou (China). State Key Lab Pulp and Paper Engineering; OBryan, Patricia; Dien, Bruce S. [USDA Agricultural Research Service, Peoria, IL (United States). National Center for Agricultural Utilization Research; Tian, Shen [Capital Normal Univ., Beijing (China). College of Life Science; Gleisner, Rolland [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Pan, X.J. [Wisconsin Univ., Madison, WI (United States). Dept. of Biological Systems Engineering

    2010-05-15

    Lodgepole pine from forest thinnings is a potential feedstock for ethanol production. In this study, lodgepole pine was converted to ethanol with a yield of 276 L per metric ton of wood or 72% of theoretical yield. The lodgepole pine chips were directly subjected to sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) pretreatment and then disk-milled; the recovered cellulose substrate was quasi-simultaneously saccharified enzymatically and fermented to ethanol using commercial cellulases and Saccharomyces cerevisiae D5A. The liquor stream from the pretreatment containing hydrolyzed sugars mainly from hemicelluloses was fermented by the same yeast strain after detoxification using an XAD resin column. The SPORL pretreatment was conducted at 180 C for a period of 25 min with a liquor-to-wood ratio of 3:1 (v/w) in a laboratory digester. Three levels of sulfuric acid charge (0.0%, 1.4%, and 2.2% on an oven dried wood basis in w/w) and three levels of sodium bisulfite charge (0.0%, 4.0%, and 8.0% in w/w) were applied. Mechanical and thermal energy consumption for milling and pretreatment were determined. These data were used to determine the efficiency of sugar recoveries and net ethanol energy production values and to formulate a preliminary mass and energy balance. (orig.)

  5. Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency.

    Science.gov (United States)

    Zhu, J Y; Zhu, Wenyuan; Obryan, Patricia; Dien, Bruce S; Tian, Shen; Gleisner, Rolland; Pan, X J

    2010-05-01

    Lodgepole pine from forest thinnings is a potential feedstock for ethanol production. In this study, lodgepole pine was converted to ethanol with a yield of 276 L per metric ton of wood or 72% of theoretical yield. The lodgepole pine chips were directly subjected to sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) pretreatment and then disk-milled; the recovered cellulose substrate was quais-simultaneously saccharified enzymatically and fermented to ethanol using commercial cellulases and Saccharomyces cerevisiae D5A. The liquor stream from the pretreatment containing hydrolyzed sugars mainly from hemicelluloses was fermented by the same yeast strain after detoxification using an XAD resin column. The SPORL pretreatment was conducted at 180 degrees C for a period of 25 min with a liquor-to-wood ratio of 3:1 (v/w) in a laboratory digester. Three levels of sulfuric acid charge (0.0%, 1.4%, and 2.2% on an oven dried wood basis in w/w) and three levels of sodium bisulfite charge (0.0%, 4.0%, and 8.0% in w/w) were applied. Mechanical and thermal energy consumption for milling and pretreatment were determined. These data were used to determine the efficiency of sugar recoveries and net ethanol energy production values and to formulate a preliminary mass and energy balance.

  6. Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions.

    Science.gov (United States)

    Yuan, W J; Chang, B L; Ren, J G; Liu, J P; Bai, F W; Li, Y Y

    2012-01-01

    Developing an innovative process for ethanol fermentation from Jerusalem artichoke tubers under very high gravity (VHG) conditions. A consolidated bioprocessing (CBP) strategy that integrated inulinase production, saccharification of inulin contained in Jerusalem artichoke tubers and ethanol production from sugars released from inulin by the enzyme was developed with the inulinase-producing yeast Kluyveromyces marxianus Y179 and fed-batch operation. The impact of inoculum age, aeration, the supplementation of pectinase and nutrients on the ethanol fermentation performance of the CBP system was studied. Although inulinase activities increased with the extension of the seed incubation time, its contribution to ethanol production was negligible because vigorously growing yeast cells harvested earlier carried out ethanol fermentation more efficiently. Thus, the overnight incubation that has been practised in ethanol production from starch-based feedstocks is recommended. Aeration facilitated the fermentation process, but compromised ethanol yield because of the negative Crabtree effect of the species, and increases the risk of contamination under industrial conditions. Therefore, nonaeration conditions are preferred for the CBP system. Pectinase supplementation reduced viscosity of the fermentation broth and improved ethanol production performance, particularly under high gravity conditions, but the enzyme cost should be carefully balanced. Medium optimization was performed, and ethanol concentration as high as 94·2 g l(-1) was achieved when 0·15 g l(-1) K(2) HPO(4) was supplemented, which presents a significant progress in ethanol production from Jerusalem artichoke tubers. A CBP system using K. marxianus is suitable for efficient ethanol production from Jerusalem artichoke tubers under VHG conditions. Jerusalem artichoke tubers are an alternative to grain-based feedstocks for ethanol production. The high ethanol concentration achieved using K. marxianus with the

  7. Impacts of retrofitting analysis on first generation ethanol production: process design and techno-economics.

    Science.gov (United States)

    Rajendran, Karthik; Rajoli, Sreevathsava; Teichert, Oliver; Taherzadeh, Mohammad J

    2015-02-01

    More than half of the bioethanol plants in operation today use corn or grains as raw materials. The downstream processing of mash after fermentation to produce ethanol and distiller grains is an energy-demanding process, which needs retrofitting for optimization. In addition, the fluctuation in the ethanol and grain prices affects the overall profitability of the plant. For this purpose, a process simulation was performed in Aspen Plus(®) based on an existing industrial plant located in Sweden. The simulations were compared using different scenarios including different concentrations of ethanol, using the stillage for biogas production to produce steam instead of distiller grains as a by-product, and altering the purity of the ethanol produced. Using stillage for biogas production, as well as utilizing the steam, reduced the overall energy consumption by 40% compared to the plant in operation. The fluctuations in grain prices had a high impact on the net present value (NPV), where grain prices greater than 349 USD/ton reached a zero NPV. After 20 years, the plant in operation producing 41,600 tons ethanol/year can generate a profit of 78 million USD. Compared to the base case, the less purified ethanol resulted in a lower NPV of 30 million USD.

  8. The operable modeling of simultaneous saccharification and fermentation of ethanol production from cellulose.

    Science.gov (United States)

    Shen, Jiacheng; Agblevor, Foster A

    2010-03-01

    An operable batch model of simultaneous saccharification and fermentation (SSF) for ethanol production from cellulose has been developed. The model includes four ordinary differential equations that describe the changes of cellobiose, glucose, yeast, and ethanol concentrations with respect to time. These equations were used to simulate the experimental data of the four main components in the SSF process of ethanol production from microcrystalline cellulose (Avicel PH101). The model parameters at 95% confidence intervals were determined by a MATLAB program based on the batch experimental data of the SSF. Both experimental data and model simulations showed that the cell growth was the rate-controlling step at the initial period in a series of reactions of cellulose to ethanol, and later, the conversion of cellulose to cellobiose controlled the process. The batch model was extended to the continuous and fed-batch operating models. For the continuous operation in the SSF, the ethanol productivities increased with increasing dilution rate, until a maximum value was attained, and rapidly decreased as the dilution rate approached the washout point. The model also predicted a relatively high ethanol mass for the fed-batch operation than the batch operation.

  9. Selection of Thai starter components for ethanol production utilizing malted rice from waste paddy

    Directory of Open Access Journals (Sweden)

    Sirilux Chaijamrus

    2011-04-01

    Full Text Available The use of mixed herbs in Thai rice wine starter (Loog-pang were investigated in order to directly maintain theefficiency of the microbial community (Saccharomycopsis fibuligera, Amylomyces sp., Gluconobacter sp. and Pediocccuspentosaceus. The optimum formula was galanga, garlic, long pepper, licorice, and black pepper at the ratio of 0.5:8:1:4:1,respectively. Previously, waste paddy has been used directly as a renewable resource for fuel ethanol production using solidstate fermentation (SSF with Loog-pang. In this study, hydrolyzed malted rice starch was used as the sole nutrient source insubmerged fermentation (SmF to enhance the process yield. The maximum ethanol productivity (4.08 g/kg waste paddy h-1and the highest ethanol concentration (149±7.0 g/kg waste paddy were obtained after 48 hrs of incubation. The resultsindicated that starch saccharification provided a higher ethanol yield (48.38 g/100g sugar consumed than SSF. In addition,the efficiency of ethanol fermentation was 67% which is similar to that of the malted rice made from normal paddy (68%.This result suggests that waste paddy could be used as an alternative raw material for ethanol production.

  10. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

    Science.gov (United States)

    Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang

    2013-10-01

    Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.

  11. Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yue-Qin; Liu, Kai; An, Ming-Zhe; Morimura, Shigeru; Kida, Kenji [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Koike, Yoji [Tokyo Gas Co., Ltd., 1-7-7 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045 (Japan); Wu, Xiao-Lei [Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2008-11-15

    A process for producing ethanol from kitchen waste was developed in this study. The process consists of freshness preservation of the waste, saccharification of the sugars in the waste, continuous ethanol fermentation of the saccharified liquid, and anaerobic treatment of the saccharification residue and the stillage. Spraying lactic acid bacteria (LCB) on the kitchen waste kept the waste fresh for over 1 week. High glucose recovery (85.5%) from LCB-sprayed waste was achieved after saccharification using Nagase N-40 glucoamylase. The resulting saccharified liquid was used directly for ethanol fermentation, without the addition of any nutrients. High ethanol productivity (24.0 g l{sup -1} h{sup -1}) was obtained when the flocculating yeast strain KF-7 was used in a continuous ethanol fermentation process at a dilution rate of 0.8 h{sup -1}. The saccharification residue was mixed with stillage and treated in a thermophilic anaerobic continuous stirred tank reactor (CSTR); a VTS loading rate of 6 g l{sup -1} d{sup -1} with 72% VTS digestion efficiency was achieved. Using this process, 30.9 g ethanol, and 65.2 l biogas with 50% methane, was produced from 1 kg of kitchen waste containing 118.0 g total sugar. Thus, energy in kitchen waste can be converted to ethanol and methane, which can then be used as fuels, while simultaneously treating kitchen waste. (author)

  12. Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production.

    Science.gov (United States)

    Geiger, Melanie; Gibbons, Jaimie; West, Thomas; Hughes, Stephen R; Gibbons, William

    2012-12-01

    We evaluated fermentation capabilities of five strains of Scheffersomyces stipitis (WT-2-1, WT-1-11, 14-2-6, 22-1-1, and 22-1-12) that had been produced by UV-C mutagenesis and selection for improved xylose fermentation to ethanol using an integrated automated robotic work cell. They were incubated under both facultative and anaerobic conditions to evaluate ethanol production on glucose, xylose, cellobiose, and a combination of all three sugars. The medium contained 50 g/L total sugar and 5 g/L yeast extract. The strains performed significantly better under facultative compared with anaerobic conditions. As expected, glucose was the most readily fermented sugar with ~100% fermentation efficiency (FE) under facultative conditions but only 5% to 16% FE anaerobically. Xylose utilization was 20% to 40% FE under facultative conditions but 9% to 25% FE anaerobically. Cellobiose was the least fermented sugar, at 18% to 27% FE facultatively and 8% to 11% anaerobically. Similar trends occurred in the sugar mixture. Under facultative conditions, strain 22-1-12 produced 19.6 g/L ethanol on glucose, but strain 14-2-6 performed best on xylose (4.5 g/L ethanol) and the sugar combination (8.0 g/L ethanol). Ethanol titers from glucose under anaerobic conditions were again highest with strain 22-1-12, but none of the strains produced ethanol from xylose. Future trials will evaluate nutrient addition to boost microaerophilic xylose fermentation.

  13. Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7

    International Nuclear Information System (INIS)

    Tang, Y.-Q.; Koike, Yoji; Liu Kai; An, M.-Z.; Morimura, Shigeru; Wu Xiaolei; Kida, Kenji

    2008-01-01

    A process for producing ethanol from kitchen waste was developed in this study. The process consists of freshness preservation of the waste, saccharification of the sugars in the waste, continuous ethanol fermentation of the saccharified liquid, and anaerobic treatment of the saccharification residue and the stillage. Spraying lactic acid bacteria (LCB) on the kitchen waste kept the waste fresh for over 1 week. High glucose recovery (85.5%) from LCB-sprayed waste was achieved after saccharification using Nagase N-40 glucoamylase. The resulting saccharified liquid was used directly for ethanol fermentation, without the addition of any nutrients. High ethanol productivity (24.0 g l -1 h -1 ) was obtained when the flocculating yeast strain KF-7 was used in a continuous ethanol fermentation process at a dilution rate of 0.8 h -1 . The saccharification residue was mixed with stillage and treated in a thermophilic anaerobic continuous stirred tank reactor (CSTR); a VTS loading rate of 6 g l -1 d -1 with 72% VTS digestion efficiency was achieved. Using this process, 30.9 g ethanol, and 65.2 l biogas with 50% methane, was produced from 1 kg of kitchen waste containing 118.0 g total sugar. Thus, energy in kitchen waste can be converted to ethanol and methane, which can then be used as fuels, while simultaneously treating kitchen waste

  14. Optimization of pretreatment, enzymatic hydrolysis and fermentation for more efficient ethanol production by Jerusalem artichoke stalk.

    Science.gov (United States)

    Li, Kai; Qin, Jin-Cheng; Liu, Chen-Guang; Bai, Feng-Wu

    2016-12-01

    Jerusalem artichoke (JA) is a potential energy crop for biorefinery due to its unique agronomic traits such as resistance to environmental stresses and high biomass yield in marginal lands. Although JA tubers have been explored for inulin extraction and biofuels production, there is little concern on its stalk (JAS). In this article, the pretreatment of JAS by alkaline hydrogen peroxide was optimized using the response surface methodology to improve sugars yield and reduce chemicals usage. Scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis were applied to characterize the structures of the pretreated JAS to evaluate the effectiveness of the pretreatment. Furthermore, the feeding of the pretreated JAS and cellulase was performed for high solid uploading (up to 30%) to increase ethanol titer, and simultaneous saccharification and fermentation with 55.6g/L ethanol produced, 36.5% more than that produced through separate hydrolysis and fermentation, was validated to be more efficient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Y. B.; Sun, B., E-mail: sunb88@dlmu.edu.cn; Zhu, X. M.; Yan, Z. Y.; Liu, H.; Liu, Y. J. [College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China)

    2016-07-15

    Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogen production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.

  16. Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production

    International Nuclear Information System (INIS)

    Souza, Simone Pereira; Turra de Ávila, Márcio; Pacca, Sérgio

    2012-01-01

    Sugarcane (Saccharum spp.) and palm tree (Elaeis guianeensis) are crops with high biofuel yields, 7.6 m 3 ha −1 y −1 of ethanol and 4 Mg ha −1 y −1 of oil, respectively. The joint production of these crops enhances the sustainability of ethanol. The objective of this work was comparing a traditional sugarcane ethanol production system (TSES) with a joint production system (JSEB), in which ethanol and biodiesel are produced at the same biorefinery but only ethanol is traded. The comparison is based on ISO 14.040:2006 and ISO 14044:2006, and appropriate indicators. Production systems in Cerrado (typical savannah), Cerradão (woody savannah) and pastureland ecosystems were considered. Energy and carbon balances, and land use change impacts were evaluated. The joint system includes 100% substitution of biodiesel for diesel, which is all consumed in different cropping stages. Data were collected by direct field observation methods, and questionnaires applied to Brazilian facilities. Three sugarcane mills situated in São Paulo State and one palm oil refinery located in Para State were surveyed. The information was supplemented by secondary sources. Results demonstrated that fossil fuel use and greenhouse gas emissions decreased, whereas energy efficiency increased when JSEB was compared to TSES. In comparison with TSES, the energy balance of JSEB was 1.7 greater. In addition, JSEB released 23% fewer GHG emissions than TSES. The ecosystem carbon payback time for Cerrado, Cerradão, and Degraded Grassland of JSEB was respectively 4, 7.7 and −7.6 years. These are typical land use types of the Brazilian Cerrado region for which JSEB was conceived. -- Highlights: ► LCA of ethanol and biodiesel joint production system. ► Sugarcane based biorefinery assessment in Brazil. ► Original Brazilian LCI data on ethanol and palm oil biodiesel production. ► Biofuel LCA with LUC sensitivity analisis for the Brazilian Cerrado Region.

  17. Evaluation of fresh and preserved herbaceous field crops for biogas and ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, A

    2012-07-01

    In the future, various forms of bioenergy will be increasingly required to replace fossil energy. Globally, transportation uses almost one third of fossil energy resources, and it is thus of great importance to find ethically, economically, and environmentally viable biofuels in near future. Fieldgrown biomass, including energy crops and crop residues, are alternatives to supplement other non-food biofuel raw materials. The aim of this work was to evaluate the potential of five crops, maize (Zea mays L.), fiber hemp (Cannabis sativa L.), faba bean (Vicia faba L.), white lupin (Lupinus albus L.), and Jerusalem artichoke (Heliantus tuborosus L.) cultivated in boreal conditions as raw materials for methane and ethanol. Climate, cultivation requirements, chemical composition, and recalcitrance are some of the parameters to be considered when choosing energy crops for cultivation and for efficient conversion into biofuels. Among the studied crops, protein-rich legumes (faba bean and white lupin) were attractive options for methane, while hemp and Jerusalem artichoke had high theoretical potential for ethanol. Maize was, however, equally suitable for production of both energy carriers. Preservation of crop materials is essential to preserve and supply biomass material throughout the year. Preservation can be also considered as a mild pretreatment prior to biofuel production. Ensiling was conducted on maize, hemp, and faba bean in this work and additionally hemp was preserved in alkali conditions. Ensiling was found to be most beneficial for hemp when converted to methane, increasing the methane yield by more than 50%, whereas preservation with urea increased the energy yield of hemp as ethanol by 39%. Maize, with a high content of water-soluble carbohydrates (20% of DM), required an acid additive in order to preserve the sugars. Interestingly, hydrothermal pretreatment for maize and hemp prior to methane production was less efficient than ensiling. Enzymatic hydrolysis

  18. Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid

    Directory of Open Access Journals (Sweden)

    Bondesson Pia-Maria

    2013-01-01

    Full Text Available Abstract Background Lignocellulosic biomass, such as corn stover, is a potential raw material for ethanol production. One step in the process of producing ethanol from lignocellulose is enzymatic hydrolysis, which produces fermentable sugars from carbohydrates present in the corn stover in the form of cellulose and hemicellulose. A pretreatment step is crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars, and later ethanol. This study has investigated steam pretreatment of corn stover, with and without sulphuric acid as catalyst, and examined the effect of residence time (5–10 min and temperature (190–210°C on glucose and xylose recovery. The pretreatment conditions with and without dilute acid that gave the highest glucose yield were then used in subsequent experiments. Materials pretreated at the optimal conditions were subjected to simultaneous saccharification and fermentation (SSF to produce ethanol, and remaining organic compounds were used to produce biogas by anaerobic digestion (AD. Results The highest glucose yield achieved was 86%, obtained after pretreatment at 210°C for 10 minutes in the absence of catalyst, followed by enzymatic hydrolysis. The highest yield using sulphuric acid, 78%, was achieved using pretreatment at 200°C for 10 minutes. These two pretreatment conditions were investigated using two different process configurations. The highest ethanol and methane yields were obtained from the material pretreated in the presence of sulphuric acid. The slurry in this case was split into a solid fraction and a liquid fraction, where the solid fraction was used to produce ethanol and the liquid fraction to produce biogas. The total energy recovery in this case was 86% of the enthalpy of combustion energy in corn stover. Conclusions The highest yield, comprising ethanol, methane and solids, was achieved using pretreatment in the presence of sulphuric acid followed by a process configuration in

  19. Production of ethanol from a mixture of waste paper and kitchen waste via a process of successive liquefaction, presaccharification, and simultaneous saccharification and fermentation.

    Science.gov (United States)

    Nishimura, Hiroto; Tan, Li; Kira, Noriko; Tomiyama, Shigeo; Yamada, Kazuo; Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji

    2017-09-01

    Efficient ethanol production from waste paper requires the addition of expensive nutrients. To reduce the production cost of ethanol from waste paper, a study on how to produce ethanol efficiently by adding kitchen waste (potentially as a carbon source, nutrient source, and acidity regulator) to waste paper was performed and a process of successive liquefaction, presaccharification, and simultaneous saccharification and fermentation (L+PSSF) was developed. The individual saccharification performances of waste paper and kitchen waste were not influenced by their mixture. Liquefaction of kitchen waste at 90°C prior to presaccharification and simultaneous saccharification and fermentation (PSSF) was essential for efficient ethanol fermentation. Ethanol at concentrations of 46.6 or 43.6g/l was obtained at the laboratory scale after fermentation for 96h, even without pH adjustment and/or the addition of extra nutrients. Similarly, ethanol at a concentration of 45.5g/l was obtained at the pilot scale after fermentation for 48h. The ethanol concentration of L+PSSF of the mixture of waste paper and kitchen waste was comparable to that of PSSF of waste paper with added nutrients (yeast extract and peptone) and pH adjustment using H 2 SO 4 , indicating that kitchen waste is not only a carbon source but also an excellent nutrient source and acidity regulator for fermentation of the mixture of waste paper and kitchen waste. Copyright © 2017. Published by Elsevier Ltd.

  20. Co-Production of Ethanol and 1,2-Propanediol via Glycerol Hydrogenolysis Using Ni/Ce–Mg Catalysts: Effects of Catalyst Preparation and Reaction Conditions

    Directory of Open Access Journals (Sweden)

    Russel N. Menchavez

    2017-09-01

    Full Text Available Crude glycerol from biodiesel production is a biobased material capable of co-producing biofuels and chemicals. This study aimed to develop a line of Ni catalysts supported on cerium–magnesium (Ce–Mg to improve the process efficiency of glycerol hydrogenolysis for ethanol and 1,2-propanediol (1,2-PDO. Results showed that catalytic activity was greatly improved by changing the preparation method from impregnation to deposition precipitation (DP, and by adjusting calcination temperatures. Prepared via DP, the catalysts of 25 wt % Ni supported on Ce–Mg (9:1 mol/mol greatly improved the effectiveness in glycerol conversion while maintaining the selectivities to ethanol and 1,2-PDO. Calcination at 350 °C provided the catalysts better selectivities of 15.61% to ethanol and 67.93% to 1,2-PDO. Increases in reaction temperature and time improved the conversion of glycerol and the selectivity to ethanol, but reduced the selectivity to 1,2-PDO. A lower initial water content led to a higher conversion of glycerol, but lower selectivities to ethanol and 1,2-PDO. Higher hydrogen application affected the glycerol conversion rate positively, but the selectivities to ethanol and 1,2-PDO negatively. A comparison to the commercial Raney® Ni catalyst showed that the Ni/Ce–Mg catalyst developed in this study showed a better potential for the selective co-production of ethanol and 1,2-PDO from glycerol hydrogenolysis.

  1. Rice bran extract: an inexpensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysate.

    Science.gov (United States)

    Milessi, Thais S S; Antunes, Felipe A F; Chandel, Anuj K; Silva, Silvio S

    2013-10-01

    Selection of the raw material and its efficient utilization are the critical factors in economization of second generation (2G) ethanol production. Fermentation of the released sugars into ethanol by a suitable ethanol producing microorganism using cheap media ingredients is the cornerstone of the overall process. This study evaluated the potential of rice bran extract (RBE) as a cheap nitrogen source for the production of 2G ethanol by Scheffersomyces (Pichia) stipitis NRRL Y-7124 using sugarcane bagasse (SB) hemicellulosic hydrolysate. Dilute acid hydrolysis of SB showed 12.45 g/l of xylose and 0.67 g/l of glucose along with inhibitors. It was concentrated by vacuum evaporation and submitted to sequential detoxification (neutralization by calcium hydroxide and charcoal adsorption). The detoxified hydrolysate revealed the removal of furfural (81 %) and 5-hydroxymethylfurfural (61 %) leading to the final concentration of glucose (1.69 g/l) and xylose (33.03 g/l). S. stipitis was grown in three different fermentation media composed of detoxified hydrolysate as carbon source supplemented with varying nitrogen sources i.e. medium #1 (RBE + ammonium sulfate + calcium chloride), medium #2 (yeast extract + peptone) and medium #3 (yeast extract + peptone + malt extract). Medium #1 showed maximum ethanol production (8.6 g/l, yield 0.22 g/g) followed by medium #2 (8.1 g/l, yield 0.19 g/g) and medium #3 (7.4 g/l, yield 0.18 g/g).

  2. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    Science.gov (United States)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-02-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.

  3. Increase of ethanol productivity by cell-recycle fermentation of flocculating yeast.

    Science.gov (United States)

    Wang, F Z; Xie, T; Hui, M

    2011-01-01

    Using the recombinant flocculating Angel yeast F6, long-term repeated batch fermentation for ethanol production was performed and a high volumetric productivity resulted from half cells not washed and the optimum opportunity of residual glucose 20 g l(-1) of last medium. The obtained highest productivity was 2.07 g l-(1) h(-1), which was improved by 75.4% compared with that of 1.18 g l(-1) h(-1) in the first batch fermentation. The ethanol concentration reached 8.4% corresponding to the yield of 0.46 g g(-1). These results will contribute greatly to the industrial production of fuel ethanol using the commercial method with the flocculating yeast.

  4. Spatial and temporal aspects of grain accumulation costs for ethanol production: An Australian case study

    International Nuclear Information System (INIS)

    Anderton, Nikki; Kingwell, Ross

    2008-01-01

    Ethanol production is increasingly commonplace in many grain-producing regions. This paper uses the grain-producing region of south-western Australia to illustrate spatial and temporal aspects of grain accumulation costs for ethanol production. Specifically, this study examines how price variability of various wheat grades, combined with spatial and temporal variability in production of those grades, affects the costs of grain accumulation. These costs are the main components of an ethanol plant's operating costs so lessening these costs can offer a comparative advantage for a plant owner. Logistics models based on mathematical programming are constructed for a range of plant sizes and locations for ethanol production. Modelling results identify low-cost sites that generate cost savings, in present value terms, of between 5 and 7.5 per cent, depending on plant size, over the 9-year study period. At all locations, small to medium-sized plants offer advantages of lower and less variable costs of grain accumulation. Yet, all locations and all plant sizes are characterised by marked volatility in the cost of grain accumulation. The profitability of ethanol production based on wheat in this region of Australia is particularly exposed to any prolonged period of high grain prices relative to petroleum prices, given current biofuel-policy settings in Australia. (author)

  5. Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system.

    Science.gov (United States)

    Pagnoncelli, Kamila C; Pereira, Andressa R; Sedenho, Graziela C; Bertaglia, Thiago; Crespilho, Frank N

    2018-08-01

    Integrating in situ biofuel production and energy conversion into a single system ensures the production of more robust networks as well as more renewable technologies. For this purpose, identifying and developing new biocatalysts is crucial. Herein, is reported a bioelectrochemical system consisting of alcohol dehydrogenase (ADH) and Saccharomyces cerevisiae, wherein both function cooperatively for ethanol production and its bioelectrochemical oxidation. Here, it is shown that it is possible to produce ethanol and use it as a biofuel in a tandem manner. The strategy is to employ flexible carbon fibres (FCF) electrode that could adsorb both the enzyme and the yeast cells. Glucose is used as a substrate for the yeast for the production of ethanol, while the enzyme is used to catalyse the oxidation of ethanol to acetaldehyde. Regarding the generation of reliable electricity based on electrochemical systems, the biosystem proposed in this study operates at a low temperature and ethanol production is proportional to the generated current. With further optimisation of electrode design, we envision the use of the cooperative biofuel cell for energy conversion and management of organic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. How does increased corn-ethanol production affect US natural gas prices?

    International Nuclear Information System (INIS)

    Whistance, Jarrett; Thompson, Wyatt

    2010-01-01

    In recent years, there has been a push to increase biofuel production in the United States. The biofuel of choice, so far, has been ethanol produced from corn. The effects of increased corn-ethanol production on the consumer prices of food and energy continue to be studied and debated. This study examines, in particular, the effects of increased corn-ethanol production on US natural gas prices. A structural model of the natural gas market is developed and estimated using two stage least squares. A baseline projection for the period 2007-2018 is determined, and two scenarios are simulated. In the first scenario, current biofuel policies including EISA mandates, tariffs, and tax credits are removed. In the second scenario, we hold ethanol production to the level required only for largely obligatory additive use. The results indicate that the increased level of corn-ethanol production occurring as a result of the current US biofuel policies may lead to natural gas prices that are as much as 0.25% higher, on average, than if no biofuel policies were in place. A similar comparison between the baseline and second scenario indicates natural gas prices could be as much as 0.5% higher, on average, for the same period.

  7. Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal

    Science.gov (United States)

    Acetone butanol ethanol (ABE) was produced in an integrated continuous fermentation and product recovery system using a microbial strain Clostridium beijerinckii BA101 for ABE production and fermentation gases (CO2 and H2) for product removal by gas stripping. This represents a continuation of our ...

  8. IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Donal F. Day

    2009-01-29

    The Audubon Sugar Institute (ASI) of Louisiana State University’s Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physical barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate

  9. Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass.

    Science.gov (United States)

    Tao, Ling; Aden, Andy; Elander, Richard T; Pallapolu, Venkata Ramesh; Lee, Y Y; Garlock, Rebecca J; Balan, Venkatesh; Dale, Bruce E; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Falls, Matthew; Holtzapple, Mark T; Sierra, Rocio; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Hames, Bonnie; Thomas, Steve; Warner, Ryan E

    2011-12-01

    Six biomass pretreatment processes to convert switchgrass to fermentable sugars and ultimately to cellulosic ethanol are compared on a consistent basis in this technoeconomic analysis. The six pretreatment processes are ammonia fiber expansion (AFEX), dilute acid (DA), lime, liquid hot water (LHW), soaking in aqueous ammonia (SAA), and sulfur dioxide-impregnated steam explosion (SO(2)). Each pretreatment process is modeled in the framework of an existing biochemical design model so that systematic variations of process-related changes are consistently captured. The pretreatment area process design and simulation are based on the research data generated within the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) 3 project. Overall ethanol production, total capital investment, and minimum ethanol selling price (MESP) are reported along with selected sensitivity analysis. The results show limited differentiation between the projected economic performances of the pretreatment options, except for processes that exhibit significantly lower monomer sugar and resulting ethanol yields. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Fuel from farms: A guide to small-scale ethanol production: Second edition

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    This guide presents the current status of on-farm fermentation ethanol production as well as an overview of some of the technical and economic factors. Tools such as decision and planning worksheets and a sample business plan for use in exploring whether or not to go into ethanol production are given. Specifics in production including information on the raw materials, system components, and operational requirements are also provided. Recommendation of any particular process is deliberately avoided because the choice must be tailored to the needs and resources of each individual producer. The emphasis is on providing the facts necessary to make informed judgments. 98 refs., 14 figs., 9 tabs.

  11. Fuel from farms: a guide to small-scale ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    A guide on fermentation processes with emphasis on small-scale production of ethanol using farm crops as a source of raw material is published. The current status of on-farm ethanol production as well as an overview of some of the technical and economic factors is presented. Decision and planning worksheets and a sample business plan for use in decision making are included. Specifics in production including information on the raw materials, system components, and operational requirements are also provided. Diagrams of fermentors and distilling apparatus are included. (DC)

  12. Life cycle assessment of rapeseed oil, rape methyl ester and ethanol as fuels - a comparison between large- and smallscale production

    Energy Technology Data Exchange (ETDEWEB)

    Bernesson, Sven [Swedish Univ. of Agriculture Sciences, Uppsala (Sweden). Dep. of Biometry and Engineering

    2004-05-01

    Production of rapeseed oil, rape methyl ester (RME) and ethanol fuel for heavy diesel engines can be carried out with different systems solutions, in which the choice of system is usually related to the scale of the production. The main purpose of this study was to analyse whether the use of a small-scale rapeseed oil, RME and ethanol fuel production system reduced the environmental load in comparison to a medium- and a large-scale system. To fulfil this purpose, a limited LCA, including air-emissions and energy requirements, was carried out for the three fuels and the three plant sizes. Four different methods to allocate the environmental burden between different products were compared: physical allocation according to the lower heat value in the products [MJ/kg], economic allocation according to the product prices [SEK/kg], no allocation and allocation with a system expansion so that rapemeal and distiller's waste could replace soymeal mixed with soyoil and glycerine could replace glycerine produced from fossil raw material. The functional unit, to which the total environmental load was related, was 1.0 MJ of energy delivered on the engine shaft to the final consumer. Production of raw materials, cultivation, transport, fuel production and use of the fuels produced were included in the systems studied. It was shown in the study that the differences in environmental impact and energy requirement between small-, medium- and large-scale systems were small or even negligible in most cases for all three fuels, except for the photochemical ozone creation potential (POCP) during ethanol fuel production. The longer transport distances to a certain degree outweighed the higher oil extraction efficiency, the higher energy efficiency and the more efficient use of machinery and buildings in the large-scale system. The dominating production step was the cultivation, in which production of fertilisers, followed by soil emissions and tractive power, made major contributions to

  13. Life cycle assessment of rapeseed oil, rape methyl ester and ethanol as fuels - a comparison between large- and smallscale production

    Energy Technology Data Exchange (ETDEWEB)

    Bernesson, Sven [Swedish Univ. of Agriculture Sciences, Uppsala (Sweden). Dep. of Biometry and Engineering

    2004-05-01

    Production of rapeseed oil, rape methyl ester (RME) and ethanol fuel for heavy diesel engines can be carried out with different systems solutions, in which the choice of system is usually related to the scale of the production. The main purpose of this study was to analyse whether the use of a small-scale rapeseed oil, RME and ethanol fuel production system reduced the environmental load in comparison to a medium- and a large-scale system. To fulfil this purpose, a limited LCA, including air-emissions and energy requirements, was carried out for the three fuels and the three plant sizes. Four different methods to allocate the environmental burden between different products were compared: physical allocation according to the lower heat value in the products [MJ/kg], economic allocation according to the product prices [SEK/kg], no allocation and allocation with a system expansion so that rapemeal and distiller's waste could replace soymeal mixed with soyoil and glycerine could replace glycerine produced from fossil raw material. The functional unit, to which the total environmental load was related, was 1.0 MJ of energy delivered on the engine shaft to the final consumer. Production of raw materials, cultivation, transport, fuel production and use of the fuels produced were included in the systems studied. It was shown in the study that the differences in environmental impact and energy requirement between small-, medium- and large-scale systems were small or even negligible in most cases for all three fuels, except for the photochemical ozone creation potential (POCP) during ethanol fuel production. The longer transport distances to a certain degree outweighed the higher oil extraction efficiency, the higher energy efficiency and the more efficient use of machinery and buildings in the large-scale system. The dominating production step was the cultivation, in which production of fertilisers, followed by soil emissions and tractive power, made major

  14. Increasing efficiency in ethanol production: Water footprint and economic productivity of sugarcane ethanol under nine different water regimes in north-eastern Brazil

    Directory of Open Access Journals (Sweden)

    Daniel Chico

    2015-06-01

    Full Text Available Ethanol production in Brazil has grown by 219% between 2001 and 2012, increasing the use of land and water resources. In the semi-arid north-eastern Brazil, irrigation is the main way for improving sugarcane production. This study aimed at quantifying water consumed in ethanol production from sugarcane in this region using the water footprint (WF indicator and complementing it with an evaluation of the water apparent productivity (WAP. This way we were able to provide a measure of the crop´s physical and economic water productivity using, respectively, the WF and WAP concepts. We studied sugarcane cultivation under nine different water regimes, including rainfed and full irrigation. Data from a mill of the state of Alagoas for three production seasons were used. Irrigation influenced sugarcane yield increasing total profit per hectare and economic water productivity. Full irrigation showed the lowest WF, 1229 litres of water per litre of ethanol (L/L, whereas rainfed production showed the highest WF, 1646 L/L. However, the lower WF in full irrigation as compared to the rest of the water regimes implied the use of higher volumes of blue water per cultivated hectare. Lower water regimes yielded the lowest economic productivity, 0.72 US$/m3 for rainfed production as compared to 1.11 US$/m3 for full irrigation. Since economic revenues are increased with higher water regimes, there are incentives for the development of these higher water regimes. This will lead to higher general crop water and economic productivity at field level, as green water is replaced by blue water consumption.

  15. Increasing efficiency in ethanol production: Water footprint and economic productivity of sugarcane ethanol under nine different water regimes in north-eastern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Chico, D.; Santiago, A. D.; Garrido, A.

    2015-07-01

    Ethanol production in Brazil has grown by 219% between 2001 and 2012, increasing the use of land and water resources. In the semi-arid north-eastern Brazil, irrigation is the main way for improving sugarcane production. This study aimed at quantifying water consumed in ethanol production from sugarcane in this region using the water footprint (WF) indicator and complementing it with an evaluation of the water apparent productivity (WAP). This way we were able to provide a measure of the crop´s physical and economic water productivity using, respectively, the WF and WAP concepts. We studied sugarcane cultivation under nine different water regimes, including rainfed and full irrigation. Data from a mill of the state of Alagoas for three production seasons were used. Irrigation influenced sugarcane yield increasing total profit per hectare and economic water productivity. Full irrigation showed the lowest WF, 1229 litres of water per litre of ethanol (L/L), whereas rainfed production showed the highest WF, 1646 L/L. However, the lower WF in full irrigation as compared to the rest of the water regimes implied the use of higher volumes of blue water per cultivated hectare. Lower water regimes yielded the lowest economic productivity, 0.72 US$/m3 for rainfed production as compared to 1.11 US$/m3 for full irrigation. Since economic revenues are increased with higher water regimes, there are incentives for the development of these higher water regimes. This will lead to higher general crop water and economic productivity at field level, as green water is replaced by blue water consumption. (Author)

  16. Evaluation of sweet sorghum as a potential ethanol crop in Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Horton, David Scott

    2011-08-01

    Petroleum prices have made alternative fuel crops a viable option for ethanol production. Sweet sorghum [Sorghum bicolor] is a non-food crop that may produce large quantities of ethanol with minimal inputs. Eleven cultivars were planted in 2008 and 2009 as a half-season crop. Four-row plots 6.9 m by 0.5 m, were monitored bimonthly for °Brix, height, and sugar accumulation. Yield and extractable sap were taken at the end of season. Stalk yield was greatest for the cultivar Sugar Top (4945 kg ha-1) and lowest for Simon (1054 kg ha-1). Dale ranked highest ethanol output (807 L ha-1) while Simon (123 L ha-1) is the lowest. All cultivars peak Brix accumulation occurs in early October. Individual sugar concentrations indicated sucrose is the predominant sugar with glucose and fructose levels dependent on cultivar. Supplemental ethanol in fermented wort was the best preservative tested to halt degradation of sorghum wort.

  17. Simultaneous Saccharification and Fermentation and Partial Saccharification and Co-Fermentation of Lignocellulosic Biomass for Ethanol Production

    Science.gov (United States)

    Doran-Peterson, Joy; Jangid, Amruta; Brandon, Sarah K.; Decrescenzo-Henriksen, Emily; Dien, Bruce; Ingram, Lonnie O.

    Ethanol production by fermentation of lignocellulosic biomass-derived sugars involves a fairly ancient art and an ever-evolving science. Production of ethanol from lignocellulosic biomass is not avant-garde, and wood ethanol plants have been in existence since at least 1915. Most current ethanol production relies on starch- and sugar-based crops as the substrate; however, limitations of these materials and competing value for human and animal feeds is renewing interest in lignocellulose conversion. Herein, we describe methods for both simultaneous saccharification and fermentation (SSF) and a similar but separate process for partial saccharification and cofermentation (PSCF) of lignocellulosic biomass for ethanol production using yeasts or pentose-fermenting engineered bacteria. These methods are applicable for small-scale preliminary evaluations of ethanol production from a variety of biomass sources.

  18. Economic and process optimization of ethanol production by extractive fermentation

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report demonstrates by computer simulation the economic advantages of extractive fermentation on an industrial scale compared to the best alternative technology currently available. The simulations were based on a plant capacity of 100 x 10 6 L/y of azeotropic ethanol. The simulation results were verified with a fully integrated, computer controlled extractive fermentation process demonstration unit based around a 7 L fermentor operated with a synthetic glucose medium and using Saccharomyces cerevisiae. The system was also operated with natural substrates (blackstrap molasses and grain hydrolyzate). Preliminary tests with the organism Zymomonas mobilis were also carried out under extractive fermentation conditions.

  19. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.

    Science.gov (United States)

    Baer, Zachary C; Bormann, Sebastian; Sreekumar, Sanil; Grippo, Adam; Toste, F Dean; Blanch, Harvey W; Clark, Douglas S

    2016-10-01

    The fermentation of simple sugars to ethanol has been the most successful biofuel process to displace fossil fuel consumption worldwide thus far. However, the physical properties of ethanol and automotive components limit its application in most cases to 10-15 vol% blends with conventional gasoline. Fermentative co-production of ethanol and acetone coupled with a catalytic alkylation reaction could enable the production of gasoline blendstocks enriched in higher-chain oxygenates. Here we demonstrate a synthetic pathway for the production of acetone through the mevalonate precursor hydroxymethylglutaryl-CoA. Expression of this pathway in various strains of Escherichia coli resulted in the co-production of acetone and ethanol. Metabolic engineering and control of the environmental conditions for microbial growth resulted in controllable acetone and ethanol production with ethanol:acetone molar ratios ranging from 0.7:1 to 10.0:1. Specifically, use of gluconic acid as a substrate increased production of acetone and balanced the redox state of the system, predictively reducing the molar ethanol:acetone ratio. Increases in ethanol production and the molar ethanol:acetone ratio were achieved by co-expression of the aldehyde/alcohol dehydrogenase (AdhE) from E. coli MG1655 and by co-expression of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) from Z. mobilis. Controlling the fermentation aeration rate and pH in a bioreactor raised the acetone titer to 5.1 g L(-1) , similar to that obtained with wild-type Clostridium acetobutylicum. Optimizing the metabolic pathway, the selection of host strain, and the physiological conditions employed for host growth together improved acetone titers over 35-fold (0.14-5.1 g/L). Finally, chemical catalysis was used to upgrade the co-produced ethanol and acetone at both low and high molar ratios to higher-chain oxygenates for gasoline and jet fuel applications. Biotechnol. Bioeng. 2016;113: 2079-2087. © 2016 Wiley