Estimation of bulk transfer coefficient for latent heat flux (Ce)
Sadhuram, Y.
The bulk transfer coefficient for latent heat flux (Ce) has been estimated over the Arabian Sea from the moisture budget during the pre-monsoon season of 1988. The computations have been made over two regions (A: 0-8 degrees N: 60-68 degrees E: B: 0...
Grecu, Mircea; Olson, William S.; Shie, Chung-Lin; L'Ecuyer, Tristan S.; Tao, Wei-Kuo
2009-01-01
In this study, satellite passive microwave sensor observations from the TRMM Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is calibrated, or "trained" using relatively accurate estimates of heating based upon spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based upon a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically-integrated condensation and surface precipitation. Estimates of Q1-QR from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q1 produced by combining TMI Q1-QR with independently derived estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating profile structure with sharper and more intense heating peaks than the rawinsonde estimates. 2
Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods
Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo
2004-01-01
In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression
The estimation of latent heat flux: A reflection for the future
F. Castellví
2007-01-01
Full Text Available Currently, the cost of measuring turbulent fluxes is extremely high. Thus, the development of models and theories that use robust and low-cost equipment to estimate turbulent fluxes is becoming an increasingly interesting line of research. This paper describes the difficulties encountered throughout the study in estimating evapotranspiration. A set of experiments, (already published, were carried out to estimate average sensible and latent heat fluxes every 30 minutes. These experiments used different models based on the Surface Renewal Analysis (SR; the results are presented in this paper. Considering the fundamental importance of water in the agricultural industry, this article addresses the issue of implementing SR in the protocol for data acquisition-transfer in a network of agro-meteorological stations.
ZHANG Bangtong; WU Junqi; LING Hongfei; CHEN Peirong
2008-01-01
Based on the theory of thermal conductivity, in this paper we derived a formula to estimate the prolongation period (AtL) of cooling-crystallization process of a granitic melt caused by latent heat of crystallization as follows: △t=QL×△tcol/TM-TC×CP where TM is initial temperature of the granite melt, Tc crystallization temperature of the granite melt,CP specific heat, △tcol cooling period of a granite melt from its initial temperature (TM) to its crystallization temperature (TC), QL latent heat of the granite melt. The cooling period of the melt for the Fanshan granodiorite from its initial temperature (900℃) to crystallization temperature (600℃) could be estimated ～210,000 years if latent heat was not considered. Calculation for the Fanshan melt using the above formula yields a AtL value of～190,000 years, which implies that the actual cooling period within the temperature range of 900℃-600℃ should be 400,000 years. This demonstrates that the latent heat produced from crystallization of the granitic melt is a key factor influencing the cooling-crystallization process of a granitic melt, prolongating the period of crystallization and resulting in the large emplacement-crystallization time difference (ECTD) in granite batholith.
Estimation of surface latent heat fluxes from IRS-P4/MSMR satellite data
Randhir Singh; B Simon; P C Joshi
2001-09-01
The brightness temperatures of the Microwave sensor MSMR (Multichannel Scanning Microwave Radiometer) launched in May 1999 onboard Indian Oceansat-1 IRS-P4 are used to develop a direct retrieval method for latent heat ux by multivariate regression technique. The MSMR measures the microwave radiances at 8 channels at frequencies of 6.6, 10.7, 18 and 21 GHz at both vertical and horizontal polarizations. It is found that the surface LHF (Latent Heat Flux) is sensitive to all the channels. The coeficients were derived using the National Centre for Environmental Prediction (NCEP) reanalysis data of three months: July, September, November of 1999. The NCEP daily analyzed latent heat uxes and brightness temperatures observed by MSMR were used to derive the coeficients. Validity of the derived coeficients was checked with in situ observations over the Indian Ocean and with NCEP analyzed LHF for global points. The LHF derived directly from the MSMR brightness temperature (Tb) yielded an accuracy of 35 watt/m2. LHF was also computed by applying bulk formula using the geophysical parameters extracted from MSMR. In this case the errors were higher apparently due to the errors involved in derivation of the geophysical parameters.
Santos, Severino Guilherme Caetano Gonçalves Dos; Saraiva, Edilson Paes; Pimenta Filho, Edgard Cavalcanti; Gonzaga Neto, Severino; Fonsêca, Vinicus França Carvalho; Pinheiro, Antônio da Costa; Almeida, Maria Elivania Vieira; de Amorim, Mikael Leal Cabral Menezes
2017-02-01
The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation (P heat transferred via respiration ranged from 19.21 to 29.42 W/m(2). There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m(2) for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.
Santos, Severino Guilherme Caetano Gonçalves dos; Saraiva, Edilson Paes; Pimenta Filho, Edgard Cavalcanti; Gonzaga Neto, Severino; Fonsêca, Vinicus França Carvalho; Pinheiro, Antônio da Costa; Almeida, Maria Elivania Vieira; de Amorim, Mikael Leal Cabral Menezes
2017-02-01
The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation ( P values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m2. There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m2 for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.
Understanding Latent Heat of Vaporization.
Linz, Ed
1995-01-01
Presents a simple exercise for students to do in the kitchen at home to determine the latent heat of vaporization of water using typical household materials. Designed to stress understanding by sacrificing precision for simplicity. (JRH)
Feng, Fei; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Chen, Jiquan; Zhao, Xiang; Jia, Kun; Pintér, Krisztina; McCaughey, J Harry
2016-01-01
Accurate estimation of latent heat flux (LE) based on remote sensing data is critical in characterizing terrestrial ecosystems and modeling land surface processes. Many LE products were released during the past few decades, but their quality might not meet the requirements in terms of data consistency and estimation accuracy. Merging multiple algorithms could be an effective way to improve the quality of existing LE products. In this paper, we present a data integration method based on modified empirical orthogonal function (EOF) analysis to integrate the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16) and the Priestley-Taylor LE algorithm of Jet Propulsion Laboratory (PT-JPL) estimate. Twenty-two eddy covariance (EC) sites with LE observation were chosen to evaluate our algorithm, showing that the proposed EOF fusion method was capable of integrating the two satellite data sets with improved consistency and reduced uncertainties. Further efforts were needed to evaluate and improve the proposed algorithm at larger spatial scales and time periods, and over different land cover types.
Using ground-based soil moisture and latent/sensible heat fluxes observations acquired from the Ameriflux Network, we calculate the mutual information (MI) content between multiple soil moisture variables and evaporative fraction (EF) to examine the existence of information in vertically-integrated ...
Latent heat of vehicular motion
Ahmadi, Farzad; Berrier, Austin; Habibi, Mohammad; Boreyko, Jonathan
2016-11-01
We have used the thermodynamic concept of latent heat, where a system loses energy due to a solid-to-liquid phase transition, to study the flow of a group of vehicles moving from rest. During traffic flow, drivers keep a large distance from the car in front of them to ensure safe driving. When a group of cars comes to a stop, for example at a red light, drivers voluntarily induce a "phase transition" from this "liquid phase" to a close-packed "solid phase." This phase transition is motivated by the intuition that maximizing displacement before stopping will minimize the overall travel time. To test the effects of latent heat on flow efficiency, a drone captured the dynamics of cars flowing through an intersection on a Smart Road where the initial spacing between cars at the red light was systematically varied. By correlating the experimental results with the Optimal Velocity Model (OVM), we find that the convention of inducing phase transitions at intersections offers no benefit, as the lag time (latent heat) of resumed flow offsets the initial increase in displacement. These findings suggest that in situations where gridlock is not an issue, drivers should not decrease their spacing during stoppages in order to maximize safety with no loss in flow efficiency.
Antonio Ribeiro da Cunha
2002-06-01
Full Text Available O objetivo deste trabalho foi caracterizar e relacionar a radiação líquida com o calor latente equivalente, em mm de água, nos cultivos protegido e de campo, na cultura de pimentão. O experimento foi feito em Botucatu, SP. A estimativa do fluxo de calor latente foi feita pelo método do balanço de energia, por meio da razão de Bowen. Foram feitas medidas instantâneas da radiação líquida (Rn, dos fluxos convectivos de calor latente (LE e sensível (H, do fluxo de calor no solo (G, e dos gradientes psicrométricos sobre a cultura. O cultivo protegido, apesar de receber menor quantidade de radiação solar global, foi mais eficiente na conversão da radiação líquida disponível em matéria seca total e na produtividade de frutos. No balanço de energia, o cultivo protegido apresentou razões G/Rn e LE/Rn inferiores e H/Rn superior, com um fluxo de calor latente, equivalente em milímetros, 45,43% menor que no cultivo no campo. Apresentou, ainda, menor quantidade de radiação líquida disponível e menores perdas de energia, mostrando-se mais eficiente no uso da água.The aim of this work was to characterize and bring into relationship the net radiation with the latent heat flux equivalent to water mm, in sweet pepper crops in the field and in protected cultivation. The estimate of latent heat flux was made by the energy balance method through the Bowen ratio. Instantaneous measures were made of net radiation (Rn, sensitive (H and latent (LE heat fluxes, heat flux into the soil (G, and of psychrometers gradients in the crop canopy. In protected cultivation, the conversion of the available net radiation in total dry matter and fruit productivity was more efficient than in the field, in spite of lower amounts of global solar radiation received by the crop. Ratios of G/Rn and LE/Rn were lower, and that of H/Rn was higher in protected cultivation, with an equivalent latent heat flux in millimeters, 45.43% lower than that determined in the
Suat Irmak
2014-08-01
Full Text Available Evapotranspiration (ET and sensible heat (H flux play a critical role in climate change; micrometeorology; atmospheric investigations; and related studies. They are two of the driving variables in climate impact(s and hydrologic balance dynamics. Therefore, their accurate estimate is important for more robust modeling of the aforementioned relationships. The Bowen ratio energy balance method of estimating ET and H diffusions depends on the assumption that the diffusivities of latent heat (KV and sensible heat (KH are always equal. This assumption is re-visited and analyzed for a subsurface drip-irrigated field in south central Nebraska. The inequality dynamics for subsurface drip-irrigated conditions have not been studied. Potential causes that lead KV to differ from KH and a rectification procedure for the errors introduced by the inequalities were investigated. Actual ET; H; and other surface energy flux parameters using an eddy covariance system and a Bowen Ratio Energy Balance System (located side by side on an hourly basis were measured continuously for two consecutive years for a non-stressed and subsurface drip-irrigated maize canopy. Most of the differences between KV and KH appeared towards the higher values of KV and KH. Although it was observed that KV was predominantly higher than KH; there were considerable data points showing the opposite. In general; daily KV ranges from about 0.1 m2∙s−1 to 1.6 m2∙s−1; and KH ranges from about 0.05 m2∙s−1 to 1.1 m2∙s−1. The higher values for KV and KH appear around March and April; and around September and October. The lower values appear around mid to late December and around late June to early July. Hourly estimates of KV range between approximately 0 m2∙s−1 to 1.8 m2∙s−1 and that of KH ranges approximately between 0 m2∙s−1 to 1.7 m2∙s−1. The inequalities between KV and KH varied diurnally as well as seasonally. The inequalities were greater during the non
同化MODIS温度产品估算地表水热通量%Estimation of sensible and latent heat flux by assimilating MODIS LST products
徐同仁; 刘绍民; 秦军; 梁顺林
2009-01-01
In this paper, a land surface temperature data assimilation scheme is developed based on Ensemble Kalman Filter (EnKF) and Common Land Model version 1.0 (CLM), which is mainly used to improve the estimation of the sensible and latent heat fluxes by assimilating MODIS land surface temperature (LST) products. Leaf area index (LAI) is also updated dynamically by MODIS LAI products. In this study, the relationship between the MODIS LST and the CLM surface temperature is determined and taken as the observation operator of the assimilation scheme. Meanwhile, the MODIS LST is compared with the ground-measured surface temperature, and the Root Mean Square Error (RMSE) is taken as the observation error. The scheme is tested and validated based on measurements in three observation stations (Blackhill, Bondville and Brookings) of Ameriflux. Results indicate that data assimilation method improves the estimation of surface temperature and sensible heat flux. The RMSE of sensible heat flux reduced from 81.5W·m~(-2) to 58.4W·m~(-2) at the Blackhill site, from 47.0W·m~(-2) to 31.8W·m~(-2) at the Bondville site, from 46.5W·m~(-2) to 45.1W·m~(-2) at the Brookings site. The RMSE of latent heat fluxes reduced from 88.6W·m~(-2) to 57.7W·m~(-2) at the Bondville site, from 53.4W·m~(-2) to 47.2W·m~(-2) at the Blackhill site. In addition, it is a practical way to improve the estimation of sensible and latent heat flux by assimilating MODIS LST into land surface model.%基于集合卡尔曼滤波和通用陆面模型(CLM 1.0)发展了一个地表温度的同化系统.这个系统同化了MODIS温度产品,并将MODIS的叶面积指数引入CLM模型中,主要用于改进地表水热通量的估算精度.将CLM输出的地表温度与MODIS地表温度建立关系,并作为同化系统的观测算子.将MODIS地表温度与实测地表温度进行了比较,将其均方差(Root Mean Square Error,RMSE)作为观测误差.选取3个美国通量网站点(Blackhill、 Bondville
Chen, Yi-Ying; Chu, Chia-Ren; Li, Ming-Hsu
2012-10-01
SummaryIn this paper we present a semi-parametric multivariate gap-filling model for tower-based measurement of latent heat flux (LE). Two statistical techniques, the principal component analysis (PCA) and a nonlinear interpolation approach were integrated into this LE gap-filling model. The PCA was first used to resolve the multicollinearity relationships among various environmental variables, including radiation, soil moisture deficit, leaf area index, wind speed, etc. Two nonlinear interpolation methods, multiple regressions (MRS) and the K-nearest neighbors (KNNs) were examined with random selected flux gaps for both clear sky and nighttime/cloudy data to incorporate into this LE gap-filling model. Experimental results indicated that the KNN interpolation approach is able to provide consistent LE estimations while MRS presents over estimations during nighttime/cloudy. Rather than using empirical regression parameters, the KNN approach resolves the nonlinear relationship between the gap-filled LE flux and principal components with adaptive K values under different atmospheric states. The developed LE gap-filling model (PCA with KNN) works with a RMSE of 2.4 W m-2 (˜0.09 mm day-1) at a weekly time scale by adding 40% artificial flux gaps into original dataset. Annual evapotranspiration at this study site were estimated at 736 mm (1803 MJ) and 728 mm (1785 MJ) for year 2008 and 2009, respectively.
Dish-mounted latent heat buffer storage
Manvi, R.
1981-01-01
Dish-mounted latent heat storage subsystems for Rankine, Brayton, and Stirling engines operating at 427 C, 816 C, and 816 C respectively are discussed. Storage requirements definition, conceptual design, media stability and compatibility tests, and thermal performance analyses are considered.
Latent Trait Estimation: Theory vs. Practice.
Kolakowski, Donald
Empirical results are presented as regards the implementation of a latent-trait psychometric model by means of conditional maximum likelihood estimation. Items are scored polychotomously into varying numbers of nominal categories and the test and item characteristic curves and information functions are examined. It is concluded that scoring items…
Wang, Xin; Zhang, Rongwang; Huang, Jian; Zeng, Lili; Huang, Fei
2017-06-01
Five latent heat flux (LHF) products are evaluated based on in situ observations in the South China Sea (SCS), including the ECWMF ERA-Interim (ERA-I), the NCEP2, the Objectively Analyzed air-sea Fluxes (OAFlux), the Japanese 55 year Reanalysis (JRA55), and the TropFlux data sets. The results show that there are good correlations between the LHF products and observations, ranging from 0.68 to 0.74. However, mean biases of -8 to 40 W m-2 exist in the LHF products with respect to the observations. For root-mean-square errors, the OAFlux data set is the closest to the observations, followed by ERA-I and TropFlux, while the NCEP2 data set shows significant overestimation. It is found that the biases in the near-surface-specific humidity are most correlated with the biases in the LHF products, followed by the biases in the near-surface wind speed, air temperature, and sea surface temperature. The biases in the LHF products have a prominent seasonal variation that is 25 W m-2 higher in boreal winter than in summer. Using the thermal equation, it is shown that the tendency errors of the mixed-layer temperature estimated by the biases in the LHF products vary from -2.0 to 3.5°C/month in the SCS. When all of the products are averaged, the errors are reduced to a range of -0.7 to 1.5°C/month. It is noteworthy that the errors in summer are more obvious than those in winter, since a thinner mixed layer in the summer can amplify the effect of even a small bias in the LHF.
Application of evolutionary algorithm for cast iron latent heat identification
J. Mendakiewicz
2008-12-01
Full Text Available In the paper the cast iron latent heat in the form of two components corresponding to the solidification of austenite and eutectic phases is assumed. The aim of investigations is to estimate the values of austenite and eutectic latent heats on the basis of cooling curve at the central point of the casting domain. This cooling curve has been obtained both on the basis of direct problem solution as well as from the experiment. To solve such inverse problem the evolutionary algorithm (EA has been applied. The numerical computations have been done using the finite element method by means of commercial software MSC MARC/MENTAT. In the final part of the paper the examples of identification are shown.
Application of cross finned tubes in latent heat storages
Schwind, H.; Wolff, D. (Dortmund Univ. (Germany, F.R.). Lehrstuhl fuer Anlagentechnik); Brose, J. (Dortmund Univ. (Germany, F.R.). Arbeitsgruppe Chemieapparatebau)
1978-01-01
Heat storages, utilizing the latent heat of materials have in comparison with sensible heat storages the two fundamental advantages of small storage volumes and constant temperatures during charge and discharge. Known storage systems in the field of industrial heating may be replaced advantageous by latent heat storage systems. A new latent heat storage, applying storage material around vertical arranged cross finned tubes is presented. It results in good heat transfer rates and avoids degredation and stratification of salthydrates during operation. The scaling-up of a single cross finned tube to a compact unit with plate fins seems to be practicable without problems. Some experimental results are presented.
A solar air collector with integrated latent heat thermal storage
Klimes Lubomir; Mauder Tomas; Ostry Milan; Charvat Pavel
2012-01-01
Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage...
Solar Thermoelectricity via Advanced Latent Heat Storage
Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, Azure D.; Bobela, David; Bonner, R.; Weigand, R.; Campo, D.; Parilla, Philip A.; Siegel, N. P.; Toberer, Eric S.; Ginley, David S.
2016-05-31
We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermal valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.
Solar thermoelectricity via advanced latent heat storage
Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.
2016-05-01
We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.
A Retrieval of Tropical Latent Heating Using the 3D Structure of Precipitation Features
Ahmed, Fiaz; Schumacher, Courtney; Feng, Zhe; Hagos, Samson
2016-09-01
Traditionally, radar-based latent heating retrievals use rainfall to estimate the total column-integrated latent heating and then distribute that heating in the vertical using a model-based look-up table (LUT). In this study, we develop a new method that uses size characteristics of radar-observed precipitating echo (i.e., area and mean echo-top height) to estimate the vertical structure of latent heating. This technique (named the Convective-Stratiform Area [CSA] algorithm) builds on the fact that the shape and magnitude of latent heating profiles are dependent on the organization of convective systems and aims to avoid some of the pitfalls involved in retrieving accurate rainfall amounts and microphysical information from radars and models. The CSA LUTs are based on a high-resolution Weather Research and Forecasting model (WRF) simulation whose domain spans much of the near-equatorial Indian Ocean. When applied to S-PolKa radar observations collected during the DYNAMO/CINDY2011/AMIE field campaign, the CSA retrieval compares well to heating profiles from a sounding-based budget analysis and improves upon a simple rain-based latent heating retrieval. The CSA LUTs also highlight the fact that convective latent heating increases in magnitude and height as cluster area and echo-top heights grow, with a notable congestus signature of cooling at mid levels. Stratiform latent heating is less dependent on echo-top height, but is strongly linked to area. Unrealistic latent heating profiles in the stratiform LUT, viz., a low-level heating spike, an elevated melting layer, and net column cooling were identified and corrected for. These issues highlight the need for improvement in model parameterizations, particularly in linking microphysical phase changes to larger mesoscale processes.
Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions
Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.
2015-01-01
Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.
Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions
Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.
2015-01-01
Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.
A solar air collector with integrated latent heat thermal storage
Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir
2012-04-01
Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).
A solar air collector with integrated latent heat thermal storage
Klimes Lubomir
2012-04-01
Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.
Transient response of latent heat storage in greenhouse solar system
Huang, B.K.; Cengel, Y.A.; Toksoy, M.
1983-06-01
A latent heat storage system with two different stacking configurations and air bafflings was designed and constructed as an integrated part of the greenhouse solar system. Commercial cylindrical storage rods were used as the primary storage elements. The results showed that the latent storage system performed significantly better than water or rock storage.
Effect of Boundary Layer Latent Heating on MJO Simulations
LING Jian; LI Chongyin; ZHOU Wen; JIA Xiaolong; Chidong ZHANG
2013-01-01
A latent heating peak in the PBL was detected in a simulation by a global GCM that failed to reproduce Madden-Julian Oscillation (MJO).The latent heating peak in the PBL was generated by very shallow convection,which prevented moisture from being transported to the free troposphere.Large amount of moisture was therefore confined to the PBL,leading to a dry bias in the free atmosphere.Suffering from this dry bias,deep convection became lethargic,and MJO signals failed to occur.When the latent heating peak in the PBL was removed in another simulation,reasonable MJO signals,including the eastward propagation and the structure of its large-scale circulation,appeared.We therefore propose that the excessive latent heating peak in the PBL due to hyperactive shallow convection may be a reason for a lack of MJO signals in some simulations by other GCMs as well.
Denys, S; Van Loey, A M; Hendrickx, M E
2000-01-01
A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.
Layout of a latent heat storage system with finned tubes
Wolff, D.
1980-10-26
The theoretical and experimental investigations show by the example of Glauber's salt in a finned-tube latent heat storage vessel how heat transfer and storage capacity at charging and discharging depend on the variables of geometry, temperature, time and on the composition of the storing medium. By vertical arrangement of transversely finned tubes the separation problems occurring with Glauber's salt are solved insofar as the technical utilization of the latent heat of conversion corresponding to the complete conversion during charging and discharging not being possible, no decrease, of the reduced storage capacity, however, is found even after very many charging/discharging cycles. For the heat transfer during discharging correlations can be given on the basis of a model concept, be means of which a heat transfer coefficient, varying during the discharging process, can be predicted almost for the total range of discharge as a function of geometry, temperature and state of discharge. On the basis of the simple working formula for the heat transfer coefficient at crystallization of a latent heat storing medium the dynamic behavior of a compact finned-tube storage vessel can be predicted by means of a computer code. These means allow to perform the thermal design of a compact latent heat storage facility according to given design criteria accounting for economic aspects.
Transient response of latent heat storage in greenhouse solar system
Huang, B.K.; Toksoy, M.; Cengel, Y.A.
1986-01-01
A latent heat storage system with two different stacking configurations and air bafflings was designed and constructed as an integrated part of the greenhouse solar system (solar barn). Commercial cylindrical storage rods were used as the primary storage elements. The results showed that the designed latent storage systems demonstrated significantly higher compact storage capacity than water or rock storage and that the ring-baffled storage unit performed better than the cross-baffled storage unit.
A Latent Class Approach to Estimating Test-Score Reliability
van der Ark, L. Andries; van der Palm, Daniel W.; Sijtsma, Klaas
2011-01-01
This study presents a general framework for single-administration reliability methods, such as Cronbach's alpha, Guttman's lambda-2, and method MS. This general framework was used to derive a new approach to estimating test-score reliability by means of the unrestricted latent class model. This new approach is the latent class reliability…
A Simplified Estimation of Latent State--Trait Parameters
Hagemann, Dirk; Meyerhoff, David
2008-01-01
The latent state-trait (LST) theory is an extension of the classical test theory that allows one to decompose a test score into a true trait, a true state residual, and an error component. For practical applications, the variances of these latent variables may be estimated with standard methods of structural equation modeling (SEM). These…
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.
2003-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.
Sakitani, Katsumi; Honda, Hiroshi
Experimental and theoretical studies were made of the heat transfer characteristics of a latent heat storage unit used for a natural circulation cooling /latent heat storage system. Heating and cooling curves of the latent heat storage unit undergoing solid-liquid phase change of a PCM (lauric acid) was obtained by using anatural circulation loop of R22 which consisted of an electrically heated evaporater, a water cooled condenser and the latent heat storage unit. The latent heat storage unit showed a heat transfer performance which was high enough for practical use. An approximate theoretical analysis was conducted to investigate transient behavior of the latent heat storage unit. Predictions of the refrigerant and outer surface temperatures during the melting process were in fair agreement with the experimental data, whereas that of the refrigerant temperature during the solidification process was considerably lower than the measurement.
Design and simulation of latent heat storage units. Final report
Shamsundar, N.; Stein, E.; Rooz, E.; Bascaran, E.; Lee, T.C. [Houston Univ., TX (United States)
1992-04-01
This report presents the results of two years of research and development on passive latent heat storage systems. Analytical models have been developed and extended, and a computer code for simulating the performance of a latent heat storage has been developed. The code is intended to be merged into a larger solar energy system simulation code and used for making realistic system studies. Simulation studies using a code which has a flexible and accurate routine for handling the storage subsystem should lead to the development of better systems than those in which storage is added on after the rest of the system has already been selected and optimized.
Design and simulation of latent heat storage units
Shamsundar, N.; Stein, E.; Rooz, E.; Bascaran, E.; Lee, T.C. (Houston Univ., TX (United States))
1992-04-01
This report presents the results of two years of research and development on passive latent heat storage systems. Analytical models have been developed and extended, and a computer code for simulating the performance of a latent heat storage has been developed. The code is intended to be merged into a larger solar energy system simulation code and used for making realistic system studies. Simulation studies using a code which has a flexible and accurate routine for handling the storage subsystem should lead to the development of better systems than those in which storage is added on after the rest of the system has already been selected and optimized.
A. D. Clulow
2014-12-01
Full Text Available A combination of measurement and modelling was used to find a pragmatic solution to estimate the annual total evaporation (ET from the rare and indigenous Nkazana Peat Swamp Forest (PSF on the east coast of Southern Africa to improve the water balance estimates within the area. Total evaporation was measured during three window periods (between seven and nine days each using an eddy covariance (EC system on a telescopic mast above the forest canopy. Sapflow of an understory and an emergent tree was measured using a low maintenance heat pulse velocity system for an entire hydrological year (October 2009 to September 2010. An empirical model was derived, describing the relationship between the observed ET of the Nkazana PSF measured during two of the window periods (R2 = 0.92 and 0.90 which, overlapped with sapflow measurements, thereby providing hourly estimates of predicted ET of the Nkazana PSF for a year, totalling 1125 mm (while rainfall was 650 mm. In building the empirical model, it was found that including the understory tree sapflow provided no benefit to the model performance. In addition, the observed emergent tree sapflow relationship with observed ET between the two field campaigns was consistent and could be represented by a single empirical model (R2= 0.90; RMSE = 0.08 mm. During the window periods of EC measurement, no single meteorological variable was found to describe the Nkazana PSF ET satisfactorily. However, in terms of evaporation models, the hourly FAO56 Penman–Monteith equation best described the observed ET from EC during the August 2009 (R2 = 0.75, November 2009 (R2 = 0.85 and March 2010 (R2 = 0.76 field campaigns, compared to the Priestley–Taylor model (R2 = 0.54, 0.74 and 0.62 during the respective field campaigns. From the empirical model of ET and the FAO56 Penman–Monteith equation, a monthly crop factor (Kc was derived for the Nkazana PSF providing a method of estimating long-term swamp forest ET from
Assimilation of remotely sensed latent heat flux in a distributed hydrological model
Schuurmans, J.M.; Troch, P.A.A.; Veldhuizen, A.A.; Bastiaanssen, W.G.M.; Bierkens, M.F.P.
2003-01-01
This paper addresses the question of whether remotely sensed latent heat flux estimates over a catchment can be used to improve distributed hydrological model water balance computations by the process of data assimilation. The data used is a series of satellite images for the Drentse Aa catchment in
Miglietta, F.; Gioli, B.; Brunet, Y.; Hutjes, R.W.A.; Matese, A.; Sarrat, C.; Zaldei, A.
2009-01-01
The CarboEurope Regional Experiment Strategy (CERES) was designed to develop and test a range of methodologies to assess regional surface energy and mass exchange of a large study area in the south-western part of France. This paper describes a methodology to estimate sensible and latent heat fluxes
Tantau, Hans-Juergen [Hannover Univ. (Germany). Fachgebiet Biosystem- und Gartenbautechnik
2013-03-01
Unlike buildings, the heat demand of greenhouses is affected also by the evaporation of the respective crop. Due to condensation of water vapour inside the covering material, latent heat is converted into sensible heat and transported outwards through the covering material. The portion of latent heat can increase to more than 50 % of the internal heat transfer and is therefore a significant heat flux, which must be considered in calculations of heat demand. The heat transfer coefficients (U-values), as they are given in literature, are only valid for dry conditions without condensation. In this work, a simplified methodological approach was chosen using heat transfer resistances to consider the latent heat flux and thus, to calculate U-values for greenhouse conditions including condensation. (orig.)
A Semi-parametric Multivariate Gap-filling Model for Eddy Covariance Latent Heat Flux
Li, M.; Chen, Y.
2010-12-01
Quantitative descriptions of latent heat fluxes are important to study the water and energy exchanges between terrestrial ecosystems and the atmosphere. The eddy covariance approaches have been recognized as the most reliable technique for measuring surface fluxes over time scales ranging from hours to years. However, unfavorable micrometeorological conditions, instrument failures, and applicable measurement limitations may cause inevitable flux gaps in time series data. Development and application of suitable gap-filling techniques are crucial to estimate long term fluxes. In this study, a semi-parametric multivariate gap-filling model was developed to fill latent heat flux gaps for eddy covariance measurements. Our approach combines the advantages of a multivariate statistical analysis (principal component analysis, PCA) and a nonlinear interpolation technique (K-nearest-neighbors, KNN). The PCA method was first used to resolve the multicollinearity relationships among various hydrometeorological factors, such as radiation, soil moisture deficit, LAI, and wind speed. The KNN method was then applied as a nonlinear interpolation tool to estimate the flux gaps as the weighted sum latent heat fluxes with the K-nearest distances in the PCs’ domain. Two years, 2008 and 2009, of eddy covariance and hydrometeorological data from a subtropical mixed evergreen forest (the Lien-Hua-Chih Site) were collected to calibrate and validate the proposed approach with artificial gaps after standard QC/QA procedures. The optimal K values and weighting factors were determined by the maximum likelihood test. The results of gap-filled latent heat fluxes conclude that developed model successful preserving energy balances of daily, monthly, and yearly time scales. Annual amounts of evapotranspiration from this study forest were 747 mm and 708 mm for 2008 and 2009, respectively. Nocturnal evapotranspiration was estimated with filled gaps and results are comparable with other studies
Development of composite latent/sensible heat storage media
Petri, R.; Ong, E. T.; Kardas, A.
1990-12-01
Results of an on-going program to develop a composite latent-sensible thermal energy storage medium, trade marked CompPhase, are presented. The target application area was periodic kiln energy recovery. The concept is that of a composite salt/ceramic material processed such that the medium maintains its shape and mechanical integrity through the salt melting temperature. As such, the media can be fabricated into a variety of shapes suitable for packed beds, fluidized beds, or direct contact heat exchangers. The properties of ten carbonate salt or eutectic mixtures of carbonate salts were reviewed to select the most appropriate candidates for development. Three salts and two ceramic materials were evaluated in laboratory tests to select the final material, a composite of sodium-barium eutectic/magnesium oxide, for development. Two methods of processing the constituent powders for fabrication into storage pellets were developed, and one method was applied to pellet fabrication by commercial processing equipment. Two different preliminary cost estimates bracketed the expected cost of commercially fabricating storage pellets. Also, two modifications to the material processing method were suggested to reduce costs. Thermal cycling was conducted on laboratory produced experimental pellets and on prototype pellets fabricated by commercial processes. Detailed laboratory tests to determine composite mechanical and thermal properties were conducted. It is concluded that further laboratory, field, and economic studies are required before the concept of composite storage media can be considered fully developed for commercialization.
F. Miglietta
2009-02-01
Full Text Available The CarboEurope Regional Experiment Strategy (CERES was designed to develop and test a range of methodologies to assess regional surface energy and mass exchange of a large study area in the south-western part of France. This paper describes a methodology to estimate sensible and latent heat fluxes on the basis of net radiation, surface radiometric temperature measurements and information obtained from available products derived from the Meteosat Second Generation (MSG geostationary meteorological satellite, weather stations and ground-based eddy covariance towers. It is based on a simplified bulk formulation of sensible heat flux that considers the degree of coupling between the vegetation and the atmosphere and estimates latent heat as the residual term of net radiation. Estimates of regional energy fluxes obtained in this way are validated at the regional scale by means of a comparison with direct flux measurements made by airborne eddy-covariance. The results show an overall good matching between airborne fluxes and estimates of sensible and latent heat flux obtained from radiometric surface temperatures that holds for different weather conditions and different land use types. The overall applicability of the proposed methodology to regional studies is discussed.
Asymptotic accuracy of Bayesian estimation for a single latent variable.
Yamazaki, Keisuke
2015-09-01
In data science and machine learning, hierarchical parametric models, such as mixture models, are often used. They contain two kinds of variables: observable variables, which represent the parts of the data that can be directly measured, and latent variables, which represent the underlying processes that generate the data. Although there has been an increase in research on the estimation accuracy for observable variables, the theoretical analysis of estimating latent variables has not been thoroughly investigated. In a previous study, we determined the accuracy of a Bayes estimation for the joint probability of the latent variables in a dataset, and we proved that the Bayes method is asymptotically more accurate than the maximum-likelihood method. However, the accuracy of the Bayes estimation for a single latent variable remains unknown. In the present paper, we derive the asymptotic expansions of the error functions, which are defined by the Kullback-Leibler divergence, for two types of single-variable estimations when the statistical regularity is satisfied. Our results indicate that the accuracies of the Bayes and maximum-likelihood methods are asymptotically equivalent and clarify that the Bayes method is only advantageous for multivariable estimations.
Explicit estimating equations for semiparametric generalized linear latent variable models
Ma, Yanyuan
2010-07-05
We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.
The latent heat of vaporization of supercritical fluids
Banuti, Daniel; Raju, Muralikrishna; Hickey, Jean-Pierre; Ihme, Matthias
2016-11-01
The enthalpy of vaporization is the energy required to overcome intermolecular attractive forces and to expand the fluid volume against the ambient pressure when transforming a liquid into a gas. It diminishes for rising pressure until it vanishes at the critical point. Counterintuitively, we show that a latent heat is in fact also required to heat a supercritical fluid from a liquid to a gaseous state. Unlike its subcritical counterpart, the supercritical pseudoboiling transition is spread over a finite temperature range. Thus, in addition to overcoming intermolecular attractive forces, added energy simultaneously heats the fluid. Then, considering a transition from a liquid to an ideal gas state, we demonstrate that the required enthalpy is invariant to changes in pressure for 0 intermolecular forces in the real fluid vapor during heating. At supercritical pressures, all of the transition occurs at non-equilibrium; for p -> 0 , all of the transition occurs at equilibrium.
Sensible and latent heating of the atmosphere as inferred from DST-6 data
Herman, G. F.; Schubert, S. D.; Johnson, W. T.
1979-01-01
The average distribution of convective latent heating, boundary layer sensible heat flux, and vertical velocity are determined for the winter 1976 DST period from GLAS model diagnostics. Key features are the regions of intense latent heating over Brazil, Central Africa, and Indonesia; and the regions of strong sensible heating due to air mass modification over the North Atlantic and North Pacific Oceans.
Latent Heating Retrieval from TRMM Observations Using a Simplified Thermodynamic Model
Grecu, Mircea; Olson, William S.
2003-01-01
A procedure for the retrieval of hydrometeor latent heating from TRMM active and passive observations is presented. The procedure is based on current methods for estimating multiple-species hydrometeor profiles from TRMM observations. The species include: cloud water, cloud ice, rain, and graupel (or snow). A three-dimensional wind field is prescribed based on the retrieved hydrometeor profiles, and, assuming a steady-state, the sources and sinks in the hydrometeor conservation equations are determined. Then, the momentum and thermodynamic equations, in which the heating and cooling are derived from the hydrometeor sources and sinks, are integrated one step forward in time. The hydrometeor sources and sinks are reevaluated based on the new wind field, and the momentum and thermodynamic equations are integrated one more step. The reevalution-integration process is repeated until a steady state is reached. The procedure is tested using cloud model simulations. Cloud-model derived fields are used to synthesize TRMM observations, from which hydrometeor profiles are derived. The procedure is applied to the retrieved hydrometeor profiles, and the latent heating estimates are compared to the actual latent heating produced by the cloud model. Examples of procedure's applications to real TRMM data are also provided.
Flat plate solar air heater with latent heat storage
Touati, B.; Kerroumi, N.; Virgone, J.
2017-02-01
Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.
Latent and sensible heat fluxes overestimated and net heat flux underestimated in Lake Victoria
Verburg, Piet
2014-01-01
Cozar et al. (2012) used remotely-sensed data to link phytoplankton growth to the net heat flux in both the northern and southern parts of Lake Victoria. However, the latent and sensible heat fluxes were overestimated by ~26% by assuming a constant air density of 1.3 kg m-3. As a result, the net heat flux was underestimated, bringing into question conclusions regarding the convective circulation.
Nonparametric spectral-based estimation of latent structures
Bonhomme, Stéphane; Jochmans, Koen; Robin, Jean-Marc
2014-01-01
We present a constructive identification proof of p-linear decompositions of q-way arrays. The analysis is based on the joint spectral decomposition of a set of matrices. It has applications in the analysis of a variety of latent-structure models, such as q-variate mixtures of p distributions. As such, our results provide a constructive alternative to Allman, Matias and Rhodes [2009]. The identification argument suggests a joint approximate-diagonalization estimator that is easy to implement ...
Extra Heat Loss Through Light Weight Roofs Due to Latent Heat
Rode, Carsten
1996-01-01
This report is one in a series of papers in Task 5 of IEA Annex 24 on how moisture and air movements affect the energy performance of building constructions. The effect of latent heat flow will be demonstrated by means of an example: a light weight flat roof.Latent heat flow is one of three...... processes by which moisture affects energy performance:Higher thermal conductivityMoist materials have higher thermal con-ductivity than when they are dry. This is because thermally conducting moisture replaces the better insulating air in the pores of the materials. Moisture also enhan-ces the thermal...
Surface latent heat flux as an earthquake precursor
S. Dey
2003-01-01
Full Text Available The analysis of surface latent heat flux (SLHF from the epicentral regions of five recent earthquakes that occurred in close proximity to the oceans has been found to show anomalous behavior. The maximum increase of SLHF is found 2–7 days prior to the main earthquake event. This increase is likely due to an ocean-land-atmosphere interaction. The increase of SLHF prior to the main earthquake event is attributed to the increase in infrared thermal (IR temperature in the epicentral and surrounding region. The anomalous increase in SLHF shows great potential in providing early warning of a disastrous earthquake, provided that there is a better understanding of the background noise due to the tides and monsoon in surface latent heat flux. Efforts have been made to understand the level of background noise in the epicentral regions of the five earthquakes considered in the present paper. A comparison of SLHF from the epicentral regions over the coastal earthquakes and the earthquakes that occurred far away from the coast has been made and it has been found that the anomalous behavior of SLHF prior to the main earthquake event is only associated with the coastal earthquakes.
Development of Latent Heat Storage Phase Change Material Containing Plaster
Diana BAJARE
2016-05-01
Full Text Available This paper reviews the development of latent heat storage Phase Change Material (PCM containing plaster as in passive application. Due to the phase change, these materials can store higher amounts of thermal energy than traditional building materials and can be used to add thermal inertia to lightweight constructions. It was shown that the use of PCMs have advantages stabilizing the room temperature variations during summer days, provided sufficient night ventilation is allowed. Another advantage of PCM usage is stabilized indoor temperature on the heating season. The goal of this study is to develop cement and lime based plaster containing microencapsulated PCM. The plaster is expected to be used for passive indoor applications and enhance the thermal properties of building envelope. The plaster was investigated under Scanning Electron Microscope and the mechanical, physical and thermal properties of created plaster samples were determined.
Development of Latent Heat Storage Phase Change Material Containing Plaster
Diana BAJARE
2016-05-01
Full Text Available This paper reviews the development of latent heat storage Phase Change Material (PCM containing plaster as in passive application. Due to the phase change, these materials can store higher amounts of thermal energy than traditional building materials and can be used to add thermal inertia to lightweight constructions. It was shown that the use of PCMs have advantages stabilizing the room temperature variations during summer days, provided sufficient night ventilation is allowed. Another advantage of PCM usage is stabilized indoor temperature on the heating season. The goal of this study is to develop cement and lime based plaster containing microencapsulated PCM. The plaster is expected to be used for passive indoor applications and enhance the thermal properties of building envelope. The plaster was investigated under Scanning Electron Microscope and the mechanical, physical and thermal properties of created plaster samples were determined.
Roughness Length of Water Vapor over Land Surfaces and Its Influence on Latent Heat Flux
Sang-Jong Park
2010-01-01
Full Text Available Latent heat flux at the surface is largely dependent on the roughness length for water vapor (z0q. The determination of z0q is still uncertain because of its multifaceted characteristics of surface properties, atmospheric conditions and insufficient observations. In this study, observed values from the Fluxes Over Snow Surface II field experiment (FLOSS-II from November 2002 to March 2003 were utilized to estimate z0q over various land surfaces: bare soil, snow, and senescent grass. The present results indicate that the estimated z0q over bare soil is much smaller than the roughness length of momentum (z0m; thus, the ratio z0m/z0q is larger than those of previous studies by a factor of 20 - 150 for the available flow regime of the roughness Reynolds number, Re* > 0.1. On the snow surface, the ratio is comparable to a previous estimation for the rough flow (Re* > 1, but smaller by a factor of 10 - 50 as the flow became smooth (Re* < 1. Using the estimated ratio, an optimal regression equation of z0m/z0q is determined as a function of Re* for each surface type. The present parameterization of the ratio is found to greatly reduce biases of latent heat flux estimation compared with that estimated by the conventional method, suggesting the usefulness of current parameterization for numerical modeling.
Li, Maoshan; Babel, Wolfgang; Chen, Xuelong; Zhang, Lang; Sun, Fanglin; Wang, Binbin; Ma, Yaoming; Hu, Zeyong; Foken, Thomas
2016-01-01
The Tibetan Plateau (TP) has become a focus of strong scientific interest due to its role in the global water cycle and its reaction to climate change. Regional flux estimates of sensible and latent heat are important variables for linking the energy and hydrological cycles at the TP’s surface. With
Extra Heat Loss Through Light Weight Roofs Due to Latent Heat
Rode, Carsten
1996-01-01
This report is one in a series of papers in Task 5 of IEA Annex 24 on how moisture and air movements affect the energy performance of building constructions. The effect of latent heat flow will be demonstrated by means of an example: a light weight flat roof.Latent heat flow is one of three...... processes by which moisture affects energy performance:Higher thermal conductivityMoist materials have higher thermal con-ductivity than when they are dry. This is because thermally conducting moisture replaces the better insulating air in the pores of the materials. Moisture also enhan-ces the thermal...... contact between the solid grains of a porous material. Finally, moisture may partici-pate in microscopic heat pipes in a material by which vapour diffuses from the warm to the cold sides of wide pores in the material, and is trans-ported back again by capillary action in adjacent fine pores...
Effect of Melt Superheating Treatment on the Latent Heat Release of Sn
Xu, Junfeng; Dang, Bo; Fan, Dandan; Jian, Zengyun
2017-03-01
The accuracy of the baseline evaluation is of importance for calculating the transition enthalpy such as the latent heat of the crystallization. This study demonstrates the modified method of the equivalent non-latent heat baseline, by which the transition enthalpy can be measured accurately according to the transition peak in differential scanning calorimetric curve. With this method, the effect of melt superheating treatment time on the latent heat release upon the solidification of tin is investigated. The results show that the latent heat increases by increasing the treatment time, and is close to a constant when the treatment time is large enough, indicating the homogeneous system. And then, a simple model is established to describe the changes of the crystallization latent heat with the treatment time, which is confirmed by the experimental data of Sn.
Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System
Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang
2016-11-01
In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.
Nelson, B. K.; Ghiorso, M. S.; Bachmann, O.; Dufek, J.
2011-12-01
model, we move the extracted liquid to a shallower chamber (1.5 kbar as inferred for Tenerife phonolite) and resume crystallization. At the optimal magma extraction window of ≈50% crystallinity, the composition matches well with the observed composition of the second peak of the bimodal distribution. In contrast, CI does not show an early spike in latent heat production, but a late (≈900°C) pseudo-invariant point where latent heat production spikes. This spike is very near the 50% crystallinity window, again enhancing the probability of magma extraction. The model liquid composition at this crystallinity matches the observed trachyte composition. In both systems, phase chemistry supports a two-chamber evolution, one deep and the second shallow, corresponding to two primary melt extraction events. Realistically incorporating chemical, thermal and physical processes in magma chamber models provides composition-volume estimates of extracted magma that coincide with observed bimodal composition-volume relations. The strong variability in latent heat production is an important control, and its characterization is central to physical models of magma chamber evolution.
Marginal Maximum Likelihood Estimation of a Latent Variable Model with Interaction
Cudeck, Robert; Harring, Jeffrey R.; du Toit, Stephen H. C.
2009-01-01
There has been considerable interest in nonlinear latent variable models specifying interaction between latent variables. Although it seems to be only slightly more complex than linear regression without the interaction, the model that includes a product of latent variables cannot be estimated by maximum likelihood assuming normality.…
Heat capacity and latent heat measurements of CoMnSi using a microcalorimeter.
Miyoshi, Y; Morrison, K; Moore, J D; Caplin, A D; Cohen, L F
2008-07-01
A new method of utilizing a commercial silicon nitride membrane calorimeter to measure the latent heat at a first order phase transition is presented. The method is a direct measurement of the thermoelectric voltage jump induced by the latent heat, in a thermally isolated system ideally suited for single crystal and small microgram samples. We show that when combined with the ac calorimetry technique previously developed, the resultant thermal measurement capabilities are extremely powerful. We demonstrate the applicability of the combined method with measurements on a 100 microm size fragment of CoMnSi exhibiting a sizable magnetocaloric effect near room temperature, and obtain good agreement with previously reported values on bulk samples.
Sass, D. A.; Schmitt, T. A.; Walker, C. M.
2008-01-01
Item response theory (IRT) procedures have been used extensively to study normal latent trait distributions and have been shown to perform well; however, less is known concerning the performance of IRT with non-normal latent trait distributions. This study investigated the degree of latent trait estimation error under normal and non-normal…
Sass, D. A.; Schmitt, T. A.; Walker, C. M.
2008-01-01
Item response theory (IRT) procedures have been used extensively to study normal latent trait distributions and have been shown to perform well; however, less is known concerning the performance of IRT with non-normal latent trait distributions. This study investigated the degree of latent trait estimation error under normal and non-normal…
Technology of latent-heat recovery for boiler system; Boira ni okeru sennetsu kaishu gijutsu
Moriyama, T. [Tokyo Gas Co. Ltd. (Japan)
1996-08-01
The boiler has reached the highest degree of completion among combustion equipment and is highly efficient. In order to enhance its efficiency further, it is ordinary to recover the retention heat of the combustion exhaust gas, but due to the problem of low temperature corrosion caused by the sulfur content in fuel resulted from a temperature drop of the exhaust gas, heat recovery has been done not sufficiently. In this article, an example is introduced to plan the betterment of efficiency by application of a latent heat recovering economizer to a sugar manufactory and a report is made on the energy saving effect by recovering the latent heat and a study on the quality of the material for the latent heat reclaimer. The above latent heat reclaimer is a system which takes advantage of the feature of the natural gas reportedly having no sulfur content, brings down the temperature at the outlet of a heat exchanger of the boiler exhaust gas to below the dew point, thereby recovers the condensed latent heat of the vapor in the exhaust gas and utilizes it for heating up the boiler feed water. In this example, the line of an already installed boiler has been partially modified and only a latent heat reclaimer has been installed newly. The increase of efficiency has been as high as 5.28%. 5 figs., 5 tabs.
Latent Heat Flow in Light Weight Roofs and its Influence on the Thermal Performance
Rode, Carsten; Rudbeck, Claus Christian
1998-01-01
on a colder surface. In these cases, themagnitude of the latent heat flux can be of the same order as the heat transfer by conduction. The latent heat transfer may result in a heat gain which coincides with other gains of an occupied building, and thus can cause an extra requirement for cooling. The paper...... reviews and quantifies the importance of heat flow processes in moist insulation systems. It then employs modeling to analyze the effect of extra heat gain caused bylatent heat transfer in the envelope on the thermal load on an office building chosen asan example. An extra cooling requirement of 6......Under certain conditions, migration of small amounts of moisture in the envelope of buildings can cause heat flow through permeable thermal insulation materials due to the conversion of latent heat when moisture evaporates from a warm surface, diffuses through the insulation, and condenses...
Latent Heat Flow in Light Weight Roofs and its Influence on the Thermal Performance
Rode, Carsten; Rudbeck, Claus Christian
1998-01-01
Under certain conditions, migration of small amounts of moisture in the envelope of buildings can cause heat flow through permeable thermal insulation materials due to the conversion of latent heat when moisture evaporates from a warm surface, diffuses through the insulation, and condenses...... reviews and quantifies the importance of heat flow processes in moist insulation systems. It then employs modeling to analyze the effect of extra heat gain caused bylatent heat transfer in the envelope on the thermal load on an office building chosen asan example. An extra cooling requirement of 6...... on a colder surface. In these cases, themagnitude of the latent heat flux can be of the same order as the heat transfer by conduction. The latent heat transfer may result in a heat gain which coincides with other gains of an occupied building, and thus can cause an extra requirement for cooling. The paper...
TRMM Latent Heating Retrieval and Comparisons with Field Campaigns and Large-Scale Analyses
Tao, Wei-Kuo; Takayabu, Yukuri; Lang, S.; Shige, S.; Olson, W.; Hou, A.; Jiang, X.; Zhang, C.; Lau, W.; Krishnamurti, T.; Waliser, D.; Grecu, M.; Ciesielski, P. E.; Johnson, R. H.; Houze, R.; Kakar, R.; Nakamura, K.; Braun, S.; Hagos, S.; Oki, R.; Bhardwaj, A.
2012-01-01
Rainfall production is a fundamental process within the Earth's hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating (LH), is one of the principal sources of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The vertical distribution of LH has a strong influence on the atmosphere, controlling large-scale tropical circulations, exciting and modulating tropical waves, maintaining the intensities of tropical cyclones, and even providing the energetics of midlatitude cyclones and other mobile midlatitude weather systems. Moreover, the processes associated with LH result in significant non-linear changes in atmospheric radiation through the creation, dissipation and modulation of clouds and precipitation. Yanai et al. (1973) utilized the meteorological data collected from a sounding network to present a pioneering work on thermodynamic budgets, which are referred to as the apparent heat source (Q1) and apparent moisture sink (Q2). Yanai's paper motivated the development of satellite-based LH algorithms and provided a theoretical background for imposing large-scale advective forcing into cloud-resolving models (CRMs). These CRM-simulated LH and Q1 data have been used to generate the look-up tables used in LH algorithms. This paper examines the retrieval, validation, and application of LH estimates based on rain rate quantities acquired from the Tropical Rainfall Measuring Mission satellite (TRMM). TRMM was launched in November 1997 as a joint enterprise between the American and Japanese space agencies -- with overriding goals of providing accurate four-dimensional estimates of rainfall and LH over the global Tropics and subtropics equatorward of 35o. Other literature has acknowledged the achievement of the first goal of obtaining an accurate rainfall climatology. This paper describes the
Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants
Mathur, Anoop [Terrafore Inc.
2013-08-14
A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during
The role of latent heat in kinetic energy conversions of South Pacific cyclones
Kann, Deirdre M.; Vincent, Dayton G.
1986-01-01
The four-dimensional behavior of cyclone systems in the South Pacific Convergence Zone (SPCZ) is analyzed. Three cyclone systems, which occurred during the period from January 10-16, 1979, are examined using the data collected during the first special observing period of the FGGE. The effects of latent heating on the life cycles of the cyclones are investigated. Particular attention is given to the conversions of eddy available potential energy to eddy kinetic energy and of mean kinetic energy to eddy kinetic energy. The net radiation profile, sensible heat flux, total field of vertical motion, and latent heat component were computed. The life cycles of the cyclones are described. It is observed that the latent heating component accounts for nearly all the conversion in the three cyclones, and latent heating within the SPCZ is the major source of eddy kinetic energy for the cyclones.
The role of latent heat in kinetic energy conversions of South Pacific cyclones
Kann, Deirdre M.; Vincent, Dayton G.
1986-01-01
The four-dimensional behavior of cyclone systems in the South Pacific Convergence Zone (SPCZ) is analyzed. Three cyclone systems, which occurred during the period from January 10-16, 1979, are examined using the data collected during the first special observing period of the FGGE. The effects of latent heating on the life cycles of the cyclones are investigated. Particular attention is given to the conversions of eddy available potential energy to eddy kinetic energy and of mean kinetic energy to eddy kinetic energy. The net radiation profile, sensible heat flux, total field of vertical motion, and latent heat component were computed. The life cycles of the cyclones are described. It is observed that the latent heating component accounts for nearly all the conversion in the three cyclones, and latent heating within the SPCZ is the major source of eddy kinetic energy for the cyclones.
Simulation of CO2 and latent heat fluxes in the North China Plain
ZHANG; Yongqiang; YU; Qiang; LIU; Changming; WANG; Jing
2005-01-01
We constructed a coupled model for simulating plant photosynthesis and evapotranspiration (CPCEM). In the model, non-rectangular hyperbola is used to simulate leaf photosynthesis rate that is scaled up to estimate canopy gross photosynthesis rate by an integral method. Whole canopy in the model is separated into multi-layers, each of which is divided into sunlit leaves and shade leaves. Canopy net photosynthesis rate is expressed as a function of canopy conductance which is coupled with evapotranspiration. Included the coupled function,evapotranspiration is estimated with a two-layer submodel. The main features of CPCEM are: (1)easy suitability, (2) good physiological base, and (3) simple calculation procedure. Simulated results of CPCEM were compared with those by an eddy covariance system that was installed in a winter wheat farmland of the North China Plain. CPCEM gave a quite well diurnal and seasonal dynamics of net ecosystem exchange, compared with the measurements. The root mean square error between simulation and measurements was only about 2.94 μ mol m-2 s-1. Diurnal and seasonal patterns of latent heat flux with the CPCEM were similar to those of measurements.Whereas, simulated latent heat flux was evidently higher than the measured.
Determination of desorption isotherms, latent heat and isosteric heat of pequi diaspore
Kelly A. de Sousa
2016-05-01
Full Text Available ABSTRACT The objective was to determine water sorption isotherms of diaspores of pequi fruits in order to obtain information on the amount of water that this product desorbs at the temperatures of 10, 20, 30 and 40 °C and water activities from 0.20 to 0.89, adjusting different mathematical models to experimental data, and to determine its latent heat and isosteric heat. The equilibrium moisture content was obtained through the indirect static method, using the device Hygropalm Model Aw 1. The Modified Henderson model was the one that best fitted the data and was selected to predict the equilibrium moisture content of pequi diaspore. It was observed that the higher the temperature for the same equilibrium moisture content (% d.b., the higher the water activity values. As temperature values increased, there was a reduction in the vaporization latent heat of the product. Isosteric heat values of diaspores of pequi fruits in the moisture content range of 4.02 to 16.63 (% d.b. varied from 2,776.49 to 2,558.39 kJ kg-1.
TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, Latent Heat Flux
National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Latent Heat Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...
Convective heat transfer characters of nanoparticle enhanced latent functionally thermal fluid
无
2009-01-01
The latent heat of the microencapsulated phase change material(MPCM)increases the effective ther-mal capacity of latent functionally thermal fluid.However,researchers found that the heat transfer performance of such fluids was diminished due to the reduction of the low thermal conductivity of MPCM.For this reason,the nanoparticle enhanced latent functionally thermal fluids were formulated and the heat transfer behaviors of these fluids in a vertical circular tube at the laminar regime were conducted.The result showed that slurries containing 0.5% TiO2 nanoparticles by mass and 5%―20% MPCM by mass exhibited improved heat transfer rates in comparison with the conventional latent functionally thermal fluid and that the enhancement increased with the increasing MPCM concentration and up to 18.9% of the dimensionless wall temperature was reduced.
Convective heat transfer characters of nanoparticle enhanced latent functionally thermal fluid
WANG Liang; LIN GuiPing; CHEN HaiSheng; DING YuLong
2009-01-01
The latent heat of the microencapsulated phase change material (MPCM) increases the effective ther-mal capacity of latent functionally thermal fluid. However, researchers found that the heat transfer performance of such fluids was diminished due to the reduction of the low thermal conductivity of MPCM. For this reason, the nanoparticle enhanced latent functionally thermal fluids were formulated and the heat transfer behaviors of these fluids in a vertical circular tube at the laminar regime were conducted. The result showed that slurries containing 0.5% TiO2 nanoparticles by mass and 5%-20% MPCM by mass exhibited improved heat transfer rates in comparison with the conventional latent functionally thermal fluid and that the enhancement increased with the increasing MPCM concentration and up to 18.9% of the dimensionless wall temperature was reduced.
TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Latent Heat Flux
National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Latent Heat Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...
TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Latent Heat Flux
National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Latent Heat Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...
TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, Latent Heat Flux
National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Latent Heat Flux data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...
Tuncbilek, K.; Sari, A. [Gaziosmanpasa Univ., Tokat (Turkey). Dept. of Chemistry; Tarhan, S.; Erguenes, G. [Gaziosmanpasa Univ., Tokat (Turkey). Dept. of Agricultural Machinery; Kaygusuz, K. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Chemistry
2005-04-01
Palmitic acid (PA, 59.8 {sup o}C) and lauric acid (LA, 42.6 {sup o}C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 {sup o}C and the latent heat of fusion of 166.3 J g{sup -1}. This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics. (author)
Kadir Tuncbilek; Ahmet Sari [Gaziosmanpasa University, Tokat (Turkey). Dept. of Chemistry; Sefa Tarhan; Gazanfer Ergunes [Gaziosmanpasa University, Tokat (Turkey). Dept. of Agricultural Machinery; Kamil Kaygusuz [Karadeniz University, Trabzon (Turkey). Dept. of Chemistry
2005-04-01
Palmitic acid (PA, 59.8{sup o}C) and lauric acid (LA, 42.6{sup o}C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 {sup o}C and the latent heat of fusion of 166.3 J g{sup -1}. This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics. (author)
Latent heat exchange in the boreal and arctic biomes.
Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank
2014-11-01
In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need
张寅平; 胡先旭; 郝磬; 王馨
2003-01-01
This paper analyzes the convective heat transfer enhancement mechanism of latent heat functionally thermal fluid. By using the proposed internal heat source model, the influence of each factor affecting the heat transfer enhancement of laminar flow in a circular tube with constant heat flux is analyzed. The main influencing factors and the mechanisms of heat transfer enhancement are clarified, and the influences of the main factors on the heat transfer enhancement are quantitatively analyzed. A modified Nusselt number for internal flow is introduced to describe more effectively the degree of heat transfer enhancement for latent functionally thermal fluid.
Zipf, Verena; Willert, Daniel; Neuhäuser, Anton
2016-05-01
An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.
K. Mallick
2014-06-01
Full Text Available This paper introduces a relatively simple method for recovering global fields of latent heat flux. The method focuses on specifying Bowen ratio estimates through exploiting air temperature and vapour pressure measurements obtained from infra-red soundings of the AIRS (Atmospheric Infrared Sounder sensor onboard the NASA-Aqua platform. Through combining these Bowen ratio retrievals with satellite surface net available energy data we have specified estimates of global surface latent heat flux at the 1° by 1° scale. These estimates were evaluated against data from 30 terrestrial tower flux sites covering a broad spectrum of biomes. Taking monthly average 13:30 h data for 2003, this revealed a relatively good agreement between the satellite and tower measurements of latent heat flux, with a pooled root mean square deviation of 79 W m−2, and no significant bias. However, this success partly arose as a product of the under specification of the AIRS Bowen ratio compensating for the under specification of the AIRS net available energy.
Roles of Mesoscale Terrain and Latent Heat Release in Typhoon Precipitation: A Numerical Case Study
无
2007-01-01
The mesoscale orographic effects on typhoon Aere's precipitation are simulated using an Advanced Regional Eta-coordinate Model (AREM) version 3.0. In particular, the effects of the latent heat release are studied by two comparable experiments: with and without condensational heating. The results show that the typhoon rainfall is tripled by the southeastern China mesoscale terrain, and the condensational heating is responsible for at least half of the increase. One role of the latent heat release is to warm the atmosphere,leading to a depression of the surface pressure, which then causes a larger pressure difference in the zonal direction. This pressure gradient guides the water vapour to flow into the foothills, which in turn amplifies the water vapour flux divergence amplified, causing the typhoon rainfall to increase eventually. The other role of the latent heat release is to make the convection more organized, resulting in a relatively smaller rain area and stronger precipitation.
THE STUDY ON LATENT AND SENSIBLE HEAT FLUX OVER MIRE IN THE SANJIANG PLAIN
无
2006-01-01
Understanding how surface energy fluxes respond to environmental variables and how their components vary on daily and seasonal temporal scales are critical for understanding the ecological process of wetland ecosystem. In view of the fact that studies on surface energy flux over mire in China have been very limited, we have initiated a long-term latent and sensible heat flux (two main components of the surface energy balance) observation over mire in the Sanjiang Plain from June to October in 2004 with the eddy covariance technique. Results showed that the latent and sensible heat flux had large seasonal and diurnal variation during the period of measurement. Generally, latent heat flux between the mire wetland and the atmosphere reached the maximum value in June and then gradually decreased from June to October, whose daily mean fluxes were 9.83,8.00,7.33, 4.82 and 2.04 MJ/(m2·d), respectively. By comparison, sensible heat flux changed unnoticeably with season change from June to October, which were 1.47,0.88,1.75, 1.61,1.33 MJ/(m2·d) respectively. The diurnal variation of both latent and sensible heat flux varied noticeably within a day. After the sunrise, the latent and sensible heat flux increased and reached the maximum at noon (11:00-13:00). Then they decreased gradually and reached the minimum value during the nighttime. The patterns of temporal variation in latent and sensible heat flux were significantly controlled by environmental factors. The latent heat flux was linearly dependent on net radiation and increased with increasing vapour pressure deficit until the vapour pressure deficit surpassed 11 hPa. Wind speed effect on latent heat flux was more complicated and, in general, showed a positive correlation between them in daytime. The sensible heat flux was controlled mainly by air temperature difference between the land surface and the overlying air. However, when the temperature difference was larger than 0.3 ℃, it had no effect on the sensible
Latent-failure risk estimates for computer control
Dunn, William R.; Folsom, Rolfe A.; Green, Owen R.
1991-01-01
It is shown that critical computer controls employing unmonitored safety circuits are unsafe. Analysis supporting this result leads to two additional, important conclusions: (1) annual maintenance checks of safety circuit function do not, as widely believed, eliminate latent failure risk; (2) safety risk remains even if multiple, series-connected protection circuits are employed. Finally, it is shown analytically that latent failure risk is eliminated when continuous monitoring is employed.
Zhang, Guo; Zhou, Guang-Sheng; Yang, Fu-Lin
2010-03-01
This paper studied the diurnal and seasonal characteristics of sensible and latent heat fluxes over a temperate desert steppe ecosystem in Inner Mongolia, based on the 2008 observation data from eddy covariance tower. The diurnal patterns of sensible and latent heat fluxes over the ecosystem were both single kurtosis, with the maximum value being 319.01 W x m(-2) (on May 30th, 2008) and 425.37 W x m(-2) (on Jun 2nd, 2008), respectively, and occurred at about 12:00-13:30 (local time), which was similar to the diurnal pattern of net radiation but lagged about one hour of the maximum net radiation. The maximum diurnal variations of monthly mean sensible and latent heat fluxes occurred in May and June, and their minimum diurnal variations occurred in January and November, respectively. There was a closer relationship between soil moisture content and precipitation. Surface soil moisture content was most sensitive to precipitation, while the moisture content in deeper soil layers had a lagged response to precipitation. The seasonal dynamics of sensible and latent heat fluxes was similar to that of net radiation, and affected by precipitation. Sensible heat flux was obviously affected by net radiation, but latent heat flux was more sensitive to precipitation and mainly controlled by soil moisture content.
Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage
Tyagi, V.V.; Buddhi, D. [Thermal Energy Storage Laboratory, School of Energy and Environmental Studies, Devi Ahilya University, Indore 452017 (India)
2008-08-15
In order to study the changes in latent heat of fusion and melting temperature of calcium chloride hexahydrate (CaCl{sub 2}.6H{sub 2}O) inorganic salt as a latent heat storage material, a thousand accelerated thermal cycle tests have been conducted. The effect of thermal cycling and the reliability in terms of the changing of the melting temperature using a differential scanning calorimeter (DSC) is determined. It has been noticed that the CaCl{sub 2}.6H{sub 2}O melts between a stable range of temperature and has shown small variations in the latent heat of fusion during the thermal cycling process. Thus, it can be a promising phase change material (PCM) for heating and cooling applications for various building/storage systems. (author)
Inaba, Hideo; Kim, Myoung-Jun; Horibe, Akihiko
The present experiments have been performed for obtaining the melting heat transfer characteristics of micro-encapsulated solid-liquid phase change material and water mixed slurry flow in a circular tube heated with constant wall heat flux. The phase change material having a low melting point was selected for a domestic cooling system in the present study. The governing parameters were found to be latent heat material concentration,heat,flux,and the slurry velocity. The experimental results revealed that the mean heat transfer coefficient of latent microcapsule slurry was about l.3~l.8 times greater than that of the single phase of water. Moreover the effectiveness of heat transfer coefficient to friction factor had a maximum at latent heat material concentration of 25%.
Fractional Stefan problems exhibiting lumped and distributed latent-heat memory effects
Voller, Vaughan R.; Falcini, Federico; Garra, Roberto
2013-04-01
We consider fractional Stefan melting problems which involve a memory of the latent-heat accumulation. We show that the manner in which the memory of the latent-heat accumulation is recorded depends on the assumed nature of the transition between the liquid and the solid phases. When a sharp interface between the liquid and the solid phases is assumed, the memory of the accumulation of the latent heat is “lumped” in the history of the speed of the interface. In contrast, when a diffuse interface is assumed, the memory of the accumulation is “distributed” throughout the liquid phase. By use of an example problem, we demonstrate that the equivalence of the sharp- and diffuse-interface models can only occur when there is no memory in the system.
Can latent heat safely warm blood? – in vitro testing of a portable prototype blood warmer
McEwen Mark P
2007-08-01
Full Text Available Abstract Background Trauma/retrieval patients are often in shock and hypothermic. Treatment of such patients usually involves restoring their blood volume with transfusion of blood (stored at 2°C – 6°C and/or crystalloids or colloids (stored at ambient temperature. Rapid infusion of these cold fluids can worsen or even induce hypothermia in these patients. Warming of intravenous fluids at accident sites has traditionally been difficult due to a lack of suitable portable fluid warmers that are not dependent on mains electrical or battery power. If latent heat, the heat released when a liquid solidifies (an inherently temperature limiting process can warm intravenous fluids, portable devices without a reliance on electrical energy could be used to reduce the incidence of hypothermia in trauma patients. Methods Rapid infusion of red cells into patients was timed to sample typical clinical flow rates. An approved dry heat blood warmer was compared with a prototype blood warmer using a supercooled liquid latent heat storage material, to warm red cells whilst monitoring inlet and outlet temperatures. To determine the effect of warming on red cell integrity compared to the normal storage lesion of blood, extracellular concentrations of potassium, lactate dehydrogenase and haemoglobin were measured in blood which had been warmed after storage at 2°C – 6°C for 1 to 42 days. Results A prototype latent heat fluid warmer consistently warmed red cells from approximately 4°C to approximately 35°C at typical clinical flow rates. Warming of stored blood with latent heat did not affect red cell integrity more than the approved dry heat blood warmer. Conclusion Using latent heat as an energy source can satisfactorily warm cold blood or other intravenous fluids to near body temperature, without any adverse affects.
Zeng, Xiaoyun; Pan, Xiaoyan; Xu, Xinfeng; Lin, Jian; Que, Fuchang; Tian, Yuanxin; Li, Lin; Liu, Shuwen
2017-06-07
The persistence of latent HIV reservoirs presents a significant challenge to viral eradication. Effective latency reversing agents (LRAs) based on "shock and kill" strategy are urgently needed. The natural phytoalexin resveratrol has been demonstrated to enhance HIV gene expression, although its mechanism remains unclear. In this study, we demonstrated that resveratrol was able to reactivate latent HIV without global T cell activation in vitro. Mode of action studies showed resveratrol-mediated reactivation from latency did not involve the activation of silent mating type information regulation 2 homologue 1 (SIRT1), which belonged to class-3 histone deacetylase (HDAC). However, latent HIV was reactivated by resveratrol mediated through increasing histone acetylation and activation of heat shock factor 1 (HSF1). Additionally, synergistic activation of the latent HIV reservoirs was observed under cotreatment with resveratrol and conventional LRAs. Collectively, this research reveals that resveratrol is a natural LRA and shows promise for HIV therapy.
Zavattoni, Simone A.; Geissbühler, Lukas; Barbato, Maurizio C.; Zanganeh, Giw; Haselbacher, Andreas; Steinfeld, Aldo
2017-06-01
The concept of combined sensible/latent heat thermal energy storage (TES) has been exploited to mitigate an intrinsic thermocline TES systems drawback of heat transfer fluid outflow temperature reduction during discharging. In this study, the combined sensible/latent TES prototype under investigation is constituted by a packed bed of rocks and a small amount of encapsulated phase change material (AlSi12) as sensible heat and latent heat sections respectively. The thermo-fluid dynamics behavior of the combined TES prototype was analyzed by means of a computational fluid dynamics approach. Due to the small value of the characteristic vessel-to-particles diameter ratio, the effect of radial void-fraction variation, also known as channeling, was accounted for. Both the sensible and the latent heat sections of the storage were modeled as porous media under the assumption of local thermal non-equilibrium (LTNE). The commercial code ANSYS Fluent 15.0 was used to solve the model's constitutive conservation and transport equations obtaining a fairly good agreement with reference experimental measurements.
Modeling, estimation and identification of stochastic systems with latent variables
Bottegal, Giulio
2013-01-01
The main topic of this thesis is the analysis of static and dynamic models in which some variables, although directly influencing the behavior of certain observables, are not accessible to measurements. These models find applications in many branches of science and engineering, such as control systems, communications, natural and biological sciences and econometrics. It is well-known that models with unaccessible - or latent - variables, usually suffer from a lack of uniqueness of representat...
Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.
1981-01-01
Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.
Nakagawa, K.; Sugiura, T. [Toyohashi University of Technology, Aichi (Japan)
2000-05-25
This paper has dealt with the heat storage characteristics of fine microcapsules packed with latent heat storage material in the water layer. The heat storage operation to the latent microcapsules was carried out using hot air bubbles by direct contact heat exchange. The microcapsule consists of n-paraffin as a core latent-heat storage material and melamine resin as a coating substance. The relation of the completion time of latent-heat storage to some parameters was examined experimentally. The non-dimensional correlation equations for the completion time of latent-heat storage process had were derived in terms of the ratio of water layer height to diameter of microcapsule, Reynolds number for air flow, Stefan number and modified Stefan number for absolute humidity of flowing air. (author)
Tao, Wei-Kuo; Takayabu, Yukari N.; Lang, Steve; Shige, Shoichi; Olson, William S.; Hou, Arthur; Skofronick-Jackson, Gail; Jiang, Xining; Zhang, Chidong; Lau, William K.; Krishnamurti, T.; Waliser, D.; Grecu, M.; Ciesielski, Paul; Johnson, Richard; Houze, Robert A.; Kakar, R.; Nakamura, K.; Braun, S.; Hagos, Samson M.; Oki, R.; Bhardwaj, A.
2016-05-05
Yanai et al. (1973) utilized the meteorological data collected from a sounding network to present a pioneering work on thermodynamic budgets, which are referred to as the apparent heat source (Q1) and apparent moisture sink (Q2). Latent heating (LH) is one of the most dominant terms in Q1. Yanai’s paper motivated the development of satellite-based LH algorithms and provided a theoretical background for imposing large-scale advective forcing into cloud-resolving models (CRMs). These CRM-simulated LH and Q1 data have been used to generate the look-up tables in Tropical Rainfall Measuring Mission (TRMM) LH algorithms. A set of algorithms developed for retrieving LH profiles from TRMM-based rainfall profiles are described and evaluated, including details concerning their intrinsic space-time resolutions. Included in the paper are results from a variety of validation analyses that define the uncertainty of the LH profile estimates. Also, examples of how TRMM-retrieved LH profiles have been used to understand the lifecycle of the MJO and improve the predictions of global weather and climate models as well as comparisons with large-scale analyses are provided. Areas for further improvement of the TRMM products are discussed.
The Impact of Fallible Item Parameter Estimates on Latent Trait Recovery
Cheng, Ying; Yuan, Ke-Hai
2010-01-01
In this paper we propose an upward correction to the standard error (SE) estimation of theta[subscript ML], the maximum likelihood (ML) estimate of the latent trait in item response theory (IRT). More specifically, the upward correction is provided for the SE of theta[subscript ML] when item parameter estimates obtained from an independent pretest…
The snowcover energy balance is typically dominated by net radiation and sensible and latent heat fluxes. Validation of the two latter components is rare and often difficult to undertake at complex mountain sites. Latent heat flux, the focus of this paper, is the primary coupling mechanism between...
Inaba, Hideo; Horibe, Akihiko; Haruki, Naoto; Katayama, Masatoshi; Manabe, Ken
Recently, the new heat transfer medium, which fulfills both functions of heat storage and heat transportation, has been developed in ah eat storage field. Solid-liquid latent heat microcapsule slurry would correspond to the topical medium, so-called functionally thermal fluid. The preset study has clarified the latent heat storage characteristics of microcapsule slurry by making heat transfer enlargement with the help of slurry water pool boiling phenomenon. The paraffin wax at a melting point of 62°C was used as a phase change material which was packed into the microcapsule. The heating surface temperature and concentration of paraffin in the microcapsule slurry was selected as experimental parameters. As a result, the non-dimensional correlation equations of heat storage completion time and heat transfer were derived in terms of non-dimensional parameters.
The Impact of Orography and Latent Heating on the Location of the Tropical Easterly Jet
Rao, Samrat
2013-01-01
The Tropical Easterly Jet (TEJ) is a prominent atmospheric circulation feature observed during the Asian Summer Monsoon. It is generally assumed that Tibet is an essential ingredient in determining the location of the TEJ. However studies have also suggested the importance of latent heating in determining the jet location. The relative importance of Tibetan orography and latent heating is explored through simulations with a general circulation model. The simulation of TEJ by the Community Atmosphere Model, version 3.1 (CAM-3.1) has been discussed in detail. Although the simulated TEJ replicated many observed features of the jet, the jet maximum was located too far to the west when compared to observation. The precipitation in the control simulation was high to the west of India and this caused the TEJ to shift westwards by approximately the same amount. Orography was found to have minimal impact on the simulated TEJ hence indicating that latent heating is the crucial parameter. The primacy of latent heating i...
Effects of Latent Heating on Atmospheres of Brown Dwarfs and Directly Imaged Planets
Tan, Xianyu; Showman, Adam P.
2017-02-01
The growing number of observations of brown dwarfs (BDs) has provided evidence for strong atmospheric circulation on these objects. Directly imaged planets share similar observations and can be viewed as low-gravity versions of BDs. Vigorous condensate cycles of chemical species in their atmospheres are inferred by observations and theoretical studies, and latent heating associated with condensation is expected to be important in shaping atmospheric circulation and influencing cloud patchiness. We present a qualitative description of the mechanisms by which condensational latent heating influences circulation, and then illustrate them using an idealized general circulation model that includes a condensation cycle of silicates with latent heating and molecular weight effect due to the rainout of the condensate. Simulations with conditions appropriate for typical T dwarfs exhibit the development of localized storms and east-west jets. The storms are spatially inhomogeneous, evolving on a timescale of hours to days and extending vertically from the condensation level to the tropopause. The fractional area of the BD covered by active storms is small. Based on a simple analytic model, we quantitatively explain the area fraction of moist plumes and show its dependence on the radiative timescale and convective available potential energy (CAPE). We predict that if latent heating dominates cloud formation processes, the fractional coverage area of clouds decreases as the spectral type goes through the L/T transition from high to lower effective temperature. This is a natural consequence of the variation of the radiative timescale and CAPE with the spectral type.
The Measurement of the Specific Latent Heat of Fusion of Ice: Two Improved Methods.
Mak, S. Y.; Chun, C. K. W.
2000-01-01
Suggests two methods for measuring the specific latent heat of ice fusion for high school physics laboratories. The first method is an ice calorimeter which is made from simple materials. The second method improves the thermal contact and allows for a more accurate measurement. Lists instructions for both methods. (Author/YDS)
Englacial latent-heat transfer has limited influence on seaward ice flux in western Greenland
Poinar, Kristin; Joughin, Ian; Lenaerts, Jan T.M.; Van Den Broeke, Michiel R.
2017-01-01
Surface meltwater can refreeze within firn layers and crevasses to warm ice through latent-heat transfer on decadal to millennial timescales. Earlier work posited that the consequent softening of the ice might accelerate ice flow, potentially increasing ice-sheet mass loss. Here, we calculate the
Morales, Annareli
From 9-16 September 2013, a slow-moving cut-off low in the southwestern U.S. funneled unseasonal amounts of moisture to the Colorado Front Range, resulting in extreme precipitation and flooding. The heaviest precipitation during the September 2013 event occurred over the northern Colorado Front Range, producing a 7-day total of over 380 mm of rain. The flash flooding caused over $3 billion in damage to property and infrastructure and resulted in eight fatalities. This study will focus on the precipitation and mesoscale features during 11-12 September 2013 in Boulder, CO. During the evening of 11 September, Boulder experienced flash flooding as a result of high rain rates accumulating over 180 mm of rain in 6 hours. From 0400-0700 UTC 12 September, a mesoscale vortex (mesovortex) was observed to travel northwestward towards Boulder. This circulation enhanced upslope flow and was associated with localized deep convection. The mesovortex originated in an area common for the development of a lee vortex known as the Denver Cyclone. We hypothesize that this mesoscale vortex is not associated with lee vortex formation, such as the Denver Cyclone, but developed through the release of latent heat from microphysical process. The Advanced Research Weather Research and Forecast (ARW) model was used to 1) produce a control simulation that properly represented the evolution and processes of interest during the event and 2) test the importance of latent heating to the development and evolution of the mesovortex. The results from various latent heating experiments suggested that the mesovortex did not develop through lee vortex formation and the latent heat released just before and during the mesovortex event was important to its development. Results also showed latent heating affected the flow field, resulting in a positive feedback between the circulation, associated low-level jet, and convection leading to further upslope flow and precipitation development. Further experiments
Divisive latent class modeling as a density estimation method for categorical data
van der Palm, D.W.; van der Ark, L.A.; Vermunt, J.K.
2016-01-01
Traditionally latent class (LC) analysis is used by applied researchers as a tool for identifying substantively meaningful clusters. More recently, LC models have also been used as a density estimation tool for categorical variables. We introduce a divisive LC (DLC) model as a density estimation too
Latent heating and aerosol-precipitation interactions within mesoscale convective systems
Marinescu, Peter James
Two studies are presented in this thesis that focus on understanding cloud processes within simulations of two mesoscale convective system (MCS) events that occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). Simulations are conducted with the Regional Atmospheric Modeling System (RAMS) and are compared with a suite of observations obtained during MC3E. It is concluded that the simulations reasonably reproduce the two MCS events of interest. Both studies provide information that can assist in the advancement of cloud process parameterizations in atmospheric models. The first study details the microphysical process contributions to latent heating profiles within MCS convective and stratiform regions and the evolution of these profiles throughout the MCS lifetime. Properly representing the distinctions between the latent heating profiles of MCS convective and stratiform regions has significant implications for the atmospheric responses to latent heating on various scales. The simulations show that throughout the MCSs, condensation and deposition are the primary contributors to latent warming, as compared to riming and nucleation processes. In terms of latent cooling, sublimation, melting, and evaporation all play significant roles. Furthermore, it is evident that throughout the MCS lifecycle, convective regions demonstrate an approximately linear decrease in the magnitudes of latent heating rates, while the evolution of latent heating within stratiform regions is associated with transitions between MCS flow regimes. The second study addresses the relative roles of middle-tropospheric and lower-tropospheric aerosol particles on MCS precipitation during the mature stage. A suite of sensitivity simulations for each MCS event is conducted, where the simulations are initialized with different aerosol profiles that vary in the vertical location of the peak aerosol particle number concentrations. Importantly, the total integrated aerosol mass
Tiari, Saeed
A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.
Investigation of Sensible and Latent Heat Storage System using various HTF
Beemkumar, N.; Karthikeyan, A.; Manoj, A.; Keerthan, J. S.; Stallan, Joseph Paul; Amithkishore, P.
2017-05-01
The objective of the work is investigating the latent heat storage system by varying heat transfer fluid (HTF). In this experiment, the effect of using different heat transfer fluids on the combined system is studied while using a low melting phase change material (PCM) i.e., paraffin wax. The heat transfer fluids chosen are water (low boiling fluid) and Therminol-66 (High boiling fluid). A comparison is made between the heat transfers by employing both the Heat transfer fluids. In the beginning, water is made to flow as the HTF and the charging process is undertaken followed by the discharging process by utilizing the different encapsulation materials namely, copper, aluminium and brass. These processes are then repeated for therminol-66 as HTF. At the end of the experiment it was concluded that even though therminol-66 enhances the latent heat storage capacity, water offers a higher sensible heat storage capacity, making it a better HTF for low melting PCM. Similar to above said process the experiments can be conducted for high and medium range melting point PCM with variation of HTF.
Study on latent heat thermal energy storage using aqueous solution as PCM
Hayashi, Yujiro; Kunimine, Kanji; Yamaguchi, Kunihiko
1988-02-25
The latent heat thermal storage where a aqueous solution was used as the phase change material(PCM), was studied. A cold medium was transported into a heat transfer tube in a shell and tube heat exchanger and the heat exchanging experiment with salt solutions of 0-15% concentrations in the shell was carried out. Translucent solidified layer appeared near the inlet area at the early stage and grew to radial and axial directions. The outside layer was a translucent coexisting solid pfase and liquid phase and inner cloudy layer was a eutectic ice solid phase. The PCM was cooled rapidly at the early stage, became the coexisted solid and liquid after 30 minites, and completed solidification, becoming the perfect solid after 100 minites. The exothermic process was composed of the initial releasing process of liquid sensible heat, following exthermic process by release of solidifying latent heat and the final releasing process of remaining sensible heat. The experimental results agreed qulitatively with the theoretical analysis. Because the liquid solidification proceeded with a temperature width, the axial solidification was mitgated, the exothermic rate was stabilized especially at high concentration and the heat exchanging performance was maintained for a long period. (7 figs, 6 refs)
Analysis of selected surface characteristics and latent heat storage for passive solar space heating
Fthenakis, V.; Leigh, R.
1981-12-01
Results are presented of an analysis of the value of various technical improvements in the solar collector and thermal storage subsystems of passive solar residential, agricultural, and industrial systems for two regions of the country. The evaluated improvements are: decreased emissivity and increased absorptivity of absorbing surfaces, decreased reflectivity, and decreased emissivity of glazing surface, and the substitution of sensible heat storage media with phase change materials. The value of each improvement is estimated by the additional energy savings resulting from the improvement.
Copper-Silicon-Magnesium Alloys for Latent Heat Storage
Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.
2016-12-01
The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. Two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.
Temporal changes in semivariogram of ocean surface latent heat flux under linear trend
Singh, M. K.; Venkatachalam, P.
2014-11-01
One of the ways to study spatio-temporal variability of a process is to consider it as a temporal variation of a spatial process. Semivariogram is a measure of spatial variation in a process. If a process is undergoing a linear trend, then semivariogram parameters such as range, sill and nugget are bound to change. In this paper, a mathematical closed form of range, sill, and nugget and in turn semivariogram were expressed for a process under linear trend. The derived semivariogram was used to study the latent heat flux (LHF) over the Indian Ocean. LHF values depend on sea surface temperature (SST) and wind speed (WS) over ocean surface. Universal kriging (UK) was used to estimate the LHF with WS and SST as covariables. UK coefficients corresponding to covariables were found out for the years 2010, 2020, 2030, 2040 and 2050. In similar line, study has been attempted to see how empirical orthogonal function modes of a spatio-temporal process change with time under linear trend.
Dannemand, Mark; Johansen, Jakob Berg; Kong, Weiqiang;
2016-01-01
unit was tested with 116.3 kg SAT with 0.5% Xanthan rubber as a thickening agent and 4.4% graphite powder. The heat exchange capacity rate during charge was significantly lower for the unit with SAT and Xanthan rubber compared to the unit with SAT and extra water. This was due to less convection......Latent heat storage units utilizing stable supercooling of sodium acetate trihydrate (SAT) composites were tested in a laboratory. The stainless steel units were 1.5 m high cylinders with internal heat exchangers of tubes with fins. One unit was tested with 116 kg SAT with 6% extra water. Another...... in the thickened phase change material after melting. The heat content in the fully charged state and the heat released after solidification of the supercooled SAT mixtures at ambient temperature was higher for the unit with the thickened SAT mixture. The heat discharged after solidification of the supercooled SAT...
A modified Bowen ratio method to determine sensible and latent heat fluxes
Heping Liu
2001-03-01
Full Text Available The sensible heat flux (H and the latent heat flux (Î»E were measured above a grassland during June, 1997 (LINEX-97/1 Experiment, using the eddy covariance method (EC and the Bowen ratio/Energy balance method (BREB. The results indicate that HBREB is about (30 Â± 20 Wm-2 higher than HEC, and Î»EBREB is about (180 Â± 40 Wm-2 higher than Î»EEC during the daytime, and this is mainly caused by an imbalance in the closure of the surface energy balance in the BREB. In order to avoid the inaccuracies associated with the surface energy balance method, we propose a modified Bowen ratio method (MBR to determine sensible and latent heat fluxes without using the surface energy balance equation. The results and error analysis show that MBR can give more accurate results than BREB. For the MBR, a measurement system using a sonic anemometer together with temperature and humidity measurements at two levels is being recommended to obtain sensible and latent heat fluxes.
Finch, Holmes; Edwards, Julianne M.
2016-01-01
Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…
LU Wenqiang; BAI Fengwu
2004-01-01
In this paper, a new model to analyze laminar forced convective enhanced heat transfer in latent functionally thermal fluid is developed. The main characteristics of the model are: I) a new formula of the specific heat at constant pressure is used; ii) a real heat transfer process is considered; that is, heat transfer processes occur not only between working fluid and microcapsules, but also between the mixture and tube wall; iii) the new method, which combines the newly developed axisymmetrical dual reciprocity boundary element method (DRBEM) with finite difference method (FDM), is used to solve the control equations of this problem. The new model is validated by experimental data.Some new physical results on the variational characteristics of the specific heat at constant pressure with space and time during phase-change process, the time-marching history of the phase-change interfaces and so on are obtained. Several main physical factors that affect enhanced heat transfer in latent functionally thermal fluid are numerically analyzed.Some new understandings for the mechanism of enhanced heat transfer in the functionally fluid are obtained.
Tao, Wei-Kuo; Lang, S.; Simpson, J.; Olson, W. S.; Johnson, D.; Ferrier, B.; Kummerow, C.; Adler, R.
1999-01-01
Latent heating profiles associated with three (TOGA COARE) Tropical Ocean and Global Atmosphere Coupled Ocean Atmosphere Response Experiment active convective episodes (December 10-17 1992; December 19-27 1992; and February 9-13 1993) are examined using the Goddard Cumulus Ensemble (GCE) Model and retrieved by using the Goddard Convective and Stratiform Heating (CSH) algorithm . The following sources of rainfall information are input into the CSH algorithm: Special Sensor Microwave Imager (SSM/1), Radar and the GCE model. Diagnostically determined latent heating profiles calculated using 6 hourly soundings are used for validation. The GCE model simulated rainfall and latent heating profiles are in excellent agreement with those estimated by soundings. In addition, the typical convective and stratiform heating structures (or shapes) are well captured by the GCE model. Radar measured rainfall is smaller than that both estimated by the GCE model and SSM/I in all three different COARE IFA periods. SSM/I derived rainfall is more than the GCE model simulated for the December 19-27 and February 9-13 periods, but is in excellent agreement with the GCE model for the December 10-17 period. The GCE model estimated stratiform amount is about 50% for December 19-27, 42% for December 11-17 and 56% for the February 9-13 case. These results are consistent with large-scale analyses. The accurate estimates of stratiform amount is needed for good latent heating retrieval. A higher (lower) percentage of stratiform rain can imply a maximum heating rate at a higher (lower) altitude. The GCE model always simulates more stratiform rain (10 to 20%) than the radar for all three convective episodes. SSM/I derived stratiform amount is about 37% for December 19-27, 48% for December 11-17 and 41% for the February 9-13 case. Temporal variability of CSH algorithm retrieved latent heating profiles using either GCE model simulated or radar estimated rainfall and stratiform amount is in good
Missimer, Thomas M.
2016-02-05
A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development. © 2016 The Author(s). Published by Taylor & Francis
Chang, D. -E.; Morales, C. A.; Weinman, J. A.; Olson, W. S.
1999-01-01
Planar rainfall distributions were retrieved from data provided by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Special Sensor Microwave Imager (SSM/I) radiometers. Lightning generates Very Low Frequency (VLF) radio noise pulses called sferics. Those pulses propagate over large distances so that they can be continuously monitored with a network of ground based radio receivers. An empirical relationship between the sferics rate and the convective rainfall permitted maps of convective latent heating profiles to be derived continuously from the sferics distributions. Those inferred latent heating rates were assimilated into the Penn State/NCAR Mesoscale Model (MM5) that depicted an intense winter cyclone that passed over Florida on 2 February 1998. When compared to a 14 hour MM5 rainfall forecast using conventional data, the use of lightning data improved the forecast.
Equal Area Laws and Latent Heat for d-Dimensional RN-AdS Black Hole
Li-Chun Zhang
2014-01-01
Full Text Available We study the equal area laws of d-dimensional RN-AdS black hole. We choose two kinds of phase diagrams, P-V and T-S. We employ the equal area laws to find an isobar which is the real two-phase coexistence line. Our calculation is much simpler to derive the critical value of the thermodynamic quantities. According to the thermodynamic quantities, we also study the latent heat of the black hole.
The effects of latent heat release on the waves with Ekman pumping
Tang, C. M.
1984-01-01
The problem of the effects of the latent heat release on the waves with both upper and lower boundary frictional effects is investigated. The influence of the vertical shear of the basic wind in these models will be investigated. These investigations will shed some light on the method of solution to the problem of including the effect of Ekman pumping on the moist baroclinic waves in the model of Tang and Fichtl.
Ashish Agarwal
2016-03-01
Full Text Available In the presented study the shell and tube type latent heat storage (LHS has been designed for solar dryer and paraffin wax is used as heat storage material. In the first part of the study, the thermal and heat transfer characteristics of the latent heat storage system have been evaluated during charging and discharging process using air as heat transfer fluid (HTF. In the last section of the study the effectiveness of the use of an LHS for drying of food product and also on the drying kinetics of a food product has been determined. A series of experiments were conducted to study the effects of flow rate and temperature of HTF on the charging and discharging process of LHS. The temperature distribution along the radial and longitudinal directions was obtained at different time during charging process to analyze the heat transfer phenomenon in the LHS. Thermal performance of the system is evaluated in terms of cumulative energy charged and discharged, during the charging and discharging process of LHS, respectively. Experimental results show that the LHS is suitable to supply the hot air for drying of food product during non-sunshine hours or when the intensity of solar energy is very low. Temperature gain of air in the range of 17 °C to 5 °C for approximately 10 hrs duration was achieved during discharging of LHS.
S F Hosseinizadeh
2011-01-01
Full Text Available The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials (NEPCM exhibit enhanced thermal conductivity in comparison to the base material. The effects of nanoparticle volume fraction and some other parameters such as natural convection are studied in terms of solid fraction and the shape of the solid-liquid phase front. It has been found that higher nanoparticle volume fraction result in a larger solid fraction. The present results illustrate that the suspended nanoparticles substantially increase the heat transfer rate and also the nanofluid heat transfer rate increases with an increase in the nanoparticles volume fraction. The increase of the heat release rate of the NEPCM shows its great potential for diverse thermal energy storage application.
Spatio-temporal Distribution of Latent Heating in the Southeast Asian Monsoon Region
Zuluaga, M. D.; Hoyos, C. D.; Webster, P. J.
2007-12-01
The Latent Heat (LH), released as a result of deep convection, plays an important role in the vertical distribution of the diabatic energy budget from the surface to the atmosphere: the motor which drives the global atmospheric circulation, including the Southeast Asian Monsoon. In particular, knowing the spatio-temporal structure of the LH during the wet monsoon season could be a key factor to understand the interaction between seasonal features of the monsoon with the summer manifestation of the intra-seasonal oscillation in the Indian Ocean basin, and hence the distribution of the precipitation. Several studies have investigated how the structure of heating in the tropics has a direct influence in the dynamical response of the atmosphere to the large-scale dynamical forcing associated with tropical precipitating systems. However, these studies assume a uniform geographically distribution of the vertical diabatic heating profiles across the Tropics. The major objective of this study is to produce and to examine three-dimensional latent heating structures over the Indian Monsoon region for the three summer seasons of 1998-2000 period using TRMM-2A12 (GPROF algorithm) and TRMM-CSH (CSH algorithm) data. A specific goal in this work is to explore the differences in the distribution of the latent heating throughout the intraseasonal cycle. This intra- seasonal cycle not only generates wet and dry spells over the South-East Asian continent but also determines the spatial distribution of the climatological JJAS rainfall in the Indian Monsoon Region. Results show spatial distribution differences between the LH profiles during the suppressed and active phases of the oscillation as well as differences in the vertical. During an active phase of the oscillation over the Indian Ocean, the released latent heat is concentrated predominantly near the equator while during the suppressed phased the heating is concentrated in the Bay of Bengal and the continental South East Asia
Simplified procedure for the estimation of (COP)sub(R) for heat pumps
Patwardhan, V.R.; Patwardhan, V.S.
1987-01-01
A simplified procedure for estimating the Rankine coefficient of performance for vapor compression heat pumps is presented. This procedure does not need detailed thermodynamic data. It requires only the liquid specific heat and the latent heat of vaporisation at the evaporating temperature. This procedure is tested by its application to eight potential heat pump working fluids for which exact (COP)sub(R) values have been reported based on detailed thermodynamic data. Very wide ranges of evaporating and condensing temperatures are covered. The results indicate that the present procedures can predict (COP)sub(R) values within 3-4%. Useful correlations for calculating the liquid specific heat and the latent heat of vaporisation for these working fluids are also presented, which cover temperature ranges of importance for heat pump applications.
Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.
2009-08-15
Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution
Raykov, Tenko; Marcoulides, George A.
2015-01-01
A direct approach to point and interval estimation of Cronbach's coefficient alpha for multiple component measuring instruments is outlined. The procedure is based on a latent variable modeling application with widely circulated software. As a by-product, using sample data the method permits ascertaining whether the population discrepancy…
Raykov, Tenko; Marcoulides, George A.
2015-01-01
A direct approach to point and interval estimation of Cronbach's coefficient alpha for multiple component measuring instruments is outlined. The procedure is based on a latent variable modeling application with widely circulated software. As a by-product, using sample data the method permits ascertaining whether the population discrepancy…
Latent Trees for Estimating Intensity of Facial Action Units
Kaltwang, Sebastian; Todorovic, Sinisa; Pantic, Maja
2015-01-01
This paper is about estimating intensity levels of Facial Action Units (FAUs) in videos as an important step toward interpreting facial expressions. As input features, we use locations of facial landmark points detected in video frames. To address uncertainty of input, we formulate a generative late
New latent heat storage system with nanoparticles for thermal management of electric vehicles
Javani, N.; Dincer, I.; Naterer, G. F.
2014-12-01
In this paper, a new passive thermal management system for electric vehicles is developed. A latent heat thermal energy storage with nanoparticles is designed and optimized. A genetic algorithm method is employed to minimize the length of the heat exchanger tubes. The results show that even the optimum length of a shell and tube heat exchanger becomes too large to be employed in a vehicle. This is mainly due to the very low thermal conductivity of phase change material (PCM) which fills the shell side of the heat exchanger. A carbon nanotube (CNT) and PCM mixture is then studied where the probability of nanotubes in a series configuration is defined as a deterministic design parameter. Various heat transfer rates, ranging from 300 W to 600 W, are utilized to optimize battery cooling options in the heat exchanger. The optimization results show that smaller tube diameters minimize the heat exchanger length. Furthermore, finned tubes lead to a higher heat exchanger length due to more heat transfer resistance. By increasing the CNT concentration, the optimum length of the heat exchanger decreases and makes the improved thermal management system a more efficient and competitive with air and liquid thermal management systems.
SPACE-TIME ESTIMATE TO HEAT EQUATION
2007-01-01
In this article, we prove the Strichartz type estimate for the solutions of linear heat equation with initial data in Hardy space H1(Rd). As an application, we obtain the full space-time estimate to the solutions of heat equation with initial data in LP(Rd) for 1＜p＜∞.
NALLUSAMY N.; SAMPATH S.; VELRAJ R.
2006-01-01
In thermal systems such as solar thermal and waste heat recovery systems, the available energy supply does not usually coincide in time with the process demand. Hence some form of thermal energy storage (TES) is necessary for the most effective utilization of the energy source. This study deals with the experimental evaluation of thermal performance of a packed bed latent heat TES unit integrated with solar flat plate collector. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the solar collector to the storage tank also acts as sensible heat storage material. Charging experiments were carried out at varying inlet fluid temperatures to examine the effects of porosity and HTF flow rate on the storage unit performance. The performance parameters such as instantaneous heat stored, cumulative heat stored, charging rate and system efficiency are studied.Discharging experiments were carried out by both continuous and batchwise processes to recover the stored heat, and the results are presented.
Glatzmaier, Greg C.; Rea, J.; Olsen, Michele L.; Oshman, C.; Hardin, C.; Alleman, Jeff; Sharp, J.; Weigand, R.; Campo, D.; Hoeschele, G.; Parilla, Philip A.; Siegel, N. P.; Toberer, Eric S.; Ginley, David S.
2017-06-27
We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales in the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location, and
Glatzmaier, G. C.; Rea, J.; Olsen, M. L.; Oshman, C.; Hardin, C.; Alleman, J.; Sharp, J.; Weigand, R.; Campo, D.; Hoeschele, G.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.
2017-06-01
We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales in the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location, and
Anthropogenic heat flux estimation from space: first results
Chrysoulakis, Nektarios; Heldens, Wieke; Gastellu-Etchegorry, Jean-Philippe; Grimmond, Sue; Feigenwinter, Christian; Lindberg, Fredrik; Del Frate, Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Albitar, Ahmad; Gabey, Andrew; Parlow, Eberhard; Olofson, Frans
2016-04-01
While Earth Observation (EO) has made significant advances in the study of urban areas, there are several unanswered science and policy questions to which it could contribute. To this aim the recently launched Horizon 2020 project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of EO to retrieve anthropogenic heat flux, as a key component in the urban energy budget. The anthropogenic heat flux is the heat flux resulting from vehicular emissions, space heating and cooling of buildings, industrial processing and the metabolic heat release by people. Optical, thermal and SAR data from existing satellite sensors are used to improve the accuracy of the radiation balance spatial distribution calculation, using also in-situ reflectance measurements of urban materials are for calibration. EO-based methods are developed for estimating turbulent sensible and latent heat fluxes, as well as urban heat storage flux and anthropogenic heat flux spatial patterns at city scale and local scale by employing an energy budget closure approach. Independent methods and models are engaged to evaluate the derived products and statistical analyses provide uncertainty measures as well. Ultimate goal of the URBANFLUXES is to develop a highly automated method for estimating urban energy budget components to use with Copernicus Sentinel data, enabling its integration into applications and operational services. Thus, URBANFLUXES prepares the ground for further innovative exploitation of European space data in scientific activities (i.e. Earth system modelling and climate change studies in cities) and future and emerging applications (i.e. sustainable urban planning) by exploiting the improved data quality, coverage and revisit times of the Copernicus data. The URBANFLUXES products will therefore have the potential to support both sustainable planning strategies to improve the quality of life in cities, as well as Earth system models to
Computational modeling of latent-heat-storage in PCM modified interior plaster
Fořt, Jan; Maděra, Jiří; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek
2016-06-01
The latent heat storage systems represent a promising way for decrease of buildings energy consumption with respect to the sustainable development principles of building industry. The presented paper is focused on the evaluation of the effect of PCM incorporation on thermal performance of cement-lime plasters. For basic characterization of the developed materials, matrix density, bulk density, and total open porosity are measured. Thermal conductivity is accessed by transient impulse method. DSC analysis is used for the identification of phase change temperature during the heating and cooling process. Using DSC data, the temperature dependent specific heat capacity is calculated. On the basis of the experiments performed, the supposed improvement of the energy efficiency of characteristic building envelope system where the designed plasters are likely to be used is evaluated by a computational analysis. Obtained experimental and computational results show a potential of PCM modified plasters for improvement of thermal stability of buildings and moderation of interior climate.
Computational modeling of latent-heat-storage in PCM modified interior plaster
Fořt, Jan; Maděra, Jiří; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek [Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague (Czech Republic)
2016-06-08
The latent heat storage systems represent a promising way for decrease of buildings energy consumption with respect to the sustainable development principles of building industry. The presented paper is focused on the evaluation of the effect of PCM incorporation on thermal performance of cement-lime plasters. For basic characterization of the developed materials, matrix density, bulk density, and total open porosity are measured. Thermal conductivity is accessed by transient impulse method. DSC analysis is used for the identification of phase change temperature during the heating and cooling process. Using DSC data, the temperature dependent specific heat capacity is calculated. On the basis of the experiments performed, the supposed improvement of the energy efficiency of characteristic building envelope system where the designed plasters are likely to be used is evaluated by a computational analysis. Obtained experimental and computational results show a potential of PCM modified plasters for improvement of thermal stability of buildings and moderation of interior climate.
PREPARATION OF PUZZOLANA ACTIVE TWO COMPONENT COMPOSITE FOR LATENT HEAT STORAGE
Jan Fort
2016-10-01
Full Text Available Application of Phase Change Materials (PCMs represents promising way for an increase of energy efficiency of industrial devices, reduction of energy demands for heating and cooling, waste heat recovery, solar energy storage and smart control of buildings interior climate. In this paper, the potential of diatomite as the bearer for the shape stable PCM was studied in order to develop material applicable in the mix composition of composite materials. Considering availability, endurance and compatibility of diatomite with the cement and lime based materials, preparation of diatomite/wax composite brings pozzolana active PCM with great promises at a reasonable cost. Prepared composite was analysed in detail using laser diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. Also the pozzolanic activity was measured. The prepared two components composite exhibits high latent heat storage and particle size distribution compatible with cement and hydrated lime.
Identification by transfer function of a latent heat accumulator of the tubular type
Maye, J.P.; Legrand, S. (Laboratoire d' Energetique Solaire, Universite de Poitiers, 86 (France))
1985-01-01
Heat accumulators introduced in thermodynamic loops play a regulating role on the energy source in relation to demand. The choice of a composite heat transfer system employing sensible and latent heat ensures maximum compactness concerning storable energy, as well as good restitution at constant energy level. However, the effectiveness of the accumulator depends on its eventual use: the associated control system must have adequate data, together with a simple, precise forecasting model. The study will rely on a detailed thermal analysis of a tubular accumulator. This will lead to a wider approach by transfer function, a principle also applied to each of the accumulator tubes. The problem of determining the initial state of the accumulator after and idle period will also be dealt with.
Havenith, George; Bröde, Peter; den Hartog, Emiel; Kuklane, Kalev; Holmer, Ingvar; Rossi, Rene M; Richards, Mark; Farnworth, Brian; Wang, Xiaoxin
2013-03-15
Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has found little use in recent literature. In this experiment a thermal manikin, (MTNW, Seattle, WA) was used to determine the effective cooling power of moisture evaporation. The manikin measures both heat loss and mass loss independently, allowing a direct calculation of an effective latent heat of evaporation (λeff). The location of the evaporation was varied: from the skin or from the underwear or from the outerwear. Outerwear of different permeabilities was used, and different numbers of layers were used. Tests took place in 20°C, 0.5 m/s at different humidities and were performed both dry and with a wet layer, allowing the breakdown of heat loss in dry and evaporative components. For evaporation from the skin, λeff is close to the theoretical value (2,430 J/g) but starts to drop when more clothing is worn, e.g., by 11% for underwear and permeable coverall. When evaporation is from the underwear, λeff reduction is 28% wearing a permeable outer. When evaporation is from the outermost layer only, the reduction exceeds 62% (no base layer), increasing toward 80% with more layers between skin and wet outerwear. In semi- and impermeable outerwear, the added effect of condensation in the clothing opposes this effect. A general formula for the calculation of λeff was developed.
Latent heat of magnetization for MnFeSi0 . 33P0 . 66
Roy, Prasenjit; de Groot, Robert A.; Theoretical Chemistry Team
2015-03-01
Magnetic refrigeration is a very promising environmental-friendly method to encounter the energy shortage of the world by implementing the magnetocaloric effect. MnFeSiP series of materials are distinguishable magnetocaloric meterial for the use of non-toxic, inexpensive elements as well as high efficiency. There are several ways to measure the efficiency of the MCE, viz.- measuring the adiabatic temperature change or measuring the entropy change at the transition. MnFeSiP materials show a first order magneto-elastic phase transition at the Curie temperature (TC). This simultaneous occourance of the magnetic and elastic transition in this material account for a higher ΔTad (or high entropy change), which is linearly proportional to the Latent heat (L) of magnetization. Experimentally L can be determined with techniques such as Differential Scanning Calorimetry. In our study we use VASP in addition to the Phonopy package, to determine the finite temperature properties of the system. Quasi Harmonic Approximation was applied successfully to determine the Gibbs free energy of MnFeSi0.33 P0.66. Hence we show a phase transition around 425 K. From the temperature derivative of G , the specific heat was obtained and finally the latent heat was obtained. Foundation for fundamental research on matter.
Corrosion and latent heat in thermal cycles for La(Fe,Mn,Si){sub 13} magnetocaloric compounds
Hu, Jie; Guan, Lin; Fu, Song; Sun, Yongyang; Long, Yi, E-mail: longy@mater.ustb.edu.cn
2014-03-15
Corrosion and latent heat in thermal cycles for LaFe{sub 11.5−x}Mn{sub x}Si{sub 1.5} (x=0.00, 0.10, 0.20, and 0.25) compounds were investigated for practical application. The corrosion resistance of the compounds was tested by means of potentiodynamic polarization and immersion test in the distilled water. The results show that the corrosion resistance of the compounds was improved by Mn doping. The latent heat of the compounds in the thermal cycles was tested by differential scanning calorimetry (DSC). The latent heat decreased with the increase in the number of thermal cycles. The substitution of Mn in the compounds speeded up the decrease of the latent heat in the thermal cycles. But the latent heat of all compounds tended to be stable after eight thermal cycles. The maximum ΔS{sub M} under a low magnetic field (0–1 T) was 12.7, 9.9, 8.2 and 7.6 J/kg K with increasing of Mn content from x=0.00 to 0.25, respectively. The magnetic entropy changes and adiabatic temperature changes for LaFe{sub 11.5−x}Mn{sub x}Si{sub 1.5} compounds decreased with the increase of Mn content. - Highlights: • Mn doping can improve the corrosion resistance of La(Fe,Mn,Si){sub 13} compounds. • Mn doping speeded up the decrease of the latent heat during the thermal cycles. • The latent heat of all compounds tends to be stable after eight thermal cycles. • −ΔS and ΔT{sub ad} decreased with the increase of Mn content.
Surface renewal method for estimating sensible heat flux
2008-09-18
Sep 18, 2008 ... Keywords: surface energy balance, sensible heat flux, latent energy flux, evaporation ... Hill et al., 1992; Thiermann and Grassl, 1992; Green et al.,. 1994; De ...... the time traces over rangeland grass near Ione (California).
Ai Shu-Tao
2006-01-01
The temperature gradients that arise in the paraelectric-ferroelectric interface dynamics induced by the latent heat transfer are studied from the point of view that a ferroelectric phase transition is a stationary, thermal-electric coupled transport process. The local entropy production is derived for a ferroelectric phase transition system from the Gibbs equation. Three types of regions in the system are described well by using the Onsager relations and the principle of minimum entropy production. The theoretical results coincides with the experimental ones.
Haussmann, T. [PSE GmbH - Forschung, Entwicklung, Marketing, Freiburg (Germany); Schossig, P.; Henning, H.M.; Rogg, H. [Fraunhofer-Institut fuer Solare Energiesysteme ISE, Freiburg (Germany)
2005-07-01
In a BMWA-funded project terminated in September 2004, new construction materials with integrated latent heat storage were developed by Fraunhofer ISE and the industrial partners BASF, maxit, DAW, and Sto. The focus was on phase change materials for passive cooling of buildings. In addition to 'Micronal' by BASF, two new materials were presented at Otti Symposium Thermische Solarenergie Nr. 13 and 14. One of these is available on the market since the end of 2004 under the name of 'maxit clima'. The current project now focused on active-flow systems. (orig.)
Schwarz, D. [Architekturbuero Dietrich Schwarz, Domat/Ems (Switzerland); Nussbaumer, T. [Verenum, Zuerich (Switzerland)
2001-07-01
This yearly report for the Swiss Federal Office of Energy (SFOE) describes a facade element using transparent insulation and integrated latent-heat storage that was used in the construction of a house in the Toggenburg region of Switzerland. The principles of the latent-heat storage system are discussed and the architecture of the house, which is built to 'zero-energy' standards is described. Also, its energy supply, which includes a small heat pump, is described. The results of measurement campaigns on the performance of the transparent insulation system and its latent heat storage made both in the Swiss Federal Laboratories for Materials Testing and Research and in the house itself are presented and discussed. Overheating protection in summer is discussed and the experience gained from tests made with prismatic glass panes and standard solar-protection glass is discussed. Also, user behaviour and the automatic and manual operation of the control systems are looked at.
Zipf, Verena; Neuhäuser, Anton
2016-05-01
Decentralized solar combined heat and power (CHP) systems can be economically feasible, especially when they have a thermal storage. In such systems, heat provided by solar thermal collectors is used to generate electricity and useful heat for e.g. industrial processes. For the supply of energy in times without solar irradiation, a thermal storage can be integrated. In this work, the performance of a solar CHP system using an active latent heat storage with a screw heat exchanger is investigated. Annual yield calculations are conducted in order to calculate annual energy gains and, based on them; economic assumptions are used to calculated economic numbers in order to assess the system performance. The energy savings of a solar system, compared to a system with a fossil fuel supply, are calculated. Then the net present value and the dynamic payback are calculated with these savings, the initial investment costs and the operational costs. By interpretation and comparison of these economic numbers, an optimum system design in terms of solar field size and storage size was determined. It has been shown that the utilization of such systems can be economical in remote areas without gas and grid connection. Optimal storage design parameters in terms of the temperature differences in the heat exchanger and the storage capacity have been determined which can further increase the net present value of such system.
Dirk Temme
2008-12-01
Full Text Available Integrated choice and latent variable (ICLV models represent a promising new class of models which merge classic choice models with the structural equation approach (SEM for latent variables. Despite their conceptual appeal, applications of ICLV models in marketing remain rare. We extend previous ICLV applications by first estimating a multinomial choice model and, second, by estimating hierarchical relations between latent variables. An empirical study on travel mode choice clearly demonstrates the value of ICLV models to enhance the understanding of choice processes. In addition to the usually studied directly observable variables such as travel time, we show how abstract motivations such as power and hedonism as well as attitudes such as a desire for flexibility impact on travel mode choice. Furthermore, we show that it is possible to estimate such a complex ICLV model with the widely available structural equation modeling package Mplus. This finding is likely to encourage more widespread application of this appealing model class in the marketing field.
Vigneswaran, V. S.; Kumaresan, G.; Sudhakar, P.; Santosh, R.
2017-05-01
Solar cooking is one of the most promising techniques to meet the cooking needs in remote areas where electricity and fuel supplies are meager. Solar box cooker is an efficient device used in solar cooking as it is simple to fabricate, easy to operate and hazard-free. In this context, the performance evaluation of a solar box cooker with varied number of reflectors has been undertaken. It was found that the time consumed for cooking in a box type solar cooker with four reflectors is lesser compared to that of a single reflector and its overall utilization efficiency increases with increase in the cooking mass. Further, a latent heat energy storage system was designed and fabricated to cook the food at off-peak hours of solar radiation. This latent heat energy storage system was combined with the solar box cooker. Oxalic acid dihydrate was used as the phase change material due to its high specific enthalpy and its melting point lying close to the cooking temperature. It was found that the solar box cooker with phase change material could be effectively utilized to cook food during off-peak hours of solar radiation.
Feasibility of Storing Latent Heat with Liquid Crystals. Proof of Concept at Lab Scale
Rocío Bayón
2016-04-01
Full Text Available In this work, the first experimental results of thermotropic liquid crystals used as phase change materials for thermal storage are presented. For that purpose, the n = 10 derivative from the family of 4′-n-alkoxybiphenyl-4-carboxylic acids has been prepared. Different techniques like polarized-light microscopy, differential scanning calorimetry, thermogravimetric analysis and rheological measurements have been applied for its characterization. Having a mesophase/isotropic transition temperature around 251 °C, a clearing enthalpy of 55 kJ/kg, a thermal heat capacity of around 2.4 kJ/kg and a dynamic viscosity lower than 0.6 Pas, this compound fulfills the main requirements for being considered as latent heat storage material. Although further studies on thermal stability are necessary, the results already obtained are both promising and encouraging since they demonstrate de viability of this new application of liquid crystals as thermal storage media.
Study on release rate of latent heat in Czochralski silicon growth
REN Bingyan; YANG Jiankun; LI Yanlin; LIU Xiaoping; WANG Minhua
2006-01-01
The pulling rate in czochralski silicon (CZSi) growth is important for reducing the cost of solar cell.In this paper, double-heater, heat shield and composite argon duct system were introduced in the Ф450 mm hot zone of a Czochralski furnace.The pulling rate under different thermal system was recorded in experiments.Argon flow and temperature fields were simulated by finite element method(FEM).Experimental results and numerical simulation indicate that double-heater and composite argon duct system can enhance obviously the release rate of latent heat.In Φ 200 mm Czochralski silicon (CZSi) growth, average pulling rate can increase from 0.6 mm·min-1 in the conventional hot zone to 0.8 mm·min-1 in the modified hot zone.
Energy and exergy analysis of particle dispersed latent heat storage system
S. Jegadheeswaran, S. D. Pohekar
2010-05-01
Full Text Available Latent heat thermal storage (LHTS system has been attractive over the years as an effective energy storage and retrieval device especially in solar thermal applications. However, the performance of LHTS systems is limited by the poor thermal conductivity of phase change materials (PCMs employed. A numerical study is carried out to investigate the performance enhancement of a LHTS unit of shell and tube configuration due to the dispersion of high conductivity particles in the PCM during charging process (melting. Temperature based governing equations have been formulated and solved numerically following an alternate iteration between the temperature and thermal resistance. Exergy based performance evaluation is taken as a main aspect. The numerical results are presented for several mass flow rates and inlet temperatures of heat transfer fluid (HTF. The results indicate a significant improvement in the performance of the LHTS unit when high conductivity particles are dispersed.
Han, Fang; Liu, Han
2016-01-01
Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson’s sample correlation matrix. Although Pearson’s sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall’s tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall’s tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall’s tau correlation matrix and the latent Pearson’s correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of “effective rank” in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a “sign subgaussian condition” which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition.
Han, Fang; Liu, Han
2017-02-01
Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson's sample correlation matrix. Although Pearson's sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall's tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall's tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall's tau correlation matrix and the latent Pearson's correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of "effective rank" in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a "sign subgaussian condition" which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition.
Estimation of Models in a Rasch Family for Polytomous Items and Multiple Latent Variables
Carolyn J. Anderson
2007-02-01
Full Text Available The Rasch family of models considered in this paper includes models for polytomous items and multiple correlated latent traits, as well as for dichotomous items and a single latent variable. An R package is described that computes estimates of parameters and robust standard errors of a class of log-linear-by-linear association (LLLA models, which are derived from a Rasch family of models. The LLLA models are special cases of log-linear models with bivariate interactions. Maximum likelihood estimation of LLLA models in this form is limited to relatively small problems; however, pseudo-likelihood estimation overcomes this limitation. Maximizing the pseudo-likelihood function is achieved by maximizing the likelihood of a single conditional multinomial logistic regression model. The parameter estimates are asymptotically normal and consistent. Based on our simulation studies, the pseudo-likelihood and maximum likelihood estimates of the parameters of LLLA models are nearly identical and the loss of efficiency is negligible. Recovery of parameters of Rasch models fit to simulated data is excellent.
张述文; 邱崇践; 张卫东
2004-01-01
A variational technique (VT) is applied to estimate surface sensible and latent heat fluxes based on observations of air temperature, wind speed, and humidity, respectively, at three heights (1 m, 4 m, and 10m), and the surface energy and radiation budgets by the surface energy and radiation system (SERBS). The method fully uses all information provided by the measurements of air temperature, wind, and humidity profiles, the surface energy budget, and the similarity profile formulae as well. Data collected at Feixi experiment station installed by the China Heavy Rain Experiment and Study (HeRES) Program are used to test the method. Results show that the proposed technique can overcome the well-known unstablility problem that occurs when the Bowen method becomes singular; in comparison with the profile method, it reduces both the sensitivities of latent heat fluxes to observational errors in humidity and those of sensible heat fluxes to observational errors in temperature, while the estimated heat fluxes approximately satisfy the surface energy budget. Therefore, the variational technique is more reliable and stable than the two conventional methods in estimating surface sensible and latent heat fluxes.
Pelgrum, H.; Bastiaanssen, W. G. M.
1996-04-01
A knowledge of the area-averaged latent heat flux is necessary to validate large-scale model predictions of heat fluxes over heterogeneous land surfaces. This paper describes different procedures to obtain as a weighted average of ground-based observations. The weighting coefficients are obtained from remote sensing measurements. The remote sensing data used in this study consist of a Landsat thematic mapper image of the European Field Experiment in a Desertification-Threatened Area (EFEDA) grid box in central Spain, acquired on June 12, 1991. A newly developed remote sensing algorithm, the surface energy balance for land algorithm (SEBAL), solves the energy budget on a pixel-by-pixel basis. From the resulting frequency distribution of the latent heat flux, the area-averaged latent heat flux was calculated as = 164 W m-2. This method was validated with field measurements of latent heat flux, sensible heat flux, and soil moisture. In general, the SEBAL-derived output compared well with field measurements. Two other methods for retrieval of weighting coefficients were tested against SEBAL. The second method combines satellite images of surface temperature, surface albedo, and normalized difference vegetation index (NDVI) into an index on a pixel-by-pixel basis. After inclusion of ground-based measurements of the latent heat flux, a linear relationship between the index and the latent heat flux was established. This relationship was used to map the latent heat flux on a pixel-by-pixel basis, resulting in = 194 W m-2. The third method makes use of a supervised classification of the thematic mapper image into eight land use classes. An average latent heat flux was assigned to each class by using field measurements of the latent heat flux. According to the percentage of occurrence of each class in the image, was calculated as 110 W m-2. A weighting scheme was produced to make an estimation of possible from in situ observations. The weighting scheme contained a
Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean-Philippe; Grimmond, Sue; Feigenwinter, Christian; Lindberg, Fredrik; Del Frate, Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans
2017-04-01
The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts of UEB fluxes on urban heat island and consequently on energy consumption in cities. In URBANFLUXES, the anthropogenic heat flux is estimated as a residual of UEB. Therefore, the rest UEB components, namely, the net all-wave radiation, the net change in heat storage and the turbulent sensible and latent heat fluxes are independently estimated from Earth Observation (EO), whereas the advection term is included in the error of the anthropogenic heat flux estimation from the UEB closure. The Discrete Anisotropic Radiative Transfer (DART) model is employed to improve the estimation of the net all-wave radiation balance, whereas the Element Surface Temperature Method (ESTM), adjusted to satellite observations is used to improve the estimation the estimation of the net change in heat storage. Furthermore the estimation of the turbulent sensible and latent heat fluxes is based on the Aerodynamic Resistance Method (ARM). Based on these outcomes, QF is estimated by regressing the sum of the turbulent heat fluxes versus the available energy. In-situ flux measurements are used to evaluate URBANFLUXES outcomes, whereas uncertainties are specified and analyzed. URBANFLUXES is expected to prepare the ground for further innovative exploitation of EO in scientific activities (climate variability studies at local and regional scales) and future and emerging applications (sustainable urban planning, mitigation technologies) to benefit climate change mitigation/adaptation. This study presents the results of the second phase of the project and detailed information on URBANFLUXES is available at: http://urbanfluxes.eu
Kruizenga, A. M.; Withey, E. A.; Andraka, C. E.; Gibbs, P. J.
2016-05-01
Dish-Stirling systems are a strong candidate to meet cost production goals for solar thermal power production. Thermal energy storage improves the capacity factor of thermal power systems; copper-silicon-magnesium eutectic alloys have been investigated as potential latent heat storage materials. This work examines the ability of commercially available plasma spray coatings to serve as protective barriers with these alloys, while highlighting mechanistic insights into materials for latent heat storage systems. Computed tomography was leveraged as a rapid screening tool to assess the presence of localized attack in tested coatings.
Ermuratschii V.V.
2013-12-01
Full Text Available The paper considers the problem of calculating values of the internal thermal resistance of a packed bed sensible and latent heat storages working bodies. The methodic calculation of this resistance for bodies with solid, liquid substance and phase-change materials is offered. Being based on the theory of a regular thermal mode, formulas for calculation of internal thermal resistance of the bodies having the form of a sphere, the cylinder and a paralle-lepiped are obtained. For bodies with liquid substance this resistance is in view of a wall of vessels and resistance of a boundary layer at natural convection of liquids. In the case of substances with a phase transition heat resistance zones with different states of aggregation shall be determined separately. Electro-thermal model contains of the four thermal resistances, two heat capacity and single voltage source. Internal thermal resistance of solids can be considered as a constant parameter. For bodies of liquid and phase change material internal thermal resistance depends on their thermal state. Therefore, these values should be determined in the calculation processes of their heating or cooling.
Theoretical predictions for latent heats and phase-change temperatures of polycrystalline PCMs
Medved', Igor; Trník, Anton
2017-07-01
We had previously developed a microscopic approach from which it is possible to fit enthalpy jumps and heat capacity peaks of polycrystalline phase-change materials that consists of a large number of grains. It is also possible to determine the corresponding latent heat and phase-change temperature. These results are given in a form of sums over grain diameters that can be evaluated numerically. Therefore, their behavior and dependence on physical parameters are not susceptible to straightforward interpretations. Here we use the results to derive simple formulas for the maximum position (Tmax), height (H), and an asymmetry factor (α) of those heat capacity peaks that are very asymmetric. In addition, we express the phase-change temperature as a simple combination of Tmax, H, α, and the peak's area. We apply our formulas to Rhubitherm 27 as an example PCM for which the heat capacity peak is so asymmetric that it has about 80 % of its total area below its maximum position.
Active heat exchange system development for latent heat thermal energy storage
Lefrois, R. T.; Mathur, A. K.
1980-04-01
Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.
Active heat exchange system development for latent heat thermal energy storage
Lefrois, R. T.; Mathur, A. K.
1980-01-01
Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.
Sex Differences in Fluid Reasoning: Manifest and Latent Estimates from the Cognitive Abilities Test
Joni M. Lakin
2014-06-01
Full Text Available The size and nature of sex differences in cognitive ability continues to be a source of controversy. Conflicting findings result from the selection of measures, samples, and methods used to estimate sex differences. Existing sex differences work on the Cognitive Abilities Test (CogAT has analyzed manifest variables, leaving open questions about sex differences in latent narrow cognitive abilities and the underlying broad ability of fluid reasoning (Gf. This study attempted to address these questions. A confirmatory bifactor model was used to estimate Gf and three residual narrow ability factors (verbal, quantitative, and figural. We found that latent mean differences were larger than manifest estimates for all three narrow abilities. However, mean differences in Gf were trivial, consistent with previous research. In estimating group variances, the Gf factor showed substantially greater male variability (around 20% greater. The narrow abilities varied: verbal reasoning showed small variability differences while quantitative and figural showed substantial differences in variance (up to 60% greater. These results add precision and nuance to the study of the variability and masking hypothesis.
Floros, Michael Christopher
Vegetable oils represent an ideal and renewable feedstock for the synthesis of a variety of functional materials. However, without financial incentive or unique applications motivating a switch, commercial products continue to be manufactured from petrochemical resources. Two different families of high value, functional materials synthesized from vegetable oils were studied. These materials demonstrate superior and unique performance to comparable petrochemical analogues currently on the market. In the first approach, 3 amphiphilic thermoplastic polytriazoles with differing lipophilic segment lengths were synthesized in a polymerization process without solvents or catalysts. Investigation of monomer structure influence on the resultant functional behaviour of these polymers found distinctive odd/even behaviour reliant on the number of carbon atoms in the monomers. Higher concentrations of triazole groups, due to shorter CH2 chains in the monomeric dialkynes, resulted in more brittle polymers, displaying higher tensile strengths but reduced elongation to break characteristics. These polymers had similar properties to commercial petroleum derived thermoplastics. One polymer demonstrated self-assembled surface microstructuring, and displayed hydrophobic properties. Antimicrobial efficacy of the polymers were tested by applying concentrated bacterial solutions to the surfaces, and near complete inhibition was demonstrated after 4 hours. Scanning electron microscope images of killed bacteria showed extensive membrane damage, consistent with the observed impact of other amphiphilic compounds in literature. These polytriazoles are suited for applications in medical devices and implants, where major concerns over antibiotic resistance are prevalent. In the second approach, a series of symmetric, saturated diester phase change materials (PCMs) were also synthesized with superior latent heat values compared to commercial petrochemical analogues. These diesters exhibit
ADDRESSING CONFOUNDING WHEN ESTIMATING THE EFFECTS OF LATENT CLASSES ON A DISTAL OUTCOME.
Schuler, Megan S; Leoutsakos, Jeannie-Marie S; Stuart, Elizabeth A
2014-12-01
Confounding is widely recognized in settings where all variables are fully observed, yet recognition of and statistical methods to address confounding in the context of latent class regression are slowly emerging. In this study we focus on confounding when regressing a distal outcome on latent class; extending standard confounding methods is not straightforward when the treatment of interest is a latent variable. We describe a recent 1-step method, as well as two 3-step methods (modal and pseudoclass assignment) that incorporate propensity score weighting. Using simulated data, we compare the performance of these three adjusted methods to an unadjusted 1-step and unadjusted 3-step method. We also present an applied example regarding adolescent substance use treatment that examines the effect of treatment service class on subsequent substance use problems. Our simulations indicated that the adjusted 1-step method and both adjusted 3-step methods significantly reduced bias arising from confounding relative to the unadjusted 1-step and 3-step approaches. However, the adjusted 1-step method performed better than the adjusted 3-step methods with regard to bias and 95% CI coverage, particularly when class separation was poor. Our applied example also highlighted the importance of addressing confounding - both unadjusted methods indicated significant differences across treatment classes with respect to the outcome, yet these class differences were not significant when using any of the three adjusted methods. Potential confounding should be carefully considered when conducting latent class regression with a distal outcome; failure to do so may results in significantly biased effect estimates or incorrect inferences.
Inaba, H.; Horibe, A.; Ozaki, K. [Okayama University, Okayama (Japan). Faculty of Engineering; Emoto, K. [Okayama University, Okayama (Japan); Kakiuchi, H. [Mitsubishi Chemical Corp., Tokyo (Japan)
1999-07-25
Experiment has been performed of heat transfer characteristics of the middle temperature latent heat storage system of the direct-contact heat transfer by using m-E (meso-Erythritol, melting point of 119 degree C, latent heat of 375 kJ/kg) droplets as a latent heat storage material and silicone oil as a heat transfer medium. In the present study the liquid m-E was injected into the heat transfer medium through a circular nozzle. The m-E droplets changed from liquid to solid phase during falling in the heat transfer medium at low temperature. From the measuring results of m-E droplet diameter, falling velocity, and solidification rate, the nondimensional empirical equations of the arithmetic mean diameter of the droplets and falling velocity, the solidification rate and the overall heat transfer coefficient were derived as a function of the characteristic arithmetic mean diameter, the terminal velocity, temperature and physical properties. (author)
A Numerical Study of a Double Pipe Latent Heat Thermal Energy Storage System
Tabassum, Tonny
Solar energy is an intermittent supply source of energy. To efficiently utilize this free renewable energy source some form of thermal energy storage devices are necessary. Phase change materials (PCMs), because of their high energy density storage capacity and near isothermal phase change characteristics, have proven to be promising candidates for latent heat thermal energy storage (LHTES) devices. Among the various LHTES devices for low temperature residential heating and cooling applications, the shell-and-tube type heat exchanging devices are the most simple to operate and can be easily fabricated. This work numerically investigates the buoyancy driven heat transfer process during melting (charging) of a commercial paraffin wax as PCM filling the annulus of a horizontal double pipe heat exchanger. The heated working fluid (water) is passing through the central tube of the annulus at a sufficiently high flow-rate and thereby maintaining an almost isothermal wall temperature at the inner pipe which is higher than the melting temperature of the PCM. The transient, two-dimensional coupled laminar momentum and energy equations for the model are suitably non-dimensionalized and are solved numerically using the enthalpy-porosity approach. Time-wise evolutions of the flow patterns and temperature distributions are presented through velocity vector fields and isotherm plots. In this study, two types of PCM filled annuli, a plain annulus and a strategically placed longitudinal finned annulus, are studied. The total energy stored, the total liquid fraction and the energy efficiency at different melting times are evaluated for three different operating conditions and the results are compared between the plain and finned annuli. The present study will provide guidelines for system thermal performance and design optimization of the shell-and-tube LHTES devices. .
Sari, Ahmet [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey)]. E-mail: asari@gop.edu.tr
2006-06-15
Accelerated thermal cycle tests have been conducted to study the change in melting temperatures and latent heats of fusion of the eutectic mixtures of lauric acid (LA)-myristic acid (MA), lauric acid (LA)-palmitic acid (PA) and myristic acid (MA)-stearic acid (SA) as latent heat storage materials. The thermal properties of these materials were determined by the differential scanning calorimetry (DSC) analysis method. The thermal reliability of the eutectic mixtures after melt/freeze cycles of 720, 1080 and 1460 was also evaluated using the DSC curves. The accelerated thermal cycle tests indicate that the melting temperatures usually tend to decrease, and the variations in the latent heats of fusion are irregular with increasing number of thermal cycles. Moreover, the probable reasons for the change in thermal properties of the eutectic mixtures after repeated thermal cycles were investigated. Fourier Transform Infrared (FT-IR) spectroscopic analysis indicates that the accelerated melt/freeze processes do not cause any degradation in the chemical structure of the mixtures. The change in thermal properties of the eutectic mixtures with increasing number of thermal cycles is only because of the presence of certain amounts of impurities in the fatty acids used in their preparation. It is concluded that the tested eutectic mixtures have reasonable thermal properties and thermal reliability as phase change materials (PCMs) for latent heat storage in any solar heating applications that include a four year utilization period.
Ahmet Sarl; Hayati Sarl; Adem Onal [Gaziosmanpasa University, Tokat (Turkey). Dept. of Chemistry
2004-02-01
The present study deals with two subjects. The first one is to determine the thermal properties of lauric acid (LA)-stearic acid (SA), myristic acid (MA)-palmitic acid (PA) and palmitic acid (PA)-stearic acid (SA) eutectic mixtures as latent heat storage material. The properties were measured by the differential scanning calorimetry (DSC) analysis technique. The second one is to study the thermal reliability of these materials in view of the change in their melting temperatures and latent heats of fusion with respect to repeated thermal cycles. For this aim, the eutectic mixtures were subjected to 360 repeated melt/freeze cycles, and their thermal properties were measured after 0, 90,1 80 and 360 thermal cycles by the technique of DSC analysis. The DSC thermal analysis results show that the binary systems of LA-SA in the ratio of 75.5:24.5 wt.%, MA-PA in the ratio of 58:42 wt.% and PA-SA in the ratio of 64.2:35.8 wt.% form eutectic mixtures with melting temperatures of 37.0, 42.60 and 52.30{sup o}C and with latent heats of fusion of 182.7, 169.7 and 181.7 J g{sup -1}, respectively. These thermal properties make them possible for heat storage in passive solar heating applications with respect to climate conditions. The accelerated thermal cycle tests indicate that the changes in the melting temperatures and latent heats of fusion of the studied eutectic mixtures are not regular with increasing number of thermal cycles. However, these materials, latent heat energy storage materials, have good thermal reliability in terms of the change in their thermal properties with respect to thermal cycling for about a one-year utility period. (author)
The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling.
Rein M G J Houben
2016-10-01
Full Text Available The existing estimate of the global burden of latent TB infection (LTBI as "one-third" of the world population is nearly 20 y old. Given the importance of controlling LTBI as part of the End TB Strategy for eliminating TB by 2050, changes in demography and scientific understanding, and progress in TB control, it is important to re-assess the global burden of LTBI.We constructed trends in annual risk in infection (ARI for countries between 1934 and 2014 using a combination of direct estimates of ARI from LTBI surveys (131 surveys from 1950 to 2011 and indirect estimates of ARI calculated from World Health Organisation (WHO estimates of smear positive TB prevalence from 1990 to 2014. Gaussian process regression was used to generate ARIs for country-years without data and to represent uncertainty. Estimated ARI time-series were applied to the demography in each country to calculate the number and proportions of individuals infected, recently infected (infected within 2 y, and recently infected with isoniazid (INH-resistant strains. Resulting estimates were aggregated by WHO region. We estimated the contribution of existing infections to TB incidence in 2035 and 2050. In 2014, the global burden of LTBI was 23.0% (95% uncertainty interval [UI]: 20.4%-26.4%, amounting to approximately 1.7 billion people. WHO South-East Asia, Western-Pacific, and Africa regions had the highest prevalence and accounted for around 80% of those with LTBI. Prevalence of recent infection was 0.8% (95% UI: 0.7%-0.9% of the global population, amounting to 55.5 (95% UI: 48.2-63.8 million individuals currently at high risk of TB disease, of which 10.9% (95% UI:10.2%-11.8% was isoniazid-resistant. Current LTBI alone, assuming no additional infections from 2015 onwards, would be expected to generate TB incidences in the region of 16.5 per 100,000 per year in 2035 and 8.3 per 100,000 per year in 2050. Limitations included the quantity and methodological heterogeneity of direct ARI
Liu, W. Timothy; Niiler, Pearn P.
1990-01-01
In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.
Numerical simulation of porous latent heat thermal energy storage for thermoelectric cooling
Trelles, J.P.; Dufly, J.J. [University of Massachusettes Lowell, MA (United States). Dept. of Energy Engineering
2003-09-01
Porous latent heat thermal energy storage for thermoelectric cooling is simulated via a matrix-based enthalpy formulation, having the temperature as unknown, in a three-dimensional domain. The system is made up of two aluminum containers; the inner one contains the cooling objective in water suspension and the outer one the phase change material (PCM) in a porous aluminum matrix. The system's charging and discharging processes are simulated for constant thermoelectric module cold side temperature under different porosities of the aluminum matrix. The mathematical modeling approach simplifies the analysis while the metal matrix in the PCM greatly improves performance. A direct application of the studied system is vaccine conservation in solar powered thermoelectric cooling systems. (Author)
Study of the Melting Latent Heat of Semicrystalline PVDF applied to High Gamma Dose Dosimetry
Batista, Adriana S.M. [Departamento de Anatomia e Imagem - IMA, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, MG (Brazil); Gual, Maritza R.; Faria, Luiz O. [Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, Av. Antonio Carlos 6627, C.P. 941, 31270-901, Belo Horizonte, MG (Brazil); Lima, Claubia P.B. [Departamento de Engenharia Nuclear - DEN, Universidade Federal de Minas Gerais - UFMG, Av. Antonio Carlos 6627, 31270-970 Belo Horizonte, MG (Brazil)
2015-07-01
Poly(vinylidene fluoride) homopolymers [PVDF] homopolymers were irradiated with gamma doses ranging from 0.5 to 2.75 MGy. Differential scanning calorimetry (DSC) and FTIR spectrometry were used in order to study the effects of gamma radiation in the amorphous and crystalline polymer structures. The FTIR data revealed absorption bands at 1730 and 1853 cm{sup -1} which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm{sup -1} which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm{sup -1} which were associated with NH stretch of NH{sub 2} and OH. The melting latent heat (LM) measured by DSC was used to construct an unambiguous relationship with the delivered dose. Regression analyses revealed that the best mathematical function that fits the experimental calibration curve is a 4-degree polynomial function, with an adjusted Rsquare of 0.99817. (authors)
First and Second Laws Analyses of a Closed Latent Heat Thermal Energy Storage System
A.SARI; K.KAYGUSUZ
2004-01-01
First and Second Law analyses were conducted to evaluate the performance of a closed latent heat thermal energy storage (LHTES) system employing calcium chloride hexahydrate (CaCl2-6H2O).The First and the Second Laws of thermodynamics were applied to the system from viewpoint of energy and exergy analyses,respectively. The energy storage tank in the system is neither fully mixed nor fully stratified. It may be considered as semithermal stratified. Experiments that include both charging and discharging periods were performed on sunny winter days in 1996. The energy and exergy variations and the overall energy and exergy efficiencies of the closed LHTES system were calculated for the complete charging and discharging cycle of the selected fifteen clear-sky winter days. Mean energy and exergy efficiencies were found to be 55.20% and 34.83%, respectively.
Utilization of the PCM latent heat for energy savings in buildings
Fořt, Jan; Trník, Anton; Pavlík, Zbyšek
2017-07-01
Increase of the energy consumption for buildings operation creates a great challenge for sustainable development issues. Thermal energy storage systems present promising way to achieve this goal. The latent heat storage systems with high density of thermal storage via utilization of phase change materials (PCMs) enable to improve thermal comfort of buildings and reduce daily temperature fluctuations of interior climate. The presented study is focused on the evaluation of the effect of PCM admixture on thermal performance of a cement-lime plaster. On the basis of the experimentally accessed properties of newly developed plasters, computational modeling is carried out in order to rate the acquired thermal improvement. The calculated results show that incorporation of 24 mass% of paraffinic wax based PCM decreased the energy demand of approx. 14.6%.
Bellan Selvan
2017-01-01
Full Text Available Solar energy has been considered as one of the promising solutions to replace the fossil fuels. To generate electricity beyond normal daylight hours, thermal energy storage systems (TES play a vital role in concentrated solar power (CSP plants. Thus, a significant focus has been given on the improvement of TES systems from the past few decades. In this study, a numerical model is developed to obtain the detailed heat transfer characteristics of lab-scale latent thermal energy storage system, which consists of molten salt encapsulated spherical capsules and air. The melting process and the corresponding temperature and velocity distributions in every capsule of the system are predicted. The enthalpy-porosity approach is used to model the phase change region. The model is validated with the reported experimental results. Influence of initial condition on the thermal performance of the TES system is predicted.
Alex Sandro Campos Maia
2008-10-01
Full Text Available Nine lactating Holstein cows with average 526 ± 5 kg of BW, five predominantly black and four predominantly white, bred in a tropical region and managed in open pasture were observed to measure cutaneous and respiratory evaporation rates under different environmental conditions. Cows were separated in three weight class: 1 (500 kg. Latent heat loss from cutaneous surface was measured using a ventilated capsule; evaporation in the respiratory system was measured using a facial mask. The results showed that heaviest cows (2 and 3 classes presented the least evaporation rates. When air temperature increased from 10 to 36ºC the relative humidity decreased from 90 to 30%. In these conditions the heat loss by respiratory evaporation increased from 5 to 57 Wm-2, while the heat loss by cutaneous evaporation increased from 30 to 350 Wm-2. The results confirm that latent heat loss was the main way of thermal energy elimination under high air temperatures (>30ºC; cutaneous evaporation was the main mechanism of heat loss, responding for about 85% of the heat loss. A model was presented for the prediction of the latent heat loss that was based on physiological and environmental variables and could be used to estimate the contribution of evaporation to thermoregulation; a second, based on air temperature only, should be used to make a simple characterization of the evaporation process.Nove vacas Holandesas lactantes com 526 ± 5 kg de peso corporal (cinco predominantemente pretas e quatro predominantemente brancas, criadas em região tropical e manejadas em pastagens, foram observadas com os objetivos de determinar simultaneamente as taxas de evaporação cutânea e respiratória em ambiente tropical e desenvolver modelos de predição. Para a medição da perda de calor latente pela superfície corporal, utilizou-se uma cápsula ventilada e, para a perda por respiração, utilizou-se uma máscara facial. Os resultados mostraram que as vacas que tinham
Yang, Ji Seung; Cai, Li
2014-01-01
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM). Results indicate that the MH-RM algorithm can produce estimates and standard…
Yang, Ji Seung; Cai, Li
2014-01-01
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM). Results indicate that the MH-RM algorithm can produce estimates and standard…
Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System
Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.
2017-05-01
Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.
Leon-Perez, Jose M; Notelaers, Guy; Arenas, Alicia; Munduate, Lourdes; Medina, Francisco J
2014-05-01
Research findings underline the negative effects of exposure to bullying behaviors and document the detrimental health effects of being a victim of workplace bullying. While no one disputes its negative consequences, debate continues about the magnitude of this phenomenon since very different prevalence rates of workplace bullying have been reported. Methodological aspects may explain these findings. Our contribution to this debate integrates behavioral and self-labeling estimation methods of workplace bullying into a measurement model that constitutes a bullying typology. Results in the present sample (n = 1,619) revealed that six different groups can be distinguished according to the nature and intensity of reported bullying behaviors. These clusters portray different paths for the workplace bullying process, where negative work-related and person-degrading behaviors are strongly intertwined. The analysis of the external validity showed that integrating previous estimation methods into a single measurement latent class model provides a reliable estimation method of workplace bullying, which may overcome previous flaws.
Nathan Hordy; Delphine Rabilloud; Jean-Luc Meunier; Sylvain Coulombe
2015-01-01
Recently, direct solar collection through the use of broadly absorbing nanoparticle suspensions (known as nanofluids) has been shown as a promising method to improve efficiencies in solar thermal devices. By utilizing a volatile base fluid, this concept could also be applied to the development of a direct absorption heat pipe for an evacuated tube solar collector. However, for this to happen or for any other light-induced vapor production applications, the nanofluid must remain stable over ex...
Valan Arasu Amirtham; Sasmito Agus P.; Mujumdar Arun S.
2013-01-01
Latent heat energy storage systems using paraffin wax could have lower heat transfer rates during melting/freezing processes due to its inherent low thermal conductivity. The thermal conductivity of paraffin wax can be enhanced by employing high conductivity materials such as alumina (Al2O3). A numerical analysis has been carried out to study the performance enhancement of paraffin wax with nanoalumina (Al2O3) particles in comparison with simple paraffin wax in a concentric double pipe ...
Atul Sharma; Lee Dong Won; Jun Un Park [Korea Institute of Energy Research, Daejeon (Korea). Solar Thermal Research Centre; Buddhi, D. [Devi Ahilya University, Indore (India). Thermal Energy Storage Laboratory
2005-11-01
Theoretical investigations of fatty acids as a phase change material (PCM) for energy storage system have been conducted in this study. The selected fatty acids were capric acid, lauric acid, myristic acid, palmitic acid and stearic acid. For the two-dimensional simulation model based on the enthalpy approach, calculations have been made for the melt fraction with conduction only. Glass, stainless steel, tin, aluminium mixed, aluminium and copper were used as heat exchanger materials in the numerical calculations. Theoretical results show that capric acid was found good compatibility with latent heat storage system. The large value of thermal conductivity of heat exchanger materials did not make significant contribution on the melt fraction. (author)
A Comparison of the Box Type Two Solar Cookers with Latent Heat Storage
Numan YÜKSEL
2013-04-01
Full Text Available In this study, the use potential of solar cookers storing by latent heat technical of solar energy was experimentally researched and these cookers were compared. For this purpose, the temperatures of the cookers’ phase change material (PCM were continuously measured during the day, both during sun and after sunset, by filling with the phase change material around the solar cooker manufactured. From the measurements, while the temperature of the PCM in the big cooker filled the large amount of PCM is 92,8 °C, the temperature of the PCM in the other cooker is 80,4 °C.However, the better performance is reached by the cooker-1 in which the maximum surface temperature during the day is 111 °C and the heat is preserved to 52 °C until the next morning. Also, the surface temperature in the cooker is reached to the temperature of 85 °C at the end of 1 hour. It is obtained that the utilization rate or efficiency of the solar cooker-1 is % 36,89 and that of the other cooker is %30,10. It is seen that the solar cookers should be designed for the purpose, depending on the amount of PCM and the cooker’s size. It is concluded that the solar cooker designed can be effectively used with the different purposes, such as heating-cooking, on 24 hours a day, an important part of the year without the need for the other heat source
The application of satellite data to study the effects of latent heat release on cyclones
Clark, J. H. E.
1984-01-01
Generalized energetics were studied for nonlinear inviscid symmetric instability (SI). It was found that the linear theory fails to predict the stability in certain cases where the basic state is transitional between stability and instability. The initial growth of the SI perturbations can be fairly well approximated by linear theory, but the long time nonlinear evaluations will be bonded energetically if the SI region is finite. However, a further extension of the energetics to conditional symmetric instability (CSI) shows that the nonlinear evolution of circulation will energetically depend much more on the precipitation in a complicated way. By treating the latent heat as a source which is implicitly related to the motion field, the existence, uniqueness and stability of steady viscous (CSI) circulations are studied. Viscous CSI circulations are proved to be unique and asymptotically stable when the heat sources are weak and less sensitive to the motion perturbations. By considering the fact that moist updrafts are narrow and using eddy viscosity of 0(1,000 m squared/s) the stability criterion suggests that some frontal rainbands were probably dominated by the CSI mechanism even in their mature quasi-steady stage.
Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling
Efimova, Anastasia [Brandenburgische Technische Universität (BTU) Cottbus – Senftenberg, Chair of Inorganic Chemistry, Großenhainer Str. 57, 01968 Senftenberg (Germany); Pinnau, Sebastian; Mischke, Matthias; Breitkopf, Cornelia [Technische Universität Dresden, Chair of Technical Thermodynamics, Helmholtzstr. 14, 01069 Dresden (Germany); Ruck, Michael [Technische Universität Dresden, Chair of Inorganic Chemistry, Bergstr. 66, 01062 Dresden (Germany); Schmidt, Peer, E-mail: peer.schmidt@hs-lausitz.de [Brandenburgische Technische Universität (BTU) Cottbus – Senftenberg, Chair of Inorganic Chemistry, Großenhainer Str. 57, 01968 Senftenberg (Germany)
2014-01-10
Graphical abstract: - Highlights: • Inorganic salt hydrates. • Latent heat thermal energy storage. • Thermal behavior of melting and crystallization. • Cycling stability. • Nucleation. - Abstract: Sustainable air conditioning systems require heat reservoirs that operate between 4 and 20 °C. A systematic search for binary and ternary eutectics of inorganic salts and salt hydrates with melting temperatures in this temperature regime and with high enthalpies of fusion has been performed by means of differential scanning calorimetry (DSC). Promising results were obtained for the pseudo-ternary system Zn(NO{sub 3}){sub 2}·6H{sub 2}O, Mn(NO{sub 3}){sub 2}·4H{sub 2}O, and KNO{sub 3} with the melting temperature range 18–21 °C and the enthalpy of fusion of about 110 kJ kg{sup −1}. Suitable nucleating and thickening agents have been found and tested to prevent the mixture from supercooling and phase separation.
Min, Qilong; Li, Rui; Wu, Xiaoqing; Fu, Yunfei
2013-06-01
An exploratory study on physical based latent heat (LH) retrieval algorithm is conducted by parameterizing the physical linkages of hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water. Specifically, rain events are segregated into three rain types: warm, convective, and stratiform, based on their dynamical and thermodynamical characteristics. As the first of the series, only the warm rain LH algorithm is presented and evaluated here. The major microphysical processes of condensation and evaporation for warm rain are parameterized through traditional rain growth theory, with the aid of Cloud Resolving Model (CRM) simulations. The evaluation or the self-consistency tests indicate that the physical based retrievals capture the fundamental LH processes associated with the warm rain life cycle. There is no significant systematic bias in terms of convection strength, illustrated by the month-long CRM simulation as the mesoscale convective systems (MCSs) experience from initial, mature, to decay stages. The overall monthly-mean LH comparison showed that the total LH, as well as condensation heating and evaporation cooling components, agree with the CRM simulation.
Nathan Hordy
2015-01-01
Full Text Available Recently, direct solar collection through the use of broadly absorbing nanoparticle suspensions (known as nanofluids has been shown as a promising method to improve efficiencies in solar thermal devices. By utilizing a volatile base fluid, this concept could also be applied to the development of a direct absorption heat pipe for an evacuated tube solar collector. However, for this to happen or for any other light-induced vapor production applications, the nanofluid must remain stable over extended periods of time at high temperatures and throughout repetitive evaporation/condensation cycles. In this work, we report for the first time a nanofluid consisting of plasma-functionalized multiwalled carbon nanotubes (MWCNTs suspended in denatured alcohol, which achieves this required stability. In addition, optical characterization of the nanofluid demonstrates that close to 100% of solar irradiation can be absorbed over a relatively small nanofluid thickness.
Latent Heating Profiles Derived from ARM Radar Observations in MC3E and GoAmazon Field Campaigns
Min, Q.; Li, R.; Mu, Z.; Giangrande, S. E.; Wang, Y.
2016-12-01
Atmosphere latent heating (LH) is released through water phase change processes in the atmosphere. There is a physical connection between LH rate and updraft velocity (ω) inside clouds. In this study, we develop a new LH algorithm based on a quantified LH-ω relationship found in cloud resolving model (CRM) simulations. The self-consistency check with CRM simulations shows that the retrievals correctly replicate the main features of LH profiles, including their total and individual components (i.e. condensation-evaporation heating rate, deposition-sublimation heating rate, and freezing-melting heating rate). Further, the algorithm is applied to real cases from the DOE-ARM MC3E and GoAmazon2014/6 Field Campaigns using available UHF (915 and 1290 MHz) zenith radar retrievals of vertical velocity and rain rate as input. The retrieved LH profiles in the deep convective rains show positive heating throughout the column, the LH profiles in the stratiform rains with well-defined bright-band showing clear dipole patterns with positive heating above and negative cooling below the freezing level. The altitudes of maximum heating in the widespread stratiform regimes are clearly higher than those found within deep convective regions. Overall, these Latent heating rate profiles, as an important geophysical quantity of interest, can provide useful climate diagnostic data, and ultimately, constraints for model-based analyses of large-scale heating distributions.
Jang, Hyesuk
2014-01-01
This study aims to evaluate a multidimensional latent trait model to determine how well the model works in various empirical contexts. Contrary to the assumption of these latent trait models that the traits are normally distributed, situations in which the latent trait is not shaped with a normal distribution may occur (Sass et al, 2008; Woods…
Observational estimation of heat budgets on drifting ice and open water over the Arctic Ocean
无
2003-01-01
Estimates of the surface heat budget over drifting ice and open water in the Arctic Ocean are made using eddy correlation and flux-profile methods using data obtained from drifting ice and from the R/V Xuelong in the Chinese National Arctic Research Expedition during August 19-24,1999. The results show that the net radiation received by the ice surface is mainly lost through the sensible heat flux and the heat flux due to melting ice, and the latent heat flux making small contribution to the heat balance. However, the heat balance of the open water surface was dominated by the radiative flux whereas the latent and sensible heat fluxes and the oceanic heat flux were greater than those on the sea-ice surface. These results emphasize that thermodynamic processes are quite different between air/open water and air/sea-ice over the Arctic Ocean which is important when considering the effect of sea-air-ice interaction on climate change process during the summer period.
AhmetSARI
2003-01-01
The objective of this study was to establish the thermal characteristics of the lauric acid (95% purity) as a latent heat storage material filled in the annulus of vertical concentric double pipe during its melting process,The temperature data were used to determine the thermal characteristics,including the temporal temperature variations and the effects of the mass flow rate and the inlet temperature of the heat transfer fluid on the heat transfer coefficient and the heat charging fraction during the melting process,The results indicated that the time to reach to heat charging fraction of 1.0 could be altered by changing the mass flow rate and the inlet temperature of the heat transfer fluid.
Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming
Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.
2004-01-01
Quantitative estimates of increased heat transfer by atmospheric H 2O vapor during the Albian greenhouse warming suggest that the intensified hydrologic cycle played a greater role in warming high latitudes than at present and thus represents a viable alternative to oceanic heat transport. Sphaerosiderite ??18O values in paleosols of the North American Cretaceous Western Interior Basin are a proxy for meteoric ??18O values, and mass-balance modeling results suggest that Albian precipitation rates exceeded modern rates at both mid and high latitudes. Comparison of modeled Albian and modern precipitation minus evaporation values suggests amplification of the Albian moisture deficit in the tropics and moisture surplus in the mid to high latitudes. The tropical moisture deficit represents an average heat loss of ???75 W/m2 at 10??N paleolatitude (at present, 21 W/m2). The increased precipitation at higher latitudes implies an average heat gain of ???83 W/m2 at 45??N (at present, 23 W/m2) and of 19 W/m2 at 75??N (at present, 4 W/m2). These estimates of increased poleward heat transfer by H2O vapor during the Albian may help to explain the reduced equator-to-pole temperature gradients. ?? 2004 Geological Society of America.
Peck, Jong Hyeon [Korea Institute of Industrial Technology (KITECH), Energy System Team, 35-3 Ipjang-myeon, Chonan 330-820 (Korea, Republic of); Kim, Jae-Jun [College of Architecture, Hanyang University, Seoul 133-791 (Korea, Republic of); Kang, Chaedong [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Hong, Hiki [School of Mechanical and Industrial System Engineering, KyungHee University, Yongin 449-701 (Korea, Republic of)
2006-11-15
When the latent heat of a phase change material (PCM) with a lower melting point than ambient temperature was assessed according to the standard T-history method using a vertically oriented test tube, a temperature gradient occurred in the longitudinal direction of the tube due to natural convection. This led to a decrease in the accuracy of the latent heat of fusion measurement. In this study, the accuracy of the measurement with the original T-history method was improved without decreasing the test's simplicity and convenience by setting the test tube horizontally. The heat transfer to the vapor-layer of the tube under volume change during melting was assumed to be negligible and the results were calculated using the two inflection points of temperature as the start and end of latent heat period. Under these assumptions, the results agree closely with other reference data. And, the new method proposed in this study showed a remarkable reduction in data scattering. (author)
Surface latent heat flux anomalies prior to the Indonesia Mw9.0 earthquake of 2004
无
2006-01-01
The temporal and spatial variations of surface latent heat flux (SLHF) before and after the Mw9.0 earthquake that occurred on the west coast of Sumatra, Indonesia on 26 December 2004 are summarized. It is found that before the earthquake significant SLHF anomalies occurred at the epicentral area and its vicinity. The largest SLHF anomaly occurred on the subduction zone in the middle part of Burma micro-plate, where the middle part of the rupture zone is located and the aftershocks are concentrated. The developments of the anomaly involved growing of the anomaly from small to large and spreading of the anomaly from disordered to concentrated. The anomaly began to occur on the east extensional boundary of the Burma micro-plate and its adjacent oceanic basin, and then propagated to the west compressive boundary, where the subduction zone exists. Finally, the anomaly disappeared after the main shock. The seismic source is considered to be a dissipation system. The increase of stress prior to an earthquake may enhance the exchange of energy and material between the seismic source system and the outer system, resulting in the increase of the rate of energy exchange between sea surface and atmosphere, which is believed to be the main reason of the generation of SLHF anomaly.
Latent heat induced rotation limited aggregation in 2D ice nanocrystals
Bampoulis, Pantelis; Kooij, E Stefan; Lohse, Detlef; Zandvliet, Harold J W; Poelsema, Bene
2016-01-01
The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our Scanning Tunneling Spectroscopy (STS) data we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 $^{\\circ}$C and without significant thermal contact to the ambient. The growth is studied in-situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and conse...
Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat
Hou, Huilong; Simsek, Emrah; Stasak, Drew; Hasan, Naila Al; Qian, Suxin; Ott, Ryan; Cui, Jun; Takeuchi, Ichiro
2017-10-01
The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. Here we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g‑1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as ‑7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress–strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti2Ni precipitates typically one micron in size with a large aspect ratio enclosing the TiNi matrix. A stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti2Ni precipitates is believed to be the origin of the unique superelasticity behavior.
Zeng, Yujin; Xie, Zhenghui; Liu, Shuang
2017-02-01
Irrigation, which constitutes ˜ 70 % of the total amount of freshwater consumed by the human population, is significantly impacting land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM4.5) with an active crop model, two high-resolution (˜ 1 km) simulations investigating the effects of irrigation on latent heat (LH), sensible heat (SH), and carbon fluxes (or net ecosystem exchange, NEE) from land to atmosphere in the Heihe River basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity of the developed models to reproduce ecological and hydrological processes. The results revealed that the effects of irrigation on LH and SH are strongest during summer, with a LH increase of ˜ 100 W m-2 and a SH decrease of ˜ 60 W m-2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate is below 5 mm day-1, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm day-1, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC m-2 day-1, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by ˜ 0.8 gC m-2 day-1. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH, and NEE.
Kolstad, Erik W.; Bracegirdle, Thomas J.; Zahn, Matthias
2016-07-01
Polar lows are intense mesoscale cyclones that occur at high latitudes in both hemispheres during winter. Their sometimes evidently convective nature, fueled by strong surface fluxes and with cloud-free centers, have led to some polar lows being referred to as "arctic hurricanes." Idealized studies have shown that intensification by hurricane development mechanisms is theoretically possible in polar winter atmospheres, but the lack of observations and realistic simulations of actual polar lows have made it difficult to ascertain if this occurs in reality. Here the roles of surface heat fluxes and latent heat release in the development of a Barents Sea polar low, which in its cloud structures showed some similarities to hurricanes, are studied with an ensemble of sensitivity experiments, where latent heating and/or surface fluxes of sensible and latent heat were switched off before the polar low peaked in intensity. To ensure that the polar lows in the sensitivity runs did not track too far away from the actual environmental conditions, a technique known as spectral nudging was applied. This was shown to be crucial for enabling comparisons between the different model runs. The results presented here show that (1) no intensification occurred during the mature, postbaroclinic stage of the simulated polar low; (2) surface heat fluxes, i.e., air-sea interaction, were crucial processes both in order to attain the polar low's peak intensity during the baroclinic stage and to maintain its strength in the mature stage; and (3) latent heat release played a less important role than surface fluxes in both stages.
2014-07-01
matrices to speed computations a b d c At Each Time Step updownrightleftnet qqqqq p net mc dtq T ),( zzrrLatentHeat mc dtq T p net Node...Boundary Condition Convective Boundary Condition convradupdownrightleftnet qqqqqqq p net mc dtq T 44 ambnoderad TTAq ambnodeconv
Hejcik J.
2013-04-01
Full Text Available The paper deals with experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solarabsorber. The main purpose of heat storage in solar thermal systems is to store heat when the supply of solar heat exceeds demand and release it when otherwise. A number of heat storage materials can be used for this purpose; the phase change materials among them. Short-term latent heat thermal storage integrated with the solar absorber can stabilize the air temperature at the outlet of the collector on cloudy days when solar radiation intensity incident on a solar collector fluctuates significantly. Two experimental front-and-back pass solar air collectors of the same dimensions have been built for the experimental investigations. One collector had a “conventional” solar absorber made of a metal sheet while the solar absorber of the other collector consisted of containers filled with organic phase change material. The experimental collectors were positioned side by side during the investigations to ensure the same operating conditions (incident solar radiation, outdoor temperature.
Yu, JikSu; Horibe, Akihiko; Haruki, Naoto; Machida, Akito; Kato, Masashi
2016-11-01
In this study, we investigated the fundamental melting and solidification characteristics of mannitol, erythritol, and their mixture (70 % by mass mannitol: 30 % by mass erythritol) as potential phase-change materials (PCMs) for latent heat thermal energy storage systems, specifically those pertaining to industrial waste heat, having temperatures in the range of 100-250 °C. The melting point of erythritol and mannitol, the melting peak temperature of their mixture, and latent heat were measured using differential scanning calorimetry. The thermal performance of the mannitol mixture was determined during melting and solidification processes, using a heat storage vessel with a pipe heat exchanger. Our results indicated phase-change (fusion) temperatures of 160 °C for mannitol and 113 and 150 °C for the mannitol mixture. Nondimensional correlation equations of the average heat transfer during the solidification process, as well as the temperature and velocity efficiencies of flowing silicon oil in the pipe and the phase-change material (PCM), were derived using several nondimensional parameters.
Marsault, L.
1982-07-01
The general design of the prototype heat accumulator using the aluminium and zinc alloy Zamak 3 encapsulated, operating between 300/sup 0/C and 500/sup 0/C is presented. The energy is stored in the form of latent heat of fusion in one tonne of Zamak contained in a vertical tube array. The heat carrier fluid is air. A numerical approximation of its operation by means of a simplified simulation model is studied. The presentation and the analysis of actual performance figures, for the prototype under different operating conditions are given. Modifications to improve the performance are proposed.
Wirichada Pan-ngum
Full Text Available BACKGROUND: Accuracy of rapid diagnostic tests for dengue infection has been repeatedly estimated by comparing those tests with reference assays. We hypothesized that those estimates might be inaccurate if the accuracy of the reference assays is not perfect. Here, we investigated this using statistical modeling. METHODS/PRINCIPAL FINDINGS: Data from a cohort study of 549 patients suspected of dengue infection presenting at Colombo North Teaching Hospital, Ragama, Sri Lanka, that described the application of our reference assay (a combination of Dengue IgM antibody capture ELISA and IgG antibody capture ELISA and of three rapid diagnostic tests (Panbio NS1 antigen, IgM antibody and IgG antibody rapid immunochromatographic cassette tests were re-evaluated using bayesian latent class models (LCMs. The estimated sensitivity and specificity of the reference assay were 62.0% and 99.6%, respectively. Prevalence of dengue infection (24.3%, and sensitivities and specificities of the Panbio NS1 (45.9% and 97.9%, IgM (54.5% and 95.5% and IgG (62.1% and 84.5% estimated by bayesian LCMs were significantly different from those estimated by assuming that the reference assay was perfect. Sensitivity, specificity, PPV and NPV for a combination of NS1, IgM and IgG cassette tests on admission samples were 87.0%, 82.8%, 62.0% and 95.2%, respectively. CONCLUSIONS: Our reference assay is an imperfect gold standard. In our setting, the combination of NS1, IgM and IgG rapid diagnostic tests could be used on admission to rule out dengue infection with a high level of accuracy (NPV 95.2%. Further evaluation of rapid diagnostic tests for dengue infection should include the use of appropriate statistical models.
Estimating the Latent Number of Types in Growing Corpora with Reduced Cost-Accuracy Trade-Off
Hidaka, Shohei
2016-01-01
The number of unique words in children's speech is one of most basic statistics indicating their language development. We may, however, face difficulties when trying to accurately evaluate the number of unique words in a child's growing corpus over time with a limited sample size. This study proposes a novel technique to estimate the latent number…
C. van der Tol
2007-01-01
Full Text Available The aim of this study is to explain topography induced spatial variations in the diurnal cycles of assimilation and latent heat of Mediterranean forest. Spatial variations of the fluxes are caused by variations in weather conditions and in vegetation characteristics. Weather conditions reflect short-term effects of climate, whereas vegetation characteristics, through adaptation and acclimation, long-term effects of climate. In this study measurements of plant physiology and weather conditions are used to explain observed differences in the fluxes. A model is used to study which part of the differences in the fluxes is caused by weather conditions and which part by vegetation characteristics. Data were collected at four experimental sub-Mediterranean deciduous forest plots in a heterogeneous terrain with contrasting aspect, soil water availability, humidity and temperature. We used a sun-shade model to scale fluxes from leaf to canopy, and calculated the canopy energy balance. Parameter values were derived from measurements of light interception, leaf chamber photosynthesis, leaf nitrogen content and 13C isotope discrimination in leaf material. Leaf nitrogen content is a measure of photosynthetic capacity, and 13C isotope discrimination of water use efficiency. For validation, sap-flux based measurements of transpiration were used. The model predicted diurnal cycles of transpiration and stomatal conductance, both their magnitudes and differences in afternoon stomatal closure between slopes of different aspect within the confidence interval of the validation data. Weather conditions mainly responsible for the shape of the diurnal cycles, and vegetation parameters for the magnitude of the fluxes. Although the data do not allow for a quantification of the two effects, the differences in vegetation parameters and weather among the plots and the sensitivity of the fluxes to them suggest that the diurnal cycles were more strongly affected by spatial
Marton, F. C.
2001-12-01
The thermal, mineralogical, and buoyancy structures of thermal-kinetic models of subducting slabs are highly dependent upon a number of parameters, especially if the metastable persistence of olivine in the transition zone is investigated. The choice of starting thermal model for the lithosphere, whether a cooling halfspace (HS) or plate model, can have a significant effect, resulting in metastable wedges of olivine that differ in size by up to two to three times for high values of the thermal parameter (ǎrphi). Moreover, as ǎrphi is the product of the age of the lithosphere at the trench, convergence rate, and dip angle, slabs with similar ǎrphis can show great variations in structures as these constituents change. This is especially true for old lithosphere, as the lithosphere continually cools and thickens with age for HS models, but plate models, with parameters from Parson and Sclater [1977] (PS) or Stein and Stein [1992] (GDH1), achieve a thermal steady-state and constant thickness in about 70 My. In addition, the latent heats (q) of the phase transformations of the Mg2SiO4 polymorphs can also have significant effects in the slabs. Including q feedback in models raises the temperature and reduces the extent of metastable olivine, causing the sizes of the metastable wedges to vary by factors of up to two times. The effects of the choice of thermal model, inclusion and non-inclusion of q feedback, and variations in the constituents of ǎrphi are investigated for several model slabs.
Remotely sensed latent heat fluxes for improving model predictions of soil moisture: a case study
J. M. Schuurmans
2010-08-01
Full Text Available This paper investigates whether the use of remotely sensed latent heat fluxes improves the accuracy of spatially-distributed soil moisture predictions by a hydrological model. By using real data we aim to show the potential and limitations in practice. We use (i satellite data of both ASTER and MODIS for the same two days in the summer of 2006 that, in association with the Surface Energy Balance Algorithm for Land (SEBAL, provides us the spatial distribution of daily ET_{act} and (ii an operational physically based distributed (25 m×25 m hydrological model of a small catchment (70 km^{2} in The Netherlands that simulates the water flow in both the unsaturated and saturated zone. Firstly, model outcomes of ET_{act} are compared to the processed satellite data. Secondly, we perform data assimilation that updates the modelled soil moisture. We show that remotely sensed ET_{act} is useful in hydrological modelling for two reasons. Firstly, in the procedure of model calibration: comparison of modeled and remotely sensed ET_{act} together with the outcomes of our data assimilation procedure points out potential model errors (both conceptual and flux-related. Secondly, assimilation of remotely sensed ET_{act} results in a realistic spatial adjustment of soil moisture, except for the area with forest and deep groundwater levels. As both ASTER and MODIS images were available for the same days, this study provides also an excellent opportunity to compare the worth of these two satellite sources. It is shown that, although ASTER provides much better insight in the spatial distribution of ET_{act} due to its higher spatial resolution than MODIS, they appeared in this study just as useful.
Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.
2011-01-01
Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…
Planned missing designs to optimize the efficiency of latent growth parameter estimates
Rhemtulla, M.; Jia, F.; Wu, W.; Little, T.D.
2014-01-01
We examine the performance of planned missing (PM) designs for correlated latent growth curve models. Using simulated data from a model where latent growth curves are fitted to two constructs over five time points, we apply three kinds of planned missingness. The first is item-level planned missingn
Pek, Jolynn; Chalmers, R. Philip; Kok, Bethany E.; Losardo, Diane
2015-01-01
Structural equation mixture models (SEMMs), when applied as a semiparametric model (SPM), can adequately recover potentially nonlinear latent relationships without their specification. This SPM is useful for exploratory analysis when the form of the latent regression is unknown. The purpose of this article is to help users familiar with structural…
Xie, Zhenghui; Zeng, Yujin
2017-04-01
Irrigation, which constitutes 70% of the total amount of fresh water consumed by the human population, is significantly impacting the land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM 4.5) with an active crop model, two high resolution ( 1 km) simulations investigating the effects of irrigation on Latent Heat (LH), Sensible Heat (SH) and Carbon Fluxes (or net ecosystem exchange, NEE) from land to atmosphere on the Heihe River Basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity and viability of the developed models to reproduce ecological and hydrological processes. The results revealed the effects of irrigation on LH and SH are strongest during summer with a LH increase of 100 W/m2 and a SH decrease of 60 W/m2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate below 5 mm/day, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm/day, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC/m2/day, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by 0.8 gC/m2/day. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH and NEE. The study indicates that how a land surface model with high spatial resolution can represent crop growing and its effects over basin scale.
JIN Jian; LIU PeiQing; LIN GuiPing
2008-01-01
The heat transfer of latent functionally thermal fluid in three kinds of tubes with coaxially inserted cylindrical bars is numerically researched using equivalent spe-cific heat model, and the flow fields are analyzed with field synergy field. It is found that in the tubes with coaxially inserted cylindrical bars, the heat transfer effects of functionally thermal fluid become more and more pronounced with the Ste de-creasing. This is similar to be case of functionally thermal fluid flowing in smooth straight tubes. Compared with the results receiving from smooth straight tubes, the heat transfer of functional thermal fluid in tubes with coaxially inserted cylindrical bars has been significantly enhanced. And this effect becomes more apparent as the diameter of coaxially inserted cylindrical bars increases meanwhile, however, energy consuming of the tubes shows the same trend.
2008-01-01
The heat transfer of latent functionally thermal fluid in three kinds of tubes with coaxially inserted cylindrical bars is numerically researched using equivalent spe- cific heat model, and the flow fields are analyzed with field synergy field. It is found that in the tubes with coaxially inserted cylindrical bars, the heat transfer effects of functionally thermal fluid become more and more pronounced with the Ste de- creasing. This is similar to be case of functionally thermal fluid flowing in smooth straight tubes. Compared with the results receiving from smooth straight tubes, the heat transfer of functional thermal fluid in tubes with coaxially inserted cylindrical bars has been significantly enhanced. And this effect becomes more apparent as the diameter of coaxially inserted cylindrical bars increases meanwhile, however, energy consuming of the tubes shows the same trend.
Kashani Sina
2014-01-01
Full Text Available The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials exhibit enhanced thermal conductivity in comparison to the base material. Calculation is performed for nanoparticle volume fraction from 0 to 0.08. In this study rectangular and cylindrical containers are modeled numerically and the effect of containers dimensions and nano particle volume fraction are studied. It has been found that the rectangular container requires half of the melting time as for the cylindrical container of the same volume and the same heat transfer area and also, higher nano particle volume fraction result in a larger solid fraction. The increase of the heat release rate of the nanoparticle-enhanced phase change materials shows its great potential for diverse thermal energy storage application.
Alissar Yehya
2015-12-01
Full Text Available This paper deals with the numerical simulation of heat transfer and entropy generation in a 2D square enclosure for convective melting. A thermal lattice Boltzmann method (TLBM is used to handle the study, which has been conducted for Prandtl numbers from 0.02 to 70 at Rayleigh numbers of 104 and 105. The results are presented in terms of the total entropy generation, average Bejan number and average Nusselt number. Within the range considered for the key parameters, the entropy generation is found to be controlled by the heat transfer loss for low Prandtl numbers. However, for the large Prandtl numbers, its variation is dominated by shearing losses. Moreover, the presence of the latent heat state decreases the overall thermodynamic losses while increasing the quantity of heat transferred.
Yongmin Yang
2017-01-01
Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation
Yao, Yunjun; Zhang, Yuhu; Zhao, Shaohua; Li, Xianglan; Jia, Kun
2015-06-01
We have evaluated the performance of three satellite-based latent heat flux (LE) algorithms over forest ecosystems using observed data from 40 flux towers distributed across the world on all continents. These are the revised remote sensing-based Penman-Monteith LE (RRS-PM) algorithm, the modified satellite-based Priestley-Taylor LE (MS-PT) algorithm, and the semi-empirical Penman LE (UMD-SEMI) algorithm. Sensitivity analysis illustrates that both energy and vegetation terms has the highest sensitivity compared with other input variables. The validation results show that three algorithms demonstrate substantial differences in algorithm performance for estimating daily LE variations among five forest ecosystem biomes. Based on the average Nash-Sutcliffe efficiency and root-mean-squared error (RMSE), the MS-PT algorithm has high performance over both deciduous broadleaf forest (DBF) (0.81, 25.4 W/m(2)) and mixed forest (MF) (0.62, 25.3 W/m(2)) sites, the RRS-PM algorithm has high performance over evergreen broadleaf forest (EBF) (0.4, 28.1 W/m(2)) sites, and the UMD-SEMI algorithm has high performance over both deciduous needleleaf forest (DNF) (0.78, 17.1 W/m(2)) and evergreen needleleaf forest (ENF) (0.51, 28.1 W/m(2)) sites. Perhaps the lower uncertainties in the required forcing data for the MS-PT algorithm, the complicated algorithm structure for the RRS-PM algorithm, and the calibrated coefficients of the UMD-SEMI algorithm based on ground-measured data may explain these differences.
Estimating Patient’s Health State Using Latent Structure Inferred from Clinical Time Series and Text
Zalewski, Aaron; Long, William; Johnson, Alistair E. W.; Mark, Roger G.; Lehman, Li-wei H.
2017-01-01
Modern intensive care units (ICUs) collect large volumes of data in monitoring critically ill patients. Clinicians in the ICUs face the challenge of interpreting large volumes of high-dimensional data to diagnose and treat patients. In this work, we explore the use of Hierarchical Dirichlet Processes (HDP) as a Bayesian nonparametric framework to infer patients’ states of health by combining multiple sources of data. In particular, we employ HDP to combine clinical time series and text from the nursing progress notes in a probabilistic topic modeling framework for patient risk stratification. Given a patient cohort, we use HDP to infer latent “topics” shared across multimodal patient data from the entire cohort. Each topic is modeled as a multinomial distribution over a vocabulary of codewords, defined over heterogeneous data sources. We evaluate the clinical utility of the learned topic structure using the first 24-hour ICU data from over 17,000 adult patients in the MIMIC-II database to estimate patients’ risks of in-hospital mortality. Our results demonstrate that our approach provides a viable framework for combining different data modalities to model patient’s states of health, and can potentially be used to generate alerts to identify patients at high risk of hospital mortality. PMID:28630952
Anthropogenic heat flux estimation from space: results of the first phase of the URBANFLUXES project
Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean-Philippe; Grimmond, C. S. B.; Feigenwinter, Christian; Lindberg, Fredrik; Del Frate, Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans
2016-10-01
H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts of UEB fluxes on urban heat island and consequently on energy consumption in cities. This will lead to the development of tools and strategies to mitigate these effects, improving thermal comfort and energy efficiency. In URBANFLUXES, the anthropogenic heat flux is estimated as a residual of UEB. Therefore, the rest UEB components, namely, the net all-wave radiation, the net change in heat storage and the turbulent sensible and latent heat fluxes are independently estimated from Earth Observation (EO), whereas the advection term is included in the error of the anthropogenic heat flux estimation from the UEB closure. The project exploits Sentinels observations, which provide improved data quality, coverage and revisit times and increase the value of EO data for scientific work and future emerging applications. These observations can reveal novel scientific insights for the detection and monitoring of the spatial distribution of the urban energy budget fluxes in cities, thereby generating new EO opportunities. URBANFLUXES thus exploits the European capacity for space-borne observations to enable the development of operational services in the field of urban environmental monitoring and energy efficiency in cities.
Valan Arasu Amirtham
2013-01-01
Full Text Available Latent heat energy storage systems using paraffin wax could have lower heat transfer rates during melting/freezing processes due to its inherent low thermal conductivity. The thermal conductivity of paraffin wax can be enhanced by employing high conductivity materials such as alumina (Al2O3. A numerical analysis has been carried out to study the performance enhancement of paraffin wax with nanoalumina (Al2O3 particles in comparison with simple paraffin wax in a concentric double pipe heat exchanger. Numerical analysis indicates that the charge-discharge rates of thermal energy can be greatly enhanced using paraffin wax with alumina as compared with a simple paraffin wax as PCM.
Felix Regin, A.; Solanki, S.C.; Saini, J.S. [Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Roorkee 247 667, UA (India)
2009-07-15
This paper is aimed at analyzing the behavior of a packed bed latent heat thermal energy storage system. The packed bed is composed of spherical capsules filled with paraffin wax as PCM usable with a solar water heating system. The model developed in this study uses the fundamental equations similar to those of Schumann, except that the phase change phenomena of PCM inside the capsules are analyzed by using enthalpy method. The equations are numerically solved, and the results obtained are used for the thermal performance analysis of both charging and discharging processes. The effects of the inlet heat transfer fluid temperature (Stefan number), mass flow rate and phase change temperature range on the thermal performance of the capsules of various radii have been investigated. The results indicate that for the proper modeling of performance of the system the phase change temperature range of the PCM must be accurately known, and should be taken into account. (author)
Cooper, D.I.; Eichinger, W.; Archuleta, J.; Cottingame, W.; Osborne, M.; Tellier, L.
1995-09-01
Evapotranspiration is one of the critical variables in both water and energy balance models of the hydrological system. The hydrologic system is driven by the soil-plant-atmosphere continuum, and as such is a spatially distributed process. Traditional techniques rely on point sensors to collect information that is then averaged over a region. The assumptions involved in spatially average point data is of limited value (1) because of limited sensors in the arrays, (2) the inability to extend and interpret the Measured scalars and estimated fluxes at a point over large areas in complex terrain, and (3) the limited understanding of the relationship between point measurements of spatial processes. Remote sensing technology offers the ability to collect detailed spatially distributed data. However, the Los Alamos National Laboratory`s volume-imaging, scanning water-vapor Raman lidar has been shown to be able to estimate the latent energy flux at a point. The extension of this capability to larger scales over complex terrain represents a step forward. This abstract Outlines the techniques used to estimate the spatially resolved latent energy flux. The following sections describe the site, model, data acquired, and lidar estimated latent energy ``map``.
Sina Lohrasbi
2016-09-01
Full Text Available Latent Heat Thermal Energy Storage Systems (LHTESS containing Phase Change Material (PCM are used to establish balance between energy supply and demand. PCMs have high latent heat but low thermal conductivity, which affects their heat transfer performance. In this paper, a novel fin array has been optimized by multi-objective Response Surface Method (RSM based on discharging process of PCM, and then this fin configuration is applied on LHTESS, and comparison between full discharging time by applying this fin array and LHTESS with other fin structures has been carried out. The employed numerical method in this paper is Standard Galerkin Finite Element Method. Adaptive grid refinement is used to solve the equations. Since the enhancement technique, which has been employed in the present study reduces the employed PCM mass, maximum energy storage capacity variations have been considered. Therefore phase change expedition and maximum energy storage capacity have been considered as the objectives of optimization and the importance of second objective is indicated which is proposed as the novelty here. Results indicate that considering maximum energy storage capacity as the objective of optimization procedure leads to efficient shape design of LHTESS. Also employing optimized V-shaped fin in LHTESS, expedites discharging process considerably in comparison with the LHTESS without fin.
Marcelo Barbio Rosa
2010-06-01
Full Text Available ABSTRACT Microphysical and thermodynamical features of two tropical systems, namely Hurricane Ivan and Typhoon Conson, and one sub-tropical, Catarina, have been analyzed based on space-born radar PR measurements available on the TRMM satellite. The procedure to classify the reflectivity profiles followed the Heymsfield et al (2000 and Steiner et al (1995 methodologies. The water and ice content have been calculated using a relationship obtained with data of the surface SPOL radar and PR in Rondonia State in Brazil. The diabatic heating rate due to latent heat release has been estimated using the methodology developed by Tao et al (1990. A more detailed analysis has been performed for Hurricane Catarina, the first of its kind in South Atlantic. High water content mean value has been found in Conson and Ivan at low levels and close to their centers. Results indicate that hurricane Catarina was shallower than the other two systems, with less water and the water was concentrated closer to its center. The mean ice content in Catarina was about 0.05 g kg-1 while in Conson it was 0.06 g kg-1 and in Ivan 0.08 g kg-1. Conson and Ivan had water content up to 0.3 g kg-1 above the 0ºC layer, while Catarina had less than 0.15 g kg-1. The latent heat released by Catarina showed to be very similar to the other two systems, except in the regions closer to the center.No presente trabalho foram analisados as características microfísicas e termodinâmicas de dois sistemas tropicais, o Furacão Ivan e o Tufão Conson, e um sub-tropical, Catarina, a partir de medições feitas com o radar PR a bordo do satélite TRMM. Na análise, os perfis de refletividade foram classificados conforme as técnicas de Heymsfield et al (2000 e Steiner et al (1995 e em seguida foram calculados os conteúdos de água e gelo, a partir de uma relação obtida no Estado de Rondônia (Brasil. Com estes perfis calculou-se a taxa de aquecimento diabático devido a liberação de calor
A Variational Method for Estimating Near-Surface Soil Moisture and Surface Heat Fluxes
ZHANG Shuwen; ZHANG Weidong; QIU Chongjian
2007-01-01
A variational data assimilation method is proposed to estimate the near-surface soil moisture and surface sensible and latent heat fluxes. The method merges the five parts into a cost function, I.e., the differences of wind, potential temperature, and specific humidity gradient between observations and those computed by the profile method, the difference of latent heat fluxes calculated using the ECMWF land surface evaporation scheme and the profile method, and a weak constraint for surface energy balance. By using an optimal algorithm, the best solutions are found. The method is tested with the data collected at Feixi Station (31.41°N, 117.08°E) supported by the China Heavy Rain Experiment and Study (HeRES) during 7-30 June 2001. The results show that estimated near-surface soil moistures can quickly respond to rainfall, and their temporal variation is consistent with that of measurements of average soil moisture over 15-cm top depth with a maximum error less than 0.03 m3 m-3. The surface heat fluxes calculated by this method are consistent with those by the Bowen ratio method, but at the same time it can overcome the instability problem occurring in the Bowen ratio method when the latter is about -1. Meanwhile, the variational method is more accurate than the profile method in terms of satisfying the surface energy balance. The sensitivity tests also show that the variational method is the most stable one among the three methods.
Roxas-Dimaano, M.N. [University of Santo Tomas, Manila (Philippines). Research Center for the Natural Sciences; Watanabe, T. [Tokyo Institute of Technology (Japan). Research Laboratory for Nuclear Reactors
2002-09-01
The mixture of capric acid and lauric acid (C-L acid), with the respective mole composition of 65% and 35%, is a potential phase change material (PCM). Its melting point of 18.0{sup o}C, however, is considered high for cooling application of thermal energy storage. The thermophysical and heat transfer characteristics of the C-L acid with some organic additives are investigated. Compatibility of C-L acid combinations with additives in different proportions and their melting characteristics are analyzed using the differential scanning calorimeter (DSC). Among the chemical additives, methyl salicylate, eugenol, and cineole presented the relevant melting characteristics. The individual heat transfer behavior and thermal storage performance of 0.1 mole fraction of these additives in the C-L acid mixture are evaluated. The radial and axial temperature distribution during charging and discharging at different concentrations of selected PCM combinations are experimentally determined employing a vertical cylindrical shell and tube heat exchanger. The methyl salicylate in the C-L acid provided the most effective additive in the C-L acid. It demonstrated the least melting band width aimed at lowering the melting point of the C-L acid with the highest heat of fusion value with relatively comparable rate of heat transfer. Furthermore, the thermal performance based on the total amount of transferred energy and their rates, established the PCM's latent heat storage capability. (author)
王维舟; 赵仲辉; 康文星; 田大伦; 项文化; 闫文德
2011-01-01
Characteristics of latent heat flux were determined using the data gathered from an open path eddy covariance system and an automatic weather gradient system in Cunninghamia lanceolata plantation in Huitong county, Hunan province. The relationship between the environmental factor and latent heat flux was studied. The results show that: the latent heat flux had distinct diurnal and annual variations. In one day, when the season was spring or summer the latent heat flux fluctuated in zero value at night, increasing from 7:00 and reaching at the peak value at 14:00. When the latent heat flux reached the peak value it reduced, 21:00 reaching the night value. In autumn or winter the latent heat flux increasing from 7-30 and reached at the peak value at 12:00 and 21:00 reached the night value. In one year, the latent heat flux annual variations presented single-peak type, the latent heat flux increased from January, August reached the maximum and began to decline month by month. The latent heat flux was linearly related to the photosynthesis active radiation, was quadratic curves related to temperature, and was power function related to the saturation vapor deficit.%利用开路式涡动相关系统与自动气象梯度观测系统的观测数据,对会同杉木人工林潜热通量特征及其与环境因子的关系进行了研究.结果表明:潜热通量具有明显的日变化和年变化特征,一天中,春夏季节潜热通量值夜间在0值左右波动,早上7:00开始递增,14:00左右达到最大后逐渐下降,21:00将为夜间值.秋冬季节潜热通量早上7:30开始递增,12:00达到最大值,19:00降为夜间值.一年中,潜热通量变化特征呈单峰型,从1月份开始递增,8月份达到最大值后逐月递减.潜热通量与光合有效辐射数据之间呈线性相关关系,与温度呈二次曲线关系,与饱和差呈幂函数关系.
Fonseca, Vinícius Carvalho; Saraiva, Edilson Paes; Maia, Alex Sandro Campos; Nascimento, Carolina Cardoso Nagib; da Silva, Josinaldo Araújo; Pereira, Walter Esfraim; Filho, Edgard Cavalcanti Pimenta; Almeida, Maria Elivânia Vieira
2016-10-01
The aim of this study was to build a prediction model both sensible and latent heat transfer by respiratory tract for Morada Nova sheep under field conditions in a semiarid tropical environment, using easily measured physiological and environmental parameters. Twelve dry Morada Nova ewes with an average of 3 ± 1.2 years old and average body weight of 32.76 ± 3.72 kg were used in a Latin square design 12 × 12 (12 days of records and 12 schedules). Tidal volume, respiratory rate, expired air temperature, and partial vapor pressure of the expired air were obtained from the respiratory facial mask and using a physiological measurement system. Ewes were evaluated from 0700 to 1900 h in each day under shade. A simple nonlinear model to estimate tidal volume as a function of respiratory rate was developed. Equation to estimate the expired air temperature was built, and the ambient air temperature was the best predictor together with relative humidity and ambient vapor pressure. In naturalized Morada Nova sheep, respiratory convection seems to be a mechanism of heat transfer of minor importance even under mild air temperature. Evaporation from the respiratory system increased together with ambient air temperature. At ambient air temperature, up to 35 °C respiratory evaporation accounted 90 % of the total heat lost by respiratory system, on average. Models presented here allow to estimate the heat flow from the respiratory tract for Morada Nova sheep bred in tropical region, using easily measured physiological and environmental traits as respiratory rate, ambient air temperature, and relative humidity.
Fonseca, Vinícius Carvalho; Saraiva, Edilson Paes; Maia, Alex Sandro Campos; Nascimento, Carolina Cardoso Nagib; da Silva, Josinaldo Araújo; Pereira, Walter Esfraim; Filho, Edgard Cavalcanti Pimenta; Almeida, Maria Elivânia Vieira
2017-05-01
The aim of this study was to build a prediction model both sensible and latent heat transfer by respiratory tract for Morada Nova sheep under field conditions in a semiarid tropical environment, using easily measured physiological and environmental parameters. Twelve dry Morada Nova ewes with an average of 3 ± 1.2 years old and average body weight of 32.76 ± 3.72 kg were used in a Latin square design 12 × 12 (12 days of records and 12 schedules). Tidal volume, respiratory rate, expired air temperature, and partial vapor pressure of the expired air were obtained from the respiratory facial mask and using a physiological measurement system. Ewes were evaluated from 0700 to 1900 h in each day under shade. A simple nonlinear model to estimate tidal volume as a function of respiratory rate was developed. Equation to estimate the expired air temperature was built, and the ambient air temperature was the best predictor together with relative humidity and ambient vapor pressure. In naturalized Morada Nova sheep, respiratory convection seems to be a mechanism of heat transfer of minor importance even under mild air temperature. Evaporation from the respiratory system increased together with ambient air temperature. At ambient air temperature, up to 35 °C respiratory evaporation accounted 90 % of the total heat lost by respiratory system, on average. Models presented here allow to estimate the heat flow from the respiratory tract for Morada Nova sheep bred in tropical region, using easily measured physiological and environmental traits as respiratory rate, ambient air temperature, and relative humidity.
Marsh, Herbert W.; Wen, Zhonglin; Hau, Kit-Tai
2004-01-01
Interactions between (multiple indicator) latent variables are rarely used because of implementation complexity and competing strategies. Based on 4 simulation studies, the traditional constrained approach performed more poorly than did 3 new approaches-unconstrained, generalized appended product indicator, and quasi-maximum-likelihood (QML). The…
Latent heat of the first-order magnetic transition of MnFeSi0.33P0.66
Roy, P.; Brück, E.; de Groot, R. A.
2016-04-01
The latent heat of a magnetoelastic phase transition is used as a measure of the magnetocaloric effect since it is directly proportional to the entropy change. Taking MnFeSi0.33P0.66 as a model magnetocaloric material, density functional theory calculations in addition to the phonon calculations based on the density functional perturbation theory were performed in order to calculate the latent heat of the magnetoelastic phase transition. The Curie temperature (TC) was determined by taking into account the quasiharmonic approximation and the configurational entropy. The material exhibits a first-order magnetic transition accompanied by a large latent-heat (19.97 kJ/kg) near-room-temperature operation.
Caballero-Flores, R.; Sánchez-Alarcos, V.; Recarte, V.; Pérez-Landazábal, J. I.; Gómez-Polo, C.
2016-05-01
We report the direct magnetocaloric response of materials that present a second-order phase transition in the temperature range where a first-order structural transition also occurs. In particular, the influence of the latent heat on the field-induced adiabatic temperature change has been analyzed in a Ni-Mn-Ga alloy with coupled martensitic and magnetic transformations. It is found that discrepancies around 20% arise depending on whether the latent heat is taken into account or not. From the observed results, a general expression for the indirect determination of the adiabatic temperature change, that takes into account the contributions of both the martensitic and magnetic transformations, is proposed and experimentally confirmed. The observed key role of the latent heat allows us to understand why materials with first-order transformations do not present adiabatic temperature changes as higher as those which would correspond to materials undergoing second-order transformations with similar isothermal entropy change.
Helwig, Nathaniel E
2017-07-01
Longitudinal data are inherently multimode in the sense that such data are often collected across multiple modes of variation, for example, time × variables × subjects. In many longitudinal studies, multiple variables are collected to measure some latent construct(s) of interest. In such cases, the goal is to understand temporal trends in the latent variables, as well as individual differences in the trends. Multimode component analysis models provide a powerful framework for discovering latent trends in longitudinal data. However, classic implementations of multimode models do not take into consideration functional information (i.e., the temporal sequence of the collected data) or structural information (i.e., which variables load onto which latent factors) about the study design. In this paper, we reveal how functional and structural constraints can be imposed in multimode models (Parafac and Parafac2) in order to elucidate trends in longitudinal data. As a motivating example, we consider a longitudinal study on per capita alcohol consumption trends conducted from 1970 to 2013 by the U.S. National Institute on Alcohol Abuse and Alcoholism. We demonstrate how functional and structural information about the study design can be incorporated into the Parafac and Parafac2 alternating least squares algorithms to understand temporal and regional trends in three latent constructs: beer consumption, spirits consumption, and wine consumption. Our results reveal that Americans consume more than the recommended amount of alcohol, and total alcohol consumption trends show no signs of decreasing in the last decade. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anthropogenic heat flux estimation from space
Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmond, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans
2016-01-01
H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts o
Anthropogenic heat flux estimation from space
Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmond, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans
2016-01-01
H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts o
ANthropogenic heat FLUX estimation from Space
Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmong, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mi, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans
2017-01-01
The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impac
Schwarz, D.; Nussbaumer, T.
2002-07-01
This final report for the Swiss Federal Office of Energy (SFOE) presents the results of on-site measurements made on transparent insulating material (TIM) elements that have been used in a single-family home built to 'passive house' standards in Ebnat-Kappel in Switzerland as part of a pilot and demonstration project. The aims of the project and the various passive components of the panels are described. These are a paraffin-based storage layer that stores / releases latent heat of melting, a glass prism sheet that prevents summer sunshine entering the house and two further glass window panes with infrared reflecting layers. The functioning of the TIM system is looked at in detail. Data on the performance of the complete passive house system including typical energy-relevant temperature curves for ambient and room temperature, heat-recovery system and buried ducting for air pre-heating and cooling are also presented, as are curves for the energy consumption of the house's heat pump and domestic hot water preparation.
An algorithm to estimate the heating budget from vertical hydrometeor profiles
Tao, Wei-Kuo; Simpson, Joanne; Mccumber, Michael; Adler, Robert; Lang, Stephen
1990-01-01
A simple algorithm to estimate the latent heating of cloud systems from their vertical hydrometeor profiles is proposed. The derivation as well as the validation of the algorithm is based on output generated by a nonhydrostatic cloud model with parameterized microphysical processes. Mature and decaying stages of a GATE squall-type convective system have been tested. The algorithm-derived heating budget is in reasonable agreement with the budget predicted by the cloud model. The input to the proposed algoritm can be obtained from either a rain retrieval technique based on information from multichannel passive microwave signals or a kinematic cloud model based on information from Doppler radar wind fields and radar reflectivity patterns. Such an application would have significant implications for spaceborne remote sensing and the large-scale weather prediction data assimilation problem.
Tamura, Ryo; Tanaka, Shu
2013-11-01
We study the phase transition behavior of a frustrated Heisenberg model on a stacked triangular lattice by Monte Carlo simulations. The model has three types of interactions: the ferromagnetic nearest-neighbor interaction J(1) and antiferromagnetic third nearest-neighbor interaction J(3) in each triangular layer and the ferromagnetic interlayer interaction J([perpendicular]). Frustration comes from the intralayer interactions J(1) and J(3). We focus on the case that the order parameter space is SO(3)×C(3). We find that the model exhibits a first-order phase transition with breaking of the SO(3) and C(3) symmetries at finite temperature. We also discover that the transition temperature increases but the latent heat decreases as J([perpendicular])/J(1) increases, which is opposite to the behavior observed in typical unfrustrated three-dimensional systems.
Dimaano, M.N.R. [University of Santo Tomas, Manila (Philippines). Faculty of Engineering; Watanabe, Takayuki [Tokyo Institute of Technology (Japan). Research Laboratory for Nuclear Reactors
2002-07-01
The thermal performance of the capric acid and lauric acid mixture (C-L acid) in the respective composition of 65% and 35% by mole was investigated for its cooling capacity. Pentadecane was used for comparison. A vertical cylindrical storage capsule was employed for the study. The temperature distribution of the C-L acid during charging and discharging inside a vertical tube was experimentally determined in both radial and axial directions. A melting point of 18-19.5{sup o}C was observed. This value corroborates with the DSC-obtained values for the C-L acid. The calculated stored energy based on the radial temperature distribution during charge and discharge processes indicates that the C-L acid is a potential latent heat storage material. (author)
Tugba GURMEN OZCELIK
2017-02-01
Full Text Available In this study, form-stable composite phase change materials (PCM for latent heat storage were prepared by impregnating paraffin wax into the pores of the expanded perlite (EP. The characterization of the composite PCMs was performed by FTIR, TGA, SEM and DSC analysis. The melting point and heat of fusion were determined for 25 % paraffin included composite, as 54.3 °C and 94.71 J/g and for 45 % paraffin included composite as 53.6 °C and 106.69 J/g, respectively. The FTIR results showed that there were no chemical reaction between the perlite and paraffin. TGA analysis indicated that both composite PCMs had good thermal stability. SEM images showed that the paraffin was dispersed uniformly into the pores and on the EP surface. There was no leakage and degradation at the composite PCMs after heating and cooling cycles. According to the results, both prepared composites showed good thermal energy storage properties, reliability and stability. All results suggested that the presented form- stable composite PCMs has great potential for thermal energy storage applications.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.13661
Comparison of heat flux estimations from two turbulent exchange models based on thermal UAV data.
Hoffmann, Helene; Nieto, Hector; Jensen, Rasmus; Friborg, Thomas
2015-04-01
Advantages of UAV (Unmanned Aerial Vehicle) data-collection, compared to more traditional data-collections are numerous and already well-discussed (Berni et al., 2009; Laliberte et al., 2011; Turner et al., 2012). However studies investigating the quality and applications of UAV-data are crucial if advantages are to be beneficial for scientific purposes. In this study, thermal data collected over an agricultural site in Denmark have been obtained using a fixed-wing UAV and investigated for the estimation of heat fluxes. Estimation of heat fluxes requires high precision data and careful data processing. Latent, sensible and soil heat fluxes are estimates through two models of the two source energy modelling scheme driven by remotely sensed observations of land surface temperature; the original TSEB (Norman et al., 1995) and the DTD (Norman et al., 2000) which builds on the TSEB. The DTD model accounts for errors arising when deriving radiometric temperatures and can to some extent compensate for the fact that thermal cameras rarely are accurate. The DTD model requires an additional set of remotely sensed data during morning hours of the day at which heat fluxes are to be determined. This makes the DTD model ideal to use when combined with UAV data, because acquisition of data is not limited by fixed time by-passing tracks like satellite images (Guzinski et al., 2013). Based on these data, heat fluxes are computed from the two models and compared with fluxes from an eddy covariance station situated within the same designated agricultural site. This over-all procedure potentially enables an assessment of both the collected thermal UAV-data and of the two turbulent exchange models. Results reveal that both TSEB and DTD models compute heat fluxes from thermal UAV data that is within a very reasonable range and also that estimates from the DTD model is in best agreement with the eddy covariance system.
Mosaffa, A.H.; Talati, F. [Faculty of Civil Engineering, Universiteit van Tabriz (Iran, Islamic Republic of); Infante Ferreira, C.A. [Section Process and Energy, Delft University of Technology, Delft (Netherlands); Rosen, M.A. [Faculty of Engineering and Applied Sciences, University of Ontario Institute of Technology UOIT, Oshawa, ON (Canada)
2013-07-15
Systems with free cooling using phase change materials (PCMs) to store cold outside air in the night to be used again by day for the indoor environment when the need for cooling increases. This article presents a numerical study on improving the performance of a system with free cooling using thermal storage of latent heat (LHTS) for which several PCMs are applied. The energy storage efficiency (as a new performance parameter for LHTS systems) and the coefficient of performance (COP) of the system are calculated [Dutch] Systemen met vrije koeling gebruiken fase-overgangsmaterialen (PCMs) om de nachtelijke koude van de buitenlucht op te slaan en het overdag weer af te geven aan het binnenmilieu wanneer de behoefte aan koeling toeneemt. Dit artikel presenteert een numeriek onderzoek naar de verbetering van de prestaties van een systeem met vrije koeling met behulp van thermische opslag van latente warmte (latent heat thermal storage - LHTS) dat gebruik maakt van meerdere PCM's. Het PCM-opslagsysteem bestaat uit een aantal vlakke platen PCM, gerangschikt in lagen met daartussen een doorgang voor het warmteoverdrachtsmedium (heat transfer fluid - HTF). Het maakt gebruik van de effectieve warmteaccumulerende eigenschappen van PCM tijdens smelten en stollen. De energieopslageffciëntie (als nieuwe prestatieparameter voor LHTS-systemen) en de prestatiecoefficiënt (coefficient of performance - COP) van het systeem worden berekend.
Mosaffa, A.H.; Talati, F. [Faculty of Civil Engineering, Universiteit van Tabriz (Iran, Islamic Republic of); Infante Ferreira, C.A. [Section Process and Energy, Delft University of Technology, Delft (Netherlands); Rosen, M.A. [Faculty of Engineering and Applied Sciences, University of Ontario Institute of Technology UOIT, Oshawa, ON (Canada)
2013-05-15
Systems with free cooling using phase change materials (PCMs) to store cold outside air in the night to be used again by day for the indoor environment when the need for cooling increases. This article presents a numerical study on improving the performance of a system with free cooling using thermal storage of latent heat (LHTS) for which several PCMs are applied. The energy storage efficiency (as a new performance parameter for LHTS systems) and the coefficient of performance (COP) of the system are calculated [Dutch] Systemen met vrije koeling gebruiken fase-overgangsmaterialen (PCMs) om de nachtelijke koude van de buitenlucht op te slaan en het overdag weer af te geven aan het binnenmilieu wanneer de behoefte aan koeling toeneemt. Dit artikel presenteert een numeriek onderzoek naar de verbetering van de prestaties van een systeem met vrije koeling met behulp van thermische opslag van latente warmte (latent heat thermal storage - LHTS) dat gebruik maakt van meerdere PCM's. Het PCM-opslagsysteem bestaat uit een aantal vlakke platen PCM, gerangschikt in lagen met daartussen een doorgang voor het warmteoverdrachtsmedium (heat transfer fluid - HTF). Het maakt gebruik van de effectieve warmteaccumulerende eigenschappen van PCM tijdens smelten en stollen. De energieopslageffciëntie (als nieuwe prestatieparameter voor LHTS-systemen) en de prestatiecoefficiënt (coefficient of performance - COP) van het systeem worden berekend.
Yunjun Yao; Shunlin Liang; Xianglan Li; Shaomin Liu; Jiquan Chen; Xiaotong Zhang; Kun Jia; Bo Jiang; Xianhong Xie; Simon Munier; Meng Liu; Jian Yu; Anders Lindroth; Andrej Varlagin; Antonio Raschi; Asko Noormets; Casimiro Pio; Georg Wohlfahrt; Ge Sun; Jean-Christophe Domec; Leonardo Montagnani; Magnus Lund; Moors Eddy; Peter D. Blanken; Thomas Grunwald; Sebastian Wolf; Vincenzo Magliulo
2016-01-01
The latent heat flux (LE) between the terrestrial biosphere and atmosphere is a major driver of the globalhydrological cycle. In this study, we evaluated LE simulations by 45 general circulation models (GCMs)in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by a comparison...
Development of a new thermal environment meter responding both to sensible and latent heat fluxes
Mendes, J. C. A. F.; Gameiro da Silva, M. C.
2004-05-01
A new thermal environment meter, simultaneously sensible to the various heat and mass transfer phenomena that participate in the human body thermal balance was developed. Relative to the existing heated sensors that simulate only the sensible heat processes, it adds the capability of evaluating also the effect of evaporative heat losses. It has an ellipsoid shape and is made of ceramic material with porous characteristics to allow the appearance of a uniform humid layer on its external surface. It behaves like a person who adjusts his metabolic rate to ensure a constant deep-body temperature. The inner volume of the sensor is filled with water that is heated to a temperature similar to the deep-body temperature of a person. Evaluation of a given environment is derived after the measured values of the electrical power required to keep the water temperature constant and the loss of weight due to water evaporation on the external surface of the sensor. The developed sensor responds to the same heat transfer mechanisms (convection, radiation, conduction and evaporation), but acts as a type of person who would adjust his metabolic rate in order to keep the deep-body temperature at a constant value whatever the environmental conditions. The calibration of the sensor response, in terms of the standard effective temperature index, was carried out, which makes it a very useful tool for the characterization of thermal environments, especially those where the thermal regulation system needs to use the sweating mechanism.
Suzuki, Shigeki [Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Kulkarni, Ashok B., E-mail: ak40m@nih.gov [Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States)
2010-07-30
Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understanding of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.
Schneider, A.R.
1980-01-01
The construction of a 1200 square foot building, with full basement, built to be used as a branch library in a rural area is described. The primary heating source is a passive solar system consisting of a south facing window system. The system consists of: a set of windows located in the south facing wall only, composed of double glazed units; a set of reflectors mounted in each window which reflects sunlight up to the ceiling (the reflectors are similar to venetian blinds); a storage area in the ceiling which absorbs the heat from the reflected sunlight and stores it in foil salt pouches laid in the ceiling; and an automated curtain which automatically covers and uncovers the south facing window system. The system is totally passive and uses no blowers, pumps or other active types of heat distribution equipment. The building contains a basement which is normally not heated, and the north facing wall is bermed four feet high around the north side.
Yang, Ji Seung; Cai, Li
2013-01-01
The main purpose of this study is to improve estimation efficiency in obtaining full-information maximum likelihood (FIML) estimates of contextual effects in the framework of a nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai, 2008, 2010a, 2010b). Results indicate that the MH-RM…
Ding, Wenchao; Zhang, Peina; Li, Yijing; Xia, Haibing; Wang, Dayang; Tao, Xutang
2015-02-02
The Turkevich method, involving the reduction of HAuCl4 with citrate in boiling water, allows the facile production of monodisperse, quasispherical gold nanoparticles (AuNPs). Although, it is well-known that the size of the AuNPs obtained with the same recipe vary slightly (as little as approximately 4 nm), but noticeably, from one report to another, it has rarely been studied. The present work demonstrates that this size variation can be reconciled by the small, but noticeable, effect that the latent heat in boiling water has on the size of the AuNPs obtained by using the Turkevich method. The increase in latent heat during water boiling caused an approximately 3 nm reduction in the size of the as-prepared AuNPs; this reduction in size is mainly a result of accelerated nucleation driven by the extra heat. It was further demonstrated that, the heating temperature can be utilized as an additional measure to adjust the growth rate of AuNPs during the reduction of HAuCl4 with citrate in boiling water. Therefore, the latent heat of boiling solvents may provide one way to control nucleation and growth in the synthesis of monodisperse nanoparticles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inverse Estimation of Transient Heat Flux to Slab Surface
CUI Miao; YANG Kai; LIU Yun-fei; GAO Xiao-wei
2012-01-01
The transient heat flux was calculated using a model for inverse heat conduction problems based on temper- ature measurements. The unknown heat flux was taken as an optimization variable and solved by minimizing the differences between the calculated temperatures and the measured ones. Several examples were given to show the ef- fectiveness and the accuracy of the inverse algorithm in estimating the transient heat flux to a slab surface. The re sults show that the inverse approach can be applied in the steel industry or in other areas where the target of investi- gation is inaccessible to direct measurements or difficult to be directly modeled.
Ingo W Nader
Full Text Available Parameters of the two-parameter logistic model are generally estimated via the expectation-maximization algorithm, which improves initial values for all parameters iteratively until convergence is reached. Effects of initial values are rarely discussed in item response theory (IRT, but initial values were recently found to affect item parameters when estimating the latent distribution with full non-parametric maximum likelihood. However, this method is rarely used in practice. Hence, the present study investigated effects of initial values on item parameter bias and on recovery of item characteristic curves in BILOG-MG 3, a widely used IRT software package. Results showed notable effects of initial values on item parameters. For tighter convergence criteria, effects of initial values decreased, but item parameter bias increased, and the recovery of the latent distribution worsened. For practical application, it is advised to use the BILOG default convergence criterion with appropriate initial values when estimating the latent distribution from data.
Pfleger, Nicole; Bauer, Thomas; Martin, Claudia; Eck, Markus; Wörner, Antje
2015-01-01
Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems.
Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A
2014-11-15
Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for
Heat Load Estimator for Smoothing Pulsed Heat Loads on Supercritical Helium Loops
Hoa, C.; Lagier, B.; Rousset, B.; Bonnay, P.; Michel, F.
Superconducting magnets for fusion are subjected to large variations of heat loads due to cycling operation of tokamaks. The cryogenic system shall operate smoothly to extract the pulsed heat loads by circulating supercritical helium into the coils and structures. However the value of the total heat loads and its temporal variation are not known before the plasma scenario starts. A real-time heat load estimator is of interest for the process control of the cryogenic system in order to anticipate the arrival of pulsed heat loads to the refrigerator and finally to optimize the operation of the cryogenic system. The large variation of the thermal loads affects the physical parameters of the supercritical helium loop (pressure, temperature, mass flow) so those signals can be used for calculating instantaneously the loads deposited into the loop. The methodology and algorithm are addressed in the article for estimating the heat load deposition before it reaches the refrigerator. The CEA patented process control has been implemented in a Programmable Logic Controller (PLC) and has been successfully validated on the HELIOS test facility at CEA Grenoble. This heat load estimator is complementary to pulsed load smoothing strategies providing an estimation of the optimized refrigeration power. It can also effectively improve the process control during the transient between different operating modes by adjusting the refrigeration power to the need. This way, the heat load estimator participates to the safe operation of the cryogenic system.
Space Heating Load Estimation Procedure for CHP Systems sizing
Vocale, P.; Pagliarini, G.; Rainieri, S.
2015-11-01
Due to its environmental and energy benefits, the Combined Heat and Power (CHP) represents certainly an important measure to improve energy efficiency of buildings. Since the energy performance of the CHP systems strongly depends on the fraction of the useful cogenerated heat (i.e. the cogenerated heat that is actually used to meet building thermal demand), in building applications of CHP, it is necessary to know the space heating and cooling loads profile to optimise the system efficiency. When the heating load profile is unknown or difficult to calculate with a sufficient accuracy, as may occur for existing buildings, it can be estimated from the cumulated energy uses by adopting the loads estimation procedure (h-LEP). With the aim to evaluate the useful fraction of the cogenerated heat for different operating conditions in terms of buildings characteristics, weather data and system capacity, the h-LEP is here implemented with a single climate variable: the hourly average dry- bulb temperature. The proposed procedure have been validated resorting to the TRNSYS simulation tool. The results, obtained by considering a building for hospital use, reveal that the useful fraction of the cogenerated heat can be estimated with an average accuracy of ± 3%, within the range of operative conditions considered in the present study.
Heat and mass flux estimation of modern seafloor hydrothermal activity
ZHAI Shikui; WANG Xingtao; YU Zenghui
2006-01-01
Research on heat and mass flux yielded by modern seafloor hydrothermal activity is very important, because it is involved not only in the base of ocean environment research, but also in the historical evolution of seawater properties. Currently, estimating heat flux is based on the observation data of hydrothermal smokers, low-temperature diffusive flow and mid-ocean ridge mainly. But there are some faults, for example, there is lack of a concurrent conductive item in estimating the heat flux by smokers and the error between the half-space cooling model and the observation data is too large. So, three kinds of methods are applied to re-estimating the heat flux of hydrothermal activity resepectively, corresponding estimation is 97.359 GW by hydrothermal smoker and diffusive flow, 84.895 GW by hydrothermal plume, and 4.11 TW by exponential attenuation method put forward by this paper. Research on mass flux estimation is relatively rare, the main reason for this is insufficient field observation data. Mass fluxes of different elements are calculated using hydrothermal vent fluid data from the TAG hydrothermal area on the Mid-Atlantic Ridge for the first time. Difference of estimations by different methods reflects the researching extent of hydrothermal activity, and systematically in-situ observation will help to estimate the contribution of hydrothermal activity to ocean chemical environment, ocean circulation and global climate precisely.
Y. Jie
2014-01-01
Full Text Available Recently surface latent heat flux (SLHF data is widely used to study the anomalies before earthquakes. Most researches use the daily SLHF data, here we use both daily data and high temporal resolution (four times one day SLHF data, and compare the SLHF change with satellite image at the first time. We check the data from 1 September to 30 October 2011 and the result shows that there is really a very high SLHF anomaly (bigger than 2 σ just 5 days before the M6.1 Russia earthquake which occurred on 14 October 2011. It should be considered as a preseismic precursor if judged with previously published methods. But our comparison between SLHF change and satellite image shows that the SLHF anomaly is just caused by a thick cloud. This result tells us that scientists must know the data's meaning before they use it, if not, they may get a wrong conclusion. Based on this example, we suggest that previously published SLHF anomaly before earthquake should be reanalyzed by our method to exclude the false anomaly.
Dynamic thermal behavior of building using phase change materials for latent heat storage
Selka Ghouti
2015-01-01
Full Text Available This study presents a two-dimensional model with a real size home composed of two-storey (ground and first floor spaces separated by a slab, enveloped by a wall with rectangular section containing phase change material (PCM in order to minimize energy consumption in the buildings. The main objective of the PCM-wall system is to decrease the temperature change from outdoor space before it reaches the indoor space during the daytime. The numerical approach uses effective heat capacity Ceff model with realistic outdoor climatic conditions of Tlemcen city, Algeria. The numerical results showed that by using PCM in wall as energy storage components may reduce the room temperature by about 6 to 7°C of temperature depending on the floor level (first floor spaces or ground floor spaces.
Dittrich, Eva; Riklin Raviv, Tammy; Kasprian, Gregor; Donner, René; Brugger, Peter C; Prayer, Daniela; Langs, Georg
2014-01-01
Prenatal neuroimaging requires reference models that reflect the normal spectrum of fetal brain development, and summarize observations from a representative sample of individuals. Collecting a sufficiently large data set of manually annotated data to construct a comprehensive in vivo atlas of rapidly developing structures is challenging but necessary for large population studies and clinical application. We propose a method for the semi-supervised learning of a spatio-temporal latent atlas of fetal brain development, and corresponding segmentations of emerging cerebral structures, such as the ventricles or cortex. The atlas is based on the annotation of a few examples, and a large number of imaging data without annotation. It models the morphological and developmental variability across the population. Furthermore, it serves as basis for the estimation of a structures' morphological age, and its deviation from the nominal gestational age during the assessment of pathologies. Experimental results covering the gestational period of 20-30 gestational weeks demonstrate segmentation accuracy achievable with minimal annotation, and precision of morphological age estimation. Age estimation results on fetuses suffering from lissencephaly demonstrate that they detect significant differences in the age offset compared to a control group. Copyright © 2013. Published by Elsevier B.V.
Radiative heat transfer estimation in pipes with various wall emissivities
Robin, Langebach; Christoph, Haberstroh
2017-02-01
Radiative heat transfer is usually of substantial importance in cryogenics when systems are designed and thermal budgeting is carried out. However, the contribution of pipes is commonly assumed to be comparably low since the warm and cold ends as well as their cross section are fairly small. Nevertheless, for a first assessment of each pipe rough estimates are always appreciated. In order to estimate the radiative heat transfer with traditional “paper and pencil“ methods there is only one analytical case available in literature - the case of plane-parallel plates. This case can only be used to calculate the theoretical lower and the upper asymptotic values of the radiative heat transfer, since pipe wall radiation properties are not taken into account. For this paper we investigated the radiative heat transfer estimation in pipes with various wall emissivities with the help of numerical simulations. Out of a number of calculation series we could gain an empirical extension for the used approach of plane-parallel plates. The model equation can be used to carry out enhanced paper and pencil estimations for the radiative heat transfer through pipes without demanding numerical simulations.
Heat Flux estimation in WEST divertor with embedded thermocouples
Gaspar, J.; Corre, Y.; Firdaouss, M.; Gardarein, J.-L.; Guilhem, D.; Houry, M.; Le Niliot, C.; Missirlian, M.; Pocheau, C.; Rigollet, F.
2016-09-01
The present paper deals with the surface heat flux estimation with embedded thermocouples (TC) in a Plasma Facing Component (PFC) of the WEST Tokamak. A 2D nonlinear unsteady calculation combined with the Conjugate Gradient Method (CGM) and the adjoint state is achieved in order to estimate the time evolution of the heat flux amplitude and decay length λq . The method is applied on different synthetic measurements in order to evaluate the accuracy of the method. The synthetic measurements are generated with realistic values of λq and magnitudes as those expected for ITER.
Jackman, M. Grace-Anne; Leite, Walter L.; Cochrane, David J.
2011-01-01
This Monte Carlo simulation study investigated methods of forming product indicators for the unconstrained approach for latent variable interaction estimation when the exogenous factors are measured by large and unequal numbers of indicators. Product indicators were created based on multiplying parcels of the larger scale by indicators of the…
Glutting, Joseph J.; Watkins, Marley W.; Konold, Timothy R.; McDermott, Paul A.
2006-01-01
This study employed observed factor index scores as well as latent ability constructs from the "Wechsler Intelligence Scale for Children-Fourth Edition" (WISC-IV; Wechsler, 2003) in estimating reading and mathematics achievement on the "Wechsler Individual Achievement Test-Second Edition" (WIAT-II; Wechsler, 2002). Participants…
Jackman, M. Grace-Anne; Leite, Walter L.; Cochrane, David J.
2011-01-01
This Monte Carlo simulation study investigated methods of forming product indicators for the unconstrained approach for latent variable interaction estimation when the exogenous factors are measured by large and unequal numbers of indicators. Product indicators were created based on multiplying parcels of the larger scale by indicators of the…
O-Uchi, Masaki; Hirose, Koichi; Saito, Futami
The inside heat transfer coefficient, overall heat transfer coefficient, and heat flow rate at the heating section of the thermosiphon were determined for each heating method. In order to observe the heat transfer mechanism in the evaporator, a thermosiphon unit made of glass was assembled and conducted separately. The results of these experiments with these two units are summarized as follows. (1) Nucleate boiling due to the internal heat transfer mechanism improves the heat transfer characteristics of the thermosiphon unit. Under the specific heating conditions with dropwise condensation, there are two types of heat transfer mechanism occur in the evaporator accompanying nucleate boiling, i. e. latent heat transfer and sensible heat transfer. (2) In the case of latent heat transfer, the inside heat transfer coefficient has an upper limit which can be used as a criterion to determine the type of internal heat transfer mechanism.
The Biasing Effects of Unmodeled ARMA Time Series Processes on Latent Growth Curve Model Estimates
Sivo, Stephen; Fan, Xitao; Witta, Lea
2005-01-01
The purpose of this study was to evaluate the robustness of estimated growth curve models when there is stationary autocorrelation among manifest variable errors. The results suggest that when, in practice, growth curve models are fitted to longitudinal data, alternative rival hypotheses to consider would include growth models that also specify…
Estimation of the Distribution of Global Anthropogenic Heat Flux
2012-01-01
The radiance lights data in 2006 from the National Oceanic and Atmospheric Administration Air Force Defense Meteorological Satellite Program/Operational Linescan System （DMSP/OLS） and authoritative energy data distributed by the United State Energy Information Administration were applied to estimate the global distribution of anthropogenic heat flux.A strong linear relationship was found to exist between the anthropogenic heat flux and the DMSP/OLS radiance data.On a global scale,the average value of anthropogenic heat flux is approximately 0.03 W m 2 and 0.10 W m 2 for global land area.The results indicate that global anthropogenic heat flux was geographically concentrated and distributed,fundamentally correlating to the economical activities.The anthropogenic heat flux concentrated in the economically developed areas including East Asia,Europe,and eastern North America.The anthropogenic heat flux in the concentrated regions,including the northeastern United States,Central Europe,United Kingdom,Japan,India,and East and South China is much larger than global average level,reaching a large enough value that could affect regional climate.In the center of the concentrated area,the anthropogenic heat flux density may exceed 100 W m 2,according to the results of the model.In developing areas,including South America,Central and North China,India,East Europe,and Middle East,the anthropogenic heat flux can reach a level of more than 10 W m 2 ;however,the anthropogenic heat flux in a vast area,including Africa,Central and North Asia,and South America,is low.With the development of global economy and urban agglomerations,the effect on climate of anthropogenic heat is essential for the research of climate change.
Brenner, Claire; Thiem, Christina Elisabeth; Bernhardt, Matthias; Schulz, Karsten
2016-04-01
Evapotranspiration is a key component of the Earth's water and energy cycle. However, measuring evapotranspiration is difficult and distributed information with high spatial resolution is rare. Land surface temperature (LST) is often used as source of data for the estimation of evapotranspiration. Actual LST is mainly controlled by the amount of incoming radiation, surface albedo, water availability, ventilation of the surface and in case of vegetation stands also by the intensity of the transpiration process. Thus it contains valuable information on the actual state of the soil-vegetation-atmosphere system. Typically LST information is available from satellite imagery or from radiometers installed at experimental sites. Thus, measured LST is either representative for areas of hundreds of square meters (satellites), or for certain points (radiometers). Thermal imaging from unmanned aerial systems (UAS) can be used for addressing this scale gap and is a trade-off between flexibility and ease of use on the one hand and spatial coverage on the other hand. In this study we have measured surface temperatures at a grassland site in Luxemburg in July 2015 by means of a thermal infrared camera mounted on an octocopter drone. At the same time scintillometer measurements were made at the same field. The experimental set-up was completed by meteorological and radiation measurements. UAS flights were conducted on a sequence of days over a time period of 2 weeks and with up to ten flights a day in order to monitor diurnal variation of LST. The observed spatially distributed surface temperatures were then used to estimate sensible and latent heat fluxes using three algorithms. All of them make use of observed vertical temperature gradients between surface and atmosphere but do show a different complexity. Two of them are single-source models while one is a dual-source representation of the soil-vegetation system. Although the experimental site was fully covered by grass, LST
Estimation of Heat Loss in a Closed Vessel
B. A. Parate
2007-03-01
Full Text Available Power cartridges are designed and developed for use in military aircraft in association withHigh Energy Materials Research Laboratory, Pune. During development, the cartridge is firedin a closed vessel to generate basic design parameters. When the cartridge is fired, the heat islost to the walls of the vessel due to conduction, convection, radiation, and to some extent, byexpansion of the vessel. An attempt has been made to estimate the heat loss from the vesseland the surrounding. The aim of this study was to lay down the technical results theoreticallyand their validation through experiments.
Recov'Heat: An estimation tool of urban waste heat recovery potential in sustainable cities
Goumba, Alain; Chiche, Samuel; Guo, Xiaofeng; Colombert, Morgane; Bonneau, Patricia
2017-02-01
Waste heat recovery is considered as an efficient way to increase carbon-free green energy utilization and to reduce greenhouse gas emission. Especially in urban area, several sources such as sewage water, industrial process, waste incinerator plants, etc., are still rarely explored. Their integration into a district heating system providing heating and/or domestic hot water could be beneficial for both energy companies and local governments. EFFICACITY, a French research institute focused on urban energy transition, has developed an estimation tool for different waste heat sources potentially explored in a sustainable city. This article presents the development method of such a decision making tool which, by giving both energetic and economic analysis, helps local communities and energy service companies to make preliminary studies in heat recovery projects.
Poinar, K.; Joughin, I. R.
2014-12-01
Glacial meltwater can refreeze within firn and crevasses, warming the ice through latent heat transfer. The consequent softening of the ice has been identified as a potential destabilization mechanism for the Greenland Ice Sheet, which would flow more quickly seaward with lower viscosity. We calculate the effect of meltwater refreezing within firn and englacial features on ice temperature and viscosity in two contrasting areas of western Greenland: Jakobshavn Isbrae, a convergent, fast-flowing outlet glacier, and the Pakitsoq area (Swiss Camp) directly to its north, a "dead zone" experiencing slow, divergent flow because of its location between two outlet glaciers. We explore how much refreezing affects the seaward velocity of ice in each location by comparing our modeled temperature profiles to borehole data. Pakitsoq ice shows significant englacial latent heat transfer, or cryo-hydrologic warming, while the ice in Jakobshavn has warmed largely due to percolation within the firn. We find that the Pakitsoq region is rather unique in western Greenland because of the long residence time of the ice in the ablation zone (800 years) there; ice flowing through Jakobshavn, by contrast, spends only 20 years in the ablation zone, not enough time for deep, diffusive englacial warming to occur. Examination of the velocity field of the ice sheet indicates that 70% of the ice flux through western Greenland spends insufficient time (200 years or less) in the ablation zone to produce significant englacial warming. Thus, the effects of englacial latent heat transfer may be fairly limited to regions of divergent flow such as Pakitsoq. Ice loss in these regions, which tend to be land-terminating, is dominated by surface melt rather than seaward ice motion, further suggesting that englacial heat transfer may have a lesser effect on the stability of the ice sheet than previously supposed.
Fang, Guiyin, E-mail: gyfang@nju.edu.cn [School of Physics, Nanjing University, Nanjing 210093 (China); Li, Hui [Department of Material Science and Engineering, Nanjing University, Nanjing 210093 (China); Cao, Lei; Shan, Feng [School of Physics, Nanjing University, Nanjing 210093 (China)
2012-12-14
Form-stable palmitic acid (PA)/active aluminum oxide composites as phase change materials were prepared by adsorbing liquid palmitic acid into active aluminum oxide. In the composites, the palmitic acid was used as latent heat storage materials, and the active aluminum oxide was used as supporting material. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine the chemical structure, crystalloid phase and microstructure of the composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetry analyzer (TGA). The FT-IR analyses results indicated that there is no chemical interaction between the palmitic acid and active aluminum oxide. The SEM results showed that the palmitic acid was well adsorbed into porous network of the active aluminum oxide. The DSC results indicated that the composites melt at 60.25 Degree-Sign C with a latent heat of 84.48 kJ kg{sup -1} and solidify at 56.86 Degree-Sign C with a latent heat of 78.79 kJ kg{sup -1} when the mass ratio of the PA to active aluminum oxide is 0.9:1. Compared with that of the PA, the melting and solidifying time of the composites CPCM5 was reduced by 20.6% and 21.4% because of the increased heat transfer rate through EG addition. The TGA results showed that the active aluminum oxide can improve the thermal stability of the composites. -- Highlights: Black-Right-Pointing-Pointer Form-stable PA/active aluminum oxide composites as PCMs were prepared. Black-Right-Pointing-Pointer Chemical structure, crystalloid phase and microstructure of composites were determined. Black-Right-Pointing-Pointer Thermal properties and thermal stability of the composites were investigated. Black-Right-Pointing-Pointer Expanded graphite can improve thermal conductivity of the composites.
Data concurrency is required for estimating urban heat island intensity.
Zhao, Shuqing; Zhou, Decheng; Liu, Shuguang
2016-01-01
Urban heat island (UHI) can generate profound impacts on socioeconomics, human life, and the environment. Most previous studies have estimated UHI intensity using outdated urban extent maps to define urban and its surrounding areas, and the impacts of urban boundary expansion have never been quantified. Here, we assess the possible biases in UHI intensity estimates induced by outdated urban boundary maps using MODIS Land surface temperature (LST) data from 2009 to 2011 for China's 32 major cities, in combination with the urban boundaries generated from urban extent maps of the years 2000, 2005 and 2010. Our results suggest that it is critical to use concurrent urban extent and LST maps to estimate UHI at the city and national levels. Specific definition of UHI matters for the direction and magnitude of potential biases in estimating UHI intensity using outdated urban extent maps.
Regularization and error estimates for nonhomogeneous backward heat problems
Duc Trong Dang
2006-01-01
Full Text Available In this article, we study the inverse time problem for the non-homogeneous heat equation which is a severely ill-posed problem. We regularize this problem using the quasi-reversibility method and then obtain error estimates on the approximate solutions. Solutions are calculated by the contraction principle and shown in numerical experiments. We obtain also rates of convergence to the exact solution.
Pipeline heating method based on optimal control and state estimation
Vianna, F.L.V. [Dept. of Subsea Technology. Petrobras Research and Development Center - CENPES, Rio de Janeiro, RJ (Brazil)], e-mail: fvianna@petrobras.com.br; Orlande, H.R.B. [Dept. of Mechanical Engineering. POLI/COPPE, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ (Brazil)], e-mail: helcio@mecanica.ufrj.br; Dulikravich, G.S. [Dept. of Mechanical and Materials Engineering. Florida International University - FIU, Miami, FL (United States)], e-mail: dulikrav@fiu.edu
2010-07-01
In production of oil and gas wells in deep waters the flowing of hydrocarbon through pipeline is a challenging problem. This environment presents high hydrostatic pressures and low sea bed temperatures, which can favor the formation of solid deposits that in critical operating conditions, as unplanned shutdown conditions, may result in a pipeline blockage and consequently incur in large financial losses. There are different methods to protect the system, but nowadays thermal insulation and chemical injection are the standard solutions normally used. An alternative method of flow assurance is to heat the pipeline. This concept, which is known as active heating system, aims at heating the produced fluid temperature above a safe reference level in order to avoid the formation of solid deposits. The objective of this paper is to introduce a Bayesian statistical approach for the state estimation problem, in which the state variables are considered as the transient temperatures within a pipeline cross-section, and to use the optimal control theory as a design tool for a typical heating system during a simulated shutdown condition. An application example is presented to illustrate how Bayesian filters can be used to reconstruct the temperature field from temperature measurements supposedly available on the external surface of the pipeline. The temperatures predicted with the Bayesian filter are then utilized in a control approach for a heating system used to maintain the temperature within the pipeline above the critical temperature of formation of solid deposits. The physical problem consists of a pipeline cross section represented by a circular domain with four points over the pipe wall representing heating cables. The fluid is considered stagnant, homogeneous, isotropic and with constant thermo-physical properties. The mathematical formulation governing the direct problem was solved with the finite volume method and for the solution of the state estimation problem
Series load induction heating inverter state estimator using Kalman filter
Szelitzky T.
2011-12-01
Full Text Available LQR and H2 controllers require access to the states of the controlled system. The method based on description function with Fourier series results in a model with immeasurable states. For this reason, we proposed a Kalman filter based state estimator, which not only filters the input signals, but also computes the unobservable states of the system. The algorithm of the filter was implemented in LabVIEW v8.6 and tested on recorded data obtained from a 10-40 kHz series load frequency controlled induction heating inverter.
Estimation of respiratory heat flows in prediction of heat strain among Taiwanese steel workers
Chen, Wang-Yi; Juang, Yow-Jer; Hsieh, Jung-Yu; Tsai, Perng-Jy; Chen, Chen-Peng
2017-01-01
International Organization for Standardization 7933 standard provides evaluation of required sweat rate (RSR) and predicted heat strain (PHS). This study examined and validated the approximations in these models estimating respiratory heat flows (RHFs) via convection ( C res) and evaporation ( E res) for application to Taiwanese foundry workers. The influence of change in RHF approximation to the validity of heat strain prediction in these models was also evaluated. The metabolic energy consumption and physiological quantities of these workers performing at different workloads under elevated wet-bulb globe temperature (30.3 ± 2.5 °C) were measured on-site and used in the calculation of RHFs and indices of heat strain. As the results show, the RSR model overestimated the C res for Taiwanese workers by approximately 3 % and underestimated the E res by 8 %. The C res approximation in the PHS model closely predicted the convective RHF, while the E res approximation over-predicted by 11 %. Linear regressions provided better fit in C res approximation ( R 2 = 0.96) than in E res approximation ( R 2 ≤ 0.85) in both models. The predicted C res deviated increasingly from the observed value when the WBGT reached 35 °C. The deviations of RHFs observed for the workers from those predicted using the RSR or PHS models did not significantly alter the heat loss via the skin, as the RHFs were in general of a level less than 5 % of the metabolic heat consumption. Validation of these approximations considering thermo-physiological responses of local workers is necessary for application in scenarios of significant heat exposure.
Laser heating method for estimation of carbon nanotube purity
Terekhov, S. V.; Obraztsova, E. D.; Lobach, A. S.; Konov, V. I.
A new method of a carbon nanotube purity estimation has been developed on the basis of Raman spectroscopy. The spectra of carbon soot containing different amounts of nanotubes were registered under heating from a probing laser beam with a step-by-step increased power density. The material temperature in the laser spot was estimated from a position of the tangential Raman mode demonstrating a linear thermal shift (-0.012 cm-1/K) from the position 1592 cm-1 (at room temperature). The rate of the material temperature rise versus the laser power density (determining the slope of a corresponding graph) appeared to correlate strongly with the nanotube content in the soot. The influence of the experimental conditions on the slope value has been excluded via a simultaneous measurement of a reference sample with a high nanotube content (95 vol.%). After the calibration (done by a comparison of the Raman and the transmission electron microscopy data for the nanotube percentage in the same samples) the Raman-based method is able to provide a quantitative purity estimation for any nanotube-containing material.
Integration of Heat-Pulse and Sensible Heat Balance Methods to Estimate Evaporation From Bare Soils
Trautz, A.; Smits, K. M.; Schulte, P.; Cihan, A.; Illangasekare, T. H.
2012-12-01
A critical component of the water cycle at local, regional and global scales is evaporation from soil. Because it is very difficult to measure soil evaporation and soil moisture in the field, with the exception of using a lysimeter for local measurements, numerous model based estimation methods have been proposed. Numerical approaches that attempt to estimate evaporation rates within the top several centimeters of soil often rely of empirical and semi-empirical methods. Another less well known method to determine evaporation relies on heat pulse sensors to measure soil temperature and thermal properties. This approach does not rely on knowledge of soil hydraulic properties, effectively removing the need of several common empirical methods to define the soil surface boundary condition. The objective of this study was to integrate both the heat-pulse and sensible heat balance methods into a non-isothermal multiphase flow model in order to define the boundary conditions at the land/atmosphere interface. This model was tested using precision experimental data collected under laboratory conditions and compared to more traditional numerical modeling approaches. Experimental data was generated in a two-dimensional soil tank containing an array of sensors that allowed soil temperature, soil moisture content, and relative humidity to be collected continuously and autonomously. The soil tank was placed within a wind tunnel test facility to insure that atmospheric conditions were carefully controlled and monitored throughout the duration of the experiment. Numerical results of the model using the heat pulse and sensible heat balance methods were compared to those generated using different, more traditional modeling approaches. Results demonstrate the applicability of incorporating the heat-pulse and sensible heat balance methods in numerical approaches. Further validation was provided through a comparison of the numerical results and independently determined experimental
Alkan, Cemil; Sari, Ahmet [Gaziosmanpasa University, Department of Chemistry, Tasliciftlik, 60240 Tokat (Turkey)
2008-02-15
Fatty acids such as stearic acid (SA), palmitic acid (PA), myristic acid (MA), and lauric acid (LA) are promising phase change materials (PCMs) for latent heat thermal energy storage (LHTES) applications, but high cost is the most drawback which limits the utility area of them in thermal energy storage. The use of fatty acids as form-stable PCM will increase their feasibilities in practical LHTES applications due to reduced cost of the energy storage system. In this regard, a series of fatty acid/poly(methyl methacrylate) (PMMA) blends, SA/PMMA, PA/PMMA, MA/PMMA, and LA/PMMA were prepared as new kinds of form-stable PCMs by encapsulation of fatty acids into PMMA which acts as supporting material. The blends were prepared at different mass fractions of fatty acids (50, 60, 70, 80, and 90% w/w) to reach maximum encapsulation ratio. All blends were subjected to leakage test by heating the blends over the melting temperature of the PCM. The blends that do not allow leakage of melted PCM were identified as form-stable PCMs. The form-stable fatty acid/PMMA (80/20 wt.%) blends were characterized using optic microscopy (OM), viscosimetry, and Fourier transform infrared (FT-IR) spectroscopy methods, and the results showed that the PMMA was compatible with the fatty acids. In addition, thermal characteristics such as melting and freezing temperatures and latent heats of the form-stable PCMs were measured by using differential scanning calorimetry (DSC) technique and indicated that they had good thermal properties. On the basis of all results, it was concluded that form-stable fatty acid/PMMA blends had important potential for some practical LHTES applications such as under floor space heating of buildings and passive solar space heating of buildings by using wallboard, plasterboard or floor impregnated with a form-stable PCM due to their satisfying thermal properties, easily preparing in desired dimensions, direct usability without needing an add encapsulation and
Tao, Wei-Kuo; Li, Xiaowen
2016-06-01
A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updrafts/downdrafts in the middle/lower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.
A new method for estimating heat flux in superheater and reheater tubes
Purbolaksono, J. [Department of Mechanical Engineering, Universiti Tenaga Nasional, km 7 Jalan Kajang-Puchong, Kajang 43009, Selangor (Malaysia)], E-mail: judha@uniten.edu.my; Khinani, A.; Rashid, A.Z.; Ali, A.A. [Department of Mechanical Engineering, Universiti Tenaga Nasional, km 7 Jalan Kajang-Puchong, Kajang 43009, Selangor (Malaysia); Ahmad, J. [Kapar Energy Ventures Sdn Bhd, Jalan Tok Muda, Kapar 42200, Selangor (Malaysia); Nordin, N.F. [TNB Research Sdn Bhd, No. 1 Lorong Air Hitam, Kajang 43000, Selangor (Malaysia)
2009-10-15
In this paper a procedure on how to estimate the heat flux in superheater and reheater tubes utilizing the empirical formula and the finite element modeling is proposed. An iterative procedure consisting of empirical formulae and numerical simulation is used to determine heat flux as both temperature and scale thickness increase over period of time. Estimation results of the heat flux over period of time for two different design temperatures of the steam and different heat transfer parameters are presented.
Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.
2016-06-01
For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.
Clegg, Tracy A.; Duignan, Anthony; Whelan, Clare;
2011-01-01
Considerable effort has been devoted to improving the existing diagnostic tests for bovine tuberculosis (single intradermal comparative tuberculin test [SICTT] and ¿-interferon assay [¿-IFN]) and to develop new tests. Previously, the diagnostic characteristics (sensitivity, specificity) have been...... estimated in populations with defined infection status. However, these approaches can be problematic as there may be few herds in Ireland where freedom from infection is guaranteed. We used latent class models to estimate the diagnostic characteristics of existing (SICTT and ¿-IFN) and new (multiplex...... immunoassay [Enferplex-TB]) diagnostic tests under Irish field conditions where true disease status was unknown. The study population consisted of herds recruited in areas with no known TB problems (2197 animals) and herds experiencing a confirmed TB breakdown (2740 animals). A Bayesian model was developed...
Improved estimates of ocean heat content from 1960 to 2015.
Cheng, Lijing; Trenberth, Kevin E; Fasullo, John; Boyer, Tim; Abraham, John; Zhu, Jiang
2017-03-01
Earth's energy imbalance (EEI) drives the ongoing global warming and can best be assessed across the historical record (that is, since 1960) from ocean heat content (OHC) changes. An accurate assessment of OHC is a challenge, mainly because of insufficient and irregular data coverage. We provide updated OHC estimates with the goal of minimizing associated sampling error. We performed a subsample test, in which subsets of data during the data-rich Argo era are colocated with locations of earlier ocean observations, to quantify this error. Our results provide a new OHC estimate with an unbiased mean sampling error and with variability on decadal and multidecadal time scales (signal) that can be reliably distinguished from sampling error (noise) with signal-to-noise ratios higher than 3. The inferred integrated EEI is greater than that reported in previous assessments and is consistent with a reconstruction of the radiative imbalance at the top of atmosphere starting in 1985. We found that changes in OHC are relatively small before about 1980; since then, OHC has increased fairly steadily and, since 1990, has increasingly involved deeper layers of the ocean. In addition, OHC changes in six major oceans are reliable on decadal time scales. All ocean basins examined have experienced significant warming since 1998, with the greatest warming in the southern oceans, the tropical/subtropical Pacific Ocean, and the tropical/subtropical Atlantic Ocean. This new look at OHC and EEI changes over time provides greater confidence than previously possible, and the data sets produced are a valuable resource for further study.
Litt, Maxime; Steiner, Jakob F.; Stigter, Emmy E.; Immerzeel, Walter; Shea, Joseph Michael
2017-04-01
Over debris-covered glaciers, water content variations in the debris layer can drive significant changes in its thermal conductivity and significantly impact melt rates. Since sublimation and evaporation are favoured in high-altitude conditions, e.g., low atmospheric pressure and high wind speeds, they are expected to strongly influence the water balance of the debris-layer. Dedicated latent heat fluxes measurements at the debris surface are essential to characterize the debris heat conductivity in order to assess underlying ice melt. Furthermore, the contribution of the turbulent fluxes in the surface energy balance over debris covered glacier remains uncertain since they are generally evaluated through similarity methods which might not be valid in complex terrain. We present the first results of a 15-day eddy-covariance experiment installed at the end of the monsoon (September-October) on a 3-m tower above the debris-covered Lirung glacier in Nepal. The tower also included measurements of the 4 radiation components. The eddy covariance measurements allowed for the characterization of the turbulence in the atmospheric surface layer, as well as the direct measurements of evaporation, sublimation and turbulent sensible heat fluxes. The experiment helps us to evaluate the contribution of turbulent fluxes to the surface energy balance over this debris-covered glacier, through a precise characterization of the overlying turbulent atmospheric surface layer. It also helps to study the role of the debris-layer water content changes through evaporation and sublimation and its feedback on heat conduction in this layer. The large observed turbulent fluxes play a significant role in the energy balance at the debris surface and significantly influence debris moisture, conductivity and subsequently underlying ice melt.
Latent tuberculosis infection.
Nuermberger, Eric; Bishai, William R; Grosset, Jacques H
2004-06-01
Latent tuberculosis infection (LTBI) is a clinical condition characterized by a positive tuberculin skin test in the absence of clinical or radiological signs of active tuberculosis disease. It has been estimated that one third of the world's population is latently infected with Mycobacterium tuberculosis and serves as an enormous reservoir for future cases of active tuberculosis. The detection and treatment of individuals with LTBI and a high risk of progression to active tuberculosis are effective means to control the spread of tuberculosis. Furthermore, a better understanding of the host-pathogen interactions that result in latent infection could provide important insights for future drug or vaccine development. This chapter reviews recent developments in the molecular genetics, natural history, diagnosis, and treatment of LTBI within its historical context, including the impact of human immunodeficiency virus infection. Current treatment recommendations are also summarized.
Cabeza, L.F.; Illa, J.; Roca, J.; Badia, F. [Univ. de Lleida, Escola Univ. Politecnica, Lleida (Spain); Mehling, H.; Hiebler, S.; Ziegler, F. [Bavarian Center for Applied Energy Research, Garching (Germany). Div. of Energy Conversion and Storage
2001-02-01
During the last decades, energy storage has become more and more important. It is required in order to utilize alternative energy sources, which often are available at times when energy is not needed. The main applications of PCMs (phase change materials) in thermal energy storage are when space restrictions limit larger thermal storage units. But widespread use of latent heat stores has not been realized till today due to two main problems: the low heat flux, and the insufficient long term stability of the storage materials and containers. In the present work, we studied this second problem selecting different common metals (aluminum, brass, copper, steel, and stainless steel) and testing their corrosion resistance in contact with salt hydrates that are used as PCMs (zinc nitrate hexahydrate, sodium hydrogen phosphate dodecahydrate, calcium chloride hexahydrate). The method used was the immersion corrosion test. The tests here presented and evaluated were short term. As a consequence of the results from the experiments several pairs can be ruled out. The combinations of zinc nitrate hexahydrate with stainless steel, sodium hydrogen phosphate dodecahydrate with brass, copper and stainless steel, and calcium chloride hexahydrate with brass and copper shared no significant corrosion in the short term and should be studied further. (orig.)
Estimation of surface heat flux for ablation and charring of thermal protection material
Qian, Wei-qi; He, Kai-feng; Zhou, Yu
2016-07-01
Ablation of the thermal protection material of the reentry hypersonic flight vehicle is a complex physical and chemical process. To estimate the surface heat flux from internal temperature measurement is much more complex than the conventional inverse heat conduction problem case. In the paper, by utilizing a two-layer pyrogeneration-plane ablation model to model the ablation and charring of the material, modifying the finite control volume method to suit for the numerical simulation of the heat conduction equation with variable-geometry, the CGM along with the associated adjoint problem is developed to estimate the surface heat flux. This estimation method is verified with a numerical example at first, the results show that the estimation method is feasible and robust. The larger is the measurement noise, the greater is the deviation of the estimated result from the exact value, and the measurement noise of ablated surface position has a significant and more direct influence on the estimated result of surface heat flux. Furthermore, the estimation method is used to analyze the experimental data of ablation of blunt Carbon-phenolic material Narmco4028 in an arc-heater. It is shown that the estimated surface heat flux agrees with the heating power value of the arc-heater, and the estimation method is basically effective and potential to treat the engineering heat conduction problem with ablation.
Regional heat flux over the NOPEX area estimated from the evolution of the mixed-layer
Gryning, Sven-Erik; Batchvarova, E.
1999-01-01
of forest, agricultural fields, mires and lakes within the boreal zone, was determined for 3 days of the campaign in 1994. It was found to be lower than the heat flux over forest and higher than the heat Aux over agricultural fields. The regional heat flux estimated by the mixed-layer evolution method...
Geothermal Heat Flux Underneath Ice Sheets Estimated From Magnetic Satellite Data
Fox Maule, Cathrine; Purucker, M.E.; Olsen, Nils
The geothermal heat flux is an important factor in the dynamics of ice sheets, and it is one of the important parameters in the thermal budgets of subglacial lakes. We have used satellite magnetic data to estimate the geothermal heat flux underneath the ice sheets in Antarctica and Greenland....... By using satellite data, we are able to make heat flux maps covering the entire Antarctic continent and all of Greenland. We find that the heat flux varies from less than 50 to more than 150~mW/m2 underneath the ice sheets. To validate our results, we have compared our heat flux estimate with geologic...
A novel approach for anthropogenic heat flux estimation from space
Chrysoulakis, Nektarios; Heldens, Wieke; Gastellu-Etchegorry, Jean Philippe; Grimmond, Sue; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Fabio Del; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Albitar, Ahmad; Gabey, Andrew; Parlow, Eberhard; Olofson, Frans
2016-01-01
The recently launched H2020 project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of EO to retrieve anthropogenic heat flux, as a key component in the Urban Energy Budget (UEB). URBANFLUXES advances existing Earth Observation (EO) based me
G. P. Litvintseva
2010-12-01
Full Text Available The paper presents the research results of monetary income differentiation of the population with use of the author's methodical approach with regard to different purchasing power of ruble in the Russian regions. All the population of Russia was rearranged from regional quintile groups into the all-Russian groups that resulted in significant changes of inequality parameters at the interregional level of incomes in comparison with the Rosstat parameters. For the first time an influence of latent incomes to inequality and poverty level in the Russian regions is analyzed. Division of the population of the country into needy and wealthy groups is offered. Calculations and recommendations regarding redistributive overcoming of poverty at the expense of increase of the rate of surtax on incomes of the wealthy group are developed. The models by Pen, Lorenz and Ravallion-Huppi, modified by the authors of the article, were applied in the research. Calculations were carried out for all subjects of the Russian Federation (without the Chechen republic according to the Russian State Statistics Service figures for 2000–2008.
Nicole Pfleger
2015-07-01
Full Text Available Thermal energy storage (TES is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems.
张德丰; 陆建生; 宋鹏; 林清华; 吕建国
2011-01-01
通过开发线性混合热膨胀模型、使用Leblond相变诱导塑性（TRIP）模型和拓展Avrami相变动力学模型建立了热力耦合有限元模型,考虑了相变潜热、相变膨胀、TRIP效应、热膨胀等机制.用该模型分析了X65厚管线板从860℃至低温的非对称（上下表面层流冷却系数分别为3,1mW/mm2K）控冷过程,定量研究了相变潜热、TRIP效应对温度、残余应力的影响.结果表明：相变期间,潜热升温52.7℃,并减缓下表面和心部的温降分别为50%,25%;控冷终了,潜热提高板温44℃.潜热和TRIP效应分别产生峰值为±89M%Based on the developed linear mixture thermal expansion model,the Leblond transformation induced plasticity（TRIP）model,and the modified Avrami transformation dynamics model,a thermo-mechanical coupled finite element model was established,which considered latent heat,transformation dilatation,TRIP effect,thermal expansion,and so on.By the model,the influence of latent heat,TRIP effect on temperature and residual stress was investigated quantitatively during unsymmetrical controlled cooling of X65 heavy pipeline plate from 860℃ to low temperature with 3mW/mm2K laminar cooling coefficient on top surface and 1mW/mm2K laminar cooling coefficient on bottom surface.The results show that the latent heat enhances about 52.7℃ during phase transformation and the cooling speed of bottom surface and inner slows 50% and 25% respectively because of the increasing of latent heat,and the latent heat increases the temperature of plate 44℃ finally.The magnitude and distribution of residual stress are influenced by shifting the stress peak due to latent heat and TRIP effect.
Toward a Quantitative Estimate of Future Heat Wave Mortality under Global Climate Change
Peng, Roger D.; Tebaldi, Claudia; McDaniel, Larry; Bobb, Jennifer; Dominici, Francesca; Bell, Michelle D.
2010-01-01
Background: Climate change is anticipated to affect human health by changing the distribution of known risk factors. Heat waves have had debilitating effects on human mortality, and global climate models predict an increase in the frequency and severity of heat waves. The extent to which climate change will harm human health through changes in the distribution of heat waves and the sources of uncertainty in estimating these effects have not been studied extensively. Objectives: We estimated t...
Estimation of human heat loss in five Mediterranean regions.
Bilgili, M; Simsek, E; Sahin, B; Yasar, A; Ozbek, A
2015-10-01
This study investigates the effects of seasonal weather differences on the human body's heat losses in the Mediterranean region of Turkey. The provinces of Adana, Antakya, Osmaniye, Mersin and Antalya were chosen for the research, and monthly atmospheric temperatures, relative humidity, wind speed and atmospheric pressure data from 2007 were used. In all these provinces, radiative, convective and evaporative heat losses from the human body based on skin surface and respiration were analyzed from meteorological data by using the heat balance equation. According to the results, the rate of radiative, convective and evaporative heat losses from the human body varies considerably from season to season. In all the provinces, 90% of heat loss was caused by heat transfer from the skin, with the remaining 10% taking place through respiration. Furthermore, radiative and convective heat loss through the skin reached the highest values in the winter months at approximately between 110 and 140W/m(2), with the lowest values coming in the summer months at roughly 30-50W/m(2).
Nakos, James Thomas; Figueroa, Victor G.; Murphy, Jill E. (Worcester Polytechnic Institute, Worcester, MA)
2005-02-01
The measurement of heat flux in hydrocarbon fuel fires (e.g., diesel or JP-8) is difficult due to high temperatures and the sooty environment. Un-cooled commercially available heat flux gages do not survive in long duration fires, and cooled gages often become covered with soot, thus changing the gage calibration. An alternate method that is rugged and relatively inexpensive is based on inverse heat conduction methods. Inverse heat-conduction methods estimate absorbed heat flux at specific material interfaces using temperature/time histories, boundary conditions, material properties, and usually an assumption of one-dimensional (1-D) heat flow. This method is commonly used at Sandia.s fire test facilities. In this report, an uncertainty analysis was performed for a specific example to quantify the effect of input parameter variations on the estimated heat flux when using the inverse heat conduction method. The approach used was to compare results from a number of cases using modified inputs to a base-case. The response of a 304 stainless-steel cylinder [about 30.5 cm (12-in.) in diameter and 0.32-cm-thick (1/8-in.)] filled with 2.5-cm-thick (1-in.) ceramic fiber insulation was examined. Input parameters of an inverse heat conduction program varied were steel-wall thickness, thermal conductivity, and volumetric heat capacity; insulation thickness, thermal conductivity, and volumetric heat capacity, temperature uncertainty, boundary conditions, temperature sampling period; and numerical inputs. One-dimensional heat transfer was assumed in all cases. Results of the analysis show that, at the maximum heat flux, the most important parameters were temperature uncertainty, steel thickness and steel volumetric heat capacity. The use of a constant thermal properties rather than temperature dependent values also made a significant difference in the resultant heat flux; therefore, temperature-dependent values should be used. As an example, several parameters were varied to
Díaz, J I; Hidalgo, A; Tello, L
2014-10-08
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge-Kutta total variation diminishing for time integration.
Cabeza, L.F.; Roca, J.; Nogues, M. [Universitat de Lleida, Centre de Recerca en Energia Aplicada, Jaume II, 69, 25001 Lleida (Spain); Mehling, H.; Hiebler, S. [Bavarian Center for Applied Energy Research, Div. of Energy Conversion and Storage, Walther-Meissner-Str. 6, 85748 Garching (Germany)
2002-12-01
Efficient energy storage is one of the biggest problems facing alternative energy technologies. In whatever form the energy is stored, an alternative energy system usually requires a storage buffer between carrying energy input and the varying energy demand regime at the output end of the system. A method of energy storage is the use of the latent heat from Phase Change Materials (PCMs), for example salt hydrates. In this paper we tested the corrosion resistance of five commercial metals (aluminum, brass, copper, steel and stainless steel) in contact with two salt hydrates, commonly used as PCM, with a melting temperature in the range of 48 to 58 C (sodium acetate trihydrate and sodium thiosulfate pentahydrate) in experiments with a duration up to 70 days. The results demonstrated that brass and copper should be avoided when sodium acetate trihydrate is used in long term applications, but aluminum, steel and stainless steel can be used without problem. When the salt hydrate used is sodium thiosulfate pentahydrate, brass and copper should not be used in any case, aluminum and stainless steel can be used, and steel in contact with graphite should be monitored because corrosion could appear after some time of use. (Abstract Copyright [2002], Wiley Periodicals, Inc.)
Yunjun Yao; Shaohua Zhao; Huawei Wan; Yuhu Zhang; Bo Jiang; Kun Jia; Meng Liu; Jinhui Wu
2016-08-01
Terrestrial latent heat flux (LE) in the Three-River Headwaters region (TRHR) of China plays an essential role in quantifying the amount of water evaporation and carbon sink over the high altitude Tibetan Plateau (TP). Global warming is expected to accelerate terrestrial hydrological cycle and to increase evaporation. However, direct field observations are lacking in this region and the long-term variability in LE remains uncertain. In this study, we have revised a semi-empirical Penman LE algorithm based on ground eddy covariance (EC) observations from an alpine grass site and provided new satellite-based evidence to assess LE change in the TRHR during 1982–2010. Our results show that the average annual terrestrial LE in the TRHR is about 38.8 W/m$^2$ and there is no statistically significant changein annual LE from 1982 to 2010. We also found that during the same time period, terrestrial LE over the east region of the TRHR significantly decreased, on average, by 0.7 W/m$^2$ per decade, which was driven primarily by the surface incident solar radiation (Rs) limitation, offsetting the increased LE over the west region of the TRHR caused by the increased precipitation (P) and soil moisture (SM).
Yao, Yunjun; Zhao, Shaohua; Wan, Huawei; Zhang, Yuhu; Jiang, Bo; Jia, Kun; Liu, Meng; Wu, Jinhui
2016-08-01
Terrestrial latent heat flux (LE) in the Three-River Headwaters region (TRHR) of China plays an essential role in quantifying the amount of water evaporation and carbon sink over the high altitude Tibetan Plateau (TP). Global warming is expected to accelerate terrestrial hydrological cycle and to increase evaporation. However, direct field observations are lacking in this region and the long-term variability in LE remains uncertain. In this study, we have revised a semi-empirical Penman LE algorithm based on ground eddy covariance (EC) observations from an alpine grass site and provided new satellite-based evidence to assess LE change in the TRHR during 1982-2010. Our results show that the average annual terrestrial LE in the TRHR is about 38.8 W/m 2 and there is no statistically significant change in annual LE from 1982 to 2010. We also found that during the same time period, terrestrial LE over the east region of the TRHR significantly decreased, on average, by 0.7 W/m 2 per decade, which was driven primarily by the surface incident solar radiation ( R s ) limitation, offsetting the increased LE over the west region of the TRHR caused by the increased precipitation ( P) and soil moisture ( SM).
Díaz, J. I.; Hidalgo, A.; Tello, L.
2014-01-01
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration. PMID:25294969
Johnson, Maike; Hübner, Stefan; Reichmann, Carsten; Schönberger, Manfred; Fiß, Michael
2017-06-01
Energy storage systems are a key technology for developing a more sustainable energy supply system and lowering overall CO2 emissions. Among the variety of storage technologies, high temperature phase change material (PCM) storage is a promising option with a wide range of applications. PCM storages using an extended finned tube storage concept have been designed and techno-economically optimized for solar thermal power plant operations. These finned tube components were experimentally tested in order to validate the optimized design and simulation models used. Analysis of the charging and discharging characteristics of the storage at the pilot scale gives insight into the heat distribution both axially as well as radially in the storage material, thereby allowing for a realistic validation of the design. The design was optimized for discharging of the storage, as this is the more critical operation mode in power plant applications. The data show good agreement between the model and the experiments for discharging.
Cooling Load Estimation in the Building Based On Heat Sources
Chairani; Sulistyo, S.; Widyawan
2017-05-01
Heating, ventilation and air conditioning (HVAC) is the largest source of energy consumption. In this research, we discuss cooling load in the room by considering the different heat source and the number of occupancy. Energy cooling load is affected by external and internal heat sources. External cooling load in this discussion include convection outdoor/exterior using the DOE-2 algorithm, calculation of heat using Thermal Analysis Research Program (TARP), and Conduction Transfer Function (CTF). The internal cooling load is calculated based on the activity of the occupants in the office, a number of occupants, heat gain from lighting, and heat gain from electrics equipment. Weather data used is Surakarta weather and design day used is Jakarta design day. We use the ASHRAE standard for building materials and the metabolic of occupants while on the activity. The results show that the number of occupancies have an influence of cooling load. A large number of occupancy will cause the cooling load is great as well.
Schymanski, Stanislaus J.; Breitenstein, Daniel; Or, Dani
2017-07-01
Leaf transpiration and energy exchange are coupled processes that operate at small scales yet exert a significant influence on the terrestrial hydrological cycle and climate. Surprisingly, experimental capabilities required to quantify the energy-transpiration coupling at the leaf scale are lacking, challenging our ability to test basic questions of importance for resolving large-scale processes. The present study describes an experimental set-up for the simultaneous observation of transpiration rates and all leaf energy balance components under controlled conditions, using an insulated closed loop miniature wind tunnel and artificial leaves with pre-defined and constant diffusive conductance for water vapour. A range of tests documents the above capabilities of the experimental set-up and points to potential improvements. The tests reveal a conceptual flaw in the assumption that leaf temperature can be characterized by a single value, suggesting that even for thin, planar leaves, a temperature gradient between the irradiated and shaded or transpiring and non-transpiring leaf side can lead to bias when using observed leaf temperatures and fluxes to deduce effective conductances to sensible heat or water vapour transfer. However, comparison of experimental results with an explicit leaf energy balance model revealed only minor effects on simulated leaf energy exchange rates by the neglect of cross-sectional leaf temperature gradients, lending experimental support to our current understanding of leaf gas and energy exchange processes.
S. J. Schymanski
2017-07-01
Full Text Available Leaf transpiration and energy exchange are coupled processes that operate at small scales yet exert a significant influence on the terrestrial hydrological cycle and climate. Surprisingly, experimental capabilities required to quantify the energy–transpiration coupling at the leaf scale are lacking, challenging our ability to test basic questions of importance for resolving large-scale processes. The present study describes an experimental set-up for the simultaneous observation of transpiration rates and all leaf energy balance components under controlled conditions, using an insulated closed loop miniature wind tunnel and artificial leaves with pre-defined and constant diffusive conductance for water vapour. A range of tests documents the above capabilities of the experimental set-up and points to potential improvements. The tests reveal a conceptual flaw in the assumption that leaf temperature can be characterized by a single value, suggesting that even for thin, planar leaves, a temperature gradient between the irradiated and shaded or transpiring and non-transpiring leaf side can lead to bias when using observed leaf temperatures and fluxes to deduce effective conductances to sensible heat or water vapour transfer. However, comparison of experimental results with an explicit leaf energy balance model revealed only minor effects on simulated leaf energy exchange rates by the neglect of cross-sectional leaf temperature gradients, lending experimental support to our current understanding of leaf gas and energy exchange processes.
Application of fractional calculus in ground heat flux estimation
Protić Milan Z.
2012-01-01
Full Text Available Ground (soil heat flux is important physical factor primarily because of its role in surface energy balance, analysis of atmospheric boundary layer and land surface-atmosphere interaction. Direct measurement of this property is often associated with difficulties arising from need for adequate calibration of measuring devices, determination of proper depth for probes, upward water migration and accumulation below measuring plates to lack of understanding of the governing thermal processes occurring at the ground surface. In the following paper approach for inferring heat flux indirectly, from known ground surface temperature time-dependant functions, using previously developed fractional diffusion equation for ground heat conduction is elaborated. Fractional equation is solved for two, most frequently encountered harmonic surface temperature functions. Yielded results were compared with analytic solutions. Validation results indicate that solutions obtained with fractional approach closely correspond to analytic solutions with remark that former are more general, containing the term covering the transitional effect.
Kranzler, John H; Benson, Nicholas; Floyd, Randy G
2015-12-01
This study used estimated factor scores from a bifactor analysis of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) to examine the unique effects of its latent variables on academic achievement. In doing so, we addressed the potential limitation of multicollinearity in previous studies of the incremental validity of the WAIS-IV. First, factor scores representing psychometric g and 4 group factors representing the WAIS-IV index scales were computed from a bifactor model. Subtest and composite scores for the Wechsler Individual Achievement Test-Third Edition (WIAT-II) were then predicted from these estimated factor scores in simultaneous multiple regression. Results of this study only partially replicated the findings of previous research on the incremental validity of scores that can be derived from performance on the WAIS-IV. Although we found that psychometric g is the most important underlying construct measured by the WAIS-IV for the prediction of academic achievement in general, results indicated that the unique effect of Verbal Comprehension is also important for predicting achievement in reading, spelling, and oral communication skills. Based on these results, measures of both psychometric g and Verbal Comprehension could be cautiously interpreted when considering high school students' performance in these areas of achievement.
Simple future weather files for estimating heating and cooling demand
Cox, Rimante Andrasiunaite; Drews, Martin; Rode, Carsten
2015-01-01
Estimations of the future energy consumption of buildings are becoming increasingly important as a basis for energy management, energy renovation, investment planning, and for determining the feasibility of technologies and designs. Future weather scenarios, where the outdoor climate is usually...... represented by future weather files, are needed for estimating the future energy consumption. In many cases, however, the practitioner’s ability to conveniently provide an estimate of the future energy consumption is hindered by the lack of easily available future weather files. This is, in part, due...... to the difficulties associated with generating high temporal resolution (hourly) estimates of future changes in air temperature. To address this issue, we investigate if, in the absence of high-resolution data, a weather file constructed from a coarse (annual) estimate of future air temperature change can provide...
Mahmmod, Yasser; Toft, Nils; Katholm, Jørgen
2013-01-01
definition of infection may reflect a more general condition of cows being positive for S. agalactiae. Our findings indicate that PCR Ct-value cut-offs should be chosen according to the underlying latent infection definition of interest. Latent class analysis proposes a useful alternative to classic test......The misdiagnosis of intramammary infections (IMI) with Streptococcus agalactiae (S. agalactiae) could lead farmers to treat or cull animals unnecessarily. The objective of this field study was to estimate the sensitivity (Se) and specificity (Sp) of real-time PCR at different cut-offs for cycle...... threshold (Ct) values against bacterial culture (BC) for diagnosis of S. agalactiae IMI using latent class analysis to avoid the assumption of a perfect reference test. A total of 614 dairy cows were randomly selected from 6 herds with bulk tank PCR Ct value ≤ 39 for S. agalactiae and S. aureus. At milk...
Muhammad Aamir
2014-01-01
Full Text Available An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck’s sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.
Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad
2014-01-01
An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.
A New Entropy Formula and Gradient Estimates for the Linear Heat Equation on Static Manifold
Abimbola Abolarinwa
2014-08-01
Full Text Available In this paper we prove a new monotonicity formula for the heat equation via a generalized family of entropy functionals. This family of entropy formulas generalizes both Perelman’s entropy for evolving metric and Ni’s entropy on static manifold. We show that this entropy satisfies a pointwise differential inequality for heat kernel. The consequences of which are various gradient and Harnack estimates for all positive solutions to the heat equation on compact manifold.
Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping
2013-03-14
were compared with three reanalyses (MERRA, ERA-Interim and CFSR). Although the MMF tends to produce a higher precipitation rate over some topical regions, it actually well captures the variations in the zonal and meridional means. Among the three reanalyses, ERA-Interim seems to have values close to those of the satellite retrievals especially for GPCP. It is interesting to note that the MMF obtained the best results in the rain forest of Africa even better than those of CFSR and ERA-Interim, when compared to CMORPH. MERRA fails to capture the precipitation in this region. We are now collaborating with Steve Rutledge (CSU) to validate the model results for AMMA 6. MC3E and the diurnal variation of precipitation processes The Midlatitude Continental Convective Clouds Experiment (MC3E) was a joint field campaign between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the NASA Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. It took place in central Oklahoma during the period April 22 _ June 6, 2011. Some of its major objectives involve the use of CRMs in precipitation science such as: (1) testing the fidelity of CRM simulations via intensive statistical comparisons between simulated and observed cloud properties and latent heating fields for a variety of case types, (2) establishing the limits of CRM space-time integration capabilities for quantitative precipitation estimates, and (3) supporting the development and refinement of physically-based GMI, DPR, and DPR-GMI combined retrieval algorithms using ground-based GPM GV Ku-Ka band radar and CRM simulations. The NASA unified WRF model (nu-WRF) was used for real time forecasts during the field campaign, and ten precipitation events were selected for post mission simulations. These events include well-organized squall lines, scattered storms and quasi-linear storms. A paper focused on the diurnal variation of precipitation will be
Tabares Velasco, P. C.
2011-04-01
This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'
Pizzo, Michelle; Daryabeigi, Kamran; Glass, David
2015-01-01
The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.
Sensible heat balance estimates of transient soil ice contents for freezing and thawing conditions
Soil ice content is an important component for winter soil hydrology. The sensible heat balance (SHB) method using measurements from heat pulse probes (HPP) is a possible way to determine transient soil ice content. In a previous study, in situ soil ice contents estimates with the SHB method were in...
Bayesian variable selection for latent class models.
Ghosh, Joyee; Herring, Amy H; Siega-Riz, Anna Maria
2011-09-01
In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes.
Elastic thickness and heat flux estimates for the uranian satellite Ariel
Peterson, G.; Nimmo, F.; Schenk, P.
2015-04-01
The surface of Ariel, an icy satellite orbiting Uranus, shows extensional tectonic features suggesting an episode of endogenic heating in the satellite's past. Using topography derived from stereo-photoclinometry, we identified flexural uplift at a rift zone suggesting elastic thickness values in the range 3.8-4.4 km. We estimate the temperature at the base of the lithosphere to be in the range 99-146 K, depending on the strain rate assumed, with corresponding heat fluxes of 28-92 mW/m2. Neither tidal heating, assuming Ariel's current eccentricity, nor radiogenic heat production from the silicate core are enough to cause the inferred heat fluxes. None of three proposed ancient mean-motion resonances produce equilibrium tidal heating values in excess of 4.3 mW/m2. Thus, the origin of the inferred high heat fluxes is currently mysterious.
ANALYSIS OF A HEAT-FLUX DIFFERENTIAL SCANNING CALORIMETRY INSTRUMENTS
Sabau, Adrian S [ORNL; Porter, Wallace D [ORNL
2007-01-01
Differential Scanning Calorimetry (DSC) measurements are used to estimate the fractional latent heat release during phase changes. There are temperature lags inherent to the instruments due to the temperature measurement at a different location than that of the sample and reference materials. Recently, Dong and Hunt[1] showed that significant improvement in estimating the fractional latent heat can be obtained when detailed simulations of the heat transfer within the instrument are performed. The Netzsch DSC 404C instrument, with a high accuracy heat capacity sensor, is considered in this study. This instrument had a different configuration than that studied by Dong and Hunt[1]. The applicability of Dong and Hunt's approach to this instrument is investigated. It was found that the DSC instrument could be described by numerous parameters but that model parameters were difficult to estimate. Numerical simulation results are presented and compared with experimental results for the fractional latent heat of a commercial A356 aluminum alloy.
Estimation of Residential Heat Pump Consumption for Flexibility Market Applications
Kouzelis, Konstantinos; Tan, Zheng-Hua; Bak-Jensen, Birgitte
2015-01-01
devices’ consumption data are theoretically recorded, elaborated and their upcoming flexibility is bid to flexibility markets. However, there are many cases where explicit flexible device consumption data are absent. This paper presents a way to circumvent this problem and extract the potentially flexible...... load of a flexible device, namely a Heat Pump (HP), out of the aggregated energy consumption of a house. The main idea for accomplishing this, is a comparison of the flexible consumer with electrically similar non-flexible consumers. The methodology is based on machine learning techniques, probability...... for bidding flexibility in intra-day markets even in the absence of explicit device measurements....
Estimation of pressure drop in gasket plate heat exchangers
Neagu Anisoara Arleziana
2016-06-01
Full Text Available In this paper, we present comparatively different methods of pressure drop calculation in the gasket plate heat exchangers (PHEs, using correlations recommended in literature on industrial data collected from a vegetable oil refinery. The goal of this study was to compare the results obtained with these correlations, in order to choose one or two for practical purpose of pumping power calculations. We concluded that pressure drop values calculated with Mulley relationship and Buonopane & Troupe correlation were close and also Bond’s equation gave results pretty close to these but the pressure drop is slightly underestimated. Kumar correlation gave results far from all the others and its application will lead to oversize. In conclusion, for further calculations we will chose either the Mulley relationship or the Buonopane & Troupe correlation.
Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei
2012-01-01
This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered.
Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten
2017-05-19
In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between
Vertical profiles of heating derived from IR-based precipitation estimates during FGGE SOP-1
Robertson, Franklin R.; Vincent, Dayton G.
1988-01-01
This paper examines a technique for retrieving from geostationary IR data the vertical profiles of heating and cooling due to moist diabatic processes. First, GOES IR imagery is used to estimate precipitation fields which are independent of fields inferred from residuals in heat budget analysis based on the FGGE level III-b data. Vertical distributions of the associated heating are then obtained using thermodynamic data from the level III-b analysis, one-dimensional cloud models, and the satellite-estimated precipitation. The technique was applied to infer heating in the South Pacific convergence zone during a portion of FGEE SOP-1, and the results were compared with heat-budget calculations made using the ECMWF analyses.
The Surface Energy Balance System (SEBS for estimation of turbulent heat fluxes
Z. Su
2002-01-01
Full Text Available A Surface Energy Balance System (SEBS is proposed for the estimation of atmospheric turbulent fluxes and evaporative fraction using satellite earth observation data, in combination with meteorological information at proper scales. SEBS consists of: a set of tools for the determination of the land surface physical parameters, such as albedo, emissivity, temperature, vegetation coverage etc., from spectral reflectance and radiance measurements; a model for the determination of the roughness length for heat transfer; and a new formulation for the determination of the evaporative fraction on the basis of energy balance at limiting cases. Four experimental data sets are used to assess the reliabilities of SEBS. Based on these case studies, SEBS has proven to be capable to estimate turbulent heat fluxes and evaporative fraction at various scales with acceptable accuracy. The uncertainties in the estimated heat fluxes are comparable to in-situ measurement uncertainties. Keywords: Surface energy balance, turbulent heat flux, evaporation, remote sensing
Estimating end-use emissions factors for policy analysis: the case of space cooling and heating.
Jacobsen, Grant D
2014-06-17
This paper provides the first estimates of end-use specific emissions factors, which are estimates of the amount of a pollutant that is emitted when a unit of electricity is generated to meet demand from a specific end-use. In particular, this paper provides estimates of emissions factors for space cooling and heating, which are two of the most significant end-uses. The analysis is based on a novel two-stage regression framework that estimates emissions factors that are specific to cooling or heating by exploiting variation in cooling and heating demand induced by weather variation. Heating is associated with similar or greater CO2 emissions factor than cooling in all regions. The difference is greatest in the Midwest and Northeast, where the estimated CO2 emissions factor for heating is more than 20% larger than the emissions factor for cooling. The minor differences in emissions factors in other regions, combined with the substantial difference in the demand pattern for cooling and heating, suggests that the use of overall regional emissions factors is reasonable for policy evaluations in certain locations. Accurately quantifying the emissions factors associated with different end-uses across regions will aid in designing improved energy and environmental policies.
Hasterok, D.; Gard, M.
2016-09-01
While surface heat flow relates to the heat loss through the lithosphere, it can be difficult to quantify and separate the heat produced internally through radiogenic decay from the heat transferred across the base of the lithosphere by mantle convection. In this study, we apply a thermo-isostatic analysis to Australia and estimate the sub-lithospheric and radiogenic heat flow components by employing a simple 1-D conservation of energy model. We estimate an anomalous radiogenic heat production across much of eastern Australia generally accounting for >50 mW m-2, while western Australia appears to have high crustal compositionally corrected elevation, possibly related to chemical buoyancy of the mantle lithosphere. A moderately high sub-lithospheric heat flow (∼40 mW m-2) along the eastern and southeastern coast, including Tasmania, is coincident with locations of Cenozoic volcanism and supports an edge-driven convection hypothesis. However, the pattern of sub-lithospheric heat flow along the margin does not support the existence of hotspot tracks. Thermo-isostatic models such as these improve our ability to identify and quantify crustal from mantle sources of heat loss and add valuable constraints on tectonic and geodynamic models of the continental lithosphere's physical state and evolution.
Gaussian estimates for a heat equation on a network
Mugnolo, Delio
2010-01-01
We consider a diffusion problem on a network on whose nodes we impose Dirichlet and generalized, non-local Kirchhoff-type conditions. We prove well-posedness of the associated initial value problem, and we exploit the theory of sub-Markovian and ultracontractive semigroups in order to obtain upper Gaussian estimates for the integral kernel. We conclude that the same diffusion problem is governed by an analytic semigroup acting on all $L^p$-type spaces as well as on suitable spaces of continuous functions. Stability and spectral issues are also discussed. As an application we discuss a system of semilinear equations on a network related to potential transmission problems arising in neurobiology.
Estimate of Joule Heating in a Flat Dechirper
Bane, Karl [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stupakov, Gennady [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gjonaj, Erion [Technical Univ. of Darmstadt (Germany)
2017-02-10
We have performed Joule power loss calculations for a flat dechirper. We have considered the configurations of the beam on-axis between the two plates—for chirp control—and for the beam especially close to one plate—for use as a fast kicker. Our calculations use a surface impedance approach, one that is valid when corrugation parameters are small compared to aperture (the perturbative parameter regime). In our model we ignore effects of field reflections at the sides of the dechirper plates, and thus expect the results to underestimate the Joule losses. The analytical results were also tested by numerical, time-domain simulations. We find that most of the wake power lost by the beam is radiated out to the sides of the plates. For the case of the beam passing by a single plate, we derive an analytical expression for the broad-band impedance, and—in Appendix B—numerically confirm recently developed, analytical formulas for the short-range wakes. While our theory can be applied to the LCLS-II dechirper with large gaps, for the nominal apertures we are not in the perturbative regime and the reflection contribution to Joule losses is not negligible. With input from computer simulations, we estimate the Joule power loss (assuming bunch charge of 300 pC, repetition rate of 100 kHz) is 21 W/m for the case of two plates, and 24 W/m for the case of a single plate.
Sutjahja, I. M.; U, S. Rahayu A.; Kurniati, Nia; Pallitine, Ivyalentine D.; Kurnia, D.
2016-08-01
CaCl2.6H2O is one of salt hydrate based phase change material (PCM) which is suitable for room air-temperature stabilizer because it has the melting temperature just above the human comfort zone temperature (Tm ∼⃒ 29 oC) and a relatively large heat entalphy (AH ∼⃒ 190 kJ/kg). This paper reports the role of the type of chemical additives to PCM CaCl2.6H2O to the phase change process throughout the solidification process or heat release in order to optimize its performance as latent heat energy storage system. In this research we used several kinds of chemical additive, namely SrCl2.6H2O (1.0 wt%), BaCO3 (0.5 wt%), and K2CO3 (0.5 wt%). In terms of its latent time for phase change process the order the effectiveness of those chemical additives are reduced from SrCl2.6H2O, BaCO3and K2CO3. We found that this is also related to their role in suppression supercooling and phase separation effects which occurs during crystallization process of CaCl2.6H2O.
Aurélie Courcoul
Full Text Available Bacteriology and histopathology are the most commonly used tests used for official confirmatory diagnosis of bovine tuberculosis (bTB in cattle in most countries. PCR is also being used increasingly because it allows a fast diagnosis. This test could be applied as a supplement to or replacement for current bTB confirmatory diagnostic tests but its characteristics have first to be evaluated. The aim of this study was to estimate and compare sensitivities and specificities of bacteriology, histopathology and PCR under French field conditions, in the absence of a gold standard using latent class analysis. The studied population consisted of 5,211 animals from which samples were subjected to bacteriology and PCR (LSI VetMAX™ Mycobacterium tuberculosis Complex PCR Kit, Life Technologies as their herd of origin was either suspected or confirmed infected with bTB or because bTB-like lesions were detected during slaughterhouse inspection. Samples from 697 of these animals (all with bTB-like lesions were subjected to histopathology. Bayesian models were developed, allowing for dependence between bacteriology and PCR, while assuming independence from histopathology. The sensitivity of PCR was higher than that of bacteriology (on average 87.7% [82.5-92.3%] versus 78.1% [72.9-82.8%] while specificity of both tests was very good (on average 97.0% for PCR [94.3-99.0%] and 99.1% for bacteriology [97.1-100.0%]. Histopathology was at least as sensitive as PCR (on average 93.6% [89.9-96.9%] but less specific than the two other tests (on average 83.3% [78.7-87.6%]. These results suggest that PCR has the potential to replace bacteriology to confirm bTB in samples submitted from suspect cattle.
Lp and L∞ Norm Estimates of the Cost of the Controllability for Heat Equations
Pei Dong LEI; Xu LIU; Hang GAO
2009-01-01
This paper is concerned with the bound of the cost of approximate controllability and null controllability of heat equations, i.e., the minimal Lp norm and L∞ norm of a control needed to control the system approximately or a control needed to steer the state of the system to zero. The methods we use combine observability inequalities, energy estimates for heat equations and the dual theory.
Fundamental mechanisms that influence the estimate of heat transfer to gas turbine blades
Graham, R. W.
1979-01-01
Estimates of the heat transfer from the gas to stationary (vanes) or rotating blades poses a major uncertainty due to the complexity of the heat transfer processes. The gas flow through these blade rows is three dimensional with complex secondary viscous flow patterns that interact with the endwalls and blade surfaces. In addition, upstream disturbances, stagnation flow, curvature effects, and flow acceleration complicate the thermal transport mechanisms in the boundary layers. Some of these fundamental heat transfer effects are discussed. The chief purpose of the discussion is to acquaint those in the heat transfer community, not directly involved in gas turbines, of the seriousness of the problem and to recommend some basic research that would improve the capability for predicting gas-side heat transfer on turbine blades and vanes.
Estimation of heat load in waste tanks using average vapor space temperatures
Crowe, R.D.; Kummerer, M.; Postma, A.K.
1993-12-01
This report describes a method for estimating the total heat load in a high-level waste tank with passive ventilation. This method relates the total heat load in the tank to the vapor space temperature and the depth of waste in the tank. Q{sub total} = C{sub f} (T{sub vapor space {minus}} T{sub air}) where: C{sub f} = Conversion factor = (R{sub o}k{sub soil}{sup *}area)/(z{sub tank} {minus} z{sub surface}); R{sub o} = Ratio of total heat load to heat out the top of the tank (function of waste height); Area = cross sectional area of the tank; k{sub soil} = thermal conductivity of soil; (z{sub tank} {minus} z{sub surface}) = effective depth of soil covering the top of tank; and (T{sub vapor space} {minus} T{sub air}) = mean temperature difference between vapor space and the ambient air at the surface. Three terms -- depth, area and ratio -- can be developed from geometrical considerations. The temperature difference is measured for each individual tank. The remaining term, the thermal conductivity, is estimated from the time-dependent component of the temperature signals coming from the periodic oscillations in the vapor space temperatures. Finally, using this equation, the total heat load for each of the ferrocyanide Watch List tanks is estimated. This provides a consistent way to rank ferrocyanide tanks according to heat load.
Satellite air temperature estimation for monitoring the canopy layer heat island of Milan
Pichierri, Manuele; Bonafoni, Stefania; Biondi, Riccardo
2012-01-01
2007 and 2010 were processed. Analysis of the canopy layer heat island (CLHI) maps during summer months reveals an average heat island effect of 3–4K during nighttime (with some peaks around 5K) and a weak CLHI intensity during daytime. In addition, the satellite maps reveal a well defined island shape......In this work, satellite maps of the urban heat island of Milan are produced using satellite-based infrared sensor data. For this aim, we developed suitable algorithms employing satellite brightness temperatures for the direct air temperature estimation 2 m above the surface (canopy layer), showing...
Heat Flux Estimation of a Flame Thermal Spray Process Using a Thermally Thin Composite Calorimeter
Yi, Duo; Serio, Bruno; Lecler, Sylvain; Pfeiffer, Pierre; Costil, Sophie
2016-12-01
Temperature measurements take on prime importance in the field of the thermal spray coating since the temperature variation greatly affects the formation of splat morphology and also the coating properties and qualities. The evaluation of the heat flux is therefore essential since temperature variation comes from the energy transfer and conduction of the thermal system. The aim of this study is to estimate the heat flux of a flame thermal spray by solving an inverse heat conduction problem. Firstly, the substrate material and geometry are well designed so that the Biot number is small enough to conform to the lumped capacitance conditions. A lumped capacitance model of a substrate with its coating subjected to a uniform echelon heat flux is evaluated by solving a heat balance equation in the Laplace domain. Then, a thermally thin calorimeter is designed and the experimental thermogram is obtained by embedding a thin-wire micro-thermocouple onto the front and rear faces of the substrate. The forced convective heat transfer coefficient as well as the net incident heat flux density brought to the substrate during the thermal spray process are estimated. The theoretical composite surface temperature is compared to the experimental recording, the result showing a good agreement.
Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei
2012-01-01
This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. Anthropogenic heat discharge was estimated based on a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. Building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/ Energy Information Administration survey data, Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data.
González, Francisco Javier
2011-01-01
In this work the metabolic heat generated by breast tumors was estimated indirectly and noninvasively from digital infrared images and numerically simulating a simplified breast model and a cancerous tumor, this parameter can be of clinical importance since it has been related to the doubling volume's time and malignancy for that particular tumor. The results indicate that digital infrared imaging has the potential to estimate in a non-invasive way the malignancy of a tumor by calculating its metabolic heat generation from bioheat thermal transfer models.
Global Heat Kernel Estimates for $\\Delta+\\Delta^{\\alpha/2}$ in Half-space-like domains
Chen, Zhen-Qing; Song, Renming
2011-01-01
Suppose that $d\\ge 1$ and $\\alpha\\in (0, 2)$. In this paper, by using probabilistic methods, we establish sharp two-sided pointwise estimates for the Dirichlet heat kernels of $\\{\\Delta+ a^\\alpha \\Delta^{\\alpha/2}; \\ a\\in (0, 1]\\}$ on half-space-like $C^{1, 1}$ domains in ${\\mathbb R}^d$ for all time $t>0$. The large time estimates for half-space-like domains are very different from those for bounded domains. Our estimates are uniform in $a \\in (0, 1]$ in the sense that the constants in the estimates are independent of $a\\in (0, 1]$. Thus it yields the Dirichlet heat kernel estimates for Brownian motion in half-space-like domains by taking $a\\to 0$. Integrating the heat kernel estimates in time $t$, we obtain uniform sharp two-sided estimates for the Green functions of $\\{\\Delta+ a^\\alpha \\Delta^{\\alpha/2}; \\ a\\in (0, 1]\\}$ in half-space-like $C^{1, 1}$ domains in ${\\mathbb R}^d$.
赵永祥; 侯敏; 杜颖
2011-01-01
基于重整C9芳烃分离装置塔顶油气冷凝潜热的特点,分析对比现有换热工艺及几种新的节能新工艺,研究发现,利用二塔塔顶油气生产0.4 MPa饱和水蒸气,二塔塔釜分别设加热热源工艺和分馏塔热集成与塔顶油气生产0.4 MPa水蒸气联合运用工艺,二者节能效果相当,但是后者装置外提供的一次能量较前者小,因此分馏塔热集成与塔顶油气生产0.4 MPa水蒸气联合运用工艺更好.文中提出对于新建的重整C9芳烃分离装置可以采用分馏塔热集成与塔顶油气冷凝潜热生产水蒸气联合节能工艺,可以直接利用其分馏塔顶油气冷凝潜热生产水蒸气,以降低能耗,由重整C9芳烃塔顶油气潜热所生产的0.4 MPa水蒸气可以直接使用,也可以通过压缩机进行提温提压后,并入低压蒸汽管网；对于现有装置可以通过改造,直接利用分馏塔顶油气生产水蒸气,其节能效果也十分明显.%Based on the condensation latent heat characteristics of fractionating column top oil gas in C9 arenes separating unit, the existing heat transfer technologies and several new energy-saving technologies were analyzed and compared. The research shows that the technology with 0.4 Mpa saturated steam produced from two-column top oil gas and two-column bottom heated with different heat sources and the technology with 0.4 Mpa saturated steam produced from two-column top oil gas and utilizing integrated heat from fractionating column both are obviously agreed in energy saving. But, the latter needs less primary power provided from outside apparatus. So this technology is better. Both heat-integrated distillation technology and steam production technology by using latent heat energy can be used in new C9 arenes distillation plant, from which the vapor can be produced directly from condensation latent heat to decrease energy consumption. The produced 0.4 Mpa steam can be directly used in the plant or sent into the low
Chen, Han-Taw; Lu, Chih-Han; Huang, Yao-Sheng; Liu, Kuo-Chi
2016-05-01
This study applies a three-dimensional computational fluid dynamics commercial software in conjunction with various flow models to estimate the heat transfer and fluid flow characteristics of the two-row plate-finned tube heat exchanger in staggered arrangement. The effect of air speed and fin spacing on the results obtained is investigated. Temperature and velocity distributions of air between the two fins and heat transfer coefficient on the fins are determined using the laminar flow and RNG k-ɛ turbulence models. More accurate results can be obtained, if the heat transfer coefficient obtained is close to the inverse results and matches existing correlations. Furthermore, the fin temperature measured at the selected locations also coincides with the experimental temperature data. The results obtained using the RNG k-ɛ turbulence model are more accurate than those using the laminar flow model. An interesting finding is the number of grid points may also need to change with fin spacing and air speed.
Stochastic Approximation Methods for Latent Regression Item Response Models
von Davier, Matthias; Sinharay, Sandip
2010-01-01
This article presents an application of a stochastic approximation expectation maximization (EM) algorithm using a Metropolis-Hastings (MH) sampler to estimate the parameters of an item response latent regression model. Latent regression item response models are extensions of item response theory (IRT) to a latent variable model with covariates…
First Versus Second Order Latent Growth Curve Models: Some Insights From Latent State-Trait Theory
Geiser, Christian; Keller, Brian; Lockhart, Ginger
2013-01-01
First order latent growth curve models (FGMs) estimate change based on a single observed variable and are widely used in longitudinal research. Despite significant advantages, second order latent growth curve models (SGMs), which use multiple indicators, are rarely used in practice, and not all aspects of these models are widely understood. In this article, our goal is to contribute to a deeper understanding of theoretical and practical differences between FGMs and SGMs. We define the latent ...
Inverse Estimation of Temperature Profiles in Landfills Using Heat Recovery Fluids Measurements
C. Solisio
2012-01-01
Full Text Available In addition to leachate and gas emission analysis, temperature variations in municipal solid waste landfills are routinely monitored for safety and health reasons, such as the increased production of biogas or the danger of spontaneous combustion phenomena if the temperature exceeds 70–75°C. The increasing constraints on greenhouse gas emissions and the convenience of fuel and heat recovery have helped develop a global approach to landfills' operation and maintenance, generally referred to as bioreactor landfill management. The heat recovery piping we are presently designing can be a significant part of this approach. The heat gained by a fluid circulated in a closed network through the landfill is transferred to an external heat exchanger or used directly as warm water. Additionally, it can help reduce landfill temperature levels and control biogas generation. Since the pipes diameter is large enough to allow for a radial temperature gradient, this information can be used for an inverse estimation of the temperature profile in the landfill which constitutes the boundary conditions of the resulting heat transfer problem. In this paper, we describe an algorithm for regularising the resulting ill-posed free boundary estimation problem using sampled data of the heat recovery fluid on exiting the landfill.
A feedback-based inverse heat transfer method to estimate unperturbed temperatures in wellbores
Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico D.F. 09340 (Mexico); Espinosa-Martinez, Erick G. [Retorno Quebec 6, Col. Burgos de Cuernavaca 62580, Temixco, Mor. (Mexico)
2009-01-15
This paper presents a feedback-based strategy to solve an inverse heat transfer problem for the estimation of unperturbed formation temperatures (UFT) from measured temperatures in wellbores. The feedback function uses the error between the measured and estimated temperatures during the shut-in process. Thus, an inverse heat transfer problem was solved in this way since the UFT represents the unknown initial conditions and the measured temperatures in the wellbore represents the particular solution of the PDE'S governing the heat transfer process in the formation and in the wellbore system. The performance of the method is illustrated via numerical simulations of two wells: (a) oil well FE-1227 from the Gulf of Mexico maritime zone and (b) well CP-0512 from Cerro Prieto Mexican geothermal field. (author)
Estimation of eddy diffusivity coefficient of heat in the upper layers of equatorial Arabian Sea
Zavialov, P.O.; Murty, V.S.N.
in the Central Equatorial Arabian Sea (CEAS). A comparison of the model computed K sub(h) values with those estimated from the heat balance of the upper layer (50 m) of the sea shows good agreement in the region of weak winds (CEAS) or low turbulent mixing regime...
Heat flux estimates from the Gakkel Ridge 85E vent field from the AGAVE 2007 expedition
Stranne, C.; Winsor, P.; Sohn, R. A.; Liljebladh, B.
2009-04-01
During the Arctic Gakkel Vents Expedition (AGAVE) 2007, abundant hydrothermal venting was discovered on the Gakkel Ridge at 85E. Hydrothermal vents on the sea floor give rise to buoyant plumes which, when reaching neutral buoyancy, spreads horizontally over areas with length scales on the order of several kilometres and are therefore easily detected with a CTD rosette. The detected anomalies are consistent with the findings 6 years earlier during the Arctic Mid-Ocean Ridge Expedition (AMORE) 2001. The horizontal and vertical distribution of the anomalies is considered in order to establish the number of individual plumes detected. The objective of this paper is to estimate the minimum heat input required to reproduce the observed plumes, using a turbulent entrainment model. The model was run with a large number of combinations of boundary conditions (nozzle area, vertical velocity and temperature) in order to see which combinations that give rise to the observed plume characteristics (level of neutral buoyancy and temperature anomaly). For each individual plume, we estimate the minimum heat flux required to obtain the observed temperature anomaly. Adding the minimum heat flux from each vent together, the total heat flux for the vent field is estimated to be ~ 2 GW. The estimated value is comparable or larger than any other known vent field.
Okamoto, Eiji; Makino, Tsutomu; Nakamura, Masatoshi; Tanaka, Shuji; Chinzei, Tsuneo; Abe, Yusuke; Isoyama, Takashi; Saito, Itsuro; Mochizuki, Shu-ichi; Imachi, Kou; Inoue, Yusuke; Mitamura, Yoshinori
2006-01-01
We have been developing an implantable battery system using three series-connected lithium ion batteries having an energy capacity of 1,800 mAh to drive an undulation pump left ventricular assist device. However, the lithium ion battery undergoes an exothermic reaction during the discharge phase, and the temperature rise of the lithium ion battery is a critical issue for implantation usage. Heat generation in the lithium ion battery depends on the intensity of the discharge current, and we obtained a relationship between the heat flow from the lithium ion battery q(c)(I) and the intensity of the discharge current I as q(c)(I) = 0.63 x I (W) in in vitro experiments. The temperature distribution of the implantable battery system was estimated by means of three-dimentional finite-element method (FEM) heat transfer analysis using the heat flow function q(c)(I), and we also measured the temperature rise of the implantable battery system in in vitro experiments to conduct verification of the estimation. The maximum temperatures of the lithium ion battery and the implantable battery case were measured as 52.2 degrees C and 41.1 degrees C, respectively. The estimated result of temperature distribution of the implantable battery system agreed well with the measured results using thermography. In conclusion, FEM heat transfer analysis is promising as a tool to estimate the temperature of the implantable lithium ion battery system under any pump current without the need for animal experiments, and it is a convenient tool for optimization of heat transfer characteristics of the implantable battery system.
Wilton P. da Silva
2008-06-01
Full Text Available Em cálculos da quantidade de energia requerida em processos de secagem artificial de um produto agrícola, é necessário o conhecimento de uma expressão para a determinação do calor latente de vaporização (H de água no produto. Normalmente, as expressões para H, encontradas na literatura, são dadas pelo calor latente de vaporização (h de água livre multiplicado por funções que dependem apenas do teor de água do produto. Isso significa que a relação H/h, para um dado produto, só depende do teor de água, o que é uma simplificação, pois se sabe que tal relação depende também da temperatura. Neste artigo, é apresentada uma expressão para o cálculo de H para feijão macassar, variedade sempre-verde, levando em consideração a dependência de H/h com a temperatura. Para tal, foi desenvolvido e utilizado um programa computacional que ajusta, de forma automática, cerca de 500 funções contidas em sua biblioteca, com uma e duas variáveis independentes, a dados experimentais. O programa, que usa regressão não-linear, classifica as melhores funções ajustadas pelo critério do menor qui-quadrado reduzido. O conjunto de testes estatísticos realizados indica que a expressão apresentada neste artigo produz resultados mais precisos na determinação de H para feijão macassar que os de outras equações normalmente encontradas na literatura.In order to determine the energy needed to artificially dry an agricultural product the latent heat of vaporization of moisture in the product, H, must be known. Generally, the expressions for H reported in the literature are of the form H = h(Tf(M, where h(T is the latent heat of vaporization of free water, and f(M is a function of the equilibrium moisture content, M, which is a simplification. In this article, a more general expression for the latent heat of vaporization, namely H = g(M,T, is used to determine H for cowpea, always-green variety. For this purpose, a computer program
Jakkareddy, Pradeep S.; Balaji, C.
2016-09-01
This paper employs the Bayesian based Metropolis Hasting - Markov Chain Monte Carlo algorithm to solve inverse heat transfer problem of determining the spatially varying heat transfer coefficient from a flat plate with flush mounted discrete heat sources with measured temperatures at the bottom of the plate. The Nusselt number is assumed to be of the form Nu = aReb(x/l)c . To input reasonable values of ’a’ and ‘b’ into the inverse problem, first limited two dimensional conjugate convection simulations were done with Comsol. Based on the guidance from this different values of ‘a’ and ‘b’ are input to a computationally less complex problem of conjugate conduction in the flat plate (15mm thickness) and temperature distributions at the bottom of the plate which is a more convenient location for measuring the temperatures without disturbing the flow were obtained. Since the goal of this work is to demonstrate the eficiacy of the Bayesian approach to accurately retrieve ‘a’ and ‘b’, numerically generated temperatures with known values of ‘a’ and ‘b’ are treated as ‘surrogate’ experimental data. The inverse problem is then solved by repeatedly using the forward solutions together with the MH-MCMC aprroach. To speed up the estimation, the forward model is replaced by an artificial neural network. The mean, maximum-a-posteriori and standard deviation of the estimated parameters ‘a’ and ‘b’ are reported. The robustness of the proposed method is examined, by synthetically adding noise to the temperatures.
Reflectance-Based Estimation of Soil Heat Fluxes in the Texas High Plains
Gowda, P. H.; Colaizzi, P. D.; O'Shaughnessy, S.; Ha, W.; Howell, T. A.
2010-12-01
Soil heat flux (G) is one of the terms required for estimating evapotranspiration rates using an energy balance. Numerous reflectance-based models are available in the literature for estimating G fluxes. However, these models have shown wide variation in their performance. Therefore, operational ET remote sensing programs may require locally developed/calibrated models for accurately estimating G. The objective of this study was to develop and evaluate reflectance-based empirical G models for the semi-arid Texas High Plains. Soil heat flux was measured at 0.15 hz interval and averaged every 15 minutes at five different locations within a 4.7 ha lysimeter field with Pullman clay loam soil during the 2010 summer growing season. The field was planted to soybean and managed under dryland conditions. In each location, G was measured at 8 cm depth with two Campbell Scientific HFT3 soil heat flux plates. Soil temperature was measured at 2 and 6 cm above the soil heat flux plates. Soil moisture was measured in the 2-8 cm layer using Acclima SDI-12 sensors. Hourly G fluxes at the surface were calculated by adding the measured G fluxes at 8 cm to the energy stored above the heat flux plates. A multispectral radiometer (MSR, CROPSCAN, Inc.) and hand-held thermometer (EVEREST Interscience Inc.) measured surface reflectance in red and near infrared bandwidths and surface temperature (ST), respectively, daily at 11:30 AM CST to be consistent with the Landsat 5 overpass time. Fraction crop cover (FC) was measured by digital photographs taken twice a week. A set of G models was developed for estimating hourly fluxes based on measured reflectance, net radiation, ST, NDVI, and FC,. Resulting models were compared for performance with existing models available in the literature. In this presentation, we will discuss our G models for the Texas High Plains and the statistical results.
Parameter estimation in heat conduction using a two-dimensional inverse analysis
Mohebbi, Farzad; Sellier, Mathieu
2016-07-01
This article is concerned with a two-dimensional inverse steady-state heat conduction problem. The aim of this study is to estimate the thermal conductivity, the heat transfer coefficient, and the heat flux in irregular bodies (both separately and simultaneously) using a two-dimensional inverse analysis. The numerical procedure consists of an elliptic grid generation technique to generate a mesh over the irregular body and solve for the heat conduction equation. This article describes a novel sensitivity analysis scheme to compute the sensitivity of the temperatures to variation of the thermal conductivity, the heat transfer coefficient, and the heat flux. This sensitivity analysis scheme allows for the solution of inverse problem without requiring solution of adjoint equation even for a large number of unknown variables. The conjugate gradient method (CGM) is used to minimize the difference between the computed temperature on part of the boundary and the simulated measured temperature distribution. The obtained results reveal that the proposed algorithm is very accurate and efficient.
Quick estimation of heats of detonation of aromatic energetic compounds from structural parameters.
Keshavarz, Mohammad Hossein
2007-05-08
In this paper, a simple procedure is introduced for a quick and reliable estimation of detonation heats of aromatic energetic compounds without considering heats of formation of energetic compounds. This method does not use any experimental or computed data of energetic materials. The methodology assumes that the heat of detonation of an energetic compound with composition of C(a)H(b)N(c)O(d) can be obtained from the number of nitrogens, ratios of oxygen to carbon and hydrogen to oxygen as well as the contribution of some specific functional groups. There is no need to use any assumed decomposition products to calculate heats of detonation for energetic compounds. Predicted heats of detonation of pure energetic compounds with the product H(2)O in the liquid state for 31 aromatic energetic compounds have a root mean square (rms) of deviation of 0.32 kJ/g from experiment. The new method gives good results with respect to two empirical methods which use measured heats of formation of explosives with two sets of decomposition gases.
Rao, Samrat
2015-01-01
The Tropical Easterly Jet (TEJ) is a prominent atmospheric circulation feature observed during the Asian Summer Monsoon (ASM). The simulation of TEJ by the Community Atmosphere Model, version 3.1 (CAM-3.1) has been discussed in detail. Although the simulated TEJ replicates many observed features of the jet, the jet maximum is located too far to the west when compared to observation. Orography has minimal impact on the simulated TEJ hence indicating that latent heating is the crucial parameter. A series of aqua-planet experiments with increasing complexity was undertaken to understand the reasons for the extreme westward shift of the TEJ. The aqua-planet simulations show that a single heat source in the deep tropics is inadequate to explain the structure of the observed TEJ. Equatorial heating is necessary to impart a baroclinic structure and a realistic meridional structure. Jet zonal wind speeds are directly related to the magnitude of deep tropical heating. The location of peak zonal wind is influenced by o...
M. J. Savage
2010-01-01
Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface
Estimating population heat exposure and impacts on working people in conjunction with climate change
Kjellstrom, Tord; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Briggs, David
2017-08-01
Increased environmental heat levels as a result of climate change present a major challenge to the health, wellbeing and sustainability of human communities in already hot parts of this planet. This challenge has many facets from direct clinical health effects of daily heat exposure to indirect effects related to poor air quality, poor access to safe drinking water, poor access to nutritious and safe food and inadequate protection from disease vectors and environmental toxic chemicals. The increasing environmental heat is a threat to environmental sustainability. In addition, social conditions can be undermined by the negative effects of increased heat on daily work and life activities and on local cultural practices. The methodology we describe can be used to produce quantitative estimates of the impacts of climate change on work activities in countries and local communities. We show in maps the increasing heat exposures in the shade expressed as the occupational heat stress index Wet Bulb Globe Temperature. Some tropical and sub-tropical areas already experience serious heat stress, and the continuing heating will substantially reduce work capacity and labour productivity in widening parts of the world. Southern parts of Europe and the USA will also be affected. Even the lowest target for climate change (average global temperature change = 1.5 °C at representative concentration pathway (RCP2.6) will increase the loss of daylight work hour output due to heat in many tropical areas from less than 2% now up to more than 6% at the end of the century. A global temperature change of 2.7 °C (at RCP6.0) will double this annual heat impact on work in such areas. Calculations of this type of heat impact at country level show that in the USA, the loss of work capacity in moderate level work in the shade will increase from 0.17% now to more than 1.3% at the end of the century based on the 2.7 °C temperature change. The impact is naturally mainly occurring in the southern
Dynamics of Soil Heat Flux in Lowland Area: Estimating the Soil Thermal Conductivy
Zimmer, T.; Silveira, M. V.; Roberti, D. R.
2013-05-01
In this work, it is shown soil thermal conductivity estimates in a flooded irrigated rice culture located at the Paraíso do Sul city for two distinct periods. The thermal conductivity is higher when the heat storage is higher and the soil surface temperature is lower. The soil thermal conductivity is also dependant on the soil texture, porosity and moisture. Therefore, it varies from soil to soil and in the same soil, depending on its soil moisture. For approximately 80% of its growing season, lowland flooded irrigated rice ecosystems stay under a 5 - 10 cm water layer. It affects the partitioning of the energy and water balance components. Furthermore this planting technique differs substantially from any other upland non-irrigated or irrigated crop ecosystems where the majority of observational studies have been conducted. In the present work, the dynamic of soil heat flux (G) is analyzed and the soil thermal conductivity (Ks) is estimated using experimental data form soil heat flux and soil temperature in a rice paddy farm in a subtropical location in Southern Brazil. In this region, rice grows once a year at river lowlands and wetlands while the ground is kept bare during the remaining of the year. The soil type is Planossolo Hidromórfico Distrófico, characterized as a mix between sandy and clay soil. The soil heat flux (G) was experimentally estimated with the sensor Hukseflux (HFP01SC-L) at 7 cm bellow the soil surface. The soil temperature at 5 cm and 10 cm was experimentally estimated using the sensor STP01. The experimental soil heat flux was compared with estimated soil heat flux by two forms: (1) using a know Ks from literature for this type of soil in saturated conditions (Ks=1.58); (2) using Ks estimated using the inversion of the equation Qg=-ks* ((T10-T5)/ (Z2-Z1)), where T10 and T5 are the temperature in 10 and 5 cm above the soil and Z2-Z1 is the difference between the positions in temperature measurement. The study period for estimating the Ks
Estimation on Global Reaction Heat for the Aromatization Process of Liquefied Petroleum Gas
黎小辉; 朱建华; 郝代军
2013-01-01
The reaction heat effect analysis for the aromatization process of Liquefied Petroleum Gas (LPG) was completed in this paper. In order to characterize this complex reaction system, one set of independent reactions was determined by means of atomic coefficient matrix method. Based on reaction thermodynamic and stoichiometric knowledge, the heat effect, Gibbs free energy change and equilibrium constant for each independent reaction was calculated for the specified conditions. Under these conditions, based on the initial and final composition data from LPG aromatization experiments, the actual extent of reaction for each independent reaction was determined. Fur-thermore, the global reaction heat and adiabatic temperature rise of LPG aromatization reaction system could be es-timated. This work would provide a theoretical guidance for the design and scale-up of reactor for LPG aromatiza-tion process, as well as for the selection of proper operating conditions.
Amako, Eri; Enjoji, Takaharu; Uchida, Satoshi; Tochikubo, Fumiyoshi
Constant monitoring and immediate control of fermentation processes have been required for advanced quality preservation in food industry. In the present work, simple estimation of metabolic states for heat-injured Escherichia coli (E. coli) in a micro-cell was investigated using dielectrophoretic impedance measurement (DEPIM) method. Temporal change in the conductance between micro-gap (ΔG) was measured for various heat treatment temperatures. In addition, the dependence of enzyme activity, growth capacity and membrane situation for E. coli on heat treatment temperature was also analyzed with conventional biological methods. Consequently, a correlation between ΔG and those biological properties was obtained quantitatively. This result suggests that DEPIM method will be available for an effective monitoring technique for complex change in various biological states of microorganisms.
Estimation and harvesting of human heat power for wearable electronic devices
Dziurdzia, P.; Brzozowski, I.; Bratek, P.; Gelmuda, W.; Kos, A.
2016-01-01
The paper deals with the issue of self-powered wearable electronic devices that are capable of harvesting free available energy dissipated by the user in the form of human heat. The free energy source is intended to be used as a secondary power source supporting primary battery in a sensor bracelet. The main scope of the article is a presentation of the concept for a measuring setup used to quantitative estimation of heat power sources in different locations over the human body area. The crucial role in the measurements of the human heat plays a thermoelectric module working in the open circuit mode. The results obtained during practical tests are confronted with the requirements of the dedicated thermoelectric generator. A prototype design of a human warmth energy harvester with an ultra-low power DC-DC converter based on the LTC3108 circuit is analysed.
Mass and heat balances in the Santa Barbara Channel: estimation, description and forcing
Auad, Guillermo; Hendershott, Myrl C.; Winant, Clinton D.
1999-01-01
Current meter, temperature and wind observations from the 1984 MMS experiment are used to estimate the mass and heat budgets in the Santa Barbara Channel. The mass transports estimated at the western, eastern and southern boundaries of the channel are characterized by fluctuations whose energy is concentrated around three different periods: 5, 14 and 2.8 days respectively. These three transports fluctuate along with the dominant EOF modes obtained at those 3 entrances respectively. The mean transport passing through the channel from east to west is about 0.28 Sv. There are two frequency bands where winds and mass transports are coherent: 2.5-3.0 and 4.7-5.2 day bands. Winds on the northern shelf lead the transports in both bands by about 1.0 day. At the western half of the channel there is a recirculating (counterclockwise) mean transport of about 0.30 Sv. The time dependent part of the recirculating transport is coherent with the wind in the 4.7-5.2 day band where it also shows an absolute maximum of variance. The recirculating transport lags the local downwelling-favorable winds by about 1.5 day and seems to be the channel response to wind relaxations with respect to its most persistent upwelling-favorable state. The main mean balance in the channel-integrated heat equation is between the heat transport passing through the western mouth, which cools off the channel, and the heat transport caused by the mass transport (the transport heat flux), which warms up the channel. This latter transport results from the advection of the temperature difference between the channel boundaries (mainly east and west) by the mass transport. There are no two terms that dominate the heat equation for the time dependent heat transports, but it can be simplified by balancing the along channel heat divergence (heat transport passing through the mouth plus transport heat flux), the vertical heat flux and the local change of heat. A clear thermal-wind balance at the eastern and western
Estimating energy expenditure using heat flux measured at a single body site.
Lyden, Kate; Swibas, Tracy; Catenacci, Victoria; Guo, Ruixin; Szuminsky, Neil; Melanson, Edward L
2014-11-01
The Personal Calorie Monitor (PCM) is a portable direct calorimeter that estimates energy expenditure (EE) from measured heat flux (i.e., the sum of conductive, convective, radiative, and evaporative heat). The primary aim of this study was to compare EE estimated from measures of heat flux with those measured using indirect calorimetry in a thermoneutral environment (26°C). A secondary aim was to determine whether exposure to ambient temperature below thermoneutral condition (19°C) influences the accuracy of the PCM. Thirty-four adults (mean ± SD: age, 28 ± 5 yr; body mass index, 22.9 ± 2.6 kg · m(-2)) were studied for 5 h in a whole-room indirect calorimeter (IC) in thermoneutral and cool conditions. Participants wore the PCM on their upper arm and completed two 20-min treadmill walking bouts (0% grade, 3 mph). The remaining time was spent sedentary (e.g., watching television, using a computer). In thermoneutral conditions, EE values (mean (95% confidence interval)) measured by IC and PCM were 560.0 (526.5-593.5) and 623.3 (535.5-711.1) kcal, respectively. In cool conditions, EE values measured by IC and PCM were 572.5 (540.9-604.0) and 745.5 (668.1-822.8) kcal, respectively. Under thermoneutral conditions, mean PCM minute-by-minute EE tracked closely with IC, resulting in a small nonsignificant bias (63 kcal (-5.8 to 132.4)). During cool conditions, mean PCM minute-by-minute EE did not track IC, resulting in a large bias (173.0 kcal (93.9-252.1)) (P <; 0.001). This study demonstrated the validity of using measured heat flux to estimate EE. However, accuracy may be impaired in cool conditions possibly because of excess heat loss from the exposed limbs.
Ben Shabat, Yael; Shitzer, Avraham
2012-07-01
Facial heat exchange convection coefficients were estimated from experimental data in cold and windy ambient conditions applicable to wind chill calculations. Measured facial temperature datasets, that were made available to this study, originated from 3 separate studies involving 18 male and 6 female subjects. Most of these data were for a -10°C ambient environment and wind speeds in the range of 0.2 to 6 m s(-1). Additional single experiments were for -5°C, 0°C and 10°C environments and wind speeds in the same range. Convection coefficients were estimated for all these conditions by means of a numerical facial heat exchange model, applying properties of biological tissues and a typical facial diameter of 0.18 m. Estimation was performed by adjusting the guessed convection coefficients in the computed facial temperatures, while comparing them to measured data, to obtain a satisfactory fit (r(2) > 0.98, in most cases). In one of the studies, heat flux meters were additionally used. Convection coefficients derived from these meters closely approached the estimated values for only the male subjects. They differed significantly, by about 50%, when compared to the estimated female subjects' data. Regression analysis was performed for just the -10°C ambient temperature, and the range of experimental wind speeds, due to the limited availability of data for other ambient temperatures. The regressed equation was assumed in the form of the equation underlying the "new" wind chill chart. Regressed convection coefficients, which closely duplicated the measured data, were consistently higher than those calculated by this equation, except for one single case. The estimated and currently used convection coefficients are shown to diverge exponentially from each other, as wind speed increases. This finding casts considerable doubts on the validity of the convection coefficients that are used in the computation of the "new" wind chill chart and their applicability to humans in
Cummins, Patrick F.; Masson, Diane; Saenko, Oleg A.
2016-06-01
The net heat uptake by the ocean in a changing climate involves small imbalances between the advective and diffusive processes that transport heat vertically. Generally, it is necessary to rely on global climate models to study these processes in detail. In the present study, it is shown that a key component of the vertical heat flux, namely that associated with the large-scale mean vertical circulation, can be diagnosed over extra-tropical regions from global observational data sets. This component is estimated based on the vertical velocity obtained from the geostrophic vorticity balance, combined with estimates of absolute geostrophic flow. Results are compared with the output of a non-eddy resolving, coupled atmosphere-ocean general circulation model. Reasonable agreement is found in the latitudinal distribution of the vertical heat flux, as well as in the area-integrated flux below about 250 m depth. The correspondence with the coupled model deteriorates sharply at depths shallower than 250 m due to the omission of equatorial regions from the calculation. The vertical heat flux due to the mean circulation is found to be dominated globally by the downward contribution from the Southern Hemisphere, in particular the Southern Ocean. This is driven by the Ekman vertical velocity which induces an upward transport of seawater that is cold relative to the horizontal average at a given depth. The results indicate that the dominant characteristics of the vertical transport of heat due to the mean circulation can be inferred from simple linear vorticity dynamics over much of the ocean.
Estimation of time of death with a fourier series unsteady-state heat transfer model.
Smart, Jimmy L
2010-11-01
The purpose of this study was to return to fundamental principles of heat transfer and derive a suitable model to establish a firm basis for constructing a postmortem human cooling curve. A Fourier Series Model was successfully applied to unsteady heat transfer within a wooden cylinder in controlled laboratory conditions. Wood has similar thermal diffusivity properties as human tissue. By manipulation of the model, sensitivity analyses were performed to observe the impact of changes in values of input variables. Variables of initial temperature of the cylinder and ambient surrounding temperature were shown to be very sensitive and have the most impact upon predictive results of the model. The model was also used to demonstrate the existence of an initial temperature plateau, which is often the subject of controversy in estimating time of death. Finally, it was demonstrated how the Fourier Series Model can be applied to estimate time of death for humans.
On the optimal experimental design for heat and moisture parameter estimation
Berger, Julien; Mendes, Nathan
2016-01-01
In the context of estimating material properties of porous walls based on in-site measurements and identification method, this paper presents the concept of Optimal Experiment Design (OED). It aims at searching the best experimental conditions in terms of quantity and position of sensors and boundary conditions imposed to the material. These optimal conditions ensure to provide the maximum accuracy of the identification method and thus the estimated parameters. The search of the OED is done by using the Fisher information matrix and a priori knowledge of the parameters. The methodology is applied for two case studies. The first one deals with purely conductive heat transfer. The concept of optimal experiment design is detailed and verified with 100 inverse problems for different experiment designs. The second case study combines a strong coupling between heat and moisture transfer through a porous building material. The methodology presented is based on a scientific formalism for efficient planning of experim...
Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data
Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.
2006-01-01
Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.
Heat kernel estimates and spectral properties of a pseudorelativistic operator with magnetic field
Jakubassa-Amundsen, D. H.
2008-03-01
Based on the Mehler heat kernel of the Schrödinger operator for a free electron in a constant magnetic field, an estimate for the kernel of EA=∣α(p-eA)+βm∣ is derived, where EA represents the kinetic energy of a Dirac electron within the pseudorelativistic no-pair Brown-Ravenhall model. This estimate is used to provide the bottom of the essential spectrum for the two-particle Brown-Ravenhall operator, describing the motion of the electrons in a central Coulomb field and a constant magnetic field, if the central charge is restricted to Z ⩽86.
Lang, Christapher G.; Bey, Kim S. (Technical Monitor)
2002-01-01
This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.
Real-Time Personalized Monitoring to Estimate Occupational Heat Stress in Ambient Assisted Working
Pablo Pancardo
2015-07-01
Full Text Available Ambient Assisted Working (AAW is a discipline aiming to provide comfort and safety in the workplace through customization and technology. Workers’ comfort may be compromised in many labor situations, including those depending on environmental conditions, like extremely hot weather conduces to heat stress. Occupational heat stress (OHS happens when a worker is in an uninterrupted physical activity and in a hot environment. OHS can produce strain on the body, which leads to discomfort and eventually to heat illness and even death. Related ISO standards contain methods to estimate OHS and to ensure the safety and health of workers, but they are subjective, impersonal, performed a posteriori and even invasive. This paper focuses on the design and development of real-time personalized monitoring for a more effective and objective estimation of OHS, taking into account the individual user profile, fusing data from environmental and unobtrusive body sensors. Formulas employed in this work were taken from different domains and joined in the method that we propose. It is based on calculations that enable continuous surveillance of physical activity performance in a comfortable and healthy manner. In this proposal, we found that OHS can be estimated by satisfying the following criteria: objective, personalized, in situ, in real time, just in time and in an unobtrusive way. This enables timely notice for workers to make decisions based on objective information to control OHS.
Real-Time Personalized Monitoring to Estimate Occupational Heat Stress in Ambient Assisted Working.
Pancardo, Pablo; Acosta, Francisco D; Hernández-Nolasco, José Adán; Wister, Miguel A; López-de-Ipiña, Diego
2015-07-13
Ambient Assisted Working (AAW) is a discipline aiming to provide comfort and safety in the workplace through customization and technology. Workers' comfort may be compromised in many labor situations, including those depending on environmental conditions, like extremely hot weather conduces to heat stress. Occupational heat stress (OHS) happens when a worker is in an uninterrupted physical activity and in a hot environment. OHS can produce strain on the body, which leads to discomfort and eventually to heat illness and even death. Related ISO standards contain methods to estimate OHS and to ensure the safety and health of workers, but they are subjective, impersonal, performed a posteriori and even invasive. This paper focuses on the design and development of real-time personalized monitoring for a more effective and objective estimation of OHS, taking into account the individual user profile, fusing data from environmental and unobtrusive body sensors. Formulas employed in this work were taken from different domains and joined in the method that we propose. It is based on calculations that enable continuous surveillance of physical activity performance in a comfortable and healthy manner. In this proposal, we found that OHS can be estimated by satisfying the following criteria: objective, personalized, in situ, in real time, just in time and in an unobtrusive way. This enables timely notice for workers to make decisions based on objective information to control OHS.
An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models
Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.
2001-01-01
This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.
Estimation of sensible heat, water vapor, and CO2 fluxes using the flux-variance method.
Hsieh, Cheng-I; Lai, Mei-Chun; Hsia, Yue-Joe; Chang, Tsang-Jung
2008-07-01
This study investigated the flux-variance relationships of temperature, humidity, and CO(2), and examined the performance of using this method for predicting sensible heat (H), water vapor (LE), and CO(2) fluxes (F(CO2)) with eddy-covariance measured flux data at three different ecosystems: grassland, paddy rice field, and forest. The H and LE estimations were found to be in good agreement with the measurements over the three fields. The prediction accuracy of LE could be improved by around 15% if the predictions were obtained by the flux-variance method in conjunction with measured sensible heat fluxes. Moreover, the paddy rice field was found to be a special case where water vapor follows flux-variance relation better than heat does. However, the CO(2) flux predictions were found to vary from poor to fair among the three sites. This is attributed to the complicated CO(2) sources and sinks distribution. Our results also showed that heat and water vapor were transported with the same efficiency above the grassland and rice paddy. For the forest, heat was transported 20% more efficiently than evapotranspiration.
A. SARI; K. KAYGUSUZ
2004-01-01
First and Second Law analyses were conducted to evaluate the performance of a closed latent heat thermal energy storage (LHTES) system employing calcium chloride hexahydrate (CaCI2.6H2O). The First and the Second Laws of thermodynamics were applied to the system from viewpoint of energy and exergy analyses,respectively. The energy storage tank in the system is neither fully mixed nor fully stratified. It may be considered as semithermal stratified. Experiments that include both charging and discharging periods were performed on sunny winter days in 1996. The energy and exergy variations and the overall energy and exergy efficiencies of the closed LHTES system were calculated for the complete charging and discharging cycle of the selected fifteen clear-sky winter days. Mean energy and exergy efficiencies were found to be 55.20% and 34.83%, respectively.
Advancement of Latent Trait Theory.
1988-02-01
Estimation with the Multiple-Choice Test Item. American Educational Research Association Meeting, New Orleans, 1984. (Coauthorship with Paul S. Changas...Chicago, 1985. U. S. A. (Coauthorship with Paul S. Changas) (10) Expansion of the General Model for the Homogeneous Case of the Continuous Response Level...17-20. [2] Lazarsfeld , P. F. Latent structure analysis. In S. Koch (Ed.), Psychology: a study of a science, Volume 3. McGraw-Hill, 1959, pages 476-542
Hsieh, Chun-Ming; Aramaki, Toshiya; Hanaki, Keisuke [The University of Tokyo, Bunkyo-ku, Tokyo (Japan). Department of Urban Engineering
2007-09-15
The main work in the research focuses on the analysis and mitigation of the anthropogenic heat discharged from buildings, which is one of the main reasons leading to the heat island effect. The residential and commercial buildings, divided into 10 categories, with HVAC systems were analyzed by the building energy program, EnergyPlus. With the help of GIS, the heat rejection of all the residential and commercial buildings in DaAn Ward of Taipei City were evaluated, in which the spatial data and diurnal variation of the heat rejection were described by 3-h time periods. Furthermore, the effect of mitigation strategies was discussed. The first strategy was to change the wall/roof material of building envelope. The second and third strategies, from the viewpoint of energy saving, were to change the temperature setting of air conditioners and to turn off the lighting and equipment when not in use. The fourth strategy was to use a better efficiency of the cooling systems. Finally, the evaluation of installing the water-cooled cooling system, which discharges heat in the form of sensible and latent heat, was also included. (author)
Estimation of ground heat flux from soil temperature over a bare soil
An, Kedong; Wang, Wenke; Wang, Zhoufeng; Zhao, Yaqian; Yang, Zeyuan; Chen, Li; Zhang, Zaiyong; Duan, Lei
2017-08-01
Ground soil heat flux, G 0, is a difficult-to-measure but important component of the surface energy budget. Over the past years, many methods were proposed to estimate G 0; however, the application of these methods was seldom validated and assessed under different weather conditions. In this study, three popular models (force-restore, conduction-convection, and harmonic) and one widely used method (plate calorimetric), which had well performance in publications, were investigated using field data to estimate daily G 0 on clear, cloudy, and rainy days, while the gradient calorimetric method was regarded as the reference for assessing the accuracy. The results showed that harmonic model was well reproducing the G 0 curve for clear days, but it yielded large errors on cloudy and rainy days. The force-restore model worked well only under rainfall condition, but it was poor to estimate G 0 under rain-free conditions. On the contrary, the conduction-convection model was acceptable to determine G 0 under rain-free conditions, but it generated large errors on rainfall days. More importantly, the plate calorimetric method was the best to estimate G 0 under different weather conditions compared with the three models, but the performance of this method is affected by the placement depth of the heat flux plate. As a result, the heat flux plate was recommended to be buried as close as possible to the surface under clear condition. But under cloudy and rainy conditions, the plate placed at depth of around 0.075 m yielded G 0 well. Overall, the findings of this paper provide guidelines to acquire more accurate estimation of G 0 under different weather conditions, which could improve the surface energy balance in field.
U, Sri Rahayu A.; Putri, Widya A.; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.
2016-08-01
A latent heat energy storage system utilizing phase change materials (PCM) is an alternative strategy to reduce the use of Air Conditioning (AC) system in big cities in Indonesia in order for energy conservation in the future. In this research we used two kinds of materials, namely organic PCM based on lauric acid from coconut oil (CO) and inorganic PCM based on salt hydrate CaCl2.6H2O, because they have thermophysical parameters suitable for human's thermal comfort application in the building. The CO which contained more than 50% lauric acid has the melting temperature (Tm ) of about 26 °C and heat entalphy (ΔH) around 103 kJ/kg, while CaCl2.6H2O has the melting point of 29 °C and heat entalphy of 190 kJ/kg. In this paper we report the effectiveness of those two kinds of PCM in reducing the air temperature as one of some criteria for human's thermal comfort. The experiments were performed in a close and adiabatic room and the time-temperature measurements were done automatically using Arduino microcontroller and LM35 temperature sensor connected to the PC.
Siddiquey, Mohammed Nure Alam; Kanazawa, Tetsuhiro; Goshima, Fumi; Kawashima, Daisuke; Kimura, Hiroshi; Tsurumi, Tatsuya
2013-01-01
Epstein-Barr virus (EBV) LMP1 is a major oncoprotein expressed in latent infection. It functions as a TNFR family member and constitutively activates cellular signals, such as NFκB, MAPK, JAK/STAT and AKT. We here screened small molecule inhibitors and isolated HSP90 inhibitors, Radicicol and 17-AAG, as candidates that suppress LMP1 expression and cell proliferation not only in EBV-positive SNK6 Natural Killer (NK) cell lymphoma cells, but also in B and T cells. Tumor formation in immuno-defficient NOD/Shi-scid/IL-2Rγnull (NOG) mice was also retarded. These results suggest that HSP90 inhibitors can be alternative treatments for patients with EBV-positive malignancies. PMID:23658841
Freire F. B.
2004-01-01
Full Text Available This work is concerned with the coupled estimation of the heat generated by the reaction (Qr and the overall heat transfer parameter (UA during the terpolymerization of styrene, butyl acrylate and methyl methacrylate from temperature measurements and the reactor heat balance. By making specific assumptions about the dynamics of the evolution of UA and Q R, we propose a cascade of observers to successively estimate these two parameters without the need for additional measurements of on-line samples. One further aspect of our approach is that only the energy balance around the reactor was employed. It means that the flow rate of the cooling jacket fluid was not required.
Controlling for Latent Homophily in Social Networks through Inferring Latent Locations
Shalizi, Cosma Rohilla
2016-01-01
Social influence cannot be identified from purely observational data on social networks, because such influence is generically confounded with latent homophily, i.e., with a node's network partners being informative about the node's attributes and therefore its behavior. We show that {\\em if} the network grows according to either a community (stochastic block) model, or a continuous latent space model, then latent homophilous attributes can be consistently estimated from the global pattern of social ties. Moreover, these estimates are informative enough that controlling for them allows for unbiased and consistent estimation of social-influence effects in additive models. For community models, we also provide bounds on the finite-sample bias. These are the first results on the consistent estimation of social-influence effects in the presence of latent homophily, and we discuss the prospects for generalizing them.
Estimating heats of detonation and detonation velocities of aromatic energetic compounds
Keshavarz, Mohammad Hossein [Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr, P. O. Box 83145/115 (Iran)
2008-12-15
A new method is introduced to predict reliable estimation of heats of detonation of aromatic energetic compounds. At first step, this procedure assumes that the heat of detonation of an explosive compound of composition C{sub a}H{sub b}N{sub c}O{sub d} can be approximated as the difference between the heat of formation of all H{sub 2}O-CO{sub 2} arbitrary (H{sub 2}O, CO{sub 2}, N{sub 2}) detonation products and that of the explosive, divided by the formula weight of the explosive. Overestimated results based on (H{sub 2}O-CO{sub 2} arbitrary) can be corrected in the next step. Predicted heats of detonation of pure energetic compounds with the product H{sub 2}O in the liquid state for 31 aromatic energetic compounds have a root mean square (rms) deviation of 2.08 and 0.34 kJ g{sup -1} from experiment for (H{sub 2}O-CO{sub 2} arbitrary) and new method, respectively. The new method also gives good results as compared to the second sets of decomposition products, which consider H{sub 2},N{sub 2}, H{sub 2}O,CO, and CO{sub 2} as major gaseous products. It is shown here how the predicted heats of detonation by the new method can be used to obtain reliable estimation of detonation velocity over a wide range of loading densities. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Roemer, R B; Booth, D; Bhavsar, A A; Walter, G H; Terry, L I
2012-12-21
A mathematical model based on conservation of energy has been developed and used to simulate the temperature responses of cones of the Australian cycads Macrozamia lucida and Macrozamia. macleayi during their daily thermogenic cycle. These cones generate diel midday thermogenic temperature increases as large as 12 °C above ambient during their approximately two week pollination period. The cone temperature response model is shown to accurately predict the cones' temperatures over multiple days as based on simulations of experimental results from 28 thermogenic events from 3 different cones, each simulated for either 9 or 10 sequential days. The verified model is then used as the foundation of a new, parameter estimation based technique (termed inverse calorimetry) that estimates the cones' daily metabolic heating rates from temperature measurements alone. The inverse calorimetry technique's predictions of the major features of the cones' thermogenic metabolism compare favorably with the estimates from conventional respirometry (indirect calorimetry). Because the new technique uses only temperature measurements, and does not require measurements of oxygen consumption, it provides a simple, inexpensive and portable complement to conventional respirometry for estimating metabolic heating rates. It thus provides an additional tool to facilitate field and laboratory investigations of the bio-physics of thermogenic plants. Copyright © 2012 Elsevier Ltd. All rights reserved.
Blast load estimation using Finite Volume Method and linear heat transfer
Lidner Michał
2016-01-01
Full Text Available From the point of view of people and building security one of the main destroying factor is the blast load. Rational estimating of its results should be preceded with knowledge of complex wave field distribution in time and space. As a result one can estimate the blast load distribution in time. In considered conditions, the values of blast load are estimating using the empirical functions of overpressure distribution in time (Δp(t. The Δp(t functions are monotonic and are the approximation of reality. The distributions of these functions are often linearized due to simplifying of estimating the blast reaction of elements. The article presents a method of numerical analysis of the phenomenon of the air shock wave propagation. The main scope of this paper is getting the ability to make more realistic the Δp(t functions. An explicit own solution using Finite Volume Method was used. This method considers changes in energy due to heat transfer with conservation of linear heat transfer. For validation, the results of numerical analysis were compared with the literature reports. Values of impulse, pressure, and its duration were studied.
Estimating the Condition of the Heat Resistant Lining in an Electrical Reduction Furnace
Jan G. Waalmann
1988-01-01
Full Text Available This paper presents a system for estimating the condition of the heat resistant lining in an electrical reduction furnace for ferrosilicon. The system uses temperature measured with thermocouples placed on the outside of the furnace-pot. These measurements are used together with a mathematical model of the temperature distribution in the lining in a recursive least squares algorithm to estimate the position of 'the transformation front'. The system is part of a monitoring system which is being developed in the AIP-project: 'Condition monitoring of strongly exposed process equipment in thc ferroalloy industry'. The estimator runs on-line, and results arc presented in colour-graphics on a display unit. The goal is to locate the transformation front with an accuracy of +- 5cm.
Structural observability analysis and EKF based parameter estimation of building heating models
D.W.U. Perera
2016-07-01
Full Text Available Research for enhanced energy-efficient buildings has been given much recognition in the recent years owing to their high energy consumptions. Increasing energy needs can be precisely controlled by practicing advanced controllers for building Heating, Ventilation, and Air-Conditioning (HVAC systems. Advanced controllers require a mathematical building heating model to operate, and these models need to be accurate and computationally efficient. One main concern associated with such models is the accurate estimation of the unknown model parameters. This paper presents the feasibility of implementing a simplified building heating model and the computation of physical parameters using an off-line approach. Structural observability analysis is conducted using graph-theoretic techniques to analyze the observability of the developed system model. Then Extended Kalman Filter (EKF algorithm is utilized for parameter estimates using the real measurements of a single-zone building. The simulation-based results confirm that even with a simple model, the EKF follows the state variables accurately. The predicted parameters vary depending on the inputs and disturbances.
On the reliable estimation of heat transfer coefficients for nanofluids in a microchannel
Irwansyah, Ridho; Cierpka, Christian; Kähler, Christian J.
2016-09-01
Nanofluids (base fluid and nanoparticles) can enhance the heat transfer coefficient h in comparison to the base fluid. This open the door for the design of efficient cooling system for microelectronics component for instance. Since theoretical Nusselt number correlations for microchannels are not available, the direct method using an energy balance has to be applied to determine h. However, for low nanoparticle concentrations the absolute numbers are small and hard to measure. Therefore, the study examines the laminar convective heat transfer of Al2O3-water nanofluids in a square microchannel with a cross section of 0.5 × 0.5 mm2 and a length of 30 mm under constant wall temperature. The Al2O3 nanoparticles have a diameter size distribution of 30-60 nm. A sensitivity analysis with error propagation was done to reduce the error for a reliable heat transfer coefficient estimation. An enhancement of heat transfer coefficient with increasing nanoparticles volume concentration was confirmed. A maximum enhancement of 6.9% and 21% were realized for 0.6% Al2O3-water and 1% Al2O3-water nanofluids.
A single-probe heat pulse method for estimating sap velocity in trees.
López-Bernal, Álvaro; Testi, Luca; Villalobos, Francisco J
2017-10-01
Available sap flow methods are still far from being simple, cheap and reliable enough to be used beyond very specific research purposes. This study presents and tests a new single-probe heat pulse (SPHP) method for monitoring sap velocity in trees using a single-probe sensor, rather than the multi-probe arrangements used up to now. Based on the fundamental conduction-convection principles of heat transport in sapwood, convective velocity (Vh ) is estimated from the temperature increase in the heater after the application of a heat pulse (ΔT). The method was validated against measurements performed with the compensation heat pulse (CHP) technique in field trees of six different species. To do so, a dedicated three-probe sensor capable of simultaneously applying both methods was produced and used. Experimental measurements in the six species showed an excellent agreement between SPHP and CHP outputs for moderate to high flow rates, confirming the applicability of the method. In relation to other sap flow methods, SPHP presents several significant advantages: it requires low power inputs, it uses technically simpler and potentially cheaper instrumentation, the physical damage to the tree is minimal and artefacts caused by incorrect probe spacing and alignment are removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Estimation of catchment averaged sensible heat fluxes using a large aperture scintillometer
Samain Bruno
2012-05-01
Full Text Available Evapotranspiration rates at the catchment scale are very difficult to quantify. One possible manner to continuously observe this variable could be the estimation of sensible heat fluxes (H across large distances (in the order of kilometers using a large aperture scintillometer (LAS, and inverting these observations into evapotranspiration rates, under the assumption that the LAS observations are representative for the entire catchment. The objective of this paper is to assess whether measured sensible heat fluxes from a LAS over a long distance (9.5 km can be assumed to be valid for a 102.3 km2 heterogeneous catchment. Therefore, a fully process-based water and energy balance model with a spatial resolution of 50 m has been thoroughly calibrated and validated for the Bellebeek catchmentin Belgium. A footprint analysis has been performed. In general, the sensible heat fluxes from the LAS compared well with the modeled sensible heat fluxes within the footprint. Moreover, as the modeled Hwithin the footprint has been found to be almost equal to the modeled catchment averaged H, it can be concluded that the scintillometer measurements over a distance of 9.5 km and an effective heightof 68 m are representative for the entire catchment.
Ufnar, David F.; Ludvigson, Greg A.; Gonzalez, L.; Grocke, D.R.
2008-01-01
correlate with a mean annual average heat loss of 48??W/m2 at 10??N paleolatitude (present, 8??W/m2 at 15??N). The increased precipitation flux and moisture surplus in the mid-latitudes corresponds to a mean average annual heat gain of 180??W/m2 at 50??N paleolatitude (present, 17??W/m2 at 50??N). The Cenomanian low-latitude moisture deficit is similar to that of the Albian, however the mid-latitude (40-60??N) precipitation flux values and precipitation rates are significantly higher (Albian: 2200??mm/yr at 45??N; Cenomanian: 3600??mm/yr at 45??N). Furthermore, the heat transferred to the atmosphere via latent heat of condensation was approximately 10.6?? that of the present at 50??N. The intensified hydrologic cycle of the mid-Cretaceous greenhouse warming may have played a significant role in the poleward transfer of heat and more equable global conditions. Paleoclimatological reconstructions from multiple time periods during the mid-Cretaceous will aid in a better understanding of the dynamics of the hydrologic cycle and latent heat flux during greenhouse world conditions.
Regularization and error estimates for asymmetric backward nonhomogeneous heat equations in a ball
Le Minh Triet
2016-09-01
Full Text Available The backward heat problem (BHP has been researched by many authors in the last five decades; it consists in recovering the initial distribution from the final temperature data. There are some articles [1,2,3] related the axi-symmetric BHP in a disk but the study in spherical coordinates is rare. Therefore, we wish to study a backward problem for nonhomogenous heat equation associated with asymmetric final data in a ball. In this article, we modify the quasi-boundary value method to construct a stable approximate solution for this problem. As a result, we obtain regularized solution and a sharp estimates for its error. At the end, a numerical experiment is provided to illustrate our method.
Kaliatka, Tadas; Kaliatka, Algirdas; Uspuras, Eudenijus; Vaisnoras, Mindaugas [Lithuanian Energy Institute, Kaunas (Lithuania); Mochizuki, Hiroyasu; Rooijen, W.F.G. van [Fukui Univ. (Japan). Research Inst. of Nuclear Engineering
2017-05-15
Because of the uncertainties associated with the definition of Critical Heat Flux (CHF), the best estimate approach should be used. In this paper the application of best-estimate approach for the analysis of CHF phenomenon in the boiling water reactors is presented. At first, the nodalization of RBMK-1500, BWR-5 and ABWR fuel assemblies were developed using RELAP5 code. Using developed models the CHF and Critical Heat Flux Ratio (CHFR) for different types of reactors were evaluated. The calculation results of CHF were compared with the well-known experimental data for light water reactors. The uncertainty and sensitivity analysis of ABWR 8 x 8 fuel assembly CHFR calculation result was performed using the GRS (Germany) methodology with the SUSA tool. Finally, the values of Minimum Critical Power Ratio (MCPR) were calculated for RBMK-1500, BWR-5 and ABWR fuel assemblies. The paper demonstrate how, using the results of sensitivity analysis, to receive the MCPR values, which covers all uncertainties and remains best estimated.
Kobayashi, M; Irisawa, H
1961-10-27
The latent period of relaxation of molluscan myocardium due to anodal current is much longer than that of contraction. Although the rate and the grade of relaxation are intimately related to both the stimulus condition and the muscle tension, the latent period of relaxation remains constant, except when the temperature of the bathing fluid is changed.
Guo, Zhouchao; Lu, Tao; Liu, Bo
2017-04-01
Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.
Matt, Monika; Nordentoft, Steen; Ian, Kopacka
2016-01-01
The present study compares three different assays for sample collection and detection of Campylobacter spp. in broiler flocks, based on (i) the collection of faecal samples from intestinal organs (caecum), (ii) individual faecal droppings collected from the bedding and (iii) faecal material...... collected by socks placed on the outside of a pair of boots (boot socks) and used for walking around in the flock. The two first methods are examined for Campylobacter using a culture method (ISO-10272-2:2006), while the boot socks are tested using PCR. The PCR-assay is a genus specific multiplex PCR...... samples were collected at slaughter.The results were evaluated in the absence of a gold standard using a Bayesian latent class model. Austrian results showed higher sensitivity for PCR detection in sock samples (0.98; Bayesian credible interval (BCI) [0.93-1]) than for culture of faecal droppings (0...
Latent myofascial trigger points.
Ge, Hong-You; Arendt-Nielsen, Lars
2011-10-01
A latent myofascial trigger point (MTP) is defined as a focus of hyperirritability in a muscle taut band that is clinically associated with local twitch response and tenderness and/or referred pain upon manual examination. Current evidence suggests that the temporal profile of the spontaneous electrical activity at an MTP is similar to focal muscle fiber contraction and/or muscle cramp potentials, which contribute significantly to the induction of local tenderness and pain and motor dysfunctions. This review highlights the potential mechanisms underlying the sensory-motor dysfunctions associated with latent MTPs and discusses the contribution of central sensitization associated with latent MTPs and the MTP network to the spatial propagation of pain and motor dysfunctions. Treating latent MTPs in patients with musculoskeletal pain may not only decrease pain sensitivity and improve motor functions, but also prevent latent MTPs from transforming into active MTPs, and hence, prevent the development of myofascial pain syndrome.
Cabeza, L.F.; Roca, J.; Noguees, M. [Universitat de Lleida, Jaume II, 69, 25001 Lleida (Spain); Mehling, H.; Hiebler, S. [Bavarian Center for Applied Energy Research, Div. of Energy Conversion and Storage, Walther-Meissner-Str. 6, 85748 Garching (Germany)
2005-01-01
Phase Change Materials (PCMs) can be used for heating and cooling in buildings with two applications in mind. First, using natural heat and cold sources, that is solar energy for heating or night cold for cooling. Second, using manmade heat or cold sources more efficiently. In any case, storage of heat or cold with PCMs is necessary to match availability and demand with respect to time and also with respect to power. Depending on where and how the PCM is integrated, PCMs with different melting points are applied. Currently, there is a lack of commercial PCMs in the lower temperature range, that is between 5 and 29 C. The research to develop such materials is bringing new PCMs to the market, but they should be tested before application. Their corrosion behaviour is one of the aspects to be considered. In the present work, we tested the corrosion resistance of five commercial metals in contact with PCMs with a melting temperature in the range of 5 to 29 C in experiments with a duration up to 500 days. The PCMs were a commercial one, TH29 from TEAP (Australia), with a chemical composition of CaCl{sub 2}.6H{sub 2}O and an unknown nucleator, and the mixture of this material with MgCl{sub 2}.6H{sub 2}O (2:1wt%) to obtain a new PCM with melting temperature around 23 C. The main conclusions to be taken were that aluminum and steel should not be used in combination with these PCMs, but all the other metals have shown no problems. Maybe, only the fact that stainless steel can produce some orange precipitate, together with former literature recommendations to avoid the use of this metal, should be highlighted. (Abstract Copyright [2005], Wiley Periodicals, Inc.)
Rauh Andreas
2016-03-01
Full Text Available In this paper, control-oriented modeling approaches are presented for distributed parameter systems. These systems, which are in the focus of this contribution, are assumed to be described by suitable partial differential equations. They arise naturally during the modeling of dynamic heat transfer processes. The presented approaches aim at developing finite-dimensional system descriptions for the design of various open-loop, closed-loop, and optimal control strategies as well as state, disturbance, and parameter estimation techniques. Here, the modeling is based on the method of integrodifferential relations, which can be employed to determine accurate, finite-dimensional sets of state equations by using projection techniques. These lead to a finite element representation of the distributed parameter system. Where applicable, these finite element models are combined with finite volume representations to describe storage variables that are—with good accuracy—homogeneous over sufficiently large space domains. The advantage of this combination is keeping the computational complexity as low as possible. Under these prerequisites, real-time applicable control algorithms are derived and validated via simulation and experiment for a laboratory-scale heat transfer system at the Chair of Mechatronics at the University of Rostock. This benchmark system consists of a metallic rod that is equipped with a finite number of Peltier elements which are used either as distributed control inputs, allowing active cooling and heating, or as spatially distributed disturbance inputs.
Bröde, Peter; Fiala, Dusan; Lemke, Bruno; Kjellstrom, Tord
2017-04-01
With a view to occupational effects of climate change, we performed a simulation study on the influence of different heat stress assessment metrics on estimated workability (WA) of labour in warm outdoor environments. Whole-day shifts with varying workloads were simulated using as input meteorological records for the hottest month from four cities with prevailing hot (Dallas, New Delhi) or warm-humid conditions (Managua, Osaka), respectively. In addition, we considered the effects of adaptive strategies like shielding against solar radiation and different work-rest schedules assuming an acclimated person wearing light work clothes (0.6 clo). We assessed WA according to Wet Bulb Globe Temperature (WBGT) by means of an empirical relation of worker performance from field studies (Hothaps), and as allowed work hours using safety threshold limits proposed by the corresponding standards. Using the physiological models Predicted Heat Strain (PHS) and Universal Thermal Climate Index (UTCI)-Fiala, we calculated WA as the percentage of working hours with body core temperature and cumulated sweat loss below standard limits (38 °C and 7.5% of body weight, respectively) recommended by ISO 7933 and below conservative (38 °C; 3%) and liberal (38.2 °C; 7.5%) limits in comparison. ANOVA results showed that the different metrics, workload, time of day and climate type determined the largest part of WA variance. WBGT-based metrics were highly correlated and indicated slightly more constrained WA for moderate workload, but were less restrictive with high workload and for afternoon work hours compared to PHS and UTCI-Fiala. Though PHS showed unrealistic dynamic responses to rest from work compared to UTCI-Fiala, differences in WA assessed by the physiological models largely depended on the applied limit criteria. In conclusion, our study showed that the choice of the heat stress assessment metric impacts notably on the estimated WA. Whereas PHS and UTCI-Fiala can account for
Jain, Anil K; Feng, Jianjiang
2011-01-01
Latent fingerprint identification is of critical importance to law enforcement agencies in identifying suspects: Latent fingerprints are inadvertent impressions left by fingers on surfaces of objects. While tremendous progress has been made in plain and rolled fingerprint matching, latent fingerprint matching continues to be a difficult problem. Poor quality of ridge impressions, small finger area, and large nonlinear distortion are the main difficulties in latent fingerprint matching compared to plain or rolled fingerprint matching. We propose a system for matching latent fingerprints found at crime scenes to rolled fingerprints enrolled in law enforcement databases. In addition to minutiae, we also use extended features, including singularity, ridge quality map, ridge flow map, ridge wavelength map, and skeleton. We tested our system by matching 258 latents in the NIST SD27 database against a background database of 29,257 rolled fingerprints obtained by combining the NIST SD4, SD14, and SD27 databases. The minutiae-based baseline rank-1 identification rate of 34.9 percent was improved to 74 percent when extended features were used. In order to evaluate the relative importance of each extended feature, these features were incrementally used in the order of their cost in marking by latent experts. The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.
Heat Kernel Estimate for $\\Delta+\\Delta^{\\alpha/2}$ in $C^{1,1}$ open sets
Chen, Zhen-Qing; Song, Renming
2010-01-01
We consider a family of pseudo differential operators $\\{\\Delta+ a^\\alpha \\Delta^{\\alpha/2}; a\\in (0, 1]\\}$ on $\\bR^d$ for every $d\\geq 1$ that evolves continuously from $\\Delta$ to $\\Delta + \\Delta^{\\alpha/2}$, where $\\alpha \\in (0, 2)$. It gives rise to a family of L\\'evy processes $\\{X^a, a\\in (0, 1]\\}$ in $\\bR^d$, where $X^a$ is the sum of a Brownian motion and an independent symmetric $\\alpha$-stable process with weight $a$. We establish sharp two-sided estimates for the heat kernel of $\\Delta + a^{\\alpha} \\Delta^{\\alpha/2}$ with zero exterior condition in a family of open subsets, including bounded $C^{1, 1}$ (possibly disconnected) open sets. This heat kernel is also the transition density of the sum of a Brownian motion and an independent symmetric $\\alpha$-stable process with weight $a$ in such open sets. Our result is the first sharp two-sided estimates for the transition density of a Markov process with both diffusion and jump components in open sets. Moreover, our result is uniform in $a$ in the s...
胡永俊; 李昔强; 李风; 郑辉庭; 李人杰
2015-01-01
在150℃下对半固态亚共晶 Sn-52Bi 浆料分别进行5,10和15 min 的机械搅拌,采用真空吸铸水冷制备出半固态Sn-Bi合金,测试了半固态Sn-Bi合金的组织、力学与热性能,研究剪切力对半固态浆料组织演变的影响,探索半固态合金延伸率与熔化潜热的关系.结果表明：对 Sn-52 Bi 半固态浆料进行机械搅拌,剪切力可抑制树枝状初生 Sn 相的形成,真空吸铸水冷得到的合金组织由非树枝状的初生 Sn 相和共晶体构成；随着搅拌时间的延长,短锤状初生 Sn 相转变为直径约20μm的近球状,搅拌时间延长至15 min时球状初生Sn相直径变小但出现团聚.当搅拌速度为320 r/min,机械搅拌时间为10 min 工艺得到半固态Sn-Bi合金延伸率为46．75％,与180℃下的合金熔液直接水冷凝固相比提高了160％；差式扫描量热分析(DSC)得出：不同机械搅拌时间半固态 Sn-52 Bi 合金的峰值温度为140℃,随着合金延伸率升高,合金的熔化潜热减小.%The hypo eutectic semi-solid Sn-52Bi slurry at 150 ℃ was mechanically agitated for 5,10 and 15 min, respectively,and cooled by water after vacuum suction casting.The microstructure,mechanical property and latent heat of semi-solid Sn-52Bi were tested.The effect of the shear force on the microstructure evolution of low solid fraction of Sn-52Bi semi-solid slurry and the correlation between elongation and latent heat of semi-solid alloys were investigated.The results show that during mechanical agitation of the semi-solid Sn-52Bi slur-ry,the shear force can inhibit the formation of dendritic primary Sn phase.The microstructure of semi-solid Sn-52Bi alloy consists of non-dendrite primary Sn and the eutectic.With the stirring time increase,primary Sn phase changes from short mallet particles to nearly spherical particles with the diameter of about 20μm.When the time of mechanical stir increase to 1 5 minutes,the diameter of spherical primary Sn phase becomes
Zheng, Yuanfan; Weng, Qihao
2017-07-22
Anthropogenic heat flux (Qf), which originates through energy consumption from buildings, industrial plants, vehicle exhausts, and human metabolism releases, is an important component in the urban Surface Energy Balance (SEB) system, and is key to understanding of many urban environmental issues. The present study provided a hybrid Qf modeling approach, which combined the inventory and GIS approach to create a 365-day hourly Qf profile at 120 m spatial resolution in Los Angeles County, California, USA. Qf was estimated by separate calculation of heat release from buildings, traffics, and human metabolism, respectively. The results indicated that Qf showed different magnitudes and diurnal patterns between workdays (dual-peak shape) and weekends/holidays, and also varied with seasons, and land use types. Qf yielded the highest values in the summer workdays, with its maximum value of 7.76 w/m(2). Qf in hot summer workdays was obviously higher than that in the average summer workdays, which caused by higher demands for space cooling in buildings, and can reach 8.14 w/m(2) at maximum. Building energy consumption was identified as the dominant contributor to the Qf in Downtown Los Angeles, which was found to have the largest mean Qf throughout the year among all neighborhoods. It can be concluded that Qf in the downtown was more significant in workdays than that in non-workdays, and its maximum value can reach 100 w/m(2). It is suggested that our approach may have wider applicability for Qf estimation in large areas compared with the existing studies, as all the data used were available to the public. A high spatial and temporal Qf profile, which can readily be incorporated into urban energy balance and Urban Heat Island (UHI) studies, provides valuable data and information for pertinent government agencies and researchers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan C.; van de Giesen, Nick
2016-11-01
Surface heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology, and climate change studies, but in situ observations are costly and difficult. It has been demonstrated that surface heat fluxes can be estimated from assimilation of land surface temperature (LST). One approach is to estimate a neutral bulk heat transfer coefficient (CHN) to scale the sum of turbulent heat fluxes, and an evaporative fraction (EF) that represents the partitioning between fluxes. Here the newly developed particle batch smoother (PBS) is implemented. The PBS makes no assumptions about the prior distributions and is therefore well-suited for non-Gaussian processes. It is also particularly advantageous for parameter estimation by tracking the entire prior distribution of parameters using Monte Carlo sampling. To improve the flux estimation on wet or densely vegetated surfaces, a simple soil moisture scheme is introduced to further constrain EF, and soil moisture observations are assimilated simultaneously. This methodology is implemented with the FIFE 1987 and 1988 data sets. Validation against observed fluxes indicates that assimilating LST using the PBS significantly improves the flux estimates at both daily and half-hourly timescales. When soil moisture is assimilated, the estimated EFs become more accurate, particularly when the surface heat flux partitioning is energy-limited. The feasibility of extending the methodology to use remote sensing observations is tested by limiting the number of LST observations. Results show that flux estimates are greatly improved after assimilating soil moisture, particularly when LST observations are sparse.
Stephan Höhlein
2017-04-01
Full Text Available The application range of existing real scale mobile thermal storage units with phase change materials (PCM is restricted by the low phase change temperature of 58 ∘ C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘ C . Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C 5 H 12 O 5 , erythritol (C 4 H 10 O 4 and magnesiumchloride hexahydrate (MCHH, MgCl 2 · 6H 2 O. The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl 2 · 6H 2 O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘ C and a phase change enthalpy of 166.9 ± 1.2 J / g with only 2.8 K supercooling at sample sizes of 100 g . The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC scale with only small changes of the melting enthalpy and temperature.
Höhlein, Stephan; König-Haagen, Andreas; Brüggemann, Dieter
2017-04-24
The application range of existing real scale mobile thermal storage units with phase change materials (PCM) is restricted by the low phase change temperature of 58 ∘ C for sodium acetate trihydrate, which is a commonly used storage material. Therefore, only low temperature heat sinks like swimming pools or greenhouses can be supplied. With increasing phase change temperatures, more applications like domestic heating or industrial process heat could be operated. The aim of this study is to find alternative PCM with phase change temperatures between 90 and 150 ∘ C . Temperature dependent thermophysical properties like phase change temperatures and enthalpies, densities and thermal diffusivities are measured for the technical grade purity materials xylitol (C 5 H 12 O 5 ), erythritol (C 4 H 10 O 4 ) and magnesiumchloride hexahydrate (MCHH, MgCl 2 · 6H 2 O). The sugar alcohols xylitol and erythritol indicate a large supercooling and different melting regimes. The salt hydrate MgCl 2 · 6H 2 O seems to be a suitable candidate for practical applications. It has a melting temperature of 115.1 ± 0.1 ∘ C and a phase change enthalpy of 166.9 ± 1.2 J / g with only 2.8 K supercooling at sample sizes of 100 g . The PCM is stable over 500 repeated melting and solidification cycles at differential scanning calorimeter (DSC) scale with only small changes of the melting enthalpy and temperature.
Langseth, Helge; Nielsen, Thomas Dyhre
2005-01-01
parametric family ofdistributions. In this paper we propose a new set of models forclassification in continuous domains, termed latent classificationmodels. The latent classification model can roughly be seen ascombining the \\NB model with a mixture of factor analyzers,thereby relaxing the assumptions...... of the \\NB classifier. In theproposed model the continuous attributes are described by amixture of multivariate Gaussians, where the conditionaldependencies among the attributes are encoded using latentvariables. We present algorithms for learning both the parametersand the structure of a latent...
Estimating the health benefits from natural gas use in transport and heating in Santiago, Chile.
Mena-Carrasco, Marcelo; Oliva, Estefania; Saide, Pablo; Spak, Scott N; de la Maza, Cristóbal; Osses, Mauricio; Tolvett, Sebastián; Campbell, J Elliott; Tsao, Tsao Es Chi-Chung; Molina, Luisa T
2012-07-01
Chilean law requires the assessment of air pollution control strategies for their costs and benefits. Here we employ an online weather and chemical transport model, WRF-Chem, and a gridded population density map, LANDSCAN, to estimate changes in fine particle pollution exposure, health benefits, and economic valuation for two emission reduction strategies based on increasing the use of compressed natural gas (CNG) in Santiago, Chile. The first scenario, switching to a CNG public transportation system, would reduce urban PM2.5 emissions by 229 t/year. The second scenario would reduce wood burning emissions by 671 t/year, with unique hourly emission reductions distributed from daily heating demand. The CNG bus scenario reduces annual PM2.5 by 0.33 μg/m³ and up to 2 μg/m³ during winter months, while the residential heating scenario reduces annual PM2.5 by 2.07 μg/m³, with peaks exceeding 8 μg/m³ during strong air pollution episodes in winter months. These ambient pollution reductions lead to 36 avoided premature mortalities for the CNG bus scenario, and 229 for the CNG heating scenario. Both policies are shown to be cost-effective ways of reducing air pollution, as they target high-emitting area pollution sources and reduce concentrations over densely populated urban areas as well as less dense areas outside the city limits. Unlike the concentration rollback methods commonly used in public policy analyses, which assume homogeneous reductions across a whole city (including homogeneous population densities), and without accounting for the seasonality of certain emissions, this approach accounts for both seasonality and diurnal emission profiles for both the transportation and residential heating sectors.
Rao, Bala Bhaskara [Dept. of Mechanical Engineering, SISTAM College, JNTU, Kakinada (India); Raju, V. Ramachandra [Dept. of Mechanical Engineering, JNTU, Kakinada (India); Deepak, B. B V. L. [Dept. of Industrial Design, National Institute of Technology, Rourkela (India)
2017-01-15
Most thermal/chemical industries are equipped with heat exchangers to enhance thermal efficiency. The performance of heat exchangers highly depends on design modifications in the tube side, such as the cross-sectional area, orientation, and baffle cut of the tube. However, these parameters do not exhibit a specific relation to determining the optimum design condition for shell and tube heat exchangers with a maximum heat transfer rate and reduced pressure drops. Accordingly, experimental and numerical simulations are performed for a heat exchanger with varying tube geometries. The heat exchanger considered in this investigation is a single-shell, multiple-pass device. A Generalized regression neural network (GRNN) is applied to generate a relation among the input and output process parameters for the experimental data sets. Then, an Artificial immune system (AIS) is used with GRNN to obtain optimized input parameters. Lastly, results are presented for the developed hybrid GRNN-AIS approach.
姜纪峰; 延晓冬; 黄耀; 郭维栋; 刘辉志
2007-01-01
集成生物圈模型(IBIS)是目前最复杂的基于动态植被模型的陆面生物物理模型之一.应用该模型对国际CEOP计划半干旱区基准站之一的吉林通榆观测站(44°25'N , 122°52'E)草地和农田生态系统2003年全年的CO2和水、热通量变化进行模拟,并将结果与涡度相关法测定的观测值进行了对比分析,以检验IBIS模型在半干旱区的模拟能力.对比结果表明:除CO2通量模拟结果不够理想外,IBIS模型较好地模拟了通榆观测站的感热通量和潜热通量.总体上看,该模型对农田生态系统模拟的偏差小于对退化草地的模拟.%A comparison between simulated land surface fluxes and observed eddy covariance (EC) measurements was conducted to validate Integrated Biosphere Simulator (IBIS) at Tongyu field observation station (44°25'N, 122°52'E) in Jilin Province, China. Results showed that the IBIS model could reproduce net ecosystem CO2 exchange (NEE), sensible and latent heat fluxes reasonably, as indicated by correlation coefficients exceeding the significant level of 0.05. It was also evident that the NEE and sensible heat fluxes were characterized by diurnal and seasonal variation both in the grassland and the cropland ecosystems, while the latent heat fluxes correlated with evapotranspiration, only took on the diurnal variation during the growing season. Moreover, both sensible heat fluxes and the latent heat fluxes were larger in the cropland ecosystem than that in the degraded grassland ecosystem. This different characteristic was possibly correlated with vegetation growing situation in the two kinds of ecosystems. A close agreement between observation and simulation on NEE, sensible heat fluxes and latent heat flux was obtained both in the degraded grassland and the cropland ecosystems. In addition, the annual NEE in the model was overestimated by 23.21% at the grassland and 27.43% at the cropland, sensible heat flux with corresponding 9.90% and 11
Castellví, F.; Cammalleri, C.; Ciraolo, G.; Maltese, A.; Rossi, F.
2016-05-01
Equations based on surface renewal (SR) analysis to estimate the sensible heat flux (H) require as input the mean ramp amplitude and period observed in the ramp-like pattern of the air temperature measured at high frequency. A SR-based method to estimate sensible heat flux (HSR-LST) requiring only low-frequency measurements of the air temperature, horizontal mean wind speed, and land-surface temperature as input was derived and tested under unstable conditions over a heterogeneous canopy (olive grove). HSR-LST assumes that the mean ramp amplitude can be inferred from the difference between land-surface temperature and mean air temperature through a linear relationship and that the ramp frequency is related to a wind shear scale characteristic of the canopy flow. The land-surface temperature was retrieved by integrating in situ sensing measures of thermal infrared energy emitted by the surface. The performance of HSR-LST was analyzed against flux tower measurements collected at two heights (close to and well above the canopy top). Crucial parameters involved in HSR-LST, which define the above mentioned linear relationship, were explained using the canopy height and the land surface temperature observed at sunrise and sunset. Although the olive grove can behave as either an isothermal or anisothermal surface, HSR-LST performed close to H measured using the eddy covariance and the Bowen ratio energy balance methods. Root mean square differences between HSR-LST and measured H were of about 55 W m-2. Thus, by using multitemporal thermal acquisitions, HSR-LST appears to bypass inconsistency between land surface temperature and the mean aerodynamic temperature. The one-source bulk transfer formulation for estimating H performed reliable after calibration against the eddy covariance method. After calibration, the latter performed similar to the proposed SR-LST method.
Arévalo, Jose David
2012-01-01
Trabajo leído por su autor en la Academia Nacional de Medicina, el día 20 de mayo de 1948. La sífilis Latente es aquella en que el organismo se ha defendido biológicamente sin ningún tratamiento, En la sífilis latente hay que distinguir: la latencia clínica, la latencia serológica y la latencia patológica.
Akkaya, Ali Volkan [Department of Mechanical Engineering, Yildiz Technical University, 34349 Besiktas, Istanbul (Turkey)
2009-02-15
In this paper, multiple nonlinear regression models for estimation of higher heating value of coals are developed using proximate analysis data obtained generally from the low rank coal samples as-received basis. In this modeling study, three main model structures depended on the number of proximate analysis parameters, which are named the independent variables, such as moisture, ash, volatile matter and fixed carbon, are firstly categorized. Secondly, sub-model structures with different arrangements of the independent variables are considered. Each sub-model structure is analyzed with a number of model equations in order to find the best fitting model using multiple nonlinear regression method. Based on the results of nonlinear regression analysis, the best model for each sub-structure is determined. Among them, the models giving highest correlation for three main structures are selected. Although the selected all three models predicts HHV rather accurately, the model involving four independent variables provides the most accurate estimation of HHV. Additionally, when the chosen model with four independent variables and a literature model are tested with extra proximate analysis data, it is seen that that the developed model in this study can give more accurate prediction of HHV of coals. It can be concluded that the developed model is effective tool for HHV estimation of low rank coals. (author)
无
2003-01-01
The objective of this study was to establish the thermal characteristics of the lauric acid (95% purity) as a latent heat storage material filled in the annulus of vertical concentric double pipe during its melting process. The temperature data were used to determine the thermal characteristics, including the temporal temperature variations and the effects of the mass flow rate and the inlet temperature of the heat transfer fluid on the heat transfer coefficient and the heat charging fraction during the melting process. The results indicated that the time to reach to heat charging fraction of 1.0 could be altered by changing the mass flow rate and the inlet temperature of the heat transfer fluid.
Heating, ventilation and cooling
Osburn, L
2009-02-01
Full Text Available content and is evaporated by the air stream with less moisture. Enthalpy wheels are more effective at transferring energy between the air streams as both sensible and latent heat is transferred. Ground-Coupled Heat Exchanger Ground-coupled heat... with high diurnal temperature variations. Evaporative Coolers Evaporative coolers work on the concept that the evaporation of water has a cooling effect on its immediate environment due to the latent heat that it absorbs in order to evaporate...
Method to Estimate Long-term Change of Heat and Electric Power Daily Load Curves in Japan
Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao
The rapid spread of CHP systems will put pressure on the regional power system to requiring an examination of the power and heat output of CHP systems. When considering the country-wide potential of the CHP system one should examine such system in coordination with the grid power system. It is essential to calculate the heat and power demand at end-use level. In the paper, annual heat and power demands of end-use sectors are forecast to the year 2025 based on 20 year data. Regression analysis is used. Estimated annual demands are divided into the seasonal hourly demands considering demand characteristics. Daily load curves of heat and power demands are determined for the Japanese end-use sectors, and the annual changes of such demands are shown by duration curves of heat to power ratios. Moreover, the grid power daily load curves are computed numerically from the estimated heat and power demands at manufacturing, residential and commercial sectors. Such load curves also consider self-generated power at manufacturing industry and own consumption of the grid power. Estimating heat and power demands allow for a joint analysis between the power system and the future phasing in of CHP systems.
Diabatic heating rate estimates from European Centre for Medium-Range Weather Forecasts analyses
Christy, John R.
1991-01-01
Vertically integrated diabatic heating rate estimates (H) calculated from 32 months of European Center for Medium-Range Weather Forecasts daily analyses (May 1985-December 1987) are determined as residuals of the thermodynamic equation in pressure coordinates. Values for global, hemispheric, zonal, and grid point H are given as they vary over the time period examined. The distribution of H is compared with previous results and with outgoing longwave radiation (OLR) measurements. The most significant negative correlations between H and OLR occur for (1) tropical and Northern-Hemisphere mid-latitude oceanic areas and (2) zonal and hemispheric mean values for periods less than 90 days. Largest positive correlations are seen in periods greater than 90 days for the Northern Hemispheric mean and continental areas of North Africa, North America, northern Asia, and Antarctica. The physical basis for these relationships is discussed. An interyear comparison between 1986 and 1987 reveals the ENSO signal.
Simple equation for estimating actual evapotranspiration using heat units for wheat in arid regions
M.A. Salama
2015-07-01
Application of treatment (B resulted in highly significant increase in yield production of Gemmeza10 and Misr2 as compared to treatment (A. Grain yield of different wheat varieties grown under treatment (B could be ranked in the following descending order: Misr2 > Gemmeza10 > Sids12. While under treatment (A it could be arranged in the following descending order: Misr2 > Sids12 > Gemmeza10. On the other hand, the overall means indicated non-significant difference between all wheat verities. The highest values of water and irrigation use efficiency as well as heat use efficiency were obtained with treatment (B. The equation used in the present study is available to estimate ETa under arid climate with drip irrigation system.
Assessment of Residual Strength Based on Estimated Temperature of Post-Heated RC Columns
Muhammad Yaqub
2013-01-01
Full Text Available The experience shows that fire-damaged concrete structures both technically and economically can be reinstated after fire due to high fire resistance and high residual strength. The residual strength of fire-damaged concrete structural member depends on the peak temperature reached during fire, fire duration and the distribution of temperature within the structural member. The assessment of the residual strength of post-heated concrete structural members in a professional way is a prime factor to take a decision about the reinstatement or demolition of fire-damaged structure. This paper provides an easy and efficient approach to predict the residual strength of reinforced concrete columns based on the estimated temperature which may have occurred within the concrete cross-section during a fire. A finite element model was developed to evaluate the distribution of temperature within the cross-section of the reinforced concrete columns. Twelve reinforced concrete square columns were heated experimentally up to 500°C at 150°C/hour. A comparison of the experimental temperature values of the tested columns was made with the model results. A good agreement was found between the experimental and the finite model results. Based on the temperature distribution obtained from the finite element model, the residual strength of concrete and reinforcement could be evaluated by using the relationships for concrete, steel and temperature proposed by various researchers.
Reconciling heat-flux and salt-flux estimates at a melting ice-ocean interface
Keitzl, Thomas; Notz, Dirk
2016-01-01
The ratio of heat and salt flux is employed in ice-ocean models to represent ice-ocean interactions. In this study, this flux ratio is determined from direct numerical simulations of free convection beneath a melting, horizontal, smooth ice-ocean interface. We find that the flux ratio at the interface is three times as large as previously assessed based on turbulent-flux measurements in the field. As a consequence, interface salinities and melt rates are overestimated by up to 40\\% if they are based on the three-equation formulation. We also find that the interface flux ratio depends only very weakly on the far-field conditions of the flow. Lastly, our simulations indicate that estimates of the interface flux ratio based on direct measurements of the turbulent fluxes will be difficult because at the interface the diffusivities alone determine the mixing and the flux ratio varies with depth. As an alternative, we present a consistent evaluation of the flux ratio based on the total heat and salt fluxes across t...
Higher-Order Item Response Models for Hierarchical Latent Traits
Huang, Hung-Yu; Wang, Wen-Chung; Chen, Po-Hsi; Su, Chi-Ming
2013-01-01
Many latent traits in the human sciences have a hierarchical structure. This study aimed to develop a new class of higher order item response theory models for hierarchical latent traits that are flexible in accommodating both dichotomous and polytomous items, to estimate both item and person parameters jointly, to allow users to specify…
Scale aggregation - comparison of flux estimates from NOPEX
Gottschalk, L.; Batchvarova, E.; Gryning, Sven-Erik
1999-01-01
The NOPEX two concentrated field efforts (CFEs) (June 1994 and April-July 1995) provide high quality data sets for the Boreal environment. The analysis of these data with traditional meteorological and hydrological approaches allow estimations of fluxes of latent and sensible heat, but these flux...
Ludwig, Robert; Stapf, Marcus; Dutz, Silvio; Müller, Robert; Teichgräber, Ulf; Hilger, Ingrid
2014-01-01
Magnetically induced heating of magnetic nanoparticles (MNP) in an alternating magnetic field (AMF) is a promising minimally invasive tool for localized tumor treatment by sensitizing or killing tumor cells with the help of thermal stress. Therefore, the selection of MNP exhibiting a sufficient heating capacity (specific absorption rate, SAR) to achieve satisfactory temperatures in vivo is necessary. Up to now, the SAR of MNP is mainly determined using ferrofluidic suspensions and may distinc...
Morillas, L.; Garcia Garcia, Monica; Nieto Solana, Hector;
2013-01-01
A two-source model (TSM) for surface energy balance, considering explicitly soil and vegetation components, was tested under water stress conditions. The TSM evaluated estimates the sensible heat flux (H) using the surface-air thermal gradient and the latent heat flux (LE) as a residual from the ...
2008-01-01
Surface soil heat flux is a component of surface energy budget and its estimation is needed in land-atmosphere interaction studies. This paper develops a new simple method to estimate soil heat flux from soil temperature and moisture observations. It gives soil temperature profile with the thermal diffusion equation and, then, adjusts the temperature profile with differences between observed and computed soil temperatures. The soil flux is obtained through integrating the soil temperature profile. Compared with previous methods, the new method does not require accurate thermal conductivity. Case studies based on observations, synthetic data, and sensitivity analyses show that the new method is preferable and the results obtained with it are not sensitive to the availability of temperature data in the topsoil. In addition, we pointed out that the soil heat flux measured with a heat-plate can be quite erroneous in magnitude though its phase is accurate.
On identifiability of certain latent class models.
van Wieringen, W.N.
2005-01-01
Blischke [1962. Moment estimators for the parameters of a mixture of two binomial distributions. Ann. Math. Statist. 33, 444-454] studies a mixture of two binomials, a latent class model. In this article we generalize this model to a mixture of two products of binomials. We show when this generalize
Turechek, William W; Webster, Craig G; Duan, Jingyi; Roberts, Pamela D; Kousik, Chandrasekar S; Adkins, Scott
2013-12-01
Squash vein yellowing virus (SqVYV) is the causal agent of viral watermelon vine decline, one of the most serious diseases in watermelon (Citrullus lanatus L.) production in the southeastern United States. At present, there is not a gold standard diagnostic test for determining the true status of SqVYV infection in plants. Current diagnostic methods for identification of SqVYV-infected plants or tissues are based on the reverse-transcription polymerase chain reaction (RT-PCR), tissue blot nucleic acid hybridization assays (TB), and expression of visual symptoms. A quantitative assessment of the performance of these diagnostic tests is lacking, which may lead to an incorrect interpretation of results. In this study, latent class analysis (LCA) was used to estimate the sensitivities and specificities of RT-PCR, TB, and visual assessment of symptoms as diagnostic tests for SqVYV. The LCA model assumes that the observed diagnostic test responses are linked to an underlying latent (nonobserved) disease status of the population, and can be used to estimate sensitivity and specificity of the individual tests, as well as to derive an estimate of the incidence of disease when a gold standard test does not exist. LCA can also be expanded to evaluate the effect of factors and was done here to determine whether diagnostic test performances varied among the type of plant tissue being tested (crown versus vine tissue), where plant samples were taken relative to the position of the crown (i.e., distance from the crown), host (i.e., genus), and habitat (field-grown versus greenhouse-grown plants). Results showed that RT-PCR had the highest sensitivity (0.94) and specificity (0.98) of the three tests. TB had better sensitivity than symptoms for detection of SqVYV infection (0.70 versus 0.32), while the visual assessment of symptoms was more specific than TB and, thus, a better indicator of noninfection (0.98 versus 0.65). With respect to the grouping variables, RT-PCR and TB had
Potentiation of latent inhibition.
Rodriguez, Gabriel; Hall, Geoffrey
2008-07-01
Rats were given exposure either to an odor (almond) or a compound of odor plus taste (almond plus saline), prior to training in which the odor served as the conditioned stimulus. It was found, for both appetitive and aversive procedures, that conditioning was retarded by preexposure (a latent inhibition effect), and the extent of the retardation was greater in rats preexposed to the compound (i.e., latent inhibition to the odor was potentiated by the presence of the taste). In contrast, the presence of the taste during conditioning itself overshadowed learning about the odor. We argue that the presence of the salient taste in compound with the odor enhances the rate of associative learning, producing a rapid loss in the associability of the odor. This loss of associability will generate both overshadowing and the potentiation of latent inhibition that is observed after preexposure to the compound.
Eddy Flux of Heat and Momentum during Two Years at Stockholm-Bromma
Nyberg, A; Schmacke, E.
2011-01-01
The eddy flux of momentum, sensible heat and latent heat has been computed from measured temperature, humidity and wind data from the aerological station Bromma 59° 21' N, 17° 57'E. The results obtained have been compared with similar computations for Larkhill 51° 11' N, 01° 48' W made by Priestley. A comparison has also been made with values obtained by using geostrophic winds kaken from synoptic charts. An estimation of the heat and momentum gaine...
Langseth, Helge; Nielsen, Thomas Dyhre
2005-01-01
One of the simplest, and yet most consistently well-performing setof classifiers is the \\NB models. These models rely on twoassumptions: $(i)$ All the attributes used to describe an instanceare conditionally independent given the class of that instance,and $(ii)$ all attributes follow a specific...... parametric family ofdistributions. In this paper we propose a new set of models forclassification in continuous domains, termed latent classificationmodels. The latent classification model can roughly be seen ascombining the \\NB model with a mixture of factor analyzers,thereby relaxing the assumptions...... classification model, and wedemonstrate empirically that the accuracy of the proposed model issignificantly higher than the accuracy of other probabilisticclassifiers....
McGee, D.; Donohoe, A.; Marshall, J.; Ferreira, D.
2012-12-01
The mean position and seasonal migration of the Intertropical Convergence Zone (ITCZ) govern the intensity, spatial distribution and seasonality of precipitation throughout the tropics as well as the magnitude and direction of interhemispheric atmospheric heat transport (AHT). As a result of these links to global tropical precipitation and hemispheric heat budgets, paleoclimate studies have commonly sought to use reconstructions of local precipitation and surface winds to identify past shifts in the ITCZ's mean position or seasonal extent. Records indicate close ties between ITCZ position and interhemispheric surface temperature gradients in past climates, with the ITCZ shifting toward the warmer hemisphere. This shift would increase AHT into the cooler hemisphere to at least partially compensate for cooling there. Despite widespread qualitative evidence consistent with ITCZ shifts, few proxy records offer quantitative estimates of the distance of these shifts or of the associated changes in AHT. Here we present a strategy for placing quantitative limits on past changes in mean annual ITCZ position and interhemispheric AHT based on explorations of the modern seasonal cycle and models of present and past climates. We use reconstructions of tropical sea surface temperature gradients to place bounds on globally averaged ITCZ position and interhemispheric AHT during the Last Glacial Maximum, Heinrich Stadial 1, and the Mid-Holocene (6 ka). Though limited by the small number of SST records available, our results suggest that past shifts in the global mean ITCZ were small, typically less than 1 degree of latitude. Past changes in interhemispheric AHT may have been substantial, with anomalies approximately equal to the magnitude of modern interhemispheric AHT. Using constraints on the invariance of the total (ocean+atmosphere) heat transport we suggest possible bounds on fluctuations of the OHT and AMOC during Heinrich Stadial 1. We also explore ITCZ shifts in models and
von Davier, Matthias; Sinharay, Sandip
2009-01-01
This paper presents an application of a stochastic approximation EM-algorithm using a Metropolis-Hastings sampler to estimate the parameters of an item response latent regression model. Latent regression models are extensions of item response theory (IRT) to a 2-level latent variable model in which covariates serve as predictors of the…
康文星; 沙甲先; 吴耀兴; 何介南
2011-01-01
以连续4年定位测定数据为基础,应用空气动力学和大气热力学原理,对采伐迹地营造杉木人工林后,幼林对退化系统环境中的显热与潜热能的调节和生态恢复进行研究.结果表明:2年生幼林对显热能的调节已恢复到成林的16.2％,3年生时其能力恢复到38.5％,4年生时,已接近成林的60％；对潜热能的调节,2年生时已显示出成林11.4％的调节作用,3年生时已达到成林22.4％的水平,4年生时已恢复到成林的34.3％；幼林对显热能的调节恢复速率比潜热能快.采伐迹地营造植被后,植物就开始实施对周围环境的调节,使退化生态系统的物质和能量进行良性循环,结构与功能相互协调发展.杉木对小环境的改善,主要是通过林木来影响各种基本环境能量的空间分配和大小,调节各种基本环境能量的比例来完成的.%Basing on the continuous and local observation 4-year data and applying the aerodynamic and atmospheric thermodynamic principles, the adjustment effects of young Chinese fir forest to the apparent heat and latent heat energy of the deteriorating system and its ecological restoration were studied, which was deforested and then planted Chinese fir. The results show that the adjustment effect of 2-year-old young Chinese fir forest to apparent heat energy had been restored to 16. 2% of mature stands, and that of 3-year-old young stands had recovered to 38. 5%, with 4-year-old closed to 60% of mature stands. In regard to the regulating effect to latent heat energy, 2-year-old young stands had reached the level of 11. 4 % of mature stands, with 3-year-old was 22. 4%, and 4-year-old forest was 34. 3%. From the above, we could see that the rate of the restoration of regulating effect of young forest to apparent heat energy was faster than that of the latent heat energy. After vegetation was planted on a logging slash, the plants began to regulate surrounding environment, so that the
ESTIMATION OF INDICES OF QUALITY OF WORK OF HEAT PUMP WITH VORTEX TUBE
Sit M.L.
2011-12-01
Full Text Available It is performed analisys of the use of efficiency of the use of vortex tube in heat pump with carbon dioxide as the refrigerant. Heat pump is desinated for parallel production of of heat on one temperature level and cold on two temperature levels. Scheme is compared with heat pump in which ejectors are used. It is demonstrated on the exemple that scheme with the vortex tube has COP increased comparitive with those with ejectors.
Milčić Dragan S.
2012-01-01
Full Text Available Friction stir welding is a solid-state welding technique that utilizes thermomechanical influence of the rotating welding tool on parent material resulting in a monolith joint - weld. On the contact of welding tool and parent material, significant stirring and deformation of parent material appears, and during this process, mechanical energy is partially transformed into heat. Generated heat affects the temperature of the welding tool and parent material, thus the proposed analytical model for the estimation of the amount of generated heat can be verified by temperature: analytically determined heat is used for numerical estimation of the temperature of parent material and this temperature is compared to the experimentally determined temperature. Numerical solution is estimated using the finite difference method - explicit scheme with adaptive grid, considering influence of temperature on material's conductivity, contact conditions between welding tool and parent material, material flow around welding tool, etc. The analytical model shows that 60-100% of mechanical power given to the welding tool is transformed into heat, while the comparison of results shows the maximal relative difference between the analytical and experimental temperature of about 10%.
First Versus Second Order Latent Growth Curve Models: Some Insights From Latent State-Trait Theory.
Geiser, Christian; Keller, Brian; Lockhart, Ginger
2013-07-01
First order latent growth curve models (FGMs) estimate change based on a single observed variable and are widely used in longitudinal research. Despite significant advantages, second order latent growth curve models (SGMs), which use multiple indicators, are rarely used in practice, and not all aspects of these models are widely understood. In this article, our goal is to contribute to a deeper understanding of theoretical and practical differences between FGMs and SGMs. We define the latent variables in FGMs and SGMs explicitly on the basis of latent state-trait (LST) theory and discuss insights that arise from this approach. We show that FGMs imply a strict trait-like conception of the construct under study, whereas SGMs allow for both trait and state components. Based on a simulation study and empirical applications to the CES-D depression scale (Radloff, 1977) we illustrate that, as an important practical consequence, FGMs yield biased reliability estimates whenever constructs contain state components, whereas reliability estimates based on SGMs were found to be accurate. Implications of the state-trait distinction for the measurement of change via latent growth curve models are discussed.
Everson Dal Piva
2008-12-01
Full Text Available Neste estudo foram realizados experimentos numéricos com um modelo meteorológico regional a fim de verificar o impacto dos Fluxos de Calor Latente (FCL e Calor Sensível (FCS em superfície no desenvolvimento de um ciclone intenso ocorrido sobre a costa leste da região sudeste da América do Sul, entre os dias 24 e 26 de julho de 1998. A taxa de intensificação do ciclone foi reduzida em 6 hPa/24 h no experimento em que os FCL e FCS estavam ausentes. Verificou-se que a ausência do FCL apresentou maior impacto do que a ausência do FCS, fazendo com que a taxa de intensificação fosse reduzida em 6 hPa/24 h para o experimento sem FCL e permanecesse inalterada sem FCS, mas neste último a isóbara de menor valor no centro do ciclone ocupou uma área menor. A ausência dos FCL e FCS em superfície gerou uma camada mais seca e mais fria próxima à superfície oceânica, reduzindo a instabilidade potencial do ambiente e diminuindo a intensificação do ciclone. Concluiu-se, portanto que os FCL e FCS em superfície foram importantes antes da fase de mais rápido desenvolvimento do ciclone, agindo no sentido de preparar o ambiente para uma ciclogênese mais intensa, através do fornecimento de energia e umidade para a baixa troposfera. Na fase de mais rápido desenvolvimento, a energia e a umidade disponíveis nas camadas mais baixas da atmosfera (inseridos na fase anterior também foram importantes, permitindo ao ciclone se desenvolver mais intensamente do que ocorreria em um ambiente mais seco e menos instável termicamente.Numeric experiments were run with meteorological regional model with the purpose to verify the impact of both latent and sensible surface heat fluxes (FCL and FCS, respectively during the development of an intense east cost cyclone over southeastern region of South America from 24 to 26 July, 1998. The intensification rate of the cyclone was reduced by 6 hPa/24 h in the experiment where the FCL and FCS were absents. It was
Dynamic Latent Classification Model
Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre
as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...... in the process as well as modeling dependences between attributes....
J. Roberts
2005-01-01
Full Text Available The impact on recharge to the Chalk aquifer of substitution of broadleaved woodland for pasture is a matter of concern in the UK. Hence, measurements of energy balance components were made above beech woodland and above pasture, both growing on shallow soils over chalk in Hampshire. Latent heat flux (evaporation was calculated as the residual from these measurements of energy balances in which sensible heat flux was measured with an eddy correlation instrument that determined fast response vertical wind speeds and associated temperature changes. Assessment of wind turbulence statistics confirmed that the eddy correlation device performed satisfactorily in both wet and dry conditions. There was excellent agreement between forest transpiration measurements made by eddy correlation and stand level tree transpiration measured with sap flow devices. Over the period of the measurements, from March 1999 to late summer 2000, changes in soil water content were small and grassland evaporation and transpiration estimated from energy balance-eddy flux measurements were in excellent agreement with Penman estimates of potential evaporation. Over the 18-month measurement period, the cumulative difference between broadleaved woodland and grassland was small but evaporation from the grassland was 3% higher than that from the woodland. In the springs of 1999 and 2000, evaporation from the grassland was greater than that from the woodland. However, following leaf emergence in the woodland, the difference in cumulative evaporation diminished until the following spring.
Sang-Young Kim
2015-07-01
Full Text Available This article aims to study the in-plane stiffness estimation of heat pipe supporter (a large lattice structure using experimental and numerical methods. The in-plane stiffness of heat pipe supporter for nuclear power plant is very important because of the safety against natural disasters, such as seismic load or tsunami, and has to be evaluated because it greatly affects the durability of the heat exchanger. However, the modeling process of the whole lattice structure for finite element analysis increases resources needed caused by too many nodes and elements. In this study, the mechanical properties of large lattice structures are determined by a unit cell finite element analysis. The mechanical behavior of a large lattice structure has been estimated by finite element analysis through a homogenization process for reducing analysis time and efforts. The finite element analysis results have been verified and show a good agreement with the experimental results.
Watts, C.J.; Chehbouni, A.; Rodriguez, J.C.; Kerr, Y.H.; Hartogensis, O.K.; Bruin, de H.A.R.
2000-01-01
The problems associated with the validation of satellite-derived estimates of the surface fluxes are discussed and the possibility of using the large aperture scintillometer is investigated. Simple models are described to derive surface temperature and sensible heat flux from the advanced very high
Bateni, S. M.; Xu, T.
2015-12-01
Accurate estimation of water and heat fluxes is required for irrigation scheduling, weather prediction, and water resources planning and management. A weak-constraint variational data assimilation (WC-VDA) scheme is developed to estimate water and heat fluxes by assimilating sequences of land surface temperature (LST) observations. The commonly used strong-constraint VDA systems adversely affect the accuracy of water and heat flux estimates as they assume the model is perfect. The WC-VDA approach accounts for structural and model errors and generates more accurate results via adding a model error term into the surface energy balance equation. The two key unknown parameters of the WC-VDA system (i.e., CHN, the bulk heat transfer coefficient and EF, evaporative fraction) and the model error term are optimized by minimizing the cost function. The WC-VDA model was tested at two sites with contrasting hydrological and vegetative conditions: the Daman site (a wet site located in an oasis area and covered by seeded corn) and the Huazhaizi site (a dry site located in a desert area and covered by sparse grass) in middle stream of Heihe river basin, northwest China. Compared to the strong-constraint VDA system, the WC-VDA method generates more accurate estimates of water and energy fluxes over the desert and oasis sites with dry and wet conditions.
Kobayashi, Tatsuya; Itoh, Kimitaka; Ida, Katsumi; Inagaki, Sigeru; Itoh, Sanae-I.
2017-07-01
In this paper we propose a new set of formulae for estimating the harmonic frequency dependence of the diffusion coefficient and the convective velocity in the heat pulse propagation experiment in order to investigate the transport hysteresis. The assumptions that are used to derive the formulae can result in dummy frequency dependences of the transport coefficients. It is shown that these dummy frequency dependences of the transport coefficients can be distinguished from the true frequency dependence due to the transport hysteresis by using a bidirectional heat pulse propagation manner, in which both the outward propagating heat pulse and the inward propagating heat pulse are analyzed. The validity of the new formulae are examined in a simple numerical calculation.
Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær
2015-01-01
are considered: a flue-gas-based heat recovery boiler for a combined cycle power plant and a hot-oil-based boiler for a solar thermal power plant. The different transport property methods resulted in larger differences at high pressures and temperatures, and a possible discontinuous first derivative, when using...... the interpolative methods in contrast to the corresponding state methods. Nevertheless, all possible mixture transport property combinations used herein resulted in a heat exchanger size within 4.3 % difference for the flue-gas heat recovery boiler, and within 12.3 % difference for the oil-based boiler.......Transport properties of fluids are indispensable for heat exchanger design. The methods for estimating the transport properties of ammonia–water mixtures are not well established in the literature. The few existent methods are developed from none or limited, sometimes inconsistent experimental...
Nogueira, P J; Falcão, J M; Contreiras, M T; Paixão, E; Brandão, João; Batista, I
2005-07-01
During the first two weeks of August 2003, Portugal was affected by a severe heat wave. Following the identification in Portugal of the influence of heat waves on mortality in 1981 and 1991 (estimated excess of about 1900 and 1000 deaths respectively), the Observatorio Nacional de Saude (ONSA) - Instituto Nacional de Saude Dr. Ricardo Jorge, together with the Vigilancia Previsao e Informacao - Instituto de Meteorologia, created a surveillance system called iCARO, which has been in operation since 1999. iCARO identifies heat waves with potential influence on mortality [1]. Before the end of the 2003 heat wave, ONSA had produced a preliminary estimate of its effect on mortality. The results based on daily number of deaths from 1 June to 12 August 2003 were presented within 4 working days. Data was gathered from 31 National Civil registrars, covering the district capitals of all 18 districts of mainland Portugal, and representing approximately 40% of the mainland's mortality. The number of deaths registered in the period 30 July to 12 August was compared with the ones registered during 3 comparison periods: (in July): 1-14 July, 1-28 July, and 15-28 July). 15-28 July, the period best resembling the heat wave in time and characteristics, produced an estimation of 37.7% higher mortality rate then the value expected under normal temperature conditions. From this value, an estimate of 1316 death excess was obtained for mainland Portugal. The main purpose of this article is to present the method used to identify and assess the occurrence of an effect (excess mortality) during the heat wave of summer 2003.
Koteen, L. E.; Harte, J.; Baldocchi, D. D.
2012-12-01
of latent to sensible heat flux is higher where native perennial grasses are found, particularly in wet years. Annual sums of total evaporation are likewise higher in native-dominated regions, and soil moisture is lower relative to non-natives in the deep soil. We also found that PAR albedo is lower in native grasslands compared to non-natives during significant portions of the year, and corresponding to the hotter months. In all, our findings indicate that the non-native annual grasses which now dominate California grasslands, promote conditions that support higher surface temperatures relative to native perennial grasses.
Freifeld, B. M.; Kryder, L.; Gilmore, K.; Henninges, J.; Onstott, T. C.; Lisa, P.
2007-12-01
Variations in geothermal heat flux provide a window into a diverse array of geological processes including plate tectonics and crustal fluid circulation. The Distributed Thermal Perturbation Sensor (DTPS) is a novel device that can simultaneously determine formation thermal properties and heat flux in situ. The device consists of a fiber- optic distributed temperature sensor (DTS) and a heat trace cable installed along the axis of a borehole. To operate the DTPS, the sensor is backfilled into a borehole and the disturbed thermal field is allowed to dissipate. A baseline temperature profile is subsequently recorded. Next, the heat trace cable is used to provide constant heating along the borehole and the thermal transient is recorded. DTS monitoring continues after heating concludes during the ensuing cool-down phase. To obtain in situ estimates for thermal properties and heat flux, simple conductive or conductive-convective models can be used to interpret the data. Given the 1 meter spatial resolution of the DTS - the DTPS provides thermal property and heat flux estimates at similar spatial resolution. To date, the DTPS has been deployed at three continental sites: (1) in the Amargosa Valley, Amargosa, NV, USA, to characterize groundwater flow through fractured volcanic tuffs, (2) in a deep permafrost boring within an Archean mafic volcanic belt at the High Lake Project Site (67°22"N, 110°50"W), Nunavut, Canada, and (3) as part of the monitoring program at CO2SINK, a carbon geosequestration experiment being conducted in Ketzin, Germany. The authors present results from these three sites and discuss potential modalities for future deployment in suboceanic environments.
A multi-method and multi-scale approach for estimating city-wide anthropogenic heat fluxes
Chow, Winston T. L.; Salamanca, Francisco; Georgescu, Matei; Mahalov, Alex; Milne, Jeffrey M.; Ruddell, Benjamin L.
2014-12-01
A multi-method approach estimating summer waste heat emissions from anthropogenic activities (QF) was applied for a major subtropical city (Phoenix, AZ). These included detailed, quality-controlled inventories of city-wide population density and traffic counts to estimate waste heat emissions from population and vehicular sources respectively, and also included waste heat simulations derived from urban electrical consumption generated by a coupled building energy - regional climate model (WRF-BEM + BEP). These component QF data were subsequently summed and mapped through Geographic Information Systems techniques to enable analysis over local (i.e. census-tract) and regional (i.e. metropolitan area) scales. Through this approach, local mean daily QF estimates compared reasonably versus (1.) observed daily surface energy balance residuals from an eddy covariance tower sited within a residential area and (2.) estimates from inventory methods employed in a prior study, with improved sensitivity to temperature and precipitation variations. Regional analysis indicates substantial variations in both mean and maximum daily QF, which varied with urban land use type. Average regional daily QF was ∼13 W m-2 for the summer period. Temporal analyses also indicated notable differences using this approach with previous estimates of QF in Phoenix over different land uses, with much larger peak fluxes averaging ∼50 W m-2 occurring in commercial or industrial areas during late summer afternoons. The spatio-temporal analysis of QF also suggests that it may influence the form and intensity of the Phoenix urban heat island, specifically through additional early evening heat input, and by modifying the urban boundary layer structure through increased turbulence.
Thermally Stable, Latent Olefin Metathesis Catalysts
Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.
2011-01-01
Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures. PMID:22282652
Ershadi, Ali
2013-05-01
The influence of uncertainty in land surface temperature, air temperature, and wind speed on the estimation of sensible heat flux is analyzed using a Bayesian inference technique applied to the Surface Energy Balance System (SEBS) model. The Bayesian approach allows for an explicit quantification of the uncertainties in input variables: a source of error generally ignored in surface heat flux estimation. An application using field measurements from the Soil Moisture Experiment 2002 is presented. The spatial variability of selected input meteorological variables in a multitower site is used to formulate the prior estimates for the sampling uncertainties, and the likelihood function is formulated assuming Gaussian errors in the SEBS model. Land surface temperature, air temperature, and wind speed were estimated by sampling their posterior distribution using a Markov chain Monte Carlo algorithm. Results verify that Bayesian-inferred air temperature and wind speed were generally consistent with those observed at the towers, suggesting that local observations of these variables were spatially representative. Uncertainties in the land surface temperature appear to have the strongest effect on the estimated sensible heat flux, with Bayesian-inferred values differing by up to ±5°C from the observed data. These differences suggest that the footprint of the in situ measured land surface temperature is not representative of the larger-scale variability. As such, these measurements should be used with caution in the calculation of surface heat fluxes and highlight the importance of capturing the spatial variability in the land surface temperature: particularly, for remote sensing retrieval algorithms that use this variable for flux estimation.
Estimating the workpiece-backingplate heat transfer coefficient in friction stirwelding
Larsen, Anders; Stolpe, Mathias; Hattel, Jesper Henri
2012-01-01
Purpose - The purpose of this paper is to determine the magnitude and spatial distribution of the heat transfer coefficient between the workpiece and the backingplate in a friction stir welding process using inverse modelling. Design/methodology/approach - The magnitude and distribution of the heat...... yields optimal values for the magnitude and distribution of the heat transfer coefficient. Findings - It is found that the heat transfer coefficient between the workpiece and the backingplate is non-uniform and takes its maximum value in a region below the welding tool. Four different parameterisations...... of the spatial distribution of the heat transfer coefficient are analysed and a simple, two parameter distribution is found to give good results. Originality/value - The heat transfer from workpiece to backingplate is important for the temperature field in the workpiece, and in turn the mechanical properties...
Zmywaczyk, J.; Madura, H.; Koniorczyk, P.; Dąbrowski, M.
2007-01-01
This paper deals with the problem of estimation of thermophysical parameters by an inverse method. The thermal conductivity in radial and axial direction of a cylindrical sample and the heat capacity were simultaneously estimated using the Levenberg-Marquardt method of minimizing a mean square functional. As heat sources the thin-layer heater KHR 2/10 of diameter ϕ = 50 mm and thickness 0.20 mm made by OMEGA as well as the Kanthal resistance wire of diameter ϕ = 0.1 mm in a form of semicircle were simultaneously used. The main aim of using these two heaters simultaneously, both placed at one of the sample interfaces, was to generate heat fluxes in axial and additionally in radial direction. However, measurements of temperature distribution on the main surface of the thin-layer heater by using the FLIR Systems (ThermaCAM SC 3000 infrared camera) revealed a spatial heterogeneity of its temperature field, and therefore it was necessary to determine the effective heating region of that heater indispensable for solving of the coefficient inverse problem of heat conduction.
Wang Yi-Bo; Wang Shang-Wu; Zeng Xin-Wu
2012-01-01
One of the common characteristics of the electrothermal breakdown in an underwater discharge acoustic source(UDAS)is the existence of a pre-breakdown-heating phase.In our experiment,two phenomena were observed:(1)the breakdown time that takes on high randomicity and obeys a "double-peak" stochastic distribution;(2)the higher salt concentration that reduces the residual voltage and causes 100％ non-breakdown.The mechanism of electrothermal breakdown is analysed.To specify the end of the pre-breakdown-heating phase,a "border boiling" assumption is proposed,in which the breakdown time is assumed to be the time needed to heat the border water around the initial arc to 773 K.Based on this ‘border boiling' assumption,the numerical simulation is performed to evaluate the effects of two heating mechanisms:the Joule heating from the ionic current,and the radiation heating from the initial arc.The simulation results verify the theoretical explanations to these two experiment phenomena:(1)the stochastic distribution of the radius of the initial arc results in the randomicity of the breakdown time;(2)the difference in efficiency between the radiation heating and the Joule heating determines that,in the case of higher salt concentration,more energy will be consumed in the pre-breakdown-heating phase.
Kirillin, Georgiy; Aslamov, Ilya; Kozlov, Vladimir; Granin, Nikolay; Engelhardt, Christof; Förster, Josephine
2016-04-01
Seasonal lake ice is a highly changeable part of the cryosphere undergoing remarkable impact by global warming. Vertical heat transport across the boundary layer under ice affects strongly the growth and melting of lake ice cover. The existing models of ice cover dynamics focus basically on the dependence of the ice thickness on the air temperature with implicit account of the snow cover effects. The heat flux at the water-ice boundary, in turn, is usually neglected or parameterized in a very simplistic form. However, neglecting of the basal ice melting due to heat flux at the ice-water interface produces appreciable errors in the modeled ice cover duration. We utilize fine-structure observations taken during 2009-2015 in ice-water boundary layers of Lake Baikal and arctic Lake Kilpisjärvi to reveal the major physical drivers of the heat exchange at the ice bottom and to explain the high geographical, spatial, and temporal variability in the heat flux magnitudes. The methods provide first detailed estimations of the heat exchange beneath the ice cover, available previously only from bulk estimations. The fluxes in Lake Baikal have magnitudes of 101 W m-2 and vary strongly between different parts of the lake being influenced by large-scale horizontal circulation with current velocities amounting at up to 7 cm s-1. The shallow lake fluxes, while an order of magnitude weaker, are highly non-stationary, being affected by the turbulence due to oscillating currents under ice. Our results demonstrate the role played by the boundary layer mixing in the ice growth and melting, as well as characterize the physical processes responsible for the vertical heat exchange and provide a basis for an improved parameterization of ice cover in coupled lake-atmosphere models.
Fitting Latent Cluster Models for Networks with latentnet
Pavel N. Krivitsky
2007-12-01
Full Text Available latentnet is a package to fit and evaluate statistical latent position and cluster models for networks. Hoﬀ, Raftery, and Handcock (2002 suggested an approach to modeling networks based on positing the existence of an latent space of characteristics of the actors. Relationships form as a function of distances between these characteristics as well as functions of observed dyadic level covariates. In latentnet social distances are represented in a Euclidean space. It also includes a variant of the extension of the latent position model to allow for clustering of the positions developed in Handcock, Raftery, and Tantrum (2007.The package implements Bayesian inference for the models based on an Markov chain Monte Carlo algorithm. It can also compute maximum likelihood estimates for the latent position model and a two-stage maximum likelihood method for the latent position cluster model. For latent position cluster models, the package provides a Bayesian way of assessing how many groups there are, and thus whether or not there is any clustering (since if the preferred number of groups is 1, there is little evidence for clustering. It also estimates which cluster each actor belongs to. These estimates are probabilistic, and provide the probability of each actor belonging to each cluster. It computes four types of point estimates for the coefficients and positions: maximum likelihood estimate, posterior mean, posterior mode and the estimator which minimizes Kullback-Leibler divergence from the posterior. You can assess the goodness-of-fit of the model via posterior predictive checks. It has a function to simulate networks from a latent position or latent position cluster model.
Tests of a robust eddy correlation system for sensible heat flux
Blanford, J. H.; Gay, L. W.
1992-03-01
Sensible heat flux estimates from a simple, one-propeller eddy correlation system (OPEC) were compared with those from a sonic anemometer eddy correlation system (SEC). In accordance with similarity theory, the performance of the OPEC system improved with increasing height of the sensor above the surface. Flux totals from the two systems at sites with adequate fetch were in excellent agreement after frequency response corrections were applied. The propeller system appears suitable for long periods of unattended measurement. The sensible heat flux measurements can be combined with net radiation and soil heat flux measurements to estimate latent heat as a residual in the surface energy balance.
Investigation on heat transfer properties of slurry of stabilized paraffin during a melting process
Royon, L. [IUT Marne la Vallee, Universite Paris-Est, 77420 Champs sur Marne (France); Matiere et Systemes Complexes, UMR 7057 CNRS, Universite Diderot Paris, 75205 Paris Cedex 13 (France); Guiffant, G. [Matiere et Systemes Complexes, UMR 7057 CNRS, Universite Diderot Paris, 75205 Paris Cedex 13 (France)
2011-02-15
This paper is presented in the framework of the increasing interest for the use of latent heat transfer slurries for cooling processes. Paraffin serves as a latent heat storage material and a polymer network acts as the supporting material. The phase change material melts around 7 C with a latent heat of fusion of 115 kJ/kg. A special experimental device is realized which permits the recording of the temperature in a single slurry undergoing a phase change in an agitated bath. Analysis of data permits to develop a phenomenological correlation adapted to the millimetric dimension of the slurry, leading to an estimation of the melting phase change time duration of a particle as a function of the main parameters of the problem. (author)
Estimating losses in heat networks coated with modern liquid crystal thermal insulation
Ilyin, R. A.
2015-07-01
One of the present issues during heat network operation in Russia is the losses of thermal energy at its transfer to consumers. According to statements of experts, losses in heat networks reach 35-50%. In this work, some properties of thermo-insulating materials currently in use are described. The innovative TLM Ceramic liquid-crystal thermal insulation is presented by its positive technical and economical characteristics, as well as field-performance data, and the doubts of experts about its declared properties. Location measurement data are presented for Astrakhan Severnaya heat and power plant hot-water system section covered with the 2-mm-thick liquid-crystal thermal insulation layer. Specific heat losses from the hot-water system surface have been determined and the arguments for inexpediency of applying TLM Ceramic liquid-crystal thermal insulation in heat-and-power engineering are discussed.
S. N. Osipov
2016-01-01
the period from 2006 to 2013, by virtue of the heat-supply schemes optimization and modernizing the heating systems using valuable (200–300 $US per 1 m though hugely effective preliminary coated pipes, the economy reached 2,7 MIO tons of fuel equivalent. Heat-energy general losses in municipal services of Belarus in March 2014 amounted up 17 %, whilst in 2001 they were at the level of 26 % and in 1990 – more than 30 %. With a glance to multi-staging and multifactorial nature (electricity, heat and water supply of the residential sector energy saving, the reasonable estimate of the residential buildings sustenance energy efficiency should be performed in tons of fuel equivalent in a unit of time.
Ludwig, Robert; Stapf, Marcus; Dutz, Silvio; Müller, Robert; Teichgräber, Ulf; Hilger, Ingrid
2014-01-01
Magnetically induced heating of magnetic nanoparticles (MNP) in an alternating magnetic field (AMF) is a promising minimally invasive tool for localized tumor treatment by sensitizing or killing tumor cells with the help of thermal stress. Therefore, the selection of MNP exhibiting a sufficient heating capacity (specific absorption rate, SAR) to achieve satisfactory temperatures in vivo is necessary. Up to now, the SAR of MNP is mainly determined using ferrofluidic suspensions and may distinctly differ from the SAR in vivo due to immobilization of MNP in tissues and cells. The aim of our investigations was to study the correlation between the SAR and the degree of MNP immobilization in dependence of their physicochemical features. In this study, the included MNP exhibited varying physicochemical properties and were either made up of single cores or multicores. Whereas the single core MNP exhibited a core size of approximately 15 nm, the multicore MNP consisted of multiple smaller single cores (5 to 15 nm) with 65 to 175 nm diameter in total. Furthermore, different MNP coatings, including dimercaptosuccinic acid (DMSA), polyacrylic acid (PAA), polyethylenglycol (PEG), and starch, wereinvestigated. SAR values were determined after the suspension of MNP in water. MNP immobilization in tissues was simulated with 1% agarose gels and 10% polyvinyl alcohol (PVA) hydrogels. The highest SAR values were observed in ferrofluidic suspensions, whereas a strong reduction of the SAR after the immobilization of MNP with PVA was found. Generally, PVA embedment led to a higher immobilization of MNP compared to immobilization in agarose gels. The investigated single core MNP exhibited higher SAR values than the multicore MNP of the same core size within the used magnetic field parameters. Multicore MNP manufactured via different synthesis routes (fluidMAG-D, fluidMAG/12-D) showed different SAR although they exhibited comparable core and hydrodynamic sizes. Additionally, no
Peach latent mosaic viroid: not so latent.
Flores, Ricardo; Delgado, Sonia; Rodio, María-Elena; Ambrós, Silvia; Hernández, Carmen; Serio, Francesco D I
2006-07-01
SUMMARY Taxonomy: Peach latent mosaic viroid (PLMVd) is the type species of the genus Pelamoviroid within the family Avsunviroidae of chloroplastic viroids with hammerhead ribozymes. Physical properties: A small circular RNA of 336-351 nt (differences in size result from the absence or presence of certain insertions) adopting a branched conformation stabilized by a pseudoknot between two kissing loops. This particular conformation is most likely responsible for the insolubility of PLMVd in highly saline conditions (in which other viroids adopting a rod-like conformation are soluble). Both polarity strands are able to form hammerhead structures and to self-cleave during replication as predicted by these ribozymes. Biological properties: Although most infections occur without conspicuous symptoms, certain PLMVd isolates induce leaf mosaics, blotches and in the most extreme cases albinism (peach calico, PC), flower streaking, delays in foliation, flowering and ripening, deformations and decolorations of fruits, which usually present cracked sutures and enlarged roundish stones, bud necrosis, stem pitting and premature ageing of the trees, which also adopt a characteristic growing pattern (open habit). The molecular determinant for PC has been mapped at a 12-14-nt insertion that folds into a hairpin capped by a U-rich loop present only in certain variants. PLMVd is horizontally transmitted by the propagation of infected buds and to a lesser extent by pruning tools and aphids, but not by pollen; the viroid is not vertically transmitted through seed. Interesting features: This provides a suitable system for studying how a minimal non-protein-coding catalytic RNA replicates (subverting a DNA-dependent RNA polymerase to transcribe an RNA template), moves, interferes with the metabolism of its host (inciting specific symptoms and a defensive RNA silencing response) and evolves following a quasi-species model characterized by a complex spectrum of variants.
Baker, Charles
2012-01-01
One method available to prove the Schauder estimates is Neil Trudinger's method of mollification. In the case of second order elliptic equations, the method requires little more than mollification and the solid mean value inequality for subharmonic functions. Our goal in this article is show how the mean value property of subsolutions of the heat equation can be used in a similar fashion as the solid mean value inequality for subharmonic functions in Trudinger's original elliptic treatment, providing a relatively simple derivation of the interior Schauder estimate for second order parabolic equations.
Royer, J.J.; Saupe, F.; Mezghache, H.
1988-11-01
Tepid waters flowed from exploration boreholes drilled North of the mercury deposit of Ismail, located in the North Numidic mercury zone. The regional heat flow estimated by a simplified method is of 80 mW.m/sup -2/, a value close to those measured around the Mediterranean Basin. It also shows that the original geothermal system which produced the mercury ore deposit of Ismail is no longer active.
Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori
2016-07-01
The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR
A. N. Avramenko
2016-01-01
Full Text Available Performance tuning improvement of modern diesel engines exerts an influence on technical and economic, ecological and resource indices of an internal combustion engine (ICE. In its turn, that requires a complex estimation and improvement of engine indices. As is known, working process and thermal intensity of combustion chamber parts are interconnected between themselves. Changes in design, operating and adjustment parameters of systems and structural elements of internal combustion engines that enable air-fuel mixing and combustions processes stressed state of combustion chamber parts. Joint estimation of operating cycle parameters and strength indices of ICE parts makes it possible to solve a number of problems originating in the process of designing new engine models and further development of the existing ones. The paper provides results of comparative estimation on heat-stressed state of a cylinder head for a high-speed diesel engine Д21A (2Ч10,5/12 while operating a rated power mode. In order to simulate and specify a heat-stressed state for description of boundary heat conductivity conditions the following adjoint “gas – wall” problems have been solved: the first one – for combustion chamber of a diesel engine (an internal problem – simulation of a working cycle for a diesel engine; the second one – for cooling edges while blowing over them by air flow (an external problem. Calculations have been made in three-dimensional non-stationary presentation within the Cartesian coordinates. In order to simulate a working cycle of the diesel engine a computational grid describing combustion chamber configuration, inlet and outlet channels has been used in the paper. Solution of the external problem for cooling edge surface in case of blowing over them by air flow has permitted to specify temperatures and heat-transfer coefficient and later to improve an accuracy while estimating level of temperatures and stresses of the cylinder head.
Joint Hacking and Latent Hazard Rate Estimation
Liu, Ziqi; Smola, Alexander J.; Soska, Kyle; Wang, Yu-Xiang; Zheng, Qinghua
2016-01-01
In this paper we describe an algorithm for predicting the websites at risk in a long range hacking activity, while jointly inferring the provenance and evolution of vulnerabilities on websites over continuous time. Specifically, we use hazard regression with a time-varying additive hazard function parameterized in a generalized linear form. The activation coefficients on each feature are continuous-time functions constrained with total variation penalty inspired by hacking campaigns. We show ...
ESTIMATION OF WORKING CONDITIONS OF FOUNDRY WORKERS BY INFRARED (HEAT RADIATION
A. M. Lazarenkov
2010-01-01
Full Text Available The description of infrared radiations, their influence on human organism is given. The results of investigation of infrared (heat radiation intensity on the workers in foundries are given.
Chein, Reiyu; Yang, Yeong Chin; Lin, Yushan
2006-02-01
In this study we present simple analytical models that predict the temperature and pressure variations in electrokinetic-driven microchannel flow under the Joule heating effect. For temperature prediction, a simple model shows that the temperature is related to the Joule heating parameter, autothermal Joule heating parameter, external cooling parameter, Peclet number, and the channel length to channel hydraulic diameter ratio. The simple model overpredicted the thermally developed temperature compared with the full numerical simulation, but in good agreement with the experimental measurements. The factors that affect the external cooling parameters, such as the heat transfer coefficient, channel configuration, and channel material are also examined based on this simple model. Based on the mass conservation, a simple model is developed that predicts the pressure variations, including the temperature effect. An adverse pressure gradient is required to satisfy the mass conservation requirement. The temperature effect on the pressure gradient is via the temperature-dependent fluid viscosity and electroosmotic velocity.
Modification of the LCOE model to estimate a cost of heat and power generation for Russia
Bratanova, Alexandra; Robinson, Jacqueline; Wagner, Liam
2015-01-01
The Russian heat sector faces crucial problems including underinvestment, below cost pricing, generation capacity and infrastructure depletion. While the Russian electricity sector has gradually progressed through liberalization, the heat sector is still waiting for similar reforms to occur. The modernisation of the sector requires analysis of energy generation costs to suggest feasible technological solutions and secure an increase of investment in the industry. This study presents a modific...
Estimation of solidification time during casting by use of a heat transfer model.
Okazaki, M; Takahashi, J; Kimura, H; Ida, K
1982-10-01
Time-dependent temperature profiles in dental casting molds were analyzed by an unsteady heat conduction model. The thermal conductivity and initial temperature of the mold greatly affected the heat transfer in the mold. The thermal conductivities of gypsum- and phosphate-bonded investments at high temperatures were accurately measured by means of the hot wire method. From the data obtained, the solidification times of Ag, Ag alloy, and Co-Cr alloy were calculated and compared with the experimental results.
Estimation of peak heat flux onto the targets for CFETR with extended divertor leg
Zhang, Chuanjia; Chen, Bin [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Xing, Zhe [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wu, Haosheng [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Mao, Shifeng, E-mail: sfmao@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Luo, Zhengping; Peng, Xuebing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)
2016-11-01
Highlights: • A hypothetical geometry is assumed to extend the outer divertor leg in CFETR. • Density scan SOLPS simulation is done to study the peak heat flux onto target. • Attached–detached regime transition in out divertor occurs at lower puffing rate. • Unexpected delay of attached–detached regime transition occurs in inner divertor. - Abstract: China Fusion Engineering Test Reactor (CFETR) is now in conceptual design phase. CFETR is proposed as a good complement to ITER for demonstrating of fusion energy. Divertor is a crucial component which faces the plasmas and handles huge heat power for CFETR and future fusion reactor. To explore an effective way for heat exhaust, various methods to reduce the heat flux to divertor target should be considered for CFETR. In this work, the effect of extended out divertor leg on the peak heat flux is studied. The magnetic configuration of the long leg divertor is obtained by EFIT and Tokamak Simulation Code (TSC), while a hypothetical geometry is assumed to extend the out divertor leg as long as possible inside vacuum vessel. A SOLPS simulation is performed to study peak heat flux of the long leg divertor for CFETR. D{sub 2} gas puffing is used and increasing of the puffing rate means increase of plasma density. Both peak heat flux onto inner and outer targets are below 10 MW/m{sup 2} is achieved. A comparison between the peak heat flux between long leg and conventional divertor shows that an attached–detached regime transition of out divertor occurs at lower gas puffing gas puffing rate for long leg divertor. While for the inner divertor, even the configuration is almost the same, the situation is opposite.
Real-Time Personalized Monitoring to Estimate Occupational Heat Stress in Ambient Assisted Working
Pablo Pancardo; Acosta, Francisco D.; José Adán Hernández-Nolasco; Miguel A. Wister; Diego López-de-Ipiña
2015-01-01
Ambient Assisted Working (AAW) is a discipline aiming to provide comfort and safety in the workplace through customization and technology. Workers’ comfort may be compromised in many labor situations, including those depending on environmental conditions, like extremely hot weather conduces to heat stress. Occupational heat stress (OHS) happens when a worker is in an uninterrupted physical activity and in a hot environment. OHS can produce strain on the body, which leads to discomfort and eve...
de Tomás, Alberto; Nieto, Héctor; Guzinski, Radoslaw;
2014-01-01
Remote sensing has proved to be a consistent tool for monitoring water fluxes at regional scales. The triangle method, in particular, estimates the evaporative fraction (EF), defined as the ratio of latent heat flux (LE) to available energy, based on the relationship between satellite observation...
Qifeng Zhuang
2015-11-01
Full Text Available Reliably estimating the turbulent fluxes of latent and sensible heat at the Earth’s surface by remote sensing is important for research on the terrestrial hydrological cycle. This paper presents a practical approach for mapping surface energy fluxes using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER images from an improved two-source energy balance (TSEB model. The original TSEB approach may overestimate latent heat flux under vegetative stress conditions, as has also been reported in recent research. We replaced the Priestley-Taylor equation used in the original TSEB model with one that uses plant moisture and temperature constraints based on the PT-JPL model to obtain a more accurate canopy latent heat flux for model solving. The collected ASTER data and field observations employed in this study are over corn fields in arid regions of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER area, China. The results were validated by measurements from eddy covariance (EC systems, and the surface energy flux estimates of the improved TSEB model are similar to the ground truth. A comparison of the results from the original and improved TSEB models indicates that the improved method more accurately estimates the sensible and latent heat fluxes, generating more precise daily evapotranspiration (ET estimate under vegetative stress conditions.
A Non-Gaussian Spatial Generalized Linear Latent Variable Model
Irincheeva, Irina
2012-08-03
We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.
Obara, Shinya; Kudo, Kazuhiko
The method of supplying the electric power and heat energy for the energy demand of buildings by Centralized system type and distributed system type of fuel cell network is studied. The hot-water piping route planning program of fuel cell network was developed by using genetic algorithm based on the view of TSP ( Traveling salesman problem) . In this program, the piping route planning which minimizes the quantity of heat loss in hot-water piping can be performed. The residential section model of Sapporo city of 74 buildings was analyzed, and the quantity of heat loss from the hot-water piping of both systems was estimated. Consequently, the ratio of the quantity of heat loss of a distributed system to a centralized system was about 50% in the full year average. This program is introduced into the route planning of hot- Water piping system of the fuel cell network, and plan to reduce the quantity of heat loss in a distributed system will be made.
The latent class multitrait-multimethod model.
Oberski, Daniel L; Hagenaars, Jacques A P; Saris, Willem E
2015-12-01
A latent class multitrait-multimethod (MTMM) model is proposed to estimate random and systematic measurement error in categorical survey questions while making fewer assumptions than have been made so far in such evaluations, allowing for possible extreme response behavior and other nonmonotone effects. The method is a combination of the MTMM research design of Campbell and Fiske (1959), the basic response model for survey questions of Saris and Andrews (1991), and the latent class factor model of Vermunt and Magidson (2004, pp. 227-230). The latent class MTMM model thus combines an existing design, model, and method to allow for the estimation of the degree to and manner in which survey questions are affected by systematic measurement error. Starting from a general form of the response function for a survey question, we present the MTMM experimental approach to identification of the response function's parameters. A "trait-method biplot" is introduced as a means of interpreting the estimates of systematic measurement error, whereas the quality of the questions can be evaluated by item information curves and the item information function. An experiment from the European Social Survey is analyzed and the results are discussed, yielding valuable insights into the functioning of a set of example questions on the role of women in society in 2 countries.
Latent inhibition in schizophrenia.
Swerdlow, N R; Braff, D L; Hartston, H; Perry, W; Geyer, M A
1996-05-01
Latent inhibition (LI) refers to the retarded acquisition of a conditioned response that occurs if the subject being tested is first preexposed to the to-be-conditioned stimulus (CS) without the paired unconditioned stimulus (UCS). Because the 'irrelevance' of the to-be-conditioned stimulus is established during non-contingent preexposure, the slowed acquisition of the CS-UCS association is thought to reflect the process of overcoming this learned irrelevance. Latent inhibition has been reported to be diminished in acutely hospitalized schizophrenia patients. If acutely hospitalized schizophrenia patients are preexposed to the CS, they learn the association as fast as, and perhaps faster than, patients who are not preexposed to the CS. This finding has been interpreted as reflecting the inability of acute schizophrenia patients to ignore irrelevant stimuli. In this study, the LI paradigm was identical to the one used in previous reports of LI deficits in schizophrenia patients (Baruch et al., 1988). Latent inhibition was observed in normal control subjects (n = 73), including individuals identified as 'psychosis-prone' based on established screening criteria, and in anxiety (n = 19) and mood disorder (n = 13) patients. Learning scores (trials to criterion) in "acutely' hospitalized as well as "chronic' hospitalized schizophrenia patients (n = 45) were significantly elevated in both preexposed and non-preexposed subjects, compared to controls. Acute schizophrenia patients exhibited intact LI. Separate cohorts of acute and chronic schizophrenia patients (n = 23) and normal controls (n = 34) exhibited intact LI when tested in a new, easier-to-acquire computerized LI paradigm. These results fail to identify specific LI deficits in schizophrenia patients, and raise the possibility that previously observed LI deficits in schizophrenia patients may reflect, at least in part, performance deficits related to learning acquisition.
Heat Flux and Wall Temperature Estimates for the NASA Langley HIFiRE Direct Connect Rig
Cuda, Vincent, Jr.; Hass, Neal E.
2010-01-01
An objective of the Hypersonic International Flight Research Experimentation (HIFiRE) Program Flight 2 is to provide validation data for high enthalpy scramjet prediction tools through a single flight test and accompanying ground tests of the HIFiRE Direct Connect Rig (HDCR) tested in the NASA LaRC Arc Heated Scramjet Test Facility (AHSTF). The HDCR is a full-scale, copper heat sink structure designed to simulate the isolator entrance conditions and isolator, pilot, and combustor section of the HIFiRE flight test experiment flowpath and is fully instrumented to assess combustion performance over a range of operating conditions simulating flight from Mach 5.5 to 8.5 and for various fueling schemes. As part of the instrumentation package, temperature and heat flux sensors were provided along the flowpath surface and also imbedded in the structure. The purpose of this paper is to demonstrate that the surface heat flux and wall temperature of the Zirconia coated copper wall can be obtained with a water-cooled heat flux gage and a sub-surface temperature measurement. An algorithm was developed which used these two measurements to reconstruct the surface conditions along the flowpath. Determinations of the surface conditions of the Zirconia coating were conducted for a variety of conditions.
Heat-related deaths in hot cities: estimates of human tolerance to high temperature thresholds.
Harlan, Sharon L; Chowell, Gerardo; Yang, Shuo; Petitti, Diana B; Morales Butler, Emmanuel J; Ruddell, Benjamin L; Ruddell, Darren M
2014-03-20
In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax) and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages heat. For this condition-specific cause of death, the heat thresholds in all gender and age groups (ATmax = 90-97 °F; 32.2-36.1 °C) were below local median seasonal temperatures in the study period (ATmax = 99.5 °F; 37.5 °C). Heat threshold was defined as ATmax at which the mortality ratio begins an exponential upward trend. Thresholds were identified in younger and older females for cardiac disease/stroke mortality (ATmax = 106 and 108 °F; 41.1 and 42.2 °C) with a one-day lag. Thresholds were also identified for mortality from respiratory diseases in older people (ATmax = 109 °F; 42.8 °C) and for all-cause mortality in females (ATmax = 107 °F; 41.7 °C) and males Heat-related mortality in a region that has already made some adaptations to predictable periods of extremely high temperatures suggests that more extensive and targeted heat-adaptation plans for climate change are needed in cities worldwide.
Learning multimodal latent attributes.
Fu, Yanwei; Hospedales, Timothy M; Xiang, Tao; Gong, Shaogang
2014-02-01
The rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular, we focus on videos of social group activities, which are particularly challenging and topical examples of this task because of their multimodal content and complex and unstructured nature relative to the density of annotations. To solve this problem, we 1) introduce a concept of semilatent attribute space, expressing user-defined and latent attributes in a unified framework, and 2) propose a novel scalable probabilistic topic model for learning multimodal semilatent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches for addressing a variety of realistic multimedia sparse data learning tasks including: multitask learning, learning with label noise, N-shot transfer learning, and importantly zero-shot learning.
Evangelopoulos, Nicholas E
2013-11-01
This article reviews latent semantic analysis (LSA), a theory of meaning as well as a method for extracting that meaning from passages of text, based on statistical computations over a collection of documents. LSA as a theory of meaning defines a latent semantic space where documents and individual words are represented as vectors. LSA as a computational technique uses linear algebra to extract dimensions that represent that space. This representation enables the computation of similarity among terms and documents, categorization of terms and documents, and summarization of large collections of documents using automated procedures that mimic the way humans perform similar cognitive tasks. We present some technical details, various illustrative examples, and discuss a number of applications from linguistics, psychology, cognitive science, education, information science, and analysis of textual data in general. WIREs Cogn Sci 2013, 4:683-692. doi: 10.1002/wcs.1254 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. © 2013 John Wiley & Sons, Ltd.
Heat and mass transfer across phase boundaries: Estimates of coupling coefficients
Bedeaux, Dick
2008-02-01
Full Text Available Heat and mass transport across phase boundaries are central in many engineering problems. The systematic description offered by classical non-equilibrium thermodynamics theory, when extended to surfaces, gives the interaction between the two fluxes in terms of coupling coefficients. It is shown in this paper that these coupling coefficients are large. The few experimental and computational results that are available confirm this. Neglect of coupling coefficients, which is common in most models for surface transport, may lead to errors in the heat flux. We present values for the coupling coefficient in a one-component system in terms of the heat of transfer, as obtained from non-equilibrium molecular dynamics simulations, kinetic theory and the integrated non-equilibrium van der Waals' square gradient model.
A Temperature-Profile Method for Estimating Flow Processes in Geologic Heat Pipes
J.T. Birkholzer
2005-01-21
Above-boiling temperature conditions, as encountered, for example, in geothermal reservoirs and in geologic repositories for the storage of heat-producing nuclear wastes, may give rise to strongly altered liquid and gas flow processes in porous subsurface environments. The magnitude of such flow perturbation is extremely hard to measure in the field. We therefore propose a simple temperature-profile method that uses high-resolution temperature data for deriving such information. The energy that is transmitted with the vapor and water flow creates a nearly isothermal zone maintained at about the boiling temperature, referred to as a heat pipe. Characteristic features of measured temperature profiles, such as the differences in the gradients inside and outside of the heat pipe regions, are used to derive the approximate magnitude of the liquid and gas fluxes in the subsurface, for both steady-state and transient conditions.
Barron, Randall F
2016-01-01
Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.
Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor
2016-08-01
Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions. Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE). Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861). These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.