WorldWideScience

Sample records for est-based genomic resource

  1. Wheat EST resources for functional genomics of abiotic stress

    Directory of Open Access Journals (Sweden)

    Links Matthew G

    2006-06-01

    Full Text Available Abstract Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets. Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in

  2. Generation of EST and Microarray Resources for Functional Genomic Studies on Chicken Intestinal Health

    NARCIS (Netherlands)

    Hemert, van S.; Ebbelaar, B.H.; Smits, M.A.; Rebel, J.M.J.

    2003-01-01

    Expressed sequenced tags (ESTs) and microarray resources have a great impact on the ability to study host response in mice and humans. Unfortunately, these resources are not yet available for domestic farm animals. The aim of this study was to provide genomic resources to study chicken intestinal

  3. A salmonid EST genomic study: genes, duplications, phylogeny and microarrays

    Directory of Open Access Journals (Sweden)

    Brahmbhatt Sonal

    2008-11-01

    Full Text Available Abstract Background Salmonids are of interest because of their relatively recent genome duplication, and their extensive use in wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different species provide valuable genomic information for one of the most widely studied groups of fish. Results 298,304 expressed sequence tags (ESTs from Atlantic salmon (69% of the total, 11,664 chinook, 10,813 sockeye, 10,051 brook trout, 10,975 grayling, 8,630 lake whitefish, and 3,624 northern pike ESTs were obtained in this study and have been deposited into the public databases. Contigs were built and putative full-length Atlantic salmon clones have been identified. A database containing ESTs, assemblies, consensus sequences, open reading frames, gene predictions and putative annotation is available. The overall similarity between Atlantic salmon ESTs and those of rainbow trout, chinook, sockeye, brook trout, grayling, lake whitefish, northern pike and rainbow smelt is 93.4, 94.2, 94.6, 94.4, 92.5, 91.7, 89.6, and 86.2% respectively. An analysis of 78 transcript sets show Salmo as a sister group to Oncorhynchus and Salvelinus within Salmoninae, and Thymallinae as a sister group to Salmoninae and Coregoninae within Salmonidae. Extensive gene duplication is consistent with a genome duplication in the common ancestor of salmonids. Using all of the available EST data, a new expanded salmonid cDNA microarray of 32,000 features was created. Cross-species hybridizations to this cDNA microarray indicate that this resource will be useful for studies of all 68 salmonid species. Conclusion An extensive collection and analysis of salmonid RNA putative transcripts indicate that Pacific salmon, Atlantic salmon and charr are 94–96% similar while the more distant whitefish, grayling, pike and smelt are 93, 92, 89 and 86% similar to salmon. The salmonid transcriptome reveals a complex history of gene duplication that is

  4. Annotated ESTs from various tissues of the brown planthopper Nilaparvata lugens: a genomic resource for studying agricultural pests.

    Science.gov (United States)

    Noda, Hiroaki; Kawai, Sawako; Koizumi, Yoko; Matsui, Kageaki; Zhang, Qiang; Furukawa, Shigetoyo; Shimomura, Michihiko; Mita, Kazuei

    2008-03-03

    The brown planthopper (BPH), Nilaparvata lugens (Hemiptera, Delphacidae), is a serious insect pests of rice plants. Major means of BPH control are application of agricultural chemicals and cultivation of BPH resistant rice varieties. Nevertheless, BPH strains that are resistant to agricultural chemicals have developed, and BPH strains have appeared that are virulent against the resistant rice varieties. Expressed sequence tag (EST) analysis and related applications are useful to elucidate the mechanisms of resistance and virulence and to reveal physiological aspects of this non-model insect, with its poorly understood genetic background. More than 37,000 high-quality ESTs, excluding sequences of mitochondrial genome, microbial genomes, and rDNA, have been produced from 18 libraries of various BPH tissues and stages. About 10,200 clusters have been made from whole EST sequences, with average EST size of 627 bp. Among the top ten most abundantly expressed genes, three are unique and show no homology in BLAST searches. The actin gene was highly expressed in BPH, especially in the thorax. Tissue-specifically expressed genes were extracted based on the expression frequency among the libraries. An EST database is available at our web site. The EST library will provide useful information for transcriptional analyses, proteomic analyses, and gene functional analyses of BPH. Moreover, specific genes for hemimetabolous insects will be identified. The microarray fabricated based on the EST information will be useful for finding genes related to agricultural and biological problems related to this pest.

  5. Annotated ESTs from various tissues of the brown planthopper Nilaparvata lugens: A genomic resource for studying agricultural pests

    Directory of Open Access Journals (Sweden)

    Zhang Qiang

    2008-03-01

    Full Text Available Abstract Background The brown planthopper (BPH, Nilaparvata lugens (Hemiptera, Delphacidae, is a serious insect pests of rice plants. Major means of BPH control are application of agricultural chemicals and cultivation of BPH resistant rice varieties. Nevertheless, BPH strains that are resistant to agricultural chemicals have developed, and BPH strains have appeared that are virulent against the resistant rice varieties. Expressed sequence tag (EST analysis and related applications are useful to elucidate the mechanisms of resistance and virulence and to reveal physiological aspects of this non-model insect, with its poorly understood genetic background. Results More than 37,000 high-quality ESTs, excluding sequences of mitochondrial genome, microbial genomes, and rDNA, have been produced from 18 libraries of various BPH tissues and stages. About 10,200 clusters have been made from whole EST sequences, with average EST size of 627 bp. Among the top ten most abundantly expressed genes, three are unique and show no homology in BLAST searches. The actin gene was highly expressed in BPH, especially in the thorax. Tissue-specifically expressed genes were extracted based on the expression frequency among the libraries. An EST database is available at our web site. Conclusion The EST library will provide useful information for transcriptional analyses, proteomic analyses, and gene functional analyses of BPH. Moreover, specific genes for hemimetabolous insects will be identified. The microarray fabricated based on the EST information will be useful for finding genes related to agricultural and biological problems related to this pest.

  6. In silico comparative analysis of EST-SSRs in three cotton genomes

    African Journals Online (AJOL)

    reading 6

    2012-08-28

    Aug 28, 2012 ... Furthermore, they are polymerase chain reaction (PCR)-based ..... A and AD genomes. Blast (E-value≤1e-15) analysis was performed to search .... absent in Gh-ESTs; 'trans-porter activity' was also absent in Ga-ESTs (Figure ...

  7. Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane.

    Science.gov (United States)

    Parthiban, S; Govindaraj, P; Senthilkumar, S

    2018-03-01

    Twenty-five primer pairs developed from genomic simple sequence repeats (SSR) were compared with 25 expressed sequence tags (EST) SSRs to evaluate the efficiency of these two sets of primers using 59 sugarcane genetic stocks. The mean polymorphism information content (PIC) of genomic SSR was higher (0.72) compared to the PIC value recorded by EST-SSR marker (0.62). The relatively low level of polymorphism in EST-SSR markers may be due to the location of these markers in more conserved and expressed sequences compared to genomic sequences which are spread throughout the genome. Dendrogram based on the genomic SSR and EST-SSR marker data showed differences in grouping of genotypes. A total of 59 sugarcane accessions were grouped into 6 and 4 clusters using genomic SSR and EST-SSR, respectively. The highly efficient genomic SSR could subcluster the genotypes of some of the clusters formed by EST-SSR markers. The difference in dendrogram observed was probably due to the variation in number of markers produced by genomic SSR and EST-SSR and different portion of genome amplified by both the markers. The combined dendrogram (genomic SSR and EST-SSR) more clearly showed the genetic relationship among the sugarcane genotypes by forming four clusters. The mean genetic similarity (GS) value obtained using EST-SSR among 59 sugarcane accessions was 0.70, whereas the mean GS obtained using genomic SSR was 0.63. Although relatively lower level of polymorphism was displayed by the EST-SSR markers, genetic diversity shown by the EST-SSR was found to be promising as they were functional marker. High level of PIC and low genetic similarity values of genomic SSR may be more useful in DNA fingerprinting, selection of true hybrids, identification of variety specific markers and genetic diversity analysis. Identification of diverse parents based on cluster analysis can be effectively done with EST-SSR as the genetic similarity estimates are based on functional attributes related to

  8. An EST dataset for Metasequoia glyptostroboides buds: the first EST resource for molecular genomics studies in Metasequoia.

    Science.gov (United States)

    Zhao, Ying; Thammannagowda, Shivegowda; Staton, Margaret; Tang, Sha; Xia, Xinli; Yin, Weilun; Liang, Haiying

    2013-03-01

    The "living fossil" Metasequoia glyptostroboides Hu et Cheng, commonly known as dawn redwood or Chinese redwood, is the only living species in the genus and is valued for its essential oil and crude extracts that have great potential for anti-fungal activity. Despite its paleontological significance and economical value as a rare relict species, genomic resources of Metasequoia are very limited. In order to gain insight into the molecular mechanisms behind the formation of reproductive buds and the transition from vegetative phase to reproductive phase in Metasequoia, we performed sequencing of expressed sequence tags from Metasequoia vegetative buds and female buds. By using the 454 pyrosequencing technology, a total of 1,571,764 high-quality reads were generated, among which 733,128 were from vegetative buds and 775,636 were from female buds. These EST reads were clustered and assembled into 114,124 putative unique transcripts (PUTs) with an average length of 536 bp. The 97,565 PUTs that were at least 100 bp in length were functionally annotated by a similarity search against public databases and assigned with Gene Ontology (GO) terms. A total of 59 known floral gene families and 190 isotigs involved in hormone regulation were captured in the dataset. Furthermore, a set of PUTs differentially expressed in vegetative and reproductive buds, as well as SSR motifs and high confidence SNPs, were identified. This is the first large-scale expressed sequence tags ever generated in Metasequoia and the first evidence for floral genes in this critically endangered deciduous conifer species.

  9. Pairagon+N-SCAN_EST: a model-based gene annotation pipeline

    DEFF Research Database (Denmark)

    Arumugam, Manimozhiyan; Wei, Chaochun; Brown, Randall H

    2006-01-01

    This paper describes Pairagon+N-SCAN_EST, a gene annotation pipeline that uses only native alignments. For each expressed sequence it chooses the best genomic alignment. Systems like ENSEMBL and ExoGean rely on trans alignments, in which expressed sequences are aligned to the genomic loci...... with de novo gene prediction by using N-SCAN_EST. N-SCAN_EST is based on a generalized HMM probability model augmented with a phylogenetic conservation model and EST alignments. It can predict complete transcripts by extending or merging EST alignments, but it can also predict genes in regions without EST...

  10. Exploration of genetic diversity among medicinally important genus Epimedium species based on genomic and EST-SSR marker.

    Science.gov (United States)

    Yousaf, Zubaida; Hu, Weiming; Zhang, Yanjun; Zeng, Shaohua; Wang, Ying

    2015-01-01

    Epimedium species has gained prime importance due to their medicinal and economic values. Therefore, in this study, 26 genomic SSR and 10 EST-SSR markers were developed for 13 medicinal species of the Epimedium genus and one out-group species Vancouveria hexandra W. J. Hooker to explore the existing genetic diversity. A total of 100 alleles by genomic SSR and 65 by EST-SSR were detected. The genomic SSR markers were presented between 2-7 alleles per locus. The observed heterozygosity (Ho) and expected heterozygosity (He) ranged from 0.00 to 4.5 and 0.0254 to 2.8108, respectively. Similarly, for EST-SSR, these values were ranged from 3.00 to 4.00 and 1.9650 to 2.7142. The number of alleles for EST-SSR markers ranged from 3 to 10 with an average of 3.51 per loci. It has been concluded that medicinally important species of the genus Epimedium possesses lower intraspecific genetic variation.

  11. MycoCosm, an Integrated Fungal Genomics Resource

    Energy Technology Data Exchange (ETDEWEB)

    Shabalov, Igor; Grigoriev, Igor

    2012-03-16

    MycoCosm is a web-based interactive fungal genomics resource, which was first released in March 2010, in response to an urgent call from the fungal community for integration of all fungal genomes and analytical tools in one place (Pan-fungal data resources meeting, Feb 21-22, 2010, Alexandria, VA). MycoCosm integrates genomics data and analysis tools to navigate through over 100 fungal genomes sequenced at JGI and elsewhere. This resource allows users to explore fungal genomes in the context of both genome-centric analysis and comparative genomics, and promotes user community participation in data submission, annotation and analysis. MycoCosm has over 4500 unique visitors/month or 35000+ visitors/year as well as hundreds of registered users contributing their data and expertise to this resource. Its scalable architecture allows significant expansion of the data expected from JGI Fungal Genomics Program, its users, and integration with external resources used by fungal community.

  12. GDR (Genome Database for Rosaceae: integrated web resources for Rosaceae genomics and genetics research

    Directory of Open Access Journals (Sweden)

    Ficklin Stephen

    2004-09-01

    Full Text Available Abstract Background Peach is being developed as a model organism for Rosaceae, an economically important family that includes fruits and ornamental plants such as apple, pear, strawberry, cherry, almond and rose. The genomics and genetics data of peach can play a significant role in the gene discovery and the genetic understanding of related species. The effective utilization of these peach resources, however, requires the development of an integrated and centralized database with associated analysis tools. Description The Genome Database for Rosaceae (GDR is a curated and integrated web-based relational database. GDR contains comprehensive data of the genetically anchored peach physical map, an annotated peach EST database, Rosaceae maps and markers and all publicly available Rosaceae sequences. Annotations of ESTs include contig assembly, putative function, simple sequence repeats, and anchored position to the peach physical map where applicable. Our integrated map viewer provides graphical interface to the genetic, transcriptome and physical mapping information. ESTs, BACs and markers can be queried by various categories and the search result sites are linked to the integrated map viewer or to the WebFPC physical map sites. In addition to browsing and querying the database, users can compare their sequences with the annotated GDR sequences via a dedicated sequence similarity server running either the BLAST or FASTA algorithm. To demonstrate the utility of the integrated and fully annotated database and analysis tools, we describe a case study where we anchored Rosaceae sequences to the peach physical and genetic map by sequence similarity. Conclusions The GDR has been initiated to meet the major deficiency in Rosaceae genomics and genetics research, namely a centralized web database and bioinformatics tools for data storage, analysis and exchange. GDR can be accessed at http://www.genome.clemson.edu/gdr/.

  13. GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research.

    Science.gov (United States)

    Jung, Sook; Jesudurai, Christopher; Staton, Margaret; Du, Zhidian; Ficklin, Stephen; Cho, Ilhyung; Abbott, Albert; Tomkins, Jeffrey; Main, Dorrie

    2004-09-09

    Peach is being developed as a model organism for Rosaceae, an economically important family that includes fruits and ornamental plants such as apple, pear, strawberry, cherry, almond and rose. The genomics and genetics data of peach can play a significant role in the gene discovery and the genetic understanding of related species. The effective utilization of these peach resources, however, requires the development of an integrated and centralized database with associated analysis tools. The Genome Database for Rosaceae (GDR) is a curated and integrated web-based relational database. GDR contains comprehensive data of the genetically anchored peach physical map, an annotated peach EST database, Rosaceae maps and markers and all publicly available Rosaceae sequences. Annotations of ESTs include contig assembly, putative function, simple sequence repeats, and anchored position to the peach physical map where applicable. Our integrated map viewer provides graphical interface to the genetic, transcriptome and physical mapping information. ESTs, BACs and markers can be queried by various categories and the search result sites are linked to the integrated map viewer or to the WebFPC physical map sites. In addition to browsing and querying the database, users can compare their sequences with the annotated GDR sequences via a dedicated sequence similarity server running either the BLAST or FASTA algorithm. To demonstrate the utility of the integrated and fully annotated database and analysis tools, we describe a case study where we anchored Rosaceae sequences to the peach physical and genetic map by sequence similarity. The GDR has been initiated to meet the major deficiency in Rosaceae genomics and genetics research, namely a centralized web database and bioinformatics tools for data storage, analysis and exchange. GDR can be accessed at http://www.genome.clemson.edu/gdr/.

  14. From biomedicine to natural history research: EST resources for ambystomatid salamanders

    Directory of Open Access Journals (Sweden)

    Bryant Susan V

    2004-08-01

    Full Text Available Abstract Background Establishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. We developed ESTs for Mexican axolotl (Ambystoma mexicanum and Eastern tiger salamander (A. tigrinum tigrinum, species with deep and diverse research histories. Results Approximately 40,000 quality cDNA sequences were isolated for these species from various tissues, including regenerating limb and tail. These sequences and an existing set of 16,030 cDNA sequences for A. mexicanum were processed to yield 35,413 and 20,599 high quality ESTs for A. mexicanum and A. t. tigrinum, respectively. Because the A. t. tigrinum ESTs were obtained primarily from a normalized library, an approximately equal number of contigs were obtained for each species, with 21,091 unique contigs identified overall. The 10,592 contigs that showed significant similarity to sequences from the human RefSeq database reflected a diverse array of molecular functions and biological processes, with many corresponding to genes expressed during spinal cord injury in rat and fin regeneration in zebrafish. To demonstrate the utility of these EST resources, we searched databases to identify probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human – Ambystoma synteny group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species. Conclusions Our study highlights the value of developing resources in traditional model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research.

  15. From biomedicine to natural history research: EST resources for ambystomatid salamanders

    Science.gov (United States)

    Putta, Srikrishna; Smith, Jeramiah J; Walker, John A; Rondet, Mathieu; Weisrock, David W; Monaghan, James; Samuels, Amy K; Kump, Kevin; King, David C; Maness, Nicholas J; Habermann, Bianca; Tanaka, Elly; Bryant, Susan V; Gardiner, David M; Parichy, David M; Voss, S Randal

    2004-01-01

    Background Establishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. We developed ESTs for Mexican axolotl (Ambystoma mexicanum) and Eastern tiger salamander (A. tigrinum tigrinum), species with deep and diverse research histories. Results Approximately 40,000 quality cDNA sequences were isolated for these species from various tissues, including regenerating limb and tail. These sequences and an existing set of 16,030 cDNA sequences for A. mexicanum were processed to yield 35,413 and 20,599 high quality ESTs for A. mexicanum and A. t. tigrinum, respectively. Because the A. t. tigrinum ESTs were obtained primarily from a normalized library, an approximately equal number of contigs were obtained for each species, with 21,091 unique contigs identified overall. The 10,592 contigs that showed significant similarity to sequences from the human RefSeq database reflected a diverse array of molecular functions and biological processes, with many corresponding to genes expressed during spinal cord injury in rat and fin regeneration in zebrafish. To demonstrate the utility of these EST resources, we searched databases to identify probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human – Ambystoma synteny group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species. Conclusions Our study highlights the value of developing resources in traditional model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research. PMID:15310388

  16. A contig-based strategy for the genome-wide discovery of microRNAs without complete genome resources.

    Directory of Open Access Journals (Sweden)

    Jun-Zhi Wen

    Full Text Available MicroRNAs (miRNAs are important regulators of many cellular processes and exist in a wide range of eukaryotes. High-throughput sequencing is a mainstream method of miRNA identification through which it is possible to obtain the complete small RNA profile of an organism. Currently, most approaches to miRNA identification rely on a reference genome for the prediction of hairpin structures. However, many species of economic and phylogenetic importance are non-model organisms without complete genome sequences, and this limits miRNA discovery. Here, to overcome this limitation, we have developed a contig-based miRNA identification strategy. We applied this method to a triploid species of edible banana (GCTCV-119, Musa spp. AAA group and identified 180 pre-miRNAs and 314 mature miRNAs, which is three times more than those were predicted by the available dataset-based methods (represented by EST+GSS. Based on the recently published miRNA data set of Musa acuminate, the recall rate and precision of our strategy are estimated to be 70.6% and 92.2%, respectively, significantly better than those of EST+GSS-based strategy (10.2% and 50.0%, respectively. Our novel, efficient and cost-effective strategy facilitates the study of the functional and evolutionary role of miRNAs, as well as miRNA-based molecular breeding, in non-model species of economic or evolutionary interest.

  17. PineElm_SSRdb: a microsatellite marker database identified from genomic, chloroplast, mitochondrial and EST sequences of pineapple (Ananas comosus (L.) Merrill).

    Science.gov (United States)

    Chaudhary, Sakshi; Mishra, Bharat Kumar; Vivek, Thiruvettai; Magadum, Santoshkumar; Yasin, Jeshima Khan

    2016-01-01

    Simple Sequence Repeats or microsatellites are resourceful molecular genetic markers. There are only few reports of SSR identification and development in pineapple. Complete genome sequence of pineapple available in the public domain can be used to develop numerous novel SSRs. Therefore, an attempt was made to identify SSRs from genomic, chloroplast, mitochondrial and EST sequences of pineapple which will help in deciphering genetic makeup of its germplasm resources. A total of 359511 SSRs were identified in pineapple (356385 from genome sequence, 45 from chloroplast sequence, 249 in mitochondrial sequence and 2832 from EST sequences). The list of EST-SSR markers and their details are available in the database. PineElm_SSRdb is an open source database available for non-commercial academic purpose at http://app.bioelm.com/ with a mapping tool which can develop circular maps of selected marker set. This database will be of immense use to breeders, researchers and graduates working on Ananas spp. and to others working on cross-species transferability of markers, investigating diversity, mapping and DNA fingerprinting.

  18. StreptoBase: An Oral Streptococcus mitis Group Genomic Resource and Analysis Platform.

    Directory of Open Access Journals (Sweden)

    Wenning Zheng

    Full Text Available The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC tool and Pathogenomic Profiling Tool (PathoProT, which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my.

  19. StreptoBase: An Oral Streptococcus mitis Group Genomic Resource and Analysis Platform.

    Science.gov (United States)

    Zheng, Wenning; Tan, Tze King; Paterson, Ian C; Mutha, Naresh V R; Siow, Cheuk Chuen; Tan, Shi Yang; Old, Lesley A; Jakubovics, Nicholas S; Choo, Siew Woh

    2016-01-01

    The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE) and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC) tool and Pathogenomic Profiling Tool (PathoProT), which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my.

  20. PCR-Based EST Mapping in Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    J. PERRY GUSTAFSON

    2009-04-01

    Full Text Available Mapping expressed sequence tags (ESTs to hexaploid wheat is aimed to reveal the structure and function of the hexaploid wheat genome. Sixty eight ESTs representing 26 genes were mapped into all seven homologous chromosome groups of wheat (Triticum aestivum L using a polymerase chain reaction technique. The majority of the ESTs were mapped to homologous chromosome group 2, and the least were mapped to homologous chromosome group 6. Comparative analysis between the EST map from this study and the EST map based on RFLPs showed 14 genes that have been mapped by both approaches were mapped to the same arm of the same homologous chromosome, which indicated that using PCR-based ESTs was a reliable approach in mapping ESTs in hexaploid wheat.

  1. Microbial Genome Analysis and Comparisons: Web-based Protocols and Resources

    Science.gov (United States)

    Fully annotated genome sequences of many microorganisms are publicly available as a resource. However, in-depth analysis of these genomes using specialized tools is required to derive meaningful information. We describe here the utility of three powerful publicly available genome databases and ana...

  2. MiSNPDb: a web-based genomic resources of tropical ecology fruit mango (Mangifera indica L.) for phylogeography and varietal differentiation.

    Science.gov (United States)

    Iquebal, M A; Jaiswal, Sarika; Mahato, Ajay Kumar; Jayaswal, Pawan K; Angadi, U B; Kumar, Neeraj; Sharma, Nimisha; Singh, Anand K; Srivastav, Manish; Prakash, Jai; Singh, S K; Khan, Kasim; Mishra, Rupesh K; Rajan, Shailendra; Bajpai, Anju; Sandhya, B S; Nischita, Puttaraju; Ravishankar, K V; Dinesh, M R; Rai, Anil; Kumar, Dinesh; Sharma, Tilak R; Singh, Nagendra K

    2017-11-02

    Mango is one of the most important fruits of tropical ecological region of the world, well known for its nutritive value, aroma and taste. Its world production is >45MT worth >200 billion US dollars. Genomic resources are required for improvement in productivity and management of mango germplasm. There is no web-based genomic resources available for mango. Hence rapid and cost-effective high throughput putative marker discovery is required to develop such resources. RAD-based marker discovery can cater this urgent need till whole genome sequence of mango becomes available. Using a panel of 84 mango varieties, a total of 28.6 Gb data was generated by ddRAD-Seq approach on Illumina HiSeq 2000 platform. A total of 1.25 million SNPs were discovered. Phylogenetic tree using 749 common SNPs across these varieties revealed three major lineages which was compared with geographical locations. A web genomic resources MiSNPDb, available at http://webtom.cabgrid.res.in/mangosnps/ is based on 3-tier architecture, developed using PHP, MySQL and Javascript. This web genomic resources can be of immense use in the development of high density linkage map, QTL discovery, varietal differentiation, traceability, genome finishing and SNP chip development for future GWAS in genomic selection program. We report here world's first web-based genomic resources for genetic improvement and germplasm management of mango.

  3. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  4. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform.

    Science.gov (United States)

    Zheng, Wenning; Mutha, Naresh V R; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah; Choo, Siew Woh

    2016-01-01

    Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my.

  5. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform

    Directory of Open Access Journals (Sweden)

    Wenning Zheng

    2016-03-01

    Factor Database (VFDB specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my.

  6. Development of genomic SSR and potential EST-SSR markers in ...

    African Journals Online (AJOL)

    In addition, forty four EST-SSRs which can be amplified with expected sizes were identified from a B. chinense root cDNA library. The genomic SSR markers and potential EST-SSR markers developed in the present study should be useful for genetic diversity and molecular marker assistant selection breeding research in ...

  7. The Perennial Ryegrass GenomeZipper – Targeted Use of Genome Resources for Comparative Grass Genomics

    DEFF Research Database (Denmark)

    Pfeiffer, Matthias; Martis, Mihaela; Asp, Torben

    2013-01-01

    (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold......Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass...... to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous...

  8. Construction, database integration, and application of an Oenothera EST library.

    Science.gov (United States)

    Mrácek, Jaroslav; Greiner, Stephan; Cho, Won Kyong; Rauwolf, Uwe; Braun, Martha; Umate, Pavan; Altstätter, Johannes; Stoppel, Rhea; Mlcochová, Lada; Silber, Martina V; Volz, Stefanie M; White, Sarah; Selmeier, Renate; Rudd, Stephen; Herrmann, Reinhold G; Meurer, Jörg

    2006-09-01

    Coevolution of cellular genetic compartments is a fundamental aspect in eukaryotic genome evolution that becomes apparent in serious developmental disturbances after interspecific organelle exchanges. The genus Oenothera represents a unique, at present the only available, resource to study the role of the compartmentalized plant genome in diversification of populations and speciation processes. An integrated approach involving cDNA cloning, EST sequencing, and bioinformatic data mining was chosen using Oenothera elata with the genetic constitution nuclear genome AA with plastome type I. The Gene Ontology system grouped 1621 unique gene products into 17 different functional categories. Application of arrays generated from a selected fraction of ESTs revealed significantly differing expression profiles among closely related Oenothera species possessing the potential to generate fertile and incompatible plastid/nuclear hybrids (hybrid bleaching). Furthermore, the EST library provides a valuable source of PCR-based polymorphic molecular markers that are instrumental for genotyping and molecular mapping approaches.

  9. YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia.

    Science.gov (United States)

    Tan, Shi Yang; Dutta, Avirup; Jakubovics, Nicholas S; Ang, Mia Yang; Siow, Cheuk Chuen; Mutha, Naresh Vr; Heydari, Hamed; Wee, Wei Yee; Wong, Guat Jah; Choo, Siew Woh

    2015-01-16

    Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the

  10. DFAST and DAGA: web-based integrated genome annotation tools and resources.

    Science.gov (United States)

    Tanizawa, Yasuhiro; Fujisawa, Takatomo; Kaminuma, Eli; Nakamura, Yasukazu; Arita, Masanori

    2016-01-01

    Quality assurance and correct taxonomic affiliation of data submitted to public sequence databases have been an everlasting problem. The DDBJ Fast Annotation and Submission Tool (DFAST) is a newly developed genome annotation pipeline with quality and taxonomy assessment tools. To enable annotation of ready-to-submit quality, we also constructed curated reference protein databases tailored for lactic acid bacteria. DFAST was developed so that all the procedures required for DDBJ submission could be done seamlessly online. The online workspace would be especially useful for users not familiar with bioinformatics skills. In addition, we have developed a genome repository, DFAST Archive of Genome Annotation (DAGA), which currently includes 1,421 genomes covering 179 species and 18 subspecies of two genera, Lactobacillus and Pediococcus , obtained from both DDBJ/ENA/GenBank and Sequence Read Archive (SRA). All the genomes deposited in DAGA were annotated consistently and assessed using DFAST. To assess the taxonomic position based on genomic sequence information, we used the average nucleotide identity (ANI), which showed high discriminative power to determine whether two given genomes belong to the same species. We corrected mislabeled or misidentified genomes in the public database and deposited the curated information in DAGA. The repository will improve the accessibility and reusability of genome resources for lactic acid bacteria. By exploiting the data deposited in DAGA, we found intraspecific subgroups in Lactobacillus gasseri and Lactobacillus jensenii , whose variation between subgroups is larger than the well-accepted ANI threshold of 95% to differentiate species. DFAST and DAGA are freely accessible at https://dfast.nig.ac.jp.

  11. The Perennial Ryegrass GenomeZipper: Targeted Use of Genome Resources for Comparative Grass Genomics1[C][W

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F.X.; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-01-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species. PMID:23184232

  12. The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.

    Directory of Open Access Journals (Sweden)

    Byregowda Munishamappa

    2010-03-01

    Full Text Available Abstract Background Pigeonpea (Cajanus cajan (L. Millsp is one of the major grain legume crops of the tropics and subtropics, but biotic stresses [Fusarium wilt (FW, sterility mosaic disease (SMD, etc.] are serious challenges for sustainable crop production. Modern genomic tools such as molecular markers and candidate genes associated with resistance to these stresses offer the possibility of facilitating pigeonpea breeding for improving biotic stress resistance. Availability of limited genomic resources, however, is a serious bottleneck to undertake molecular breeding in pigeonpea to develop superior genotypes with enhanced resistance to above mentioned biotic stresses. With an objective of enhancing genomic resources in pigeonpea, this study reports generation and analysis of comprehensive resource of FW- and SMD- responsive expressed sequence tags (ESTs. Results A total of 16 cDNA libraries were constructed from four pigeonpea genotypes that are resistant and susceptible to FW ('ICPL 20102' and 'ICP 2376' and SMD ('ICP 7035' and 'TTB 7' and a total of 9,888 (9,468 high quality ESTs were generated and deposited in dbEST of GenBank under accession numbers GR463974 to GR473857 and GR958228 to GR958231. Clustering and assembly analyses of these ESTs resulted into 4,557 unique sequences (unigenes including 697 contigs and 3,860 singletons. BLASTN analysis of 4,557 unigenes showed a significant identity with ESTs of different legumes (23.2-60.3%, rice (28.3%, Arabidopsis (33.7% and poplar (35.4%. As expected, pigeonpea ESTs are more closely related to soybean (60.3% and cowpea ESTs (43.6% than other plant ESTs. Similarly, BLASTX similarity results showed that only 1,603 (35.1% out of 4,557 total unigenes correspond to known proteins in the UniProt database (≤ 1E-08. Functional categorization of the annotated unigenes sequences showed that 153 (3.3% genes were assigned to cellular component category, 132 (2.8% to biological process, and 132 (2

  13. In silico comparative analysis of EST-SSRs in three cotton genomes ...

    African Journals Online (AJOL)

    The range of repeat number change in each HG was wider in Gr-Gh. The annotation of the SSR-ESTs showed that more Gene Ontology (GO) items targeted by SSR-ESTs of Ga and Gr than those of Gh. This study gave us new insights into the difference between the three cotton genomes, which will be more helpful to ...

  14. Genomic resources for water yam (Dioscorea alata L.): analyses of EST-Sequences, De Novo sequencing and GBS libraries

    Science.gov (United States)

    The reducing cost and rapid progress in next-generation sequencing techniques coupled with high performance computational approaches have resulted in large-scale discovery of advanced genomic resources such as SSRs, SNPs and InDels in several model and non-model plant species. Yam (Dioscorea spp.) i...

  15. MIPS plant genome information resources.

    Science.gov (United States)

    Spannagl, Manuel; Haberer, Georg; Ernst, Rebecca; Schoof, Heiko; Mayer, Klaus F X

    2007-01-01

    The Munich Institute for Protein Sequences (MIPS) has been involved in maintaining plant genome databases since the Arabidopsis thaliana genome project. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable data sets for model plant genomes as a backbone against which experimental data, for example from high-throughput functional genomics, can be organized and evaluated. In addition, model genomes also form a scaffold for comparative genomics, and much can be learned from genome-wide evolutionary studies.

  16. ConiferEST: an integrated bioinformatics system for data reprocessing and mining of conifer expressed sequence tags (ESTs).

    Science.gov (United States)

    Liang, Chun; Wang, Gang; Liu, Lin; Ji, Guoli; Fang, Lin; Liu, Yuansheng; Carter, Kikia; Webb, Jason S; Dean, Jeffrey F D

    2007-05-29

    With the advent of low-cost, high-throughput sequencing, the amount of public domain Expressed Sequence Tag (EST) sequence data available for both model and non-model organism is growing exponentially. While these data are widely used for characterizing various genomes, they also present a serious challenge for data quality control and validation due to their inherent deficiencies, particularly for species without genome sequences. ConiferEST is an integrated system for data reprocessing, visualization and mining of conifer ESTs. In its current release, Build 1.0, it houses 172,229 loblolly pine EST sequence reads, which were obtained from reprocessing raw DNA sequencer traces using our software--WebTraceMiner. The trace files were downloaded from NCBI Trace Archive. ConiferEST provides biologists unique, easy-to-use data visualization and mining tools for a variety of putative sequence features including cloning vector segments, adapter sequences, restriction endonuclease recognition sites, polyA and polyT runs, and their corresponding Phred quality values. Based on these putative features, verified sequence features such as 3' and/or 5' termini of cDNA inserts in either sense or non-sense strand have been identified in-silico. Interestingly, only 30.03% of the designated 3' ESTs were found to have an authenticated 5' terminus in the non-sense strand (i.e., polyT tails), while fewer than 5.34% of the designated 5' ESTs had a verified 5' terminus in the sense strand. Such previously ignored features provide valuable insight for data quality control and validation of error-prone ESTs, as well as the ability to identify novel functional motifs embedded in large EST datasets. We found that "double-termini adapters" were effective indicators of potential EST chimeras. For all sequences with in-silico verified termini/terminus, we used InterProScan to assign protein domain signatures, results of which are available for in-depth exploration using our biologist

  17. ConiferEST: an integrated bioinformatics system for data reprocessing and mining of conifer expressed sequence tags (ESTs

    Directory of Open Access Journals (Sweden)

    Carter Kikia

    2007-05-01

    Full Text Available Abstract Background With the advent of low-cost, high-throughput sequencing, the amount of public domain Expressed Sequence Tag (EST sequence data available for both model and non-model organism is growing exponentially. While these data are widely used for characterizing various genomes, they also present a serious challenge for data quality control and validation due to their inherent deficiencies, particularly for species without genome sequences. Description ConiferEST is an integrated system for data reprocessing, visualization and mining of conifer ESTs. In its current release, Build 1.0, it houses 172,229 loblolly pine EST sequence reads, which were obtained from reprocessing raw DNA sequencer traces using our software – WebTraceMiner. The trace files were downloaded from NCBI Trace Archive. ConiferEST provides biologists unique, easy-to-use data visualization and mining tools for a variety of putative sequence features including cloning vector segments, adapter sequences, restriction endonuclease recognition sites, polyA and polyT runs, and their corresponding Phred quality values. Based on these putative features, verified sequence features such as 3' and/or 5' termini of cDNA inserts in either sense or non-sense strand have been identified in-silico. Interestingly, only 30.03% of the designated 3' ESTs were found to have an authenticated 5' terminus in the non-sense strand (i.e., polyT tails, while fewer than 5.34% of the designated 5' ESTs had a verified 5' terminus in the sense strand. Such previously ignored features provide valuable insight for data quality control and validation of error-prone ESTs, as well as the ability to identify novel functional motifs embedded in large EST datasets. We found that "double-termini adapters" were effective indicators of potential EST chimeras. For all sequences with in-silico verified termini/terminus, we used InterProScan to assign protein domain signatures, results of which are available

  18. Resources for Functional Genomics Studies in Drosophila melanogaster

    Science.gov (United States)

    Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert

    2014-01-01

    Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003

  19. Fungal genome resources at NCBI

    Science.gov (United States)

    Robbertse, B.; Tatusova, T.

    2011-01-01

    The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/ is the quickest way to find resources of interest with fungal entries. Some tools though are resources specific and can be indirectly accessed from a particular database in the Entrez system. These include graphical viewers and comparative analysis tools such as TaxPlot, TaxMap and UniGene DDD (found via UniGene Homepage). Gene and BioProject pages also serve as portals to external data such as community annotation websites, BioGrid and UniProt. There are many different ways of accessing genomic data at NCBI. Depending on the focus and goal of research projects or the level of interest, a user would select a particular route for accessing genomic databases and resources. This review article describes methods of accessing fungal genome data and provides examples that illustrate the use of analysis tools. PMID:22737589

  20. Gramene database: Navigating plant comparative genomics resources

    Directory of Open Access Journals (Sweden)

    Parul Gupta

    2016-11-01

    Full Text Available Gramene (http://www.gramene.org is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationships to enrich the annotation of genomic data and provides tools to perform powerful comparative analyses across a wide spectrum of plant species. It consists of an integrated portal for querying, visualizing and analyzing data for 44 plant reference genomes, genetic variation data sets for 12 species, expression data for 16 species, curated rice pathways and orthology-based pathway projections for 66 plant species including various crops. Here we briefly describe the functions and uses of the Gramene database.

  1. Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives.

    Science.gov (United States)

    Zhang, Yingxiao; Iaffaldano, Brian J; Zhuang, Xiaofeng; Cardina, John; Cornish, Katrina

    2017-02-02

    Rubber dandelion (Taraxacum kok-saghyz, TK) is being developed as a domestic source of natural rubber to meet increasing global demand. However, the domestication of TK is complicated by its colocation with two weedy dandelion species, Taraxacum brevicorniculatum (TB) and the common dandelion (Taraxacum officinale, TO). TB is often present as a seed contaminant within TK accessions, while TO is a pandemic weed, which may have the potential to hybridize with TK. To discriminate these species at the molecular level, and facilitate gene flow studies between the potential rubber crop, TK, and its weedy relatives, we generated genomic and marker resources for these three dandelion species. Complete chloroplast genome sequences of TK (151,338 bp), TO (151,299 bp), and TB (151,282 bp) were obtained using the Illumina GAII and MiSeq platforms. Chloroplast sequences were analyzed and annotated for all the three species. Phylogenetic analysis within Asteraceae showed that TK has a closer genetic distance to TB than to TO and Taraxacum species were most closely related to lettuce (Lactuca sativa). By sequencing multiple genotypes for each species and testing variants using gel-based methods, four chloroplast Single Nucleotide Polymorphism (SNP) variants were found to be fixed between TK and TO in large populations, and between TB and TO. Additionally, Expressed Sequence Tag (EST) resources developed for TO and TK permitted the identification of five nuclear species-specific SNP markers. The availability of chloroplast genomes of these three dandelion species, as well as chloroplast and nuclear molecular markers, will provide a powerful genetic resource for germplasm differentiation and purification, and the study of potential gene flow among Taraxacum species.

  2. diArk – a resource for eukaryotic genome research

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2007-04-01

    Full Text Available Abstract Background The number of completed eukaryotic genome sequences and cDNA projects has increased exponentially in the past few years although most of them have not been published yet. In addition, many microarray analyses yielded thousands of sequenced EST and cDNA clones. For the researcher interested in single gene analyses (from a phylogenetic, a structural biology or other perspective it is therefore important to have up-to-date knowledge about the various resources providing primary data. Description The database is built around 3 central tables: species, sequencing projects and publications. The species table contains commonly and alternatively used scientific names, common names and the complete taxonomic information. For projects the sequence type and links to species project web-sites and species homepages are stored. All publications are linked to projects. The web-interface provides comprehensive search modules with detailed options and three different views of the selected data. We have especially focused on developing an elaborate taxonomic tree search tool that allows the user to instantaneously identify e.g. the closest relative to the organism of interest. Conclusion We have developed a database, called diArk, to store, organize, and present the most relevant information about completed genome projects and EST/cDNA data from eukaryotes. Currently, diArk provides information about 415 eukaryotes, 823 sequencing projects, and 248 publications.

  3. Development of Chloroplast Genomic Resources in Chinese Yam (Dioscorea polystachya

    Directory of Open Access Journals (Sweden)

    Junling Cao

    2018-01-01

    Full Text Available Chinese yam has been used both as a food and in traditional herbal medicine. Developing more effective genetic markers in this species is necessary to assess its genetic diversity and perform cultivar identification. In this study, new chloroplast genomic resources were developed using whole chloroplast genomes from six genotypes originating from different geographical locations. The Dioscorea polystachya chloroplast genome is a circular molecule consisting of two single-copy regions separated by a pair of inverted repeats. Comparative analyses of six D. polystachya chloroplast genomes revealed 141 single nucleotide polymorphisms (SNPs. Seventy simple sequence repeats (SSRs were found in the six genotypes, including 24 polymorphic SSRs. Forty-three common indels and five small inversions were detected. Phylogenetic analysis based on the complete chloroplast genome provided the best resolution among the genotypes. Our evaluation of chloroplast genome resources among these genotypes led us to consider the complete chloroplast genome sequence of D. polystachya as a source of reliable and valuable molecular markers for revealing biogeographical structure and the extent of genetic variation in wild populations and for identifying different cultivars.

  4. First genetic linkage map of Taraxacum koksaghyz Rodin based on AFLP, SSR, COS and EST-SSR markers.

    Science.gov (United States)

    Arias, Marina; Hernandez, Monica; Remondegui, Naroa; Huvenaars, Koen; van Dijk, Peter; Ritter, Enrique

    2016-08-04

    Taraxacum koksaghyz Rodin (TKS) has been studied in many occasions as a possible alternative source for natural rubber production of good quality and for inulin production. Some tire companies are already testing TKS tire prototypes. There are also many investigations on the production of bio-fuels from inulin and inulin applications for health improvement and in the food industry. A limited amount of genomic resources exist for TKS and particularly no genetic linkage map is available in this species. We have constructed the first TKS genetic linkage map based on AFLP, COS, SSR and EST-SSR markers. The integrated linkage map with eight linkage groups (LG), representing the eight chromosomes of Russian dandelion, has 185 individual AFLP markers from parent 1, 188 individual AFLP markers from parent 2, 75 common AFLP markers and 6 COS, 1 SSR and 63 EST-SSR loci. Blasting the EST-SSR sequences against known sequences from lettuce allowed a partial alignment of our TKS map with a lettuce map. Blast searches against plant gene databases revealed some homologies with useful genes for downstream applications in the future.

  5. ESAP plus: a web-based server for EST-SSR marker development.

    Science.gov (United States)

    Ponyared, Piyarat; Ponsawat, Jiradej; Tongsima, Sissades; Seresangtakul, Pusadee; Akkasaeng, Chutipong; Tantisuwichwong, Nathpapat

    2016-12-22

    Simple sequence repeats (SSRs) have become widely used as molecular markers in plant genetic studies due to their abundance, high allelic variation at each locus and simplicity to analyze using conventional PCR amplification. To study plants with unknown genome sequence, SSR markers from Expressed Sequence Tags (ESTs), which can be obtained from the plant mRNA (converted to cDNA), must be utilized. With the advent of high-throughput sequencing technology, huge EST sequence data have been generated and are now accessible from many public databases. However, SSR marker identification from a large in-house or public EST collection requires a computational pipeline that makes use of several standard bioinformatic tools to design high quality EST-SSR primers. Some of these computational tools are not users friendly and must be tightly integrated with reference genomic databases. A web-based bioinformatic pipeline, called EST Analysis Pipeline Plus (ESAP Plus), was constructed for assisting researchers to develop SSR markers from a large EST collection. ESAP Plus incorporates several bioinformatic scripts and some useful standard software tools necessary for the four main procedures of EST-SSR marker development, namely 1) pre-processing, 2) clustering and assembly, 3) SSR mining and 4) SSR primer design. The proposed pipeline also provides two alternative steps for reducing EST redundancy and identifying SSR loci. Using public sugarcane ESTs, ESAP Plus automatically executed the aforementioned computational pipeline via a simple web user interface, which was implemented using standard PHP, HTML, CSS and Java scripts. With ESAP Plus, users can upload raw EST data and choose various filtering options and parameters to analyze each of the four main procedures through this web interface. All input EST data and their predicted SSR results will be stored in the ESAP Plus MySQL database. Users will be notified via e-mail when the automatic process is completed and they can

  6. GenColors-based comparative genome databases for small eukaryotic genomes.

    Science.gov (United States)

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources.

  7. Genome resource banking of biomedically important laboratory animals.

    Science.gov (United States)

    Agca, Yuksel

    2012-11-01

    Genome resource banking is the systematic collection, storage, and redistribution of biomaterials in an organized, logistical, and secure manner. Genome cryobanks usually contain biomaterials and associated genomic information essential for progression of biomedicine, human health, and research. In that regard, appropriate genome cryobanks could provide essential biomaterials for both current and future research projects in the form of various cell types and tissues, including sperm, oocytes, embryos, embryonic or adult stem cells, induced pluripotent stem cells, and gonadal tissues. In addition to cryobanked germplasm, cryobanking of DNA, serum, blood products, and tissues from scientifically, economically, and ecologically important species has become a common practice. For revitalization of the whole organism, cryopreserved germplasm in conjunction with assisted reproductive technologies, offer a powerful approach for research model management, as well as assisting in animal production for agriculture, conservation, and human reproductive medicine. Recently, many developed and developing countries have allocated substantial resources to establish genome resources banks which are responsible for safeguarding scientifically, economically, and ecologically important wild type, mutant, and transgenic plants, fish, and local livestock breeds, as well as wildlife species. This review is dedicated to the memory of Dr. John K. Critser, who has made profound contributions to the science of cryobiology and establishment of genome research and resources centers for mice, rats, and swine. Emphasis will be given to application of genome resource banks to species with substantial contributions to the advancement of biomedicine and human health. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Harvesting Legume Genomes: Plant Genetic Resources

    Science.gov (United States)

    Genomics and high through-put phenotyping are ushering in a new era of accessing genetic diversity held in plant genetic resources, the cornerstone of both traditional and genomics-assisted breeding efforts of food legume crops. Acknowledged or not, yield plateaus must be broken given the daunting ...

  9. The Drosophila genome nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population.

    Science.gov (United States)

    Lack, Justin B; Cardeno, Charis M; Crepeau, Marc W; Taylor, William; Corbett-Detig, Russell B; Stevens, Kristian A; Langley, Charles H; Pool, John E

    2015-04-01

    Hundreds of wild-derived Drosophila melanogaster genomes have been published, but rigorous comparisons across data sets are precluded by differences in alignment methodology. The most common approach to reference-based genome assembly is a single round of alignment followed by quality filtering and variant detection. We evaluated variations and extensions of this approach and settled on an assembly strategy that utilizes two alignment programs and incorporates both substitutions and short indels to construct an updated reference for a second round of mapping prior to final variant detection. Utilizing this approach, we reassembled published D. melanogaster population genomic data sets and added unpublished genomes from several sub-Saharan populations. Most notably, we present aligned data from phase 3 of the Drosophila Population Genomics Project (DPGP3), which provides 197 genomes from a single ancestral range population of D. melanogaster (from Zambia). The large sample size, high genetic diversity, and potentially simpler demographic history of the DPGP3 sample will make this a highly valuable resource for fundamental population genetic research. The complete set of assemblies described here, termed the Drosophila Genome Nexus, presently comprises 623 consistently aligned genomes and is publicly available in multiple formats with supporting documentation and bioinformatic tools. This resource will greatly facilitate population genomic analysis in this model species by reducing the methodological differences between data sets. Copyright © 2015 by the Genetics Society of America.

  10. Genomic Resources for Cancer Epidemiology

    Science.gov (United States)

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  11. RICD: A rice indica cDNA database resource for rice functional genomics

    Directory of Open Access Journals (Sweden)

    Zhang Qifa

    2008-11-01

    Full Text Available Abstract Background The Oryza sativa L. indica subspecies is the most widely cultivated rice. During the last few years, we have collected over 20,000 putative full-length cDNAs and over 40,000 ESTs isolated from various cDNA libraries of two indica varieties Guangluai 4 and Minghui 63. A database of the rice indica cDNAs was therefore built to provide a comprehensive web data source for searching and retrieving the indica cDNA clones. Results Rice Indica cDNA Database (RICD is an online MySQL-PHP driven database with a user-friendly web interface. It allows investigators to query the cDNA clones by keyword, genome position, nucleotide or protein sequence, and putative function. It also provides a series of information, including sequences, protein domain annotations, similarity search results, SNPs and InDels information, and hyperlinks to gene annotation in both The Rice Annotation Project Database (RAP-DB and The TIGR Rice Genome Annotation Resource, expression atlas in RiceGE and variation report in Gramene of each cDNA. Conclusion The online rice indica cDNA database provides cDNA resource with comprehensive information to researchers for functional analysis of indica subspecies and for comparative genomics. The RICD database is available through our website http://www.ncgr.ac.cn/ricd.

  12. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.

    Science.gov (United States)

    Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X

    2016-01-01

    PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.

  13. Upgrading Unconventional Oil Resources with the EST Process

    Energy Technology Data Exchange (ETDEWEB)

    Delbianco, Alberto; Meli, Salvatori; Panariti, Nicolleta; Rispoli, Giacomo

    2007-07-01

    We strongly believe that unconventional oils will play a much larger role in the growth of supply than is currently recognized. As a matter of fact, whereas the earth's conventional proven world oil reserves are 1.3 trillion barrels, extra-heavy plus bitumen resources amount to about 4 trillion barrels. The unconventional oils are characterized by low API gravity (<10), high viscosity and high concentration of poisons such as sulphur, nitrogen, metals, and asphaltenes. For this reason, a key role for the full exploitation of these hydrocarbon resources is played by the downstream processes that are required to upgrade and convert them into valuable products. In this scenario, Eni has developed a novel hydrocracking process (EST: Eni Slurry Technology) which is particularly well-suited for the conversion and upgrading of heavy feedstocks (conventional vacuum residues, extra-heavy oils and bitumen). EST employs nano-sized hydrogenation catalysts and an original process scheme that allow complete feedstock conversion to an upgraded synthetic crude oil (SCO) with an API gravity gain greater than 20 and avoid the production of residual by-products, such as pet-coke or heavy fuel oil. A Commercial Demonstration Unit (CDP) of 1200 bbl/d capacity is successfully operating in the Eni's Taranto refinery since November 2005. (auth)

  14. New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits

    Directory of Open Access Journals (Sweden)

    Feltus Frank A

    2011-07-01

    Full Text Available Abstract Background Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18 to duodecaploid (12X = 108. Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. Results A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective. Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. Conclusions The construction of the first switchgrass BAC library and comparative analysis of

  15. Genomic Resource and Genome Guided Comparison of Twenty Type Strains of the Genus Methylobacterium

    Directory of Open Access Journals (Sweden)

    Vasvi Chaudhry

    2017-12-01

    Full Text Available Bacteria of the genus Methylobacterium are widespread in diverse habitats ranging from soil, water and plant (phyllosphere, rhizosphere and endosphere. In the present study, we in house generated genomic data resource of six type strains along with fourteen database genomes of the Methylobacterium genus to carry out phylogenomic, taxonomic, comparative and ecological studies of this genus. Overall, the genus shows high diversity and genetic variation primarily due to its ability to acquire genetic material from diverse sources through horizontal gene transfer. As majority of species identified in this study are plant associated with their genomes equipped with methylotrophy and photosynthesis related gene along with genes for plant probiotic traits. Most of the species genomes are equipped with genes for adaptation and defense for UV radiation, oxidative stress and desiccation. The genus has an open pan-genome and we predicted the role of gain/loss of prophages and CRISPR elements in diversity and evolution. Our genomic resource with annotation and analysis provides a platform for interspecies genomic comparisons in the genus Methylobacterium, and to unravel their natural genome diversity and to study how natural selection shapes their genome with the adaptive mechanisms which allow them to acquire diverse habitat lifestyles. This type strains genomic data display power of Next Generation Sequencing in rapidly creating resource paving the way for studies on phylogeny and taxonomy as well as for basic and applied research for this important genus.

  16. The catfish genome database cBARBEL: an informatic platform for genome biology of ictalurid catfish.

    Science.gov (United States)

    Lu, Jianguo; Peatman, Eric; Yang, Qing; Wang, Shaolin; Hu, Zhiliang; Reecy, James; Kucuktas, Huseyin; Liu, Zhanjiang

    2011-01-01

    The catfish genome database, cBARBEL (abbreviated from catfish Breeder And Researcher Bioinformatics Entry Location) is an online open-access database for genome biology of ictalurid catfish (Ictalurus spp.). It serves as a comprehensive, integrative platform for all aspects of catfish genetics, genomics and related data resources. cBARBEL provides BLAST-based, fuzzy and specific search functions, visualization of catfish linkage, physical and integrated maps, a catfish EST contig viewer with SNP information overlay, and GBrowse-based organization of catfish genomic data based on sequence similarity with zebrafish chromosomes. Subsections of the database are tightly related, allowing a user with a sequence or search string of interest to navigate seamlessly from one area to another. As catfish genome sequencing proceeds and ongoing quantitative trait loci (QTL) projects bear fruit, cBARBEL will allow rapid data integration and dissemination within the catfish research community and to interested stakeholders. cBARBEL can be accessed at http://catfishgenome.org.

  17. Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species.

    Science.gov (United States)

    Kersey, Paul J; Staines, Daniel M; Lawson, Daniel; Kulesha, Eugene; Derwent, Paul; Humphrey, Jay C; Hughes, Daniel S T; Keenan, Stephan; Kerhornou, Arnaud; Koscielny, Gautier; Langridge, Nicholas; McDowall, Mark D; Megy, Karine; Maheswari, Uma; Nuhn, Michael; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Wilson, Derek; Yates, Andrew; Birney, Ewan

    2012-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrative resource for genome-scale data from non-vertebrate species. The project exploits and extends technology (for genome annotation, analysis and dissemination) developed in the context of the (vertebrate-focused) Ensembl project and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. Since its launch in 2009, Ensembl Genomes has undergone rapid expansion, with the goal of providing coverage of all major experimental organisms, and additionally including taxonomic reference points to provide the evolutionary context in which genes can be understood. Against the backdrop of a continuing increase in genome sequencing activities in all parts of the tree of life, we seek to work, wherever possible, with the communities actively generating and using data, and are participants in a growing range of collaborations involved in the annotation and analysis of genomes.

  18. WormBase: Annotating many nematode genomes.

    Science.gov (United States)

    Howe, Kevin; Davis, Paul; Paulini, Michael; Tuli, Mary Ann; Williams, Gary; Yook, Karen; Durbin, Richard; Kersey, Paul; Sternberg, Paul W

    2012-01-01

    WormBase (www.wormbase.org) has been serving the scientific community for over 11 years as the central repository for genomic and genetic information for the soil nematode Caenorhabditis elegans. The resource has evolved from its beginnings as a database housing the genomic sequence and genetic and physical maps of a single species, and now represents the breadth and diversity of nematode research, currently serving genome sequence and annotation for around 20 nematodes. In this article, we focus on WormBase's role of genome sequence annotation, describing how we annotate and integrate data from a growing collection of nematode species and strains. We also review our approaches to sequence curation, and discuss the impact on annotation quality of large functional genomics projects such as modENCODE.

  19. Sequencing and analysis of full-length cDNAs, 5'-ESTs and 3'-ESTs from a cartilaginous fish, the elephant shark (Callorhinchus milii).

    KAUST Repository

    Brenner, Sydney

    2012-10-08

    Cartilaginous fishes are the most ancient group of living jawed vertebrates (gnathostomes) and are, therefore, an important reference group for understanding the evolution of vertebrates. The elephant shark (Callorhinchus milii), a holocephalan cartilaginous fish, has been identified as a model cartilaginous fish genome because of its compact genome (∼910 Mb) and a genome project has been initiated to obtain its whole genome sequence. In this study, we have generated and sequenced full-length enriched cDNA libraries of the elephant shark using the \\'oligo-capping\\' method and Sanger sequencing. A total of 6,778 full-length protein-coding cDNA and 10,701 full-length noncoding cDNA were sequenced from six tissues (gills, intestine, kidney, liver, spleen, and testis) of the elephant shark. Analysis of their polyadenylation signals showed that polyadenylation usage in elephant shark is similar to that in mammals. Furthermore, both coding and noncoding transcripts of the elephant shark use the same proportion of canonical polyadenylation sites. Besides BLASTX searches, protein-coding transcripts were annotated by Gene Ontology, InterPro domain, and KEGG pathway analyses. By comparing elephant shark genes to bony vertebrate genes, we identified several ancient genes present in elephant shark but differentially lost in tetrapods or teleosts. Only ∼6% of elephant shark noncoding cDNA showed similarity to known noncoding RNAs (ncRNAs). The rest are either highly divergent ncRNAs or novel ncRNAs. In addition to full-length transcripts, 30,375 5\\'-ESTs and 41,317 3\\'-ESTs were sequenced and annotated. The clones and transcripts generated in this study are valuable resources for annotating transcription start sites, exon-intron boundaries, and UTRs of genes in the elephant shark genome, and for the functional characterization of protein sequences. These resources will also be useful for annotating genes in other cartilaginous fishes whose genomes have been targeted for

  20. Sequencing and analysis of full-length cDNAs, 5'-ESTs and 3'-ESTs from a cartilaginous fish, the elephant shark (Callorhinchus milii).

    KAUST Repository

    Brenner, Sydney; Kodzius, Rimantas; Tan, Yue Ying; Tay, Alice; Tay, Boon-Hui; Venkatesh, Byrappa

    2012-01-01

    Cartilaginous fishes are the most ancient group of living jawed vertebrates (gnathostomes) and are, therefore, an important reference group for understanding the evolution of vertebrates. The elephant shark (Callorhinchus milii), a holocephalan cartilaginous fish, has been identified as a model cartilaginous fish genome because of its compact genome (∼910 Mb) and a genome project has been initiated to obtain its whole genome sequence. In this study, we have generated and sequenced full-length enriched cDNA libraries of the elephant shark using the 'oligo-capping' method and Sanger sequencing. A total of 6,778 full-length protein-coding cDNA and 10,701 full-length noncoding cDNA were sequenced from six tissues (gills, intestine, kidney, liver, spleen, and testis) of the elephant shark. Analysis of their polyadenylation signals showed that polyadenylation usage in elephant shark is similar to that in mammals. Furthermore, both coding and noncoding transcripts of the elephant shark use the same proportion of canonical polyadenylation sites. Besides BLASTX searches, protein-coding transcripts were annotated by Gene Ontology, InterPro domain, and KEGG pathway analyses. By comparing elephant shark genes to bony vertebrate genes, we identified several ancient genes present in elephant shark but differentially lost in tetrapods or teleosts. Only ∼6% of elephant shark noncoding cDNA showed similarity to known noncoding RNAs (ncRNAs). The rest are either highly divergent ncRNAs or novel ncRNAs. In addition to full-length transcripts, 30,375 5'-ESTs and 41,317 3'-ESTs were sequenced and annotated. The clones and transcripts generated in this study are valuable resources for annotating transcription start sites, exon-intron boundaries, and UTRs of genes in the elephant shark genome, and for the functional characterization of protein sequences. These resources will also be useful for annotating genes in other cartilaginous fishes whose genomes have been targeted for whole

  1. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data.

    Science.gov (United States)

    Clarke, Laura; Fairley, Susan; Zheng-Bradley, Xiangqun; Streeter, Ian; Perry, Emily; Lowy, Ernesto; Tassé, Anne-Marie; Flicek, Paul

    2017-01-04

    The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data-previously only browseable through our FTP site-by focusing on particular samples, populations or data sets of interest. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Enhancing faba bean (Vicia faba L.) genome resources

    NARCIS (Netherlands)

    Cooper, James W.; Wilson, Michael H.; Derks, M.F.L.; Smit, Sandra; Kunert, Karl J.; Cullis, Christopher; Foyer, C.H.

    2017-01-01

    Grain legume improvement is currently impeded by a lack of genomic resources. The paucity of genome information for faba bean can be attributed to the intrinsic difficulties of assembling/annotating its giant (~13 Gb) genome. In order to address this challenge, RNA-sequencing analysis was performed

  3. A resource of large-scale molecular markers for monitoring Agropyron cristatum chromatin introgression in wheat background based on transcriptome sequences.

    Science.gov (United States)

    Zhang, Jinpeng; Liu, Weihua; Lu, Yuqing; Liu, Qunxing; Yang, Xinming; Li, Xiuquan; Li, Lihui

    2017-09-20

    Agropyron cristatum is a wild grass of the tribe Triticeae and serves as a gene donor for wheat improvement. However, very few markers can be used to monitor A. cristatum chromatin introgressions in wheat. Here, we reported a resource of large-scale molecular markers for tracking alien introgressions in wheat based on transcriptome sequences. By aligning A. cristatum unigenes with the Chinese Spring reference genome sequences, we designed 9602 A. cristatum expressed sequence tag-sequence-tagged site (EST-STS) markers for PCR amplification and experimental screening. As a result, 6063 polymorphic EST-STS markers were specific for the A. cristatum P genome in the single-receipt wheat background. A total of 4956 randomly selected polymorphic EST-STS markers were further tested in eight wheat variety backgrounds, and 3070 markers displaying stable and polymorphic amplification were validated. These markers covered more than 98% of the A. cristatum genome, and the marker distribution density was approximately 1.28 cM. An application case of all EST-STS markers was validated on the A. cristatum 6 P chromosome. These markers were successfully applied in the tracking of alien A. cristatum chromatin. Altogether, this study provided a universal method of large-scale molecular marker development to monitor wild relative chromatin in wheat.

  4. EST and transcriptome analysis of cephalochordate amphioxus--past, present and future.

    Science.gov (United States)

    Wang, Yu-Bin; Chen, Shu-Hwa; Lin, Chun-Yen; Yu, Jr-Kai

    2012-03-01

    The cephalochordates, commonly known as amphioxus or lancelets, are now considered the most basal chordate group, and the studies of these organisms therefore offer important insights into various levels of evolutionary biology. In the past two decades, the investigation of amphioxus developmental biology has provided key knowledge for understanding the basic patterning mechanisms of chordates. Comparative genome studies of vertebrates and amphioxus have uncovered clear evidence supporting the hypothesis of two-round whole-genome duplication thought to have occurred early in vertebrate evolution and have shed light on the evolution of morphological novelties in the complex vertebrate body plan. Complementary to the amphioxus genome-sequencing project, a large collection of expressed sequence tags (ESTs) has been generated for amphioxus in recent years; this valuable collection represents a rich resource for gene discovery, expression profiling and molecular developmental studies in the amphioxus model. Here, we review previous EST analyses and available cDNA resources in amphioxus and discuss their value for use in evolutionary and developmental studies. We also discuss the potential advantages of applying high-throughput, next-generation sequencing (NGS) technologies to the field of amphioxus research.

  5. ESTIMA, a tool for EST management in a multi-project environment.

    Science.gov (United States)

    Kumar, Charu G; LeDuc, Richard; Gong, George; Roinishivili, Levan; Lewin, Harris A; Liu, Lei

    2004-11-04

    Single-pass, partial sequencing of complementary DNA (cDNA) libraries generates thousands of chromatograms that are processed into high quality expressed sequence tags (ESTs), and then assembled into contigs representative of putative genes. Usually, to be of value, ESTs and contigs must be associated with meaningful annotations, and made available to end-users. A web application, Expressed Sequence Tag Information Management and Annotation (ESTIMA), has been created to meet the EST annotation and data management requirements of multiple high-throughput EST sequencing projects. It is anchored on individual ESTs and organized around different properties of ESTs including chromatograms, base-calling quality scores, structure of assembled transcripts, and multiple sources of comparison to infer functional annotation, Gene Ontology associations, and cDNA library information. ESTIMA consists of a relational database schema and a set of interactive query interfaces. These are integrated with a suite of web-based tools that allow a user to query and retrieve information. Further, query results are interconnected among the various EST properties. ESTIMA has several unique features. Users may run their own EST processing pipeline, search against preferred reference genomes, and use any clustering and assembly algorithm. The ESTIMA database schema is very flexible and accepts output from any EST processing and assembly pipeline. ESTIMA has been used for the management of EST projects of many species, including honeybee (Apis mellifera), cattle (Bos taurus), songbird (Taeniopygia guttata), corn rootworm (Diabrotica vergifera), catfish (Ictalurus punctatus, Ictalurus furcatus), and apple (Malus x domestica). The entire resource may be downloaded and used as is, or readily adapted to fit the unique needs of other cDNA sequencing projects. The scripts used to create the ESTIMA interface are freely available to academic users in an archived format from http

  6. NIMH Repository and Genomics Resources (RGR)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The NIMH Repository and Genomics Resource (RGR) stores biosamples, genetic, pedigree and clinical data collected in designated NIMH-funded human subject studies. The...

  7. Putative Microsatellite DNA Marker-Based Wheat Genomic Resource for Varietal Improvement and Management

    Directory of Open Access Journals (Sweden)

    Sarika Jaiswal

    2017-11-01

    Full Text Available Wheat fulfills 20% of global caloric requirement. World needs 60% more wheat for 9 billion population by 2050 but climate change with increasing temperature is projected to affect wheat productivity adversely. Trait improvement and management of wheat germplasm requires genomic resource. Simple Sequence Repeats (SSRs being highly polymorphic and ubiquitously distributed in the genome, can be a marker of choice but there is no structured marker database with options to generate primer pairs for genotyping on desired chromosome/physical location. Previously associated markers with different wheat trait are also not available in any database. Limitations of in vitro SSR discovery can be overcome by genome-wide in silico mining of SSR. Triticum aestivum SSR database (TaSSRDb is an integrated online database with three-tier architecture, developed using PHP and MySQL and accessible at http://webtom.cabgrid.res.in/wheatssr/. For genotyping, Primer3 standalone code computes primers on user request. Chromosome-wise SSR calling for all the three sub genomes along with choice of motif types is provided in addition to the primer generation for desired marker. We report here a database of highest number of SSRs (476,169 from complex, hexaploid wheat genome (~17 GB along with previously reported 268 SSR markers associated with 11 traits. Highest (116.93 SSRs/Mb and lowest (74.57 SSRs/Mb SSR densities were found on 2D and 3A chromosome, respectively. To obtain homozygous locus, e-PCR was done. Such 30 loci were randomly selected for PCR validation in panel of 18 wheat Advance Varietal Trial (AVT lines. TaSSRDb can be a valuable genomic resource tool for linkage mapping, gene/QTL (Quantitative trait locus discovery, diversity analysis, traceability and variety identification. Varietal specific profiling and differentiation can supplement DUS (Distinctiveness, Uniformity, and Stability testing, EDV (Essentially Derived Variety/IV (Initial Variety disputes, seed

  8. transPLANT Resources for Triticeae Genomic Data

    Directory of Open Access Journals (Sweden)

    Manuel Spannagl

    2016-03-01

    Full Text Available The genome sequences of many important Triticeae species, including bread wheat ( L. and barley ( L., remained uncharacterized for a long time because their high repeat content, large sizes, and polyploidy. As a result of improvements in sequencing technologies and novel analyses strategies, several of these have recently been deciphered. These efforts have generated new insights into Triticeae biology and genome organization and have important implications for downstream usage by breeders, experimental biologists, and comparative genomicists. transPLANT ( is an EU-funded project aimed at constructing hardware, software, and data infrastructure for genome-scale research in the life sciences. Since the Triticeae data are intrinsically complex, heterogenous, and distributed, the transPLANT consortium has undertaken efforts to develop common data formats and tools that enable the exchange and integration of data from distributed resources. Here we present an overview of the individual Triticeae genome resources hosted by transPLANT partners, introduce the objectives of transPLANT, and outline common developments and interfaces supporting integrated data access.

  9. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing.

    Science.gov (United States)

    Straub, Shannon C K; Fishbein, Mark; Livshultz, Tatyana; Foster, Zachary; Parks, Matthew; Weitemier, Kevin; Cronn, Richard C; Liston, Aaron

    2011-05-04

    Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first

  10. Current development and application of soybean genomics

    Institute of Scientific and Technical Information of China (English)

    Lingli HE; Jing ZHAO; Man ZHAO; Chaoying HE

    2011-01-01

    Soybean (Glycine max),an important domesticated species originated in China,constitutes a major source of edible oils and high-quality plant proteins worldwide.In spite of its complex genome as a consequence of an ancient tetraploidilization,platforms for map-based genomics,sequence-based genomics,comparative genomics and functional genomics have been well developed in the last decade,thus rich repertoires of genomic tools and resources are available,which have been influencing the soybean genetic improvement.Here we mainly review the progresses of soybean (including its wild relative Glycine soja) genomics and its impetus for soybean breeding,and raise the major biological questions needing to be addressed.Genetic maps,physical maps,QTL and EST mapping have been so well achieved that the marker assisted selection and positional cloning in soybean is feasible and even routine.Whole genome sequencing and transcriptomic analyses provide a large collection of molecular markers and predicted genes,which are instrumental to comparative genomics and functional genomics.Comparative genomics has started to reveal the evolution of soybean genome and the molecular basis of soybean domestication process.Microarrays resources,mutagenesis and efficient transformation systems become essential components of soybean functional genomics.Furthermore,phenotypic functional genomics via both forward and reverse genetic approaches has inferred functions of many genes involved in plant and seed development,in response to abiotic stresses,functioning in plant-pathogenic microbe interactions,and controlling the oil and protein content of seed.These achievements have paved the way for generation of transgenic or genetically modified (GM) soybean crops.

  11. Differential transferability of EST-SSR primers developed from diploid species Pseudoroegneria spicata, Thinopyrum bessarabicum, and Th. elongatum

    Science.gov (United States)

    Simple sequence repeat technology based on expressed sequence tag (EST-SSR) is a useful genomic tool for genome mapping, characterizing plant species relationships, elucidating genome evolution, and tracing genes on alien chromosome segments. EST-SSR primers developed from three perennial diploid T...

  12. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome

    Science.gov (United States)

    Schoof, Heiko; Zaccaria, Paolo; Gundlach, Heidrun; Lemcke, Kai; Rudd, Stephen; Kolesov, Grigory; Arnold, Roland; Mewes, H. W.; Mayer, Klaus F. X.

    2002-01-01

    Arabidopsis thaliana is the first plant for which the complete genome has been sequenced and published. Annotation of complex eukaryotic genomes requires more than the assignment of genetic elements to the sequence. Besides completing the list of genes, we need to discover their cellular roles, their regulation and their interactions in order to understand the workings of the whole plant. The MIPS Arabidopsis thaliana Database (MAtDB; http://mips.gsf.de/proj/thal/db) started out as a repository for genome sequence data in the European Scientists Sequencing Arabidopsis (ESSA) project and the Arabidopsis Genome Initiative. Our aim is to transform MAtDB into an integrated biological knowledge resource by integrating diverse data, tools, query and visualization capabilities and by creating a comprehensive resource for Arabidopsis as a reference model for other species, including crop plants. PMID:11752263

  13. A new genomic resource dedicated to wood formation in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Couloux Arnaud

    2009-03-01

    Full Text Available Abstract Background Renowned for their fast growth, valuable wood properties and wide adaptability, Eucalyptus species are amongst the most planted hardwoods in the world, yet they are still at the early stages of domestication because conventional breeding is slow and costly. Thus, there is huge potential for marker-assisted breeding programs to improve traits such as wood properties. To this end, the sequencing, analysis and annotation of a large collection of expressed sequences tags (ESTs from genes involved in wood formation in Eucalyptus would provide a valuable resource. Results We report here the normalization and sequencing of a cDNA library from developing Eucalyptus secondary xylem, as well as the construction and sequencing of two subtractive libraries (juvenile versus mature wood and vice versa. A total of 9,222 high quality sequences were collected from about 10,000 cDNA clones. The EST assembly generated a set of 3,857 wood-related unigenes including 2,461 contigs (Cg and 1,396 singletons (Sg that we named 'EUCAWOOD'. About 65% of the EUCAWOOD sequences produced matches with poplar, grapevine, Arabidopsis and rice protein sequence databases. BlastX searches of the Uniref100 protein database allowed us to allocate gene ontology (GO and protein family terms to the EUCAWOOD unigenes. This annotation of the EUCAWOOD set revealed key functional categories involved in xylogenesis. For instance, 422 sequences matched various gene families involved in biosynthesis and assembly of primary and secondary cell walls. Interestingly, 141 sequences were annotated as transcription factors, some of them being orthologs of regulators known to be involved in xylogenesis. The EUCAWOOD dataset was also mined for genomic simple sequence repeat markers, yielding a total of 639 putative microsatellites. Finally, a publicly accessible database was created, supporting multiple queries on the EUCAWOOD dataset. Conclusion In this work, we have identified a

  14. Building a model: developing genomic resources for common milkweed (Asclepias syriaca with low coverage genome sequencing

    Directory of Open Access Journals (Sweden)

    Weitemier Kevin

    2011-05-01

    Full Text Available Abstract Background Milkweeds (Asclepias L. have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L. could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp and 5S rDNA (120 bp sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp, with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae unigenes (median coverage of 0.29× and 66% of single copy orthologs (COSII in asterids (median coverage of 0.14×. From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites and phylogenetics (low-copy nuclear genes studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species

  15. ESTIMA, a tool for EST management in a multi-project environment

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2004-11-01

    Full Text Available Abstract Background Single-pass, partial sequencing of complementary DNA (cDNA libraries generates thousands of chromatograms that are processed into high quality expressed sequence tags (ESTs, and then assembled into contigs representative of putative genes. Usually, to be of value, ESTs and contigs must be associated with meaningful annotations, and made available to end-users. Results A web application, Expressed Sequence Tag Information Management and Annotation (ESTIMA, has been created to meet the EST annotation and data management requirements of multiple high-throughput EST sequencing projects. It is anchored on individual ESTs and organized around different properties of ESTs including chromatograms, base-calling quality scores, structure of assembled transcripts, and multiple sources of comparison to infer functional annotation, Gene Ontology associations, and cDNA library information. ESTIMA consists of a relational database schema and a set of interactive query interfaces. These are integrated with a suite of web-based tools that allow a user to query and retrieve information. Further, query results are interconnected among the various EST properties. ESTIMA has several unique features. Users may run their own EST processing pipeline, search against preferred reference genomes, and use any clustering and assembly algorithm. The ESTIMA database schema is very flexible and accepts output from any EST processing and assembly pipeline. ESTIMA has been used for the management of EST projects of many species, including honeybee (Apis mellifera, cattle (Bos taurus, songbird (Taeniopygia guttata, corn rootworm (Diabrotica vergifera, catfish (Ictalurus punctatus, Ictalurus furcatus, and apple (Malus x domestica. The entire resource may be downloaded and used as is, or readily adapted to fit the unique needs of other cDNA sequencing projects. Conclusions The scripts used to create the ESTIMA interface are freely available to academic users in

  16. Annotation of the protein coding regions of the equine genome

    DEFF Research Database (Denmark)

    Hestand, Matthew S.; Kalbfleisch, Theodore S.; Coleman, Stephen J.

    2015-01-01

    Current gene annotation of the horse genome is largely derived from in silico predictions and cross-species alignments. Only a small number of genes are annotated based on equine EST and mRNA sequences. To expand the number of equine genes annotated from equine experimental evidence, we sequenced m...... and appear to be small errors in the equine reference genome, since they are also identified as homozygous variants by genomic DNA resequencing of the reference horse. Taken together, we provide a resource of equine mRNA structures and protein coding variants that will enhance equine and cross...

  17. Neural Network Prediction of Translation Initiation Sites in Eukaryotes: Perspectives for EST and Genome analysis

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Nielsen, Henrik

    1997-01-01

    Translation in eukaryotes does not always start at the first AUG in an mRNA, implying that context information also plays a role.This makes prediction of translation initiation sites a non-trivial task, especially when analysing EST and genome data where the entire mature mRNA sequence is not known...

  18. Transcriptomic resources for the medicinal legume Mucuna pruriens: de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers.

    Science.gov (United States)

    Sathyanarayana, N; Pittala, Ranjith Kumar; Tripathi, Pankaj Kumar; Chopra, Ratan; Singh, Heikham Russiachand; Belamkar, Vikas; Bhardwaj, Pardeep Kumar; Doyle, Jeff J; Egan, Ashley N

    2017-05-25

    The medicinal legume Mucuna pruriens (L.) DC. has attracted attention worldwide as a source of the anti-Parkinson's drug L-Dopa. It is also a popular green manure cover crop that offers many agronomic benefits including high protein content, nitrogen fixation and soil nutrients. The plant currently lacks genomic resources and there is limited knowledge on gene expression, metabolic pathways, and genetics of secondary metabolite production. Here, we present transcriptomic resources for M. pruriens, including a de novo transcriptome assembly and annotation, as well as differential transcript expression analyses between root, leaf, and pod tissues. We also develop microsatellite markers and analyze genetic diversity and population structure within a set of Indian germplasm accessions. One-hundred ninety-one million two hundred thirty-three thousand two hundred forty-two bp cleaned reads were assembled into 67,561 transcripts with mean length of 626 bp and N50 of 987 bp. Assembled sequences were annotated using BLASTX against public databases with over 80% of transcripts annotated. We identified 7,493 simple sequence repeat (SSR) motifs, including 787 polymorphic repeats between the parents of a mapping population. 134 SSRs from expressed sequenced tags (ESTs) were screened against 23 M. pruriens accessions from India, with 52 EST-SSRs retained after quality control. Population structure analysis using a Bayesian framework implemented in fastSTRUCTURE showed nearly similar groupings as with distance-based (neighbor-joining) and principal component analyses, with most of the accessions clustering per geographical origins. Pair-wise comparison of transcript expression in leaves, roots and pods identified 4,387 differentially expressed transcripts with the highest number occurring between roots and leaves. Differentially expressed transcripts were enriched with transcription factors and transcripts annotated as belonging to secondary metabolite pathways. The M

  19. galaxieEST: addressing EST identity through automated phylogenetic analysis.

    Science.gov (United States)

    Nilsson, R Henrik; Rajashekar, Balaji; Larsson, Karl-Henrik; Ursing, Björn M

    2004-07-05

    Research involving expressed sequence tags (ESTs) is intricately coupled to the existence of large, well-annotated sequence repositories. Comparatively complete and satisfactory annotated public sequence libraries are, however, available only for a limited range of organisms, rendering the absence of sequences and gene structure information a tangible problem for those working with taxa lacking an EST or genome sequencing project. Paralogous genes belonging to the same gene family but distinguished by derived characteristics are particularly prone to misidentification and erroneous annotation; high but incomplete levels of sequence similarity are typically difficult to interpret and have formed the basis of many unsubstantiated assumptions of orthology. In these cases, a phylogenetic study of the query sequence together with the most similar sequences in the database may be of great value to the identification process. In order to facilitate this laborious procedure, a project to employ automated phylogenetic analysis in the identification of ESTs was initiated. galaxieEST is an open source Perl-CGI script package designed to complement traditional similarity-based identification of EST sequences through employment of automated phylogenetic analysis. It uses a series of BLAST runs as a sieve to retrieve nucleotide and protein sequences for inclusion in neighbour joining and parsimony analyses; the output includes the BLAST output, the results of the phylogenetic analyses, and the corresponding multiple alignments. galaxieEST is available as an on-line web service for identification of fungal ESTs and for download / local installation for use with any organism group at http://galaxie.cgb.ki.se/galaxieEST.html. By addressing sequence relatedness in addition to similarity, galaxieEST provides an integrative view on EST origin and identity, which may prove particularly useful in cases where similarity searches return one or more pertinent, but not full, matches and

  20. Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025

    Science.gov (United States)

    Bruford, Michael W.; Ginja, Catarina; Hoffmann, Irene; Joost, Stéphane; Orozco-terWengel, Pablo; Alberto, Florian J.; Amaral, Andreia J.; Barbato, Mario; Biscarini, Filippo; Colli, Licia; Costa, Mafalda; Curik, Ino; Duruz, Solange; Ferenčaković, Maja; Fischer, Daniel; Fitak, Robert; Groeneveld, Linn F.; Hall, Stephen J. G.; Hanotte, Olivier; Hassan, Faiz-ul; Helsen, Philippe; Iacolina, Laura; Kantanen, Juha; Leempoel, Kevin; Lenstra, Johannes A.; Ajmone-Marsan, Paolo; Masembe, Charles; Megens, Hendrik-Jan; Miele, Mara; Neuditschko, Markus; Nicolazzi, Ezequiel L.; Pompanon, François; Roosen, Jutta; Sevane, Natalia; Smetko, Anamarija; Štambuk, Anamaria; Streeter, Ian; Stucki, Sylvie; Supakorn, China; Telo Da Gama, Luis; Tixier-Boichard, Michèle; Wegmann, Daniel; Zhan, Xiangjiang

    2015-01-01

    Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR). However, these rapid changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and integrative methodologies needed to fully exploit new, multidimensional data. The final conference of the ESF Genomic Resources program aimed to address these interdisciplinary problems in an attempt to contribute to the agenda for research and policy development directions during the coming decade. By 2020, according to the Convention on Biodiversity's Aichi Target 13, signatories should ensure that “…the genetic diversity of …farmed and domesticated animals and of wild relatives …is maintained, and strategies have been developed and implemented for minimizing genetic erosion and safeguarding their genetic diversity.” However, the real extent of genetic erosion is very difficult to measure using current data. Therefore, this challenging target demands better coverage, understanding and utilization of genomic and environmental data, the development of optimized ways to integrate these data with social and other sciences and policy analysis to enable more flexible, evidence-based models to underpin FAnGR conservation. At the conference, we attempted to identify the most important problems for effective livestock genomic resource conservation during the next decade. Twenty priority questions were identified that could be broadly categorized into challenges related to methodology, analytical approaches, data management and conservation. It should be acknowledged here that while the focus of our meeting was predominantly around genetics, genomics and animal science, many of the practical challenges facing conservation of genomic resources are

  1. Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025.

    Science.gov (United States)

    Bruford, Michael W; Ginja, Catarina; Hoffmann, Irene; Joost, Stéphane; Orozco-terWengel, Pablo; Alberto, Florian J; Amaral, Andreia J; Barbato, Mario; Biscarini, Filippo; Colli, Licia; Costa, Mafalda; Curik, Ino; Duruz, Solange; Ferenčaković, Maja; Fischer, Daniel; Fitak, Robert; Groeneveld, Linn F; Hall, Stephen J G; Hanotte, Olivier; Hassan, Faiz-Ul; Helsen, Philippe; Iacolina, Laura; Kantanen, Juha; Leempoel, Kevin; Lenstra, Johannes A; Ajmone-Marsan, Paolo; Masembe, Charles; Megens, Hendrik-Jan; Miele, Mara; Neuditschko, Markus; Nicolazzi, Ezequiel L; Pompanon, François; Roosen, Jutta; Sevane, Natalia; Smetko, Anamarija; Štambuk, Anamaria; Streeter, Ian; Stucki, Sylvie; Supakorn, China; Telo Da Gama, Luis; Tixier-Boichard, Michèle; Wegmann, Daniel; Zhan, Xiangjiang

    2015-01-01

    Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR). However, these rapid changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and integrative methodologies needed to fully exploit new, multidimensional data. The final conference of the ESF Genomic Resources program aimed to address these interdisciplinary problems in an attempt to contribute to the agenda for research and policy development directions during the coming decade. By 2020, according to the Convention on Biodiversity's Aichi Target 13, signatories should ensure that "…the genetic diversity of …farmed and domesticated animals and of wild relatives …is maintained, and strategies have been developed and implemented for minimizing genetic erosion and safeguarding their genetic diversity." However, the real extent of genetic erosion is very difficult to measure using current data. Therefore, this challenging target demands better coverage, understanding and utilization of genomic and environmental data, the development of optimized ways to integrate these data with social and other sciences and policy analysis to enable more flexible, evidence-based models to underpin FAnGR conservation. At the conference, we attempted to identify the most important problems for effective livestock genomic resource conservation during the next decade. Twenty priority questions were identified that could be broadly categorized into challenges related to methodology, analytical approaches, data management and conservation. It should be acknowledged here that while the focus of our meeting was predominantly around genetics, genomics and animal science, many of the practical challenges facing conservation of genomic resources are

  2. Analysis of a normalised expressed sequence tag (EST) library from a key pollinator, the bumblebee Bombus terrestris.

    Science.gov (United States)

    Sadd, Ben M; Kube, Michael; Klages, Sven; Reinhardt, Richard; Schmid-Hempel, Paul

    2010-02-15

    The bumblebee, Bombus terrestris (Order Hymenoptera), is of widespread importance. This species is extensively used for commercial pollination in Europe, and along with other Bombus spp. is a key member of natural pollinator assemblages. Furthermore, the species is studied in a wide variety of biological fields. The objective of this project was to create a B. terrestris EST resource that will prove to be valuable in obtaining a deeper understanding of this significant social insect. A normalised cDNA library was constructed from the thorax and abdomen of B. terrestris workers in order to enhance the discovery of rare genes. A total of 29'428 ESTs were sequenced. Subsequent clustering resulted in 13'333 unique sequences. Of these, 58.8 percent had significant similarities to known proteins, with 54.5 percent having a "best-hit" to existing Hymenoptera sequences. Comparisons with the honeybee and other insects allowed the identification of potential candidates for gene loss, pseudogene evolution, and possible incomplete annotation in the honeybee genome. Further, given the focus of much basic research and the perceived threat of disease to natural and commercial populations, the immune system of bumblebees is a particularly relevant component. Although the library is derived from unchallenged bees, we still uncover transcription of a number of immune genes spanning the principally described insect immune pathways. Additionally, the EST library provides a resource for the discovery of genetic markers that can be used in population level studies. Indeed, initial screens identified 589 simple sequence repeats and 854 potential single nucleotide polymorphisms. The resource that these B. terrestris ESTs represent is valuable for ongoing work. The ESTs provide direct evidence of transcriptionally active regions, but they will also facilitate further functional genomics, gene discovery and future genome annotation. These are important aspects in obtaining a greater

  3. A web-based multi-genome synteny viewer for customized data

    Directory of Open Access Journals (Sweden)

    Revanna Kashi V

    2012-08-01

    Full Text Available Abstract Background Web-based synteny visualization tools are important for sharing data and revealing patterns of complicated genome conservation and rearrangements. Such tools should allow biologists to upload genomic data for their own analysis. This requirement is critical because individual biologists are generating large amounts of genomic sequences that quickly overwhelm any centralized web resources to collect and display all those data. Recently, we published a web-based synteny viewer, GSV, which was designed to satisfy the above requirement. However, GSV can only compare two genomes at a given time. Extending the functionality of GSV to visualize multiple genomes is important to meet the increasing demand of the research community. Results We have developed a multi-Genome Synteny Viewer (mGSV. Similar to GSV, mGSV is a web-based tool that allows users to upload their own genomic data files for visualization. Multiple genomes can be presented in a single integrated view with an enhanced user interface. Users can navigate through all the selected genomes in either pairwise or multiple viewing mode to examine conserved genomic regions as well as the accompanying genome annotations. Besides serving users who manually interact with the web server, mGSV also provides Web Services for machine-to-machine communication to accept data sent by other remote resources. The entire mGSV package can also be downloaded for easy local installation. Conclusions mGSV significantly enhances the original functionalities of GSV. A web server hosting mGSV is provided at http://cas-bioinfo.cas.unt.edu/mgsv.

  4. Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.

    Directory of Open Access Journals (Sweden)

    Yang Jun-Bo

    2010-12-01

    Full Text Available Abstract Background The castor bean (Ricinus communis L., a monotypic species in the spurge family (Euphorbiaceae, 2n = 20, is an important non-edible oilseed crop widely cultivated in tropical, sub-tropical and temperate countries for its high economic value. Because of the high level of ricinoleic acid (over 85% in its seed oil, the castor bean seed derivatives are often used in aviation oil, lubricants, nylon, dyes, inks, soaps, adhesive and biodiesel. Due to lack of efficient molecular markers, little is known about the population genetic diversity and the genetic relationships among castor bean germplasm. Efficient and robust molecular markers are increasingly needed for breeding and improving varieties in castor bean. The advent of modern genomics has produced large amounts of publicly available DNA sequence data. In particular, expressed sequence tags (ESTs provide valuable resources to develop gene-associated SSR markers. Results In total, 18,928 publicly available non-redundant castor bean EST sequences, representing approximately 17.03 Mb, were evaluated and 7732 SSR sites in 5,122 ESTs were identified by data mining. Castor bean exhibited considerably high frequency of EST-SSRs. We developed and characterized 118 polymorphic EST-SSR markers from 379 primer pairs flanking repeats by screening 24 castor bean samples collected from different countries. A total of 350 alleles were identified from 118 polymorphic SSR loci, ranging from 2-6 per locus (A with an average of 2.97. The EST-SSR markers developed displayed moderate gene diversity (He with an average of 0.41. Genetic relationships among 24 germplasms were investigated using the genotypes of 350 alleles, showing geographic pattern of genotypes across genetic diversity centers of castor bean. Conclusion Castor bean EST sequences exhibited considerably high frequency of SSR sites, and were rich resources for developing EST-SSR markers. These EST-SSR markers would be particularly

  5. Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane

    KAUST Repository

    Singh, Ram K.

    2013-07-01

    Sugarcane (Saccharum spp. hybrid) with complex polyploid genome requires a large number of informative DNA markers for various applications in genetics and breeding. Despite the great advances in genomic technology, it is observed in several crop species, especially in sugarcane, the availability of molecular tools such as microsatellite markers are limited. Now-a-days EST-SSR markers are preferred to genomic SSR (gSSR) as they represent only the functional part of the genome, which can be easily associated with desired trait. The present study was taken up with a new set of 351 EST-SSRs developed from the 4085 non redundant EST sequences of two Indian sugarcane cultivars. Among these EST-SSRs, TNR containing motifs were predominant with a frequency of 51.6%. Thirty percent EST-SSRs showed homology with annotated protein. A high frequency of SSRs was found in the 5\\'UTR and in the ORF (about 27%) and a low frequency was observed in the 3\\'UTR (about 8%). Two hundred twenty-seven EST-SSRs were evaluated, in sugarcane, allied genera of sugarcane and cereals, and 134 of these have revealed polymorphism with a range of PIC value 0.12 to 0.99. The cross transferability rate ranged from 87.0% to 93.4% in Saccharum complex, 80.0% to 87.0% in allied genera, and 76.0% to 80.0% in cereals. Cloning and sequencing of EST-SSR size variant amplicons revealed that the variation in the number of repeat-units was the main source of EST-SSR fragment polymorphism. When 124 sugarcane accessions were analyzed for population structure using model-based approach, seven genetically distinct groups or admixtures thereof were observed in sugarcane. Results of principal coordinate analysis or UPGMA to evaluate genetic relationships delineated also the 124 accessions into seven groups. Thus, a high level of polymorphism adequate genetic diversity and population structure assayed with the EST-SSR markers not only suggested their utility in various applications in genetics and genomics in

  6. Learning about the Human Genome. Part 2: Resources for Science Educators. ERIC Digest.

    Science.gov (United States)

    Haury, David L.

    This ERIC Digest identifies how the human genome project fits into the "National Science Education Standards" and lists Human Genome Project Web sites found on the World Wide Web. It is a resource companion to "Learning about the Human Genome. Part 1: Challenge to Science Educators" (Haury 2001). The Web resources and…

  7. Development of EST-derived markers in Dendrobium from EST of related taxa

    OpenAIRE

    Narisa Juejun; Chataporn Chunwongse; Julapark Chunwongse

    2013-01-01

    Public databases are useful for molecular marker development. The major aim of this study was to develop expressedsequence tag (EST)-derived markers in Dendrobium from available ESTs of Phalaenopsis and Dendrobium. A total of 6063sequences were screened for simple sequence repeats (SSRs) and introns. Primers flanking these regions were generated andtested on genomic DNAs of Phalaenopsis and Dendrobium. Twenty-three percent of amplifiable Phalaenopsis EST-derivedmarkers were cross-genera trans...

  8. Comparative high-throughput transcriptome sequencing and development of SiESTa, the Silene EST annotation database

    Directory of Open Access Journals (Sweden)

    Marais Gabriel AB

    2011-07-01

    Full Text Available Abstract Background The genus Silene is widely used as a model system for addressing ecological and evolutionary questions in plants, but advances in using the genus as a model system are impeded by the lack of available resources for studying its genome. Massively parallel sequencing cDNA has recently developed into an efficient method for characterizing the transcriptomes of non-model organisms, generating massive amounts of data that enable the study of multiple species in a comparative framework. The sequences generated provide an excellent resource for identifying expressed genes, characterizing functional variation and developing molecular markers, thereby laying the foundations for future studies on gene sequence and gene expression divergence. Here, we report the results of a comparative transcriptome sequencing study of eight individuals representing four Silene and one Dianthus species as outgroup. All sequences and annotations have been deposited in a newly developed and publicly available database called SiESTa, the Silene EST annotation database. Results A total of 1,041,122 EST reads were generated in two runs on a Roche GS-FLX 454 pyrosequencing platform. EST reads were analyzed separately for all eight individuals sequenced and were assembled into contigs using TGICL. These were annotated with results from BLASTX searches and Gene Ontology (GO terms, and thousands of single-nucleotide polymorphisms (SNPs were characterized. Unassembled reads were kept as singletons and together with the contigs contributed to the unigenes characterized in each individual. The high quality of unigenes is evidenced by the proportion (49% that have significant hits in similarity searches with the A. thaliana proteome. The SiESTa database is accessible at http://www.siesta.ethz.ch. Conclusion The sequence collections established in the present study provide an important genomic resource for four Silene and one Dianthus species and will help to

  9. Comparative high-throughput transcriptome sequencing and development of SiESTa, the Silene EST annotation database

    Science.gov (United States)

    2011-01-01

    Background The genus Silene is widely used as a model system for addressing ecological and evolutionary questions in plants, but advances in using the genus as a model system are impeded by the lack of available resources for studying its genome. Massively parallel sequencing cDNA has recently developed into an efficient method for characterizing the transcriptomes of non-model organisms, generating massive amounts of data that enable the study of multiple species in a comparative framework. The sequences generated provide an excellent resource for identifying expressed genes, characterizing functional variation and developing molecular markers, thereby laying the foundations for future studies on gene sequence and gene expression divergence. Here, we report the results of a comparative transcriptome sequencing study of eight individuals representing four Silene and one Dianthus species as outgroup. All sequences and annotations have been deposited in a newly developed and publicly available database called SiESTa, the Silene EST annotation database. Results A total of 1,041,122 EST reads were generated in two runs on a Roche GS-FLX 454 pyrosequencing platform. EST reads were analyzed separately for all eight individuals sequenced and were assembled into contigs using TGICL. These were annotated with results from BLASTX searches and Gene Ontology (GO) terms, and thousands of single-nucleotide polymorphisms (SNPs) were characterized. Unassembled reads were kept as singletons and together with the contigs contributed to the unigenes characterized in each individual. The high quality of unigenes is evidenced by the proportion (49%) that have significant hits in similarity searches with the A. thaliana proteome. The SiESTa database is accessible at http://www.siesta.ethz.ch. Conclusion The sequence collections established in the present study provide an important genomic resource for four Silene and one Dianthus species and will help to further develop Silene as a

  10. Development of Highly Informative Genome-Wide Single Sequence Repeat Markers for Breeding Applications in Sesame and Construction of a Web Resource: SisatBase

    Directory of Open Access Journals (Sweden)

    Komivi Dossa

    2017-08-01

    Full Text Available The sequencing of the full nuclear genome of sesame (Sesamum indicum L. provides the platform for functional analyses of genome components and their application in breeding programs. Although the importance of microsatellites markers or simple sequence repeats (SSR in crop genotyping, genetics, and breeding applications is well established, only a little information exist concerning SSRs at the whole genome level in sesame. In addition, SSRs represent a suitable marker type for sesame molecular breeding in developing countries where it is mainly grown. In this study, we identified 138,194 genome-wide SSRs of which 76.5% were physically mapped onto the 13 pseudo-chromosomes. Among these SSRs, up to three primers pairs were supplied for 101,930 SSRs and used to in silico amplify the reference genome together with two newly sequenced sesame accessions. A total of 79,957 SSRs (78% were polymorphic between the three genomes thereby suggesting their promising use in different genomics-assisted breeding applications. From these polymorphic SSRs, 23 were selected and validated to have high polymorphic potential in 48 sesame accessions from different growing areas of Africa. Furthermore, we have developed an online user-friendly database, SisatBase (http://www.sesame-bioinfo.org/SisatBase/, which provides free access to SSRs data as well as an integrated platform for functional analyses. Altogether, the reference SSR and SisatBase would serve as useful resources for genetic assessment, genomic studies, and breeding advancement in sesame, especially in developing countries.

  11. Generation and analysis of ESTs from the eastern oyster, Crassostrea virginica Gmelin and identification of microsatellite and SNP markers

    Directory of Open Access Journals (Sweden)

    Wallace Richard

    2007-06-01

    Full Text Available Abstract Background The eastern oyster, Crassostrea virginica (Gmelin 1791, is an economically important species cultured in many areas in North America. It is also ecologically important because of the impact of its filter feeding behaviour on water quality. Populations of C. virginica have been threatened by overfishing, habitat degradation, and diseases. Through genome research, strategies are being developed to reverse its population decline. However, large-scale expressed sequence tag (EST resources have been lacking for this species. Efficient generation of EST resources from this species has been hindered by a high redundancy of transcripts. The objectives of this study were to construct a normalized cDNA library for efficient EST analysis, to generate thousands of ESTs, and to analyze the ESTs for microsatellites and potential single nucleotide polymorphisms (SNPs. Results A normalized and subtracted C. virginica cDNA library was constructed from pooled RNA isolated from hemocytes, mantle, gill, gonad and digestive tract, muscle, and a whole juvenile oyster. A total of 6,528 clones were sequenced from this library generating 5,542 high-quality EST sequences. Cluster analysis indicated the presence of 635 contigs and 4,053 singletons, generating a total of 4,688 unique sequences. About 46% (2,174 of the unique ESTs had significant hits (E-value ≤ 1e-05 to the non-redundant protein database; 1,104 of which were annotated using Gene Ontology (GO terms. A total of 35 microsatellites were identified from the ESTs, with 18 having sufficient flanking sequences for primer design. A total of 6,533 putative SNPs were also identified using all existing and the newly generated EST resources of the eastern oysters. Conclusion A high quality normalized cDNA library was constructed. A total of 5,542 ESTs were generated representing 4,688 unique sequences. Putative microsatellite and SNP markers were identified. These genome resources provide the

  12. Observing copepods through a genomic lens

    Directory of Open Access Journals (Sweden)

    Johnson Stewart C

    2011-09-01

    Full Text Available Abstract Background Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to

  13. Observing copepods through a genomic lens

    Science.gov (United States)

    2011-01-01

    Background Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to provide genomics tools for

  14. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.

    Science.gov (United States)

    Lewis, Tony E; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L; Buchan, Daniel W A; Chothia, Cyrus; Cuff, Alison; Dana, Jose M; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T; Kelley, Lawrence A; Kleywegt, Gerard J; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G; Ochoa-Montaño, Bernardo; Rackham, Owen J L; Smith, James; Sternberg, Michael J E; Velankar, Sameer; Yeats, Corin; Orengo, Christine

    2013-01-01

    Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).

  15. Development of EST-derived markers in Dendrobium from EST of related taxa

    Directory of Open Access Journals (Sweden)

    Narisa Juejun

    2013-04-01

    Full Text Available Public databases are useful for molecular marker development. The major aim of this study was to develop expressedsequence tag (EST-derived markers in Dendrobium from available ESTs of Phalaenopsis and Dendrobium. A total of 6063sequences were screened for simple sequence repeats (SSRs and introns. Primers flanking these regions were generated andtested on genomic DNAs of Phalaenopsis and Dendrobium. Twenty-three percent of amplifiable Phalaenopsis EST-derivedmarkers were cross-genera transferable to Dendrobium. Forty-one markers from both Phalaenopsis and Dendrobium thatamplified in Dendrobium were assessed on six commercial cultivars and six wild accessions. All of them were transferableamong Dendrobium species. High polymorphism and heterozygosity were observed within wild accessions. Sixteen polymorphic markers were evaluated for linkage analysis on an F1 segregating population. Seven markers were mapped into threelinkage groups, two of which showed syntenic relationship between dendrobium and rice. This relationship will facilitatefurther quantitative trait loci (QTL mapping and comparative genomic studies of Dendrobium. Our results indicate thatPhalaenopsis EST-derived markers are valuable tools for genetic research and breeding applications in Dendrobium.

  16. The Plant Genome Integrative Explorer Resource: PlantGenIE.org.

    Science.gov (United States)

    Sundell, David; Mannapperuma, Chanaka; Netotea, Sergiu; Delhomme, Nicolas; Lin, Yao-Cheng; Sjödin, Andreas; Van de Peer, Yves; Jansson, Stefan; Hvidsten, Torgeir R; Street, Nathaniel R

    2015-12-01

    Accessing and exploring large-scale genomics data sets remains a significant challenge to researchers without specialist bioinformatics training. We present the integrated PlantGenIE.org platform for exploration of Populus, conifer and Arabidopsis genomics data, which includes expression networks and associated visualization tools. Standard features of a model organism database are provided, including genome browsers, gene list annotation, Blast homology searches and gene information pages. Community annotation updating is supported via integration of WebApollo. We have produced an RNA-sequencing (RNA-Seq) expression atlas for Populus tremula and have integrated these data within the expression tools. An updated version of the ComPlEx resource for performing comparative plant expression analyses of gene coexpression network conservation between species has also been integrated. The PlantGenIE.org platform provides intuitive access to large-scale and genome-wide genomics data from model forest tree species, facilitating both community contributions to annotation improvement and tools supporting use of the included data resources to inform biological insight. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Marine Genomics: A clearing-house for genomic and transcriptomic data of marine organisms

    Directory of Open Access Journals (Sweden)

    Trent Harold F

    2005-03-01

    Full Text Available Abstract Background The Marine Genomics project is a functional genomics initiative developed to provide a pipeline for the curation of Expressed Sequence Tags (ESTs and gene expression microarray data for marine organisms. It provides a unique clearing-house for marine specific EST and microarray data and is currently available at http://www.marinegenomics.org. Description The Marine Genomics pipeline automates the processing, maintenance, storage and analysis of EST and microarray data for an increasing number of marine species. It currently contains 19 species databases (over 46,000 EST sequences that are maintained by registered users from local and remote locations in Europe and South America in addition to the USA. A collection of analysis tools are implemented. These include a pipeline upload tool for EST FASTA file, sequence trace file and microarray data, an annotative text search, automated sequence trimming, sequence quality control (QA/QC editing, sequence BLAST capabilities and a tool for interactive submission to GenBank. Another feature of this resource is the integration with a scientific computing analysis environment implemented by MATLAB. Conclusion The conglomeration of multiple marine organisms with integrated analysis tools enables users to focus on the comprehensive descriptions of transcriptomic responses to typical marine stresses. This cross species data comparison and integration enables users to contain their research within a marine-oriented data management and analysis environment.

  18. SNP-finding in pig mitochondrial ESTs

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Cirera Salicio, Susanna; Gilchrist, M.J.

    2008-01-01

    The Sino-Danish pig genome project produced 685 851 ESTs (Gorodkin et al. 2007), of which 41 499 originated from the mitochondrial genome. In this study, the mitochondrial ESTs were assembled, and 374 putative SNPs were found. Chromatograms for the ESTs containing SNPs were manually inspected, an......, and 112 total (52 non-synonymous) SNPs were found to be of high confidence (five of them are close to disease-causing SNPs in humans). Nine of the high-confidence SNPs were tested experimentally, and eight were confirmed. The SNPs can be accessed online at http://pigest.ku.dk/more.mito...

  19. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information

    Science.gov (United States)

    2012-01-01

    Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource

  20. Strengths and weaknesses of EST-based prediction of tissue-specific alternative splicing

    Directory of Open Access Journals (Sweden)

    Vingron Martin

    2004-09-01

    Full Text Available Abstract Background Alternative splicing contributes significantly to the complexity of the human transcriptome and proteome. Computational prediction of alternative splice isoforms are usually based on EST sequences that also allow to approximate the expression pattern of the related transcripts. However, the limited number of tissues represented in the EST data as well as the different cDNA construction protocols may influence the predictive capacity of ESTs to unravel tissue-specifically expressed transcripts. Methods We predict tissue and tumor specific splice isoforms based on the genomic mapping (SpliceNest of the EST consensus sequences and library annotation provided in the GeneNest database. We further ascertain the potentially rare tissue specific transcripts as the ones represented only by ESTs derived from normalized libraries. A subset of the predicted tissue and tumor specific isoforms are then validated via RT-PCR experiments over a spectrum of 40 tissue types. Results Our strategy revealed 427 genes with at least one tissue specific transcript as well as 1120 genes showing tumor specific isoforms. While our experimental evaluation of computationally predicted tissue-specific isoforms revealed a high success rate in confirming the expression of these isoforms in the respective tissue, the strategy frequently failed to detect the expected restricted expression pattern. The analysis of putative lowly expressed transcripts using normalized cDNA libraries suggests that our ability to detect tissue-specific isoforms strongly depends on the expression level of the respective transcript as well as on the sensitivity of the experimental methods. Especially splice isoforms predicted to be disease-specific tend to represent transcripts that are expressed in a set of healthy tissues rather than novel isoforms. Conclusions We propose to combine the computational prediction of alternative splice isoforms with experimental validation for

  1. Exploring nervous system transcriptomes during embryogenesis and metamorphosis in Xenopus tropicalis using EST analysis

    Directory of Open Access Journals (Sweden)

    Wegnez Maurice

    2007-05-01

    Full Text Available Abstract Background The western African clawed frog Xenopus tropicalis is an anuran amphibian species now used as model in vertebrate comparative genomics. It provides the same advantages as Xenopus laevis but is diploid and has a smaller genome of 1.7 Gbp. Therefore X. tropicalis is more amenable to systematic transcriptome surveys. We initiated a large-scale partial cDNA sequencing project to provide a functional genomics resource on genes expressed in the nervous system during early embryogenesis and metamorphosis in X. tropicalis. Results A gene index was defined and analysed after the collection of over 48,785 high quality sequences. These partial cDNA sequences were obtained from an embryonic head and retina library (30,272 sequences and from a metamorphic brain and spinal cord library (27,602 sequences. These ESTs are estimated to represent 9,693 transcripts derived from an estimated 6,000 genes. Comparison of these cDNA sequences with protein databases indicates that 46% contain their start codon. Further annotation included Gene Ontology functional classification, InterPro domain analysis, alternative splicing and non-coding RNA identification. Gene expression profiles were derived from EST counts and used to define transcripts specific to metamorphic stages of development. Moreover, these ESTs allowed identification of a set of 225 polymorphic microsatellites that can be used as genetic markers. Conclusion These cDNA sequences permit in silico cloning of numerous genes and will facilitate studies aimed at deciphering the roles of cognate genes expressed in the nervous system during neural development and metamorphosis. The genomic resources developed to study X. tropicalis biology will accelerate exploration of amphibian physiology and genetics. In particular, the model will facilitate analysis of key questions related to anuran embryogenesis and metamorphosis and its associated regulatory processes.

  2. MSeqDR: A Centralized Knowledge Repository and Bioinformatics Web Resource to Facilitate Genomic Investigations in Mitochondrial Disease.

    Science.gov (United States)

    Shen, Lishuang; Diroma, Maria Angela; Gonzalez, Michael; Navarro-Gomez, Daniel; Leipzig, Jeremy; Lott, Marie T; van Oven, Mannis; Wallace, Douglas C; Muraresku, Colleen Clarke; Zolkipli-Cunningham, Zarazuela; Chinnery, Patrick F; Attimonelli, Marcella; Zuchner, Stephan; Falk, Marni J; Gai, Xiaowu

    2016-06-01

    MSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes, genes, and variants. A central Web portal (https://mseqdr.org) integrates community knowledge from expert-curated databases with genomic and phenotype data shared by clinicians and researchers. MSeqDR also functions as a centralized application server for Web-based tools to analyze data across both mitochondrial and nuclear DNA, including investigator-driven whole exome or genome dataset analyses through MSeqDR-Genesis. MSeqDR-GBrowse genome browser supports interactive genomic data exploration and visualization with custom tracks relevant to mtDNA variation and mitochondrial disease. MSeqDR-LSDB is a locus-specific database that currently manages 178 mitochondrial diseases, 1,363 genes associated with mitochondrial biology or disease, and 3,711 pathogenic variants in those genes. MSeqDR Disease Portal allows hierarchical tree-style disease exploration to evaluate their unique descriptions, phenotypes, and causative variants. Automated genomic data submission tools are provided that capture ClinVar compliant variant annotations. PhenoTips will be used for phenotypic data submission on deidentified patients using human phenotype ontology terminology. The development of a dynamic informed patient consent process to guide data access is underway to realize the full potential of these resources. © 2016 WILEY PERIODICALS, INC.

  3. Comprehensive EST analysis of the symbiotic sea anemone, Anemonia viridis.

    Science.gov (United States)

    Sabourault, Cécile; Ganot, Philippe; Deleury, Emeline; Allemand, Denis; Furla, Paola

    2009-07-23

    Coral reef ecosystems are renowned for their diversity and beauty. Their immense ecological success is due to a symbiotic association between cnidarian hosts and unicellular dinoflagellate algae, known as zooxanthellae. These algae are photosynthetic and the cnidarian-zooxanthellae association is based on nutritional exchanges. Maintenance of such an intimate cellular partnership involves many crosstalks between the partners. To better characterize symbiotic relationships between a cnidarian host and its dinoflagellate symbionts, we conducted a large-scale EST study on a symbiotic sea anemone, Anemonia viridis, in which the two tissue layers (epiderm and gastroderm) can be easily separated. A single cDNA library was constructed from symbiotic tissue of sea anemones A. viridis in various environmental conditions (both normal and stressed). We generated 39,939 high quality ESTs, which were assembled into 14,504 unique sequences (UniSeqs). Sequences were analysed and sorted according to their putative origin (animal, algal or bacterial). We identified many new repeated elements in the 3'UTR of most animal genes, suggesting that these elements potentially have a biological role, especially with respect to gene expression regulation. We identified genes of animal origin that have no homolog in the non-symbiotic starlet sea anemone Nematostella vectensis genome, but in other symbiotic cnidarians, and may therefore be involved in the symbiosis relationship in A. viridis. Comparison of protein domain occurrence in A. viridis with that in N. vectensis demonstrated an increase in abundance of some molecular functions, such as protein binding or antioxidant activity, suggesting that these functions are essential for the symbiotic state and may be specific adaptations. This large dataset of sequences provides a valuable resource for future studies on symbiotic interactions in Cnidaria. The comparison with the closest available genome, the sea anemone N. vectensis, as well as

  4. Comprehensive EST analysis of the symbiotic sea anemone, Anemonia viridis

    Directory of Open Access Journals (Sweden)

    Deleury Emeline

    2009-07-01

    Full Text Available Abstract Background Coral reef ecosystems are renowned for their diversity and beauty. Their immense ecological success is due to a symbiotic association between cnidarian hosts and unicellular dinoflagellate algae, known as zooxanthellae. These algae are photosynthetic and the cnidarian-zooxanthellae association is based on nutritional exchanges. Maintenance of such an intimate cellular partnership involves many crosstalks between the partners. To better characterize symbiotic relationships between a cnidarian host and its dinoflagellate symbionts, we conducted a large-scale EST study on a symbiotic sea anemone, Anemonia viridis, in which the two tissue layers (epiderm and gastroderm can be easily separated. Results A single cDNA library was constructed from symbiotic tissue of sea anemones A. viridis in various environmental conditions (both normal and stressed. We generated 39,939 high quality ESTs, which were assembled into 14,504 unique sequences (UniSeqs. Sequences were analysed and sorted according to their putative origin (animal, algal or bacterial. We identified many new repeated elements in the 3'UTR of most animal genes, suggesting that these elements potentially have a biological role, especially with respect to gene expression regulation. We identified genes of animal origin that have no homolog in the non-symbiotic starlet sea anemone Nematostella vectensis genome, but in other symbiotic cnidarians, and may therefore be involved in the symbiosis relationship in A. viridis. Comparison of protein domain occurrence in A. viridis with that in N. vectensis demonstrated an increase in abundance of some molecular functions, such as protein binding or antioxidant activity, suggesting that these functions are essential for the symbiotic state and may be specific adaptations. Conclusion This large dataset of sequences provides a valuable resource for future studies on symbiotic interactions in Cnidaria. The comparison with the closest

  5. A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study

    Directory of Open Access Journals (Sweden)

    Cherubini Marcello

    2010-10-01

    Full Text Available Abstract Background Expressed Sequence Tags (ESTs are a source of simple sequence repeats (SSRs that can be used to develop molecular markers for genetic studies. The availability of ESTs for Quercus robur and Quercus petraea provided a unique opportunity to develop microsatellite markers to accelerate research aimed at studying adaptation of these long-lived species to their environment. As a first step toward the construction of a SSR-based linkage map of oak for quantitative trait locus (QTL mapping, we describe the mining and survey of EST-SSRs as well as a fast and cost-effective approach (bin mapping to assign these markers to an approximate map position. We also compared the level of polymorphism between genomic and EST-derived SSRs and address the transferability of EST-SSRs in Castanea sativa (chestnut. Results A catalogue of 103,000 Sanger ESTs was assembled into 28,024 unigenes from which 18.6% presented one or more SSR motifs. More than 42% of these SSRs corresponded to trinucleotides. Primer pairs were designed for 748 putative unigenes. Overall 37.7% (283 were found to amplify a single polymorphic locus in a reference full-sib pedigree of Quercus robur. The usefulness of these loci for establishing a genetic map was assessed using a bin mapping approach. Bin maps were constructed for the male and female parental tree for which framework linkage maps based on AFLP markers were available. The bin set consisting of 14 highly informative offspring selected based on the number and position of crossover sites. The female and male maps comprised 44 and 37 bins, with an average bin length of 16.5 cM and 20.99 cM, respectively. A total of 256 EST-SSRs were assigned to bins and their map position was further validated by linkage mapping. EST-SSRs were found to be less polymorphic than genomic SSRs, but their transferability rate to chestnut, a phylogenetically related species to oak, was higher. Conclusion We have generated a bin map for oak

  6. Genomic resources for multiple species in the Drosophila ananassae species group.

    Science.gov (United States)

    Signor, Sarah; Seher, Thaddeus; Kopp, Artyom

    2013-01-01

    The development of genomic resources in non-model taxa is essential for understanding the genetic basis of biological diversity. Although the genomes of many Drosophila species have been sequenced, most of the phenotypic diversity in this genus remains to be explored. To facilitate the genetic analysis of interspecific and intraspecific variation, we have generated new genomic resources for seven species and subspecies in the D. ananassae species subgroup. We have generated large amounts of transcriptome sequence data for D. ercepeae, D. merina, D. bipectinata, D. malerkotliana malerkotliana, D. m. pallens, D. pseudoananassae pseudoananassae, and D. p. nigrens. de novo assembly resulted in contigs covering more than half of the predicted transcriptome and matching an average of 59% of annotated genes in the complete genome of D. ananassae. Most contigs, corresponding to an average of 49% of D. ananassae genes, contain sequence polymorphisms that can be used as genetic markers. Subsets of these markers were validated by genotyping the progeny of inter- and intraspecific crosses. The ananassae subgroup is an excellent model system for examining the molecular basis of speciation and phenotypic evolution. The new genomic resources will facilitate the genetic analysis of inter- and intraspecific differences in this lineage. Transcriptome sequencing provides a simple and cost-effective way to identify molecular markers at nearly single-gene density, and is equally applicable to any non-model taxa.

  7. Genomics and bioinformatics resources for translational science in Rosaceae.

    Science.gov (United States)

    Jung, Sook; Main, Dorrie

    2014-01-01

    Recent technological advances in biology promise unprecedented opportunities for rapid and sustainable advancement of crop quality. Following this trend, the Rosaceae research community continues to generate large amounts of genomic, genetic and breeding data. These include annotated whole genome sequences, transcriptome and expression data, proteomic and metabolomic data, genotypic and phenotypic data, and genetic and physical maps. Analysis, storage, integration and dissemination of these data using bioinformatics tools and databases are essential to provide utility of the data for basic, translational and applied research. This review discusses the currently available genomics and bioinformatics resources for the Rosaceae family.

  8. Enhancing faba bean (Vicia faba L.) genome resources.

    Science.gov (United States)

    Cooper, James W; Wilson, Michael H; Derks, Martijn F L; Smit, Sandra; Kunert, Karl J; Cullis, Christopher; Foyer, Christine H

    2017-04-01

    Grain legume improvement is currently impeded by a lack of genomic resources. The paucity of genome information for faba bean can be attributed to the intrinsic difficulties of assembling/annotating its giant (~13 Gb) genome. In order to address this challenge, RNA-sequencing analysis was performed on faba bean (cv. Wizard) leaves. Read alignment to the faba bean reference transcriptome identified 16 300 high quality unigenes. In addition, Illumina paired-end sequencing was used to establish a baseline for genomic information assembly. Genomic reads were assembled de novo into contigs with a size range of 50-5000 bp. Over 85% of sequences did not align to known genes, of which ~10% could be aligned to known repetitive genetic elements. Over 26 000 of the reference transcriptome unigenes could be aligned to DNA-sequencing (DNA-seq) reads with high confidence. Moreover, this comparison identified 56 668 potential splice points in all identified unigenes. Sequence length data were extended at 461 putative loci through alignment of DNA-seq contigs to full-length, publicly available linkage marker sequences. Reads also yielded coverages of 3466× and 650× for the chloroplast and mitochondrial genomes, respectively. Inter- and intraspecies organelle genome comparisons established core legume organelle gene sets, and revealed polymorphic regions of faba bean organelle genomes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Assembly of 500,000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies

    Energy Technology Data Exchange (ETDEWEB)

    Catfish Genome Consortium; Wang, Shaolin; Peatman, Eric; Abernathy, Jason; Waldbieser, Geoff; Lindquist, Erika; Richardson, Paul; Lucas, Susan; Wang, Mei; Li, Ping; Thimmapuram, Jyothi; Liu, Lei; Vullaganti, Deepika; Kucuktas, Huseyin; Murdock, Christopher; Small, Brian C; Wilson, Melanie; Liu, Hong; Jiang, Yanliang; Lee, Yoona; Chen, Fei; Lu, Jianguo; Wang, Wenqi; Xu, Peng; Somridhivej, Benjaporn; Baoprasertkul, Puttharat; Quilang, Jonas; Sha, Zhenxia; Bao, Baolong; Wang, Yaping; Wang, Qun; Takano, Tomokazu; Nandi, Samiran; Liu, Shikai; Wong, Lilian; Kaltenboeck, Ludmilla; Quiniou, Sylvie; Bengten, Eva; Miller, Norman; Trant, John; Rokhsar, Daniel; Liu, Zhanjiang

    2010-03-23

    Background-Through the Community Sequencing Program, a catfish EST sequencing project was carried out through a collaboration between the catfish research community and the Department of Energy's Joint Genome Institute. Prior to this project, only a limited EST resource from catfish was available for the purpose of SNP identification. Results-A total of 438,321 quality ESTs were generated from 8 channel catfish (Ictalurus punctatus) and 4 blue catfish (Ictalurus furcatus) libraries, bringing the number of catfish ESTs to nearly 500,000. Assembly of all catfish ESTs resulted in 45,306 contigs and 66,272 singletons. Over 35percent of the unique sequences had significant similarities to known genes, allowing the identification of 14,776 unique genes in catfish. Over 300,000 putative SNPs have been identified, of which approximately 48,000 are high-quality SNPs identified from contigs with at least four sequences and the minor allele presence of at least two sequences in the contig. The EST resource should be valuable for identification of microsatellites, genome annotation, large-scale expression analysis, and comparative genome analysis. Conclusions-This project generated a large EST resource for catfish that captured the majority of the catfish transcriptome. The parallel analysis of ESTs from two closely related Ictalurid catfishes should also provide powerful means for the evaluation of ancient and recent gene duplications, and for the development of high-density microarrays in catfish. The inter- and intra-specific SNPs identified from all catfish EST dataset assembly will greatly benefit the catfish introgression breeding program and whole genome association studies.

  10. The Agassiz's desert tortoise genome provides a resource for the conservation of a threatened species.

    Directory of Open Access Journals (Sweden)

    Marc Tollis

    Full Text Available Agassiz's desert tortoise (Gopherus agassizii is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1 that turtles are among the slowest-evolving genome-enabled reptiles, (2 amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3 fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

  11. Exploiting the transcriptome of Euphrates Poplar, Populus euphratica (Salicaceae to develop and characterize new EST-SSR markers and construct an EST-SSR database.

    Directory of Open Access Journals (Sweden)

    Fang K Du

    Full Text Available BACKGROUND: Microsatellite markers or Simple Sequence Repeats (SSRs are the most popular markers in population/conservation genetics. However, the development of novel microsatellite markers has been impeded by high costs, a lack of available sequence data and technical difficulties. New species-specific microsatellite markers were required to investigate the evolutionary history of the Euphratica tree, Populus euphratica, the only tree species found in the desert regions of Western China and adjacent Central Asian countries. METHODOLOGY/PRINCIPAL FINDINGS: A total of 94,090 non-redundant Expressed Sequence Tags (ESTs from P. euphratica comprising around 63 Mb of sequence data were searched for SSRs. 4,202 SSRs were found in 3,839 ESTs, with 311 ESTs containing multiple SSRs. The most common motif types were trinucleotides (37% and hexanucleotides (33% repeats. We developed primer pairs for all of the identified EST-SSRs (eSSRs and selected 673 of these pairs at random for further validation. 575 pairs (85% gave successful amplification, of which, 464 (80.7% were polymorphic in six to 24 individuals from natural populations across Northern China. We also tested the transferability of the polymorphic eSSRs to nine other Populus species. In addition, to facilitate the use of these new eSSR markers by other researchers, we mapped them onto Populus trichocarpa scaffolds in silico and compiled our data into a web-based database (http://202.205.131.253:8080/poplar/resources/static_page/index.html. CONCLUSIONS: The large set of validated eSSRs identified in this work will have many potential applications in studies on P. euphratica and other poplar species, in fields such as population genetics, comparative genomics, linkage mapping, QTL, and marker-assisted breeding. Their use will be facilitated by their incorporation into a user-friendly web-based database.

  12. The characterization of a new set of EST-derived simple sequence repeat (SSR markers as a resource for the genetic analysis of Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    Borba Tereza CO

    2011-05-01

    Full Text Available Abstract Background Over recent years, a growing effort has been made to develop microsatellite markers for the genomic analysis of the common bean (Phaseolus vulgaris to broaden the knowledge of the molecular genetic basis of this species. The availability of large sets of expressed sequence tags (ESTs in public databases has given rise to an expedient approach for the identification of SSRs (Simple Sequence Repeats, specifically EST-derived SSRs. In the present work, a battery of new microsatellite markers was obtained from a search of the Phaseolus vulgaris EST database. The diversity, degree of transferability and polymorphism of these markers were tested. Results From 9,583 valid ESTs, 4,764 had microsatellite motifs, from which 377 were used to design primers, and 302 (80.11% showed good amplification quality. To analyze transferability, a group of 167 SSRs were tested, and the results showed that they were 82% transferable across at least one species. The highest amplification rates were observed between the species from the Phaseolus (63.7%, Vigna (25.9%, Glycine (19.8%, Medicago (10.2%, Dipterix (6% and Arachis (1.8% genera. The average PIC (Polymorphism Information Content varied from 0.53 for genomic SSRs to 0.47 for EST-SSRs, and the average number of alleles per locus was 4 and 3, respectively. Among the 315 newly tested SSRs in the BJ (BAT93 X Jalo EEP558 population, 24% (76 were polymorphic. The integration of these segregant loci into a framework map composed of 123 previously obtained SSR markers yielded a total of 199 segregant loci, of which 182 (91.5% were mapped to 14 linkage groups, resulting in a map length of 1,157 cM. Conclusions A total of 302 newly developed EST-SSR markers, showing good amplification quality, are available for the genetic analysis of Phaseolus vulgaris. These markers showed satisfactory rates of transferability, especially between species that have great economic and genomic values. Their diversity

  13. Pepper EST database: comprehensive in silico tool for analyzing the chili pepper (Capsicum annuum transcriptome

    Directory of Open Access Journals (Sweden)

    Kim Woo Taek

    2008-10-01

    Full Text Available Abstract Background There is no dedicated database available for Expressed Sequence Tags (EST of the chili pepper (Capsicum annuum, although the interest in a chili pepper EST database is increasing internationally due to the nutritional, economic, and pharmaceutical value of the plant. Recent advances in high-throughput sequencing of the ESTs of chili pepper cv. Bukang have produced hundreds of thousands of complementary DNA (cDNA sequences. Therefore, a chili pepper EST database was designed and constructed to enable comprehensive analysis of chili pepper gene expression in response to biotic and abiotic stresses. Results We built the Pepper EST database to mine the complexity of chili pepper ESTs. The database was built on 122,582 sequenced ESTs and 116,412 refined ESTs from 21 pepper EST libraries. The ESTs were clustered and assembled into virtual consensus cDNAs and the cDNAs were assigned to metabolic pathway, Gene Ontology (GO, and MIPS Functional Catalogue (FunCat. The Pepper EST database is designed to provide a workbench for (i identifying unigenes in pepper plants, (ii analyzing expression patterns in different developmental tissues and under conditions of stress, and (iii comparing the ESTs with those of other members of the Solanaceae family. The Pepper EST database is freely available at http://genepool.kribb.re.kr/pepper/. Conclusion The Pepper EST database is expected to provide a high-quality resource, which will contribute to gaining a systemic understanding of plant diseases and facilitate genetics-based population studies. The database is also expected to contribute to analysis of gene synteny as part of the chili pepper sequencing project by mapping ESTs to the genome.

  14. The Integrated Microbial Genomes (IMG) System: An Expanding Comparative Analysis Resource

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Anderson, Iain; Lykidis, Athanasios; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2009-09-13

    The integrated microbial genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG contains both draft and complete microbial genomes integrated with other publicly available genomes from all three domains of life, together with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. Since its first release in 2005, IMG's data content and analytical capabilities have been constantly expanded through regular releases. Several companion IMG systems have been set up in order to serve domain specific needs, such as expert review of genome annotations. IMG is available at .

  15. Genomics-based plant germplasm research (GPGR)

    Institute of Scientific and Technical Information of China (English)

    Jizeng Jia; Hongjie Li; Xueyong Zhang; Zichao Li; Lijuan Qiu

    2017-01-01

    Plant germplasm underpins much of crop genetic improvement. Millions of germplasm accessions have been collected and conserved ex situ and/or in situ, and the major challenge is now how to exploit and utilize this abundant resource. Genomics-based plant germplasm research (GPGR) or "Genoplasmics" is a novel cross-disciplinary research field that seeks to apply the principles and techniques of genomics to germplasm research. We describe in this paper the concept, strategy, and approach behind GPGR, and summarize current progress in the areas of the definition and construction of core collections, enhancement of germplasm with core collections, and gene discovery from core collections. GPGR is opening a new era in germplasm research. The contribution, progress and achievements of GPGR in the future are predicted.

  16. Developing genomic knowledge bases and databases to support clinical management: current perspectives.

    Science.gov (United States)

    Huser, Vojtech; Sincan, Murat; Cimino, James J

    2014-01-01

    Personalized medicine, the ability to tailor diagnostic and treatment decisions for individual patients, is seen as the evolution of modern medicine. We characterize here the informatics resources available today or envisioned in the near future that can support clinical interpretation of genomic test results. We assume a clinical sequencing scenario (germline whole-exome sequencing) in which a clinical specialist, such as an endocrinologist, needs to tailor patient management decisions within his or her specialty (targeted findings) but relies on a genetic counselor to interpret off-target incidental findings. We characterize the genomic input data and list various types of knowledge bases that provide genomic knowledge for generating clinical decision support. We highlight the need for patient-level databases with detailed lifelong phenotype content in addition to genotype data and provide a list of recommendations for personalized medicine knowledge bases and databases. We conclude that no single knowledge base can currently support all aspects of personalized recommendations and that consolidation of several current resources into larger, more dynamic and collaborative knowledge bases may offer a future path forward.

  17. Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine

    Science.gov (United States)

    Craig S Echt; Surya Saha; Dennis L Deemer; C Dana Nelson

    2011-01-01

    Genomic DNA sequence databases are a potential and growing resource for simple sequence repeat (SSR) marker development in loblolly pine (Pinus taeda L.). Loblolly pine also has many expressed sequence tags (ESTs) available for microsatellite (SSR) marker development. We compared loblolly pine SSR densities in genome survey sequences (GSSs) to those in non-redundant...

  18. Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives.

    Science.gov (United States)

    Wang, Chao; Shi, Xue; Liu, Lin; Li, Haiyan; Ammiraju, Jetty S S; Kudrna, David A; Xiong, Wentao; Wang, Hao; Dai, Zhaozhao; Zheng, Yonglian; Lai, Jinsheng; Jin, Weiwei; Messing, Joachim; Bennetzen, Jeffrey L; Wing, Rod A; Luo, Meizhong

    2013-11-01

    Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.

  19. GPSR: A Resource for Genomics Proteomics and Systems Biology

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. GPSR: A Resource for Genomics Proteomics and Systems Biology. Small programs as building unit. Why PERL? Why not BioPerl? Why not PERL modules? Advantage of independent programs. Language independent; Can be run independently.

  20. EST-PAC a web package for EST annotation and protein sequence prediction

    Directory of Open Access Journals (Sweden)

    Strahm Yvan

    2006-10-01

    Full Text Available Abstract With the decreasing cost of DNA sequencing technology and the vast diversity of biological resources, researchers increasingly face the basic challenge of annotating a larger number of expressed sequences tags (EST from a variety of species. This typically consists of a series of repetitive tasks, which should be automated and easy to use. The results of these annotation tasks need to be stored and organized in a consistent way. All these operations should be self-installing, platform independent, easy to customize and amenable to using distributed bioinformatics resources available on the Internet. In order to address these issues, we present EST-PAC a web oriented multi-platform software package for expressed sequences tag (EST annotation. EST-PAC provides a solution for the administration of EST and protein sequence annotations accessible through a web interface. Three aspects of EST annotation are automated: 1 searching local or remote biological databases for sequence similarities using Blast services, 2 predicting protein coding sequence from EST data and, 3 annotating predicted protein sequences with functional domain predictions. In practice, EST-PAC integrates the BLASTALL suite, EST-Scan2 and HMMER in a relational database system accessible through a simple web interface. EST-PAC also takes advantage of the relational database to allow consistent storage, powerful queries of results and, management of the annotation process. The system allows users to customize annotation strategies and provides an open-source data-management environment for research and education in bioinformatics.

  1. Genomic-based-breeding tools for tropical maize improvement.

    Science.gov (United States)

    Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar

    2017-12-01

    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in

  2. GenoBase: comprehensive resource database of Escherichia coli K-12.

    Science.gov (United States)

    Otsuka, Yuta; Muto, Ai; Takeuchi, Rikiya; Okada, Chihiro; Ishikawa, Motokazu; Nakamura, Koichiro; Yamamoto, Natsuko; Dose, Hitomi; Nakahigashi, Kenji; Tanishima, Shigeki; Suharnan, Sivasundaram; Nomura, Wataru; Nakayashiki, Toru; Aref, Walid G; Bochner, Barry R; Conway, Tyrrell; Gribskov, Michael; Kihara, Daisuke; Rudd, Kenneth E; Tohsato, Yukako; Wanner, Barry L; Mori, Hirotada

    2015-01-01

    Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12. We have made these experimental resources freely available to the academic community worldwide. Accordingly, these resources have now been used in numerous investigations of a multitude of cell processes. Quality control is extremely important for evaluating results generated by these resources. Because the annotation has been changed since 2005, which we originally used for the construction, we have updated these genomic resources accordingly. Here, we describe GenoBase (http://ecoli.naist.jp/GB/), which contains key information about comprehensive experimental resources of E. coli K-12, their quality control and several omics data sets generated using these resources. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Genome-wide analysis of immune system genes by EST profiling

    Science.gov (United States)

    Giallourakis, Cosmas; Benita, Yair; Molinie, Benoit; Cao, Zhifang; Despo, Orion; Pratt, Henry E.; Zukerberg, Lawrence R.; Daly, Mark J.; Rioux, John D.; Xavier, Ramnik J.

    2013-01-01

    Profiling studies of mRNA and miRNA, particularly microarray-based studies, have been extensively used to create compendia of genes that are preferentially expressed in the immune system. In some instances, functional studies have been subsequently pursued. Recent efforts such as ENCODE have demonstrated the benefit of coupling RNA-Seq analysis with information from expressed sequence tags (ESTs) for transcriptomic analysis. However, the full characterization and identification of transcripts that function as modulators of human immune responses remains incomplete. In this study, we demonstrate that an integrated analysis of human ESTs provides a robust platform to identify the immune transcriptome. Beyond recovering a reference set of immune-enriched genes and providing large-scale cross-validation of previous microarray studies, we discovered hundreds of novel genes preferentially expressed in the immune system, including non-coding RNAs. As a result, we have established the Immunogene database, representing an integrated EST “road map” of gene expression in human immune cells, which can be used to further investigate the function of coding and non-coding genes in the immune system. Using this approach, we have uncovered a unique metabolic gene signature of human macrophages and identified PRDM15 as a novel overexpressed gene in human lymphomas. Thus we demonstrate the utility of EST profiling as a basis for further deconstruction of physiologic and pathologic immune processes. PMID:23616578

  4. Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, Wayne [Murdoch University

    2013-03-01

    Wayne Reeve of Murdoch University on "Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  5. Comparative expression profiling in grape (Vitis vinifera berries derived from frequency analysis of ESTs and MPSS signatures

    Directory of Open Access Journals (Sweden)

    Cook Douglas R

    2008-05-01

    Full Text Available Abstract Background Vitis vinifera (V. vinifera is the primary grape species cultivated for wine production, with an industry valued annually in the billions of dollars worldwide. In order to sustain and increase grape production, it is necessary to understand the genetic makeup of grape species. Here we performed mRNA profiling using Massively Parallel Signature Sequencing (MPSS and combined it with available Expressed Sequence Tag (EST data. These tag-based technologies, which do not require a priori knowledge of genomic sequence, are well-suited for transcriptional profiling. The sequence depth of MPSS allowed us to capture and quantify almost all the transcripts at a specific stage in the development of the grape berry. Results The number and relative abundance of transcripts from stage II grape berries was defined using Massively Parallel Signature Sequencing (MPSS. A total of 2,635,293 17-base and 2,259,286 20-base signatures were obtained, representing at least 30,737 and 26,878 distinct sequences. The average normalized abundance per signature was ~49 TPM (Transcripts Per Million. Comparisons of the MPSS signatures with available Vitis species' ESTs and a unigene set demonstrated that 6,430 distinct contigs and 2,190 singletons have a perfect match to at least one MPSS signature. Among the matched sequences, ESTs were identified from tissues other than berries or from berries at different developmental stages. Additional MPSS signatures not matching to known grape ESTs can extend our knowledge of the V. vinifera transcriptome, particularly when these data are used to assist in annotation of whole genome sequences from Vitis vinifera. Conclusion The MPSS data presented here not only achieved a higher level of saturation than previous EST based analyses, but in doing so, expand the known set of transcripts of grape berries during the unique stage in development that immediately precedes the onset of ripening. The MPSS dataset also revealed

  6. GPSR: A Resource for Genomics Proteomics and Systems Biology

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. GPSR: A Resource for Genomics Proteomics and Systems Biology. A journey from simple computer programs to drug/vaccine informatics. Limitations of existing web services. History repeats (Web to Standalone); Graphics vs command mode. General purpose ...

  7. A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs

    Science.gov (United States)

    2012-01-01

    Background The Nile tilapia (Oreochromis niloticus) is the second most farmed fish species worldwide. It is also an important model for studies of fish physiology, particularly because of its broad tolerance to an array of environments. It is a good model to study evolutionary mechanisms in vertebrates, because of its close relationship to haplochromine cichlids, which have undergone rapid speciation in East Africa. The existing genomic resources for Nile tilapia include a genetic map, BAC end sequences and ESTs, but comparative genome analysis and maps of quantitative trait loci (QTL) are still limited. Results We have constructed a high-resolution radiation hybrid (RH) panel for the Nile tilapia and genotyped 1358 markers consisting of 850 genes, 82 markers corresponding to BAC end sequences, 154 microsatellites and 272 single nucleotide polymorphisms (SNPs). From these, 1296 markers could be associated in 81 RH groups, while 62 were not linked. The total size of the RH map is 34,084 cR3500 and 937,310 kb. It covers 88% of the entire genome with an estimated inter-marker distance of 742 Kb. Mapping of microsatellites enabled integration to the genetic map. We have merged LG8 and LG24 into a single linkage group, and confirmed that LG16-LG21 are also merged. The orientation and association of RH groups to each chromosome and LG was confirmed by chromosomal in situ hybridizations (FISH) of 55 BACs. Fifty RH groups were localized on the 22 chromosomes while 31 remained small orphan groups. Synteny relationships were determined between Nile tilapia, stickleback, medaka and pufferfish. Conclusion The RH map and associated FISH map provide a valuable gene-ordered resource for gene mapping and QTL studies. All genetic linkage groups with their corresponding RH groups now have a corresponding chromosome which can be identified in the karyotype. Placement of conserved segments indicated that multiple inter-chromosomal rearrangements have occurred between Nile tilapia

  8. A novel genome-wide microsatellite resource for species of Eucalyptus with linkage-to-physical correspondence on the reference genome sequence.

    Science.gov (United States)

    Grattapaglia, Dario; Mamani, Eva M C; Silva-Junior, Orzenil B; Faria, Danielle A

    2015-03-01

    Keystone species in their native ranges, eucalypts, are ecologically and genetically very diverse, growing naturally along extensive latitudinal and altitudinal ranges and variable environments. Besides their ecological importance, eucalypts are also the most widely planted trees for sustainable forestry in the world. We report the development of a novel collection of 535 microsatellites for species of Eucalyptus, 494 designed from ESTs and 41 from genomic libraries. A selected subset of 223 was evaluated for individual identification, parentage testing, and ancestral information content in the two most extensively studied species, Eucalyptus grandis and Eucalyptus globulus. Microsatellites showed high transferability and overlapping allele size range, suggesting they have arisen still in their common ancestor and confirming the extensive genome conservation between these two species. A consensus linkage map with 437 microsatellites, the most comprehensive microsatellite-only genetic map for Eucalyptus, was built by assembling segregation data from three mapping populations and anchored to the Eucalyptus genome. An overall colinearity between recombination-based and physical positioning of 84% of the mapped microsatellites was observed, with some ordering discrepancies and sporadic locus duplications, consistent with the recently described whole genome duplication events in Eucalyptus. The linkage map covered 95.2% of the 605.8-Mbp assembled genome sequence, placing one microsatellite every 1.55 Mbp on average, and an overall estimate of physical to recombination distance of 618 kbp/cM. The genetic parameters estimates together with linkage and physical position data for this large set of microsatellites should assist marker choice for genome-wide population genetics and comparative mapping in Eucalyptus. © 2014 John Wiley & Sons Ltd.

  9. A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing.

    Science.gov (United States)

    Pereira-Leal, José B; Abreu, Isabel A; Alabaça, Cláudia S; Almeida, Maria Helena; Almeida, Paulo; Almeida, Tânia; Amorim, Maria Isabel; Araújo, Susana; Azevedo, Herlânder; Badia, Aleix; Batista, Dora; Bohn, Andreas; Capote, Tiago; Carrasquinho, Isabel; Chaves, Inês; Coelho, Ana Cristina; Costa, Maria Manuela Ribeiro; Costa, Rita; Cravador, Alfredo; Egas, Conceição; Faro, Carlos; Fortes, Ana M; Fortunato, Ana S; Gaspar, Maria João; Gonçalves, Sónia; Graça, José; Horta, Marília; Inácio, Vera; Leitão, José M; Lino-Neto, Teresa; Marum, Liliana; Matos, José; Mendonça, Diogo; Miguel, Andreia; Miguel, Célia M; Morais-Cecílio, Leonor; Neves, Isabel; Nóbrega, Filomena; Oliveira, Maria Margarida; Oliveira, Rute; Pais, Maria Salomé; Paiva, Jorge A; Paulo, Octávio S; Pinheiro, Miguel; Raimundo, João A P; Ramalho, José C; Ribeiro, Ana I; Ribeiro, Teresa; Rocheta, Margarida; Rodrigues, Ana Isabel; Rodrigues, José C; Saibo, Nelson J M; Santo, Tatiana E; Santos, Ana Margarida; Sá-Pereira, Paula; Sebastiana, Mónica; Simões, Fernanda; Sobral, Rómulo S; Tavares, Rui; Teixeira, Rita; Varela, Carolina; Veloso, Maria Manuela; Ricardo, Cândido P P

    2014-05-15

    Cork oak (Quercus suber) is one of the rare trees with the ability to produce cork, a material widely used to make wine bottle stoppers, flooring and insulation materials, among many other uses. The molecular mechanisms of cork formation are still poorly understood, in great part due to the difficulty in studying a species with a long life-cycle and for which there is scarce molecular/genomic information. Cork oak forests are of great ecological importance and represent a major economic and social resource in Southern Europe and Northern Africa. However, global warming is threatening the cork oak forests by imposing thermal, hydric and many types of novel biotic stresses. Despite the economic and social value of the Q. suber species, few genomic resources have been developed, useful for biotechnological applications and improved forest management. We generated in excess of 7 million sequence reads, by pyrosequencing 21 normalized cDNA libraries derived from multiple Q. suber tissues and organs, developmental stages and physiological conditions. We deployed a stringent sequence processing and assembly pipeline that resulted in the identification of ~159,000 unigenes. These were annotated according to their similarity to known plant genes, to known Interpro domains, GO classes and E.C. numbers. The phylogenetic extent of this ESTs set was investigated, and we found that cork oak revealed a significant new gene space that is not covered by other model species or EST sequencing projects. The raw data, as well as the full annotated assembly, are now available to the community in a dedicated web portal at http://www.corkoakdb.org. This genomic resource represents the first trancriptome study in a cork producing species. It can be explored to develop new tools and approaches to understand stress responses and developmental processes in forest trees, as well as the molecular cascades underlying cork differentiation and disease response.

  10. The Switchgrass Genome: Tools and Strategies

    Directory of Open Access Journals (Sweden)

    Michael D. Casler

    2011-11-01

    Full Text Available Switchgrass ( L. is a perennial grass species receiving significant focus as a potential bioenergy crop. In the last 5 yr the switchgrass research community has produced a genetic linkage map, an expressed sequence tag (EST database, a set of single nucleotide polymorphism (SNP markers that are distributed across the 18 linkage groups, 4x sampling of the AP13 genome in 400-bp reads, and bacterial artificial chromosome (BAC libraries containing over 200,000 clones. These studies have revealed close collinearity of the switchgrass genome with those of sorghum [ (L. Moench], rice ( L., and (L. P. Beauv. Switchgrass researchers have also developed several microarray technologies for gene expression studies. Switchgrass genomic resources will accelerate the ability of plant breeders to enhance productivity, pest resistance, and nutritional quality. Because switchgrass is a relative newcomer to the genomics world, many secrets of the switchgrass genome have yet to be revealed. To continue to efficiently explore basic and applied topics in switchgrass, it will be critical to capture and exploit the knowledge of plant geneticists and breeders on the next logical steps in the development and utilization of genomic resources for this species. To this end, the community has established a switchgrass genomics executive committee and work group ( [verified 28 Oct. 2011].

  11. Prospects and Challenges for the Conservation of Farm Animal Genomic Resources, 2015-2025

    Directory of Open Access Journals (Sweden)

    Michael William Bruford

    2015-10-01

    Full Text Available Livestock conservation practice is changing rapidly in light of policy, climate change and market demands. The last decade saw a step change in technological and analytical approaches to define, manage and conserve Farm Animal Genomic Resources (FAnGR. These changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and the methodologies needed to exploit new, multidimensional data. The ESF Genomic Resources program final conference addressed these problems attempting to contribute to the development of the research and policy agenda for the next decade. We broadly identified four areas related to methodological and analytical challenges, data management and conservation. The overall conclusion is that there is a need for the use of current state-of-the-art tools to characterise the state of genomic resources in non-commercial and local breeds. The livestock genomic sector, which has been relatively well-organised in applying such methodologies so far, needs to make a concerted effort in the coming decade to enable to the democratisation of the powerful tools that are now at its disposal, and to ensure that they are applied in the context of breed conservation as well as development.

  12. Genome resources for climate-resilient cowpea, an essential crop for food security.

    Science.gov (United States)

    Muñoz-Amatriaín, María; Mirebrahim, Hamid; Xu, Pei; Wanamaker, Steve I; Luo, MingCheng; Alhakami, Hind; Alpert, Matthew; Atokple, Ibrahim; Batieno, Benoit J; Boukar, Ousmane; Bozdag, Serdar; Cisse, Ndiaga; Drabo, Issa; Ehlers, Jeffrey D; Farmer, Andrew; Fatokun, Christian; Gu, Yong Q; Guo, Yi-Ning; Huynh, Bao-Lam; Jackson, Scott A; Kusi, Francis; Lawley, Cynthia T; Lucas, Mitchell R; Ma, Yaqin; Timko, Michael P; Wu, Jiajie; You, Frank; Barkley, Noelle A; Roberts, Philip A; Lonardi, Stefano; Close, Timothy J

    2017-03-01

    Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought-prone climates, and a primary source of protein in sub-Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K-499-35 include a whole-genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi-parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited-input small-holder farming and climate stress. © 2016 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  13. Xylella fastidiosa comparative genomic database is an information resource to explore the annotation, genomic features, and biology of different strains

    Directory of Open Access Journals (Sweden)

    Alessandro M. Varani

    2012-01-01

    Full Text Available The Xylella fastidiosa comparative genomic database is a scientific resource with the aim to provide a user-friendly interface for accessing high-quality manually curated genomic annotation and comparative sequence analysis, as well as for identifying and mapping prophage-like elements, a marked feature of Xylella genomes. Here we describe a database and tools for exploring the biology of this important plant pathogen. The hallmarks of this database are the high quality genomic annotation, the functional and comparative genomic analysis and the identification and mapping of prophage-like elements. It is available from web site http://www.xylella.lncc.br.

  14. phiGENOME: an integrative navigation throughout bacteriophage genomes.

    Science.gov (United States)

    Stano, Matej; Klucar, Lubos

    2011-11-01

    phiGENOME is a web-based genome browser generating dynamic and interactive graphical representation of phage genomes stored in the phiSITE, database of gene regulation in bacteriophages. phiGENOME is an integral part of the phiSITE web portal (http://www.phisite.org/phigenome) and it was optimised for visualisation of phage genomes with the emphasis on the gene regulatory elements. phiGENOME consists of three components: (i) genome map viewer built using Adobe Flash technology, providing dynamic and interactive graphical display of phage genomes; (ii) sequence browser based on precisely formatted HTML tags, providing detailed exploration of genome features on the sequence level and (iii) regulation illustrator, based on Scalable Vector Graphics (SVG) and designed for graphical representation of gene regulations. Bringing 542 complete genome sequences accompanied with their rich annotations and references, makes phiGENOME a unique information resource in the field of phage genomics. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. GPSR: A Resource for Genomics Proteomics and Systems Biology

    Indian Academy of Sciences (India)

    GPSR: A Resource for Genomics Proteomics and Systems Biology · Simple Calculation Programs for Biology Immunological Methods · Simple Calculation Programs for Biology Methods in Molecular Biology · Simple Calculation Programs for Biology Other Methods · PowerPoint Presentation · Slide 6 · Slide 7 · Prediction of ...

  16. Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae)

    Science.gov (United States)

    da Silva, Rangeline Azevedo; Souza, Gustavo; Lemos, Lívia Santos Lima; Lopes, Uilson Vanderlei; Patrocínio, Nara Geórgia Ribeiro Braz; Alves, Rafael Moysés; Marcellino, Lucília Helena; Clement, Didier; Micheli, Fabienne

    2017-01-01

    The genus Theobroma comprises several trees species native to the Amazon. Theobroma cacao L. plays a key economic role mainly in the chocolate industry. Both cultivated and wild forms are described within the genus. Variations in genome size and chromosome number have been used for prediction purposes including the frequency of interspecific hybridization or inference about evolutionary relationships. In this study, the nuclear DNA content, karyotype and genetic diversity using functional microsatellites (EST-SSR) of seven Theobroma species were characterized. The nuclear content of DNA for all analyzed Theobroma species was 1C = ~ 0.46 pg. These species presented 2n = 20 with small chromosomes and only one pair of terminal heterochromatic bands positively stained (CMA+/DAPI− bands). The small size of Theobroma ssp. genomes was equivalent to other Byttnerioideae species, suggesting that the basal lineage of Malvaceae have smaller genomes and that there was an expansion of 2C values in the more specialized family clades. A set of 20 EST-SSR primers were characterized for related species of Theobroma, in which 12 loci were polymorphic. The polymorphism information content (PIC) ranged from 0.23 to 0.65, indicating a high level of information per locus. Combined results of flow cytometry, cytogenetic data and EST-SSRs markers will contribute to better describe the species and infer about the evolutionary relationships among Theobroma species. In addition, the importance of a core collection for conservation purposes is highlighted. PMID:28187131

  17. Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae.

    Directory of Open Access Journals (Sweden)

    Rangeline Azevedo da Silva

    Full Text Available The genus Theobroma comprises several trees species native to the Amazon. Theobroma cacao L. plays a key economic role mainly in the chocolate industry. Both cultivated and wild forms are described within the genus. Variations in genome size and chromosome number have been used for prediction purposes including the frequency of interspecific hybridization or inference about evolutionary relationships. In this study, the nuclear DNA content, karyotype and genetic diversity using functional microsatellites (EST-SSR of seven Theobroma species were characterized. The nuclear content of DNA for all analyzed Theobroma species was 1C = ~ 0.46 pg. These species presented 2n = 20 with small chromosomes and only one pair of terminal heterochromatic bands positively stained (CMA+/DAPI- bands. The small size of Theobroma ssp. genomes was equivalent to other Byttnerioideae species, suggesting that the basal lineage of Malvaceae have smaller genomes and that there was an expansion of 2C values in the more specialized family clades. A set of 20 EST-SSR primers were characterized for related species of Theobroma, in which 12 loci were polymorphic. The polymorphism information content (PIC ranged from 0.23 to 0.65, indicating a high level of information per locus. Combined results of flow cytometry, cytogenetic data and EST-SSRs markers will contribute to better describe the species and infer about the evolutionary relationships among Theobroma species. In addition, the importance of a core collection for conservation purposes is highlighted.

  18. HpBase: A genome database of a sea urchin, Hemicentrotus pulcherrimus.

    Science.gov (United States)

    Kinjo, Sonoko; Kiyomoto, Masato; Yamamoto, Takashi; Ikeo, Kazuho; Yaguchi, Shunsuke

    2018-04-01

    To understand the mystery of life, it is important to accumulate genomic information for various organisms because the whole genome encodes the commands for all the genes. Since the genome of Strongylocentrotus purpratus was sequenced in 2006 as the first sequenced genome in echinoderms, the genomic resources of other North American sea urchins have gradually been accumulated, but no sea urchin genomes are available in other areas, where many scientists have used the local species and reported important results. In this manuscript, we report a draft genome of the sea urchin Hemincentrotus pulcherrimus because this species has a long history as the target of developmental and cell biology in East Asia. The genome of H. pulcherrimus was assembled into 16,251 scaffold sequences with an N50 length of 143 kbp, and approximately 25,000 genes were identified in the genome. The size of the genome and the sequencing coverage were estimated to be approximately 800 Mbp and 100×, respectively. To provide these data and information of annotation, we constructed a database, HpBase (http://cell-innovation.nig.ac.jp/Hpul/). In HpBase, gene searches, genome browsing, and blast searches are available. In addition, HpBase includes the "recipes" for experiments from each lab using H. pulcherrimus. These recipes will continue to be updated according to the circumstances of individual scientists and can be powerful tools for experimental biologists and for the community. HpBase is a suitable dataset for evolutionary, developmental, and cell biologists to compare H. pulcherrimus genomic information with that of other species and to isolate gene information. © 2018 Japanese Society of Developmental Biologists.

  19. MSeqDR: A Centralized Knowledge Repository and Bioinformatics Web Resource to Facilitate Genomic Investigations in Mitochondrial Disease

    NARCIS (Netherlands)

    L. Shen (Lishuang); M.A. Diroma (Maria Angela); M. Gonzalez (Michael); D. Navarro-Gomez (Daniel); J. Leipzig (Jeremy); M.T. Lott (Marie T.); M. van Oven (Mannis); D.C. Wallace; C.C. Muraresku (Colleen Clarke); Z. Zolkipli-Cunningham (Zarazuela); P.F. Chinnery (Patrick); M. Attimonelli (Marcella); S. Zuchner (Stephan); M.J. Falk (Marni J.); X. Gai (Xiaowu)

    2016-01-01

    textabstractMSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes,

  20. Generation of a BAC-based physical map of the melon genome

    Directory of Open Access Journals (Sweden)

    Puigdomènech Pere

    2010-05-01

    Full Text Available Abstract Background Cucumis melo (melon belongs to the Cucurbitaceae family, whose economic importance among horticulture crops is second only to Solanaceae. Melon has high intra-specific genetic variation, morphologic diversity and a small genome size (450 Mb, which make this species suitable for a great variety of molecular and genetic studies that can lead to the development of tools for breeding varieties of the species. A number of genetic and genomic resources have already been developed, such as several genetic maps and BAC genomic libraries. These tools are essential for the construction of a physical map, a valuable resource for map-based cloning, comparative genomics and assembly of whole genome sequencing data. However, no physical map of any Cucurbitaceae has yet been developed. A project has recently been started to sequence the complete melon genome following a whole-genome shotgun strategy, which makes use of massive sequencing data. A BAC-based melon physical map will be a useful tool to help assemble and refine the draft genome data that is being produced. Results A melon physical map was constructed using a 5.7 × BAC library and a genetic map previously developed in our laboratories. High-information-content fingerprinting (HICF was carried out on 23,040 BAC clones, digesting with five restriction enzymes and SNaPshot labeling, followed by contig assembly with FPC software. The physical map has 1,355 contigs and 441 singletons, with an estimated physical length of 407 Mb (0.9 × coverage of the genome and the longest contig being 3.2 Mb. The anchoring of 845 BAC clones to 178 genetic markers (100 RFLPs, 76 SNPs and 2 SSRs also allowed the genetic positioning of 183 physical map contigs/singletons, representing 55 Mb (12% of the melon genome, to individual chromosomal loci. The melon FPC database is available for download at http://melonomics.upv.es/static/files/public/physical_map/. Conclusions Here we report the construction

  1. Analysis Of Segmental Duplications In The Pig Genome Based On Next-Generation Sequencing

    DEFF Research Database (Denmark)

    Fadista, João; Bendixen, Christian

    Segmental duplications are >1kb segments of duplicated DNA present in a genome with high sequence identity (>90%). They are associated with genomic rearrangements and provide a significant source of gene and genome evolution within mammalian genomes. Although segmental duplications have been...... extensively studied in other organisms, its analysis in pig has been hampered by the lack of a complete pig genome assembly. By measuring the depth of coverage of Illumina whole-genome shotgun sequencing reads of the Tabasco animal aligned to the latest pig genome assembly (Sus scrofa 10 – based also...... and their associated copy number alterations, focusing on the global organization of these segments and their possible functional significance in porcine phenotypes. This work provides insights into mammalian genome evolution and generates a valuable resource for porcine genomics research...

  2. MSeqDR: A Centralized Knowledge Repository and Bioinformatics Web Resource to Facilitate Genomic Investigations in Mitochondrial Disease

    OpenAIRE

    Shen, Lishuang; Diroma, Maria Angela; Gonzalez, Michael; Navarro-Gomez, Daniel; Leipzig, Jeremy; Lott, Marie T.; Oven, Mannis; Wallace, D.C.; Muraresku, Colleen Clarke; Zolkipli-Cunningham, Zarazuela; Chinnery, Patrick; Attimonelli, Marcella; Zuchner, Stephan; Falk, Marni J.; Gai, Xiaowu

    2016-01-01

    textabstractMSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes, genes, and variants. A central Web portal (https://mseqdr.org) integrates community knowledge from expert-curated databases with genomic and phenotype data shared by clinicians and researchers. MSeqDR ...

  3. Updates to the Cool Season Food Legume Genome Database: Resources for pea, lentil, faba bean and chickpea genetics, genomics and breeding

    Science.gov (United States)

    The Cool Season Food Legume Genome database (CSFL, www.coolseasonfoodlegume.org) is an online resource for genomics, genetics, and breeding research for chickpea, lentil,pea, and faba bean. The user-friendly and curated website allows for all publicly available map,marker,trait, gene,transcript, ger...

  4. Use of Genomic Databases for Inquiry-Based Learning about Influenza

    Science.gov (United States)

    Ledley, Fred; Ndung'u, Eric

    2011-01-01

    The genome projects of the past decades have created extensive databases of biological information with applications in both research and education. We describe an inquiry-based exercise that uses one such database, the National Center for Biotechnology Information Influenza Virus Resource, to advance learning about influenza. This database…

  5. Genomic resources in mungbean for future breeding programs

    Directory of Open Access Journals (Sweden)

    Sue K Kim

    2015-08-01

    Full Text Available Among the legume family, mungbean (Vigna radiata has become one of the important crops in Asia, showing a steady increase in global production. It provides a good source of protein and contains most notably folate and iron. Beyond the nutritional value of mungbean, certain features make it a well-suited model organism among legume plants because of its small genome size, short life-cycle, self-pollinating, and close genetic relationship to other legumes. In the past, there have been several efforts to develop molecular markers and linkage maps associated with agronomic traits for the genetic improvement of mungbean and, ultimately, breeding for cultivar development to increase the average yields of mungbean. The recent release of a reference genome of the cultivated mungbean (V. radiata var. radiata VC1973A and an additional de novo sequencing of a wild relative mungbean (V. radiata var. sublobata has provided a framework for mungbean genetic and genome research, that can further be used for genome-wide association and functional studies to identify genes related to specific agronomic traits. Moreover, the diverse gene pool of wild mungbean comprises valuable genetic resources of beneficial genes that may be helpful in widening the genetic diversity of cultivated mungbean. This review paper covers the research progress on molecular and genomics approaches and the current status of breeding programs that have developed to move toward the ultimate goal of mungbean improvement.

  6. [EST-SSR identification, markers development of Ligusticum chuanxiong based on Ligusticum chuanxiong transcriptome sequences].

    Science.gov (United States)

    Yuan, Can; Peng, Fang; Yang, Ze-Mao; Zhong, Wen-Juan; Mou, Fang-Sheng; Gong, Yi-Yun; Ji, Pei-Cheng; Pu, De-Qiang; Huang, Hai-Yan; Yang, Xiao; Zhang, Chao

    2017-09-01

    Ligusticum chuanxiong is a well-known traditional Chinese medicine plant. The study on its molecular markers development and germplasm resources is very important. In this study, we obtained 24 422 unigenes by assembling transcriptome sequencing reads of L. chuanxiong root. EST-SSR was detected and 4 073 SSR loci were identified. EST-SSR distribution and characteristic analysis results showed that the mono-nucleotide repeats were the main repeat types, accounting for 41.0%. In addition, the sequences containing SSR were functionally annotated in Gene Ontology (GO) and KEGG pathway and were assigned to 49 GO categories, 242 KEGG pathways, among them 2 201 sequences were annotated against Nr database. By validating 235 EST-SSRs,74 primer pairs were ultimately proved to have high quality amplification. Subsequently, genetic diversity analysis, UPGMA cluster analysis, PCoA analysis and population structure analysis of 34 L. chuanxiong germplasm resources were carried out with 74 primer pairs. In both UPGMA tree and PCoA results, L. chuanxiong resources were clustered into two groups, which are believed to be partial related to their geographical distribution. In this study, EST-SSRs in L. chuanxiong was firstly identified, and newly developed molecular markers would contribute significantly to further genetic diversity study, the purity detection, gene mapping, and molecular breeding. Copyright© by the Chinese Pharmaceutical Association.

  7. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse.

    Science.gov (United States)

    Eppig, Janan T

    2017-07-01

    The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. © The Author 2017. Published by Oxford University Press.

  8. Creation of BAC genomic resources for cocoa ( Theobroma cacao L.) for physical mapping of RGA containing BAC clones.

    Science.gov (United States)

    Clément, D; Lanaud, C; Sabau, X; Fouet, O; Le Cunff, L; Ruiz, E; Risterucci, A M; Glaszmann, J C; Piffanelli, P

    2004-05-01

    We have constructed and validated the first cocoa ( Theobroma cacao L.) BAC library, with the aim of developing molecular resources to study the structure and evolution of the genome of this perennial crop. This library contains 36,864 clones with an average insert size of 120 kb, representing approximately ten haploid genome equivalents. It was constructed from the genotype Scavina-6 (Sca-6), a Forastero clone highly resistant to cocoa pathogens and a parent of existing mapping populations. Validation of the BAC library was carried out with a set of 13 genetically-anchored single copy and one duplicated markers. An average of nine BAC clones per probe was identified, giving an initial experimental estimation of the genome coverage represented in the library. Screening of the library with a set of resistance gene analogues (RGAs), previously mapped in cocoa and co-localizing with QTL for resistance to Phytophthora traits, confirmed at the physical level the tight clustering of RGAs in the cocoa genome and provided the first insights into the relationships between genetic and physical distances in the cocoa genome. This library represents an available BAC resource for structural genomic studies or map-based cloning of genes corresponding to important QTLs for agronomic traits such as resistance genes to major cocoa pathogens like Phytophthora spp ( palmivora and megakarya), Crinipellis perniciosa and Moniliophthora roreri.

  9. Human Ageing Genomic Resources: new and updated databases

    Science.gov (United States)

    Tacutu, Robi; Thornton, Daniel; Johnson, Emily; Budovsky, Arie; Barardo, Diogo; Craig, Thomas; Diana, Eugene; Lehmann, Gilad; Toren, Dmitri; Wang, Jingwei; Fraifeld, Vadim E

    2018-01-01

    Abstract In spite of a growing body of research and data, human ageing remains a poorly understood process. Over 10 years ago we developed the Human Ageing Genomic Resources (HAGR), a collection of databases and tools for studying the biology and genetics of ageing. Here, we present HAGR’s main functionalities, highlighting new additions and improvements. HAGR consists of six core databases: (i) the GenAge database of ageing-related genes, in turn composed of a dataset of >300 human ageing-related genes and a dataset with >2000 genes associated with ageing or longevity in model organisms; (ii) the AnAge database of animal ageing and longevity, featuring >4000 species; (iii) the GenDR database with >200 genes associated with the life-extending effects of dietary restriction; (iv) the LongevityMap database of human genetic association studies of longevity with >500 entries; (v) the DrugAge database with >400 ageing or longevity-associated drugs or compounds; (vi) the CellAge database with >200 genes associated with cell senescence. All our databases are manually curated by experts and regularly updated to ensure a high quality data. Cross-links across our databases and to external resources help researchers locate and integrate relevant information. HAGR is freely available online (http://genomics.senescence.info/). PMID:29121237

  10. Enriching Genomic Resources and Transcriptional Profile Analysis of Miscanthus sinensis under Drought Stress Based on RNA Sequencing

    Directory of Open Access Journals (Sweden)

    Gang Nie

    2017-01-01

    Full Text Available Miscanthus × giganteus is wildly cultivated as a potential biofuel feedstock around the world; however, the narrow genetic basis and sterile characteristics have become a limitation for its utilization. As a progenitor of M. × giganteus, M. sinensis is widely distributed around East Asia providing well abiotic stress tolerance. To enrich the M. sinensis genomic databases and resources, we sequenced and annotated the transcriptome of M. sinensis by using an Illumina HiSeq 2000 platform. Approximately 316 million high-quality trimmed reads were generated from 349 million raw reads, and a total of 114,747 unigenes were obtained after de novo assembly. Furthermore, 95,897 (83.57% unigenes were annotated to at least one database including NR, Swiss-Prot, KEGG, COG, GO, and NT, supporting that the sequences obtained were annotated properly. Differentially expressed gene analysis indicates that drought stress 15 days could be a critical period for M. sinensis response to drought stress. The high-throughput transcriptome sequencing of M. sinensis under drought stress has greatly enriched the current genomic available resources. The comparison of DEGs under different periods of drought stress identified a wealth of candidate genes involved in drought tolerance regulatory networks, which will facilitate further genetic improvement and molecular studies of the M. sinensis.

  11. A BAC-based physical map of the Drosophila buzzatii genome

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Josefa; Nefedov, Michael; Bosdet, Ian; Casals, Ferran; Calvete, Oriol; Delprat, Alejandra; Shin, Heesun; Chiu, Readman; Mathewson, Carrie; Wye, Natasja; Hoskins, Roger A.; Schein, JacquelineE.; de Jong, Pieter; Ruiz, Alfredo

    2005-03-18

    Large-insert genomic libraries facilitate cloning of large genomic regions, allow the construction of clone-based physical maps and provide useful resources for sequencing entire genomes. Drosophilabuzzatii is a representative species of the repleta group in the Drosophila subgenus, which is being widely used as a model in studies of genome evolution, ecological adaptation and speciation. We constructed a Bacterial Artificial Chromosome (BAC) genomic library of D. buzzatii using the shuttle vector pTARBAC2.1. The library comprises 18,353 clones with an average insert size of 152 kb and a {approx}18X expected representation of the D. buzzatii euchromatic genome. We screened the entire library with six euchromatic gene probes and estimated the actual genome representation to be {approx}23X. In addition, we fingerprinted by restriction digestion and agarose gel electrophoresis a sample of 9,555 clones, and assembled them using Finger Printed Contigs (FPC) software and manual editing into 345 contigs (mean of 26 clones per contig) and 670singletons. Finally, we anchored 181 large contigs (containing 7,788clones) to the D. buzzatii salivary gland polytene chromosomes by in situ hybridization of 427 representative clones. The BAC library and a database with all the information regarding the high coverage BAC-based physical map described in this paper are available to the research community.

  12. Pipeline to upgrade the genome annotations

    Directory of Open Access Journals (Sweden)

    Lijin K. Gopi

    2017-12-01

    Full Text Available Current era of functional genomics is enriched with good quality draft genomes and annotations for many thousands of species and varieties with the support of the advancements in the next generation sequencing technologies (NGS. Around 25,250 genomes, of the organisms from various kingdoms, are submitted in the NCBI genome resource till date. Each of these genomes was annotated using various tools and knowledge-bases that were available during the period of the annotation. It is obvious that these annotations will be improved if the same genome is annotated using improved tools and knowledge-bases. Here we present a new genome annotation pipeline, strengthened with various tools and knowledge-bases that are capable of producing better quality annotations from the consensus of the predictions from different tools. This resource also perform various additional annotations, apart from the usual gene predictions and functional annotations, which involve SSRs, novel repeats, paralogs, proteins with transmembrane helices, signal peptides etc. This new annotation resource is trained to evaluate and integrate all the predictions together to resolve the overlaps and ambiguities of the boundaries. One of the important highlights of this resource is the capability of predicting the phylogenetic relations of the repeats using the evolutionary trace analysis and orthologous gene clusters. We also present a case study, of the pipeline, in which we upgrade the genome annotation of Nelumbo nucifera (sacred lotus. It is demonstrated that this resource is capable of producing an improved annotation for a better understanding of the biology of various organisms.

  13. Using an online genome resource to identify myostatin variation in U.S. sheep

    Science.gov (United States)

    We created a public, searchable DNA sequence resource for sheep that contained approximately 14x whole genome sequence of 96 rams. The animals represent 10 popular U.S. breeds and share minimal pedigree relationships, making the resource suitable for viewing gene variants in the user-friendly Integ...

  14. Ensembl Genomes 2016: more genomes, more complexity.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-04

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Mechanisms of Base Substitution Mutagenesis in Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Albino Bacolla

    2014-03-01

    Full Text Available Cancer genome sequence data provide an invaluable resource for inferring the key mechanisms by which mutations arise in cancer cells, favoring their survival, proliferation and invasiveness. Here we examine recent advances in understanding the molecular mechanisms responsible for the predominant type of genetic alteration found in cancer cells, somatic single base substitutions (SBSs. Cytosine methylation, demethylation and deamination, charge transfer reactions in DNA, DNA replication timing, chromatin status and altered DNA proofreading activities are all now known to contribute to the mechanisms leading to base substitution mutagenesis. We review current hypotheses as to the major processes that give rise to SBSs and evaluate their relative relevance in the light of knowledge acquired from cancer genome sequencing projects and the study of base modifications, DNA repair and lesion bypass. Although gene expression data on APOBEC3B enzymes provide support for a role in cancer mutagenesis through U:G mismatch intermediates, the enzyme preference for single-stranded DNA may limit its activity genome-wide. For SBSs at both CG:CG and YC:GR sites, we outline evidence for a prominent role of damage by charge transfer reactions that follow interactions of the DNA with reactive oxygen species (ROS and other endogenous or exogenous electron-abstracting molecules.

  16. Mechanisms of base substitution mutagenesis in cancer genomes.

    Science.gov (United States)

    Bacolla, Albino; Cooper, David N; Vasquez, Karen M

    2014-03-05

    Cancer genome sequence data provide an invaluable resource for inferring the key mechanisms by which mutations arise in cancer cells, favoring their survival, proliferation and invasiveness. Here we examine recent advances in understanding the molecular mechanisms responsible for the predominant type of genetic alteration found in cancer cells, somatic single base substitutions (SBSs). Cytosine methylation, demethylation and deamination, charge transfer reactions in DNA, DNA replication timing, chromatin status and altered DNA proofreading activities are all now known to contribute to the mechanisms leading to base substitution mutagenesis. We review current hypotheses as to the major processes that give rise to SBSs and evaluate their relative relevance in the light of knowledge acquired from cancer genome sequencing projects and the study of base modifications, DNA repair and lesion bypass. Although gene expression data on APOBEC3B enzymes provide support for a role in cancer mutagenesis through U:G mismatch intermediates, the enzyme preference for single-stranded DNA may limit its activity genome-wide. For SBSs at both CG:CG and YC:GR sites, we outline evidence for a prominent role of damage by charge transfer reactions that follow interactions of the DNA with reactive oxygen species (ROS) and other endogenous or exogenous electron-abstracting molecules.

  17. A Thousand Fly Genomes: An Expanded Drosophila Genome Nexus.

    Science.gov (United States)

    Lack, Justin B; Lange, Jeremy D; Tang, Alison D; Corbett-Detig, Russell B; Pool, John E

    2016-12-01

    The Drosophila Genome Nexus is a population genomic resource that provides D. melanogaster genomes from multiple sources. To facilitate comparisons across data sets, genomes are aligned using a common reference alignment pipeline which involves two rounds of mapping. Regions of residual heterozygosity, identity-by-descent, and recent population admixture are annotated to enable data filtering based on the user's needs. Here, we present a significant expansion of the Drosophila Genome Nexus, which brings the current data object to a total of 1,121 wild-derived genomes. New additions include 305 previously unpublished genomes from inbred lines representing six population samples in Egypt, Ethiopia, France, and South Africa, along with another 193 genomes added from recently-published data sets. We also provide an aligned D. simulans genome to facilitate divergence comparisons. This improved resource will broaden the range of population genomic questions that can addressed from multi-population allele frequencies and haplotypes in this model species. The larger set of genomes will also enhance the discovery of functionally relevant natural variation that exists within and between populations. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Development and Evaluation of a Novel Set of EST-SSR Markers Based on Transcriptome Sequences of Black Locust (Robinia pseudoacacia L.).

    Science.gov (United States)

    Guo, Qi; Wang, Jin-Xing; Su, Li-Zhuo; Lv, Wei; Sun, Yu-Han; Li, Yun

    2017-07-07

    Black locust ( Robinia pseudoacacia L. of the family Fabaceae) is an ecologically and economically important deciduous tree. However, few genomic resources are available for this forest species, and few effective expressed sequence tag-derived simple sequence repeat (EST-SSR) markers have been developed to date. In this study, paired-end sequencing was used to sequence transcriptomes of R. pseudoacacia by the Illumina HiSeq TM2000 platform, and EST-SSR loci were identified by de novo assembly. Furthermore, a total of 1697 primer pairs were successfully designed, from which 286 primers met the selection screening criteria; 94 pairs were randomly selected and tested for validation using polymerase chain reaction amplification. Forty-five primers were verified as polymorphic, with clear bands. The polymorphism information content values were 0.033-0.765, the number of alleles per locus ranged from 2 to 10, and the observed and expected heterozygosities were 0.000-0.931 and 0.035-0.810, respectively, indicating a high level of informativeness. Subsequently, 45 polymorphic EST-SSR loci were tested for amplification efficiency, using the verified primers, in an additional nine species of Leguminosae, 23 loci were amplified in more than three species, of which two loci were amplified successfully in all species. These EST-SSR markers provide a valuable tool for investigating the genetic diversity and population structure of R . pseudoacacia , constructing a DNA fingerprint database, performing quantitative trait locus mapping, and preserving genetic information.

  19. Genome-Based Microbial Taxonomy Coming of Age.

    Science.gov (United States)

    Hugenholtz, Philip; Skarshewski, Adam; Parks, Donovan H

    2016-06-01

    Reconstructing the complete evolutionary history of extant life on our planet will be one of the most fundamental accomplishments of scientific endeavor, akin to the completion of the periodic table, which revolutionized chemistry. The road to this goal is via comparative genomics because genomes are our most comprehensive and objective evolutionary documents. The genomes of plant and animal species have been systematically targeted over the past decade to provide coverage of the tree of life. However, multicellular organisms only emerged in the last 550 million years of more than three billion years of biological evolution and thus comprise a small fraction of total biological diversity. The bulk of biodiversity, both past and present, is microbial. We have only scratched the surface in our understanding of the microbial world, as most microorganisms cannot be readily grown in the laboratory and remain unknown to science. Ground-breaking, culture-independent molecular techniques developed over the past 30 years have opened the door to this so-called microbial dark matter with an accelerating momentum driven by exponential increases in sequencing capacity. We are on the verge of obtaining representative genomes across all life for the first time. However, historical use of morphology, biochemical properties, behavioral traits, and single-marker genes to infer organismal relationships mean that the existing highly incomplete tree is riddled with taxonomic errors. Concerted efforts are now needed to synthesize and integrate the burgeoning genomic data resources into a coherent universal tree of life and genome-based taxonomy. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Improving amphibian genomic resources: a multitissue reference transcriptome of an iconic invader.

    Science.gov (United States)

    Richardson, Mark F; Sequeira, Fernando; Selechnik, Daniel; Carneiro, Miguel; Vallinoto, Marcelo; Reid, Jack G; West, Andrea J; Crossland, Michael R; Shine, Richard; Rollins, Lee A

    2018-01-01

    Cane toads (Rhinella marina) are an iconic invasive species introduced to 4 continents and well utilized for studies of rapid evolution in introduced environments. Despite the long introduction history of this species, its profound ecological impacts, and its utility for demonstrating evolutionary principles, genetic information is sparse. Here we produce a de novo transcriptome spanning multiple tissues and life stages to enable investigation of the genetic basis of previously identified rapid phenotypic change over the introduced range. Using approximately 1.9 billion reads from developing tadpoles and 6 adult tissue-specific cDNA libraries, as well as a transcriptome assembly pipeline encompassing 100 separate de novo assemblies, we constructed 62 202 transcripts, of which we functionally annotated ∼50%. Our transcriptome assembly exhibits 90% full-length completeness of the Benchmarking Universal Single-Copy Orthologs data set. Robust assembly metrics and comparisons with several available anuran transcriptomes and genomes indicate that our cane toad assembly is one of the most complete anuran genomic resources available. This comprehensive anuran transcriptome will provide a valuable resource for investigation of genes under selection during invasion in cane toads, but will also greatly expand our general knowledge of anuran genomes, which are underrepresented in the literature. The data set is publically available in NCBI and GigaDB to serve as a resource for other researchers. © The Authors 2017. Published by Oxford University Press.

  1. Assessment of Functional EST-SSR Markers (Sugarcane in Cross-Species Transferability, Genetic Diversity among Poaceae Plants, and Bulk Segregation Analysis

    Directory of Open Access Journals (Sweden)

    Shamshad Ul Haq

    2016-01-01

    Full Text Available Expressed sequence tags (ESTs are important resource for gene discovery, gene expression and its regulation, molecular marker development, and comparative genomics. We procured 10000 ESTs and analyzed 267 EST-SSRs markers through computational approach. The average density was one SSR/10.45 kb or 6.4% frequency, wherein trinucleotide repeats (66.74% were the most abundant followed by di- (26.10%, tetra- (4.67%, penta- (1.5%, and hexanucleotide (1.2% repeats. Functional annotations were done and after-effect newly developed 63 EST-SSRs were used for cross transferability, genetic diversity, and bulk segregation analysis (BSA. Out of 63 EST-SSRs, 42 markers were identified owing to their expansion genetics across 20 different plants which amplified 519 alleles at 180 loci with an average of 2.88 alleles/locus and the polymorphic information content (PIC ranged from 0.51 to 0.93 with an average of 0.83. The cross transferability ranged from 25% for wheat to 97.22% for Schlerostachya, with an average of 55.86%, and genetic relationships were established based on diversification among them. Moreover, 10 EST-SSRs were recognized as important markers between bulks of pooled DNA of sugarcane cultivars through BSA. This study highlights the employability of the markers in transferability, genetic diversity in grass species, and distinguished sugarcane bulks.

  2. Analysis of SSR information in EST resources of sugarcane

    Science.gov (United States)

    Expressed sequence tags ( ESTs) offer the opportunity to exploit single, low -copy, conserved sequence motifs for the development of simple sequence repeats ( SSRs). The total of 262 113 ESTs of sugarcane (Saccharum officinarum) in the database of NCBI were downloaded and analyzed, which resulted in...

  3. pico-PLAZA, a genome database of microbial photosynthetic eukaryotes.

    Science.gov (United States)

    Vandepoele, Klaas; Van Bel, Michiel; Richard, Guilhem; Van Landeghem, Sofie; Verhelst, Bram; Moreau, Hervé; Van de Peer, Yves; Grimsley, Nigel; Piganeau, Gwenael

    2013-08-01

    With the advent of next generation genome sequencing, the number of sequenced algal genomes and transcriptomes is rapidly growing. Although a few genome portals exist to browse individual genome sequences, exploring complete genome information from multiple species for the analysis of user-defined sequences or gene lists remains a major challenge. pico-PLAZA is a web-based resource (http://bioinformatics.psb.ugent.be/pico-plaza/) for algal genomics that combines different data types with intuitive tools to explore genomic diversity, perform integrative evolutionary sequence analysis and study gene functions. Apart from homologous gene families, multiple sequence alignments, phylogenetic trees, Gene Ontology, InterPro and text-mining functional annotations, different interactive viewers are available to study genome organization using gene collinearity and synteny information. Different search functions, documentation pages, export functions and an extensive glossary are available to guide non-expert scientists. To illustrate the versatility of the platform, different case studies are presented demonstrating how pico-PLAZA can be used to functionally characterize large-scale EST/RNA-Seq data sets and to perform environmental genomics. Functional enrichments analysis of 16 Phaeodactylum tricornutum transcriptome libraries offers a molecular view on diatom adaptation to different environments of ecological relevance. Furthermore, we show how complementary genomic data sources can easily be combined to identify marker genes to study the diversity and distribution of algal species, for example in metagenomes, or to quantify intraspecific diversity from environmental strains. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Sifting through genomes with iterative-sequence clustering produces a large, phylogenetically diverse protein-family resource.

    Science.gov (United States)

    Sharpton, Thomas J; Jospin, Guillaume; Wu, Dongying; Langille, Morgan G I; Pollard, Katherine S; Eisen, Jonathan A

    2012-10-13

    New computational resources are needed to manage the increasing volume of biological data from genome sequencing projects. One fundamental challenge is the ability to maintain a complete and current catalog of protein diversity. We developed a new approach for the identification of protein families that focuses on the rapid discovery of homologous protein sequences. We implemented fully automated and high-throughput procedures to de novo cluster proteins into families based upon global alignment similarity. Our approach employs an iterative clustering strategy in which homologs of known families are sifted out of the search for new families. The resulting reduction in computational complexity enables us to rapidly identify novel protein families found in new genomes and to perform efficient, automated updates that keep pace with genome sequencing. We refer to protein families identified through this approach as "Sifting Families," or SFams. Our analysis of ~10.5 million protein sequences from 2,928 genomes identified 436,360 SFams, many of which are not represented in other protein family databases. We validated the quality of SFam clustering through statistical as well as network topology-based analyses. We describe the rapid identification of SFams and demonstrate how they can be used to annotate genomes and metagenomes. The SFam database catalogs protein-family quality metrics, multiple sequence alignments, hidden Markov models, and phylogenetic trees. Our source code and database are publicly available and will be subject to frequent updates (http://edhar.genomecenter.ucdavis.edu/sifting_families/).

  5. annot8r: GO, EC and KEGG annotation of EST datasets

    Directory of Open Access Journals (Sweden)

    Schmid Ralf

    2008-04-01

    Full Text Available Abstract Background The expressed sequence tag (EST methodology is an attractive option for the generation of sequence data for species for which no completely sequenced genome is available. The annotation and comparative analysis of such datasets poses a formidable challenge for research groups that do not have the bioinformatics infrastructure of major genome sequencing centres. Therefore, there is a need for user-friendly tools to facilitate the annotation of non-model species EST datasets with well-defined ontologies that enable meaningful cross-species comparisons. To address this, we have developed annot8r, a platform for the rapid annotation of EST datasets with GO-terms, EC-numbers and KEGG-pathways. Results annot8r automatically downloads all files relevant for the annotation process and generates a reference database that stores UniProt entries, their associated Gene Ontology (GO, Enzyme Commission (EC and Kyoto Encyclopaedia of Genes and Genomes (KEGG annotation and additional relevant data. For each of GO, EC and KEGG, annot8r extracts a specific sequence subset from the UniProt dataset based on the information stored in the reference database. These three subsets are then formatted for BLAST searches. The user provides the protein or nucleotide sequences to be annotated and annot8r runs BLAST searches against these three subsets. The BLAST results are parsed and the corresponding annotations retrieved from the reference database. The annotations are saved both as flat files and also in a relational postgreSQL results database to facilitate more advanced searches within the results. annot8r is integrated with the PartiGene suite of EST analysis tools. Conclusion annot8r is a tool that assigns GO, EC and KEGG annotations for data sets resulting from EST sequencing projects both rapidly and efficiently. The benefits of an underlying relational database, flexibility and the ease of use of the program make it ideally suited for non

  6. An expressed sequence tag (EST) library for Drosophila serrata, a model system for sexual selection and climatic adaptation studies.

    Science.gov (United States)

    Frentiu, Francesca D; Adamski, Marcin; McGraw, Elizabeth A; Blows, Mark W; Chenoweth, Stephen F

    2009-01-21

    The native Australian fly Drosophila serrata belongs to the highly speciose montium subgroup of the melanogaster species group. It has recently emerged as an excellent model system with which to address a number of important questions, including the evolution of traits under sexual selection and traits involved in climatic adaptation along latitudinal gradients. Understanding the molecular genetic basis of such traits has been limited by a lack of genomic resources for this species. Here, we present the first expressed sequence tag (EST) collection for D. serrata that will enable the identification of genes underlying sexually-selected phenotypes and physiological responses to environmental change and may help resolve controversial phylogenetic relationships within the montium subgroup. A normalized cDNA library was constructed from whole fly bodies at several developmental stages, including larvae and adults. Assembly of 11,616 clones sequenced from the 3' end allowed us to identify 6,607 unique contigs, of which at least 90% encoded peptides. Partial transcripts were discovered from a variety of genes of evolutionary interest by BLASTing contigs against the 12 Drosophila genomes currently sequenced. By incorporating into the cDNA library multiple individuals from populations spanning a large portion of the geographical range of D. serrata, we were able to identify 11,057 putative single nucleotide polymorphisms (SNPs), with 278 different contigs having at least one "double hit" SNP that is highly likely to be a real polymorphism. At least 394 EST-associated microsatellite markers, representing 355 different contigs, were also found, providing an additional set of genetic markers. The assembled EST library is available online at http://www.chenowethlab.org/serrata/index.cgi. We have provided the first gene collection and largest set of polymorphic genetic markers, to date, for the fly D. serrata. The EST collection will provide much needed genomic resources for

  7. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species.

    Science.gov (United States)

    Gilchrist, Anthony Stuart; Shearman, Deborah C A; Frommer, Marianne; Raphael, Kathryn A; Deshpande, Nandan P; Wilkins, Marc R; Sherwin, William B; Sved, John A

    2014-12-20

    The tephritid fruit flies include a number of economically important pests of horticulture, with a large accumulated body of research on their biology and control. Amongst the Tephritidae, the genus Bactrocera, containing over 400 species, presents various species groups of potential utility for genetic studies of speciation, behaviour or pest control. In Australia, there exists a triad of closely-related, sympatric Bactrocera species which do not mate in the wild but which, despite distinct morphologies and behaviours, can be force-mated in the laboratory to produce fertile hybrid offspring. To exploit the opportunities offered by genomics, such as the efficient identification of genetic loci central to pest behaviour and to the earliest stages of speciation, investigators require genomic resources for future investigations. We produced a draft de novo genome assembly of Australia's major tephritid pest species, Bactrocera tryoni. The male genome (650-700 Mbp) includes approximately 150 Mb of interspersed repetitive DNA sequences and 60 Mb of satellite DNA. Assessment using conserved core eukaryotic sequences indicated 98% completeness. Over 16,000 MAKER-derived gene models showed a large degree of overlap with other Dipteran reference genomes. The sequence of the ribosomal RNA transcribed unit was also determined. Unscaffolded assemblies of B. neohumeralis and B. jarvisi were then produced; comparison with B. tryoni showed that the species are more closely related than any Drosophila species pair. The similarity of the genomes was exploited to identify 4924 potentially diagnostic indels between the species, all of which occur in non-coding regions. This first draft B. tryoni genome resembles other dipteran genomes in terms of size and putative coding sequences. For all three species included in this study, we have identified a comprehensive set of non-redundant repetitive sequences, including the ribosomal RNA unit, and have quantified the major satellite DNA

  8. DRDB: An Online Date Palm Genomic Resource Database

    Directory of Open Access Journals (Sweden)

    Zilong He

    2017-11-01

    comprehensive genomic resource database of date palm. It can serve as a bioinformatics platform for date palm genomics, genetics, and molecular breeding. DRDB is freely available at http://drdb.big.ac.cn/home.

  9. tropiTree: An NGS-Based EST-SSR Resource for 24 Tropical Tree Species

    Science.gov (United States)

    Russell, Joanne R.; Hedley, Peter E.; Cardle, Linda; Dancey, Siobhan; Morris, Jenny; Booth, Allan; Odee, David; Mwaura, Lucy; Omondi, William; Angaine, Peter; Machua, Joseph; Muchugi, Alice; Milne, Iain; Kindt, Roeland; Jamnadass, Ramni; Dawson, Ian K.

    2014-01-01

    The development of genetic tools for non-model organisms has been hampered by cost, but advances in next-generation sequencing (NGS) have created new opportunities. In ecological research, this raises the prospect for developing molecular markers to simultaneously study important genetic processes such as gene flow in multiple non-model plant species within complex natural and anthropogenic landscapes. Here, we report the use of bar-coded multiplexed paired-end Illumina NGS for the de novo development of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers at low cost for a range of 24 tree species. Each chosen tree species is important in complex tropical agroforestry systems where little is currently known about many genetic processes. An average of more than 5,000 EST-SSRs was identified for each of the 24 sequenced species, whereas prior to analysis 20 of the species had fewer than 100 nucleotide sequence citations. To make results available to potential users in a suitable format, we have developed an open-access, interactive online database, tropiTree (http://bioinf.hutton.ac.uk/tropiTree), which has a range of visualisation and search facilities, and which is a model for the efficient presentation and application of NGS data. PMID:25025376

  10. Assembled genomic and tissue-specific transcriptomic data resources for two genetically distinct lines of Cowpea ( Vigna unguiculata (L.) Walp).

    Science.gov (United States)

    Spriggs, Andrew; Henderson, Steven T; Hand, Melanie L; Johnson, Susan D; Taylor, Jennifer M; Koltunow, Anna

    2018-02-09

    Cowpea ( Vigna unguiculata (L.) Walp) is an important legume crop for food security in areas of low-input and smallholder farming throughout Africa and Asia. Genetic improvements are required to increase yield and resilience to biotic and abiotic stress and to enhance cowpea crop performance. An integrated cowpea genomic and gene expression data resource has the potential to greatly accelerate breeding and the delivery of novel genetic traits for cowpea. Extensive genomic resources for cowpea have been absent from the public domain; however, a recent early release reference genome for IT97K-499-35 ( Vigna unguiculata  v1.0, NSF, UCR, USAID, DOE-JGI, http://phytozome.jgi.doe.gov/) has now been established in a collaboration between the Joint Genome Institute (JGI) and University California (UC) Riverside. Here we release supporting genomic and transcriptomic data for IT97K-499-35 and a second transformable cowpea variety, IT86D-1010. The transcriptome resource includes six tissue-specific datasets for each variety, with particular emphasis on reproductive tissues that extend and support the V. unguiculata v1.0 reference. Annotations have been included in our resource to allow direct mapping to the v1.0 cowpea reference. Access to this resource provided here is supported by raw and assembled data downloads.

  11. Value-based genomics.

    Science.gov (United States)

    Gong, Jun; Pan, Kathy; Fakih, Marwan; Pal, Sumanta; Salgia, Ravi

    2018-03-20

    Advancements in next-generation sequencing have greatly enhanced the development of biomarker-driven cancer therapies. The affordability and availability of next-generation sequencers have allowed for the commercialization of next-generation sequencing platforms that have found widespread use for clinical-decision making and research purposes. Despite the greater availability of tumor molecular profiling by next-generation sequencing at our doorsteps, the achievement of value-based care, or improving patient outcomes while reducing overall costs or risks, in the era of precision oncology remains a looming challenge. In this review, we highlight available data through a pre-established and conceptualized framework for evaluating value-based medicine to assess the cost (efficiency), clinical benefit (effectiveness), and toxicity (safety) of genomic profiling in cancer care. We also provide perspectives on future directions of next-generation sequencing from targeted panels to whole-exome or whole-genome sequencing and describe potential strategies needed to attain value-based genomics.

  12. Implications of publicly available genomic data resources in searching for therapeutic targets of obesity and type 2 diabetes.

    Science.gov (United States)

    Jung, Sungwon

    2018-04-20

    Obesity and type 2 diabetes (T2D) are two major conditions that are related to metabolic disorders and affect a large population. Although there have been significant efforts to identify their therapeutic targets, few benefits have come from comprehensive molecular profiling. This limited availability of comprehensive molecular profiling of obesity and T2D may be due to multiple challenges, as these conditions involve multiple organs and collecting tissue samples from subjects is more difficult in obesity and T2D than in other diseases, where surgical treatments are popular choices. While there is no repository of comprehensive molecular profiling data for obesity and T2D, multiple existing data resources can be utilized to cover various aspects of these conditions. This review presents studies with available genomic data resources for obesity and T2D and discusses genome-wide association studies (GWAS), a knockout (KO)-based phenotyping study, and gene expression profiles. These studies, based on their assessed coverage and characteristics, can provide insights into how such data can be utilized to identify therapeutic targets for obesity and T2D.

  13. EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries.

    Science.gov (United States)

    Smith, Robin P; Buchser, William J; Lemmon, Marcus B; Pardinas, Jose R; Bixby, John L; Lemmon, Vance P

    2008-04-10

    Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization. EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects.

  14. EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries

    Directory of Open Access Journals (Sweden)

    Pardinas Jose R

    2008-04-01

    Full Text Available Abstract Background Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. Results We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples produced by subtractive hybridization. Conclusion EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects.

  15. Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening

    Directory of Open Access Journals (Sweden)

    Richardson Annette C

    2008-07-01

    Full Text Available Abstract Background Kiwifruit (Actinidia spp. are a relatively new, but economically important crop grown in many different parts of the world. Commercial success is driven by the development of new cultivars with novel consumer traits including flavor, appearance, healthful components and convenience. To increase our understanding of the genetic diversity and gene-based control of these key traits in Actinidia, we have produced a collection of 132,577 expressed sequence tags (ESTs. Results The ESTs were derived mainly from four Actinidia species (A. chinensis, A. deliciosa, A. arguta and A. eriantha and fell into 41,858 non redundant clusters (18,070 tentative consensus sequences and 23,788 EST singletons. Analysis of flavor and fragrance-related gene families (acyltransferases and carboxylesterases and pathways (terpenoid biosynthesis is presented in comparison with a chemical analysis of the compounds present in Actinidia including esters, acids, alcohols and terpenes. ESTs are identified for most genes in color pathways controlling chlorophyll degradation and carotenoid biosynthesis. In the health area, data are presented on the ESTs involved in ascorbic acid and quinic acid biosynthesis showing not only that genes for many of the steps in these pathways are represented in the database, but that genes encoding some critical steps are absent. In the convenience area, genes related to different stages of fruit softening are identified. Conclusion This large EST resource will allow researchers to undertake the tremendous challenge of understanding the molecular basis of genetic diversity in the Actinidia genus as well as provide an EST resource for comparative fruit genomics. The various bioinformatics analyses we have undertaken demonstrates the extent of coverage of ESTs for genes encoding different biochemical pathways in Actinidia.

  16. Sifting through genomes with iterative-sequence clustering produces a large, phylogenetically diverse protein-family resource

    Directory of Open Access Journals (Sweden)

    Sharpton Thomas J

    2012-10-01

    Full Text Available Abstract Background New computational resources are needed to manage the increasing volume of biological data from genome sequencing projects. One fundamental challenge is the ability to maintain a complete and current catalog of protein diversity. We developed a new approach for the identification of protein families that focuses on the rapid discovery of homologous protein sequences. Results We implemented fully automated and high-throughput procedures to de novo cluster proteins into families based upon global alignment similarity. Our approach employs an iterative clustering strategy in which homologs of known families are sifted out of the search for new families. The resulting reduction in computational complexity enables us to rapidly identify novel protein families found in new genomes and to perform efficient, automated updates that keep pace with genome sequencing. We refer to protein families identified through this approach as “Sifting Families,” or SFams. Our analysis of ~10.5 million protein sequences from 2,928 genomes identified 436,360 SFams, many of which are not represented in other protein family databases. We validated the quality of SFam clustering through statistical as well as network topology–based analyses. Conclusions We describe the rapid identification of SFams and demonstrate how they can be used to annotate genomes and metagenomes. The SFam database catalogs protein-family quality metrics, multiple sequence alignments, hidden Markov models, and phylogenetic trees. Our source code and database are publicly available and will be subject to frequent updates (http://edhar.genomecenter.ucdavis.edu/sifting_families/.

  17. Towards the understanding of the cocoa transcriptome: Production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions.

    Science.gov (United States)

    Argout, Xavier; Fouet, Olivier; Wincker, Patrick; Gramacho, Karina; Legavre, Thierry; Sabau, Xavier; Risterucci, Ange Marie; Da Silva, Corinne; Cascardo, Julio; Allegre, Mathilde; Kuhn, David; Verica, Joseph; Courtois, Brigitte; Loor, Gaston; Babin, Regis; Sounigo, Olivier; Ducamp, Michel; Guiltinan, Mark J; Ruiz, Manuel; Alemanno, Laurence; Machado, Regina; Phillips, Wilberth; Schnell, Ray; Gilmour, Martin; Rosenquist, Eric; Butler, David; Maximova, Siela; Lanaud, Claire

    2008-10-30

    Theobroma cacao L., is a tree originated from the tropical rainforest of South America. It is one of the major cash crops for many tropical countries. T. cacao is mainly produced on smallholdings, providing resources for 14 million farmers. Disease resistance and T. cacao quality improvement are two important challenges for all actors of cocoa and chocolate production. T. cacao is seriously affected by pests and fungal diseases, responsible for more than 40% yield losses and quality improvement, nutritional and organoleptic, is also important for consumers. An international collaboration was formed to develop an EST genomic resource database for cacao. Fifty-six cDNA libraries were constructed from different organs, different genotypes and different environmental conditions. A total of 149,650 valid EST sequences were generated corresponding to 48,594 unigenes, 12,692 contigs and 35,902 singletons. A total of 29,849 unigenes shared significant homology with public sequences from other species.Gene Ontology (GO) annotation was applied to distribute the ESTs among the main GO categories.A specific information system (ESTtik) was constructed to process, store and manage this EST collection allowing the user to query a database.To check the representativeness of our EST collection, we looked for the genes known to be involved in two different metabolic pathways extensively studied in other plant species and important for T. cacao qualities: the flavonoid and the terpene pathways. Most of the enzymes described in other crops for these two metabolic pathways were found in our EST collection.A large collection of new genetic markers was provided by this ESTs collection. This EST collection displays a good representation of the T. cacao transcriptome, suitable for analysis of biochemical pathways based on oligonucleotide microarrays derived from these ESTs. It will provide numerous genetic markers that will allow the construction of a high density gene map of T. cacao

  18. Towards the understanding of the cocoa transcriptome: Production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions

    Directory of Open Access Journals (Sweden)

    Ruiz Manuel

    2008-10-01

    Full Text Available Abstract Background Theobroma cacao L., is a tree originated from the tropical rainforest of South America. It is one of the major cash crops for many tropical countries. T. cacao is mainly produced on smallholdings, providing resources for 14 million farmers. Disease resistance and T. cacao quality improvement are two important challenges for all actors of cocoa and chocolate production. T. cacao is seriously affected by pests and fungal diseases, responsible for more than 40% yield losses and quality improvement, nutritional and organoleptic, is also important for consumers. An international collaboration was formed to develop an EST genomic resource database for cacao. Results Fifty-six cDNA libraries were constructed from different organs, different genotypes and different environmental conditions. A total of 149,650 valid EST sequences were generated corresponding to 48,594 unigenes, 12,692 contigs and 35,902 singletons. A total of 29,849 unigenes shared significant homology with public sequences from other species. Gene Ontology (GO annotation was applied to distribute the ESTs among the main GO categories. A specific information system (ESTtik was constructed to process, store and manage this EST collection allowing the user to query a database. To check the representativeness of our EST collection, we looked for the genes known to be involved in two different metabolic pathways extensively studied in other plant species and important for T. cacao qualities: the flavonoid and the terpene pathways. Most of the enzymes described in other crops for these two metabolic pathways were found in our EST collection. A large collection of new genetic markers was provided by this ESTs collection. Conclusion This EST collection displays a good representation of the T. cacao transcriptome, suitable for analysis of biochemical pathways based on oligonucleotide microarrays derived from these ESTs. It will provide numerous genetic markers that will allow

  19. Towards the understanding of the cocoa transcriptome: Production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions

    Science.gov (United States)

    Argout, Xavier; Fouet, Olivier; Wincker, Patrick; Gramacho, Karina; Legavre, Thierry; Sabau, Xavier; Risterucci, Ange Marie; Da Silva, Corinne; Cascardo, Julio; Allegre, Mathilde; Kuhn, David; Verica, Joseph; Courtois, Brigitte; Loor, Gaston; Babin, Regis; Sounigo, Olivier; Ducamp, Michel; Guiltinan, Mark J; Ruiz, Manuel; Alemanno, Laurence; Machado, Regina; Phillips, Wilberth; Schnell, Ray; Gilmour, Martin; Rosenquist, Eric; Butler, David; Maximova, Siela; Lanaud, Claire

    2008-01-01

    Background Theobroma cacao L., is a tree originated from the tropical rainforest of South America. It is one of the major cash crops for many tropical countries. T. cacao is mainly produced on smallholdings, providing resources for 14 million farmers. Disease resistance and T. cacao quality improvement are two important challenges for all actors of cocoa and chocolate production. T. cacao is seriously affected by pests and fungal diseases, responsible for more than 40% yield losses and quality improvement, nutritional and organoleptic, is also important for consumers. An international collaboration was formed to develop an EST genomic resource database for cacao. Results Fifty-six cDNA libraries were constructed from different organs, different genotypes and different environmental conditions. A total of 149,650 valid EST sequences were generated corresponding to 48,594 unigenes, 12,692 contigs and 35,902 singletons. A total of 29,849 unigenes shared significant homology with public sequences from other species. Gene Ontology (GO) annotation was applied to distribute the ESTs among the main GO categories. A specific information system (ESTtik) was constructed to process, store and manage this EST collection allowing the user to query a database. To check the representativeness of our EST collection, we looked for the genes known to be involved in two different metabolic pathways extensively studied in other plant species and important for T. cacao qualities: the flavonoid and the terpene pathways. Most of the enzymes described in other crops for these two metabolic pathways were found in our EST collection. A large collection of new genetic markers was provided by this ESTs collection. Conclusion This EST collection displays a good representation of the T. cacao transcriptome, suitable for analysis of biochemical pathways based on oligonucleotide microarrays derived from these ESTs. It will provide numerous genetic markers that will allow the construction of a high

  20. Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources.

    Science.gov (United States)

    Wang, Xiaobo; Wu, Jian; Liang, Jianli; Cheng, Feng; Wang, Xiaowu

    2015-01-01

    The Brassica database (BRAD) was built initially to assist users apply Brassica rapa and Arabidopsis thaliana genomic data efficiently to their research. However, many Brassicaceae genomes have been sequenced and released after its construction. These genomes are rich resources for comparative genomics, gene annotation and functional evolutionary studies of Brassica crops. Therefore, we have updated BRAD to version 2.0 (V2.0). In BRAD V2.0, 11 more Brassicaceae genomes have been integrated into the database, namely those of Arabidopsis lyrata, Aethionema arabicum, Brassica oleracea, Brassica napus, Camelina sativa, Capsella rubella, Leavenworthia alabamica, Sisymbrium irio and three extremophiles Schrenkiella parvula, Thellungiella halophila and Thellungiella salsuginea. BRAD V2.0 provides plots of syntenic genomic fragments between pairs of Brassicaceae species, from the level of chromosomes to genomic blocks. The Generic Synteny Browser (GBrowse_syn), a module of the Genome Browser (GBrowse), is used to show syntenic relationships between multiple genomes. Search functions for retrieving syntenic and non-syntenic orthologs, as well as their annotation and sequences are also provided. Furthermore, genome and annotation information have been imported into GBrowse so that all functional elements can be visualized in one frame. We plan to continually update BRAD by integrating more Brassicaceae genomes into the database. Database URL: http://brassicadb.org/brad/. © The Author(s) 2015. Published by Oxford University Press.

  1. MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data

    Science.gov (United States)

    Vallenet, David; Belda, Eugeni; Calteau, Alexandra; Cruveiller, Stéphane; Engelen, Stefan; Lajus, Aurélie; Le Fèvre, François; Longin, Cyrille; Mornico, Damien; Roche, David; Rouy, Zoé; Salvignol, Gregory; Scarpelli, Claude; Thil Smith, Adam Alexander; Weiman, Marion; Médigue, Claudine

    2013-01-01

    MicroScope is an integrated platform dedicated to both the methodical updating of microbial genome annotation and to comparative analysis. The resource provides data from completed and ongoing genome projects (automatic and expert annotations), together with data sources from post-genomic experiments (i.e. transcriptomics, mutant collections) allowing users to perfect and improve the understanding of gene functions. MicroScope (http://www.genoscope.cns.fr/agc/microscope) combines tools and graphical interfaces to analyse genomes and to perform the manual curation of gene annotations in a comparative context. Since its first publication in January 2006, the system (previously named MaGe for Magnifying Genomes) has been continuously extended both in terms of data content and analysis tools. The last update of MicroScope was published in 2009 in the Database journal. Today, the resource contains data for >1600 microbial genomes, of which ∼300 are manually curated and maintained by biologists (1200 personal accounts today). Expert annotations are continuously gathered in the MicroScope database (∼50 000 a year), contributing to the improvement of the quality of microbial genomes annotations. Improved data browsing and searching tools have been added, original tools useful in the context of expert annotation have been developed and integrated and the website has been significantly redesigned to be more user-friendly. Furthermore, in the context of the European project Microme (Framework Program 7 Collaborative Project), MicroScope is becoming a resource providing for the curation and analysis of both genomic and metabolic data. An increasing number of projects are related to the study of environmental bacterial (meta)genomes that are able to metabolize a large variety of chemical compounds that may be of high industrial interest. PMID:23193269

  2. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    Science.gov (United States)

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-07-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.

  3. Genome-based comparative analyses of Antarctic and temperate species of Paenibacillus.

    Directory of Open Access Journals (Sweden)

    Melissa Dsouza

    Full Text Available Antarctic soils represent a unique environment characterised by extremes of temperature, salinity, elevated UV radiation, low nutrient and low water content. Despite the harshness of this environment, members of 15 bacterial phyla have been identified in soils of the Ross Sea Region (RSR. However, the survival mechanisms and ecological roles of these phyla are largely unknown. The aim of this study was to investigate whether strains of Paenibacillus darwinianus owe their resilience to substantial genomic changes. For this, genome-based comparative analyses were performed on three P. darwinianus strains, isolated from gamma-irradiated RSR soils, together with nine temperate, soil-dwelling Paenibacillus spp. The genome of each strain was sequenced to over 1,000-fold coverage, then assembled into contigs totalling approximately 3 Mbp per genome. Based on the occurrence of essential, single-copy genes, genome completeness was estimated at approximately 88%. Genome analysis revealed between 3,043-3,091 protein-coding sequences (CDSs, primarily associated with two-component systems, sigma factors, transporters, sporulation and genes induced by cold-shock, oxidative and osmotic stresses. These comparative analyses provide an insight into the metabolic potential of P. darwinianus, revealing potential adaptive mechanisms for survival in Antarctic soils. However, a large proportion of these mechanisms were also identified in temperate Paenibacillus spp., suggesting that these mechanisms are beneficial for growth and survival in a range of soil environments. These analyses have also revealed that the P. darwinianus genomes contain significantly fewer CDSs and have a lower paralogous content. Notwithstanding the incompleteness of the assemblies, the large differences in genome sizes, determined by the number of genes in paralogous clusters and the CDS content, are indicative of genome content scaling. Finally, these sequences are a resource for further

  4. MicroScope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes.

    Science.gov (United States)

    Vallenet, David; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Lajus, Aurélie; Josso, Adrien; Mercier, Jonathan; Renaux, Alexandre; Rollin, Johan; Rouy, Zoe; Roche, David; Scarpelli, Claude; Médigue, Claudine

    2017-01-04

    The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Resource base influences genome-wide DNA methylation levels in wild baboons (Papio cynocephalus)

    Science.gov (United States)

    Lea, Amanda J.; Altmann, Jeanne; Alberts, Susan C.; Tung, Jenny

    2015-01-01

    Variation in resource availability commonly exerts strong effects on fitness-related traits in wild animals. However, we know little about the molecular mechanisms that mediate these effects, or about their persistence over time. To address these questions, we profiled genome-wide whole blood DNA methylation levels in two sets of wild baboons: (i) ‘wild-feeding’ baboons that foraged naturally in a savanna environment and (ii) ‘Lodge’ baboons that had ready access to spatially concentrated human food scraps, resulting in high feeding efficiency and low daily travel distances. We identified 1,014 sites (0.20% of sites tested) that were differentially methylated between wild-feeding and Lodge baboons, providing the first evidence that resource availability shapes the epigenome in a wild mammal. Differentially methylated sites tended to occur in contiguous stretches (i.e., in differentially methylated regions or DMRs), in promoters and enhancers, and near metabolism-related genes, supporting their functional importance in gene regulation. In agreement, reporter assay experiments confirmed that methylation at the largest identified DMR, located in the promoter of a key glycolysis-related gene, was sufficient to causally drive changes in gene expression. Intriguingly, all dispersing males carried a consistent epigenetic signature of their membership in a wild-feeding group, regardless of whether males dispersed into or out of this group as adults. Together, our findings support a role for DNA methylation in mediating ecological effects on phenotypic traits in the wild, and emphasize the dynamic environmental sensitivity of DNA methylation levels across the life course. PMID:26508127

  6. NemaPath: online exploration of KEGG-based metabolic pathways for nematodes

    Directory of Open Access Journals (Sweden)

    Wang Zhengyuan

    2008-11-01

    Full Text Available Abstract Background Nematode.net http://www.nematode.net is a web-accessible resource for investigating gene sequences from parasitic and free-living nematode genomes. Beyond the well-characterized model nematode C. elegans, over 500,000 expressed sequence tags (ESTs and nearly 600,000 genome survey sequences (GSSs have been generated from 36 nematode species as part of the Parasitic Nematode Genomics Program undertaken by the Genome Center at Washington University School of Medicine. However, these sequencing data are not present in most publicly available protein databases, which only include sequences in Swiss-Prot. Swiss-Prot, in turn, relies on GenBank/Embl/DDJP for predicted proteins from complete genomes or full-length proteins. Description Here we present the NemaPath pathway server, a web-based pathway-level visualization tool for navigating putative metabolic pathways for over 30 nematode species, including 27 parasites. The NemaPath approach consists of two parts: 1 a backend tool to align and evaluate nematode genomic sequences (curated EST contigs against the annotated Kyoto Encyclopedia of Genes and Genomes (KEGG protein database; 2 a web viewing application that displays annotated KEGG pathway maps based on desired confidence levels of primary sequence similarity as defined by a user. NemaPath also provides cross-referenced access to nematode genome information provided by other tools available on Nematode.net, including: detailed NemaGene EST cluster information; putative translations; GBrowse EST cluster views; links from nematode data to external databases for corresponding synonymous C. elegans counterparts, subject matches in KEGG's gene database, and also KEGG Ontology (KO identification. Conclusion The NemaPath server hosts metabolic pathway mappings for 30 nematode species and is available on the World Wide Web at http://nematode.net/cgi-bin/keggview.cgi. The nematode source sequences used for the metabolic pathway

  7. Construction of an EST-SSR-based interspecific transcriptome ...

    Indian Academy of Sciences (India)

    Construction of an EST-SSR-based interspecific transcriptome linkage map of fibre development in cotton. CHUANXIANG LIU, DAOJUN YUAN and ZHONGXU LIN. ∗. National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan),. Huazhong Agricultural University, Wuhan ...

  8. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    KAUST Repository

    Bracken-Grissom, Heather

    2013-12-12

    Over 95% of all metazoan (animal) species comprise the invertebrates, but very few genomes from these organisms have been sequenced. We have, therefore, formed a Global Invertebrate Genomics Alliance (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site () has been launched to facilitate this collaborative venture.

  9. Collembase: a repository for springtail genomics and soil quality assessment

    Directory of Open Access Journals (Sweden)

    Klein-Lankhorst Rene M

    2007-09-01

    Full Text Available Abstract Background Environmental quality assessment is traditionally based on responses of reproduction and survival of indicator organisms. For soil assessment the springtail Folsomia candida (Collembola is an accepted standard test organism. We argue that environmental quality assessment using gene expression profiles of indicator organisms exposed to test substrates is more sensitive, more toxicant specific and significantly faster than current risk assessment methods. To apply this species as a genomic model for soil quality testing we conducted an EST sequencing project and developed an online database. Description Collembase is a web-accessible database comprising springtail (F. candida genomic data. Presently, the database contains information on 8686 ESTs that are assembled into 5952 unique gene objects. Of those gene objects ~40% showed homology to other protein sequences available in GenBank (blastx analysis; non-redundant (nr database; expect-value -5. Software was applied to infer protein sequences. The putative peptides, which had an average length of 115 amino-acids (ranging between 23 and 440 were annotated with Gene Ontology (GO terms. In total 1025 peptides (~17% of the gene objects were assigned at least one GO term (expect-value -25. Within Collembase searches can be conducted based on BLAST and GO annotation, cluster name or using a BLAST server. The system furthermore enables easy sequence retrieval for functional genomic and Quantitative-PCR experiments. Sequences are submitted to GenBank (Accession numbers: EV473060 – EV481745. Conclusion Collembase http://www.collembase.org is a resource of sequence data on the springtail F. candida. The information within the database will be linked to a custom made microarray, based on the Agilent platform, which can be applied for soil quality testing. In addition, Collembase supplies information that is valuable for related scientific disciplines such as molecular ecology

  10. Whole genome homology-based identification of candidate genes ...

    African Journals Online (AJOL)

    Josephine Erhiakporeh

    2016-07-06

    Jul 6, 2016 ... candidate genes for drought tolerance in sesame. (Sesamum ... Our results provided genomic resources for further functional analysis and genetic engineering .... reverse transcribed using the Reverse Transcription System.

  11. A Web-Based Comparative Genomics Tutorial for Investigating Microbial Genomes

    Directory of Open Access Journals (Sweden)

    Michael Strong

    2009-12-01

    Full Text Available As the number of completely sequenced microbial genomes continues to rise at an impressive rate, it is important to prepare students with the skills necessary to investigate microorganisms at the genomic level. As a part of the core curriculum for first-year graduate students in the biological sciences, we have implemented a web-based tutorial to introduce students to the fields of comparative and functional genomics. The tutorial focuses on recent computational methods for identifying functionally linked genes and proteins on a genome-wide scale and was used to introduce students to the Rosetta Stone, Phylogenetic Profile, conserved Gene Neighbor, and Operon computational methods. Students learned to use a number of publicly available web servers and databases to identify functionally linked genes in the Escherichia coli genome, with emphasis on genome organization and operon structure. The overall effectiveness of the tutorial was assessed based on student evaluations and homework assignments. The tutorial is available to other educators at http://www.doe-mbi.ucla.edu/~strong/m253.php.

  12. CoryneCenter – An online resource for the integrated analysis of corynebacterial genome and transcriptome data

    Directory of Open Access Journals (Sweden)

    Hüser Andrea T

    2007-11-01

    Full Text Available Abstract Background The introduction of high-throughput genome sequencing and post-genome analysis technologies, e.g. DNA microarray approaches, has created the potential to unravel and scrutinize complex gene-regulatory networks on a large scale. The discovery of transcriptional regulatory interactions has become a major topic in modern functional genomics. Results To facilitate the analysis of gene-regulatory networks, we have developed CoryneCenter, a web-based resource for the systematic integration and analysis of genome, transcriptome, and gene regulatory information for prokaryotes, especially corynebacteria. For this purpose, we extended and combined the following systems into a common platform: (1 GenDB, an open source genome annotation system, (2 EMMA, a MAGE compliant application for high-throughput transcriptome data storage and analysis, and (3 CoryneRegNet, an ontology-based data warehouse designed to facilitate the reconstruction and analysis of gene regulatory interactions. We demonstrate the potential of CoryneCenter by means of an application example. Using microarray hybridization data, we compare the gene expression of Corynebacterium glutamicum under acetate and glucose feeding conditions: Known regulatory networks are confirmed, but moreover CoryneCenter points out additional regulatory interactions. Conclusion CoryneCenter provides more than the sum of its parts. Its novel analysis and visualization features significantly simplify the process of obtaining new biological insights into complex regulatory systems. Although the platform currently focusses on corynebacteria, the integrated tools are by no means restricted to these species, and the presented approach offers a general strategy for the analysis and verification of gene regulatory networks. CoryneCenter provides freely accessible projects with the underlying genome annotation, gene expression, and gene regulation data. The system is publicly available at http://www.CoryneCenter.de.

  13. Ginseng Genome Database: an open-access platform for genomics of Panax ginseng.

    Science.gov (United States)

    Jayakodi, Murukarthick; Choi, Beom-Soon; Lee, Sang-Choon; Kim, Nam-Hoon; Park, Jee Young; Jang, Woojong; Lakshmanan, Meiyappan; Mohan, Shobhana V G; Lee, Dong-Yup; Yang, Tae-Jin

    2018-04-12

    The ginseng (Panax ginseng C.A. Meyer) is a perennial herbaceous plant that has been used in traditional oriental medicine for thousands of years. Ginsenosides, which have significant pharmacological effects on human health, are the foremost bioactive constituents in this plant. Having realized the importance of this plant to humans, an integrated omics resource becomes indispensable to facilitate genomic research, molecular breeding and pharmacological study of this herb. The first draft genome sequences of P. ginseng cultivar "Chunpoong" were reported recently. Here, using the draft genome, transcriptome, and functional annotation datasets of P. ginseng, we have constructed the Ginseng Genome Database http://ginsengdb.snu.ac.kr /, the first open-access platform to provide comprehensive genomic resources of P. ginseng. The current version of this database provides the most up-to-date draft genome sequence (of approximately 3000 Mbp of scaffold sequences) along with the structural and functional annotations for 59,352 genes and digital expression of genes based on transcriptome data from different tissues, growth stages and treatments. In addition, tools for visualization and the genomic data from various analyses are provided. All data in the database were manually curated and integrated within a user-friendly query page. This database provides valuable resources for a range of research fields related to P. ginseng and other species belonging to the Apiales order as well as for plant research communities in general. Ginseng genome database can be accessed at http://ginsengdb.snu.ac.kr /.

  14. CrisprGE: a central hub of CRISPR/Cas-based genome editing.

    Science.gov (United States)

    Kaur, Karambir; Tandon, Himani; Gupta, Amit Kumar; Kumar, Manoj

    2015-01-01

    CRISPR system is a powerful defense mechanism in bacteria and archaea to provide immunity against viruses. Recently, this process found a new application in intended targeting of the genomes. CRISPR-mediated genome editing is performed by two main components namely single guide RNA and Cas9 protein. Despite the enormous data generated in this area, there is a dearth of high throughput resource. Therefore, we have developed CrisprGE, a central hub of CRISPR/Cas-based genome editing. Presently, this database holds a total of 4680 entries of 223 unique genes from 32 model and other organisms. It encompasses information about the organism, gene, target gene sequences, genetic modification, modifications length, genome editing efficiency, cell line, assay, etc. This depository is developed using the open source LAMP (Linux Apache MYSQL PHP) server. User-friendly browsing, searching facility is integrated for easy data retrieval. It also includes useful tools like BLAST CrisprGE, BLAST NTdb and CRISPR Mapper. Considering potential utilities of CRISPR in the vast area of biology and therapeutics, we foresee this platform as an assistance to accelerate research in the burgeoning field of genome engineering. © The Author(s) 2015. Published by Oxford University Press.

  15. Re-exploration of U's Triangle Brassica Species Based on Chloroplast Genomes and 45S nrDNA Sequences.

    Science.gov (United States)

    Kim, Chang-Kug; Seol, Young-Joo; Perumal, Sampath; Lee, Jonghoon; Waminal, Nomar Espinosa; Jayakodi, Murukarthick; Lee, Sang-Choon; Jin, Seungwoo; Choi, Beom-Soon; Yu, Yeisoo; Ko, Ho-Cheol; Choi, Ji-Weon; Ryu, Kyoung-Yul; Sohn, Seong-Han; Parkin, Isobel; Yang, Tae-Jin

    2018-05-09

    The concept of U's triangle, which revealed the importance of polyploidization in plant genome evolution, described natural allopolyploidization events in Brassica using three diploids [B. rapa (A genome), B. nigra (B), and B. oleracea (C)] and derived allotetraploids [B. juncea (AB genome), B. napus (AC), and B. carinata (BC)]. However, comprehensive understanding of Brassica genome evolution has not been fully achieved. Here, we performed low-coverage (2-6×) whole-genome sequencing of 28 accessions of Brassica as well as of Raphanus sativus [R genome] to explore the evolution of six Brassica species based on chloroplast genome and ribosomal DNA variations. Our phylogenomic analyses led to two main conclusions. (1) Intra-species-level chloroplast genome variations are low in the three allotetraploids (2~7 SNPs), but rich and variable in each diploid species (7~193 SNPs). (2) Three allotetraploids maintain two 45SnrDNA types derived from both ancestral species with maternal dominance. Furthermore, this study sheds light on the maternal origin of the AC chloroplast genome. Overall, this study clarifies the genetic relationships of U's triangle species based on a comprehensive genomics approach and provides important genomic resources for correlative and evolutionary studies.

  16. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder

    NARCIS (Netherlands)

    Yuen, Ryan K C; Merico, Daniele; Bookman, Matt; Howe, Jennifer L.; Thiruvahindrapuram, Bhooma; Patel, Rohan V.; Whitney, Joe; Deflaux, Nicole; Bingham, Jonathan; Wang, Zhuozhi; Pellecchia, Giovanna; Buchanan, Janet A.; Walker, Susan; Marshall, Christian R.; Uddin, Mohammed; Zarrei, Mehdi; Deneault, Eric; D'Abate, Lia; Chan, Ada J S; Koyanagi, Stephanie; Paton, Tara; Pereira, Sergio L.; Hoang, Ny; Engchuan, Worrawat; Higginbotham, Edward J.; Ho, Karen; Lamoureux, Sylvia; Li, Weili; MacDonald, Jeffrey R.; Nalpathamkalam, Thomas; Sung, Wilson W L; Tsoi, Fiona J.; Wei, John; Xu, Lizhen; Tasse, Anne Marie; Kirby, Emily; Van Etten, William; Twigger, Simon; Roberts, Wendy; Drmic, Irene; Jilderda, Sanne; Modi, Bonnie Mackinnon; Kellam, Barbara; Szego, Michael; Cytrynbaum, Cheryl; Weksberg, Rosanna; Zwaigenbaum, Lonnie; Woodbury-Smith, Marc; Brian, Jessica; Senman, Lili; Iaboni, Alana; Doyle-Thomas, Krissy; Thompson, Ann; Chrysler, Christina; Leef, Jonathan; Savion-Lemieux, Tal; Smith, Isabel M.; Liu, Xudong; Nicolson, Rob; Seifer, Vicki; Fedele, Angie; Cook, Edwin H.; Dager, Stephen; Estes, Annette; Gallagher, Louise; Malow, Beth A.; Parr, Jeremy R.; Spence, Sarah J.; Vorstman, Jacob; Frey, Brendan J.; Robinson, James T.; Strug, Lisa J.; Fernandez, Bridget A.; Elsabbagh, Mayada; Carter, Melissa T.; Hallmayer, Joachim; Knoppers, Bartha M.; Anagnostou, Evdokia; Szatmari, Peter; Ring, Robert H.; Glazer, David; Pletcher, Mathew T.; Scherer, Stephen W.

    2017-01-01

    We are performing whole-genome sequencing of families with autism spectrum disorder (ASD) to build a resource (MSSNG) for subcategorizing the phenotypes and underlying genetic factors involved. Here we report sequencing of 5,205 samples from families with ASD, accompanied by clinical information,

  17. Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025

    NARCIS (Netherlands)

    Bruford, M.W.; Ginja, Catarina; Hoffmann, Irene; Megens, Hendrik Jan

    2015-01-01

    Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR).

  18. Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025

    NARCIS (Netherlands)

    Bruford, Michael W; Ginja, Catarina; Hoffmann, Irene; Joost, Stéphane; Orozco-terWengel, Pablo; Alberto, Florian J; Amaral, Andreia J; Barbato, Mario; Biscarini, Filippo; Colli, Licia; Costa, Mafalda; Curik, Ino; Duruz, Solange; Ferenčaković, Maja; Fischer, Daniel; Fitak, Robert; Groeneveld, Linn F; Hall, Stephen J G; Hanotte, Olivier; Hassan, Faiz-Ul; Helsen, Philippe; Iacolina, Laura; Kantanen, Juha; Leempoel, Kevin; Lenstra, Johannes A; Ajmone-Marsan, Paolo; Masembe, Charles; Megens, Hendrik-Jan; Miele, Mara; Neuditschko, Markus; Nicolazzi, Ezequiel L; Pompanon, François; Roosen, Jutta; Sevane, Natalia; Smetko, Anamarija; Štambuk, Anamaria; Streeter, Ian; Stucki, Sylvie; Supakorn, China; Telo Da Gama, Luis; Tixier-Boichard, Michèle; Wegmann, Daniel; Zhan, Xiangjiang

    2015-01-01

    Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR). However,

  19. Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment.

    Science.gov (United States)

    Lorenz, Aaron J

    2013-03-01

    Allocating resources between population size and replication affects both genetic gain through phenotypic selection and quantitative trait loci detection power and effect estimation accuracy for marker-assisted selection (MAS). It is well known that because alleles are replicated across individuals in quantitative trait loci mapping and MAS, more resources should be allocated to increasing population size compared with phenotypic selection. Genomic selection is a form of MAS using all marker information simultaneously to predict individual genetic values for complex traits and has widely been found superior to MAS. No studies have explicitly investigated how resource allocation decisions affect success of genomic selection. My objective was to study the effect of resource allocation on response to MAS and genomic selection in a single biparental population of doubled haploid lines by using computer simulation. Simulation results were compared with previously derived formulas for the calculation of prediction accuracy under different levels of heritability and population size. Response of prediction accuracy to resource allocation strategies differed between genomic selection models (ridge regression best linear unbiased prediction [RR-BLUP], BayesCπ) and multiple linear regression using ordinary least-squares estimation (OLS), leading to different optimal resource allocation choices between OLS and RR-BLUP. For OLS, it was always advantageous to maximize population size at the expense of replication, but a high degree of flexibility was observed for RR-BLUP. Prediction accuracy of doubled haploid lines included in the training set was much greater than of those excluded from the training set, so there was little benefit to phenotyping only a subset of the lines genotyped. Finally, observed prediction accuracies in the simulation compared well to calculated prediction accuracies, indicating these theoretical formulas are useful for making resource allocation

  20. Development and production of an oligonucleotide MuscleChip: use for validation of ambiguous ESTs

    Directory of Open Access Journals (Sweden)

    Lanfranchi Gerolamo

    2002-10-01

    Full Text Available Abstract Background We describe the development, validation, and use of a highly redundant 120,000 oligonucleotide microarray (MuscleChip containing 4,601 probe sets representing 1,150 known genes expressed in muscle and 2,075 EST clusters from a non-normalized subtracted muscle EST sequencing project (28,074 EST sequences. This set included 369 novel EST clusters showing no match to previously characterized proteins in any database. Each probe set was designed to contain 20–32 25 mer oligonucleotides (10–16 paired perfect match and mismatch probe pairs per gene, with each probe evaluated for hybridization kinetics (Tm and similarity to other sequences. The 120,000 oligonucleotides were synthesized by photolithography and light-activated chemistry on each microarray. Results Hybridization of human muscle cRNAs to this MuscleChip (33 samples showed a correlation of 0.6 between the number of ESTs sequenced in each cluster and hybridization intensity. Out of 369 novel EST clusters not showing any similarity to previously characterized proteins, we focused on 250 EST clusters that were represented by robust probe sets on the MuscleChip fulfilling all stringent rules. 102 (41% were found to be consistently "present" by analysis of hybridization to human muscle RNA, of which 40 ESTs (39% could be genome anchored to potential transcription units in the human genome sequence. 19 ESTs of the 40 ESTs were furthermore computer-predicted as exons by one or more than three gene identification algorithms. Conclusion Our analysis found 40 transcriptionally validated, genome-anchored novel EST clusters to be expressed in human muscle. As most of these ESTs were low copy clusters (duplex and triplex in the original 28,000 EST project, the identification of these as significantly expressed is a robust validation of the transcript units that permits subsequent focus on the novel proteins encoded by these genes.

  1. Exploiting Genomic Resources for Efficient Conservation and Use of Chickpea, Groundnut, and Pigeonpea Collections for Crop Improvement

    Directory of Open Access Journals (Sweden)

    C. L. Laxmipathi Gowda

    2013-11-01

    Full Text Available Both chickpea ( L. and pigeonpea [ (L. Millsp.] are important dietary source of protein while groundnut ( L. is one of the major oil crops. Globally, approximately 1.1 million grain legume accessions are conserved in genebanks, of which the ICRISAT genebank holds 49,485 accessions of cultivated species and wild relatives of chickpea, pigeonpea, and groundnut from 133 countries. These genetic resources are reservoirs of many useful genes for present and future crop improvement programs. Representative subsets in the form of core and mini core collections have been used to identify trait-specific genetically diverse germplasm for use in breeding and genomic studies in these crops. Chickpea, groundnut, and pigeonpea have moved from “orphan” to “genomic resources rich crops.” The chickpea and pigeonpea genomes have been decoded, and the sequences of groundnut genome will soon be available. With the availability of these genomic resources, the germplasm curators, breeders, and molecular biologists will have abundant opportunities to enhance the efficiency of genebank operations, mine allelic variations in germplasm collection, identify genetically diverse germplasm with beneficial traits, broaden the cultigen’s genepool, and accelerate the cultivar development to address new challenges to production, particularly with respect to climate change and variability. Marker-assisted breeding approaches have already been initiated for some traits in chickpea and groundnut, which should lead to enhanced efficiency and efficacy of crop improvement. Resistance to some pests and diseases has been successfully transferred from wild relatives to cultivated species.

  2. Draft genome of the medaka fish: a comprehensive resource for medaka developmental genetics and vertebrate evolutionary biology.

    Science.gov (United States)

    Takeda, Hiroyuki

    2008-06-01

    The medaka Oryzias latipes is a small egg-laying freshwater teleost, and has become an excellent model system for developmental genetics and evolutionary biology. The medaka genome is relatively small in size, approximately 800 Mb, and the genome sequencing project was recently completed by Japanese research groups, providing a high-quality draft genome sequence of the inbred Hd-rR strain of medaka. In this review, I present an overview of the medaka genome project including genome resources, followed by specific findings obtained with the medaka draft genome. In particular, I focus on the analysis that was done by taking advantage of the medaka system, such as the sex chromosome differentiation and the regional history of medaka species using single nucleotide polymorphisms as genomic markers.

  3. Detection of RNA structures in porcine EST data and related mammals

    DEFF Research Database (Denmark)

    Seemann, Ernst Stefan; Gilchrist, Michael J.; Hofacker, Ivo L.

    2007-01-01

    % porcine coding transcripts (of 18,600 identified) as well as less than one-third ORF-free transcripts are conserved at least in the closely related bovine genome. Approximately one percent of the coding and 10% of the remaining matches are unique between the PigEST data and cow genome. Based on the pig......BACKGROUND: Non-coding RNAs (ncRNAs) are involved in a wide spectrum of regulatory functions. Within recent years, there have been increasing reports of observed polyadenylated ncRNAs and mRNA like ncRNAs in eukaryotes. To investigate this further, we examined the large data set in the Sino......-cow alignments, we searched for similarities to 16 other organisms by UCSC available alignments, which resulted in a 87% coverage by the human genome for instance. CONCLUSION: Besides recovering several of the already annotated functional RNA structures, we predicted a large number of high confidence conserved...

  4. A comprehensive reference transcriptome resource for the common house spider Parasteatoda tepidariorum.

    Directory of Open Access Journals (Sweden)

    Nico Posnien

    Full Text Available Parasteatoda tepidariorum is an increasingly popular model for the study of spider development and the evolution of development more broadly. However, fully understanding the regulation and evolution of P. tepidariorum development in comparison to other animals requires a genomic perspective. Although research on P. tepidariorum has provided major new insights, gene analysis to date has been limited to candidate gene approaches. Furthermore, the few available EST collections are based on embryonic transcripts, which have not been systematically annotated and are unlikely to contain transcripts specific to post-embryonic stages of development. We therefore generated cDNA from pooled embryos representing all described embryonic stages, as well as post-embryonic stages including nymphs, larvae and adults, and using Illumina HiSeq technology obtained a total of 625,076,514 100-bp paired end reads. We combined these data with 24,360 ESTs available in GenBank, and 1,040,006 reads newly generated from 454 pyrosequencing of a mixed-stage embryo cDNA library. The combined sequence data were assembled using a custom de novo assembly strategy designed to optimize assembly product length, number of predicted transcripts, and proportion of raw reads incorporated into the assembly. The de novo assembly generated 446,427 contigs with an N50 of 1,875 bp. These sequences obtained 62,799 unique BLAST hits against the NCBI non-redundant protein data base, including putative orthologs to 8,917 Drosophila melanogaster genes based on best reciprocal BLAST hit identity compared with the D. melanogaster proteome. Finally, we explored the utility of the transcriptome for RNA-Seq studies, and showed that this resource can be used as a mapping scaffold to detect differential gene expression in different cDNA libraries. This resource will therefore provide a platform for future genomic, gene expression and functional approaches using P. tepidariorum.

  5. RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria.

    Science.gov (United States)

    Novichkov, Pavel S; Kazakov, Alexey E; Ravcheev, Dmitry A; Leyn, Semen A; Kovaleva, Galina Y; Sutormin, Roman A; Kazanov, Marat D; Riehl, William; Arkin, Adam P; Dubchak, Inna; Rodionov, Dmitry A

    2013-11-01

    Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in prokaryotes is one of the critical tasks of modern genomics. Bacteria from different taxonomic groups, whose lifestyles and natural environments are substantially different, possess highly diverged transcriptional regulatory networks. The comparative genomics approaches are useful for in silico reconstruction of bacterial regulons and networks operated by both transcription factors (TFs) and RNA regulatory elements (riboswitches). RegPrecise (http://regprecise.lbl.gov) is a web resource for collection, visualization and analysis of transcriptional regulons reconstructed by comparative genomics. We significantly expanded a reference collection of manually curated regulons we introduced earlier. RegPrecise 3.0 provides access to inferred regulatory interactions organized by phylogenetic, structural and functional properties. Taxonomy-specific collections include 781 TF regulogs inferred in more than 160 genomes representing 14 taxonomic groups of Bacteria. TF-specific collections include regulogs for a selected subset of 40 TFs reconstructed across more than 30 taxonomic lineages. Novel collections of regulons operated by RNA regulatory elements (riboswitches) include near 400 regulogs inferred in 24 bacterial lineages. RegPrecise 3.0 provides four classifications of the reference regulons implemented as controlled vocabularies: 55 TF protein families; 43 RNA motif families; ~150 biological processes or metabolic pathways; and ~200 effectors or environmental signals. Genome-wide visualization of regulatory networks and metabolic pathways covered by the reference regulons are available for all studied genomes. A separate section of RegPrecise 3.0 contains draft regulatory networks in 640 genomes obtained by an conservative propagation of the reference regulons to closely related genomes. RegPrecise 3.0 gives access to the transcriptional regulons reconstructed in

  6. Isolation of BAC Clones Containing Conserved Genes from Libraries of Three Distantly Related Moths: A Useful Resource for Comparative Genomics of Lepidoptera

    Directory of Open Access Journals (Sweden)

    Yuji Yasukochi

    2011-01-01

    Full Text Available Lepidoptera, butterflies and moths, is the second largest animal order and includes numerous agricultural pests. To facilitate comparative genomics in Lepidoptera, we isolated BAC clones containing conserved and putative single-copy genes from libraries of three pests, Heliothis virescens, Ostrinia nubilalis, and Plutella xylostella, harboring the haploid chromosome number, =31, which are not closely related with each other or with the silkworm, Bombyx mori, (=28, the sequenced model lepidopteran. A total of 108–184 clones representing 101–182 conserved genes were isolated for each species. For 79 genes, clones were isolated from more than two species, which will be useful as common markers for analysis using fluorescence in situ hybridization (FISH, as well as for comparison of genome sequence among multiple species. The PCR-based clone isolation method presented here is applicable to species which lack a sequenced genome but have a significant collection of cDNA or EST sequences.

  7. Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation

    Directory of Open Access Journals (Sweden)

    Steinmetz André

    2010-09-01

    Full Text Available Abstract Background Plants of the Huperziaceae family, which comprise the two genera Huperzia and Phlegmariurus, produce various types of lycopodium alkaloids that are used to treat a number of human ailments, such as contusions, swellings and strains. Huperzine A, which belongs to the lycodine type of lycopodium alkaloids, has been used as an anti-Alzheimer's disease drug candidate. Despite their medical importance, little genomic or transcriptomic data are available for the members of this family. We used massive parallel pyrosequencing on the Roche 454-GS FLX Titanium platform to generate a substantial EST dataset for Huperzia serrata (H. serrata and Phlegmariurus carinatus (P. carinatus as representative members of the Huperzia and Phlegmariurus genera, respectively. H. serrata and P. carinatus are important plants for research on the biosynthesis of lycopodium alkaloids. We focused on gene discovery in the areas of bioactive compound biosynthesis and transcriptional regulation as well as genetic marker detection in these species. Results For H. serrata, 36,763 unique putative transcripts were generated from 140,930 reads totaling over 57,028,559 base pairs; for P. carinatus, 31,812 unique putative transcripts were generated from 79,920 reads totaling over 30,498,684 base pairs. Using BLASTX searches of public databases, 16,274 (44.3% unique putative transcripts from H. serrata and 14,070 (44.2% from P. carinatus were assigned to at least one protein. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG orthology annotations revealed that the functions of the unique putative transcripts from these two species cover a similarly broad set of molecular functions, biological processes and biochemical pathways. In particular, a total of 20 H. serrata candidate cytochrome P450 genes, which are more abundant in leaves than in roots and might be involved in lycopodium alkaloid biosynthesis, were found based on the comparison of H

  8. Efficient Serial and Parallel Algorithms for Selection of Unique Oligos in EST Databases.

    Science.gov (United States)

    Mata-Montero, Manrique; Shalaby, Nabil; Sheppard, Bradley

    2013-01-01

    Obtaining unique oligos from an EST database is a problem of great importance in bioinformatics, particularly in the discovery of new genes and the mapping of the human genome. Many algorithms have been developed to find unique oligos, many of which are much less time consuming than the traditional brute force approach. An algorithm was presented by Zheng et al. (2004) which finds the solution of the unique oligos search problem efficiently. We implement this algorithm as well as several new algorithms based on some theorems included in this paper. We demonstrate how, with these new algorithms, we can obtain unique oligos much faster than with previous ones. We parallelize these new algorithms to further improve the time of finding unique oligos. All algorithms are run on ESTs obtained from a Barley EST database.

  9. The integrated microbial genome resource of analysis.

    Science.gov (United States)

    Checcucci, Alice; Mengoni, Alessio

    2015-01-01

    Integrated Microbial Genomes and Metagenomes (IMG) is a biocomputational system that allows to provide information and support for annotation and comparative analysis of microbial genomes and metagenomes. IMG has been developed by the US Department of Energy (DOE)-Joint Genome Institute (JGI). IMG platform contains both draft and complete genomes, sequenced by Joint Genome Institute and other public and available genomes. Genomes of strains belonging to Archaea, Bacteria, and Eukarya domains are present as well as those of viruses and plasmids. Here, we provide some essential features of IMG system and case study for pangenome analysis.

  10. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms

    Science.gov (United States)

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450

  11. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    Directory of Open Access Journals (Sweden)

    Francesca Bertolini

    Full Text Available Few studies investigated the donkey (Equus asinus at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca. The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing and Ion Torrent (RRL runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.

  12. The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations.

    Science.gov (United States)

    Keane, Michael; Craig, Thomas; Alföldi, Jessica; Berlin, Aaron M; Johnson, Jeremy; Seluanov, Andrei; Gorbunova, Vera; Di Palma, Federica; Lindblad-Toh, Kerstin; Church, George M; de Magalhães, João Pedro

    2014-12-15

    The naked mole rat (Heterocephalus glaber) is an exceptionally long-lived and cancer-resistant rodent native to East Africa. Although its genome was previously sequenced, here we report a new assembly sequenced by us with substantially higher N50 values for scaffolds and contigs. We analyzed the annotation of this new improved assembly and identified candidate genomic adaptations which may have contributed to the evolution of the naked mole rat's extraordinary traits, including in regions of p53, and the hyaluronan receptors CD44 and HMMR (RHAMM). Furthermore, we developed a freely available web portal, the Naked Mole Rat Genome Resource (http://www.naked-mole-rat.org), featuring the data and results of our analysis, to assist researchers interested in the genome and genes of the naked mole rat, and also to facilitate further studies on this fascinating species. © The Author 2014. Published by Oxford University Press.

  13. Genomic resources for a unique, low-virulence Babesia taxon from China

    Directory of Open Access Journals (Sweden)

    Guiquan Guan

    2016-10-01

    Full Text Available Abstract Background Babesiosis is a socioeconomically important tick-borne disease of animals (including humans caused by haemoprotozoan parasites. The severity of babesiosis relates to host and parasite factors, particularly virulence/pathogenicity. Although Babesia bovis is a particularly pathogenic species of cattle, there are species of Babesia of ruminants that have limited pathogenicity. For instance, the operational taxonomic unit Babesia sp. Xinjiang (abbreviated here as Bx of sheep from China is substantially less virulent/pathogenic than B. bovis is in cattle. Although the reason for this distinctiveness is presently unknown, it is possible that Bx has a reduced ability to adhere to cells or evade/suppress immune responses, which might relate to particular proteins, such as the variant erythrocyte surface antigens (VESAs. Results We sequenced and annotated the 8.4 Mb nuclear draft genome of Bx and compared it with those of B. bovis and B. bigemina by synteny analysis; we also investigated the genetic relationship of Bx with selected Babesia species and related apicomplexans for which genomic datasets are available, and explored the VESA complement in Bx. Conclusions The availability of the Bx genome now provides unique opportunities to elucidate aspects of the molecular biology, biochemistry and physiology of Bx, and to explore the reason(s for its limited virulence and/or apparent ability to evade immune attack by the host animal. Moreover, the present genomic resource and an in vitro culture system for Bx raises the prospect of establishing a functional genomic platform to explore essential genes as new intervention targets against babesiosis.

  14. Genomic resources for a unique, low-virulence Babesia taxon from China.

    Science.gov (United States)

    Guan, Guiquan; Korhonen, Pasi K; Young, Neil D; Koehler, Anson V; Wang, Tao; Li, Youquan; Liu, Zhijie; Luo, Jianxun; Yin, Hong; Gasser, Robin B

    2016-10-27

    Babesiosis is a socioeconomically important tick-borne disease of animals (including humans) caused by haemoprotozoan parasites. The severity of babesiosis relates to host and parasite factors, particularly virulence/pathogenicity. Although Babesia bovis is a particularly pathogenic species of cattle, there are species of Babesia of ruminants that have limited pathogenicity. For instance, the operational taxonomic unit Babesia sp. Xinjiang (abbreviated here as Bx) of sheep from China is substantially less virulent/pathogenic than B. bovis is in cattle. Although the reason for this distinctiveness is presently unknown, it is possible that Bx has a reduced ability to adhere to cells or evade/suppress immune responses, which might relate to particular proteins, such as the variant erythrocyte surface antigens (VESAs). We sequenced and annotated the 8.4 Mb nuclear draft genome of Bx and compared it with those of B. bovis and B. bigemina by synteny analysis; we also investigated the genetic relationship of Bx with selected Babesia species and related apicomplexans for which genomic datasets are available, and explored the VESA complement in Bx. The availability of the Bx genome now provides unique opportunities to elucidate aspects of the molecular biology, biochemistry and physiology of Bx, and to explore the reason(s) for its limited virulence and/or apparent ability to evade immune attack by the host animal. Moreover, the present genomic resource and an in vitro culture system for Bx raises the prospect of establishing a functional genomic platform to explore essential genes as new intervention targets against babesiosis.

  15. Barcode server: a visualization-based genome analysis system.

    Directory of Open Access Journals (Sweden)

    Fenglou Mao

    Full Text Available We have previously developed a computational method for representing a genome as a barcode image, which makes various genomic features visually apparent. We have demonstrated that this visual capability has made some challenging genome analysis problems relatively easy to solve. We have applied this capability to a number of challenging problems, including (a identification of horizontally transferred genes, (b identification of genomic islands with special properties and (c binning of metagenomic sequences, and achieved highly encouraging results. These application results inspired us to develop this barcode-based genome analysis server for public service, which supports the following capabilities: (a calculation of the k-mer based barcode image for a provided DNA sequence; (b detection of sequence fragments in a given genome with distinct barcodes from those of the majority of the genome, (c clustering of provided DNA sequences into groups having similar barcodes; and (d homology-based search using Blast against a genome database for any selected genomic regions deemed to have interesting barcodes. The barcode server provides a job management capability, allowing processing of a large number of analysis jobs for barcode-based comparative genome analyses. The barcode server is accessible at http://csbl1.bmb.uga.edu/Barcode.

  16. Ontology and diversity of transcript-associated microsatellites mined from a globe artichoke EST database

    Science.gov (United States)

    Scaglione, Davide; Acquadro, Alberto; Portis, Ezio; Taylor, Christopher A; Lanteri, Sergio; Knapp, Steven J

    2009-01-01

    Background The globe artichoke (Cynara cardunculus var. scolymus L.) is a significant crop in the Mediterranean basin. Despite its commercial importance and its both dietary and pharmaceutical value, knowledge of its genetics and genomics remains scant. Microsatellite markers have become a key tool in genetic and genomic analysis, and we have exploited recently acquired EST (expressed sequence tag) sequence data (Composite Genome Project - CGP) to develop an extensive set of microsatellite markers. Results A unigene assembly was created from over 36,000 globe artichoke EST sequences, containing 6,621 contigs and 12,434 singletons. Over 12,000 of these unigenes were functionally assigned on the basis of homology with Arabidopsis thaliana reference proteins. A total of 4,219 perfect repeats, located within 3,308 unigenes was identified and the gene ontology (GO) analysis highlighted some GO term's enrichments among different classes of microsatellites with respect to their position. Sufficient flanking sequence was available to enable the design of primers to amplify 2,311 of these microsatellites, and a set of 300 was tested against a DNA panel derived from 28 C. cardunculus genotypes. Consistent amplification and polymorphism was obtained from 236 of these assays. Their polymorphic information content (PIC) ranged from 0.04 to 0.90 (mean 0.66). Between 176 and 198 of the assays were informative in at least one of the three available mapping populations. Conclusion EST-based microsatellites have provided a large set of de novo genetic markers, which show significant amounts of polymorphism both between and within the three taxa of C. cardunculus. They are thus well suited as assays for phylogenetic analysis, the construction of genetic maps, marker-assisted breeding, transcript mapping and other genomic applications in the species. PMID:19785740

  17. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus

    Science.gov (United States)

    Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10–56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa. PMID:26695430

  18. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus.

    Directory of Open Access Journals (Sweden)

    Fagen Li

    Full Text Available Dense genetic maps, along with quantitative trait loci (QTLs detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR, expressed sequence tag (EST derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS, and diversity arrays technology (DArT markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus and with the E. grandis genome sequence. Fifty-three QTLs for growth (10-56 months of age and wood density (56 months were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa.

  19. Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources

    Directory of Open Access Journals (Sweden)

    Waugh Robbie

    2010-12-01

    Full Text Available Abstract Background Because of its size, allohexaploid nature and high repeat content, the wheat genome has always been perceived as too complex for efficient molecular studies. We recently constructed the first physical map of a wheat chromosome (3B. However gene mapping is still laborious in wheat because of high redundancy between the three homoeologous genomes. In contrast, in the closely related diploid species, barley, numerous gene-based markers have been developed. This study aims at combining the unique genomic resources developed in wheat and barley to decipher the organisation of gene space on wheat chromosome 3B. Results Three dimensional pools of the minimal tiling path of wheat chromosome 3B physical map were hybridised to a barley Agilent 15K expression microarray. This led to the fine mapping of 738 barley orthologous genes on wheat chromosome 3B. In addition, comparative analyses revealed that 68% of the genes identified were syntenic between the wheat chromosome 3B and barley chromosome 3 H and 59% between wheat chromosome 3B and rice chromosome 1, together with some wheat-specific rearrangements. Finally, it indicated an increasing gradient of gene density from the centromere to the telomeres positively correlated with the number of genes clustered in islands on wheat chromosome 3B. Conclusion Our study shows that novel structural genomics resources now available in wheat and barley can be combined efficiently to overcome specific problems of genetic anchoring of physical contigs in wheat and to perform high-resolution comparative analyses with rice for deciphering the organisation of the wheat gene space.

  20. EuGI: a novel resource for studying genomic islands to facilitate horizontal gene transfer detection in eukaryotes.

    Science.gov (United States)

    Clasen, Frederick Johannes; Pierneef, Rian Ewald; Slippers, Bernard; Reva, Oleg

    2018-05-03

    Genomic islands (GIs) are inserts of foreign DNA that have potentially arisen through horizontal gene transfer (HGT). There are evidences that GIs can contribute significantly to the evolution of prokaryotes. The acquisition of GIs through HGT in eukaryotes has, however, been largely unexplored. In this study, the previously developed GI prediction tool, SeqWord Gene Island Sniffer (SWGIS), is modified to predict GIs in eukaryotic chromosomes. Artificial simulations are used to estimate ratios of predicting false positive and false negative GIs by inserting GIs into different test chromosomes and performing the SWGIS v2.0 algorithm. Using SWGIS v2.0, GIs are then identified in 36 fungal, 22 protozoan and 8 invertebrate genomes. SWGIS v2.0 predicts GIs in large eukaryotic chromosomes based on the atypical nucleotide composition of these regions. Averages for predicting false negative and false positive GIs were 20.1% and 11.01% respectively. A total of 10,550 GIs were identified in 66 eukaryotic species with 5299 of these GIs coding for at least one functional protein. The EuGI web-resource, freely accessible at http://eugi.bi.up.ac.za , was developed that allows browsing the database created from identified GIs and genes within GIs through an interactive and visual interface. SWGIS v2.0 along with the EuGI database, which houses GIs identified in 66 different eukaryotic species, and the EuGI web-resource, provide the first comprehensive resource for studying HGT in eukaryotes.

  1. Limited resources of genome sequencing in developing countries: Challenges and solutions

    Directory of Open Access Journals (Sweden)

    Mohamed Helmy

    2016-06-01

    Full Text Available The differences between countries in national income, growth, human development and many other factors are used to classify countries into developed and developing countries. There are several classification systems that use different sets of measures and criteria. The most common classifications are the United Nations (UN and the World Bank (WB systems. The UN classification system uses the UN Human Development Index (HDI, an indicator that uses statistic of life expectancy, education, and income per capita for countries' classification. While the WB system uses gross national income (GNI per capita that is calculated using the World Bank Atlas method. According to the UN and WB classification systems, there are 151 and 134 developing countries, respectively, with 89% overlap between the two systems. Developing countries have limited human development, and limited expenditure in education and research, among several other limitations. The biggest challenge facing genomic researchers and clinicians is limited resources. As a result, genomic tools, specifically genome sequencing technologies, which are rapidly becoming indispensable, are not widely available. In this report, we explore the current status of sequencing technologies in developing countries, describe the associated challenges and emphasize potential solutions.

  2. MicroScope-an integrated resource for community expertise of gene functions and comparative analysis of microbial genomic and metabolic data.

    Science.gov (United States)

    Médigue, Claudine; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Gautreau, Guillaume; Josso, Adrien; Lajus, Aurélie; Langlois, Jordan; Pereira, Hugo; Planel, Rémi; Roche, David; Rollin, Johan; Rouy, Zoe; Vallenet, David

    2017-09-12

    The overwhelming list of new bacterial genomes becoming available on a daily basis makes accurate genome annotation an essential step that ultimately determines the relevance of thousands of genomes stored in public databanks. The MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Starting from the results of our syntactic, functional and relational annotation pipelines, MicroScope provides an integrated environment for the expert annotation and comparative analysis of prokaryotic genomes. It combines tools and graphical interfaces to analyze genomes and to perform the manual curation of gene function in a comparative genomics and metabolic context. In this article, we describe the free-of-charge MicroScope services for the annotation and analysis of microbial (meta)genomes, transcriptomic and re-sequencing data. Then, the functionalities of the platform are presented in a way providing practical guidance and help to the nonspecialists in bioinformatics. Newly integrated analysis tools (i.e. prediction of virulence and resistance genes in bacterial genomes) and original method recently developed (the pan-genome graph representation) are also described. Integrated environments such as MicroScope clearly contribute, through the user community, to help maintaining accurate resources. © The Author 2017. Published by Oxford University Press.

  3. KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Jouraku, Akiya; Yamamoto, Kimiko; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Narukawa, Junko; Miyamoto, Kazuhisa; Kurita, Kanako; Kanamori, Hiroyuki; Katayose, Yuichi; Matsumoto, Takashi; Noda, Hiroaki

    2013-07-09

    The diamondback moth (DBM), Plutella xylostella, is one of the most harmful insect pests for crucifer crops worldwide. DBM has rapidly evolved high resistance to most conventional insecticides such as pyrethroids, organophosphates, fipronil, spinosad, Bacillus thuringiensis, and diamides. Therefore, it is important to develop genomic and transcriptomic DBM resources for analysis of genes related to insecticide resistance, both to clarify the mechanism of resistance of DBM and to facilitate the development of insecticides with a novel mode of action for more effective and environmentally less harmful insecticide rotation. To contribute to this goal, we developed KONAGAbase, a genomic and transcriptomic database for DBM (KONAGA is the Japanese word for DBM). KONAGAbase provides (1) transcriptomic sequences of 37,340 ESTs/mRNAs and 147,370 RNA-seq contigs which were clustered and assembled into 84,570 unigenes (30,695 contigs, 50,548 pseudo singletons, and 3,327 singletons); and (2) genomic sequences of 88,530 WGS contigs with 246,244 degenerate contigs and 106,455 singletons from which 6,310 de novo identified repeat sequences and 34,890 predicted gene-coding sequences were extracted. The unigenes and predicted gene-coding sequences were clustered and 32,800 representative sequences were extracted as a comprehensive putative gene set. These sequences were annotated with BLAST descriptions, Gene Ontology (GO) terms, and Pfam descriptions, respectively. KONAGAbase contains rich graphical user interface (GUI)-based web interfaces for easy and efficient searching, browsing, and downloading sequences and annotation data. Five useful search interfaces consisting of BLAST search, keyword search, BLAST result-based search, GO tree-based search, and genome browser are provided. KONAGAbase is publicly available from our website (http://dbm.dna.affrc.go.jp/px/) through standard web browsers. KONAGAbase provides DBM comprehensive transcriptomic and draft genomic sequences with

  4. Base-By-Base: single nucleotide-level analysis of whole viral genome alignments.

    Science.gov (United States)

    Brodie, Ryan; Smith, Alex J; Roper, Rachel L; Tcherepanov, Vasily; Upton, Chris

    2004-07-14

    With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes) is not feasible without new bioinformatics tools. A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1) rapidly identify and correct alignment errors in large, multiple genome alignments; and 2) generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs) to retrieve detailed annotation information about the aligned genomes or use information from text files. Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.

  5. The cacao Criollo genome v2.0: an improved version of the genome for genetic and functional genomic studies.

    Science.gov (United States)

    Argout, X; Martin, G; Droc, G; Fouet, O; Labadie, K; Rivals, E; Aury, J M; Lanaud, C

    2017-09-15

    Theobroma cacao L., native to the Amazonian basin of South America, is an economically important fruit tree crop for tropical countries as a source of chocolate. The first draft genome of the species, from a Criollo cultivar, was published in 2011. Although a useful resource, some improvements are possible, including identifying misassemblies, reducing the number of scaffolds and gaps, and anchoring un-anchored sequences to the 10 chromosomes. We used a NGS-based approach to significantly improve the assembly of the Belizian Criollo B97-61/B2 genome. We combined four Illumina large insert size mate paired libraries with 52x of Pacific Biosciences long reads to correct misassembled regions and reduced the number of scaffolds. We then used genotyping by sequencing (GBS) methods to increase the proportion of the assembly anchored to chromosomes. The scaffold number decreased from 4,792 in assembly V1 to 554 in V2 while the scaffold N50 size has increased from 0.47 Mb in V1 to 6.5 Mb in V2. A total of 96.7% of the assembly was anchored to the 10 chromosomes compared to 66.8% in the previous version. Unknown sites (Ns) were reduced from 10.8% to 5.7%. In addition, we updated the functional annotations and performed a new RefSeq structural annotation based on RNAseq evidence. Theobroma cacao Criollo genome version 2 will be a valuable resource for the investigation of complex traits at the genomic level and for future comparative genomics and genetics studies in cacao tree. New functional tools and annotations are available on the Cocoa Genome Hub ( http://cocoa-genome-hub.southgreen.fr ).

  6. The Sequenced Angiosperm Genomes and Genome Databases.

    Science.gov (United States)

    Chen, Fei; Dong, Wei; Zhang, Jiawei; Guo, Xinyue; Chen, Junhao; Wang, Zhengjia; Lin, Zhenguo; Tang, Haibao; Zhang, Liangsheng

    2018-01-01

    Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive review for three major types of angiosperm genome databases, including databases for a single species, for a specific angiosperm clade, and for multiple angiosperm species. The scope, tools, and data of each type of databases and their features are concisely discussed. The genome databases for a single species or a clade of species are especially popular for specific group of researchers, while a timely-updated comprehensive database is more powerful for address of major scientific mysteries at the genome scale. Considering the low coverage of flowering plants in any available database, we propose construction of a comprehensive database to facilitate large-scale comparative studies of angiosperm genomes and to promote the collaborative studies of important questions in plant biology.

  7. Current Knowledge in lentil genomics and its application for crop improvement

    Directory of Open Access Journals (Sweden)

    Shiv eKumar

    2015-02-01

    Full Text Available Most of the lentil growing countries face a certain set of abiotic and biotic stresses causing substantial reduction in crop growth, yield, and production. Until-to date, lentil breeders have used conventional plant breeding techniques of selection-recombination-selection cycle to develop improved cultivars. These techniques have been successful in mainstreaming some of the easy-to-manage monogenic traits. However in case of complex quantitative traits, these conventional techniques are less precise. As most of the economic traits are complex, quantitative and often influenced by environments and genotype-environment (GE interaction, the genetic improvement of these traits becomes difficult. Genomics assisted breeding is relatively powerful and fast approach to develop high yielding varieties more suitable to adverse environmental conditions. New tools such as molecular markers and bioinformatics are expected to generate new knowledge and improve our understanding on the genetics of complex traits. In the past, the limited availability of genomic resources in lentil could not allow breeders to employ these tools in mainstream breeding program. The recent application of the Next Generation Sequencing (NGS and Genotyping by sequencing (GBS technologies has facilitated to speed up the lentil genome sequencing project and large discovery of genome-wide SNP markers. Recently, several linkage maps have been developed in lentil through the use of Expressed Sequenced Tag (EST-derived Simple Sequence Repeat (SSR and Single Nucleotide Polymorphism (SNP markers. These maps have emerged as useful genomic resources to identify QTL imparting tolerance to biotic and abiotic stresses in lentil. In this review, the current knowledge on available genomic resources and its application in lentil breeding program are discussed.

  8. A web accessible resource for investigating cassava phenomics and genomics information: BIOGEN BASE.

    Science.gov (United States)

    Jayakodi, Murukarthick; Selvan, Sreedevi Ghokhilamani; Natesan, Senthil; Muthurajan, Raveendran; Duraisamy, Raghu; Ramineni, Jana Jeevan; Rathinasamy, Sakthi Ambothi; Karuppusamy, Nageswari; Lakshmanan, Pugalenthi; Chokkappan, Mohan

    2011-01-01

    The goal of our research is to establish a unique portal to bring out the potential outcome of the research in the Casssava crop. The Biogen base for cassava clearly brings out the variations of different traits of the germplasms, maintained at the Tapioca and Castor Research Station, Tamil Nadu Agricultural University. Phenotypic and genotypic variations of the accessions are clearly depicted, for the users to browse and interpret the variations using the microsatellite markers. Database (BIOGEN BASE - CASSAVA) is designed using PHP and MySQL and is equipped with extensive search options. It is more user-friendly and made publicly available, to improve the research and development of cassava by making a wealth of genetics and genomics data available through open, common, and worldwide forum for all individuals interested in the field. The database is available for free at http://www.tnaugenomics.com/biogenbase/casava.php.

  9. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform

    OpenAIRE

    Wenning Zheng; Naresh V.R. Mutha; Hamed Heydari; Avirup Dutta; Cheuk Chuen Siow; Nicholas S. Jakubovics; Wei Yee Wee; Shi Yang Tan; Mia Yang Ang; Guat Jah Wong; Siew Woh Choo

    2016-01-01

    Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genome...

  10. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Science.gov (United States)

    Talukder, Shyamal K.; Saha, Malay C.

    2017-01-01

    Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder. PMID:28798766

  11. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Directory of Open Access Journals (Sweden)

    Shyamal K. Talukder

    2017-07-01

    Full Text Available Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs. Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.

  12. Optimizing the allocation of resources for genomic selection in one breeding cycle.

    Science.gov (United States)

    Riedelsheimer, Christian; Melchinger, Albrecht E

    2013-11-01

    We developed a universally applicable planning tool for optimizing the allocation of resources for one cycle of genomic selection in a biparental population. The framework combines selection theory with constraint numerical optimization and considers genotype  ×  environment interactions. Genomic selection (GS) is increasingly implemented in plant breeding programs to increase selection gain but little is known how to optimally allocate the resources under a given budget. We investigated this problem with model calculations by combining quantitative genetic selection theory with constraint numerical optimization. We assumed one selection cycle where both the training and prediction sets comprised double haploid (DH) lines from the same biparental population. Grain yield for testcrosses of maize DH lines was used as a model trait but all parameters can be adjusted in a freely available software implementation. An extension of the expected selection accuracy given by Daetwyler et al. (2008) was developed to correctly balance between the number of environments for phenotyping the training set and its population size in the presence of genotype × environment interactions. Under small budget, genotyping costs mainly determine whether GS is superior over phenotypic selection. With increasing budget, flexibility in resource allocation increases greatly but selection gain leveled off quickly requiring balancing the number of populations with the budget spent for each population. The use of an index combining phenotypic and GS predicted values in the training set was especially beneficial under limited resources and large genotype × environment interactions. Once a sufficiently high selection accuracy is achieved in the prediction set, further selection gain can be achieved most efficiently by massively expanding its size. Thus, with increasing budget, reducing the costs for producing a DH line becomes increasingly crucial for successfully exploiting the

  13. Base-By-Base: Single nucleotide-level analysis of whole viral genome alignments

    Directory of Open Access Journals (Sweden)

    Tcherepanov Vasily

    2004-07-01

    Full Text Available Abstract Background With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes is not feasible without new bioinformatics tools. Results A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1 rapidly identify and correct alignment errors in large, multiple genome alignments; and 2 generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs to retrieve detailed annotation information about the aligned genomes or use information from text files. Conclusion Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.

  14. Annotated ESTs from various tissues of the brown planthopper Nilaparvata lugens: A genomic resource for studying agricultural pests

    OpenAIRE

    Zhang Qiang; Matsui Kageaki; Koizumi Yoko; Kawai Sawako; Noda Hiroaki; Furukawa Shigetoyo; Shimomura Michihiko; Mita Kazuei

    2008-01-01

    Abstract Background The brown planthopper (BPH), Nilaparvata lugens (Hemiptera, Delphacidae), is a serious insect pests of rice plants. Major means of BPH control are application of agricultural chemicals and cultivation of BPH resistant rice varieties. Nevertheless, BPH strains that are resistant to agricultural chemicals have developed, and BPH strains have appeared that are virulent against the resistant rice varieties. Expressed sequence tag (EST) analysis and related applications are use...

  15. Comparative Genomics in Switchgrass Using 61,585 High-Quality Expressed Sequence Tags

    Directory of Open Access Journals (Sweden)

    Christian M. Tobias

    2008-11-01

    Full Text Available The development of genomic resources for switchgrass ( L., a perennial NAD-malic enzyme type C grass, is required to enable molecular breeding and biotechnological approaches for improving its value as a forage and bioenergy crop. Expressed sequence tag (EST sequencing is one method that can quickly sample gene inventories and produce data suitable for marker development or analysis of tissue-specific patterns of expression. Toward this goal, three cDNA libraries from callus, crown, and seedling tissues of ‘Kanlow’ switchgrass were end-sequenced to generate a total of 61,585 high-quality ESTs from 36,565 separate clones. Seventy-three percent of the assembled consensus sequences could be aligned with the sorghum [ (L. Moench] genome at a -value of <1 × 10, indicating a high degree of similarity. Sixty-five percent of the ESTs matched with gene ontology molecular terms, and 3.3% of the sequences were matched with genes that play potential roles in cell-wall biogenesis. The representation in the three libraries of gene families known to be associated with C photosynthesis, cellulose and β-glucan synthesis, phenylpropanoid biosynthesis, and peroxidase activity indicated likely roles for individual family members. Pairwise comparisons of synonymous codon substitutions were used to assess genome sequence diversity and indicated an overall similarity between the two genome copies present in the tetraploid. Identification of EST–simple sequence repeat markers and amplification on two individual parents of a mapping population yielded an average of 2.18 amplicons per individual, and 35% of the markers produced fragment length polymorphisms.

  16. Ensembl Genomes 2013: scaling up access to genome-wide data.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Hughes, Daniel Seth Toney; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Langridge, Nicholas; McDowall, Mark D; Maheswari, Uma; Maslen, Gareth; Nuhn, Michael; Ong, Chuang Kee; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Tuli, Mary Ann; Walts, Brandon; Williams, Gareth; Wilson, Derek; Youens-Clark, Ken; Monaco, Marcela K; Stein, Joshua; Wei, Xuehong; Ware, Doreen; Bolser, Daniel M; Howe, Kevin Lee; Kulesha, Eugene; Lawson, Daniel; Staines, Daniel Michael

    2014-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.

  17. Genomic analysis of expressed sequence tags in American black bear Ursus americanus

    Science.gov (United States)

    2010-01-01

    Background Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). Results Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. Conclusion We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes. PMID:20338065

  18. Genomic analysis of expressed sequence tags in American black bear Ursus americanus.

    Science.gov (United States)

    Zhao, Sen; Shao, Chunxuan; Goropashnaya, Anna V; Stewart, Nathan C; Xu, Yichi; Tøien, Øivind; Barnes, Brian M; Fedorov, Vadim B; Yan, Jun

    2010-03-26

    Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes.

  19. Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.

    Directory of Open Access Journals (Sweden)

    Zhao Yongli

    2012-12-01

    Full Text Available Abstract Background Date palm (Phoenix dactylifera L. is an important tree in the Middle East and North Africa due to the nutritional value of its fruit. Molecular Breeding would accelerate genetic improvement of fruit tree through marker assisted selection. However, the lack of molecular markers in date palm restricts the application of molecular breeding. Results In this study, we analyzed 28,889 EST sequences from the date palm genome database to identify simple-sequence repeats (SSRs and to develop gene-based markers, i.e. expressed sequence tag-SSRs (EST-SSRs. We identified 4,609 ESTs as containing SSRs, among which, trinucleotide motifs (69.7% were the most common, followed by tetranucleotide (10.4% and dinucleotide motifs (9.6%. The motif AG (85.7% was most abundant in dinucleotides, while motifs AGG (26.8%, AAG (19.3%, and AGC (16.1% were most common among trinucleotides. A total of 4,967 primer pairs were designed for EST-SSR markers from the computational data. In a follow up laboratory study, we tested a sample of 20 random selected primer pairs for amplification and polymorphism detection using genomic DNA from date palm cultivars. Nearly one-third of these primer pairs detected DNA polymorphism to differentiate the twelve date palm cultivars used. Functional categorization of EST sequences containing SSRs revealed that 3,108 (67.4% of such ESTs had homology with known proteins. Conclusion Date palm EST sequences exhibits a good resource for developing gene-based markers. These genic markers identified in our study may provide a valuable genetic and genomic tool for further genetic research and varietal development in date palm, such as diversity study, QTL mapping, and molecular breeding.

  20. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases.

    Science.gov (United States)

    Periwal, Vinita

    2017-07-01

    Genome editing with engineered nucleases (zinc finger nucleases, TAL effector nucleases s and Clustered regularly inter-spaced short palindromic repeats/CRISPR-associated) has recently been shown to have great promise in a variety of therapeutic and biotechnological applications. However, their exploitation in genetic analysis and clinical settings largely depends on their specificity for the intended genomic target. Large and complex genomes often contain highly homologous/repetitive sequences, which limits the specificity of genome editing tools and could result in off-target activity. Over the past few years, various computational approaches have been developed to assist the design process and predict/reduce the off-target activity of these nucleases. These tools could be efficiently used to guide the design of constructs for engineered nucleases and evaluate results after genome editing. This review provides a comprehensive overview of various databases, tools, web servers and resources for genome editing and compares their features and functionalities. Additionally, it also describes tools that have been developed to analyse post-genome editing results. The article also discusses important design parameters that could be considered while designing these nucleases. This review is intended to be a quick reference guide for experimentalists as well as computational biologists working in the field of genome editing with engineered nucleases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Science.gov (United States)

    2011-01-01

    Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar

  2. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Directory of Open Access Journals (Sweden)

    Wynhoven Brian

    2011-03-01

    Full Text Available Abstract Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt, we have generated Expressed Sequence Tags (ESTs by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores and asexual (germinated urediniospores stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum, 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs. Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt and stripe rust, P. striiformis f. sp

  3. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource for plant genomics

    Science.gov (United States)

    Schoof, Heiko; Ernst, Rebecca; Nazarov, Vladimir; Pfeifer, Lukas; Mewes, Hans-Werner; Mayer, Klaus F. X.

    2004-01-01

    Arabidopsis thaliana is the most widely studied model plant. Functional genomics is intensively underway in many laboratories worldwide. Beyond the basic annotation of the primary sequence data, the annotated genetic elements of Arabidopsis must be linked to diverse biological data and higher order information such as metabolic or regulatory pathways. The MIPS Arabidopsis thaliana database MAtDB aims to provide a comprehensive resource for Arabidopsis as a genome model that serves as a primary reference for research in plants and is suitable for transfer of knowledge to other plants, especially crops. The genome sequence as a common backbone serves as a scaffold for the integration of data, while, in a complementary effort, these data are enhanced through the application of state-of-the-art bioinformatics tools. This information is visualized on a genome-wide and a gene-by-gene basis with access both for web users and applications. This report updates the information given in a previous report and provides an outlook on further developments. The MAtDB web interface can be accessed at http://mips.gsf.de/proj/thal/db. PMID:14681437

  4. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome.

    Science.gov (United States)

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-06-15

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.

  5. Expressed Sequence Tag-Simple Sequence Repeat (EST-SSR Marker Resources for Diversity Analysis of Mango (Mangifera indica L.

    Directory of Open Access Journals (Sweden)

    Natalie L. Dillon

    2014-01-01

    Full Text Available In this study, a collection of 24,840 expressed sequence tags (ESTs generated from five mango (Mangifera indica L. cDNA libraries was mined for EST-based simple sequence repeat (SSR markers. Over 1,000 ESTs with SSR motifs were detected from more than 24,000 EST sequences with di- and tri-nucleotide repeat motifs the most abundant. Of these, 25 EST-SSRs in genes involved in plant development, stress response, and fruit color and flavor development pathways were selected, developed into PCR markers and characterized in a population of 32 mango selections including M. indica varieties, and related Mangifera species. Twenty-four of the 25 EST-SSR markers exhibited polymorphisms, identifying a total of 86 alleles with an average of 5.38 alleles per locus, and distinguished between all Mangifera selections. Private alleles were identified for Mangifera species. These newly developed EST-SSR markers enhance the current 11 SSR mango genetic identity panel utilized by the Australian Mango Breeding Program. The current panel has been used to identify progeny and parents for selection and the application of this extended panel will further improve and help to design mango hybridization strategies for increased breeding efficiency.

  6. Peanut (Arachis hypogaea Expressed Sequence Tag Project: Progress and Application

    Directory of Open Access Journals (Sweden)

    Suping Feng

    2012-01-01

    Full Text Available Many plant ESTs have been sequenced as an alternative to whole genome sequences, including peanut because of the genome size and complexity. The US peanut research community had the historic 2004 Atlanta Genomics Workshop and named the EST project as a main priority. As of August 2011, the peanut research community had deposited 252,832 ESTs in the public NCBI EST database, and this resource has been providing the community valuable tools and core foundations for various genome-scale experiments before the whole genome sequencing project. These EST resources have been used for marker development, gene cloning, microarray gene expression and genetic map construction. Certainly, the peanut EST sequence resources have been shown to have a wide range of applications and accomplished its essential role at the time of need. Then the EST project contributes to the second historic event, the Peanut Genome Project 2010 Inaugural Meeting also held in Atlanta where it was decided to sequence the entire peanut genome. After the completion of peanut whole genome sequencing, ESTs or transcriptome will continue to play an important role to fill in knowledge gaps, to identify particular genes and to explore gene function.

  7. A resource of genome-wide single-nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel

    DEFF Research Database (Denmark)

    Pujolar, J.M.; Jacobsen, M.W.; Frydenberg, J.

    2013-01-01

    Reduced representation genome sequencing such as restriction-site-associated DNA (RAD) sequencing is finding increased use to identify and genotype large numbers of single-nucleotide polymorphisms (SNPs) in model and nonmodel species. We generated a unique resource of novel SNP markers for the Eu...... 425 loci and 376 918 associated SNPs provides a valuable tool for future population genetics and genomics studies and allows for targeting specific genes and particularly interesting regions of the eel genome...

  8. CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L. methylation filtered genomic genespace sequences

    Directory of Open Access Journals (Sweden)

    Spraggins Thomas A

    2007-04-01

    Full Text Available Abstract Background Cowpea [Vigna unguiculata (L. Walp.] is one of the most important food and forage legumes in the semi-arid tropics because of its ability to tolerate drought and grow on poor soils. It is cultivated mostly by poor farmers in developing countries, with 80% of production taking place in the dry savannah of tropical West and Central Africa. Cowpea is largely an underexploited crop with relatively little genomic information available for use in applied plant breeding. The goal of the Cowpea Genomics Initiative (CGI, funded by the Kirkhouse Trust, a UK-based charitable organization, is to leverage modern molecular genetic tools for gene discovery and cowpea improvement. One aspect of the initiative is the sequencing of the gene-rich region of the cowpea genome (termed the genespace recovered using methylation filtration technology and providing annotation and analysis of the sequence data. Description CGKB, Cowpea Genespace/Genomics Knowledge Base, is an annotation knowledge base developed under the CGI. The database is based on information derived from 298,848 cowpea genespace sequences (GSS isolated by methylation filtering of genomic DNA. The CGKB consists of three knowledge bases: GSS annotation and comparative genomics knowledge base, GSS enzyme and metabolic pathway knowledge base, and GSS simple sequence repeats (SSRs knowledge base for molecular marker discovery. A homology-based approach was applied for annotations of the GSS, mainly using BLASTX against four public FASTA formatted protein databases (NCBI GenBank Proteins, UniProtKB-Swiss-Prot, UniprotKB-PIR (Protein Information Resource, and UniProtKB-TrEMBL. Comparative genome analysis was done by BLASTX searches of the cowpea GSS against four plant proteomes from Arabidopsis thaliana, Oryza sativa, Medicago truncatula, and Populus trichocarpa. The possible exons and introns on each cowpea GSS were predicted using the HMM-based Genscan gene predication program and the

  9. Draft genome of the lined seahorse, Hippocampus erectus.

    Science.gov (United States)

    Lin, Qiang; Qiu, Ying; Gu, Ruobo; Xu, Meng; Li, Jia; Bian, Chao; Zhang, Huixian; Qin, Geng; Zhang, Yanhong; Luo, Wei; Chen, Jieming; You, Xinxin; Fan, Mingjun; Sun, Min; Xu, Pao; Venkatesh, Byrappa; Xu, Junming; Fu, Hongtuo; Shi, Qiong

    2017-06-01

    The lined seahorse, Hippocampus erectus , is an Atlantic species and mainly inhabits shallow sea beds or coral reefs. It has become very popular in China for its wide use in traditional Chinese medicine. In order to improve the aquaculture yield of this valuable fish species, we are trying to develop genomic resources for assistant selection in genetic breeding. Here, we provide whole genome sequencing, assembly, and gene annotation of the lined seahorse, which can enrich genome resource and further application for its molecular breeding. A total of 174.6 Gb (Gigabase) raw DNA sequences were generated by the Illumina Hiseq2500 platform. The final assembly of the lined seahorse genome is around 458 Mb, representing 94% of the estimated genome size (489 Mb by k-mer analysis). The contig N50 and scaffold N50 reached 14.57 kb and 1.97 Mb, respectively. Quality of the assembled genome was assessed by BUSCO with prediction of 85% of the known vertebrate genes and evaluated using the de novo assembled RNA-seq transcripts to prove a high mapping ratio (more than 99% transcripts could be mapped to the assembly). Using homology-based, de novo and transcriptome-based prediction methods, we predicted 20 788 protein-coding genes in the generated assembly, which is less than our previously reported gene number (23 458) of the tiger tail seahorse ( H. comes ). We report a draft genome of the lined seahorse. These generated genomic data are going to enrich genome resource of this economically important fish, and also provide insights into the genetic mechanisms of its iconic morphology and male pregnancy behavior. © The Authors 2017. Published by Oxford University Press.

  10. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime

    2015-11-18

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a textbased browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  11. The Genome Atlas Resource

    DEFF Research Database (Denmark)

    Azam Qureshi, Matloob; Rotenberg, Eva; Stærfeldt, Hans Henrik

    2010-01-01

    with scripts and algorithms developed in a variety of programming languages at the Centre for Biological Sequence Analysis in order to create a three-tier software application for genome analysis. The results are made available via a web interface developed in Java, PHP and Perl CGI. User...

  12. Genetic diversity in soybean germplasm identified by SSR and EST-SSR markers Diversidade genética em germoplasma de soja identificada por marcadores SSR e EST-SSR

    Directory of Open Access Journals (Sweden)

    Bruno Mello Mulato

    2010-03-01

    Full Text Available The objectives of this work were to investigate the genetic variation in 79 soybean (Glycine max accessions from different regions of the world, to cluster the accessions based on their similarity, and to test the correlation between the two types of markers used. Simple sequence repeat markers present in genomic (SSR and in expressed regions (EST-SSR were used. Thirty SSR primer-pairs were selected (20 genomic and 10 EST-SSR based on their distribution on the 20 genetic linkage groups of soybean, on their trinucleotide repetition unit and on their polymorphism information content. All analyzed loci were polymorphic, and 259 alleles were found. The number of alleles per locus varied from 2-21, with an average of 8.63. The accessions exhibit a significant number of rare alleles, with genotypes 19, 35, 63 and 65 carrying the greater number of exclusive alleles. Accessions 75 and 79 were the most similar and accessions 31 and 35, and 40 and 78, were the most divergent ones. A low correlation between SSR and EST-SSR data was observed, thus genomic and expressed microsatellite markers are required for an appropriate analysis of genetic diversity in soybean. The genetic diversity observed was high and allowed the formation of five groups and several subgroups. A moderate relationship between genetic divergence and geographic origin of accessions was observed.Os objetivos deste trabalho foram avaliar a diversidade genética de 79 acessos de soja de diferentes regiões do mundo, agrupá-los de acordo com a similaridade e testar a correlação entre os dois tipos de marcadores utilizados. Foram utilizados marcadores microssatélites genômicos (SSR e funcionais (EST-SSR. Trinta pares de primers SSR foram selecionados (20 genômicos e 10 EST-SSR de acordo com sua distribuição nos 20 grupos de ligação da soja, com sua unidade de repetição trinucleotídica e com seu conteúdo de informação polimórfica. Todos os lócus analisados foram polim

  13. Human Ageing Genomic Resources: Integrated databases and tools for the biology and genetics of ageing

    Science.gov (United States)

    Tacutu, Robi; Craig, Thomas; Budovsky, Arie; Wuttke, Daniel; Lehmann, Gilad; Taranukha, Dmitri; Costa, Joana; Fraifeld, Vadim E.; de Magalhães, João Pedro

    2013-01-01

    The Human Ageing Genomic Resources (HAGR, http://genomics.senescence.info) is a freely available online collection of research databases and tools for the biology and genetics of ageing. HAGR features now several databases with high-quality manually curated data: (i) GenAge, a database of genes associated with ageing in humans and model organisms; (ii) AnAge, an extensive collection of longevity records and complementary traits for >4000 vertebrate species; and (iii) GenDR, a newly incorporated database, containing both gene mutations that interfere with dietary restriction-mediated lifespan extension and consistent gene expression changes induced by dietary restriction. Since its creation about 10 years ago, major efforts have been undertaken to maintain the quality of data in HAGR, while further continuing to develop, improve and extend it. This article briefly describes the content of HAGR and details the major updates since its previous publications, in terms of both structure and content. The completely redesigned interface, more intuitive and more integrative of HAGR resources, is also presented. Altogether, we hope that through its improvements, the current version of HAGR will continue to provide users with the most comprehensive and accessible resources available today in the field of biogerontology. PMID:23193293

  14. Annotation of novel neuropeptide precursors in the migratory locust based on transcript screening of a public EST database and mass spectrometry

    Directory of Open Access Journals (Sweden)

    De Loof Arnold

    2006-08-01

    Full Text Available Abstract Background For holometabolous insects there has been an explosion of proteomic and peptidomic information thanks to large genome sequencing projects. Heterometabolous insects, although comprising many important species, have been far less studied. The migratory locust Locusta migratoria, a heterometabolous insect, is one of the most infamous agricultural pests. They undergo a well-known and profound phase transition from the relatively harmless solitary form to a ferocious gregarious form. The underlying regulatory mechanisms of this phase transition are not fully understood, but it is undoubtedly that neuropeptides are involved. However, neuropeptide research in locusts is hampered by the absence of genomic information. Results Recently, EST (Expressed Sequence Tag databases from Locusta migratoria were constructed. Using bioinformatical tools, we searched these EST databases specifically for neuropeptide precursors. Based on known locust neuropeptide sequences, we confirmed the sequence of several previously identified neuropeptide precursors (i.e. pacifastin-related peptides, which consolidated our method. In addition, we found two novel neuroparsin precursors and annotated the hitherto unknown tachykinin precursor. Besides one of the known tachykinin peptides, this EST contained an additional tachykinin-like sequence. Using neuropeptide precursors from Drosophila melanogaster as a query, we succeeded in annotating the Locusta neuropeptide F, allatostatin-C and ecdysis-triggering hormone precursor, which until now had not been identified in locusts or in any other heterometabolous insect. For the tachykinin precursor, the ecdysis-triggering hormone precursor and the allatostatin-C precursor, translation of the predicted neuropeptides in neural tissues was confirmed with mass spectrometric techniques. Conclusion In this study we describe the annotation of 6 novel neuropeptide precursors and the neuropeptides they encode from the

  15. Phytozome Comparative Plant Genomics Portal

    Energy Technology Data Exchange (ETDEWEB)

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  16. Genome Improvement at JGI-HAGSC

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, Jane; Schmutz, Jeremy J.; Myers, Richard M.

    2012-03-03

    Since the completion of the sequencing of the human genome, the Joint Genome Institute (JGI) has rapidly expanded its scientific goals in several DOE mission-relevant areas. At the JGI-HAGSC, we have kept pace with this rapid expansion of projects with our focus on assessing, assembling, improving and finishing eukaryotic whole genome shotgun (WGS) projects for which the shotgun sequence is generated at the Production Genomic Facility (JGI-PGF). We follow this by combining the draft WGS with genomic resources generated at JGI-HAGSC or in collaborator laboratories (including BAC end sequences, genetic maps and FLcDNA sequences) to produce an improved draft sequence. For eukaryotic genomes important to the DOE mission, we then add further information from directed experiments to produce reference genomic sequences that are publicly available for any scientific researcher. Also, we have continued our program for producing BAC-based finished sequence, both for adding information to JGI genome projects and for small BAC-based sequencing projects proposed through any of the JGI sequencing programs. We have now built our computational expertise in WGS assembly and analysis and have moved eukaryotic genome assembly from the JGI-PGF to JGI-HAGSC. We have concentrated our assembly development work on large plant genomes and complex fungal and algal genomes.

  17. Functional genomics in forage and turf - present status and future ...

    African Journals Online (AJOL)

    The combination of bioinformatics and genomics will enhance our understanding ... This review focuses on recent advances and applications of functional genomics for large-scale EST projects, global gene expression analyses, proteomics, and ... ESTs, microarray, proteomics, metabolomics, Medicago truncatula, legume.

  18. Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A- and B-genome diploid species of peanut

    Directory of Open Access Journals (Sweden)

    Guo Yufang

    2012-11-01

    Full Text Available Abstract Background Cultivated peanut or groundnut (Arachis hypogaea L. is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40. Both the low level of genetic variation within the cultivated gene pool and its polyploid nature limit the utilization of molecular markers to explore genome structure and facilitate genetic improvement. Nevertheless, a wealth of genetic diversity exists in diploid Arachis species (2n = 2x = 20, which represent a valuable gene pool for cultivated peanut improvement. Interspecific populations have been used widely for genetic mapping in diploid species of Arachis. However, an intraspecific mapping strategy was essential to detect chromosomal rearrangements among species that could be obscured by mapping in interspecific populations. To develop intraspecific reference linkage maps and gain insights into karyotypic evolution within the genus, we comparatively mapped the A- and B-genome diploid species using intraspecific F2 populations. Exploring genome organization among diploid peanut species by comparative mapping will enhance our understanding of the cultivated tetraploid peanut genome. Moreover, new sources of molecular markers that are highly transferable between species and developed from expressed genes will be required to construct saturated genetic maps for peanut. Results A total of 2,138 EST-SSR (expressed sequence tag-simple sequence repeat markers were developed by mining a tetraploid peanut EST assembly including 101,132 unigenes (37,916 contigs and 63,216 singletons derived from 70,771 long-read (Sanger and 270,957 short-read (454 sequences. A set of 97 SSR markers were also developed by mining 9,517 genomic survey sequences of Arachis. An SSR-based intraspecific linkage map was constructed using an F2 population derived from a cross between K 9484 (PI 298639 and GKBSPSc 30081 (PI 468327 in the B-genome species A. batizocoi. A high degree of macrosynteny was observed

  19. The FaceBase Consortium: a comprehensive resource for craniofacial researchers

    Science.gov (United States)

    Brinkley, James F.; Fisher, Shannon; Harris, Matthew P.; Holmes, Greg; Hooper, Joan E.; Wang Jabs, Ethylin; Jones, Kenneth L.; Kesselman, Carl; Klein, Ophir D.; Maas, Richard L.; Marazita, Mary L.; Selleri, Licia; Spritz, Richard A.; van Bakel, Harm; Visel, Axel; Williams, Trevor J.; Wysocka, Joanna

    2016-01-01

    The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research, National Institutes of Health, is designed to accelerate understanding of craniofacial developmental biology by generating comprehensive data resources to empower the research community, exploring high-throughput technology, fostering new scientific collaborations among researchers and human/computer interactions, facilitating hypothesis-driven research and translating science into improved health care to benefit patients. The resources generated by the FaceBase projects include a number of dynamic imaging modalities, genome-wide association studies, software tools for analyzing human facial abnormalities, detailed phenotyping, anatomical and molecular atlases, global and specific gene expression patterns, and transcriptional profiling over the course of embryonic and postnatal development in animal models and humans. The integrated data visualization tools, faceted search infrastructure, and curation provided by the FaceBase Hub offer flexible and intuitive ways to interact with these multidisciplinary data. In parallel, the datasets also offer unique opportunities for new collaborations and training for researchers coming into the field of craniofacial studies. Here, we highlight the focus of each spoke project and the integration of datasets contributed by the spokes to facilitate craniofacial research. PMID:27287806

  20. A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST-SSR markers for a conifer, Cryptomeria japonica

    Directory of Open Access Journals (Sweden)

    Ueno Saneyoshi

    2012-04-01

    Full Text Available Abstract Background Microsatellites or simple sequence repeats (SSRs in expressed sequence tags (ESTs are useful resources for genome analysis because of their abundance, functionality and polymorphism. The advent of commercial second generation sequencing machines has lead to new strategies for developing EST-SSR markers, necessitating the development of bioinformatic framework that can keep pace with the increasing quality and quantity of sequence data produced. We describe an open scheme for analyzing ESTs and developing EST-SSR markers from reads collected by Sanger sequencing and pyrosequencing of sugi (Cryptomeria japonica. Results We collected 141,097 sequence reads by Sanger sequencing and 1,333,444 by pyrosequencing. After trimming contaminant and low quality sequences, 118,319 Sanger and 1,201,150 pyrosequencing reads were passed to the MIRA assembler, generating 81,284 contigs that were analysed for SSRs. 4,059 SSRs were found in 3,694 (4.54% contigs, giving an SSR frequency lower than that in seven other plant species with gene indices (5.4–21.9%. The average GC content of the SSR-containing contigs was 41.55%, compared to 40.23% for all contigs. Tri-SSRs were the most common SSRs; the most common motif was AT, which was found in 655 (46.3% di-SSRs, followed by the AAG motif, found in 342 (25.9% tri-SSRs. Most (72.8% tri-SSRs were in coding regions, but 55.6% of the di-SSRs were in non-coding regions; the AT motif was most abundant in 3′ untranslated regions. Gene ontology (GO annotations showed that six GO terms were significantly overrepresented within SSR-containing contigs. Forty–four EST-SSR markers were developed from 192 primer pairs using two pipelines: read2Marker and the newly-developed CMiB, which combines several open tools. Markers resulting from both pipelines showed no differences in PCR success rate and polymorphisms, but PCR success and polymorphism were significantly affected by the expected PCR product size

  1. A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST-SSR markers for a conifer, Cryptomeria japonica

    Science.gov (United States)

    2012-01-01

    Background Microsatellites or simple sequence repeats (SSRs) in expressed sequence tags (ESTs) are useful resources for genome analysis because of their abundance, functionality and polymorphism. The advent of commercial second generation sequencing machines has lead to new strategies for developing EST-SSR markers, necessitating the development of bioinformatic framework that can keep pace with the increasing quality and quantity of sequence data produced. We describe an open scheme for analyzing ESTs and developing EST-SSR markers from reads collected by Sanger sequencing and pyrosequencing of sugi (Cryptomeria japonica). Results We collected 141,097 sequence reads by Sanger sequencing and 1,333,444 by pyrosequencing. After trimming contaminant and low quality sequences, 118,319 Sanger and 1,201,150 pyrosequencing reads were passed to the MIRA assembler, generating 81,284 contigs that were analysed for SSRs. 4,059 SSRs were found in 3,694 (4.54%) contigs, giving an SSR frequency lower than that in seven other plant species with gene indices (5.4–21.9%). The average GC content of the SSR-containing contigs was 41.55%, compared to 40.23% for all contigs. Tri-SSRs were the most common SSRs; the most common motif was AT, which was found in 655 (46.3%) di-SSRs, followed by the AAG motif, found in 342 (25.9%) tri-SSRs. Most (72.8%) tri-SSRs were in coding regions, but 55.6% of the di-SSRs were in non-coding regions; the AT motif was most abundant in 3′ untranslated regions. Gene ontology (GO) annotations showed that six GO terms were significantly overrepresented within SSR-containing contigs. Forty–four EST-SSR markers were developed from 192 primer pairs using two pipelines: read2Marker and the newly-developed CMiB, which combines several open tools. Markers resulting from both pipelines showed no differences in PCR success rate and polymorphisms, but PCR success and polymorphism were significantly affected by the expected PCR product size and number of SSR

  2. Flavonoid Biosynthesis Genes Putatively Identified in the Aromatic Plant Polygonum minus via Expressed Sequences Tag (EST Analysis

    Directory of Open Access Journals (Sweden)

    Zamri Zainal

    2012-02-01

    Full Text Available P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large‑scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs which were deposited in dbEST in the National Center of Biotechnology Information (NCBI. From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304, flavonol synthase, FLS (JG705819 and leucoanthocyanidin dioxygenase, LDOX (JG745247 were selected for further examination by quantitative RT-PCR (qRT-PCR in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.

  3. Gramene 2018: unifying comparative genomics and pathway resources for plant research

    OpenAIRE

    Tello-Ruiz, Marcela K; Naithani, Sushma; Stein, Joshua C; Gupta, Parul; Campbell, Michael; Olson, Andrew; Wei, Sharon; Preece, Justin; Geniza, Matthew J; Jiao, Yinping; Lee, Young Koung; Wang, Bo; Mulvaney, Joseph; Chougule, Kapeel; Elser, Justin

    2017-01-01

    Abstract Gramene (http://www.gramene.org) is a knowledgebase for comparative functional analysis in major crops and model plant species. The current release, #54, includes over 1.7 million genes from 44 reference genomes, most of which were organized into 62,367 gene families through orthologous and paralogous gene classification, whole-genome alignments, and synteny. Additional gene annotations include ontology-based protein structure and function; genetic, epigenetic, and phenotypic diversi...

  4. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes

    NARCIS (Netherlands)

    Wheway, Gabrielle; Schmidts, Miriam; Mans, Dorus A; Szymanska, Katarzyna; Nguyen, Thanh-Minh T; Racher, Hilary; Phelps, Ian G; Toedt, Grischa; Kennedy, Julie; Wunderlich, Kirsten A; Sorusch, Nasrin; Abdelhamed, Zakia A; Natarajan, Subaashini; Herridge, Warren; van Reeuwijk, Jeroen; Horn, Nicola; Boldt, Karsten; Parry, David A; Letteboer, Stef J F; Roosing, Susanne; Adams, Matthew; Bell, Sandra M; Bond, Jacquelyn; Higgins, Julie; Morrison, Ewan E; Tomlinson, Darren C; Slaats, Gisela G; van Dam, Teunis J P; Huang, Lijia; Kessler, Kristin; Giessl, Andreas; Logan, Clare V; Boyle, Evan A; Shendure, Jay; Anazi, Shamsa; Aldahmesh, Mohammed; Al Hazzaa, Selwa; Hegele, Robert A; Ober, Carole; Frosk, Patrick; Mhanni, Aizeddin A; Chodirker, Bernard N; Chudley, Albert E; Lamont, Ryan; Bernier, Francois P; Beaulieu, Chandree L; Gordon, Paul; Pon, Richard T; Donahue, Clem; Barkovich, A James; Wolf, Louis; Toomes, Carmel; Thiel, Christian T; Boycott, Kym M; McKibbin, Martin; Inglehearn, Chris F; Stewart, Fiona; Omran, Heymut; Huynen, Martijn A; Sergouniotis, Panagiotis I; Alkuraya, Fowzan S; Parboosingh, Jillian S; Innes, A Micheil; Willoughby, Colin E; Giles, Rachel H; Webster, Andrew R; Ueffing, Marius; Blacque, Oliver; Gleeson, Joseph G; Wolfrum, Uwe; Beales, Philip L; Gibson, Toby; Doherty, Dan; Mitchison, Hannah M; Roepman, Ronald; Johnson, Colin A

    Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis

  5. Functional genomics of tomato

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... 1Repository of Tomato Genomics Resources, Department of Plant Sciences, School .... Due to its position at the crossroads of Sanger's sequencing .... replacement for the microarray-based expression profiling. .... during RNA fragmentation step prior to library construction, ...... tomato pollen as a test case.

  6. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences

    Directory of Open Access Journals (Sweden)

    Yandell Mark

    2010-07-01

    Full Text Available Abstract Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24. The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity elsewhere in the genome, but only 23% have identical copies (99% identity. The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is

  7. LegumeDB1 bioinformatics resource: comparative genomic analysis and novel cross-genera marker identification in lupin and pasture legume species.

    Science.gov (United States)

    Moolhuijzen, P; Cakir, M; Hunter, A; Schibeci, D; Macgregor, A; Smith, C; Francki, M; Jones, M G K; Appels, R; Bellgard, M

    2006-06-01

    The identification of markers in legume pasture crops, which can be associated with traits such as protein and lipid production, disease resistance, and reduced pod shattering, is generally accepted as an important strategy for improving the agronomic performance of these crops. It has been demonstrated that many quantitative trait loci (QTLs) identified in one species can be found in other plant species. Detailed legume comparative genomic analyses can characterize the genome organization between model legume species (e.g., Medicago truncatula, Lotus japonicus) and economically important crops such as soybean (Glycine max), pea (Pisum sativum), chickpea (Cicer arietinum), and lupin (Lupinus angustifolius), thereby identifying candidate gene markers that can be used to track QTLs in lupin and pasture legume breeding. LegumeDB is a Web-based bioinformatics resource for legume researchers. LegumeDB analysis of Medicago truncatula expressed sequence tags (ESTs) has identified novel simple sequence repeat (SSR) markers (16 tested), some of which have been putatively linked to symbiosome membrane proteins in root nodules and cell-wall proteins important in plant-pathogen defence mechanisms. These novel markers by preliminary PCR assays have been detected in Medicago truncatula and detected in at least one other legume species, Lotus japonicus, Glycine max, Cicer arietinum, and (or) Lupinus angustifolius (15/16 tested). Ongoing research has validated some of these markers to map them in a range of legume species that can then be used to compile composite genetic and physical maps. In this paper, we outline the features and capabilities of LegumeDB as an interactive application that provides legume genetic and physical comparative maps, and the efficient feature identification and annotation of the vast tracks of model legume sequences for convenient data integration and visualization. LegumeDB has been used to identify potential novel cross-genera polymorphic legume

  8. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  9. Genomic resources and draft assemblies of the human and porcine varieties of scabies mites, Sarcoptes scabiei var. hominis and var. suis.

    Science.gov (United States)

    Mofiz, Ehtesham; Holt, Deborah C; Seemann, Torsten; Currie, Bart J; Fischer, Katja; Papenfuss, Anthony T

    2016-06-02

    The scabies mite, Sarcoptes scabiei, is a parasitic arachnid and cause of the infectious skin disease scabies in humans and mange in other animal species. Scabies infections are a major health problem, particularly in remote Indigenous communities in Australia, where secondary group A streptococcal and Staphylococcus aureus infections of scabies sores are thought to drive the high rate of rheumatic heart disease and chronic kidney disease. We sequenced the genome of two samples of Sarcoptes scabiei var. hominis obtained from unrelated patients with crusted scabies located in different parts of northern Australia using the Illumina HiSeq. We also sequenced samples of Sarcoptes scabiei var. suis from a pig model. Because of the small size of the scabies mite, these data are derived from pools of thousands of mites and are metagenomic, including host and microbiome DNA. We performed cleaning and de novo assembly and present Sarcoptes scabiei var. hominis and var. suis draft reference genomes. We have constructed a preliminary annotation of this reference comprising 13,226 putative coding sequences based on sequence similarity to known proteins. We have developed extensive genomic resources for the scabies mite, including reference genomes and a preliminary annotation.

  10. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae.

    Science.gov (United States)

    Szczecińska, Monika; Sawicki, Jakub

    2015-09-15

    plastid genome and nuclear rRNA cluster sequences in three species of the genus Pulsatilla is an important contribution to our knowledge of the evolution and phylogeography of those endangered taxa. The resulting data can be used to identify regions that are particularly useful for barcoding, phylogenetic and phylogeographic studies. The investigated taxa can be identified at each stage of development based on their species-specific SNPs. The nuclear and plastid genomic resources enable advanced studies on hybridization, including identification of parent species, including their roles in that process. The identified nonsynonymous mutations could play an important role in adaptations to changing environments. The results of the study will also provide valuable information about the evolution of the plastome structure in the family Ranunculaceae.

  11. Comparative Reannotation of 21 Aspergillus Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Salamov, Asaf; Riley, Robert; Kuo, Alan; Grigoriev, Igor

    2013-03-08

    We used comparative gene modeling to reannotate 21 Aspergillus genomes. Initial automatic annotation of individual genomes may contain some errors of different nature, e.g. missing genes, incorrect exon-intron structures, 'chimeras', which fuse 2 or more real genes or alternatively splitting some real genes into 2 or more models. The main premise behind the comparative modeling approach is that for closely related genomes most orthologous families have the same conserved gene structure. The algorithm maps all gene models predicted in each individual Aspergillus genome to the other genomes and, for each locus, selects from potentially many competing models, the one which most closely resembles the orthologous genes from other genomes. This procedure is iterated until no further change in gene models is observed. For Aspergillus genomes we predicted in total 4503 new gene models ( ~;;2percent per genome), supported by comparative analysis, additionally correcting ~;;18percent of old gene models. This resulted in a total of 4065 more genes with annotated PFAM domains (~;;3percent increase per genome). Analysis of a few genomes with EST/transcriptomics data shows that the new annotation sets also have a higher number of EST-supported splice sites at exon-intron boundaries.

  12. Distribution of DNA repair-related ESTs in sugarcane

    Directory of Open Access Journals (Sweden)

    W.C. Lima

    2001-12-01

    Full Text Available DNA repair pathways are necessary to maintain the proper genomic stability and ensure the survival of the organism, protecting it against the damaging effects of endogenous and exogenous agents. In this work, we made an analysis of the expression patterns of DNA repair-related genes in sugarcane, by determining the EST (expressed sequence tags distribution in the different cDNA libraries of the SUCEST transcriptome project. Three different pathways - photoreactivation, base excision repair and nucleotide excision repair - were investigated by employing known DNA repair proteins as probes to identify homologous ESTs in sugarcane, by means of computer similarity search. The results showed that DNA repair genes may have differential expressions in tissues, depending on the pathway studied. These in silico data provide important clues on the potential variation of gene expression, to be confirmed by direct biochemical analysis.As vias de reparo de DNA são requeridas para manter a necessária estabilidade genômica e garantir a sobrevivência do organismo, frente aos efeitos deletérios causados por fatores endógenos e exógenos. Neste trabalho, realizamos a análise dos padrões de expressão dos genes de reparo de DNA encontrados na cana-de-açúcar, pela determinação da distribuição de ESTs nas diferentes bibliotecas de cDNA no projeto de transcriptoma SUCEST. Três vias de reparo - fotorreativação, reparo por excisão de bases e reparo por excisão de nucleotídeos - foram estudadas através do uso de proteínas de reparo como sondas para identificação de ESTs homólogos em cana-de-açúcar, com base na procura computacional de similaridade. Os resultados indicam que os genes de reparo de DNA possuem uma expressão diferencial nos tecidos, dependendo da via de reparo analisada. Esses dados in silico fornecem importantes indícios da expressão diferencial, a qual deve ser confirmada por análises bioquímicas diretas.

  13. Development and Validation of EST-SSR Markers from the Transcriptome of Adzuki Bean (Vigna angularis).

    Science.gov (United States)

    Chen, Honglin; Liu, Liping; Wang, Lixia; Wang, Suhua; Somta, Prakit; Cheng, Xuzhen

    2015-01-01

    The adzuki bean (Vigna angularis (Ohwi) Ohwi and Ohashi) is an important grain legume of Asia. It is cultivated mainly in China, Japan and Korea. Despite its importance, few genomic resources are available for molecular genetic research of adzuki bean. In this study, we developed EST-SSR markers for the adzuki bean through next-generation sequencing. More than 112 million high-quality cDNA sequence reads were obtained from adzuki bean using Illumina paired-end sequencing technology, and the sequences were de novo assembled into 65,950 unigenes. The average length of the unigenes was 1,213 bp. Among the unigenes, 14,547 sequences contained a unique simple sequence repeat (SSR) and 3,350 sequences contained more than one SSR. A total of 7,947 EST-SSRs were identified as potential molecular markers, with mono-nucleotide A/T repeats (99.0%) as the most abundant motif class, followed by AG/CT (68.4%), AAG/CTT (30.0%), AAAG/CTTT (26.2%), AAAAG/CTTTT (16.1%), and AACGGG/CCCGTT (6.0%). A total of 500 SSR markers were randomly selected for validation, of which 296 markers produced reproducible amplicons with 38 polymorphic markers among the 32 adzuki bean genotypes selected from diverse geographical locations across China. The large number of SSR-containing sequences and EST-SSR markers will be valuable for genetic analysis of the adzuki bean and related Vigna species.

  14. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops

    Directory of Open Access Journals (Sweden)

    Philippa eBorrill

    2014-02-01

    Full Text Available Wheat, like many other staple cereals, contains low levels of the essential micronutrients iron and zinc. Up to two billion people worldwide suffer from iron and zinc deficiencies, particularly in regions with predominantly cereal-based diets. Although wheat flour is commonly fortified during processing, an attractive and more sustainable solution is biofortification, which requires developing new varieties of wheat with inherently higher iron and zinc content in their grains. Until now most studies aimed at increasing iron and zinc content in wheat grains have focused on discovering natural variation in progenitor or related species. However, recent developments in genomics and transformation have led to a step change in targeted research on wheat at a molecular level. We discuss promising approaches to improve iron and zinc content in wheat using knowledge gained in model grasses. We explore how the latest resources developed in wheat, including sequenced genomes and mutant populations, can be exploited for biofortification. We also highlight the key research and practical challenges that remain in improving iron and zinc content in wheat.

  15. Construction of new EST-SSRs for Fusarium resistant wheat breeding.

    Science.gov (United States)

    Yumurtaci, Aysen; Sipahi, Hulya; Al-Abdallat, Ayed; Jighly, Abdulqader; Baum, Michael

    2017-06-01

    Surveying Fusarium resistance in wheat with easy applicable molecular markers such as simple sequence repeats (SSRs) is a prerequest for molecular breeding. Expressed sequence tags (ESTs) are one of the main sources for development of new SSR candidates. Therefore, 18.292 publicly available wheat ESTs were mined and genotyping of newly developed 55 EST-SSR derived primer pairs produced clear fragments in ten wheat cultivars carrying different levels of Fusarium resistance. Among the proved markers, 23 polymorphic EST-SSRs were obtained and related alleles were mostly found on B and D genome. Based on the fragment profiling and similarity analysis, a 327bp amplicon, which was a product of contig 1207 (chromosome 5BL), was detected only in Fusarium head blight (FHB) resistant cultivars (CM82036 and Sumai) and the amino acid sequences showed a similarity to pathogen related proteins. Another FHB resistance related EST-SSR, Contig 556 (chromosome 1BL) produced a 151bp fragment in Sumai and was associated to wax2-like protein. A polymorphic 204bp fragment, derived from Contig 578 (chromosome 1DL), was generated from root rot (FRR) resistant cultivars (2-49; Altay2000 and Sunco). A total of 98 alleles were displayed with an average of 1.8 alleles per locus and the polymorphic information content (PIC) ranged from 0.11 to 0.78. Dendrogram tree with two main and five sub-groups were displayed the highest genetic relationship between FRR resistant cultivars (2-49 and Altay2000), FRR sensitive cultivars (Seri82 and Scout66) and FHB resistant cultivars (CM82036 and Sumai). Thus, exploitation of these candidate EST-SSRs may help to genotype other wheat sources for Fusarium resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Characterization of the Kenaf (Hibiscus cannabinus) Global Transcriptome Using Illumina Paired-End Sequencing and Development of EST-SSR Markers

    Science.gov (United States)

    Li, Hui; Li, Defang; Chen, Anguo; Tang, Huijuan; Li, Jianjun; Huang, Siqi

    2016-01-01

    Kenaf (Hibiscus cannabinus L.) is an economically important natural fiber crop grown worldwide. However, only 20 expressed tag sequences (ESTs) for kenaf are available in public databases. The aim of this study was to develop large-scale simple sequence repeat (SSR) markers to lay a solid foundation for the construction of genetic linkage maps and marker-assisted breeding in kenaf. We used Illumina paired-end sequencing technology to generate new EST-simple sequences and MISA software to mine SSR markers. We identified 71,318 unigenes with an average length of 1143 nt and annotated these unigenes using four different protein databases. Overall, 9324 complementary pairs were designated as EST-SSR markers, and their quality was validated using 100 randomly selected SSR markers. In total, 72 primer pairs reproducibly amplified target amplicons, and 61 of these primer pairs detected significant polymorphism among 28 kenaf accessions. Thus, in this study, we have developed large-scale SSR markers for kenaf, and this new resource will facilitate construction of genetic linkage maps, investigation of fiber growth and development in kenaf, and also be of value to novel gene discovery and functional genomic studies. PMID:26960153

  17. Characterization of the Kenaf (Hibiscus cannabinus) Global Transcriptome Using Illumina Paired-End Sequencing and Development of EST-SSR Markers.

    Science.gov (United States)

    Li, Hui; Li, Defang; Chen, Anguo; Tang, Huijuan; Li, Jianjun; Huang, Siqi

    2016-01-01

    Kenaf (Hibiscus cannabinus L.) is an economically important natural fiber crop grown worldwide. However, only 20 expressed tag sequences (ESTs) for kenaf are available in public databases. The aim of this study was to develop large-scale simple sequence repeat (SSR) markers to lay a solid foundation for the construction of genetic linkage maps and marker-assisted breeding in kenaf. We used Illumina paired-end sequencing technology to generate new EST-simple sequences and MISA software to mine SSR markers. We identified 71,318 unigenes with an average length of 1143 nt and annotated these unigenes using four different protein databases. Overall, 9324 complementary pairs were designated as EST-SSR markers, and their quality was validated using 100 randomly selected SSR markers. In total, 72 primer pairs reproducibly amplified target amplicons, and 61 of these primer pairs detected significant polymorphism among 28 kenaf accessions. Thus, in this study, we have developed large-scale SSR markers for kenaf, and this new resource will facilitate construction of genetic linkage maps, investigation of fiber growth and development in kenaf, and also be of value to novel gene discovery and functional genomic studies.

  18. In silico comparative analysis of EST-SSRs in three cotton genomes

    African Journals Online (AJOL)

    reading 6

    2012-08-28

    Aug 28, 2012 ... genic microsatellite markers for genome analyses of coffee and ... Conservation genetics: where are we now? ...... 38 TA7685_29729 Non-green plastid inner envelope membrane protein precursor [Brassica oleracea (Wild ...

  19. CyanoBase: the cyanobacteria genome database update 2010

    OpenAIRE

    Nakao, Mitsuteru; Okamoto, Shinobu; Kohara, Mitsuyo; Fujishiro, Tsunakazu; Fujisawa, Takatomo; Sato, Shusei; Tabata, Satoshi; Kaneko, Takakazu; Nakamura, Yasukazu

    2009-01-01

    CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in var...

  20. Coalescent-Based Analyses of Genomic Sequence Data Provide a Robust Resolution of Phylogenetic Relationships among Major Groups of Gibbons

    Science.gov (United States)

    Shi, Cheng-Min; Yang, Ziheng

    2018-01-01

    Abstract The phylogenetic relationships among extant gibbon species remain unresolved despite numerous efforts using morphological, behavorial, and genetic data and the sequencing of whole genomes. A major challenge in reconstructing the gibbon phylogeny is the radiative speciation process, which resulted in extremely short internal branches in the species phylogeny and extensive incomplete lineage sorting with extensive gene-tree heterogeneity across the genome. Here, we analyze two genomic-scale data sets, with ∼10,000 putative noncoding and exonic loci, respectively, to estimate the species tree for the major groups of gibbons. We used the Bayesian full-likelihood method bpp under the multispecies coalescent model, which naturally accommodates incomplete lineage sorting and uncertainties in the gene trees. For comparison, we included three heuristic coalescent-based methods (mp-est, SVDQuartets, and astral) as well as concatenation. From both data sets, we infer the phylogeny for the four extant gibbon genera to be (Hylobates, (Nomascus, (Hoolock, Symphalangus))). We used simulation guided by the real data to evaluate the accuracy of the methods used. Astral, while not as efficient as bpp, performed well in estimation of the species tree even in presence of excessive incomplete lineage sorting. Concatenation, mp-est and SVDQuartets were unreliable when the species tree contains very short internal branches. Likelihood ratio test of gene flow suggests a small amount of migration from Hylobates moloch to H. pileatus, while cross-genera migration is absent or rare. Our results highlight the utility of coalescent-based methods in addressing challenging species tree problems characterized by short internal branches and rampant gene tree-species tree discordance. PMID:29087487

  1. Lunar resource base

    Science.gov (United States)

    Pulley, John; Wise, Todd K.; Roy, Claude; Richter, Phil

    A lunar base that exploits local resources to enhance the productivity of a total SEI scenario is discussed. The goals were to emphasize lunar science and to land men on Mars in 2016 using significant amounts of lunar resources. It was assumed that propulsion was chemical and the surface power was non-nuclear. Three phases of the base build-up are outlined, the robotic emplacement of the first elements is detailed and a discussion of future options is included.

  2. A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia.

    Science.gov (United States)

    Lane, Alexander; Boecklemann, Astrid; Woronuk, Grant N; Sarker, Lukman; Mahmoud, Soheil S

    2010-03-01

    We are developing Lavandula angustifolia (lavender) as a model system for investigating molecular regulation of essential oil (a mixture of mono- and sesquiterpenes) production in plants. As an initial step toward building the necessary 'genomics toolbox' for this species, we constructed two cDNA libraries from lavender leaves and flowers, and obtained sequence information for 14,213 high-quality expressed sequence tags (ESTs). Based on homology to sequences present in GenBank, our EST collection contains orthologs for genes involved in the 1-deoxy-D: -xylulose-5-phosphate (DXP) and the mevalonic acid (MVA) pathways of terpenoid biosynthesis, and for known terpene synthases and prenyl transferases. To gain insight into the regulation of terpene metabolism in lavender flowers, we evaluated the transcriptional activity of the genes encoding for 1-deoxy-D: -xylulose-5-phosphate synthase (DXS) and HMG-CoA reductase (HMGR), which represent regulatory steps of the DXP and MVA pathways, respectively, in glandular trichomes (oil glands) by real-time PCR. While HMGR transcripts were barely detectable, DXS was heavily expressed in this tissue, indicating that essential oil constituents are predominantly produced through the DXP pathway in lavender glandular trichomes. As anticipated, the linalool synthase (LinS)-the gene responsible for the production of linalool, a major constituent of lavender essential oil-was also strongly expressed in glands. Surprisingly, the most abundant transcript in floral glandular trichomes corresponded to a sesquiterpene synthase (cadinene synthase, CadS), although sesquiterpenes are minor constituents of lavender essential oils. This result, coupled to the weak activity of the MVA pathway (the main route for sesquiterpene production) in trichomes, indicates that precursor supply may represent a bottleneck in the biosynthesis of sesquiterpenes in lavender flowers.

  3. Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series.

    Science.gov (United States)

    Blair, Matthew W; Hurtado, Natalia; Chavarro, Carolina M; Muñoz-Torres, Monica C; Giraldo, Martha C; Pedraza, Fabio; Tomkins, Jeff; Wing, Rod

    2011-03-22

    Sequencing of cDNA libraries for the development of expressed sequence tags (ESTs) as well as for the discovery of simple sequence repeats (SSRs) has been a common method of developing microsatellites or SSR-based markers. In this research, our objective was to further sequence and develop common bean microsatellites from leaf and root cDNA libraries derived from the Andean gene pool accession G19833 and the Mesoamerican gene pool accession DOR364, mapping parents of a commonly used reference map. The root libraries were made from high and low phosphorus treated plants. A total of 3,123 EST sequences from leaf and root cDNA libraries were screened and used for direct simple sequence repeat discovery. From these EST sequences we found 184 microsatellites; the majority containing tri-nucleotide motifs, many of which were GC rich (ACC, AGC and AGG in particular). Di-nucleotide motif microsatellites were about half as common as the tri-nucleotide motif microsatellites but most of these were AGn microsatellites with a moderate number of ATn microsatellites in root ESTs followed by few ACn and no GCn microsatellites. Out of the 184 new SSR loci, 120 new microsatellite markers were developed in the BMc (Bean Microsatellites from cDNAs) series and these were evaluated for their capacity to distinguish bean diversity in a germplasm panel of 18 genotypes. We developed a database with images of the microsatellites and their polymorphism information content (PIC), which averaged 0.310 for polymorphic markers. The present study produced information about microsatellite frequency in root and leaf tissues of two important genotypes for common bean genomics: namely G19833, the Andean genotype selected for whole genome shotgun sequencing from race Peru, and DOR364 a race Mesoamerica subgroup 2 genotype that is a small-red seeded, released variety in Central America. Both race Peru and Mesoamerica subgroup 2 (small red beans) have been understudied in comparison to race Nueva

  4. CyanoBase: the cyanobacteria genome database update 2010.

    Science.gov (United States)

    Nakao, Mitsuteru; Okamoto, Shinobu; Kohara, Mitsuyo; Fujishiro, Tsunakazu; Fujisawa, Takatomo; Sato, Shusei; Tabata, Satoshi; Kaneko, Takakazu; Nakamura, Yasukazu

    2010-01-01

    CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in various formats with other tools, seamlessly.

  5. A computational genomics pipeline for prokaryotic sequencing projects.

    Science.gov (United States)

    Kislyuk, Andrey O; Katz, Lee S; Agrawal, Sonia; Hagen, Matthew S; Conley, Andrew B; Jayaraman, Pushkala; Nelakuditi, Viswateja; Humphrey, Jay C; Sammons, Scott A; Govil, Dhwani; Mair, Raydel D; Tatti, Kathleen M; Tondella, Maria L; Harcourt, Brian H; Mayer, Leonard W; Jordan, I King

    2010-08-01

    New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems.

  6. Recurrence time statistics: versatile tools for genomic DNA sequence analysis.

    Science.gov (United States)

    Cao, Yinhe; Tung, Wen-Wen; Gao, J B

    2004-01-01

    With the completion of the human and a few model organisms' genomes, and the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Computationally, our method is very efficient. It allows us to carry out analysis of genomes on the whole genomic scale by a PC.

  7. A first generation BAC-based physical map of the rainbow trout genome

    Directory of Open Access Journals (Sweden)

    Thorgaard Gary H

    2009-10-01

    Full Text Available Abstract Background Rainbow trout (Oncorhynchus mykiss are the most-widely cultivated cold freshwater fish in the world and an important model species for many research areas. Coupling great interest in this species as a research model with the need for genetic improvement of aquaculture production efficiency traits justifies the continued development of genomics research resources. Many quantitative trait loci (QTL have been identified for production and life-history traits in rainbow trout. A bacterial artificial chromosome (BAC physical map is needed to facilitate fine mapping of QTL and the selection of positional candidate genes for incorporation in marker-assisted selection (MAS for improving rainbow trout aquaculture production. This resource will also facilitate efforts to obtain and assemble a whole-genome reference sequence for this species. Results The physical map was constructed from DNA fingerprinting of 192,096 BAC clones using the 4-color high-information content fingerprinting (HICF method. The clones were assembled into physical map contigs using the finger-printing contig (FPC program. The map is composed of 4,173 contigs and 9,379 singletons. The total number of unique fingerprinting fragments (consensus bands in contigs is 1,185,157, which corresponds to an estimated physical length of 2.0 Gb. The map assembly was validated by 1 comparison with probe hybridization results and agarose gel fingerprinting contigs; and 2 anchoring large contigs to the microsatellite-based genetic linkage map. Conclusion The production and validation of the first BAC physical map of the rainbow trout genome is described in this paper. We are currently integrating this map with the NCCCWA genetic map using more than 200 microsatellites isolated from BAC end sequences and by identifying BACs that harbor more than 300 previously mapped markers. The availability of an integrated physical and genetic map will enable detailed comparative genome

  8. Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa

    Directory of Open Access Journals (Sweden)

    Shahin Arwa

    2012-11-01

    Full Text Available Abstract Background Bulbous flowers such as lily and tulip (Liliaceae family are monocot perennial herbs that are economically very important ornamental plants worldwide. However, there are hardly any genetic studies performed and genomic resources are lacking. To build genomic resources and develop tools to speed up the breeding in both crops, next generation sequencing was implemented. We sequenced and assembled transcriptomes of four lily and five tulip genotypes using 454 pyro-sequencing technology. Results Successfully, we developed the first set of 81,791 contigs with an average length of 514 bp for tulip, and enriched the very limited number of 3,329 available ESTs (Expressed Sequence Tags for lily with 52,172 contigs with an average length of 555 bp. The contigs together with singletons covered on average 37% of lily and 39% of tulip estimated transcriptome. Mining lily and tulip sequence data for SSRs (Simple Sequence Repeats showed that di-nucleotide repeats were twice more abundant in UTRs (UnTranslated Regions compared to coding regions, while tri-nucleotide repeats were equally spread over coding and UTR regions. Two sets of single nucleotide polymorphism (SNP markers suitable for high throughput genotyping were developed. In the first set, no SNPs flanking the target SNP (50 bp on either side were allowed. In the second set, one SNP in the flanking regions was allowed, which resulted in a 2 to 3 fold increase in SNP marker numbers compared with the first set. Orthologous groups between the two flower bulbs: lily and tulip (12,017 groups and among the three monocot species: lily, tulip, and rice (6,900 groups were determined using OrthoMCL. Orthologous groups were screened for common SNP markers and EST-SSRs to study synteny between lily and tulip, which resulted in 113 common SNP markers and 292 common EST-SSR. Lily and tulip contigs generated were annotated and described according to Gene Ontology terminology. Conclusions

  9. Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa.

    Science.gov (United States)

    Shahin, Arwa; van Kaauwen, Martijn; Esselink, Danny; Bargsten, Joachim W; van Tuyl, Jaap M; Visser, Richard G F; Arens, Paul

    2012-11-20

    Bulbous flowers such as lily and tulip (Liliaceae family) are monocot perennial herbs that are economically very important ornamental plants worldwide. However, there are hardly any genetic studies performed and genomic resources are lacking. To build genomic resources and develop tools to speed up the breeding in both crops, next generation sequencing was implemented. We sequenced and assembled transcriptomes of four lily and five tulip genotypes using 454 pyro-sequencing technology. Successfully, we developed the first set of 81,791 contigs with an average length of 514 bp for tulip, and enriched the very limited number of 3,329 available ESTs (Expressed Sequence Tags) for lily with 52,172 contigs with an average length of 555 bp. The contigs together with singletons covered on average 37% of lily and 39% of tulip estimated transcriptome. Mining lily and tulip sequence data for SSRs (Simple Sequence Repeats) showed that di-nucleotide repeats were twice more abundant in UTRs (UnTranslated Regions) compared to coding regions, while tri-nucleotide repeats were equally spread over coding and UTR regions. Two sets of single nucleotide polymorphism (SNP) markers suitable for high throughput genotyping were developed. In the first set, no SNPs flanking the target SNP (50 bp on either side) were allowed. In the second set, one SNP in the flanking regions was allowed, which resulted in a 2 to 3 fold increase in SNP marker numbers compared with the first set. Orthologous groups between the two flower bulbs: lily and tulip (12,017 groups) and among the three monocot species: lily, tulip, and rice (6,900 groups) were determined using OrthoMCL. Orthologous groups were screened for common SNP markers and EST-SSRs to study synteny between lily and tulip, which resulted in 113 common SNP markers and 292 common EST-SSR. Lily and tulip contigs generated were annotated and described according to Gene Ontology terminology. Two transcriptome sets were built that are valuable

  10. GI-SVM: A sensitive method for predicting genomic islands based on unannotated sequence of a single genome.

    Science.gov (United States)

    Lu, Bingxin; Leong, Hon Wai

    2016-02-01

    Genomic islands (GIs) are clusters of functionally related genes acquired by lateral genetic transfer (LGT), and they are present in many bacterial genomes. GIs are extremely important for bacterial research, because they not only promote genome evolution but also contain genes that enhance adaption and enable antibiotic resistance. Many methods have been proposed to predict GI. But most of them rely on either annotations or comparisons with other closely related genomes. Hence these methods cannot be easily applied to new genomes. As the number of newly sequenced bacterial genomes rapidly increases, there is a need for methods to detect GI based solely on sequences of a single genome. In this paper, we propose a novel method, GI-SVM, to predict GIs given only the unannotated genome sequence. GI-SVM is based on one-class support vector machine (SVM), utilizing composition bias in terms of k-mer content. From our evaluations on three real genomes, GI-SVM can achieve higher recall compared with current methods, without much loss of precision. Besides, GI-SVM allows flexible parameter tuning to get optimal results for each genome. In short, GI-SVM provides a more sensitive method for researchers interested in a first-pass detection of GI in newly sequenced genomes.

  11. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan

    2014-01-01

    mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost......-effective genome mapping technology to comprehensively discover genome-wide SVs and characterize complex regions of the YH genome using long single molecules (>150 kb) in a global fashion. RESULTS: Utilizing nanochannel-based genome mapping technology, we obtained 708 insertions/deletions and 17 inversions larger...... fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides...

  12. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    Science.gov (United States)

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Monika Szczecińska

    2015-09-01

    patens and Pulsatilla vernalis. Conclusions/significance: The determination of complete plastid genome and nuclear rRNA cluster sequences in three species of the genus Pulsatilla is an important contribution to our knowledge of the evolution and phylogeography of those endangered taxa. The resulting data can be used to identify regions that are particularly useful for barcoding, phylogenetic and phylogeographic studies. The investigated taxa can be identified at each stage of development based on their species-specific SNPs. The nuclear and plastid genomic resources enable advanced studies on hybridization, including identification of parent species, including their roles in that process. The identified nonsynonymous mutations could play an important role in adaptations to changing environments. The results of the study will also provide valuable information about the evolution of the plastome structure in the family Ranunculaceae.

  14. Cloning and characterization of a pyrethroid pesticide decomposing esterase gene, Est3385, from Rhodopseudomonas palustris PSB-S.

    Science.gov (United States)

    Luo, Xiangwen; Zhang, Deyong; Zhou, Xuguo; Du, Jiao; Zhang, Songbai; Liu, Yong

    2018-05-09

    Full length open reading frame of pyrethroid detoxification gene, Est3385, contains 963 nucleotides. This gene was identified and cloned based on the genome sequence of Rhodopseudomonas palustris PSB-S available at the GneBank. The predicted amino acid sequence of Est3385 shared moderate identities (30-46%) with the known homologous esterases. Phylogenetic analysis revealed that Est3385 was a member in the esterase family I. Recombinant Est3385 was heterologous expressed in E. coli, purified and characterized for its substrate specificity, kinetics and stability under various conditions. The optimal temperature and pH for Est3385 were 35 °C and 6.0, respectively. This enzyme could detoxify various pyrethroid pesticides and degrade the optimal substrate fenpropathrin with a Km and Vmax value of 0.734 ± 0.013 mmol·l -1 and 0.918 ± 0.025 U·µg -1 , respectively. No cofactor was found to affect Est3385 activity but substantial reduction of enzymatic activity was observed when metal ions were applied. Taken together, a new pyrethroid degradation esterase was identified and characterized. Modification of Est3385 with protein engineering toolsets should enhance its potential for field application to reduce the pesticide residue from agroecosystems.

  15. Razão e sensibilidade no ensino de administração: a literatura como recurso estético Sense and sensibility in management teaching: literature as an aesthetic resource

    Directory of Open Access Journals (Sweden)

    Tânia Fischer

    2007-10-01

    Full Text Available Este artigo problematiza o uso da literatura como recurso estético durante o processo de ensino da administração, com base em uma análise multidisciplinar dos trabalhos acadêmicos publicados, com a finalidade de: refletir sobre literatura e o papel da ficção no ensino, articulando a literatura com a existência humana; abordar a pesquisa em organizações e o uso de gêneros e estilos literários na produção do conhecimento; e discutir sobre os usos dos textos literários em ensino, pelo relato e discussão de práticas que utilizam a literatura. Tem especial destaque a dimensão estratégica da atividade de ensino que usa a literatura como recurso estético. A conclusão é de que o texto literário é um poderoso recurso de aprendizagem, pois tem como matéria-prima a palavra, o discurso, que é a essência da administração. E, também, que a integração entre administração e literatura pode ser uma estratégia fecunda, favorecendo criatividade e descoberta, pois possibilita o desenvolvimento de capacitações para sentir e conhecer.The goal of this article is to challenge the use of literature as an aesthetic resource in management teaching-learning. The research is based on a multidisciplinary literature review in order to: think about fiction and its role in teaching, articulating fiction with human existence; explore organizational research and the use of literary genres and styles in knowledge production, and discuss about the use of literary texts in teaching through the presentation and discussion of practices using and capitalizing on fiction. Special attention is given to the strategic dimension of teaching activity that uses fiction as an aesthetic resource. The research's conclusion suggests that literary text is a powerful learning resource because it has as primary source accounts and discourse, these being the essence of management. Another conclusion is that the relationship between management and literature

  16. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery

    Directory of Open Access Journals (Sweden)

    Materne Michael

    2011-05-01

    Full Text Available Abstract Background Lentil (Lens culinaris Medik. is a cool-season grain legume which provides a rich source of protein for human consumption. In terms of genomic resources, lentil is relatively underdeveloped, in comparison to other Fabaceae species, with limited available data. There is hence a significant need to enhance such resources in order to identify novel genes and alleles for molecular breeding to increase crop productivity and quality. Results Tissue-specific cDNA samples from six distinct lentil genotypes were sequenced using Roche 454 GS-FLX Titanium technology, generating c. 1.38 × 106 expressed sequence tags (ESTs. De novo assembly generated a total of 15,354 contigs and 68,715 singletons. The complete unigene set was sequence-analysed against genome drafts of the model legume species Medicago truncatula and Arabidopsis thaliana to identify 12,639, and 7,476 unique matches, respectively. When compared to the genome of Glycine max, a total of 20,419 unique hits were observed corresponding to c. 31% of the known gene space. A total of 25,592 lentil unigenes were subsequently annoated from GenBank. Simple sequence repeat (SSR-containing ESTs were identified from consensus sequences and a total of 2,393 primer pairs were designed. A subset of 192 EST-SSR markers was screened for validation across a panel 12 cultivated lentil genotypes and one wild relative species. A total of 166 primer pairs obtained successful amplification, of which 47.5% detected genetic polymorphism. Conclusions A substantial collection of ESTs has been developed from sequence analysis of lentil genotypes using second-generation technology, permitting unigene definition across a broad range of functional categories. As well as providing resources for functional genomics studies, the unigene set has permitted significant enhancement of the number of publicly-available molecular genetic markers as tools for improvement of this species.

  17. Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis

    Directory of Open Access Journals (Sweden)

    Hahn Daniel A

    2009-05-01

    Full Text Available Abstract Background Flesh flies in the genus Sarcophaga are important models for investigating endocrinology, diapause, cold hardiness, reproduction, and immunity. Despite the prominence of Sarcophaga flesh flies as models for insect physiology and biochemistry, and in forensic studies, little genomic or transcriptomic data are available for members of this genus. We used massively parallel pyrosequencing on the Roche 454-FLX platform to produce a substantial EST dataset for the flesh fly Sarcophaga crassipalpis. To maximize sequence diversity, we pooled RNA extracted from whole bodies of all life stages and normalized the cDNA pool after reverse transcription. Results We obtained 207,110 ESTs with an average read length of 241 bp. These reads assembled into 20,995 contigs and 31,056 singletons. Using BLAST searches of the NR and NT databases we were able to identify 11,757 unique gene elements (ES. crassipalpis unigenes among GO Biological Process functional groups with that of the Drosophila melanogaster transcriptome suggests that our ESTs are broadly representative of the flesh fly transcriptome. Insertion and deletion errors in 454 sequencing present a serious hurdle to comparative transcriptome analysis. Aided by a new approach to correcting for these errors, we performed a comparative analysis of genetic divergence across GO categories among S. crassipalpis, D. melanogaster, and Anopheles gambiae. The results suggest that non-synonymous substitutions occur at similar rates across categories, although genes related to response to stimuli may evolve slightly faster. In addition, we identified over 500 potential microsatellite loci and more than 12,000 SNPs among our ESTs. Conclusion Our data provides the first large-scale EST-project for flesh flies, a much-needed resource for exploring this model species. In addition, we identified a large number of potential microsatellite and SNP markers that could be used in population and systematic

  18. A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors

    Directory of Open Access Journals (Sweden)

    Jose L. Pruneda-Paz

    2014-07-01

    Full Text Available Extensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive collection of Arabidopsis TFs clones created to provide a versatile resource for uncovering TF biological functions. We leveraged this collection by implementing a high-throughput DNA binding assay and identified direct regulators of a key clock gene (CCA1 that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes.

  19. SNP mining porcine ESTs with MAVIANT, a novel tool for SNP evaluation and annotation

    DEFF Research Database (Denmark)

    Panitz, Frank; Stengaard, Henrik; Hornshoj, Henrik

    2007-01-01

    MOTIVATION: Single nucleotide polymorphisms (SNPs) analysis is an important means to study genetic variation. A fast and cost-efficient approach to identify large numbers of novel candidates is the SNP mining of large scale sequencing projects. The increasing availability of sequence trace data...... manual annotation, which is immediately accessible and can be easily shared with external collaborators. RESULTS: Large-scale SNP mining of polymorphisms bases on porcine EST sequences yielded more than 7900 candidate SNPs in coding regions (cSNPs), which were annotated relative to the human genome. Non...

  20. GeNemo: a search engine for web-based functional genomic data.

    Science.gov (United States)

    Zhang, Yongqing; Cao, Xiaoyi; Zhong, Sheng

    2016-07-08

    A set of new data types emerged from functional genomic assays, including ChIP-seq, DNase-seq, FAIRE-seq and others. The results are typically stored as genome-wide intensities (WIG/bigWig files) or functional genomic regions (peak/BED files). These data types present new challenges to big data science. Here, we present GeNemo, a web-based search engine for functional genomic data. GeNemo searches user-input data against online functional genomic datasets, including the entire collection of ENCODE and mouse ENCODE datasets. Unlike text-based search engines, GeNemo's searches are based on pattern matching of functional genomic regions. This distinguishes GeNemo from text or DNA sequence searches. The user can input any complete or partial functional genomic dataset, for example, a binding intensity file (bigWig) or a peak file. GeNemo reports any genomic regions, ranging from hundred bases to hundred thousand bases, from any of the online ENCODE datasets that share similar functional (binding, modification, accessibility) patterns. This is enabled by a Markov Chain Monte Carlo-based maximization process, executed on up to 24 parallel computing threads. By clicking on a search result, the user can visually compare her/his data with the found datasets and navigate the identified genomic regions. GeNemo is available at www.genemo.org. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.

    Directory of Open Access Journals (Sweden)

    Studer Bruno

    2010-08-01

    Full Text Available Abstract Background Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps of these populations have been aligned with each other using publicly available DNA markers, the number of common markers among genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm. Results A set of 204 expressed sequence tag (EST-derived simple sequence repeat (SSR markers has been assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64 EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic in multiple populations served as anchor markers and allowed the construction of the first comprehensive consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742 centiMorgan (cM, ranging for individual chromosomes from 70 cM of linkage group (LG 6 to 171 cM of LG 2. Conclusions The consensus linkage map for ryegrass based on eight mapping populations and constructed using a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative genetics and genomics within grass species.

  2. Development and validation of new SSR markers from expressed regions in the garlic genome

    Directory of Open Access Journals (Sweden)

    Meryem Ipek

    2015-02-01

    Full Text Available Only a limited number of simple sequence repeat (SSR markers is available for the genome of garlic (Allium sativum L. despite the fact that SSR markers have become one of the most preferred DNA marker systems. To develop new SSR markers for the garlic genome, garlic expressed sequence tags (ESTs at the publicly available GarlicEST database were screened for SSR motifs and a total of 132 SSR motifs were identified. Primer pairs were designed for 50 SSR motifs and 24 of these primer pairs were selected as SSR markers based on their consistent amplification patterns and polymorphisms. In addition, two SSR markers were developed from the sequences of garlic cDNA-AFLP fragments. The use of 26 EST-SSR markers for the assessment of genetic relationship was tested using 31 garlic genotypes. Twenty six EST-SSR markers amplified 130 polymorphic DNA fragments and the number of polymorphic alleles per SSR marker ranged from 2 to 13 with an average of 5 alleles. Observed heterozygosity and polymorphism information content (PIC of the SSR markers were between 0.23 and 0.88, and 0.20 and 0.87, respectively. Twenty one out of the 31 garlic genotypes were analyzed in a previous study using AFLP markers and the garlic genotypes clustered together with AFLP markers were also grouped together with EST-SSR markers demonstrating high concordance between AFLP and EST-SSR marker systems and possible immediate application of EST-SSR markers for fingerprinting of garlic clones. EST-SSR markers could be used in genetic studies such as genetic mapping, association mapping, genetic diversity and comparison of the genomes of Allium species.

  3. Database Resources of the BIG Data Center in 2018.

    Science.gov (United States)

    2018-01-04

    The BIG Data Center at Beijing Institute of Genomics (BIG) of the Chinese Academy of Sciences provides freely open access to a suite of database resources in support of worldwide research activities in both academia and industry. With the vast amounts of omics data generated at ever-greater scales and rates, the BIG Data Center is continually expanding, updating and enriching its core database resources through big-data integration and value-added curation, including BioCode (a repository archiving bioinformatics tool codes), BioProject (a biological project library), BioSample (a biological sample library), Genome Sequence Archive (GSA, a data repository for archiving raw sequence reads), Genome Warehouse (GWH, a centralized resource housing genome-scale data), Genome Variation Map (GVM, a public repository of genome variations), Gene Expression Nebulas (GEN, a database of gene expression profiles based on RNA-Seq data), Methylation Bank (MethBank, an integrated databank of DNA methylomes), and Science Wikis (a series of biological knowledge wikis for community annotations). In addition, three featured web services are provided, viz., BIG Search (search as a service; a scalable inter-domain text search engine), BIG SSO (single sign-on as a service; a user access control system to gain access to multiple independent systems with a single ID and password) and Gsub (submission as a service; a unified submission service for all relevant resources). All of these resources are publicly accessible through the home page of the BIG Data Center at http://bigd.big.ac.cn. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. CRISPR/Cas9 based genome editing of Penicillium chrysogenum

    NARCIS (Netherlands)

    Pohl, Carsten; Kiel, Jan A K W; Driessen, Arnold J M; Bovenberg, Roel A L; Nygård, Yvonne

    2016-01-01

    CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially

  5. Global comparative analysis of ESTs from the southern cattle tick, Rhipicephalus (Boophilus microplus

    Directory of Open Access Journals (Sweden)

    Pertea Geo

    2007-10-01

    Full Text Available Abstract Background The southern cattle tick, Rhipicephalus (Boophilus microplus, is an economically important parasite of cattle and can transmit several pathogenic microorganisms to its cattle host during the feeding process. Understanding the biology and genomics of R. microplus is critical to developing novel methods for controlling these ticks. Results We present a global comparative genomic analysis of a gene index of R. microplus comprised of 13,643 unique transcripts assembled from 42,512 expressed sequence tags (ESTs, a significant fraction of the complement of R. microplus genes. The source material for these ESTs consisted of polyA RNA from various tissues, lifestages, and strains of R. microplus, including larvae exposed to heat, cold, host odor, and acaricide. Functional annotation using RPS-Blast analysis identified conserved protein domains in the conceptually translated gene index and assigned GO terms to those database transcripts which had informative BlastX hits. Blast Score Ratio and SimiTri analysis compared the conceptual transcriptome of the R. microplus database to other eukaryotic proteomes and EST databases, including those from 3 ticks. The most abundant protein domains in BmiGI were also analyzed by SimiTri methodology. Conclusion These results indicate that a large fraction of BmiGI entries have no homologs in other sequenced genomes. Analysis with the PartiGene annotation pipeline showed 64% of the members of BmiGI could not be assigned GO annotation, thus minimal information is available about a significant fraction of the tick genome. This highlights the important insights in tick biology which are likely to result from a tick genome sequencing project. Global comparative analysis identified some tick genes with unexpected phylogenetic relationships which detailed analysis attributed to gene losses in some members of the animal kingdom. Some tick genes were identified which had close orthologues to mammalian genes

  6. EST2Prot: Mapping EST sequences to proteins

    Directory of Open Access Journals (Sweden)

    Lin David M

    2006-03-01

    Full Text Available Abstract Background EST libraries are used in various biological studies, from microarray experiments to proteomic and genetic screens. These libraries usually contain many uncharacterized ESTs that are typically ignored since they cannot be mapped to known genes. Consequently, new discoveries are possibly overlooked. Results We describe a system (EST2Prot that uses multiple elements to map EST sequences to their corresponding protein products. EST2Prot uses UniGene clusters, substring analysis, information about protein coding regions in existing DNA sequences and protein database searches to detect protein products related to a query EST sequence. Gene Ontology terms, Swiss-Prot keywords, and protein similarity data are used to map the ESTs to functional descriptors. Conclusion EST2Prot extends and significantly enriches the popular UniGene mapping by utilizing multiple relations between known biological entities. It produces a mapping between ESTs and proteins in real-time through a simple web-interface. The system is part of the Biozon database and is accessible at http://biozon.org/tools/est/.

  7. Harnessing the sorghum genome sequence:development of a genome-wide microsattelite (SSR) resource for swift genetic mapping and map based cloning in sorghum

    Science.gov (United States)

    Sorghum is the second cereal crop to have a full genome completely sequenced (Nature (2009), 457:551). This achievement is widely recognized as a scientific milestone for grass genetics and genomics in general. However, the true worth of genetic information lies in translating the sequence informa...

  8. FungiDB: An Integrated Bioinformatic Resource for Fungi and Oomycetes

    Directory of Open Access Journals (Sweden)

    Evelina Y. Basenko

    2018-03-01

    Full Text Available FungiDB (fungidb.org is a free online resource for data mining and functional genomics analysis for fungal and oomycete species. FungiDB is part of the Eukaryotic Pathogen Genomics Database Resource (EuPathDB, eupathdb.org platform that integrates genomic, transcriptomic, proteomic, and phenotypic datasets, and other types of data for pathogenic and nonpathogenic, free-living and parasitic organisms. FungiDB is one of the largest EuPathDB databases containing nearly 100 genomes obtained from GenBank, Aspergillus Genome Database (AspGD, The Broad Institute, Joint Genome Institute (JGI, Ensembl, and other sources. FungiDB offers a user-friendly web interface with embedded bioinformatics tools that support custom in silico experiments that leverage FungiDB-integrated data. In addition, a Galaxy-based workspace enables users to generate custom pipelines for large-scale data analysis (e.g., RNA-Seq, variant calling, etc.. This review provides an introduction to the FungiDB resources and focuses on available features, tools, and queries and how they can be used to mine data across a diverse range of integrated FungiDB datasets and records.

  9. Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods

    DEFF Research Database (Denmark)

    Bohlin, Jon; Snipen, Lars; Cloeckaert, Axel

    2010-01-01

    BACKGROUND: Classification of bacteria within the genus Brucella has been difficult due in part to considerable genomic homogeneity between the different species and biovars, in spite of clear differences in phenotypes. Therefore, many different methods have been used to assess Brucella taxonomy....... In the current work, we examine 32 sequenced genomes from genus Brucella representing the six classical species, as well as more recently described species, using bioinformatical methods. Comparisons were made at the level of genomic DNA using oligonucleotide based methods (Markov chain based genomic signatures...... between the oligonucleotide based methods used. Whilst the Markov chain based genomic signatures grouped the different species in genus Brucella according to host preference, the codon and amino acid frequencies based methods reflected small differences between the Brucella species. Only minor differences...

  10. Integration of genomic resources to uncover pleiotropic regions associated with age at puberty and reproductive longevity in sows

    Science.gov (United States)

    Commercial and experimental genetic resources were used to investigate genetic pleiotropic factors that influence age at puberty, litter-size and reproductive longevity. The phenotypes were complemented by high-density genotyping and whole genome and RNA sequencing. The SNPs from Porcine SNP60 BeadA...

  11. Ensembl variation resources

    Directory of Open Access Journals (Sweden)

    Marin-Garcia Pablo

    2010-05-01

    Full Text Available Abstract Background The maturing field of genomics is rapidly increasing the number of sequenced genomes and producing more information from those previously sequenced. Much of this additional information is variation data derived from sampling multiple individuals of a given species with the goal of discovering new variants and characterising the population frequencies of the variants that are already known. These data have immense value for many studies, including those designed to understand evolution and connect genotype to phenotype. Maximising the utility of the data requires that it be stored in an accessible manner that facilitates the integration of variation data with other genome resources such as gene annotation and comparative genomics. Description The Ensembl project provides comprehensive and integrated variation resources for a wide variety of chordate genomes. This paper provides a detailed description of the sources of data and the methods for creating the Ensembl variation databases. It also explores the utility of the information by explaining the range of query options available, from using interactive web displays, to online data mining tools and connecting directly to the data servers programmatically. It gives a good overview of the variation resources and future plans for expanding the variation data within Ensembl. Conclusions Variation data is an important key to understanding the functional and phenotypic differences between individuals. The development of new sequencing and genotyping technologies is greatly increasing the amount of variation data known for almost all genomes. The Ensembl variation resources are integrated into the Ensembl genome browser and provide a comprehensive way to access this data in the context of a widely used genome bioinformatics system. All Ensembl data is freely available at http://www.ensembl.org and from the public MySQL database server at ensembldb.ensembl.org.

  12. Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression.

    Science.gov (United States)

    Arnaiz, Olivier; Van Dijk, Erwin; Bétermier, Mireille; Lhuillier-Akakpo, Maoussi; de Vanssay, Augustin; Duharcourt, Sandra; Sallet, Erika; Gouzy, Jérôme; Sperling, Linda

    2017-06-26

    The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis

  13. HGVA: the Human Genome Variation Archive.

    Science.gov (United States)

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gräf, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-07-03

    High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic data for key reference projects in a clean, fast and integrated fashion. HGVA provides an efficient and intuitive web-interface for easy data mining, a comprehensive RESTful API and client libraries in Python, Java and JavaScript for fast programmatic access to its knowledge base. HGVA calculates population frequencies for these projects and enriches their data with variant annotation provided by CellBase, a rich and fast annotation solution. HGVA serves as a proof-of-concept of the genome analysis developments being carried out by the University of Cambridge together with UK's 100 000 genomes project and the National Institute for Health Research BioResource Rare-Diseases, in particular, deploying open-source for Computational Biology (OpenCB) software platform for storing and analyzing massive genomic datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. A Trichosporonales genome tree based on 27 haploid and three evolutionarily conserved 'natural' hybrid genomes.

    Science.gov (United States)

    Takashima, Masako; Sriswasdi, Sira; Manabe, Ri-Ichiroh; Ohkuma, Moriya; Sugita, Takashi; Iwasaki, Wataru

    2018-01-01

    To construct a backbone tree consisting of basidiomycetous yeasts, draft genome sequences from 25 species of Trichosporonales (Tremellomycetes, Basidiomycota) were generated. In addition to the hybrid genomes of Trichosporon coremiiforme and Trichosporon ovoides that we described previously, we identified an interspecies hybrid genome in Cutaneotrichosporon mucoides (formerly Trichosporon mucoides). This hybrid genome had a gene retention rate of ~55%, and its closest haploid relative was Cutaneotrichosporon dermatis. After constructing the C. mucoides subgenomes, we generated a phylogenetic tree using genome data from the 27 haploid species and the subgenome data from the three hybrid genome species. It was a high-quality tree with 100% bootstrap support for all of the branches. The genome-based tree provided superior resolution compared with previous multi-gene analyses. Although our backbone tree does not include all Trichosporonales genera (e.g. Cryptotrichosporon), it will be valuable for future analyses of genome data. Interest in interspecies hybrid fungal genomes has recently increased because they may provide a basis for new technologies. The three Trichosporonales hybrid genomes described in this study are different from well-characterized hybrid genomes (e.g. those of Saccharomyces pastorianus and Saccharomyces bayanus) because these hybridization events probably occurred in the distant evolutionary past. Hence, they will be useful for studying genome stability following hybridization and speciation events. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Genome-wide survey of allele-specific splicing in humans

    Directory of Open Access Journals (Sweden)

    Scheffler Konrad

    2008-06-01

    Full Text Available Abstract Background Accurate mRNA splicing depends on multiple regulatory signals encoded in the transcribed RNA sequence. Many examples of mutations within human splice regulatory regions that alter splicing qualitatively or quantitatively have been reported and allelic differences in mRNA splicing are likely to be a common and important source of phenotypic diversity at the molecular level, in addition to their contribution to genetic disease susceptibility. However, because the effect of a mutation on the efficiency of mRNA splicing is often difficult to predict, many mutations that cause disease through an effect on splicing are likely to remain undiscovered. Results We have combined a genome-wide scan for sequence polymorphisms likely to affect mRNA splicing with analysis of publicly available Expressed Sequence Tag (EST and exon array data. The genome-wide scan uses published tools and identified 30,977 SNPs located within donor and acceptor splice sites, branch points and exonic splicing enhancer elements. For 1,185 candidate splicing polymorphisms the difference in splicing between alternative alleles was corroborated by publicly available exon array data from 166 lymphoblastoid cell lines. We developed a novel probabilistic method to infer allele-specific splicing from EST data. The method uses SNPs and alternative mRNA isoforms mapped to EST sequences and models both regulated alternative splicing as well as allele-specific splicing. We have also estimated heritability of splicing and report that a greater proportion of genes show evidence of splicing heritability than show heritability of overall gene expression level. Our results provide an extensive resource that can be used to assess the possible effect on splicing of human polymorphisms in putative splice-regulatory sites. Conclusion We report a set of genes showing evidence of allele-specific splicing from an integrated analysis of genomic polymorphisms, EST data and exon array

  16. EST analysis of the scaly green flagellate Mesostigma viride (Streptophyta: Implications for the evolution of green plants (Viridiplantae

    Directory of Open Access Journals (Sweden)

    Melkonian Michael

    2006-02-01

    Full Text Available Abstract Background The Viridiplantae (land plants and green algae consist of two monophyletic lineages, the Chlorophyta and the Streptophyta. The Streptophyta include all embryophytes and a small but diverse group of freshwater algae traditionally known as the Charophyceae (e.g. Charales, Coleochaete and the Zygnematales. The only flagellate currently included in the Streptophyta is Mesostigma viride Lauterborn. To gain insight into the genome evolution in streptophytes, we have sequenced 10,395 ESTs from Mesostigma representing 3,300 independent contigs and compared the ESTs of Mesostigma with available plant genomes (Arabidopsis, Oryza, Chlamydomonas, with ESTs from the bryophyte Physcomitrella, the genome of the rhodophyte Cyanidioschyzon, the ESTs from the rhodophyte Porphyra, and the genome of the diatom Thalassiosira. Results The number of expressed genes shared by Mesostigma with the embryophytes (90.3 % of the expressed genes showing similarity to known proteins is higher than with Chlamydomonas (76.1 %. In general, cytosolic metabolic pathways, and proteins involved in vesicular transport, transcription, regulation, DNA-structure and replication, cell cycle control, and RNA-metabolism are more conserved between Mesostigma and the embryophytes than between Mesostigma and Chlamydomonas. However, plastidic and mitochondrial metabolic pathways, cytoskeletal proteins and proteins involved in protein folding are more conserved between Mesostigma and Chlamydomonas than between Mesostigma and the embryophytes. Conclusion Our EST-analysis of Mesostigma supports the notion that this organism should be a suitable unicellular model for the last flagellate common ancestor of the streptophytes. Mesostigma shares more genes with the embryophytes than with the chlorophyte Chlamydomonas reinhardtii, although both organisms are flagellate unicells. Thus, it seems likely that several major physiological changes (e.g. in the regulation of photosynthesis

  17. A gene-based SNP resource and linkage map for the copepod Tigriopus californicus

    Directory of Open Access Journals (Sweden)

    Foley Brad R

    2011-11-01

    Full Text Available Abstract Background As yet, few genomic resources have been developed in crustaceans. This lack is particularly evident in Copepoda, given the extraordinary numerical abundance, and taxonomic and ecological diversity of this group. Tigriopus californicus is ideally suited to serve as a genetic model copepod and has been the subject of extensive work in environmental stress and reproductive isolation. Accordingly, we set out to develop a broadly-useful panel of genetic markers and to construct a linkage map dense enough for quantitative trait locus detection in an interval mapping framework for T. californicus--a first for copepods. Results One hundred and ninety Single Nucleotide Polymorphisms (SNPs were used to genotype our mapping population of 250 F2 larvae. We were able to construct a linkage map with an average intermarker distance of 1.8 cM, and a maximum intermarker distance of 10.3 cM. All markers were assembled into linkage groups, and the 12 linkage groups corresponded to the 12 known chromosomes of T. californicus. We estimate a total genome size of 401.0 cM, and a total coverage of 73.7%. Seventy five percent of the mapped markers were detected in 9 additional populations of T. californicus. Of available model arthropod genomes, we were able to show more colocalized pairs of homologues between T. californicus and the honeybee Apis mellifera, than expected by chance, suggesting preserved macrosynteny between Hymenoptera and Copepoda. Conclusions Our study provides an abundance of linked markers spanning all chromosomes. Many of these markers are also found in multiple populations of T. californicus, and in two other species in the genus. The genomic resource we have developed will enable mapping throughout the geographical range of this species and in closely related species. This linkage map will facilitate genome sequencing, mapping and assembly in an ecologically and taxonomically interesting group for which genomic resources are

  18. A gene-based SNP resource and linkage map for the copepod Tigriopus californicus

    Science.gov (United States)

    2011-01-01

    Background As yet, few genomic resources have been developed in crustaceans. This lack is particularly evident in Copepoda, given the extraordinary numerical abundance, and taxonomic and ecological diversity of this group. Tigriopus californicus is ideally suited to serve as a genetic model copepod and has been the subject of extensive work in environmental stress and reproductive isolation. Accordingly, we set out to develop a broadly-useful panel of genetic markers and to construct a linkage map dense enough for quantitative trait locus detection in an interval mapping framework for T. californicus--a first for copepods. Results One hundred and ninety Single Nucleotide Polymorphisms (SNPs) were used to genotype our mapping population of 250 F2 larvae. We were able to construct a linkage map with an average intermarker distance of 1.8 cM, and a maximum intermarker distance of 10.3 cM. All markers were assembled into linkage groups, and the 12 linkage groups corresponded to the 12 known chromosomes of T. californicus. We estimate a total genome size of 401.0 cM, and a total coverage of 73.7%. Seventy five percent of the mapped markers were detected in 9 additional populations of T. californicus. Of available model arthropod genomes, we were able to show more colocalized pairs of homologues between T. californicus and the honeybee Apis mellifera, than expected by chance, suggesting preserved macrosynteny between Hymenoptera and Copepoda. Conclusions Our study provides an abundance of linked markers spanning all chromosomes. Many of these markers are also found in multiple populations of T. californicus, and in two other species in the genus. The genomic resource we have developed will enable mapping throughout the geographical range of this species and in closely related species. This linkage map will facilitate genome sequencing, mapping and assembly in an ecologically and taxonomically interesting group for which genomic resources are currently under development

  19. Microarray-based ultra-high resolution discovery of genomic deletion mutations

    Science.gov (United States)

    2014-01-01

    Background Oligonucleotide microarray-based comparative genomic hybridization (CGH) offers an attractive possible route for the rapid and cost-effective genome-wide discovery of deletion mutations. CGH typically involves comparison of the hybridization intensities of genomic DNA samples with microarray chip representations of entire genomes, and has widespread potential application in experimental research and medical diagnostics. However, the power to detect small deletions is low. Results Here we use a graduated series of Arabidopsis thaliana genomic deletion mutations (of sizes ranging from 4 bp to ~5 kb) to optimize CGH-based genomic deletion detection. We show that the power to detect smaller deletions (4, 28 and 104 bp) depends upon oligonucleotide density (essentially the number of genome-representative oligonucleotides on the microarray chip), and determine the oligonucleotide spacings necessary to guarantee detection of deletions of specified size. Conclusions Our findings will enhance a wide range of research and clinical applications, and in particular will aid in the discovery of genomic deletions in the absence of a priori knowledge of their existence. PMID:24655320

  20. The use of Open Reading frame ESTs (ORESTES for analysis of the honey bee transcriptome

    Directory of Open Access Journals (Sweden)

    Soares Ademilson EE

    2004-11-01

    Full Text Available Abstract Background The ongoing efforts to sequence the honey bee genome require additional initiatives to define its transcriptome. Towards this end, we employed the Open Reading frame ESTs (ORESTES strategy to generate profiles for the life cycle of Apis mellifera workers. Results Of the 5,021 ORESTES, 35.2% matched with previously deposited Apis ESTs. The analysis of the remaining sequences defined a set of putative orthologs whose majority had their best-match hits with Anopheles and Drosophila genes. CAP3 assembly of the Apis ORESTES with the already existing 15,500 Apis ESTs generated 3,408 contigs. BLASTX comparison of these contigs with protein sets of organisms representing distinct phylogenetic clades revealed a total of 1,629 contigs that Apis mellifera shares with different taxa. Most (41% represent genes that are in common to all taxa, another 21% are shared between metazoans (Bilateria, and 16% are shared only within the Insecta clade. A set of 23 putative genes presented a best match with human genes, many of which encode factors related to cell signaling/signal transduction. 1,779 contigs (52% did not match any known sequence. Applying a correction factor deduced from a parallel analysis performed with Drosophila melanogaster ORESTES, we estimate that approximately half of these no-match ESTs contigs (22% should represent Apis-specific genes. Conclusions The versatile and cost-efficient ORESTES approach produced minilibraries for honey bee life cycle stages. Such information on central gene regions contributes to genome annotation and also lends itself to cross-transcriptome comparisons to reveal evolutionary trends in insect genomes.

  1. A novel genome-information content-based statistic for genome-wide association analysis designed for next-generation sequencing data.

    Science.gov (United States)

    Luo, Li; Zhu, Yun; Xiong, Momiao

    2012-06-01

    The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.

  2. Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome

    Directory of Open Access Journals (Sweden)

    Holt Robert A

    2010-04-01

    Full Text Available Abstract Background Salmonids are one of the most intensely studied fish, in part due to their economic and environmental importance, and in part due to a recent whole genome duplication in the common ancestor of salmonids. This duplication greatly impacts species diversification, functional specialization, and adaptation. Extensive new genomic resources have recently become available for Atlantic salmon (Salmo salar, but documentation of allelic versus duplicate reference genes remains a major uncertainty in the complete characterization of its genome and its evolution. Results From existing expressed sequence tag (EST resources and three new full-length cDNA libraries, 9,057 reference quality full-length gene insert clones were identified for Atlantic salmon. A further 1,365 reference full-length clones were annotated from 29,221 northern pike (Esox lucius ESTs. Pairwise dN/dS comparisons within each of 408 sets of duplicated salmon genes using northern pike as a diploid out-group show asymmetric relaxation of selection on salmon duplicates. Conclusions 9,057 full-length reference genes were characterized in S. salar and can be used to identify alleles and gene family members. Comparisons of duplicated genes show that while purifying selection is the predominant force acting on both duplicates, consistent with retention of functionality in both copies, some relaxation of pressure on gene duplicates can be identified. In addition, there is evidence that evolution has acted asymmetrically on paralogs, allowing one of the pair to diverge at a faster rate.

  3. Goodbye genome paper, hello genome report: the increasing popularity of 'genome announcements' and their impact on science.

    Science.gov (United States)

    Smith, David Roy

    2017-05-01

    Next-generation sequencing technologies have revolutionized genomics and altered the scientific publication landscape. Life-science journals abound with genome papers-peer-reviewed descriptions of newly sequenced chromosomes. Although they once filled the pages of Nature and Science, genome papers are now mostly relegated to journals with low-impact factors. Some have forecast the death of the genome paper and argued that they are using up valuable resources and not advancing science. However, the publication rate of genome papers is on the rise. This increase is largely because some journals have created a new category of manuscript called genome reports, which are short, fast-tracked papers describing a chromosome sequence(s), its GenBank accession number and little else. In 2015, for example, more than 2000 genome reports were published, and 2016 is poised to bring even more. Here, I highlight the growing popularity of genome reports and discuss their merits, drawbacks and impact on science and the academic publication infrastructure. Genome reports can be excellent assets for the research community, but they are also being used as quick and easy routes to a publication, and in some instances they are not peer reviewed. One of the best arguments for genome reports is that they are a citable, user-generated genomic resource providing essential methodological and biological information, which may not be present in the sequence database. But they are expensive and time-consuming avenues for achieving such a goal. © The Author 2016. Published by Oxford University Press.

  4. MicrobesOnline: an integrated portal for comparative and functional genomics

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir S.; Joachimiak, Marcin P.; Price, Morgan N.; Bates, John T.; Baumohl, Jason K.; Chivian, Dylan; Friedland, Greg D.; Huang, Katherine H.; Keller, Keith; Novichkov, Pavel S.; Dubchak, Inna L.; Alm, Eric J.; Arkin, Adam P.

    2009-09-17

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

  5. MicrobesOnline: an integrated portal for comparative and functional genomics

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir; Joachimiak, Marcin; Price, Morgan; Bates, John; Baumohl, Jason; Chivian, Dylan; Friedland, Greg; Huang, Kathleen; Keller, Keith; Novichkov, Pavel; Dubchak, Inna; Alm, Eric; Arkin, Adam

    2011-07-14

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

  6. ChickVD: a sequence variation database for the chicken genome

    DEFF Research Database (Denmark)

    Wang, Jing; He, Ximiao; Ruan, Jue

    2005-01-01

    Working in parallel with the efforts to sequence the chicken (Gallus gallus) genome, the Beijing Genomics Institute led an international team of scientists from China, USA, UK, Sweden, The Netherlands and Germany to map extensive DNA sequence variation throughout the chicken genome by sampling DN...... on quantitative trait loci using data from collaborating institutions and public resources. Our data can be queried by search engine and homology-based BLAST searches. ChickVD is publicly accessible at http://chicken.genomics.org.cn. Udgivelsesdato: 2005-Jan-1...

  7. Genomes of the Mouse Collaborative Cross.

    Science.gov (United States)

    Srivastava, Anuj; Morgan, Andrew P; Najarian, Maya L; Sarsani, Vishal Kumar; Sigmon, J Sebastian; Shorter, John R; Kashfeen, Anwica; McMullan, Rachel C; Williams, Lucy H; Giusti-Rodríguez, Paola; Ferris, Martin T; Sullivan, Patrick; Hock, Pablo; Miller, Darla R; Bell, Timothy A; McMillan, Leonard; Churchill, Gary A; de Villena, Fernando Pardo-Manuel

    2017-06-01

    The Collaborative Cross (CC) is a multiparent panel of recombinant inbred (RI) mouse strains derived from eight founder laboratory strains. RI panels are popular because of their long-term genetic stability, which enhances reproducibility and integration of data collected across time and conditions. Characterization of their genomes can be a community effort, reducing the burden on individual users. Here we present the genomes of the CC strains using two complementary approaches as a resource to improve power and interpretation of genetic experiments. Our study also provides a cautionary tale regarding the limitations imposed by such basic biological processes as mutation and selection. A distinct advantage of inbred panels is that genotyping only needs to be performed on the panel, not on each individual mouse. The initial CC genome data were haplotype reconstructions based on dense genotyping of the most recent common ancestors (MRCAs) of each strain followed by imputation from the genome sequence of the corresponding founder inbred strain. The MRCA resource captured segregating regions in strains that were not fully inbred, but it had limited resolution in the transition regions between founder haplotypes, and there was uncertainty about founder assignment in regions of limited diversity. Here we report the whole genome sequence of 69 CC strains generated by paired-end short reads at 30× coverage of a single male per strain. Sequencing leads to a substantial improvement in the fine structure and completeness of the genomes of the CC. Both MRCAs and sequenced samples show a significant reduction in the genome-wide haplotype frequencies from two wild-derived strains, CAST/EiJ and PWK/PhJ. In addition, analysis of the evolution of the patterns of heterozygosity indicates that selection against three wild-derived founder strains played a significant role in shaping the genomes of the CC. The sequencing resource provides the first description of tens of thousands of

  8. Changing Histopathological Diagnostics by Genome-Based Tumor Classification

    Directory of Open Access Journals (Sweden)

    Michael Kloth

    2014-05-01

    Full Text Available Traditionally, tumors are classified by histopathological criteria, i.e., based on their specific morphological appearances. Consequently, current therapeutic decisions in oncology are strongly influenced by histology rather than underlying molecular or genomic aberrations. The increase of information on molecular changes however, enabled by the Human Genome Project and the International Cancer Genome Consortium as well as the manifold advances in molecular biology and high-throughput sequencing techniques, inaugurated the integration of genomic information into disease classification. Furthermore, in some cases it became evident that former classifications needed major revision and adaption. Such adaptations are often required by understanding the pathogenesis of a disease from a specific molecular alteration, using this molecular driver for targeted and highly effective therapies. Altogether, reclassifications should lead to higher information content of the underlying diagnoses, reflecting their molecular pathogenesis and resulting in optimized and individual therapeutic decisions. The objective of this article is to summarize some particularly important examples of genome-based classification approaches and associated therapeutic concepts. In addition to reviewing disease specific markers, we focus on potentially therapeutic or predictive markers and the relevance of molecular diagnostics in disease monitoring.

  9. Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics.

    Science.gov (United States)

    Tzika, Athanasia C; Ullate-Agote, Asier; Grbic, Djordje; Milinkovitch, Michel C

    2015-07-01

    Despite the availability of deep-sequencing techniques, genomic and transcriptomic data remain unevenly distributed across phylogenetic groups. For example, reptiles are poorly represented in sequence databases, hindering functional evolutionary and developmental studies in these lineages substantially more diverse than mammals. In addition, different studies use different assembly and annotation protocols, inhibiting meaningful comparisons. Here, we present the "Reptilian Transcriptomes Database 2.0," which provides extensive annotation of transcriptomes and genomes from species covering the major reptilian lineages. To this end, we sequenced normalized complementary DNA libraries of multiple adult tissues and various embryonic stages of the leopard gecko and the corn snake and gathered published reptilian sequence data sets from representatives of the four extant orders of reptiles: Squamata (snakes and lizards), the tuatara, crocodiles, and turtles. The LANE runner 2.0 software was implemented to annotate all assemblies within a single integrated pipeline. We show that this approach increases the annotation completeness of the assembled transcriptomes/genomes. We then built large concatenated protein alignments of single-copy genes and inferred phylogenetic trees that support the positions of turtles and the tuatara as sister groups of Archosauria and Squamata, respectively. The Reptilian Transcriptomes Database 2.0 resource will be updated to include selected new data sets as they become available, thus making it a reference for differential expression studies, comparative genomics and transcriptomics, linkage mapping, molecular ecology, and phylogenomic analyses involving reptiles. The database is available at www.reptilian-transcriptomes.org and can be enquired using a wwwblast server installed at the University of Geneva. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. The eastern oyster genome: A resource for comparative genomics in shellfish aquaculture species

    Science.gov (United States)

    Oyster aquaculture is an important sector of world food production. As such, it is imperative to develop a high quality reference genome for the eastern oyster, Crassostrea virginica, to assist in the elucidation of the genomic basis of commercially important traits. All genetic, gene expression and...

  11. Reference-quality genome sequence of Aegilops tauschii, the source of wheat D genome, shows that recombination shapes genome structure and evolution

    Science.gov (United States)

    Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat and an important genetic resource for wheat. A reference-quality sequence for the Ae. tauschii genome was produced with a combination of ordered-clone sequencing, whole-genome shotgun sequencing, and BioNano optical geno...

  12. An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals

    Directory of Open Access Journals (Sweden)

    Chen Wei-Chung

    2009-09-01

    Full Text Available Abstract Background Since the drastic reorganisation of the phylogeny of the animal kingdom into three major clades of bilaterians; Ecdysozoa, Lophotrochozoa and Deuterostomia, it became glaringly obvious that the selection of model systems with extensive molecular resources was heavily biased towards only two of these three clades, namely the Ecdysozoa and Deuterostomia. Increasing efforts have been put towards redressing this imbalance in recent years, and one of the principal phyla in the vanguard of this endeavour is the Annelida. Results In the context of this effort we here report our characterisation of an Expressed Sequence Tag (EST screen in the serpulid annelid, Pomatoceros lamarckii. We have sequenced over 5,000 ESTs which consolidate into over 2,000 sequences (clusters and singletons. These sequences are used to build phylogenetic trees to estimate relative branch lengths amongst different taxa and, by comparison to genomic data from other animals, patterns of gene retention and loss are deduced. Conclusion The molecular phylogenetic trees including the P. lamarckii sequences extend early observations that polychaetes tend to have relatively short branches in such trees, and hence are useful taxa with which to reconstruct gene family evolution. Also, with the availability of lophotrochozoan data such as that of P. lamarckii, it is now possible to make much more accurate reconstructions of the gene complement of the ancestor of the bilaterians than was previously possible from comparisons of ecdysozoan and deuterostome genomes to non-bilaterian outgroups. It is clear that the traditional molecular model systems for protostomes (e.g. Drosophila melanogaster and Caenorhabditis elegans, which are restricted to the Ecdysozoa, have undergone extensive gene loss during evolution. These ecdysozoan systems, in terms of gene content, are thus more derived from the bilaterian ancestral condition than lophotrochozoan systems like the polychaetes

  13. Development of novel EST-SSR markers for ploidy identification based on de novo transcriptome assembly for Misgurnus anguillicaudatus.

    Science.gov (United States)

    Feng, Bing; Yi, Soojin V; Zhang, Manman; Zhou, Xiaoyun

    2018-01-01

    The co-existence of several ploidy types in natural populations makes the cyprinid loach Misgurnus anguillicaudatus an exciting model system to study the genetic and phenotypic consequences of ploidy variations. A first step in such effort is to identify the specific ploidy of an individual. Currently popular methods of karyotyping via cytological preparation or flow cytometry require a large amount of tissue (such as blood) samples, which can be damaging or fatal to the fishes. Here, we developed novel microsatellite markers (SSR markers) from M. anguillicaudatus and show that they can effectively discriminate ploidy using samples collected in a minimally invasive way. Specifically, we generated whole genome transcriptomes from multiple M. anguillicaudatus using the Illumina paired-end sequencing. Approximately 150 million raw reads were assembled into 76,544 non-redundant unigenes. A total of 8,194 potential SSR markers were identified. We selected 98 pairs with more than five tandem repeats for further assays. Out of 45 putative EST-SSR markers that successfully amplified and harbored polymorphism in diploids, 11 markers displayed high variability in tetraploids. We further demonstrate that a set of five EST-SSR markers selected from these are sufficient to distinguish ploidy levels, by first validating them on 69 reference specimens with known ploidy levels and then subsequently using fresh-collected 96 ploidy-unknown specimens. The results from EST-SSR markers are highly concordant with those from independent flow cytometry analysis. The novel EST-SSR markers developed here should facilitate genetic studies of polyploidy in the emerging model system M. anguillicaudatus.

  14. Arthropod genomic resources for the 21st century

    Science.gov (United States)

    Genome references are foundational for high quality entomological research today. Species, sub populations and taxonomy are defined by gene flow and genome sequences. Gene content in arthropods is often directly reflective of life history, for example, diet and symbiont related gene loss is observed...

  15. New Genome Similarity Measures based on Conserved Gene Adjacencies.

    Science.gov (United States)

    Doerr, Daniel; Kowada, Luis Antonio B; Araujo, Eloi; Deshpande, Shachi; Dantas, Simone; Moret, Bernard M E; Stoye, Jens

    2017-06-01

    Many important questions in molecular biology, evolution, and biomedicine can be addressed by comparative genomic approaches. One of the basic tasks when comparing genomes is the definition of measures of similarity (or dissimilarity) between two genomes, for example, to elucidate the phylogenetic relationships between species. The power of different genome comparison methods varies with the underlying formal model of a genome. The simplest models impose the strong restriction that each genome under study must contain the same genes, each in exactly one copy. More realistic models allow several copies of a gene in a genome. One speaks of gene families, and comparative genomic methods that allow this kind of input are called gene family-based. The most powerful-but also most complex-models avoid this preprocessing of the input data and instead integrate the family assignment within the comparative analysis. Such methods are called gene family-free. In this article, we study an intermediate approach between family-based and family-free genomic similarity measures. Introducing this simpler model, called gene connections, we focus on the combinatorial aspects of gene family-free genome comparison. While in most cases, the computational costs to the general family-free case are the same, we also find an instance where the gene connections model has lower complexity. Within the gene connections model, we define three variants of genomic similarity measures that have different expression powers. We give polynomial-time algorithms for two of them, while we show NP-hardness for the third, most powerful one. We also generalize the measures and algorithms to make them more robust against recent local disruptions in gene order. Our theoretical findings are supported by experimental results, proving the applicability and performance of our newly defined similarity measures.

  16. The Eukaryotic Pathogen Databases: a functional genomic resource integrating data from human and veterinary parasites.

    Science.gov (United States)

    Harb, Omar S; Roos, David S

    2015-01-01

    Over the past 20 years, advances in high-throughput biological techniques and the availability of computational resources including fast Internet access have resulted in an explosion of large genome-scale data sets "big data." While such data are readily available for download and personal use and analysis from a variety of repositories, often such analysis requires access to seldom-available computational skills. As a result a number of databases have emerged to provide scientists with online tools enabling the interrogation of data without the need for sophisticated computational skills beyond basic knowledge of Internet browser utility. This chapter focuses on the Eukaryotic Pathogen Databases (EuPathDB: http://eupathdb.org) Bioinformatic Resource Center (BRC) and illustrates some of the available tools and methods.

  17. Modern Resource-Based Theory(ies)

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Stieglitz, Nils

    We survey the resource-based view in strategic management, focusing on its roots in economics. We organize our discussion in terms of the Gavetti and Levinthal distinction between a “high church” and a “low church” resource-based view, and argue that these hitherto rather separate streams...

  18. GarlicESTdb: an online database and mining tool for garlic EST sequences

    Directory of Open Access Journals (Sweden)

    Choi Sang-Haeng

    2009-05-01

    Full Text Available Abstract Background Allium sativum., commonly known as garlic, is a species in the onion genus (Allium, which is a large and diverse one containing over 1,250 species. Its close relatives include chives, onion, leek and shallot. Garlic has been used throughout recorded history for culinary, medicinal use and health benefits. Currently, the interest in garlic is highly increasing due to nutritional and pharmaceutical value including high blood pressure and cholesterol, atherosclerosis and cancer. For all that, there are no comprehensive databases available for Expressed Sequence Tags(EST of garlic for gene discovery and future efforts of genome annotation. That is why we developed a new garlic database and applications to enable comprehensive analysis of garlic gene expression. Description GarlicESTdb is an integrated database and mining tool for large-scale garlic (Allium sativum EST sequencing. A total of 21,595 ESTs collected from an in-house cDNA library were used to construct the database. The analysis pipeline is an automated system written in JAVA and consists of the following components: automatic preprocessing of EST reads, assembly of raw sequences, annotation of the assembled sequences, storage of the analyzed information into MySQL databases, and graphic display of all processed data. A web application was implemented with the latest J2EE (Java 2 Platform Enterprise Edition software technology (JSP/EJB/JavaServlet for browsing and querying the database, for creation of dynamic web pages on the client side, and for mapping annotated enzymes to KEGG pathways, the AJAX framework was also used partially. The online resources, such as putative annotation, single nucleotide polymorphisms (SNP and tandem repeat data sets, can be searched by text, explored on the website, searched using BLAST, and downloaded. To archive more significant BLAST results, a curation system was introduced with which biologists can easily edit best-hit annotation

  19. GarlicESTdb: an online database and mining tool for garlic EST sequences.

    Science.gov (United States)

    Kim, Dae-Won; Jung, Tae-Sung; Nam, Seong-Hyeuk; Kwon, Hyuk-Ryul; Kim, Aeri; Chae, Sung-Hwa; Choi, Sang-Haeng; Kim, Dong-Wook; Kim, Ryong Nam; Park, Hong-Seog

    2009-05-18

    Allium sativum., commonly known as garlic, is a species in the onion genus (Allium), which is a large and diverse one containing over 1,250 species. Its close relatives include chives, onion, leek and shallot. Garlic has been used throughout recorded history for culinary, medicinal use and health benefits. Currently, the interest in garlic is highly increasing due to nutritional and pharmaceutical value including high blood pressure and cholesterol, atherosclerosis and cancer. For all that, there are no comprehensive databases available for Expressed Sequence Tags(EST) of garlic for gene discovery and future efforts of genome annotation. That is why we developed a new garlic database and applications to enable comprehensive analysis of garlic gene expression. GarlicESTdb is an integrated database and mining tool for large-scale garlic (Allium sativum) EST sequencing. A total of 21,595 ESTs collected from an in-house cDNA library were used to construct the database. The analysis pipeline is an automated system written in JAVA and consists of the following components: automatic preprocessing of EST reads, assembly of raw sequences, annotation of the assembled sequences, storage of the analyzed information into MySQL databases, and graphic display of all processed data. A web application was implemented with the latest J2EE (Java 2 Platform Enterprise Edition) software technology (JSP/EJB/JavaServlet) for browsing and querying the database, for creation of dynamic web pages on the client side, and for mapping annotated enzymes to KEGG pathways, the AJAX framework was also used partially. The online resources, such as putative annotation, single nucleotide polymorphisms (SNP) and tandem repeat data sets, can be searched by text, explored on the website, searched using BLAST, and downloaded. To archive more significant BLAST results, a curation system was introduced with which biologists can easily edit best-hit annotation information for others to view. The Garlic

  20. Genome-wide identification of coding and non-coding conserved sequence tags in human and mouse genomes

    Directory of Open Access Journals (Sweden)

    Maggi Giorgio P

    2008-06-01

    Full Text Available Abstract Background The accurate detection of genes and the identification of functional regions is still an open issue in the annotation of genomic sequences. This problem affects new genomes but also those of very well studied organisms such as human and mouse where, despite the great efforts, the inventory of genes and regulatory regions is far from complete. Comparative genomics is an effective approach to address this problem. Unfortunately it is limited by the computational requirements needed to perform genome-wide comparisons and by the problem of discriminating between conserved coding and non-coding sequences. This discrimination is often based (thus dependent on the availability of annotated proteins. Results In this paper we present the results of a comprehensive comparison of human and mouse genomes performed with a new high throughput grid-based system which allows the rapid detection of conserved sequences and accurate assessment of their coding potential. By detecting clusters of coding conserved sequences the system is also suitable to accurately identify potential gene loci. Following this analysis we created a collection of human-mouse conserved sequence tags and carefully compared our results to reliable annotations in order to benchmark the reliability of our classifications. Strikingly we were able to detect several potential gene loci supported by EST sequences but not corresponding to as yet annotated genes. Conclusion Here we present a new system which allows comprehensive comparison of genomes to detect conserved coding and non-coding sequences and the identification of potential gene loci. Our system does not require the availability of any annotated sequence thus is suitable for the analysis of new or poorly annotated genomes.

  1. Genomic prediction in families of perennial ryegrass based on genotyping-by-sequencing

    DEFF Research Database (Denmark)

    Ashraf, Bilal

    In this thesis we investigate the potential for genomic prediction in perennial ryegrass using genotyping-by-sequencing (GBS) data. Association method based on family-based breeding systems was developed, genomic heritabilities, genomic prediction accurancies and effects of some key factors wer...... explored. Results show that low sequencing depth caused underestimation of allele substitution effects in GWAS and overestimation of genomic heritability in prediction studies. Other factors susch as SNP marker density, population structure and size of training population influenced accuracy of genomic...... prediction. Overall, GBS allows for genomic prediction in breeding families of perennial ryegrass and holds good potential to expedite genetic gain and encourage the application of genomic prediction...

  2. Clone DB: an integrated NCBI resource for clone-associated data

    Science.gov (United States)

    Schneider, Valerie A.; Chen, Hsiu-Chuan; Clausen, Cliff; Meric, Peter A.; Zhou, Zhigang; Bouk, Nathan; Husain, Nora; Maglott, Donna R.; Church, Deanna M.

    2013-01-01

    The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents. PMID:23193260

  3. MC-GenomeKey: a multicloud system for the detection and annotation of genomic variants.

    Science.gov (United States)

    Elshazly, Hatem; Souilmi, Yassine; Tonellato, Peter J; Wall, Dennis P; Abouelhoda, Mohamed

    2017-01-20

    Next Generation Genome sequencing techniques became affordable for massive sequencing efforts devoted to clinical characterization of human diseases. However, the cost of providing cloud-based data analysis of the mounting datasets remains a concerning bottleneck for providing cost-effective clinical services. To address this computational problem, it is important to optimize the variant analysis workflow and the used analysis tools to reduce the overall computational processing time, and concomitantly reduce the processing cost. Furthermore, it is important to capitalize on the use of the recent development in the cloud computing market, which have witnessed more providers competing in terms of products and prices. In this paper, we present a new package called MC-GenomeKey (Multi-Cloud GenomeKey) that efficiently executes the variant analysis workflow for detecting and annotating mutations using cloud resources from different commercial cloud providers. Our package supports Amazon, Google, and Azure clouds, as well as, any other cloud platform based on OpenStack. Our package allows different scenarios of execution with different levels of sophistication, up to the one where a workflow can be executed using a cluster whose nodes come from different clouds. MC-GenomeKey also supports scenarios to exploit the spot instance model of Amazon in combination with the use of other cloud platforms to provide significant cost reduction. To the best of our knowledge, this is the first solution that optimizes the execution of the workflow using computational resources from different cloud providers. MC-GenomeKey provides an efficient multicloud based solution to detect and annotate mutations. The package can run in different commercial cloud platforms, which enables the user to seize the best offers. The package also provides a reliable means to make use of the low-cost spot instance model of Amazon, as it provides an efficient solution to the sudden termination of spot

  4. Genomic insight into the common carp (Cyprinus carpio genome by sequencing analysis of BAC-end sequences

    Directory of Open Access Journals (Sweden)

    Wang Jintu

    2011-04-01

    Full Text Available Abstract Background Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. Result To develop such valuable resources in common carp (Cyprinus carpio, a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. Conclusion BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3

  5. Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences

    Science.gov (United States)

    2011-01-01

    Background Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. Result To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. Conclusion BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of

  6. HelmCoP: an online resource for helminth functional genomics and drug and vaccine targets prioritization.

    Directory of Open Access Journals (Sweden)

    Sahar Abubucker

    Full Text Available A vast majority of the burden from neglected tropical diseases result from helminth infections (nematodes and platyhelminthes. Parasitic helminthes infect over 2 billion, exerting a high collective burden that rivals high-mortality conditions such as AIDS or malaria, and cause devastation to crops and livestock. The challenges to improve control of parasitic helminth infections are multi-fold and no single category of approaches will meet them all. New information such as helminth genomics, functional genomics and proteomics coupled with innovative bioinformatic approaches provide fundamental molecular information about these parasites, accelerating both basic research as well as development of effective diagnostics, vaccines and new drugs. To facilitate such studies we have developed an online resource, HelmCoP (Helminth Control and Prevention, built by integrating functional, structural and comparative genomic data from plant, animal and human helminthes, to enable researchers to develop strategies for drug, vaccine and pesticide prioritization, while also providing a useful comparative genomics platform. HelmCoP encompasses genomic data from several hosts, including model organisms, along with a comprehensive suite of structural and functional annotations, to assist in comparative analyses and to study host-parasite interactions. The HelmCoP interface, with a sophisticated query engine as a backbone, allows users to search for multi-factorial combinations of properties and serves readily accessible information that will assist in the identification of various genes of interest. HelmCoP is publicly available at: http://www.nematode.net/helmcop.html.

  7. AcEST: BP917834 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ntrin-specific protease 7 OS=Mus musculu... 31 2.2 sp|P32537|POLG_HE701 Genome polyprotein OS=Human enterovirus...7 GQEPDASAASGRASSPNKSLESSASSEVSENSSV 400 >sp|P32537|POLG_HE701 Genome polyprotein OS=Human enterovirus

  8. Evidence-based human resource management: a study of nurse leaders' resource allocation.

    Science.gov (United States)

    Fagerström, Lisbeth

    2009-05-01

    The aims were to illustrate how the RAFAELA system can be used to facilitate evidence-based human resource management. The theoretical framework of the RAFAELA system is based on a holistic view of humankind and a view of leadership founded on human resource management. Nine wards from three central hospitals in Finland participated in the study. The data, stemming from 2006-2007, were taken from the critical indicators (ward-related and nursing intensity information) for national benchmarking used in the RAFAELA system. The data were analysed descriptively. The daily nursing resources per classified patient ratio is a more specific method of measurement than the nurse-to-patient ratio. For four wards, the nursing intensity per nurse surpassed the optimal level 34% to 62.2% of days. Resource allocation was clearly improved in that a better balance between patients' care needs and available nursing resources was maintained. The RAFAELA system provides a rational, systematic and objective foundation for evidence-based human resource management. Data from a systematic use of the RAFAELA system offer objective facts and motives for evidence-based decision making in human resource management, and will therefore enhance the nurse leaders' evidence and scientific based way of working.

  9. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    KAUST Repository

    Bracken-Grissom, Heather; Collins, Allen G.; Collins, Timothy; Crandall, Keith; Distel, Daniel; Dunn, Casey; Giribet, Gonzalo; Haddock, Steven; Knowlton, Nancy; Martindale, Mark; Medina, Monica; Messing, Charles; O'Brien, Stephen J.; Paulay, Gustav; Putnam, Nicolas; Ravasi, Timothy; Rouse, Greg W.; Ryan, Joseph F.; Schulze, Anja; Worheide, Gert; Adamska, Maja; Bailly, Xavier; Breinholt, Jesse; Browne, William E.; Diaz, M. Christina; Evans, Nathaniel; Flot, Jean-Francois; Fogarty, Nicole; Johnston, Matthew; Kamel, Bishoy; Kawahara, Akito Y.; Laberge, Tammy; Lavrov, Dennis; Michonneau, Francois; Moroz, Leonid L.; Oakley, Todd; Osborne, Karen; Pomponi, Shirley A.; Rhodes, Adelaide; Rodriguez-Lanetty, Mauricio; Santos, Scott R.; Satoh, Nori; Thacker, Robert W.; Van de Peer, Yves; Voolstra, Christian R.; Welch, David Mark; Winston, Judith; Zhou, Xin

    2013-01-01

    Over 95% of all metazoan (animal) species comprise the invertebrates, but very few genomes from these organisms have been sequenced. We have, therefore, formed a Global Invertebrate Genomics Alliance (GIGA). Our intent is to build a collaborative

  10. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification

    Science.gov (United States)

    Reddy, T.B.K.; Thomas, Alex D.; Stamatis, Dimitri; Bertsch, Jon; Isbandi, Michelle; Jansson, Jakob; Mallajosyula, Jyothi; Pagani, Ioanna; Lobos, Elizabeth A.; Kyrpides, Nikos C.

    2015-01-01

    The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Here we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencing projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards. PMID:25348402

  11. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Tatiparthi B. K. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Thomas, Alex D. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Stamatis, Dimitri [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Bertsch, Jon [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Isbandi, Michelle [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Jansson, Jakob [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Mallajosyula, Jyothi [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Pagani, Ioanna [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Lobos, Elizabeth A. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Kyrpides, Nikos C. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); King Abdulaziz Univ., Jeddah (Saudi Arabia)

    2014-10-27

    The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Within this paper, we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencing projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. Lastly, GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards.

  12. nGASP - the nematode genome annotation assessment project

    Energy Technology Data Exchange (ETDEWEB)

    Coghlan, A; Fiedler, T J; McKay, S J; Flicek, P; Harris, T W; Blasiar, D; Allen, J; Stein, L D

    2008-12-19

    While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second place. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy as reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs were the most challenging for gene-finders. While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C

  13. ASGDB: a specialised genomic resource for interpreting Anopheles sinensis insecticide resistance.

    Science.gov (United States)

    Zhou, Dan; Xu, Yang; Zhang, Cheng; Hu, Meng-Xue; Huang, Yun; Sun, Yan; Ma, Lei; Shen, Bo; Zhu, Chang-Liang

    2018-01-10

    Anopheles sinensis is an important malaria vector in Southeast Asia. The widespread emergence of insecticide resistance in this mosquito species poses a serious threat to the efficacy of malaria control measures, particularly in China. Recently, the whole-genome sequencing and de novo assembly of An. sinensis (China strain) has been finished. A series of insecticide-resistant studies in An. sinensis have also been reported. There is a growing need to integrate these valuable data to provide a comprehensive database for further studies on insecticide-resistant management of An. sinensis. A bioinformatics database named An. sinensis genome database (ASGDB) was built. In addition to being a searchable database of published An. sinensis genome sequences and annotation, ASGDB provides in-depth analytical platforms for further understanding of the genomic and genetic data, including visualization of genomic data, orthologous relationship analysis, GO analysis, pathway analysis, expression analysis and resistance-related gene analysis. Moreover, ASGDB provides a panoramic view of insecticide resistance studies in An. sinensis in China. In total, 551 insecticide-resistant phenotypic and genotypic reports on An. sinensis distributed in Chinese malaria-endemic areas since the mid-1980s have been collected, manually edited in the same format and integrated into OpenLayers map-based interface, which allows the international community to assess and exploit the high volume of scattered data much easier. The database has been given the URL: http://www.asgdb.org /. ASGDB was built to help users mine data from the genome sequence of An. sinensis easily and effectively, especially with its advantages in insecticide resistance surveillance and control.

  14. Sunflower Hybrid Breeding: From Markers to Genomic Selection.

    Science.gov (United States)

    Dimitrijevic, Aleksandra; Horn, Renate

    2017-01-01

    In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi , or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches

  15. Sunflower Hybrid Breeding: From Markers to Genomic Selection

    Directory of Open Access Journals (Sweden)

    Aleksandra Dimitrijevic

    2018-01-01

    Full Text Available In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare

  16. Sunflower Hybrid Breeding: From Markers to Genomic Selection

    Science.gov (United States)

    Dimitrijevic, Aleksandra; Horn, Renate

    2018-01-01

    In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches

  17. JUICE: a data management system that facilitates the analysis of large volumes of information in an EST project workflow.

    Science.gov (United States)

    Latorre, Mariano; Silva, Herman; Saba, Juan; Guziolowski, Carito; Vizoso, Paula; Martinez, Veronica; Maldonado, Jonathan; Morales, Andrea; Caroca, Rodrigo; Cambiazo, Veronica; Campos-Vargas, Reinaldo; Gonzalez, Mauricio; Orellana, Ariel; Retamales, Julio; Meisel, Lee A

    2006-11-23

    Expressed sequence tag (EST) analyses provide a rapid and economical means to identify candidate genes that may be involved in a particular biological process. These ESTs are useful in many Functional Genomics studies. However, the large quantity and complexity of the data generated during an EST sequencing project can make the analysis of this information a daunting task. In an attempt to make this task friendlier, we have developed JUICE, an open source data management system (Apache + PHP + MySQL on Linux), which enables the user to easily upload, organize, visualize and search the different types of data generated in an EST project pipeline. In contrast to other systems, the JUICE data management system allows a branched pipeline to be established, modified and expanded, during the course of an EST project. The web interfaces and tools in JUICE enable the users to visualize the information in a graphical, user-friendly manner. The user may browse or search for sequences and/or sequence information within all the branches of the pipeline. The user can search using terms associated with the sequence name, annotation or other characteristics stored in JUICE and associated with sequences or sequence groups. Groups of sequences can be created by the user, stored in a clipboard and/or downloaded for further analyses. Different user profiles restrict the access of each user depending upon their role in the project. The user may have access exclusively to visualize sequence information, access to annotate sequences and sequence information, or administrative access. JUICE is an open source data management system that has been developed to aid users in organizing and analyzing the large amount of data generated in an EST Project workflow. JUICE has been used in one of the first functional genomics projects in Chile, entitled "Functional Genomics in nectarines: Platform to potentiate the competitiveness of Chile in fruit exportation". However, due to its ability to

  18. CyanoClust: comparative genome resources of cyanobacteria and plastids

    OpenAIRE

    Sasaki, Naobumi V.; Sato, Naoki

    2010-01-01

    Cyanobacteria, which perform oxygen-evolving photosynthesis as do chloroplasts of plants and algae, are one of the best-studied prokaryotic phyla and one from which many representative genomes have been sequenced. Lack of a suitable comparative genomic database has been a problem in cyanobacterial genomics because many proteins involved in physiological functions such as photosynthesis and nitrogen fixation are not catalogued in commonly used databases, such as Clusters of Orthologous Protein...

  19. DNA Data Bank of Japan at work on genome sequence data.

    Science.gov (United States)

    Tateno, Y; Fukami-Kobayashi, K; Miyazaki, S; Sugawara, H; Gojobori, T

    1998-01-01

    We at the DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp) have recently begun receiving, processing and releasing EST and genome sequence data submitted by various Japanese genome projects. The data include those for human, Arabidopsis thaliana, rice, nematode, Synechocystis sp. and Escherichia coli. Since the quantity of data is very large, we organized teams to conduct preliminary discussions with project teams about data submission and handling for release to the public. We also developed a mass submission tool to cope with a large quantity of data. In addition, to provide genome data on WWW, we developed a genome information system using Java. This system (http://mol.genes.nig.ac.jp/ecoli/) can in theory be used for any genome sequence data. These activities will facilitate processing of large quantities of EST and genome data.

  20. AcEST: BP913138 [AcEST

    Lifescience Database Archive (English)

    Full Text Available er 10 OS=Dict... 31 3.9 sp|P20235|POLH_WMV2A Genome polyprotein (Fragment) OS=Watermelon...BRASB Lipoyl synthase OS=Bradyrhizobium sp. (stra... 30 6.6 sp|P18478|POLG_WMV2U Genome polyprotein (Fragment) OS=Watermelon

  1. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes.

    Science.gov (United States)

    Jeong, Young-Min; Kim, Namshin; Ahn, Byung Ohg; Oh, Mijin; Chung, Won-Hyong; Chung, Hee; Jeong, Seongmun; Lim, Ki-Byung; Hwang, Yoon-Jung; Kim, Goon-Bo; Baek, Seunghoon; Choi, Sang-Bong; Hyung, Dae-Jin; Lee, Seung-Won; Sohn, Seong-Han; Kwon, Soo-Jin; Jin, Mina; Seol, Young-Joo; Chae, Won Byoung; Choi, Keun Jin; Park, Beom-Seok; Yu, Hee-Ju; Mun, Jeong-Hwan

    2016-07-01

    This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.

  2. Viral Genome DataBase: storing and analyzing genes and proteins from complete viral genomes.

    Science.gov (United States)

    Hiscock, D; Upton, C

    2000-05-01

    The Viral Genome DataBase (VGDB) contains detailed information of the genes and predicted protein sequences from 15 completely sequenced genomes of large (&100 kb) viruses (2847 genes). The data that is stored includes DNA sequence, protein sequence, GenBank and user-entered notes, molecular weight (MW), isoelectric point (pI), amino acid content, A + T%, nucleotide frequency, dinucleotide frequency and codon use. The VGDB is a mySQL database with a user-friendly JAVA GUI. Results of queries can be easily sorted by any of the individual parameters. The software and additional figures and information are available at http://athena.bioc.uvic.ca/genomes/index.html .

  3. A web-based resource for designing therapeutics against Ebola Virus

    Science.gov (United States)

    Dhanda, Sandeep Kumar; Chaudhary, Kumardeep; Gupta, Sudheer; Brahmachari, Samir Kumar; Raghava, Gajendra P. S.

    2016-04-01

    In this study, we describe a web-based resource, developed for assisting the scientific community in designing an effective therapeutics against the Ebola virus. Firstly, we predicted and identified experimentally validated epitopes in each of the antigens/proteins of the five known ebolaviruses. Secondly, we generated all the possible overlapping 9mer peptides from the proteins of ebolaviruses. Thirdly, conserved peptides across all the five ebolaviruses (four human pathogenic species) with no identical sequence in the human proteome, based on 1000 Genomes project, were identified. Finally, we identified peptide or epitope-based vaccine candidates that could activate both the B- and T-cell arms of the immune system. In addition, we also identified efficacious siRNAs against the mRNA transcriptome (absent in human transcriptome) of all the five ebolaviruses. It was observed that three species can potentially be targeted by a single siRNA (19mer) and 75 siRNAs can potentially target at least two species. A web server, EbolaVCR, has been developed that incorporates all the above information and useful computational tools (http://crdd.osdd.net/oscadd/ebola/).

  4. AcEST: DK962755 [AcEST

    Lifescience Database Archive (English)

    Full Text Available OS=Xenopus trop... 31 3.4 sp|Q66479|POLG_HE71M Genome polyprotein OS=Human enterovirus...|PUC1_SCHPO Cyclin puc1 OS=Schizosaccharomyces pombe GN... 30 7.7 sp|Q66478|POLG_HE71B Genome polyprotein OS=Human enterovirus

  5. Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties

    Directory of Open Access Journals (Sweden)

    Koh Eunhee

    2007-07-01

    Full Text Available Abstract Background EstE1 is a hyperthermophilic esterase belonging to the hormone-sensitive lipase family and was originally isolated by functional screening of a metagenomic library constructed from a thermal environmental sample. Dimers and oligomers may have been evolutionally selected in thermophiles because intersubunit interactions can confer thermostability on the proteins. The molecular mechanisms of thermostabilization of this extremely thermostable esterase are not well understood due to the lack of structural information. Results Here we report for the first time the 2.1-Å resolution crystal structure of EstE1. The three-dimensional structure of EstE1 exhibits a classic α/β hydrolase fold with a central parallel-stranded beta sheet surrounded by alpha helices on both sides. The residues Ser154, Asp251, and His281 form the catalytic triad motif commonly found in other α/β hydrolases. EstE1 exists as a dimer that is formed by hydrophobic interactions and salt bridges. Circular dichroism spectroscopy and heat inactivation kinetic analysis of EstE1 mutants, which were generated by structure-based site-directed mutagenesis of amino acid residues participating in EstE1 dimerization, revealed that hydrophobic interactions through Val274 and Phe276 on the β8 strand of each monomer play a major role in the dimerization of EstE1. In contrast, the intermolecular salt bridges contribute less significantly to the dimerization and thermostability of EstE1. Conclusion Our results suggest that intermolecular hydrophobic interactions are essential for the hyperthermostability of EstE1. The molecular mechanism that allows EstE1 to endure high temperature will provide guideline for rational design of a thermostable esterase/lipase using the lipolytic enzymes showing structural similarity to EstE1.

  6. Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud.

    Directory of Open Access Journals (Sweden)

    Enis Afgan

    Full Text Available Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise.We designed and implemented the Genomics Virtual Laboratory (GVL as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic.This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints

  7. Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud.

    Science.gov (United States)

    Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew

    2015-01-01

    Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the

  8. Improving Microbial Genome Annotations in an Integrated Database Context

    Science.gov (United States)

    Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Anderson, Iain; Mavromatis, Konstantinos; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2013-01-01

    Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG) family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/. PMID:23424620

  9. Improving microbial genome annotations in an integrated database context.

    Directory of Open Access Journals (Sweden)

    I-Min A Chen

    Full Text Available Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/.

  10. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes.

    Science.gov (United States)

    Rauscher, Gilda; Simko, Ivan

    2013-01-22

    Lettuce (Lactuca sativa L.) is the major crop from the group of leafy vegetables. Several types of molecular markers were developed that are effectively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly available. We have employed the method of enriched microsatellite libraries to develop 97 genomic SSR markers. Testing of newly developed markers on a set of 36 Lactuca accession (33 L. sativa, and one of each L. serriola L., L. saligna L., and L. virosa L.) revealed that both the genetic heterozygosity (UHe = 0.56) and the number of loci per SSR (Na = 5.50) are significantly higher for genomic SSR markers than for previously developed EST-based SSR markers (UHe = 0.32, Na = 3.56). Fifty-four genomic SSR markers were placed on the molecular linkage map of lettuce. Distribution of markers in the genome appeared to be random, with the exception of possible cluster on linkage group 6. Any combination of 32 genomic SSRs was able to distinguish genotypes of all 36 accessions. Fourteen of newly developed SSR markers originate from fragments with high sequence similarity to resistance gene candidates (RGCs) and RGC pseudogenes. Analysis of molecular variance (AMOVA) of L. sativa accessions showed that approximately 3% of genetic diversity was within accessions, 79% among accessions, and 18% among horticultural types. The newly developed genomic SSR markers were added to the pool of previously developed EST-SSRs markers. These two types of SSR-based markers provide useful tools for lettuce cultivar fingerprinting, development of integrated molecular linkage maps, and mapping of genes.

  11. Development of Genomic Resources in the Species of Trifolium L. and Its Application in Forage Legume Breeding

    Directory of Open Access Journals (Sweden)

    Leif Skøt

    2012-05-01

    Full Text Available Clovers (genus Trifolium are a large and widespread genus of legumes. A number of clovers are of agricultural importance as forage crops in grassland agriculture, particularly temperate areas. White clover (Trifolium repens L. is used in grazed pasture and red clover (T. pratense L. is widely cut and conserved as a winter feed. For the diploid red clover, genetic and genomic tools and resources have developed rapidly over the last five years including genetic and physical maps, BAC (bacterial artificial chromosome end sequence and transcriptome sequence information. This has paved the way for the use of genome wide selection and high throughput phenotyping in germplasm development. For the allotetraploid white clover progress has been slower although marker assisted selection is in use and relatively robust genetic maps and QTL (quantitative trait locus information now exist. For both species the sequencing of the model legume Medicago truncatula gene space is an important development to aid genomic, biological and evolutionary studies. The first genetic maps of another species, subterranean clover (Trifolium subterraneum L. have also been published and its comparative genomics with red clover and M. truncatula conducted. Next generation sequencing brings the potential to revolutionize clover genomics, but international consortia and effective use of germplasm, novel population structures and phenomics will be required to carry out effective translation into breeding. Another avenue for clover genomic and genetic improvement is interspecific hybridization. This approach has considerable potential with regard to crop improvement but also opens windows of opportunity for studies of biological and evolutionary processes.

  12. Characterization and development of EST-derived SSR markers in cultivated sweetpotato (Ipomoea batatas

    Directory of Open Access Journals (Sweden)

    Li Yujun

    2011-10-01

    Full Text Available Abstract Background Currently there exists a limited availability of genetic marker resources in sweetpotato (Ipomoea batatas, which is hindering genetic research in this species. It is necessary to develop more molecular markers for potential use in sweetpotato genetic research. With the newly developed next generation sequencing technology, large amount of transcribed sequences of sweetpotato have been generated and are available for identifying SSR markers by data mining. Results In this study, we investigated 181,615 ESTs for the identification and development of SSR markers. In total, 8,294 SSRs were identified from 7,163 SSR-containing unique ESTs. On an average, one SSR was found per 7.1 kb of EST sequence with tri-nucleotide motifs (42.9% being the most abundant followed by di- (41.2%, tetra- (9.2%, penta- (3.7% and hexa-nucleotide (3.1% repeat types. The top five motifs included AG/CT (26.9%, AAG/CTT (13.5%, AT/TA (10.6%, CCG/CGG (5.8% and AAT/ATT (4.5%. After removing possible duplicate of published EST-SSRs of sweetpotato, a total of non-repeat 7,958 SSR motifs were identified. Based on these SSR-containing sequences, 1,060 pairs of high-quality SSR primers were designed and used for validation of the amplification and assessment of the polymorphism between two parents of one mapping population (E Shu 3 Hao and Guang 2k-30 and eight accessions of cultivated sweetpotatoes. The results showed that 816 primer pairs could yield reproducible and strong amplification products, of which 195 (23.9% and 342 (41.9% primer pairs exhibited polymorphism between E Shu 3 Hao and Guang 2k-30 and among the 8 cultivated sweetpotatoes, respectively. Conclusion This study gives an insight into the frequency, type and distribution of sweetpotato EST-SSRs and demonstrates successful development of EST-SSR markers in cultivated sweetpotato. These EST-SSR markers could enrich the current resource of molecular markers for the sweetpotato community and would

  13. Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis.

    Science.gov (United States)

    Asamizu, Erika; Nakamura, Yasukazu; Sato, Shusei; Tabata, Satoshi

    2004-02-01

    To perform a comprehensive analysis of genes expressed in a model legume, Lotus japonicus, a total of 74472 3'-end expressed sequence tags (EST) were generated from cDNA libraries produced from six different organs. Clustering of sequences was performed with an identity criterion of 95% for 50 bases, and a total of 20457 non-redundant sequences, 8503 contigs and 11954 singletons were generated. EST sequence coverage was analyzed by using the annotated L. japonicus genomic sequence and 1093 of the 1889 predicted protein-encoding genes (57.9%) were hit by the EST sequence(s). Gene content was compared to several plant species. Among the 8503 contigs, 471 were identified as sequences conserved only in leguminous species and these included several disease resistance-related genes. This suggested that in legumes, these genes may have evolved specifically to resist pathogen attack. The rate of gene sequence divergence was assessed by comparing similarity level and functional category based on the Gene Ontology (GO) annotation of Arabidopsis genes. This revealed that genes encoding ribosomal proteins, as well as those related to translation, photosynthesis, and cellular structure were more abundantly represented in the highly conserved class, and that genes encoding transcription factors and receptor protein kinases were abundantly represented in the less conserved class. To make the sequence information and the cDNA clones available to the research community, a Web database with useful services was created at http://www.kazusa.or.jp/en/plant/lotus/EST/.

  14. Enhancer Identification through Comparative Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Bristow, James; Pennacchio, Len A.

    2006-10-01

    With the availability of genomic sequence from numerousvertebrates, a paradigm shift has occurred in the identification ofdistant-acting gene regulatory elements. In contrast to traditionalgene-centric studies in which investigators randomly scanned genomicfragments that flank genes of interest in functional assays, the modernapproach begins electronically with publicly available comparativesequence datasets that provide investigators with prioritized lists ofputative functional sequences based on their evolutionary conservation.However, although a large number of tools and resources are nowavailable, application of comparative genomic approaches remains far fromtrivial. In particular, it requires users to dynamically consider thespecies and methods for comparison depending on the specific biologicalquestion under investigation. While there is currently no single generalrule to this end, it is clear that when applied appropriately,comparative genomic approaches exponentially increase our power ingenerating biological hypotheses for subsequent experimentaltesting.

  15. Construction of an Ostrea edulis database from genomic and expressed sequence tags (ESTs) obtained from Bonamia ostreae infected haemocytes: Development of an immune-enriched oligo-microarray.

    Science.gov (United States)

    Pardo, Belén G; Álvarez-Dios, José Antonio; Cao, Asunción; Ramilo, Andrea; Gómez-Tato, Antonio; Planas, Josep V; Villalba, Antonio; Martínez, Paulino

    2016-12-01

    The flat oyster, Ostrea edulis, is one of the main farmed oysters, not only in Europe but also in the United States and Canada. Bonamiosis due to the parasite Bonamia ostreae has been associated with high mortality episodes in this species. This parasite is an intracellular protozoan that infects haemocytes, the main cells involved in oyster defence. Due to the economical and ecological importance of flat oyster, genomic data are badly needed for genetic improvement of the species, but they are still very scarce. The objective of this study is to develop a sequence database, OedulisDB, with new genomic and transcriptomic resources, providing new data and convenient tools to improve our knowledge of the oyster's immune mechanisms. Transcriptomic and genomic sequences were obtained using 454 pyrosequencing and compiled into an O. edulis database, OedulisDB, consisting of two sets of 10,318 and 7159 unique sequences that represent the oyster's genome (WG) and de novo haemocyte transcriptome (HT), respectively. The flat oyster transcriptome was obtained from two strains (naïve and tolerant) challenged with B. ostreae, and from their corresponding non-challenged controls. Approximately 78.5% of 5619 HT unique sequences were successfully annotated by Blast search using public databases. A total of 984 sequences were identified as being related to immune response and several key immune genes were identified for the first time in flat oyster. Additionally, transcriptome information was used to design and validate the first oligo-microarray in flat oyster enriched with immune sequences from haemocytes. Our transcriptomic and genomic sequencing and subsequent annotation have largely increased the scarce resources available for this economically important species and have enabled us to develop an OedulisDB database and accompanying tools for gene expression analysis. This study represents the first attempt to characterize in depth the O. edulis haemocyte transcriptome in

  16. CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum.

    Science.gov (United States)

    Pohl, C; Kiel, J A K W; Driessen, A J M; Bovenberg, R A L; Nygård, Y

    2016-07-15

    CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially relevant cell factory. The developed CRISPR/Cas9 toolbox is highly flexible and allows editing of new targets with minimal cloning efforts. The Cas9 protein and the sgRNA can be either delivered during transformation, as preassembled CRISPR-Cas9 ribonucleoproteins (RNPs) or expressed from an AMA1 based plasmid within the cell. The direct delivery of the Cas9 protein with in vitro synthesized sgRNA to the cells allows for a transient method for genome engineering that may rapidly be applicable for other filamentous fungi. The expression of Cas9 from an AMA1 based vector was shown to be highly efficient for marker-free gene deletions.

  17. Deep whole-genome sequencing of 90 Han Chinese genomes.

    Science.gov (United States)

    Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen

    2017-09-01

    Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000

  18. KGCAK: a K-mer based database for genome-wide phylogeny and complexity evaluation.

    Science.gov (United States)

    Wang, Dapeng; Xu, Jiayue; Yu, Jun

    2015-09-16

    The K-mer approach, treating genomic sequences as simple characters and counting the relative abundance of each string upon a fixed K, has been extensively applied to phylogeny inference for genome assembly, annotation, and comparison. To meet increasing demands for comparing large genome sequences and to promote the use of the K-mer approach, we develop a versatile database, KGCAK ( http://kgcak.big.ac.cn/KGCAK/ ), containing ~8,000 genomes that include genome sequences of diverse life forms (viruses, prokaryotes, protists, animals, and plants) and cellular organelles of eukaryotic lineages. It builds phylogeny based on genomic elements in an alignment-free fashion and provides in-depth data processing enabling users to compare the complexity of genome sequences based on K-mer distribution. We hope that KGCAK becomes a powerful tool for exploring relationship within and among groups of species in a tree of life based on genomic data.

  19. Genome Variation Map: a data repository of genome variations in BIG Data Center

    OpenAIRE

    Song, Shuhui; Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang; Zhang, Zhang

    2017-01-01

    Abstract The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research a...

  20. Genomic research in Eucalyptus.

    Science.gov (United States)

    Poke, Fiona S; Vaillancourt, René E; Potts, Brad M; Reid, James B

    2005-09-01

    Eucalyptus L'Hérit. is a genus comprised of more than 700 species that is of vital importance ecologically to Australia and to the forestry industry world-wide, being grown in plantations for the production of solid wood products as well as pulp for paper. With the sequencing of the genomes of Arabidopsis thaliana and Oryza sativa and the recent completion of the first tree genome sequence, Populus trichocarpa, attention has turned to the current status of genomic research in Eucalyptus. For several eucalypt species, large segregating families have been established, high-resolution genetic maps constructed and large EST databases generated. Collaborative efforts have been initiated for the integration of diverse genomic projects and will provide the framework for future research including exploiting the sequence of the entire eucalypt genome which is currently being sequenced. This review summarises the current position of genomic research in Eucalyptus and discusses the direction of future research.

  1. Identification and Validation of EST-Derived Molecular Markers, TRAP and VNTRs, for Banana Research

    NARCIS (Netherlands)

    Garcia, S.A.L.; Talebi, R.; Ferreira, C.F.; Vroh, B.I.; Paiva, L.V.; Kema, G.H.J.; Souza, M.T.

    2011-01-01

    The advent of high-throughput sequencing technology has generated abundant information on DNA sequences for the genomes of many plant species. Expressed Sequence Tags (ESTs), which are unique DNA sequences derived from a cDNA library and therefore representing genes transcribed in specific tissues

  2. WormBase 2016: expanding to enable helminth genomic research.

    Science.gov (United States)

    Howe, Kevin L; Bolt, Bruce J; Cain, Scott; Chan, Juancarlos; Chen, Wen J; Davis, Paul; Done, James; Down, Thomas; Gao, Sibyl; Grove, Christian; Harris, Todd W; Kishore, Ranjana; Lee, Raymond; Lomax, Jane; Li, Yuling; Muller, Hans-Michael; Nakamura, Cecilia; Nuin, Paulo; Paulini, Michael; Raciti, Daniela; Schindelman, Gary; Stanley, Eleanor; Tuli, Mary Ann; Van Auken, Kimberly; Wang, Daniel; Wang, Xiaodong; Williams, Gary; Wright, Adam; Yook, Karen; Berriman, Matthew; Kersey, Paul; Schedl, Tim; Stein, Lincoln; Sternberg, Paul W

    2016-01-04

    WormBase (www.wormbase.org) is a central repository for research data on the biology, genetics and genomics of Caenorhabditis elegans and other nematodes. The project has evolved from its original remit to collect and integrate all data for a single species, and now extends to numerous nematodes, ranging from evolutionary comparators of C. elegans to parasitic species that threaten plant, animal and human health. Research activity using C. elegans as a model system is as vibrant as ever, and we have created new tools for community curation in response to the ever-increasing volume and complexity of data. To better allow users to navigate their way through these data, we have made a number of improvements to our main website, including new tools for browsing genomic features and ontology annotations. Finally, we have developed a new portal for parasitic worm genomes. WormBase ParaSite (parasite.wormbase.org) contains all publicly available nematode and platyhelminth annotated genome sequences, and is designed specifically to support helminth genomic research. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Acorn: A grid computing system for constraint based modeling and visualization of the genome scale metabolic reaction networks via a web interface

    Directory of Open Access Journals (Sweden)

    Bushell Michael E

    2011-05-01

    web server allowing constraint based simulations of the genome scale metabolic reaction networks of E. coli, S. cerevisiae and M. tuberculosis. Conclusions Acorn is a free software package, which can be installed by research groups to create a web based environment for computer simulations of genome scale metabolic reaction networks. It facilitates shared access to models and creation of publicly available constraint based modelling resources.

  4. BBGD: an online database for blueberry genomic data

    Directory of Open Access Journals (Sweden)

    Matthews Benjamin F

    2007-01-01

    Full Text Available Abstract Background Blueberry is a member of the Ericaceae family, which also includes closely related cranberry and more distantly related rhododendron, azalea, and mountain laurel. Blueberry is a major berry crop in the United States, and one that has great nutritional and economical value. Extreme low temperatures, however, reduce crop yield and cause major losses to US farmers. A better understanding of the genes and biochemical pathways that are up- or down-regulated during cold acclimation is needed to produce blueberry cultivars with enhanced cold hardiness. To that end, the blueberry genomics database (BBDG was developed. Along with the analysis tools and web-based query interfaces, the database serves both the broader Ericaceae research community and the blueberry research community specifically by making available ESTs and gene expression data in searchable formats and in elucidating the underlying mechanisms of cold acclimation and freeze tolerance in blueberry. Description BBGD is the world's first database for blueberry genomics. BBGD is both a sequence and gene expression database. It stores both EST and microarray data and allows scientists to correlate expression profiles with gene function. BBGD is a public online database. Presently, the main focus of the database is the identification of genes in blueberry that are significantly induced or suppressed after low temperature exposure. Conclusion By using the database, researchers have developed EST-based markers for mapping and have identified a number of "candidate" cold tolerance genes that are highly expressed in blueberry flower buds after exposure to low temperatures.

  5. A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome.

    Directory of Open Access Journals (Sweden)

    Patrícia Beldade

    2009-02-01

    Full Text Available Lepidopterans (butterflies and moths are a rich and diverse order of insects, which, despite their economic impact and unusual biological properties, are relatively underrepresented in terms of genomic resources. The genome of the silkworm Bombyx mori has been fully sequenced, but comparative lepidopteran genomics has been hampered by the scarcity of information for other species. This is especially striking for butterflies, even though they have diverse and derived phenotypes (such as color vision and wing color patterns and are considered prime models for the evolutionary and developmental analysis of ecologically relevant, complex traits. We focus on Bicyclus anynana butterflies, a laboratory system for studying the diversification of novelties and serially repeated traits. With a panel of 12 small families and a biphasic mapping approach, we first assigned 508 expressed genes to segregation groups and then ordered 297 of them within individual linkage groups. We also coarsely mapped seven color pattern loci. This is the richest gene-based map available for any butterfly species and allowed for a broad-coverage analysis of synteny with the lepidopteran reference genome. Based on 462 pairs of mapped orthologous markers in Bi. anynana and Bo. mori, we observed strong conservation of gene assignment to chromosomes, but also evidence for numerous large- and small-scale chromosomal rearrangements. With gene collections growing for a variety of target organisms, the ability to place those genes in their proper genomic context is paramount. Methods to map expressed genes and to compare maps with relevant model systems are crucial to extend genomic-level analysis outside classical model species. Maps with gene-based markers are useful for comparative genomics and to resolve mapped genomic regions to a tractable number of candidate genes, especially if there is synteny with related model species. This is discussed in relation to the identification of

  6. Bluejay 1.0: genome browsing and comparison with rich customization provision and dynamic resource linking

    Directory of Open Access Journals (Sweden)

    Turinsky Andrei L

    2008-10-01

    Full Text Available Abstract Background The Bluejay genome browser has been developed over several years to address the challenges posed by the ever increasing number of data types as well as the increasing volume of data in genome research. Beginning with a browser capable of rendering views of XML-based genomic information and providing scalable vector graphics output, we have now completed version 1.0 of the system with many additional features. Our development efforts were guided by our observation that biologists who use both gene expression profiling and comparative genomics gain functional insights above and beyond those provided by traditional per-gene analyses. Results Bluejay 1.0 is a genome viewer integrating genome annotation with: (i gene expression information; and (ii comparative analysis with an unlimited number of other genomes in the same view. This allows the biologist to see a gene not just in the context of its genome, but also its regulation and its evolution. Bluejay now has rich provision for personalization by users: (i numerous display customization features; (ii the availability of waypoints for marking multiple points of interest on a genome and subsequently utilizing them; and (iii the ability to take user relevance feedback of annotated genes or textual items to offer personalized recommendations. Bluejay 1.0 also embeds the Seahawk browser for the Moby protocol, enabling users to seamlessly invoke hundreds of Web Services on genomic data of interest without any hard-coding. Conclusion Bluejay offers a unique set of customizable genome-browsing features, with the goal of allowing biologists to quickly focus on, analyze, compare, and retrieve related information on the parts of the genomic data they are most interested in. We expect these capabilities of Bluejay to benefit the many biologists who want to answer complex questions using the information available from completely sequenced genomes.

  7. Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets.

    Science.gov (United States)

    Heath, Allison P; Greenway, Matthew; Powell, Raymond; Spring, Jonathan; Suarez, Rafael; Hanley, David; Bandlamudi, Chai; McNerney, Megan E; White, Kevin P; Grossman, Robert L

    2014-01-01

    As large genomics and phenotypic datasets are becoming more common, it is increasingly difficult for most researchers to access, manage, and analyze them. One possible approach is to provide the research community with several petabyte-scale cloud-based computing platforms containing these data, along with tools and resources to analyze it. Bionimbus is an open source cloud-computing platform that is based primarily upon OpenStack, which manages on-demand virtual machines that provide the required computational resources, and GlusterFS, which is a high-performance clustered file system. Bionimbus also includes Tukey, which is a portal, and associated middleware that provides a single entry point and a single sign on for the various Bionimbus resources; and Yates, which automates the installation, configuration, and maintenance of the software infrastructure required. Bionimbus is used by a variety of projects to process genomics and phenotypic data. For example, it is used by an acute myeloid leukemia resequencing project at the University of Chicago. The project requires several computational pipelines, including pipelines for quality control, alignment, variant calling, and annotation. For each sample, the alignment step requires eight CPUs for about 12 h. BAM file sizes ranged from 5 GB to 10 GB for each sample. Most members of the research community have difficulty downloading large genomics datasets and obtaining sufficient storage and computer resources to manage and analyze the data. Cloud computing platforms, such as Bionimbus, with data commons that contain large genomics datasets, are one choice for broadening access to research data in genomics. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. The effect of using genealogy-based haplotypes for genomic prediction.

    Science.gov (United States)

    Edriss, Vahid; Fernando, Rohan L; Su, Guosheng; Lund, Mogens S; Guldbrandtsen, Bernt

    2013-03-06

    Genomic prediction uses two sources of information: linkage disequilibrium between markers and quantitative trait loci, and additive genetic relationships between individuals. One way to increase the accuracy of genomic prediction is to capture more linkage disequilibrium by regression on haplotypes instead of regression on individual markers. The aim of this study was to investigate the accuracy of genomic prediction using haplotypes based on local genealogy information. A total of 4429 Danish Holstein bulls were genotyped with the 50K SNP chip. Haplotypes were constructed using local genealogical trees. Effects of haplotype covariates were estimated with two types of prediction models: (1) assuming that effects had the same distribution for all haplotype covariates, i.e. the GBLUP method and (2) assuming that a large proportion (π) of the haplotype covariates had zero effect, i.e. a Bayesian mixture method. About 7.5 times more covariate effects were estimated when fitting haplotypes based on local genealogical trees compared to fitting individuals markers. Genealogy-based haplotype clustering slightly increased the accuracy of genomic prediction and, in some cases, decreased the bias of prediction. With the Bayesian method, accuracy of prediction was less sensitive to parameter π when fitting haplotypes compared to fitting markers. Use of haplotypes based on genealogy can slightly increase the accuracy of genomic prediction. Improved methods to cluster the haplotypes constructed from local genealogy could lead to additional gains in accuracy.

  9. Integrated Genome-Based Studies of Shewanella Echophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Margrethe H. Serres

    2012-06-29

    Shewanella oneidensis MR-1 is a motile, facultative {gamma}-Proteobacterium with remarkable respiratory versatility; it can utilize a range of organic and inorganic compounds as terminal electronacceptors for anaerobic metabolism. The ability to effectively reduce nitrate, S0, polyvalent metals andradionuclides has established MR-1 as an important model dissimilatory metal-reducing microorganism for genome-based investigations of biogeochemical transformation of metals and radionuclides that are of concern to the U.S. Department of Energy (DOE) sites nationwide. Metal-reducing bacteria such as Shewanella also have a highly developed capacity for extracellular transfer of respiratory electrons to solid phase Fe and Mn oxides as well as directly to anode surfaces in microbial fuel cells. More broadly, Shewanellae are recognized free-living microorganisms and members of microbial communities involved in the decomposition of organic matter and the cycling of elements in aquatic and sedimentary systems. To function and compete in environments that are subject to spatial and temporal environmental change, Shewanella must be able to sense and respond to such changes and therefore require relatively robust sensing and regulation systems. The overall goal of this project is to apply the tools of genomics, leveraging the availability of genome sequence for 18 additional strains of Shewanella, to better understand the ecophysiology and speciation of respiratory-versatile members of this important genus. To understand these systems we propose to use genome-based approaches to investigate Shewanella as a system of integrated networks; first describing key cellular subsystems - those involved in signal transduction, regulation, and metabolism - then building towards understanding the function of whole cells and, eventually, cells within populations. As a general approach, this project will employ complimentary "top-down" - bioinformatics-based genome functional predictions, high

  10. GBOOST: a GPU-based tool for detecting gene-gene interactions in genome-wide case control studies.

    Science.gov (United States)

    Yung, Ling Sing; Yang, Can; Wan, Xiang; Yu, Weichuan

    2011-05-01

    Collecting millions of genetic variations is feasible with the advanced genotyping technology. With a huge amount of genetic variations data in hand, developing efficient algorithms to carry out the gene-gene interaction analysis in a timely manner has become one of the key problems in genome-wide association studies (GWAS). Boolean operation-based screening and testing (BOOST), a recent work in GWAS, completes gene-gene interaction analysis in 2.5 days on a desktop computer. Compared with central processing units (CPUs), graphic processing units (GPUs) are highly parallel hardware and provide massive computing resources. We are, therefore, motivated to use GPUs to further speed up the analysis of gene-gene interactions. We implement the BOOST method based on a GPU framework and name it GBOOST. GBOOST achieves a 40-fold speedup compared with BOOST. It completes the analysis of Wellcome Trust Case Control Consortium Type 2 Diabetes (WTCCC T2D) genome data within 1.34 h on a desktop computer equipped with Nvidia GeForce GTX 285 display card. GBOOST code is available at http://bioinformatics.ust.hk/BOOST.html#GBOOST.

  11. Research Ethics 2.0 : New Perspectives on Norms, Values, and Integrity in Genomic Research in Times of Even Scarcer Resources

    NARCIS (Netherlands)

    Brall, Caroline; Maeckelberghe, Els; Porz, Rouven; Makhoul, Jihad; Schröder-Bäck, Peter

    Research ethics anew gained importance due to the changing scientific landscape and increasing demands and competition in the academic field. These changes are further exaggerated because of scarce(r) resources in some countries on the one hand and advances in genomics on the other. In this paper,

  12. Building a semantic web-based metadata repository for facilitating detailed clinical modeling in cancer genome studies.

    Science.gov (United States)

    Sharma, Deepak K; Solbrig, Harold R; Tao, Cui; Weng, Chunhua; Chute, Christopher G; Jiang, Guoqian

    2017-06-05

    Detailed Clinical Models (DCMs) have been regarded as the basis for retaining computable meaning when data are exchanged between heterogeneous computer systems. To better support clinical cancer data capturing and reporting, there is an emerging need to develop informatics solutions for standards-based clinical models in cancer study domains. The objective of the study is to develop and evaluate a cancer genome study metadata management system that serves as a key infrastructure in supporting clinical information modeling in cancer genome study domains. We leveraged a Semantic Web-based metadata repository enhanced with both ISO11179 metadata standard and Clinical Information Modeling Initiative (CIMI) Reference Model. We used the common data elements (CDEs) defined in The Cancer Genome Atlas (TCGA) data dictionary, and extracted the metadata of the CDEs using the NCI Cancer Data Standards Repository (caDSR) CDE dataset rendered in the Resource Description Framework (RDF). The ITEM/ITEM_GROUP pattern defined in the latest CIMI Reference Model is used to represent reusable model elements (mini-Archetypes). We produced a metadata repository with 38 clinical cancer genome study domains, comprising a rich collection of mini-Archetype pattern instances. We performed a case study of the domain "clinical pharmaceutical" in the TCGA data dictionary and demonstrated enriched data elements in the metadata repository are very useful in support of building detailed clinical models. Our informatics approach leveraging Semantic Web technologies provides an effective way to build a CIMI-compliant metadata repository that would facilitate the detailed clinical modeling to support use cases beyond TCGA in clinical cancer study domains.

  13. The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes.

    Science.gov (United States)

    Kapopoulou, Adamandia; Lew, Jocelyne M; Cole, Stewart T

    2011-01-01

    In this paper, we present the MycoBrowser portal (http://mycobrowser.epfl.ch/), a resource that provides both in silico generated and manually reviewed information within databases dedicated to the complete genomes of Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium marinum and Mycobacterium smegmatis. A central component of MycoBrowser is TubercuList (http://tuberculist.epfl.ch), which has recently benefited from a new data management system and web interface. These improvements were extended to all MycoBrowser databases. We provide an overview of the functionalities available and the different ways of interrogating the data then discuss how both the new information and the latest features are helping the mycobacterial research communities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Community-based natural resource management

    DEFF Research Database (Denmark)

    Treue, Thorsten; Nathan, Iben

    that deliver credible and easily accessible information. Checks and balances can be supported through civil society as well as the media. Finally, the private sector plays a key and potentially beneficial role in the harvest, transport and marketing of CBNRM products. Thus, dialogue partners should include......This technical note is the product of a long process of consultation with a wide range of resource persons who have over the years been involved in the Danish support to Community Based Natural Resource Management. It gives a brief introduction to community-based natural resource management (CBNRM...... from CBNRM will be useful when designing community-based climate adaptation strategies. Thus, this note is a contribution to an ongoing debate as well as a product of the long-standing experiences of Danida's environmental portfolio. CBNRM is not a stand-alone solution to secure poverty reduction...

  15. JUICE: a data management system that facilitates the analysis of large volumes of information in an EST project workflow

    Directory of Open Access Journals (Sweden)

    Martinez Veronica

    2006-11-01

    Full Text Available Abstract Background Expressed sequence tag (EST analyses provide a rapid and economical means to identify candidate genes that may be involved in a particular biological process. These ESTs are useful in many Functional Genomics studies. However, the large quantity and complexity of the data generated during an EST sequencing project can make the analysis of this information a daunting task. Results In an attempt to make this task friendlier, we have developed JUICE, an open source data management system (Apache + PHP + MySQL on Linux, which enables the user to easily upload, organize, visualize and search the different types of data generated in an EST project pipeline. In contrast to other systems, the JUICE data management system allows a branched pipeline to be established, modified and expanded, during the course of an EST project. The web interfaces and tools in JUICE enable the users to visualize the information in a graphical, user-friendly manner. The user may browse or search for sequences and/or sequence information within all the branches of the pipeline. The user can search using terms associated with the sequence name, annotation or other characteristics stored in JUICE and associated with sequences or sequence groups. Groups of sequences can be created by the user, stored in a clipboard and/or downloaded for further analyses. Different user profiles restrict the access of each user depending upon their role in the project. The user may have access exclusively to visualize sequence information, access to annotate sequences and sequence information, or administrative access. Conclusion JUICE is an open source data management system that has been developed to aid users in organizing and analyzing the large amount of data generated in an EST Project workflow. JUICE has been used in one of the first functional genomics projects in Chile, entitled "Functional Genomics in nectarines: Platform to potentiate the competitiveness of Chile in

  16. Model SNP development for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology

    Directory of Open Access Journals (Sweden)

    Chao Shiaoman

    2011-01-01

    Full Text Available Abstract Background Genetic markers are pivotal to modern genomics research; however, discovery and genotyping of molecular markers in oat has been hindered by the size and complexity of the genome, and by a scarcity of sequence data. The purpose of this study was to generate oat expressed sequence tag (EST information, develop a bioinformatics pipeline for SNP discovery, and establish a method for rapid, cost-effective, and straightforward genotyping of SNP markers in complex polyploid genomes such as oat. Results Based on cDNA libraries of four cultivated oat genotypes, approximately 127,000 contigs were assembled from approximately one million Roche 454 sequence reads. Contigs were filtered through a novel bioinformatics pipeline to eliminate ambiguous polymorphism caused by subgenome homology, and 96 in silico SNPs were selected from 9,448 candidate loci for validation using high-resolution melting (HRM analysis. Of these, 52 (54% were polymorphic between parents of the Ogle1040 × TAM O-301 (OT mapping population, with 48 segregating as single Mendelian loci, and 44 being placed on the existing OT linkage map. Ogle and TAM amplicons from 12 primers were sequenced for SNP validation, revealing complex polymorphism in seven amplicons but general sequence conservation within SNP loci. Whole-amplicon interrogation with HRM revealed insertions, deletions, and heterozygotes in secondary oat germplasm pools, generating multiple alleles at some primer targets. To validate marker utility, 36 SNP assays were used to evaluate the genetic diversity of 34 diverse oat genotypes. Dendrogram clusters corresponded generally to known genome composition and genetic ancestry. Conclusions The high-throughput SNP discovery pipeline presented here is a rapid and effective method for identification of polymorphic SNP alleles in the oat genome. The current-generation HRM system is a simple and highly-informative platform for SNP genotyping. These techniques provide

  17. The Banana Genome Hub

    Science.gov (United States)

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967

  18. National Human Genome Research Institute

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  19. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita.

    Directory of Open Access Journals (Sweden)

    Man Wang

    Full Text Available BACKGROUND: Agrocybe aegerita, the black poplar mushroom, has been highly valued as a functional food for its medicinal and nutritional benefits. Several bioactive extracts from A. aegerita have been found to exhibit antitumor and antioxidant activities. However, limited genetic resources for A. aegerita have hindered exploration of this species. METHODOLOGY/PRINCIPAL FINDINGS: To facilitate the research on A. aegerita, we established a deep survey of the transcriptome and proteome of this mushroom. We applied high-throughput sequencing technology (Illumina to sequence A. aegerita transcriptomes from mycelium and fruiting body. The raw clean reads were de novo assembled into a total of 36,134 expressed sequences tags (ESTs with an average length of 663 bp. These ESTs were annotated and classified according to Gene Ontology (GO, Clusters of Orthologous Groups (COG, and Kyoto Encyclopedia of Genes and Genomes (KEGG metabolic pathways. Gene expression profile analysis showed that 18,474 ESTs were differentially expressed, with 10,131 up-regulated in mycelium and 8,343 up-regulated in fruiting body. Putative genes involved in polysaccharide and steroid biosynthesis were identified from A. aegerita transcriptome, and these genes were differentially expressed at the two stages of A. aegerita. Based on one-dimensional gel electrophoresis (1-DGE coupled with electrospray ionization liquid chromatography tandem MS (LC-ESI-MS/MS, we identified a total of 309 non-redundant proteins. And many metabolic enzymes involved in glycolysis were identified in the protein database. CONCLUSIONS/SIGNIFICANCE: This is the first study on transcriptome and proteome analyses of A. aegerita. The data in this study serve as a resource of A. aegerita transcripts and proteins, and offer clues to the applications of this mushroom in nutrition, pharmacy and industry.

  20. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  1. Genome Variation Map: a data repository of genome variations in BIG Data Center.

    Science.gov (United States)

    Song, Shuhui; Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang; Zhang, Zhang

    2018-01-04

    The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Genome Variation Map: a data repository of genome variations in BIG Data Center

    Science.gov (United States)

    Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang

    2018-01-01

    Abstract The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. PMID:29069473

  3. First Microsatellite Markers Developed from Cupuassu ESTs: Application in Diversity Analysis and Cross-Species Transferability to Cacao.

    Science.gov (United States)

    Ferraz Dos Santos, Lucas; Moreira Fregapani, Roberta; Falcão, Loeni Ludke; Togawa, Roberto Coiti; Costa, Marcos Mota do Carmo; Lopes, Uilson Vanderlei; Peres Gramacho, Karina; Alves, Rafael Moyses; Micheli, Fabienne; Marcellino, Lucilia Helena

    2016-01-01

    The cupuassu tree (Theobroma grandiflorum) (Willd. ex Spreng.) Schum. is a fruitful species from the Amazon with great economical potential, due to the multiple uses of its fruit´s pulp and seeds in the food and cosmetic industries, including the production of cupulate, an alternative to chocolate. In order to support the cupuassu breeding program and to select plants presenting both pulp/seed quality and fungal disease resistance, SSRs from Next Generation Sequencing ESTs were obtained and used in diversity analysis. From 8,330 ESTs, 1,517 contained one or more SSRs (1,899 SSRs identified). The most abundant motifs identified in the EST-SSRs were hepta- and trinucleotides, and they were found with a minimum and maximum of 2 and 19 repeats, respectively. From the 1,517 ESTs containing SSRs, 70 ESTs were selected based on their functional annotation, focusing on pulp and seed quality, as well as resistance to pathogens. The 70 ESTs selected contained 77 SSRs, and among which, 11 were polymorphic in cupuassu genotypes. These EST-SSRs were able to discriminate the cupuassu genotype in relation to resistance/susceptibility to witches' broom disease, as well as to pulp quality (SST/ATT values). Finally, we showed that these markers were transferable to cacao genotypes, and that genome availability might be used as a predictive tool for polymorphism detection and primer design useful for both Theobroma species. To our knowledge, this is the first report involving EST-SSRs from cupuassu and is also a pioneer in the analysis of marker transferability from cupuassu to cacao. Moreover, these markers might contribute to develop or saturate the cupuassu and cacao genetic maps, respectively.

  4. First Microsatellite Markers Developed from Cupuassu ESTs: Application in Diversity Analysis and Cross-Species Transferability to Cacao.

    Directory of Open Access Journals (Sweden)

    Lucas Ferraz Dos Santos

    Full Text Available The cupuassu tree (Theobroma grandiflorum (Willd. ex Spreng. Schum. is a fruitful species from the Amazon with great economical potential, due to the multiple uses of its fruit´s pulp and seeds in the food and cosmetic industries, including the production of cupulate, an alternative to chocolate. In order to support the cupuassu breeding program and to select plants presenting both pulp/seed quality and fungal disease resistance, SSRs from Next Generation Sequencing ESTs were obtained and used in diversity analysis. From 8,330 ESTs, 1,517 contained one or more SSRs (1,899 SSRs identified. The most abundant motifs identified in the EST-SSRs were hepta- and trinucleotides, and they were found with a minimum and maximum of 2 and 19 repeats, respectively. From the 1,517 ESTs containing SSRs, 70 ESTs were selected based on their functional annotation, focusing on pulp and seed quality, as well as resistance to pathogens. The 70 ESTs selected contained 77 SSRs, and among which, 11 were polymorphic in cupuassu genotypes. These EST-SSRs were able to discriminate the cupuassu genotype in relation to resistance/susceptibility to witches' broom disease, as well as to pulp quality (SST/ATT values. Finally, we showed that these markers were transferable to cacao genotypes, and that genome availability might be used as a predictive tool for polymorphism detection and primer design useful for both Theobroma species. To our knowledge, this is the first report involving EST-SSRs from cupuassu and is also a pioneer in the analysis of marker transferability from cupuassu to cacao. Moreover, these markers might contribute to develop or saturate the cupuassu and cacao genetic maps, respectively.

  5. First Microsatellite Markers Developed from Cupuassu ESTs: Application in Diversity Analysis and Cross-Species Transferability to Cacao

    Science.gov (United States)

    Ferraz dos Santos, Lucas; Moreira Fregapani, Roberta; Falcão, Loeni Ludke; Togawa, Roberto Coiti; Costa, Marcos Mota do Carmo; Lopes, Uilson Vanderlei; Peres Gramacho, Karina; Alves, Rafael Moyses

    2016-01-01

    The cupuassu tree (Theobroma grandiflorum) (Willd. ex Spreng.) Schum. is a fruitful species from the Amazon with great economical potential, due to the multiple uses of its fruit´s pulp and seeds in the food and cosmetic industries, including the production of cupulate, an alternative to chocolate. In order to support the cupuassu breeding program and to select plants presenting both pulp/seed quality and fungal disease resistance, SSRs from Next Generation Sequencing ESTs were obtained and used in diversity analysis. From 8,330 ESTs, 1,517 contained one or more SSRs (1,899 SSRs identified). The most abundant motifs identified in the EST-SSRs were hepta- and trinucleotides, and they were found with a minimum and maximum of 2 and 19 repeats, respectively. From the 1,517 ESTs containing SSRs, 70 ESTs were selected based on their functional annotation, focusing on pulp and seed quality, as well as resistance to pathogens. The 70 ESTs selected contained 77 SSRs, and among which, 11 were polymorphic in cupuassu genotypes. These EST-SSRs were able to discriminate the cupuassu genotype in relation to resistance/susceptibility to witches’ broom disease, as well as to pulp quality (SST/ATT values). Finally, we showed that these markers were transferable to cacao genotypes, and that genome availability might be used as a predictive tool for polymorphism detection and primer design useful for both Theobroma species. To our knowledge, this is the first report involving EST-SSRs from cupuassu and is also a pioneer in the analysis of marker transferability from cupuassu to cacao. Moreover, these markers might contribute to develop or saturate the cupuassu and cacao genetic maps, respectively. PMID:26949967

  6. Video-Tutorial de la base de datos “Grape Genome Browser”

    OpenAIRE

    Cross, Ismael; Rebordinos, Laureana

    2012-01-01

    En este video-tutorial se puede aprender a manejar la base de datos de internet donde está depositada la secuencia del genoma de la vid y acceder e interpretar los resultados de las búsquedas así como la integración con otras bases de datos.

  7. A Resource Based Framework for Planning and Replanning

    NARCIS (Netherlands)

    Van der Krogt, R.P.J.; De Weerdt, M.M.; Witteveen, C.

    2003-01-01

    We discuss a rigorous unifying framework for both planning and replanning, extending an existing logic-based approach to resource-based planning. The primitive concepts in this Action Resource Framework (ARF) are actions and resources. Actions consume and produce resources. Plans are structures

  8. RESEARCH NOTE Genome-based exome-sequencing analysis ...

    Indian Academy of Sciences (India)

    Navya

    2017-02-22

    Feb 22, 2017 ... Genome-based exome-sequencing analysis identifies GYG1, DIS3L, DDRGK1 genes ... Cardiology Division, Department of Internal Medicine, Severance .... with p values of <0.05 byanalyzing differences in allele distribution.

  9. Accessing the SEED genome databases via Web services API: tools for programmers.

    Science.gov (United States)

    Disz, Terry; Akhter, Sajia; Cuevas, Daniel; Olson, Robert; Overbeek, Ross; Vonstein, Veronika; Stevens, Rick; Edwards, Robert A

    2010-06-14

    The SEED integrates many publicly available genome sequences into a single resource. The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST) server for whole genome annotation, the metagenomics RAST server for random community genome annotations, and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the development of third-party tools and mash-ups. The currently exposed Web services encompass over forty different methods for accessing data related to microbial genome annotations. The Web services provide comprehensive access to the database back end, allowing any programmer access to the most consistent and accurate genome annotations available. The Web services are deployed using a platform independent service-oriented approach that allows the user to choose the most suitable programming platform for their application. Example code demonstrate that Web services can be used to access the SEED using common bioinformatics programming languages such as Perl, Python, and Java. We present a novel approach to access the SEED database. Using Web services, a robust API for access to genomics data is provided, without requiring large volume downloads all at once. The API ensures timely access to the most current datasets available, including the new genomes as soon as they come online.

  10. CrusView: a Java-based visualization platform for comparative genomics analyses in Brassicaceae species.

    Science.gov (United States)

    Chen, Hao; Wang, Xiangfeng

    2013-09-01

    In plants and animals, chromosomal breakage and fusion events based on conserved syntenic genomic blocks lead to conserved patterns of karyotype evolution among species of the same family. However, karyotype information has not been well utilized in genomic comparison studies. We present CrusView, a Java-based bioinformatic application utilizing Standard Widget Toolkit/Swing graphics libraries and a SQLite database for performing visualized analyses of comparative genomics data in Brassicaceae (crucifer) plants. Compared with similar software and databases, one of the unique features of CrusView is its integration of karyotype information when comparing two genomes. This feature allows users to perform karyotype-based genome assembly and karyotype-assisted genome synteny analyses with preset karyotype patterns of the Brassicaceae genomes. Additionally, CrusView is a local program, which gives its users high flexibility when analyzing unpublished genomes and allows users to upload self-defined genomic information so that they can visually study the associations between genome structural variations and genetic elements, including chromosomal rearrangements, genomic macrosynteny, gene families, high-frequency recombination sites, and tandem and segmental duplications between related species. This tool will greatly facilitate karyotype, chromosome, and genome evolution studies using visualized comparative genomics approaches in Brassicaceae species. CrusView is freely available at http://www.cmbb.arizona.edu/CrusView/.

  11. MIPS: analysis and annotation of proteins from whole genomes.

    Science.gov (United States)

    Mewes, H W; Amid, C; Arnold, R; Frishman, D; Güldener, U; Mannhaupt, G; Münsterkötter, M; Pagel, P; Strack, N; Stümpflen, V; Warfsmann, J; Ruepp, A

    2004-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein-protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).

  12. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    Directory of Open Access Journals (Sweden)

    Alamar Santiago

    2009-09-01

    Full Text Available Abstract Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new

  13. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    Science.gov (United States)

    Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A

    2009-01-01

    Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an

  14. Development and Application of Genomic Resources in an Endangered Palaeoendemic Tree, Parrotia subaequalis (Hamamelidaceae From Eastern China

    Directory of Open Access Journals (Sweden)

    Yun-Yan Zhang

    2018-03-01

    Full Text Available Parrotia subaequalis is an endangered palaeoendemic tree from disjunct montane sites in eastern China. Due to the lack of effective genomic resources, the genetic diversity and population structure of this endangered species are not clearly understood. In this study, we conducted paired-end shotgun sequencing (2 × 125 bp of genomic DNA for two individuals of P. subaequalis on the Illumina HiSeq platform. Based on the resulting sequences, we have successfully assembled the complete chloroplast genome of P. subaequalis, as well as identified the polymorphic chloroplast microsatellites (cpSSRs, nuclear microsatellites (nSSRs and mutational hotspots of chloroplast. Ten polymorphic cpSSR loci and 12 polymorphic nSSR loci were used to genotype 96 individuals of P. subaequalis from six populations to estimate genetic diversity and population structure. Our results revealed that P. subaequalis exhibited abundant genetic diversity (e.g., cpSSRs: Hcp = 0.862; nSSRs: HT = 0.559 and high genetic differentiation (e.g., cpSSRs: RST = 0.652; nSSRs: RST = 0.331, and characterized by a low pollen-to-seed migration ratio (r ≈ 1.78. These genetic patterns are attributable to its long evolutionary histories and low levels of contemporary inter-population gene flow by pollen and seed. In addition, lack of isolation-by-distance pattern and strong population genetic structuring in both marker systems, suggests that long-term isolation and/or habitat fragmentation as well as genetic drift may have also contributed to the geographic differentiation of P. subaequalis. Therefore, long-term habitat protection is the most important methods to prevent further loss of genetic variation and a decrease in effective population size. Furthermore, both cpSSRs and nSSRs revealed that P. subaequalis populations consisted of three genetic clusters, which should be considered as separated conservation units.

  15. From plant genomes to phenotypes

    OpenAIRE

    Bolger, Marie; Gundlach, Heidrun; Scholz, Uwe; Mayer, Klaus; Usadel, Björn; Schwacke, Rainer; Schmutzer, Thomas; Chen, Jinbo; Arend, Daniel; Oppermann, Markus; Weise, Stephan; Lange, Matthias; Fiorani, Fabio; Spannagl, Manuel

    2017-01-01

    Recent advances in sequencing technologies have greatly accelerated the rate of plant genome and applied breeding research. Despite this advancing trend, plant genomes continue to present numerous difficulties to the standard tools and pipelines not only for genome assembly but also gene annotation and downstream analysis.Here we give a perspective on tools, resources and services necessary to assemble and analyze plant genomes and link them to plant phenotypes.

  16. Lessons Learned From A Study Of Genomics-Based Carrier Screening For Reproductive Decision Making.

    Science.gov (United States)

    Wilfond, Benjamin S; Kauffman, Tia L; Jarvik, Gail P; Reiss, Jacob A; Richards, C Sue; McMullen, Carmit; Gilmore, Marian; Himes, Patricia; Kraft, Stephanie A; Porter, Kathryn M; Schneider, Jennifer L; Punj, Sumit; Leo, Michael C; Dickerson, John F; Lynch, Frances L; Clarke, Elizabeth; Rope, Alan F; Lutz, Kevin; Goddard, Katrina A B

    2018-05-01

    Genomics-based carrier screening is one of many opportunities to use genomic information to inform medical decision making, but clinicians, health care delivery systems, and payers need to determine whether to offer screening and how to do so in an efficient, ethical way. To shed light on this issue, we conducted a study in the period 2014-17 to inform the design of clinical screening programs and guide further health services research. Many of our results have been published elsewhere; this article summarizes the lessons we learned from that study and offers policy insights. Our experience can inform understanding of the potential impact of expanded carrier screening services on health system workflows and workforces-impacts that depend on the details of the screening approach. We found limited patient or health system harms from expanded screening. We also found that some patients valued the information they learned from the process. Future policy discussions should consider the value of offering such expanded carrier screening in health delivery systems with limited resources.

  17. Enriching Genomic Resources and Marker Development from Transcript Sequences of Jatropha curcas for Microgravity Studies

    Science.gov (United States)

    Tian, Wenlan; Paudel, Dev

    2017-01-01

    Jatropha (Jatropha curcas L.) is an economically important species with a great potential for biodiesel production. To enrich the jatropha genomic databases and resources for microgravity studies, we sequenced and annotated the transcriptome of jatropha and developed SSR and SNP markers from the transcriptome sequences. In total 1,714,433 raw reads with an average length of 441.2 nucleotides were generated. De novo assembling and clustering resulted in 115,611 uniquely assembled sequences (UASs) including 21,418 full-length cDNAs and 23,264 new jatropha transcript sequences. The whole set of UASs were fully annotated, out of which 59,903 (51.81%) were assigned with gene ontology (GO) term, 12,584 (10.88%) had orthologs in Eukaryotic Orthologous Groups (KOG), and 8,822 (7.63%) were mapped to 317 pathways in six different categories in Kyoto Encyclopedia of Genes and Genome (KEGG) database, and it contained 3,588 putative transcription factors. From the UASs, 9,798 SSRs were discovered with AG/CT as the most frequent (45.8%) SSR motif type. Further 38,693 SNPs were detected and 7,584 remained after filtering. This UAS set has enriched the current jatropha genomic databases and provided a large number of genetic markers, which can facilitate jatropha genetic improvement and many other genetic and biological studies. PMID:28154822

  18. Genome-enabled Modeling of Microbial Biogeochemistry using a Trait-based Approach. Does Increasing Metabolic Complexity Increase Predictive Capabilities?

    Science.gov (United States)

    King, E.; Karaoz, U.; Molins, S.; Bouskill, N.; Anantharaman, K.; Beller, H. R.; Banfield, J. F.; Steefel, C. I.; Brodie, E.

    2015-12-01

    The biogeochemical functioning of ecosystems is shaped in part by genomic information stored in the subsurface microbiome. Cultivation-independent approaches allow us to extract this information through reconstruction of thousands of genomes from a microbial community. Analysis of these genomes, in turn, gives an indication of the organisms present and their functional roles. However, metagenomic analyses can currently deliver thousands of different genomes that range in abundance/importance, requiring the identification and assimilation of key physiologies and metabolisms to be represented as traits for successful simulation of subsurface processes. Here we focus on incorporating -omics information into BioCrunch, a genome-informed trait-based model that represents the diversity of microbial functional processes within a reactive transport framework. This approach models the rate of nutrient uptake and the thermodynamics of coupled electron donors and acceptors for a range of microbial metabolisms including heterotrophs and chemolithotrophs. Metabolism of exogenous substrates fuels catabolic and anabolic processes, with the proportion of energy used for cellular maintenance, respiration, biomass development, and enzyme production based upon dynamic intracellular and environmental conditions. This internal resource partitioning represents a trade-off against biomass formation and results in microbial community emergence across a fitness landscape. Biocrunch was used here in simulations that included organisms and metabolic pathways derived from a dataset of ~1200 non-redundant genomes reflecting a microbial community in a floodplain aquifer. Metagenomic data was directly used to parameterize trait values related to growth and to identify trait linkages associated with respiration, fermentation, and key enzymatic functions such as plant polymer degradation. Simulations spanned a range of metabolic complexities and highlight benefits originating from simulations

  19. The genome of Chenopodium quinoa

    KAUST Repository

    Jarvis, David Erwin; Ho, Yung Shwen; Lightfoot, Damien; Schmö ckel, Sandra M.; Li, Bo; Borm, Theo J. A.; Ohyanagi, Hajime; Mineta, Katsuhiko; Michell, Craig; Saber, Noha; Kharbatia, Najeh M.; Rupper, Ryan R.; Sharp, Aaron R.; Dally, Nadine; Boughton, Berin A.; Woo, Yong; Gao, Ge; Schijlen, Elio G. W. M.; Guo, Xiujie; Momin, Afaque Ahmad Imtiyaz; Negrã o, Só nia; Al-Babili, Salim; Gehring, Christoph A; Roessner, Ute; Jung, Christian; Murphy, Kevin; Arold, Stefan T.; Gojobori, Takashi; Linden, C. Gerard van der; Loo, Eibertus N. van; Jellen, Eric N.; Maughan, Peter J.; Tester, Mark A.

    2017-01-01

    Chenopodium quinoa (quinoa) is a highly nutritious grain identified as an important crop to improve world food security. Unfortunately, few resources are available to facilitate its genetic improvement. Here we report the assembly of a high-quality, chromosome-scale reference genome sequence for quinoa, which was produced using single-molecule real-time sequencing in combination with optical, chromosome-contact and genetic maps. We also report the sequencing of two diploids from the ancestral gene pools of quinoa, which enables the identification of sub-genomes in quinoa, and reduced-coverage genome sequences for 22 other samples of the allotetraploid goosefoot complex. The genome sequence facilitated the identification of the transcription factor likely to control the production of anti-nutritional triterpenoid saponins found in quinoa seeds, including a mutation that appears to cause alternative splicing and a premature stop codon in sweet quinoa strains. These genomic resources are an important first step towards the genetic improvement of quinoa.

  20. The genome of Chenopodium quinoa

    KAUST Repository

    Jarvis, David Erwin

    2017-02-08

    Chenopodium quinoa (quinoa) is a highly nutritious grain identified as an important crop to improve world food security. Unfortunately, few resources are available to facilitate its genetic improvement. Here we report the assembly of a high-quality, chromosome-scale reference genome sequence for quinoa, which was produced using single-molecule real-time sequencing in combination with optical, chromosome-contact and genetic maps. We also report the sequencing of two diploids from the ancestral gene pools of quinoa, which enables the identification of sub-genomes in quinoa, and reduced-coverage genome sequences for 22 other samples of the allotetraploid goosefoot complex. The genome sequence facilitated the identification of the transcription factor likely to control the production of anti-nutritional triterpenoid saponins found in quinoa seeds, including a mutation that appears to cause alternative splicing and a premature stop codon in sweet quinoa strains. These genomic resources are an important first step towards the genetic improvement of quinoa.

  1. The genome of Chenopodium quinoa.

    Science.gov (United States)

    Jarvis, David E; Ho, Yung Shwen; Lightfoot, Damien J; Schmöckel, Sandra M; Li, Bo; Borm, Theo J A; Ohyanagi, Hajime; Mineta, Katsuhiko; Michell, Craig T; Saber, Noha; Kharbatia, Najeh M; Rupper, Ryan R; Sharp, Aaron R; Dally, Nadine; Boughton, Berin A; Woo, Yong H; Gao, Ge; Schijlen, Elio G W M; Guo, Xiujie; Momin, Afaque A; Negrão, Sónia; Al-Babili, Salim; Gehring, Christoph; Roessner, Ute; Jung, Christian; Murphy, Kevin; Arold, Stefan T; Gojobori, Takashi; Linden, C Gerard van der; van Loo, Eibertus N; Jellen, Eric N; Maughan, Peter J; Tester, Mark

    2017-02-16

    Chenopodium quinoa (quinoa) is a highly nutritious grain identified as an important crop to improve world food security. Unfortunately, few resources are available to facilitate its genetic improvement. Here we report the assembly of a high-quality, chromosome-scale reference genome sequence for quinoa, which was produced using single-molecule real-time sequencing in combination with optical, chromosome-contact and genetic maps. We also report the sequencing of two diploids from the ancestral gene pools of quinoa, which enables the identification of sub-genomes in quinoa, and reduced-coverage genome sequences for 22 other samples of the allotetraploid goosefoot complex. The genome sequence facilitated the identification of the transcription factor likely to control the production of anti-nutritional triterpenoid saponins found in quinoa seeds, including a mutation that appears to cause alternative splicing and a premature stop codon in sweet quinoa strains. These genomic resources are an important first step towards the genetic improvement of quinoa.

  2. Genomic analysis of Fusarium verticillioides.

    Science.gov (United States)

    Brown, D W; Butchko, R A E; Proctor, R H

    2008-09-01

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen-causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the sphingolipid sphinganine. Ingestion of fumonisin-contaminated maize has been associated with a number of animal diseases, including cancer in rodents, and exposure has been correlated with human oesophageal cancer in some regions of the world, and some evidence suggests that fumonisins are a risk factor for neural tube defects. A primary goal of the authors' laboratory is to eliminate fumonisin contamination of maize and maize products. Understanding how and why these toxins are made and the F. verticillioides-maize disease process will allow one to develop novel strategies to limit tissue destruction (rot) and fumonisin production. To meet this goal, genomic sequence data, expressed sequence tags (ESTs) and microarrays are being used to identify F. verticillioides genes involved in the biosynthesis of toxins and plant pathogenesis. This paper describes the current status of F. verticillioides genomic resources and three approaches being used to mine microarray data from a wild-type strain cultured in liquid fumonisin production medium for 12, 24, 48, 72, 96 and 120h. Taken together, these approaches demonstrate the power of microarray technology to provide information on different biological processes.

  3. Public health and valorization of genome-based technologies: a new model.

    Science.gov (United States)

    Lal, Jonathan A; Schulte In den Bäumen, Tobias; Morré, Servaas A; Brand, Angela

    2011-12-05

    The success rate of timely translation of genome-based technologies to commercially feasible products/services with applicability in health care systems is significantly low. We identified both industry and scientists neglect health policy aspects when commercializing their technology, more specifically, Public Health Assessment Tools (PHAT) and early on involvement of decision makers through which market authorization and reimbursements are dependent. While Technology Transfer (TT) aims to facilitate translation of ideas into products, Health Technology Assessment, one component of PHAT, for example, facilitates translation of products/processes into healthcare services and eventually comes up with recommendations for decision makers. We aim to propose a new model of valorization to optimize integration of genome-based technologies into the healthcare system. The method used to develop our model is an adapted version of the Fish Trap Model and the Basic Design Cycle. We found although different, similarities exist between TT and PHAT. Realizing the potential of being mutually beneficial justified our proposal of their relative parallel initiation. We observed that the Public Health Genomics Wheel should be included in this relative parallel activity to ensure all societal/policy aspects are dealt with preemptively by both stakeholders. On further analysis, we found out this whole process is dependent on the Value of Information. As a result, we present our LAL (Learning Adapting Leveling) model which proposes, based on market demand; TT and PHAT by consultation/bi-lateral communication should advocate for relevant technologies. This can be achieved by public-private partnerships (PPPs). These widely defined PPPs create the innovation network which is a developing, consultative/collaborative-networking platform between TT and PHAT. This network has iterations and requires learning, assimilating and using knowledge developed and is called absorption capacity. We

  4. Genome analysis and DNA marker-based characterisation of pathogenic trypanosomes

    NARCIS (Netherlands)

    Agbo, Edwin Chukwura

    2003-01-01

    The advances in genomics technologies and genome analysis methods that offer new leads for accelerating discovery of putative targets for developing overall control tools are reviewed in Chapter 1. In Chapter 2, a PCR typing method based on restriction fragment length polymorphism analysis of the

  5. CHOgenome.org 2.0: Genome resources and website updates.

    Science.gov (United States)

    Kremkow, Benjamin G; Baik, Jong Youn; MacDonald, Madolyn L; Lee, Kelvin H

    2015-07-01

    Chinese hamster ovary (CHO) cells are a major host cell line for the production of therapeutic proteins, and CHO cell and Chinese hamster (CH) genomes have recently been sequenced using next-generation sequencing methods. CHOgenome.org was launched in 2011 (version 1.0) to serve as a database repository and to provide bioinformatics tools for the CHO community. CHOgenome.org (version 1.0) maintained GenBank CHO-K1 genome data, identified CHO-omics literature, and provided a CHO-specific BLAST service. Recent major updates to CHOgenome.org (version 2.0) include new sequence and annotation databases for both CHO and CH genomes, a more user-friendly website, and new research tools, including a proteome browser and a genome viewer. CHO cell-line specific sequences and annotations facilitate cell line development opportunities, several of which are discussed. Moving forward, CHOgenome.org will host the increasing amount of CHO-omics data and continue to make useful bioinformatics tools available to the CHO community. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads.

    Science.gov (United States)

    Wang, Zhiwen; Hobson, Neil; Galindo, Leonardo; Zhu, Shilin; Shi, Daihu; McDill, Joshua; Yang, Linfeng; Hawkins, Simon; Neutelings, Godfrey; Datla, Raju; Lambert, Georgina; Galbraith, David W; Grassa, Christopher J; Geraldes, Armando; Cronk, Quentin C; Cullis, Christopher; Dash, Prasanta K; Kumar, Polumetla A; Cloutier, Sylvie; Sharpe, Andrew G; Wong, Gane K-S; Wang, Jun; Deyholos, Michael K

    2012-11-01

    Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole-genome shotgun sequencing of the nuclear genome of flax. Seven paired-end libraries ranging in size from 300 bp to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep-coverage (approximately 94× raw, approximately 69× filtered) short-sequence reads (44-100 bp), produced a set of scaffolds with N(50) =694 kb, including contigs with N(50)=20.1 kb. The contig assembly contained 302 Mb of non-redundant sequence representing an estimated 81% genome coverage. Up to 96% of published flax ESTs aligned to the whole-genome shotgun scaffolds. However, comparisons with independently sequenced BACs and fosmids showed some mis-assembly of regions at the genome scale. A total of 43384 protein-coding genes were predicted in the whole-genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (K(s) ) observed within duplicate gene pairs was consistent with a recent (5-9 MYA) whole-genome duplication in flax. Within the predicted proteome, we observed enrichment of many conserved domains (Pfam-A) that may contribute to the unique properties of this crop, including agglutinin proteins. Together these results show that de novo assembly, based solely on whole-genome shotgun short-sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  7. Signaling pathways in a Citrus EST database

    Directory of Open Access Journals (Sweden)

    Angela Mehta

    2007-01-01

    Full Text Available Citrus spp. are economically important crops, which in Brazil are grown mainly in the State of São Paulo. Citrus cultures are attacked by several pathogens, causing severe yield losses. In order to better understand this culture, the Millenium Project (IAC Cordeirópolis was launched in order to sequence Citrus ESTs (expressed sequence tags from different tissues, including leaf, bark, fruit, root and flower. Plants were submitted to biotic and abiotic stresses and investigated under different development stages (adult vs. juvenile. Several cDNA libraries were constructed and the sequences obtained formed the Citrus ESTs database with almost 200,000 sequences. Searches were performed in the Citrus database to investigate the presence of different signaling pathway components. Several of the genes involved in the signaling of sugar, calcium, cytokinin, plant hormones, inositol phosphate, MAPKinase and COP9 were found in the citrus genome and are discussed in this paper. The results obtained may indicate that similar mechanisms described in other plants, such as Arabidopsis, occur in citrus. Further experimental studies must be conducted in order to understand the different signaling pathways present.

  8. CyanoClust: comparative genome resources of cyanobacteria and plastids.

    Science.gov (United States)

    Sasaki, Naobumi V; Sato, Naoki

    2010-01-01

    Cyanobacteria, which perform oxygen-evolving photosynthesis as do chloroplasts of plants and algae, are one of the best-studied prokaryotic phyla and one from which many representative genomes have been sequenced. Lack of a suitable comparative genomic database has been a problem in cyanobacterial genomics because many proteins involved in physiological functions such as photosynthesis and nitrogen fixation are not catalogued in commonly used databases, such as Clusters of Orthologous Proteins (COG). CyanoClust is a database of homolog groups in cyanobacteria and plastids that are produced by the program Gclust. We have developed a web-server system for the protein homology database featuring cyanobacteria and plastids. Database URL: http://cyanoclust.c.u-tokyo.ac.jp/.

  9. Draft genome of the sea cucumber Apostichopus japonicus and genetic polymorphism among color variants.

    Science.gov (United States)

    Jo, Jihoon; Oh, Jooseong; Lee, Hyun-Gwan; Hong, Hyun-Hee; Lee, Sung-Gwon; Cheon, Seongmin; Kern, Elizabeth M A; Jin, Soyeong; Cho, Sung-Jin; Park, Joong-Ki; Park, Chungoo

    2017-01-01

    The Japanese sea cucumber (Apostichopus japonicus Selenka 1867) is an economically important species as a source of seafood and ingredient in traditional medicine. It is mainly found off the coasts of northeast Asia. Recently, substantial exploitation and widespread biotic diseases in A. japonicus have generated increasing conservation concern. However, the genomic knowledge base and resources available for researchers to use in managing this natural resource and to establish genetically based breeding systems for sea cucumber aquaculture are still in a nascent stage. A total of 312 Gb of raw sequences were generated using the Illumina HiSeq 2000 platform and assembled to a final size of 0.66 Gb, which is about 80.5% of the estimated genome size (0.82 Gb). We observed nucleotide-level heterozygosity within the assembled genome to be 0.986%. The resulting draft genome assembly comprising 132 607 scaffolds with an N50 value of 10.5 kb contains a total of 21 771 predicted protein-coding genes. We identified 6.6-14.5 million heterozygous single nucleotide polymorphisms in the assembled genome of the three natural color variants (green, red, and black), resulting in an estimated nucleotide diversity of 0.00146. We report the first draft genome of A. japonicus and provide a general overview of the genetic variation in the three major color variants of A. japonicus. These data will help provide a comprehensive view of the genetic, physiological, and evolutionary relationships among color variants in A. japonicus, and will be invaluable resources for sea cucumber genomic research. © The Author 2017. Published by Oxford University Press.

  10. Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life.

    Science.gov (United States)

    Charalambous, Marika; da Rocha, Simão Teixeira; Ferguson-Smith, Anne C

    2007-02-01

    Genes subject to genomic imprinting are predominantly expressed from one of the two parental chromosomes, are often clustered in the genome, and their activity and repression are epigenetically regulated. The role of imprinted genes in growth control has been apparent since the discovery of imprinting in the early 1980s. Drawing from studies in the mouse, we propose three distinct classes of imprinted genes - those expressed, imprinted and acting predominantly within the placenta, those with no associated foetal growth effects that act postnatally to regulate metabolic processes, and those expressed in the embryo and placenta that programme the development of organs participating in metabolic processes. Members of this latter class may interact in functional networks regulating the interaction between the mother and the foetus, affecting generalized foetal well-being, growth and organ development; they may also coordinately regulate the development of particular organ systems. The mono-allelic behaviour and sensitivity to changes in regional epigenetic states renders imprinted genes adaptable and vulnerable; in all cases, their perturbed dosage can compromise prenatal and/or postnatal control of nutritional resources. This finding has implications for understanding the relationships between prenatal events and diseases later in life.

  11. A Secure Alignment Algorithm for Mapping Short Reads to Human Genome.

    Science.gov (United States)

    Zhao, Yongan; Wang, Xiaofeng; Tang, Haixu

    2018-05-09

    The elastic and inexpensive computing resources such as clouds have been recognized as a useful solution to analyzing massive human genomic data (e.g., acquired by using next-generation sequencers) in biomedical researches. However, outsourcing human genome computation to public or commercial clouds was hindered due to privacy concerns: even a small number of human genome sequences contain sufficient information for identifying the donor of the genomic data. This issue cannot be directly addressed by existing security and cryptographic techniques (such as homomorphic encryption), because they are too heavyweight to carry out practical genome computation tasks on massive data. In this article, we present a secure algorithm to accomplish the read mapping, one of the most basic tasks in human genomic data analysis based on a hybrid cloud computing model. Comparing with the existing approaches, our algorithm delegates most computation to the public cloud, while only performing encryption and decryption on the private cloud, and thus makes the maximum use of the computing resource of the public cloud. Furthermore, our algorithm reports similar results as the nonsecure read mapping algorithms, including the alignment between reads and the reference genome, which can be directly used in the downstream analysis such as the inference of genomic variations. We implemented the algorithm in C++ and Python on a hybrid cloud system, in which the public cloud uses an Apache Spark system.

  12. EVER-EST: European Virtual Environment for Research in Earth Science Themes

    Science.gov (United States)

    Glaves, H.; Albani, M.

    2016-12-01

    EVER-EST is an EC Horizon 2020 project having the goal to develop a Virtual Research Environment (VRE) providing a state-of-the-art solution to allow Earth Scientists to preserve their work and publications for reference and future reuse, and to share with others. The availability of such a solution, based on an innovative concept and state of art technology infrastructure, will considerably enhance the quality of how Earth Scientists work together within their own institution and also across other organizations, regions and countries. The concept of Research Objects (ROs), used in the Earth Sciences for the first time, will form the backbone of the EVER-EST VRE infrastructure. ROs will enhance the ability to preserve, re-use and share entire or individual parts of scientific workflows and all the resources related to a specific scientific investigation. These ROs will also potentially be used as part of the scholarly publication process. EVER-EST is building on technologies developed during almost 15 years of research on Earth Science data management infrastructures. The EVER-EST VRE Service Oriented Architecture is being meticulously designed to accommodate at best the requirements of a wide range of Earth Science communities and use cases: focus is put on common requirements and on minimising the level of complexity in the EVER-EST VRE to ensure future sustainability within the user communities beyond the end of the project. The EVER-EST VRE will be validated through its customisation and deployment by four Virtual Research Communities (VRCs) from different Earth Science disciplines and will support enhanced interaction between data providers and scientists in the Earth Science domain. User community will range from bio-marine researchers (Sea Monitoring use case), to common foreign and security policy institutions and stakeholders (Land Monitoring for Security use case), natural hazards forecasting systems (Natural Hazards use case), and disaster and risk

  13. Sequence-Based Analysis of Structural Organization and Composition of the Cultivated Sunflower (Helianthus annuus L.) Genome

    Science.gov (United States)

    Gill, Navdeep; Buti, Matteo; Kane, Nolan; Bellec, Arnaud; Helmstetter, Nicolas; Berges, Hélène; Rieseberg, Loren H.

    2014-01-01

    Sunflower is an important oilseed crop, as well as a model system for evolutionary studies, but its 3.6 gigabase genome has proven difficult to assemble, in part because of the high repeat content of its genome. Here we report on the sequencing, assembly, and analyses of 96 randomly chosen BACs from sunflower to provide additional information on the repeat content of the sunflower genome, assess how repetitive elements in the sunflower genome are organized relative to genes, and compare the genomic distribution of these repeats to that found in other food crops and model species. We also examine the expression of transposable element-related transcripts in EST databases for sunflower to determine the representation of repeats in the transcriptome and to measure their transcriptional activity. Our data confirm previous reports in suggesting that the sunflower genome is >78% repetitive. Sunflower repeats share very little similarity to other plant repeats such as those of Arabidopsis, rice, maize and wheat; overall 28% of repeats are “novel” to sunflower. The repetitive sequences appear to be randomly distributed within the sequenced BACs. Assuming the 96 BACs are representative of the genome as a whole, then approximately 5.2% of the sunflower genome comprises non TE-related genic sequence, with an average gene density of 18kbp/gene. Expression levels of these transposable elements indicate tissue specificity and differential expression in vegetative and reproductive tissues, suggesting that expressed TEs might contribute to sunflower development. The assembled BACs will also be useful for assessing the quality of several different draft assemblies of the sunflower genome and for annotating the reference sequence. PMID:24833511

  14. Sequence-Based Analysis of Structural Organization and Composition of the Cultivated Sunflower (Helianthus annuus L. Genome

    Directory of Open Access Journals (Sweden)

    Navdeep Gill

    2014-04-01

    Full Text Available Sunflower is an important oilseed crop, as well as a model system for evolutionary studies, but its 3.6 gigabase genome has proven difficult to assemble, in part because of the high repeat content of its genome. Here we report on the sequencing, assembly, and analyses of 96 randomly chosen BACs from sunflower to provide additional information on the repeat content of the sunflower genome, assess how repetitive elements in the sunflower genome are organized relative to genes, and compare the genomic distribution of these repeats to that found in other food crops and model species. We also examine the expression of transposable element-related transcripts in EST databases for sunflower to determine the representation of repeats in the transcriptome and to measure their transcriptional activity. Our data confirm previous reports in suggesting that the sunflower genome is >78% repetitive. Sunflower repeats share very little similarity to other plant repeats such as those of Arabidopsis, rice, maize and wheat; overall 28% of repeats are “novel” to sunflower. The repetitive sequences appear to be randomly distributed within the sequenced BACs. Assuming the 96 BACs are representative of the genome as a whole, then approximately 5.2% of the sunflower genome comprises non TE-related genic sequence, with an average gene density of 18kbp/gene. Expression levels of these transposable elements indicate tissue specificity and differential expression in vegetative and reproductive tissues, suggesting that expressed TEs might contribute to sunflower development. The assembled BACs will also be useful for assessing the quality of several different draft assemblies of the sunflower genome and for annotating the reference sequence.

  15. Genomics With Cloud Computing

    Directory of Open Access Journals (Sweden)

    Sukhamrit Kaur

    2015-04-01

    Full Text Available Abstract Genomics is study of genome which provides large amount of data for which large storage and computation power is needed. These issues are solved by cloud computing that provides various cloud platforms for genomics. These platforms provides many services to user like easy access to data easy sharing and transfer providing storage in hundreds of terabytes more computational power. Some cloud platforms are Google genomics DNAnexus and Globus genomics. Various features of cloud computing to genomics are like easy access and sharing of data security of data less cost to pay for resources but still there are some demerits like large time needed to transfer data less network bandwidth.

  16. Genomic Organization of Zebrafish microRNAs

    Directory of Open Access Journals (Sweden)

    Paydar Ima

    2008-05-01

    Full Text Available Abstract Background microRNAs (miRNAs are small (~22 nt non-coding RNAs that regulate cell movement, specification, and development. Expression of miRNAs is highly regulated, both spatially and temporally. Based on direct cloning, sequence conservation, and predicted secondary structures, a large number of miRNAs have been identified in higher eukaryotic genomes but whether these RNAs are simply a subset of a much larger number of noncoding RNA families is unknown. This is especially true in zebrafish where genome sequencing and annotation is not yet complete. Results We analyzed the zebrafish genome to identify the number and location of proven and predicted miRNAs resulting in the identification of 35 new miRNAs. We then grouped all 415 zebrafish miRNAs into families based on seed sequence identity as a means to identify possible functional redundancy. Based on genomic location and expression analysis, we also identified those miRNAs that are likely to be encoded as part of polycistronic transcripts. Lastly, as a resource, we compiled existing zebrafish miRNA expression data and, where possible, listed all experimentally proven mRNA targets. Conclusion Current analysis indicates the zebrafish genome encodes 415 miRNAs which can be grouped into 44 families. The largest of these families (the miR-430 family contains 72 members largely clustered in two main locations along chromosome 4. Thus far, most zebrafish miRNAs exhibit tissue specific patterns of expression.

  17. Development and Characterization of 1,906 EST-SSR Markers from Unigenes in Jute (Corchorus spp..

    Directory of Open Access Journals (Sweden)

    Liwu Zhang

    Full Text Available Jute, comprising white and dark jute, is the second important natural fiber crop after cotton worldwide. However, the lack of expressed sequence tag-derived simple sequence repeat (EST-SSR markers has resulted in a large gap in the improvement of jute. Previously, de novo 48,914 unigenes from white jute were assembled. In this study, 1,906 EST-SSRs were identified from these assembled uingenes. Among these markers, di-, tri- and tetra-nucleotide repeat types were the abundant types (12.0%, 56.9% and 21.6% respectively. The AG-rich or GA-rich nucleotide repeats were the predominant. Subsequently, a sample of 116 SSRs, located in genes encoding transcription factors and cellulose synthases, were selected to survey polymorphisms among12 diverse jute accessions. Of these, 83.6% successfully amplified at least one fragment and detected polymorphism among the 12diverse genotypes, indicating that the newly developed SSRs are of good quality. Furthermore, the genetic similarity coefficients of all the 12 accessions were evaluated using 97 polymorphic SSRs. The cluster analysis divided the jute accessions into two main groups with genetic similarity coefficient of 0.61. These EST-SSR markers not only enrich molecular markers of jute genome, but also facilitate genetic and genomic researches in jute.

  18. ASPIC: a novel method to predict the exon-intron structure of a gene that is optimally compatible to a set of transcript sequences

    Directory of Open Access Journals (Sweden)

    Pesole Graziano

    2005-10-01

    Full Text Available Abstract Background: Currently available methods to predict splice sites are mainly based on the independent and progressive alignment of transcript data (mostly ESTs to the genomic sequence. Apart from often being computationally expensive, this approach is vulnerable to several problems – hence the need to develop novel strategies. Results: We propose a method, based on a novel multiple genome-EST alignment algorithm, for the detection of splice sites. To avoid limitations of splice sites prediction (mainly, over-predictions due to independent single EST alignments to the genomic sequence our approach performs a multiple alignment of transcript data to the genomic sequence based on the combined analysis of all available data. We recast the problem of predicting constitutive and alternative splicing as an optimization problem, where the optimal multiple transcript alignment minimizes the number of exons and hence of splice site observations. We have implemented a splice site predictor based on this algorithm in the software tool ASPIC (Alternative Splicing PredICtion. It is distinguished from other methods based on BLAST-like tools by the incorporation of entirely new ad hoc procedures for accurate and computationally efficient transcript alignment and adopts dynamic programming for the refinement of intron boundaries. ASPIC also provides the minimal set of non-mergeable transcript isoforms compatible with the detected splicing events. The ASPIC web resource is dynamically interconnected with the Ensembl and Unigene databases and also implements an upload facility. Conclusion: Extensive bench marking shows that ASPIC outperforms other existing methods in the detection of novel splicing isoforms and in the minimization of over-predictions. ASPIC also requires a lower computation time for processing a single gene and an EST cluster. The ASPIC web resource is available at http://aspic.algo.disco.unimib.it/aspic-devel/.

  19. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models

    Directory of Open Access Journals (Sweden)

    Surovcik Katharina

    2006-03-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is considered a strong evolutionary force shaping the content of microbial genomes in a substantial manner. It is the difference in speed enabling the rapid adaptation to changing environmental demands that distinguishes HGT from gene genesis, duplications or mutations. For a precise characterization, algorithms are needed that identify transfer events with high reliability. Frequently, the transferred pieces of DNA have a considerable length, comprise several genes and are called genomic islands (GIs or more specifically pathogenicity or symbiotic islands. Results We have implemented the program SIGI-HMM that predicts GIs and the putative donor of each individual alien gene. It is based on the analysis of codon usage (CU of each individual gene of a genome under study. CU of each gene is compared against a carefully selected set of CU tables representing microbial donors or highly expressed genes. Multiple tests are used to identify putatively alien genes, to predict putative donors and to mask putatively highly expressed genes. Thus, we determine the states and emission probabilities of an inhomogeneous hidden Markov model working on gene level. For the transition probabilities, we draw upon classical test theory with the intention of integrating a sensitivity controller in a consistent manner. SIGI-HMM was written in JAVA and is publicly available. It accepts as input any file created according to the EMBL-format. It generates output in the common GFF format readable for genome browsers. Benchmark tests showed that the output of SIGI-HMM is in agreement with known findings. Its predictions were both consistent with annotated GIs and with predictions generated by different methods. Conclusion SIGI-HMM is a sensitive tool for the identification of GIs in microbial genomes. It allows to interactively analyze genomes in detail and to generate or to test hypotheses about the origin of acquired

  20. Genomic profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization.

    Directory of Open Access Journals (Sweden)

    Shunichi Yoshioka

    Full Text Available We designed a study to investigate genetic relationships between primary tumors of oral squamous cell carcinoma (OSCC and their lymph node metastases, and to identify genomic copy number aberrations (CNAs related to lymph node metastasis. For this purpose, we collected a total of 42 tumor samples from 25 patients and analyzed their genomic profiles by array-based comparative genomic hybridization. We then compared the genetic profiles of metastatic primary tumors (MPTs with their paired lymph node metastases (LNMs, and also those of LNMs with non-metastatic primary tumors (NMPTs. Firstly, we found that although there were some distinctive differences in the patterns of genomic profiles between MPTs and their paired LNMs, the paired samples shared similar genomic aberration patterns in each case. Unsupervised hierarchical clustering analysis grouped together 12 of the 15 MPT-LNM pairs. Furthermore, similarity scores between paired samples were significantly higher than those between non-paired samples. These results suggested that MPTs and their paired LNMs are composed predominantly of genetically clonal tumor cells, while minor populations with different CNAs may also exist in metastatic OSCCs. Secondly, to identify CNAs related to lymph node metastasis, we compared CNAs between grouped samples of MPTs and LNMs, but were unable to find any CNAs that were more common in LNMs. Finally, we hypothesized that subpopulations carrying metastasis-related CNAs might be present in both the MPT and LNM. Accordingly, we compared CNAs between NMPTs and LNMs, and found that gains of 7p, 8q and 17q were more common in the latter than in the former, suggesting that these CNAs may be involved in lymph node metastasis of OSCC. In conclusion, our data suggest that in OSCCs showing metastasis, the primary and metastatic tumors share similar genomic profiles, and that cells in the primary tumor may tend to metastasize after acquiring metastasis-associated CNAs.

  1. Unlimited Thirst for Genome Sequencing, Data Interpretation, and Database Usage in Genomic Era: The Road towards Fast-Track Crop Plant Improvement

    Directory of Open Access Journals (Sweden)

    Arun Prabhu Dhanapal

    2015-01-01

    Full Text Available The number of sequenced crop genomes and associated genomic resources is growing rapidly with the advent of inexpensive next generation sequencing methods. Databases have become an integral part of all aspects of science research, including basic and applied plant and animal sciences. The importance of databases keeps increasing as the volume of datasets from direct and indirect genomics, as well as other omics approaches, keeps expanding in recent years. The databases and associated web portals provide at a minimum a uniform set of tools and automated analysis across a wide range of crop plant genomes. This paper reviews some basic terms and considerations in dealing with crop plant databases utilization in advancing genomic era. The utilization of databases for variation analysis with other comparative genomics tools, and data interpretation platforms are well described. The major focus of this review is to provide knowledge on platforms and databases for genome-based investigations of agriculturally important crop plants. The utilization of these databases in applied crop improvement program is still being achieved widely; otherwise, the end for sequencing is not far away.

  2. GenomeRNAi: a database for cell-based RNAi phenotypes.

    Science.gov (United States)

    Horn, Thomas; Arziman, Zeynep; Berger, Juerg; Boutros, Michael

    2007-01-01

    RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at http://rnai.dkfz.de.

  3. ZifBASE: a database of zinc finger proteins and associated resources

    Directory of Open Access Journals (Sweden)

    Punetha Ankita

    2009-09-01

    Full Text Available Abstract Background Information on the occurrence of zinc finger protein motifs in genomes is crucial to the developing field of molecular genome engineering. The knowledge of their target DNA-binding sequences is vital to develop chimeric proteins for targeted genome engineering and site-specific gene correction. There is a need to develop a computational resource of zinc finger proteins (ZFP to identify the potential binding sites and its location, which reduce the time of in vivo task, and overcome the difficulties in selecting the specific type of zinc finger protein and the target site in the DNA sequence. Description ZifBASE provides an extensive collection of various natural and engineered ZFP. It uses standard names and a genetic and structural classification scheme to present data retrieved from UniProtKB, GenBank, Protein Data Bank, ModBase, Protein Model Portal and the literature. It also incorporates specialized features of ZFP including finger sequences and positions, number of fingers, physiochemical properties, classes, framework, PubMed citations with links to experimental structures (PDB, if available and modeled structures of natural zinc finger proteins. ZifBASE provides information on zinc finger proteins (both natural and engineered ones, the number of finger units in each of the zinc finger proteins (with multiple fingers, the synergy between the adjacent fingers and their positions. Additionally, it gives the individual finger sequence and their target DNA site to which it binds for better and clear understanding on the interactions of adjacent fingers. The current version of ZifBASE contains 139 entries of which 89 are engineered ZFPs, containing 3-7F totaling to 296 fingers. There are 50 natural zinc finger protein entries ranging from 2-13F, totaling to 307 fingers. It has sequences and structures from literature, Protein Data Bank, ModBase and Protein Model Portal. The interface is cross linked to other public

  4. EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes

    Directory of Open Access Journals (Sweden)

    Runko Suzan J

    2005-10-01

    Full Text Available Abstract Background Ginkgo biloba L. is the only surviving member of one of the oldest living seed plant groups with medicinal, spiritual and horticultural importance worldwide. As an evolutionary relic, it displays many characters found in the early, extinct seed plants and extant cycads. To establish a molecular base to understand the evolution of seeds and pollen, we created a cDNA library and EST dataset from the reproductive structures of male (microsporangiate, female (megasporangiate, and vegetative organs (leaves of Ginkgo biloba. Results RNA from newly emerged male and female reproductive organs and immature leaves was used to create three distinct cDNA libraries from which 6,434 ESTs were generated. These 6,434 ESTs from Ginkgo biloba were clustered into 3,830 unigenes. A comparison of our Ginkgo unigene set against the fully annotated genomes of rice and Arabidopsis, and all available ESTs in Genbank revealed that 256 Ginkgo unigenes match only genes among the gymnosperms and non-seed plants – many with multiple matches to genes in non-angiosperm plants. Conversely, another group of unigenes in Gingko had highly significant homology to transcription factors in angiosperms involved in development, including MADS box genes as well as post-transcriptional regulators. Several of the conserved developmental genes found in Ginkgo had top BLAST homology to cycad genes. We also note here the presence of ESTs in G. biloba similar to genes that to date have only been found in gymnosperms and an additional 22 Ginkgo genes common only to genes from cycads. Conclusion Our analysis of an EST dataset from G. biloba revealed genes potentially unique to gymnosperms. Many of these genes showed homology to fully sequenced clones from our cycad EST dataset found in common only with gymnosperms. Other Ginkgo ESTs are similar to developmental regulators in higher plants. This work sets the stage for future studies on Ginkgo to better understand seed and

  5. Next-Generation Genomics Facility at C-CAMP: Accelerating Genomic Research in India

    Science.gov (United States)

    S, Chandana; Russiachand, Heikham; H, Pradeep; S, Shilpa; M, Ashwini; S, Sahana; B, Jayanth; Atla, Goutham; Jain, Smita; Arunkumar, Nandini; Gowda, Malali

    2014-01-01

    Next-Generation Sequencing (NGS; http://www.genome.gov/12513162) is a recent life-sciences technological revolution that allows scientists to decode genomes or transcriptomes at a much faster rate with a lower cost. Genomic-based studies are in a relatively slow pace in India due to the non-availability of genomics experts, trained personnel and dedicated service providers. Using NGS there is a lot of potential to study India's national diversity (of all kinds). We at the Centre for Cellular and Molecular Platforms (C-CAMP) have launched the Next Generation Genomics Facility (NGGF) to provide genomics service to scientists, to train researchers and also work on national and international genomic projects. We have HiSeq1000 from Illumina and GS-FLX Plus from Roche454. The long reads from GS FLX Plus, and high sequence depth from HiSeq1000, are the best and ideal hybrid approaches for de novo and re-sequencing of genomes and transcriptomes. At our facility, we have sequenced around 70 different organisms comprising of more than 388 genomes and 615 transcriptomes – prokaryotes and eukaryotes (fungi, plants and animals). In addition we have optimized other unique applications such as small RNA (miRNA, siRNA etc), long Mate-pair sequencing (2 to 20 Kb), Coding sequences (Exome), Methylome (ChIP-Seq), Restriction Mapping (RAD-Seq), Human Leukocyte Antigen (HLA) typing, mixed genomes (metagenomes) and target amplicons, etc. Translating DNA sequence data from NGS sequencer into meaningful information is an important exercise. Under NGGF, we have bioinformatics experts and high-end computing resources to dissect NGS data such as genome assembly and annotation, gene expression, target enrichment, variant calling (SSR or SNP), comparative analysis etc. Our services (sequencing and bioinformatics) have been utilized by more than 45 organizations (academia and industry) both within India and outside, resulting several publications in peer-reviewed journals and several genomic

  6. Mining online genomic resources in Anolis carolinensis facilitates rapid and inexpensive development of cross-species microsatellite markers for the Anolis lizard genus.

    Science.gov (United States)

    Wordley, Claire; Slate, Jon; Stapley, Jessica

    2011-01-01

    Online sequence databases can provide valuable resources for the development of cross-species genetic markers. In particular, mining expressed tag sequences (EST) for microsatellites and developing conserved cross-species microsatellite markers can provide a rapid and relatively inexpensive method to develop new markers for a range of species. Here, we adopt this approach to develop cross-species microsatellite markers in Anolis lizards, which is a model genus in evolutionary biology and ecology. Using EST sequences from Anolis carolinensis, we identified 127 microsatellites that satisfied our criteria, and tested 49 of these in five species of Anolis (carolinensis, distichus, apletophallus, porcatus and sagrei). We identified between 8 and 25 new variable genetic markers for five Anolis species. These markers will be a valuable resource for studies of population genetics, comparative mapping, mating systems, behavioural ecology and adaptive radiations in this diverse lineage. © 2010 Blackwell Publishing Ltd.

  7. Matching phenotypes to whole genomes: Lessons learned from four iterations of the personal genome project community challenges.

    Science.gov (United States)

    Cai, Binghuang; Li, Biao; Kiga, Nikki; Thusberg, Janita; Bergquist, Timothy; Chen, Yun-Ching; Niknafs, Noushin; Carter, Hannah; Tokheim, Collin; Beleva-Guthrie, Violeta; Douville, Christopher; Bhattacharya, Rohit; Yeo, Hui Ting Grace; Fan, Jean; Sengupta, Sohini; Kim, Dewey; Cline, Melissa; Turner, Tychele; Diekhans, Mark; Zaucha, Jan; Pal, Lipika R; Cao, Chen; Yu, Chen-Hsin; Yin, Yizhou; Carraro, Marco; Giollo, Manuel; Ferrari, Carlo; Leonardi, Emanuela; Tosatto, Silvio C E; Bobe, Jason; Ball, Madeleine; Hoskins, Roger A; Repo, Susanna; Church, George; Brenner, Steven E; Moult, John; Gough, Julian; Stanke, Mario; Karchin, Rachel; Mooney, Sean D

    2017-09-01

    The advent of next-generation sequencing has dramatically decreased the cost for whole-genome sequencing and increased the viability for its application in research and clinical care. The Personal Genome Project (PGP) provides unrestricted access to genomes of individuals and their associated phenotypes. This resource enabled the Critical Assessment of Genome Interpretation (CAGI) to create a community challenge to assess the bioinformatics community's ability to predict traits from whole genomes. In the CAGI PGP challenge, researchers were asked to predict whether an individual had a particular trait or profile based on their whole genome. Several approaches were used to assess submissions, including ROC AUC (area under receiver operating characteristic curve), probability rankings, the number of correct predictions, and statistical significance simulations. Overall, we found that prediction of individual traits is difficult, relying on a strong knowledge of trait frequency within the general population, whereas matching genomes to trait profiles relies heavily upon a small number of common traits including ancestry, blood type, and eye color. When a rare genetic disorder is present, profiles can be matched when one or more pathogenic variants are identified. Prediction accuracy has improved substantially over the last 6 years due to improved methodology and a better understanding of features. © 2017 Wiley Periodicals, Inc.

  8. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome

    Science.gov (United States)

    CRISPR/Cas9 has been recently demonstrated as an effective and popular genome editing tool for modifying genomes of human, animals, microorganisms, and plants. Success of such genome editing is highly dependent on the availability of suitable target sites in the genomes to be edited. Many specific t...

  9. Statistical Methods in Integrative Genomics

    Science.gov (United States)

    Richardson, Sylvia; Tseng, George C.; Sun, Wei

    2016-01-01

    Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and future research directions. PMID:27482531

  10. Diversity and Genome Analysis of Australian and Global Oilseed Brassica napus L. Germplasm Using Transcriptomics and Whole Genome Re-sequencing

    Directory of Open Access Journals (Sweden)

    M. Michelle Malmberg

    2018-04-01

    Full Text Available Intensive breeding of Brassica napus has resulted in relatively low diversity, such that B. napus would benefit from germplasm improvement schemes that sustain diversity. As such, samples representative of global germplasm pools need to be assessed for existing population structure, diversity and linkage disequilibrium (LD. Complexity reduction genotyping-by-sequencing (GBS methods, including GBS-transcriptomics (GBS-t, enable cost-effective screening of a large number of samples, while whole genome re-sequencing (WGR delivers the ability to generate large numbers of unbiased genomic single nucleotide polymorphisms (SNPs, and identify structural variants (SVs. Furthermore, the development of genomic tools based on whole genomes representative of global oilseed diversity and orientated by the reference genome has substantial industry relevance and will be highly beneficial for canola breeding. As recent studies have focused on European and Chinese varieties, a global diversity panel as well as a substantial number of Australian spring types were included in this study. Focusing on industry relevance, 633 varieties were initially genotyped using GBS-t to examine population structure using 61,037 SNPs. Subsequently, 149 samples representative of global diversity were selected for WGR and both data sets used for a side-by-side evaluation of diversity and LD. The WGR data was further used to develop genomic resources consisting of a list of 4,029,750 high-confidence SNPs annotated using SnpEff, and SVs in the form of 10,976 deletions and 2,556 insertions. These resources form the basis of a reliable and repeatable system allowing greater integration between canola genomics studies, with a strong focus on breeding germplasm and industry applicability.

  11. Rice Genome Research: Current Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Bin Han

    2008-11-01

    Full Text Available Rice ( L. is the leading genomics system among the crop plants. The sequence of the rice genome, the first cereal plant genome, was published in 2005. This review summarizes progress made in rice genome annotations, comparative genomics, and functional genomics researches. It also maps out the status of rice genomics globally and provides a vision of future research directions and resource building.

  12. Genome-Based Comparison of Clostridioides difficile: Average Amino Acid Identity Analysis of Core Genomes.

    Science.gov (United States)

    Cabal, Adriana; Jun, Se-Ran; Jenjaroenpun, Piroon; Wanchai, Visanu; Nookaew, Intawat; Wongsurawat, Thidathip; Burgess, Mary J; Kothari, Atul; Wassenaar, Trudy M; Ussery, David W

    2018-02-14

    Infections due to Clostridioides difficile (previously known as Clostridium difficile) are a major problem in hospitals, where cases can be caused by community-acquired strains as well as by nosocomial spread. Whole genome sequences from clinical samples contain a lot of information but that needs to be analyzed and compared in such a way that the outcome is useful for clinicians or epidemiologists. Here, we compare 663 public available complete genome sequences of C. difficile using average amino acid identity (AAI) scores. This analysis revealed that most of these genomes (640, 96.5%) clearly belong to the same species, while the remaining 23 genomes produce four distinct clusters within the Clostridioides genus. The main C. difficile cluster can be further divided into sub-clusters, depending on the chosen cutoff. We demonstrate that MLST, either based on partial or full gene-length, results in biased estimates of genetic differences and does not capture the true degree of similarity or differences of complete genomes. Presence of genes coding for C. difficile toxins A and B (ToxA/B), as well as the binary C. difficile toxin (CDT), was deduced from their unique PfamA domain architectures. Out of the 663 C. difficile genomes, 535 (80.7%) contained at least one copy of ToxA or ToxB, while these genes were missing from 128 genomes. Although some clusters were enriched for toxin presence, these genes are variably present in a given genetic background. The CDT genes were found in 191 genomes, which were restricted to a few clusters only, and only one cluster lacked the toxin A/B genes consistently. A total of 310 genomes contained ToxA/B without CDT (47%). Further, published metagenomic data from stools were used to assess the presence of C. difficile sequences in blinded cases of C. difficile infection (CDI) and controls, to test if metagenomic analysis is sensitive enough to detect the pathogen, and to establish strain relationships between cases from the same

  13. The genome of Eucalyptus grandis

    Energy Technology Data Exchange (ETDEWEB)

    Myburg, Alexander A.; Grattapaglia, Dario; Tuskan, Gerald A.; Hellsten, Uffe; Hayes, Richard D.; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M.; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R. K.; Hussey, Steven G.; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B.; Togawa, Roberto C.; Pappas, Marilia R.; Faria, Danielle A.; Sansaloni, Carolina P.; Petroli, Cesar D.; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J.; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A.; Bornberg-Bauer, Erich; Kersting, Anna R.; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E.; Liston, Aaron; Spatafora, Joseph W.; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H.; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C.; Steane, Dorothy A.; Vaillancourt, René E.; Potts, Brad M.; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J.; Strauss, Steven H.; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S.; Schmutz, Jeremy

    2014-06-11

    Eucalypts are the world s most widely planted hardwood trees. Their broad adaptability, rich species diversity, fast growth and superior multipurpose wood, have made them a global renewable resource of fiber and energy that mitigates human pressures on natural forests. We sequenced and assembled >94% of the 640 Mbp genome of Eucalyptus grandis into its 11 chromosomes. A set of 36,376 protein coding genes were predicted revealing that 34% occur in tandem duplications, the largest proportion found thus far in any plant genome. Eucalypts also show the highest diversity of genes for plant specialized metabolism that act as chemical defence against biotic agents and provide unique pharmaceutical oils. Resequencing of a set of inbred tree genomes revealed regions of strongly conserved heterozygosity, likely hotspots of inbreeding depression. The resequenced genome of the sister species E. globulus underscored the high inter-specific genome colinearity despite substantial genome size variation in the genus. The genome of E. grandis is the first reference for the early diverging Rosid order Myrtales and is placed here basal to the Eurosids. This resource expands knowledge on the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

  14. The DNA Data Bank of Japan launches a new resource, the DDBJ Omics Archive of functional genomics experiments.

    Science.gov (United States)

    Kodama, Yuichi; Mashima, Jun; Kaminuma, Eli; Gojobori, Takashi; Ogasawara, Osamu; Takagi, Toshihisa; Okubo, Kousaku; Nakamura, Yasukazu

    2012-01-01

    The DNA Data Bank of Japan (DDBJ; http://www.ddbj.nig.ac.jp) maintains and provides archival, retrieval and analytical resources for biological information. The central DDBJ resource consists of public, open-access nucleotide sequence databases including raw sequence reads, assembly information and functional annotation. Database content is exchanged with EBI and NCBI within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). In 2011, DDBJ launched two new resources: the 'DDBJ Omics Archive' (DOR; http://trace.ddbj.nig.ac.jp/dor) and BioProject (http://trace.ddbj.nig.ac.jp/bioproject). DOR is an archival database of functional genomics data generated by microarray and highly parallel new generation sequencers. Data are exchanged between the ArrayExpress at EBI and DOR in the common MAGE-TAB format. BioProject provides an organizational framework to access metadata about research projects and the data from the projects that are deposited into different databases. In this article, we describe major changes and improvements introduced to the DDBJ services, and the launch of two new resources: DOR and BioProject.

  15. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome

    DEFF Research Database (Denmark)

    Lewis, Nathan E; Liu, Xin; Li, Yuxiang

    2013-01-01

    stymied by the lack of a unifying genomic resource for CHO cells. Here we report a 2.4-Gb draft genome sequence of a female Chinese hamster, Cricetulus griseus, harboring 24,044 genes. We also resequenced and analyzed the genomes of six CHO cell lines from the CHO-K1, DG44 and CHO-S lineages...

  16. An Integrated Genetic and Cytogenetic Map of the Cucumber Genome

    Science.gov (United States)

    The Cucurbitaceae includes important crops as cucumber, melon, watermelon, and squash and pumpkin. However, few genetic and genomic resources are available for plant improvement. Some cucurbit species such as cucumber have a narrow genetic base, which impedes construction of saturated molecular li...

  17. The genome of herpesvirus papio 2 is closely related to the genomes of human herpes simplex viruses.

    Science.gov (United States)

    Bigger, John E; Martin, David W

    2003-06-01

    Infection of baboons (Papio species) with herpesvirus papio 2 (HVP-2) produces a disease that is clinically similar to herpes simplex virus (HSV-1 and HSV-2) infection of humans. The development of a primate model of simplexvirus infection based on HVP-2 would provide a powerful resource to study virus biology and test vaccine strategies. In order to characterize the molecular biology of HVP-2 and justify further development of this model system we have constructed a physical map of the HVP-2 genome. The results of these studies have identified the presence of 26 reading frames that closely resemble HSV homologues. Furthermore, the HVP-2 genome shares a collinear arrangement with the genome of HSV. These studies further validate the development of the HVP-2 model as a surrogate system to study the biology of HSV infections.

  18. CrusView: A Java-Based Visualization Platform for Comparative Genomics Analyses in Brassicaceae Species[OPEN

    Science.gov (United States)

    Chen, Hao; Wang, Xiangfeng

    2013-01-01

    In plants and animals, chromosomal breakage and fusion events based on conserved syntenic genomic blocks lead to conserved patterns of karyotype evolution among species of the same family. However, karyotype information has not been well utilized in genomic comparison studies. We present CrusView, a Java-based bioinformatic application utilizing Standard Widget Toolkit/Swing graphics libraries and a SQLite database for performing visualized analyses of comparative genomics data in Brassicaceae (crucifer) plants. Compared with similar software and databases, one of the unique features of CrusView is its integration of karyotype information when comparing two genomes. This feature allows users to perform karyotype-based genome assembly and karyotype-assisted genome synteny analyses with preset karyotype patterns of the Brassicaceae genomes. Additionally, CrusView is a local program, which gives its users high flexibility when analyzing unpublished genomes and allows users to upload self-defined genomic information so that they can visually study the associations between genome structural variations and genetic elements, including chromosomal rearrangements, genomic macrosynteny, gene families, high-frequency recombination sites, and tandem and segmental duplications between related species. This tool will greatly facilitate karyotype, chromosome, and genome evolution studies using visualized comparative genomics approaches in Brassicaceae species. CrusView is freely available at http://www.cmbb.arizona.edu/CrusView/. PMID:23898041

  19. Analysis of cassava (Manihot esculenta) ESTs: A tool for the discovery of genes

    International Nuclear Information System (INIS)

    Zapata, Andres; Neme, Rafik; Sanabria, Carolina; Lopez, Camilo

    2011-01-01

    Cassava (Manihot esculenta) is the main source of calories for more than 1,000 millions of people around the world and has been consolidated as the fourth most important crop after rice, corn and wheat. Cassava is considered tolerant to abiotic and biotic stress conditions; nevertheless these characteristics are mainly present in non-commercial varieties. Genetic breeding strategies represent an alternative to introduce the desirable characteristics into commercial varieties. A fundamental step for accelerating the genetic breeding process in cassava requires the identification of genes associated to these characteristics. One rapid strategy for the identification of genes is the possibility to have a large collection of ESTs (expressed sequence tag). In this study, a complete analysis of cassava ESTs was done. The cassava ESTs represent 80,459 sequences which were assembled in a set of 29,231 unique genes (unigen), comprising 10,945 contigs and 18,286 singletones. These 29,231 unique genes represent about 80% of the genes of the cassava's genome. Between 5% and 10% of the unigenes of cassava not show similarity to any sequences present in the NCBI database and could be consider as cassava specific genes. a functional category was assigned to a group of sequences of the unigen set (29%) following the Gene Ontology Vocabulary. the molecular function component was the best represented with 43% of the sequences, followed by the biological process component (38%) and finally the cellular component with 19%. in the cassava ESTs collection, 3,709 microsatellites were identified and they could be used as molecular markers. this study represents an important contribution to the knowledge of the functional genomic structure of cassava and constitutes an important tool for the identification of genes associated to agricultural characteristics of interest that could be employed in cassava breeding programs.

  20. Comparative BAC-based mapping in the white-throated sparrow, a novel behavioral genomics model, using interspecies overgo hybridization

    Directory of Open Access Journals (Sweden)

    Gonser Rusty A

    2011-06-01

    Full Text Available Abstract Background The genomics era has produced an arsenal of resources from sequenced organisms allowing researchers to target species that do not have comparable mapping and sequence information. These new "non-model" organisms offer unique opportunities to examine environmental effects on genomic patterns and processes. Here we use comparative mapping as a first step in characterizing the genome organization of a novel animal model, the white-throated sparrow (Zonotrichia albicollis, which occurs as white or tan morphs that exhibit alternative behaviors and physiology. Morph is determined by the presence or absence of a complex chromosomal rearrangement. This species is an ideal model for behavioral genomics because the association between genotype and phenotype is absolute, making it possible to identify the genomic bases of phenotypic variation. Findings We initiated a genomic study in this species by characterizing the white-throated sparrow BAC library via filter hybridization with overgo probes designed for the chicken, turkey, and zebra finch. Cross-species hybridization resulted in 640 positive sparrow BACs assigned to 77 chicken loci across almost all macro-and microchromosomes, with a focus on the chromosomes associated with morph. Out of 216 overgos, 36% of the probes hybridized successfully, with an average number of 3.0 positive sparrow BACs per overgo. Conclusions These data will be utilized for determining chromosomal architecture and for fine-scale mapping of candidate genes associated with phenotypic differences. Our research confirms the utility of interspecies hybridization for developing comparative maps in other non-model organisms.

  1. GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data.

    Science.gov (United States)

    Jung, Sook; Staton, Margaret; Lee, Taein; Blenda, Anna; Svancara, Randall; Abbott, Albert; Main, Dorrie

    2008-01-01

    The Genome Database for Rosaceae (GDR) is a central repository of curated and integrated genetics and genomics data of Rosaceae, an economically important family which includes apple, cherry, peach, pear, raspberry, rose and strawberry. GDR contains annotated databases of all publicly available Rosaceae ESTs, the genetically anchored peach physical map, Rosaceae genetic maps and comprehensively annotated markers and traits. The ESTs are assembled to produce unigene sets of each genus and the entire Rosaceae. Other annotations include putative function, microsatellites, open reading frames, single nucleotide polymorphisms, gene ontology terms and anchored map position where applicable. Most of the published Rosaceae genetic maps can be viewed and compared through CMap, the comparative map viewer. The peach physical map can be viewed using WebFPC/WebChrom, and also through our integrated GDR map viewer, which serves as a portal to the combined genetic, transcriptome and physical mapping information. ESTs, BACs, markers and traits can be queried by various categories and the search result sites are linked to the mapping visualization tools. GDR also provides online analysis tools such as a batch BLAST/FASTA server for the GDR datasets, a sequence assembly server and microsatellite and primer detection tools. GDR is available at http://www.rosaceae.org.

  2. Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes.

    Science.gov (United States)

    Naduthodi, Mihris Ibnu Saleem; Barbosa, Maria J; van der Oost, John

    2018-02-03

    The carbon footprint caused by unsustainable development and its environmental and economic impact has become a major concern in the past few decades. Photosynthetic microbes such as microalgae and cyanobacteria are capable of accumulating value-added compounds from carbon dioxide, and have been regarded as environmentally friendly alternatives to reduce the usage of fossil fuels, thereby contributing to reducing the carbon footprint. This light-driven generation of green chemicals and biofuels has triggered the research for metabolic engineering of these photosynthetic microbes. CRISPR-Cas systems are successfully implemented across a wide range of prokaryotic and eukaryotic species for efficient genome editing. However, the inception of this genome editing tool in microalgal and cyanobacterial species took off rather slowly due to various complications. In this review, we elaborate on the established CRISPR-Cas based genome editing in various microalgal and cyanobacterial species. The complications associated with CRISPR-Cas based genome editing in these species are addressed along with possible strategies to overcome these issues. It is anticipated that in the near future this will result in improving and expanding the microalgal and cyanobacterial genome engineering toolbox. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Kernel-based whole-genome prediction of complex traits: a review.

    Science.gov (United States)

    Morota, Gota; Gianola, Daniel

    2014-01-01

    Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.

  4. Kernel-based whole-genome prediction of complex traits: a review

    Directory of Open Access Journals (Sweden)

    Gota eMorota

    2014-10-01

    Full Text Available Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways, thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.

  5. Citrus sinensis annotation project (CAP): a comprehensive database for sweet orange genome.

    Science.gov (United States)

    Wang, Jia; Chen, Dijun; Lei, Yang; Chang, Ji-Wei; Hao, Bao-Hai; Xing, Feng; Li, Sen; Xu, Qiang; Deng, Xiu-Xin; Chen, Ling-Ling

    2014-01-01

    Citrus is one of the most important and widely grown fruit crop with global production ranking firstly among all the fruit crops in the world. Sweet orange accounts for more than half of the Citrus production both in fresh fruit and processed juice. We have sequenced the draft genome of a double-haploid sweet orange (C. sinensis cv. Valencia), and constructed the Citrus sinensis annotation project (CAP) to store and visualize the sequenced genomic and transcriptome data. CAP provides GBrowse-based organization of sweet orange genomic data, which integrates ab initio gene prediction, EST, RNA-seq and RNA-paired end tag (RNA-PET) evidence-based gene annotation. Furthermore, we provide a user-friendly web interface to show the predicted protein-protein interactions (PPIs) and metabolic pathways in sweet orange. CAP provides comprehensive information beneficial to the researchers of sweet orange and other woody plants, which is freely available at http://citrus.hzau.edu.cn/.

  6. CROPPER: a metagene creator resource for cross-platform and cross-species compendium studies.

    Science.gov (United States)

    Paananen, Jussi; Storvik, Markus; Wong, Garry

    2006-09-22

    Current genomic research methods provide researchers with enormous amounts of data. Combining data from different high-throughput research technologies commonly available in biological databases can lead to novel findings and increase research efficiency. However, combining data from different heterogeneous sources is often a very arduous task. These sources can be different microarray technology platforms, genomic databases, or experiments performed on various species. Our aim was to develop a software program that could facilitate the combining of data from heterogeneous sources, and thus allow researchers to perform genomic cross-platform/cross-species studies and to use existing experimental data for compendium studies. We have developed a web-based software resource, called CROPPER that uses the latest genomic information concerning different data identifiers and orthologous genes from the Ensembl database. CROPPER can be used to combine genomic data from different heterogeneous sources, allowing researchers to perform cross-platform/cross-species compendium studies without the need for complex computational tools or the requirement of setting up one's own in-house database. We also present an example of a simple cross-platform/cross-species compendium study based on publicly available Parkinson's disease data derived from different sources. CROPPER is a user-friendly and freely available web-based software resource that can be successfully used for cross-species/cross-platform compendium studies.

  7. AcEST(EST sequences of Adiantum capillus-veneris and their annotation) - AcEST | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us AcEST AcEST(EST sequences of Adiantum capillus-veneris and their annotation) Data detail Dat...a name AcEST(EST sequences of Adiantum capillus-veneris and their annotation) DOI 10.18908/lsdba.nbdc00839-0...01 Description of data contents EST sequence of Adiantum capillus-veneris and its annotation (clone ID, libr...le search URL http://togodb.biosciencedbc.jp/togodb/view/archive_acest#en Data acquisition method Capillary ...ainst UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases) Number of data entries Adiantum capillus-veneris

  8. Using FlyBase, a Database of Drosophila Genes and Genomes.

    Science.gov (United States)

    Marygold, Steven J; Crosby, Madeline A; Goodman, Joshua L

    2016-01-01

    For nearly 25 years, FlyBase (flybase.org) has provided a freely available online database of biological information about Drosophila species, focusing on the model organism D. melanogaster. The need for a centralized, integrated view of Drosophila research has never been greater as advances in genomic, proteomic, and high-throughput technologies add to the quantity and diversity of available data and resources.FlyBase has taken several approaches to respond to these changes in the research landscape. Novel report pages have been generated for new reagent types and physical interaction data; Drosophila models of human disease are now represented and showcased in dedicated Human Disease Model Reports; other integrated reports have been established that bring together related genes, datasets, or reagents; Gene Reports have been revised to improve access to new data types and to highlight functional data; links to external sites have been organized and expanded; and new tools have been developed to display and interrogate all these data, including improved batch processing and bulk file availability. In addition, several new community initiatives have served to enhance interactions between researchers and FlyBase, resulting in direct user contributions and improved feedback.This chapter provides an overview of the data content, organization, and available tools within FlyBase, focusing on recent improvements. We hope it serves as a guide for our diverse user base, enabling efficient and effective exploration of the database and thereby accelerating research discoveries.

  9. Musa sebagai Model Genom

    Directory of Open Access Journals (Sweden)

    RITA MEGIA

    2005-12-01

    Full Text Available During the meeting in Arlington, USA in 2001, the scientists grouped in PROMUSA agreed with the launching of the Global Musa Genomics Consortium. The Consortium aims to apply genomics technologies to the improvement of this important crop. These genome projects put banana as the third model species after Arabidopsis and rice that will be analyzed and sequenced. Comparing to Arabidopsis and rice, banana genome provides a unique and powerful insight into structural and in functional genomics that could not be found in those two species. This paper discussed these subjects-including the importance of banana as the fourth main food in the world, the evolution and biodiversity of this genetic resource and its parasite.

  10. Geothermal-resource verification for Air Force bases

    Energy Technology Data Exchange (ETDEWEB)

    Grant, P.R. Jr.

    1981-06-01

    This report summarizes the various types of geothermal energy reviews some legal uncertainties of the resource and then describes a methodology to evaluate geothermal resources for applications to US Air Force bases. Estimates suggest that exploration costs will be $50,000 to $300,000, which, if favorable, would lead to drilling a $500,000 exploration well. Successful identification and development of a geothermal resource could provide all base, fixed system needs with an inexpensive, renewable energy source.

  11. Development of EST Intron-Targeting SNP Markers for Panax ginseng and Their Application to Cultivar Authentication.

    Science.gov (United States)

    Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun

    2016-06-04

    Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to "Gopoong" and "K-1" were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information.

  12. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    Science.gov (United States)

    Fu, Jianmin; Liu, Huimin; Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.

  13. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    Directory of Open Access Journals (Sweden)

    Jianmin Fu

    Full Text Available Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.

  14. New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species.

    Science.gov (United States)

    Meyer, Lucie; Causse, Romain; Pernin, Fanny; Scalone, Romain; Bailly, Géraldine; Chauvel, Bruno; Délye, Christophe; Le Corre, Valérie

    2017-01-01

    Ambrosia artemisiifolia L., (common ragweed), is an annual invasive and highly troublesome plant species originating from North America that has become widespread across Europe. New sets of genomic and expressed sequence tag (EST) based simple sequence repeats (SSRs) markers were developed in this species using three approaches. After validation, 13 genomic SSRs and 13 EST-SSRs were retained and used to characterize the genetic diversity and population genetic structure of Ambrosia artemisiifolia populations from the native (North America) and invasive (Europe) ranges of the species. Analysing the mating system based on maternal families did not reveal any departure from complete allogamy and excess homozygosity was mostly due the presence of null alleles. High genetic diversity and patterns of genetic structure in Europe suggest two main introduction events followed by secondary colonization events. Cross-species transferability of the newly developed markers to other invasive species of the Ambrosia genus was assessed. Sixty-five percent and 75% of markers, respectively, were transferable from A. artemisiifolia to Ambrosia psilostachya and Ambrosia tenuifolia. 40% were transferable to Ambrosia trifida, this latter species being seemingly more phylogenetically distantly related to A. artemisiifolia than the former two.

  15. Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement.

    Science.gov (United States)

    Gupta, Sonal; Nawaz, Kashif; Parween, Sabiha; Roy, Riti; Sahu, Kamlesh; Kumar Pole, Anil; Khandal, Hitaishi; Srivastava, Rishi; Kumar Parida, Swarup; Chattopadhyay, Debasis

    2017-02-01

    Cicer reticulatum L. is the wild progenitor of the fourth most important legume crop chickpea (C. arietinum L.). We assembled short-read sequences into 416 Mb draft genome of C. reticulatum and anchored 78% (327 Mb) of this assembly to eight linkage groups. Genome annotation predicted 25,680 protein-coding genes covering more than 90% of predicted gene space. The genome assembly shared a substantial synteny and conservation of gene orders with the genome of the model legume Medicago truncatula. Resistance gene homologs of wild and domesticated chickpeas showed high sequence homology and conserved synteny. Comparison of gene sequences and nucleotide diversity using 66 wild and domesticated chickpea accessions suggested that the desi type chickpea was genetically closer to the wild species than the kabuli type. Comparative analyses predicted gene flow between the wild and the cultivated species during domestication. Molecular diversity and population genetic structure determination using 15,096 genome-wide single nucleotide polymorphisms revealed an admixed domestication pattern among cultivated (desi and kabuli) and wild chickpea accessions belonging to three population groups reflecting significant influence of parentage or geographical origin for their cultivar-specific population classification. The assembly and the polymorphic sequence resources presented here would facilitate the study of chickpea domestication and targeted use of wild Cicer germplasms for agronomic trait improvement in chickpea. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  16. A first step in understanding an invasive weed through its genes: an EST analysis of invasive Centaurea maculosa.

    Science.gov (United States)

    Broz, Amanda K; Broeckling, Corey D; He, Ji; Dai, Xinbin; Zhao, Patrick X; Vivanco, Jorge M

    2007-05-24

    The economic and biological implications of plant invasion are overwhelming; however, the processes by which plants become successful invaders are not well understood. Limited genetic resources are available for most invasive and weedy species, making it difficult to study molecular and genetic aspects that may be associated with invasion. As an initial step towards understanding the molecular mechanisms by which plants become invasive, we have generated a normalized Expressed Sequence Tag (EST) library comprising seven invasive populations of Centaurea maculosa, an invasive aster in North America. Seventy-seven percent of the 4423 unique transcripts showed significant similarity to existing proteins in the NCBI database and could be grouped based on gene ontology assignments. The C. maculosa EST library represents an initial step towards looking at gene-specific expression in this species, and will pave the way for creation of other resources such as microarray chips that can help provide a view of global gene expression in invasive C. maculosa and its native counterparts. To our knowledge, this is the first published set of ESTs derived from an invasive weed that will be targeted to study invasive behavior. Understanding the genetic basis of evolution for increased invasiveness in exotic plants is critical to understanding the mechanisms through which exotic invasions occur.

  17. Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes.

    Science.gov (United States)

    Samuels, Amy K; Weisrock, David W; Smith, Jeramiah J; France, Katherine J; Walker, John A; Putta, Srikrishna; Voss, S Randal

    2005-04-11

    We report on a study that extended mitochondrial transcript information from a recent EST project to obtain complete mitochondrial genome sequence for 5 tiger salamander complex species (Ambystoma mexicanum, A. t. tigrinum, A. andersoni, A. californiense, and A. dumerilii). We describe, for the first time, aspects of mitochondrial transcription in a representative amphibian, and then use complete mitochondrial sequence data to examine salamander phylogeny at both deep and shallow levels of evolutionary divergence. The available mitochondrial ESTs for A. mexicanum (N=2481) and A. t. tigrinum (N=1205) provided 92% and 87% coverage of the mitochondrial genome, respectively. Complete mitochondrial sequences for all species were rapidly obtained by using long distance PCR and DNA sequencing. A number of genome structural characteristics (base pair length, base composition, gene number, gene boundaries, codon usage) were highly similar among all species and to other distantly related salamanders. Overall, mitochondrial transcription in Ambystoma approximated the pattern observed in other vertebrates. We inferred from the mapping of ESTs onto mtDNA that transcription occurs from both heavy and light strand promoters and continues around the entire length of the mtDNA, followed by post-transcriptional processing. However, the observation of many short transcripts corresponding to rRNA genes indicates that transcription may often terminate prematurely to bias transcription of rRNA genes; indeed an rRNA transcription termination signal sequence was observed immediately following the 16S rRNA gene. Phylogenetic analyses of salamander family relationships consistently grouped Ambystomatidae in a clade containing Cryptobranchidae and Hynobiidae, to the exclusion of Salamandridae. This robust result suggests a novel alternative hypothesis because previous studies have consistently identified Ambystomatidae and Salamandridae as closely related taxa. Phylogenetic analyses of tiger

  18. GenomeVx: simple web-based creation of editable circular chromosome maps.

    Science.gov (United States)

    Conant, Gavin C; Wolfe, Kenneth H

    2008-03-15

    We describe GenomeVx, a web-based tool for making editable, publication-quality, maps of mitochondrial and chloroplast genomes and of large plasmids. These maps show the location of genes and chromosomal features as well as a position scale. The program takes as input either raw feature positions or GenBank records. In the latter case, features are automatically extracted and colored, an example of which is given. Output is in the Adobe Portable Document Format (PDF) and can be edited by programs such as Adobe Illustrator. GenomeVx is available at http://wolfe.gen.tcd.ie/GenomeVx

  19. Comparative analysis of catfish BAC end sequences with the zebrafish genome

    Directory of Open Access Journals (Sweden)

    Abernathy Jason

    2009-12-01

    Full Text Available Abstract Background Comparative mapping is a powerful tool to transfer genomic information from sequenced genomes to closely related species for which whole genome sequence data are not yet available. However, such an approach is still very limited in catfish, the most important aquaculture species in the United States. This project was initiated to generate additional BAC end sequences and demonstrate their applications in comparative mapping in catfish. Results We reported the generation of 43,000 BAC end sequences and their applications for comparative genome analysis in catfish. Using these and the additional 20,000 existing BAC end sequences as a resource along with linkage mapping and existing physical map, conserved syntenic regions were identified between the catfish and zebrafish genomes. A total of 10,943 catfish BAC end sequences (17.3% had significant BLAST hits to the zebrafish genome (cutoff value ≤ e-5, of which 3,221 were unique gene hits, providing a platform for comparative mapping based on locations of these genes in catfish and zebrafish. Genetic linkage mapping of microsatellites associated with contigs allowed identification of large conserved genomic segments and construction of super scaffolds. Conclusion BAC end sequences and their associated polymorphic markers are great resources for comparative genome analysis in catfish. Highly conserved chromosomal regions were identified to exist between catfish and zebrafish. However, it appears that the level of conservation at local genomic regions are high while a high level of chromosomal shuffling and rearrangements exist between catfish and zebrafish genomes. Orthologous regions established through comparative analysis should facilitate both structural and functional genome analysis in catfish.

  20. An improved resource management model based on MDS

    Science.gov (United States)

    Yuan, Man; Sun, Changying; Li, Pengfei; Sun, Yongdong; He, Rui

    2005-11-01

    GRID technology provides a kind of convenient method for managing GRID resources. This service is so-called monitoring, discovering service. This method is proposed by Globus Alliance, in this GRID environment, all kinds of resources, such as computational resources, storage resources and other resources can be organized by MDS specifications. However, this MDS is a theory framework, particularly, in a small world intranet, in the case of limit of resources, the MDS has its own limitation. Based on MDS, an improved light method for managing corporation computational resources and storage resources is proposed in intranet(IMDS). Firstly, in MDS, all kinds of resource description information is stored in LDAP, it is well known although LDAP is a light directory access protocol, in practice, programmers rarely master how to access and store resource information into LDAP store, in such way, it limits MDS to be used. So, in intranet, these resources' description information can be stored in RDBMS, programmers and users can access this information by standard SQL. Secondly, in MDS, how to monitor all kinds of resources in GRID is not transparent for programmers and users. In such way, it limits its application scope, in general, resource monitoring method base on SNMP is widely employed in intranet, therefore, a kind of resource monitoring method based on SNMP is integrated into MDS. Finally, all kinds of resources in the intranet can be described by XML, and all kinds of resources' description information is stored in RDBMS, such as MySql, and retrieved by standard SQL, dynamic information for all kinds of resources can be sent to resource storage by SNMP, A prototype resource description, monitoring is designed and implemented in intranet.

  1. Genomic epidemiology of the haitian cholera outbreak: a single introduction followed by rapid, extensive, and continued spread characterized the onset of the epidemic

    DEFF Research Database (Denmark)

    Eppinger, Mark; Pearson, Talima; Koenig, Sara S. K.

    2014-01-01

    In this genomic epidemiology study, we have applied high-resolution whole-genome-based sequence typing methodologies on a comprehensive set of genome sequences that have become available in the aftermath of the Haitian cholera epidemic. These sequence resources enabled us to reassess the degree...

  2. The ethical introduction of genome-based information and technologies into public health.

    Science.gov (United States)

    Howard, H C; Swinnen, E; Douw, K; Vondeling, H; Cassiman, J-J; Cambon-Thomsen, A; Borry, P

    2013-01-01

    With the human genome project running from 1989 until its completion in 2003, and the incredible advances in sequencing technology and in bioinformatics during the last decade, there has been a shift towards an increase focus on studying common complex disorders which develop due to the interplay of many different genes as well as environmental factors. Although some susceptibility genes have been identified in some populations for disorders such as cancer, diabetes and cardiovascular diseases, the integration of this information into the health care system has proven to be much more problematic than for single gene disorders. Furthermore, with the 1000$ genome supposedly just around the corner, and whole genome sequencing gradually being integrated into research protocols as well as in the clinical context, there is a strong push for the uptake of additional genomic testing. Indeed, the advent of public health genomics, wherein genomics would be integrated in all aspects of health care and public health, should be taken seriously. Although laudable, these advances also bring with them a slew of ethical and social issues that challenge the normative frameworks used in clinical genetics until now. With this in mind, we highlight herein 5 principles that are used as a primer to discuss the ethical introduction of genome-based information and genome-based technologies into public health. Copyright © 2013 S. Karger AG, Basel.

  3. HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids.

    KAUST Repository

    Mithani, Aziz; Belfield, Eric J; Brown, Carly; Jiang, Caifu; Leach, Lindsey J; Harberd, Nicholas P

    2013-01-01

    The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies.We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): 'HSP base Assignment using NGS data through Diploid Similarity' (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment.We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.

  4. HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids.

    KAUST Repository

    Mithani, Aziz

    2013-09-24

    The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies.We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): \\'HSP base Assignment using NGS data through Diploid Similarity\\' (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment.We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.

  5. Cloud Based Resource for Data Hosting, Visualization and Analysis Using UCSC Cancer Genomics Browser | Informatics Technology for Cancer Research (ITCR)

    Science.gov (United States)

    The Cancer Analysis Virtual Machine (CAVM) project will leverage cloud technology, the UCSC Cancer Genomics Browser, and the Galaxy analysis workflow system to provide investigators with a flexible, scalable platform for hosting, visualizing and analyzing their own genomic data.

  6. Holistic Nursing in the Genetic/Genomic Era.

    Science.gov (United States)

    Sharoff, Leighsa

    2016-06-01

    Holistic nursing practice is an ever-evolving transformative process with core values that require continued growth, professional leadership, and advocacy. Holistic nurses are required to stay current with all new required competencies, such as the Core Competencies in Genetics for Health Professional, and, as such, be adept at translating scientific evidence relating to genetics/genomics in the clinical setting. Knowledge of genetics/genomics in relation to nursing practice, policy, utilization, and research influence nurses' responsibilities. In addition to holistic nursing competencies, the holistic nurse must have basic knowledge and skills to integrate genetics/genomics aspects. It is important for holistic nurses to enhance their overall knowledge foundation, skills, and attitudes about genetics to prepare for the transformation in health care that is already underway. Holistic nurses can provide an important perspective to the application of genetics and genomics, focusing on health promotion, caring, and understanding the relationship between caring and families, community, and society. Yet there may be a lack of genetic and genomic knowledge to fully participate in the current genomic era. This article will explore the required core competencies for all health care professionals, share linkage of holistic nurses in practice with genetic/genomic conditions, and provide resources to further one's knowledge base. © The Author(s) 2015.

  7. Chasing migration genes: a brain expressed sequence tag resource for summer and migratory monarch butterflies (Danaus plexippus.

    Directory of Open Access Journals (Sweden)

    Haisun Zhu

    2008-01-01

    Full Text Available North American monarch butterflies (Danaus plexippus undergo a spectacular fall migration. In contrast to summer butterflies, migrants are juvenile hormone (JH deficient, which leads to reproductive diapause and increased longevity. Migrants also utilize time-compensated sun compass orientation to help them navigate to their overwintering grounds. Here, we describe a brain expressed sequence tag (EST resource to identify genes involved in migratory behaviors. A brain EST library was constructed from summer and migrating butterflies. Of 9,484 unique sequences, 6068 had positive hits with the non-redundant protein database; the EST database likely represents approximately 52% of the gene-encoding potential of the monarch genome. The brain transcriptome was cataloged using Gene Ontology and compared to Drosophila. Monarch genes were well represented, including those implicated in behavior. Three genes involved in increased JH activity (allatotropin, juvenile hormone acid methyltransfersase, and takeout were upregulated in summer butterflies, compared to migrants. The locomotion-relevant turtle gene was marginally upregulated in migrants, while the foraging and single-minded genes were not differentially regulated. Many of the genes important for the monarch circadian clock mechanism (involved in sun compass orientation were in the EST resource, including the newly identified cryptochrome 2. The EST database also revealed a novel Na+/K+ ATPase allele predicted to be more resistant to the toxic effects of milkweed than that reported previously. Potential genetic markers were identified from 3,486 EST contigs and included 1599 double-hit single nucleotide polymorphisms (SNPs and 98 microsatellite polymorphisms. These data provide a template of the brain transcriptome for the monarch butterfly. Our "snap-shot" analysis of the differential regulation of candidate genes between summer and migratory butterflies suggests that unbiased, comprehensive

  8. Chasing Migration Genes: A Brain Expressed Sequence Tag Resource for Summer and Migratory Monarch Butterflies (Danaus plexippus)

    Science.gov (United States)

    Zhu, Haisun; Casselman, Amy; Reppert, Steven M.

    2008-01-01

    North American monarch butterflies (Danaus plexippus) undergo a spectacular fall migration. In contrast to summer butterflies, migrants are juvenile hormone (JH) deficient, which leads to reproductive diapause and increased longevity. Migrants also utilize time-compensated sun compass orientation to help them navigate to their overwintering grounds. Here, we describe a brain expressed sequence tag (EST) resource to identify genes involved in migratory behaviors. A brain EST library was constructed from summer and migrating butterflies. Of 9,484 unique sequences, 6068 had positive hits with the non-redundant protein database; the EST database likely represents ∼52% of the gene-encoding potential of the monarch genome. The brain transcriptome was cataloged using Gene Ontology and compared to Drosophila. Monarch genes were well represented, including those implicated in behavior. Three genes involved in increased JH activity (allatotropin, juvenile hormone acid methyltransfersase, and takeout) were upregulated in summer butterflies, compared to migrants. The locomotion-relevant turtle gene was marginally upregulated in migrants, while the foraging and single-minded genes were not differentially regulated. Many of the genes important for the monarch circadian clock mechanism (involved in sun compass orientation) were in the EST resource, including the newly identified cryptochrome 2. The EST database also revealed a novel Na+/K+ ATPase allele predicted to be more resistant to the toxic effects of milkweed than that reported previously. Potential genetic markers were identified from 3,486 EST contigs and included 1599 double-hit single nucleotide polymorphisms (SNPs) and 98 microsatellite polymorphisms. These data provide a template of the brain transcriptome for the monarch butterfly. Our “snap-shot” analysis of the differential regulation of candidate genes between summer and migratory butterflies suggests that unbiased, comprehensive transcriptional profiling

  9. Virtual Genome Walking across the 32 Gb Ambystoma mexicanum genome; assembling gene models and intronic sequence.

    Science.gov (United States)

    Evans, Teri; Johnson, Andrew D; Loose, Matthew

    2018-01-12

    Large repeat rich genomes present challenges for assembly using short read technologies. The 32 Gb axolotl genome is estimated to contain ~19 Gb of repetitive DNA making an assembly from short reads alone effectively impossible. Indeed, this model species has been sequenced to 20× coverage but the reads could not be conventionally assembled. Using an alternative strategy, we have assembled subsets of these reads into scaffolds describing over 19,000 gene models. We call this method Virtual Genome Walking as it locally assembles whole genome reads based on a reference transcriptome, identifying exons and iteratively extending them into surrounding genomic sequence. These assemblies are then linked and refined to generate gene models including upstream and downstream genomic, and intronic, sequence. Our assemblies are validated by comparison with previously published axolotl bacterial artificial chromosome (BAC) sequences. Our analyses of axolotl intron length, intron-exon structure, repeat content and synteny provide novel insights into the genic structure of this model species. This resource will enable new experimental approaches in axolotl, such as ChIP-Seq and CRISPR and aid in future whole genome sequencing efforts. The assembled sequences and annotations presented here are freely available for download from https://tinyurl.com/y8gydc6n . The software pipeline is available from https://github.com/LooseLab/iterassemble .

  10. Genome-based prediction of common diseases: Methodological considerations for future research

    NARCIS (Netherlands)

    A.C.J.W. Janssens (Cécile); P. Tikka-Kleemola (Päivi)

    2009-01-01

    textabstractThe translation of emerging genomic knowledge into public health and clinical care is one of the major challenges for the coming decades. At the moment, genome-based prediction of common diseases, such as type 2 diabetes, coronary heart disease and cancer, is still not informative. Our

  11. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects.

    Science.gov (United States)

    Papanicolaou, Alexie

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called "genome projects". The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure.

  12. Opening Up Natural Resource Based Industries for Innovation (LAC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Opening Up Natural Resource Based Industries for Innovation (LAC). Commodities based on natural resources account for at least half of the exports of two-thirds of the countries in Latin America and the Caribbean (LAC). There is growing concern, however, that existing natural resource-based industries are ...

  13. Annotation-Based Whole Genomic Prediction and Selection

    DEFF Research Database (Denmark)

    Kadarmideen, Haja; Do, Duy Ngoc; Janss, Luc

    Genomic selection is widely used in both animal and plant species, however, it is performed with no input from known genomic or biological role of genetic variants and therefore is a black box approach in a genomic era. This study investigated the role of different genomic regions and detected QTLs...... in their contribution to estimated genomic variances and in prediction of genomic breeding values by applying SNP annotation approaches to feed efficiency. Ensembl Variant Predictor (EVP) and Pig QTL database were used as the source of genomic annotation for 60K chip. Genomic prediction was performed using the Bayes...... classes. Predictive accuracy was 0.531, 0.532, 0.302, and 0.344 for DFI, RFI, ADG and BF, respectively. The contribution per SNP to total genomic variance was similar among annotated classes across different traits. Predictive performance of SNP classes did not significantly differ from randomized SNP...

  14. Community standards for genomic resources, genetic conservation, and data integration

    Science.gov (United States)

    Jill Wegrzyn; Meg Staton; Emily Grau; Richard Cronn; C. Dana Nelson

    2017-01-01

    Genetics and genomics are increasingly important in forestry management and conservation. Next generation sequencing can increase analytical power, but still relies on building on the structure of previously acquired data. Data standards and data sharing allow the community to maximize the analytical power of high throughput genomics data. The landscape of incomplete...

  15. An Expressed Sequence Tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research

    Directory of Open Access Journals (Sweden)

    Maïbèche-Coisné Martine

    2011-01-01

    Full Text Available Abstract Background Nocturnal insects such as moths are ideal models to study the molecular bases of olfaction that they use, among examples, for the detection of mating partners and host plants. Knowing how an odour generates a neuronal signal in insect antennae is crucial for understanding the physiological bases of olfaction, and also could lead to the identification of original targets for the development of olfactory-based control strategies against herbivorous moth pests. Here, we describe an Expressed Sequence Tag (EST project to characterize the antennal transcriptome of the noctuid pest model, Spodoptera littoralis, and to identify candidate genes involved in odour/pheromone detection. Results By targeting cDNAs from male antennae, we biased gene discovery towards genes potentially involved in male olfaction, including pheromone reception. A total of 20760 ESTs were obtained from a normalized library and were assembled in 9033 unigenes. 6530 were annotated based on BLAST analyses and gene prediction software identified 6738 ORFs. The unigenes were compared to the Bombyx mori proteome and to ESTs derived from Lepidoptera transcriptome projects. We identified a large number of candidate genes involved in odour and pheromone detection and turnover, including 31 candidate chemosensory receptor genes, but also genes potentially involved in olfactory modulation. Conclusions Our project has generated a large collection of antennal transcripts from a Lepidoptera. The normalization process, allowing enrichment in low abundant genes, proved to be particularly relevant to identify chemosensory receptors in a species for which no genomic data are available. Our results also suggest that olfactory modulation can take place at the level of the antennae itself. These EST resources will be invaluable for exploring the mechanisms of olfaction and pheromone detection in S. littoralis, and for ultimately identifying original targets to fight against moth

  16. STINGRAY: system for integrated genomic resources and analysis.

    Science.gov (United States)

    Wagner, Glauber; Jardim, Rodrigo; Tschoeke, Diogo A; Loureiro, Daniel R; Ocaña, Kary A C S; Ribeiro, Antonio C B; Emmel, Vanessa E; Probst, Christian M; Pitaluga, André N; Grisard, Edmundo C; Cavalcanti, Maria C; Campos, Maria L M; Mattoso, Marta; Dávila, Alberto M R

    2014-03-07

    The STINGRAY system has been conceived to ease the tasks of integrating, analyzing, annotating and presenting genomic and expression data from Sanger and Next Generation Sequencing (NGS) platforms. STINGRAY includes: (a) a complete and integrated workflow (more than 20 bioinformatics tools) ranging from functional annotation to phylogeny; (b) a MySQL database schema, suitable for data integration and user access control; and (c) a user-friendly graphical web-based interface that makes the system intuitive, facilitating the tasks of data analysis and annotation. STINGRAY showed to be an easy to use and complete system for analyzing sequencing data. While both Sanger and NGS platforms are supported, the system could be faster using Sanger data, since the large NGS datasets could potentially slow down the MySQL database usage. STINGRAY is available at http://stingray.biowebdb.org and the open source code at http://sourceforge.net/projects/stingray-biowebdb/.

  17. Maternal and fetal genomes interplay through phosphoinositol 3-kinase(PI3K)-p110α signaling to modify placental resource allocation

    Science.gov (United States)

    Sferruzzi-Perri, Amanda N.; López-Tello, Jorge; Fowden, Abigail L.; Constancia, Miguel

    2016-01-01

    Pregnancy success and life-long health depend on a cooperative interaction between the mother and the fetus in the allocation of resources. As the site of materno-fetal nutrient transfer, the placenta is central to this interplay; however, the relative importance of the maternal versus fetal genotypes in modifying the allocation of resources to the fetus is unknown. Using genetic inactivation of the growth and metabolism regulator, Pik3ca (encoding PIK3CA also known as p110α, α/+), we examined the interplay between the maternal genome and the fetal genome on placental phenotype in litters of mixed genotype generated through reciprocal crosses of WT and α/+ mice. We demonstrate that placental growth and structure were impaired and associated with reduced growth of α/+ fetuses. Despite its defective development, the α/+ placenta adapted functionally to increase the supply of maternal glucose and amino acid to the fetus. The specific nature of these changes, however, depended on whether the mother was α/+ or WT and related to alterations in endocrine and metabolic profile induced by maternal p110α deficiency. Our findings thus show that the maternal genotype and environment programs placental growth and function and identify the placenta as critical in integrating both intrinsic and extrinsic signals governing materno-fetal resource allocation. PMID:27621448

  18. Genome-wide single nucleotide polymorphisms (SNPs) for a model invasive ascidian Botryllus schlosseri.

    Science.gov (United States)

    Gao, Yangchun; Li, Shiguo; Zhan, Aibin

    2018-04-01

    Invasive species cause huge damages to ecology, environment and economy globally. The comprehensive understanding of invasion mechanisms, particularly genetic bases of micro-evolutionary processes responsible for invasion success, is essential for reducing potential damages caused by invasive species. The golden star tunicate, Botryllus schlosseri, has become a model species in invasion biology, mainly owing to its high invasiveness nature and small well-sequenced genome. However, the genome-wide genetic markers have not been well developed in this highly invasive species, thus limiting the comprehensive understanding of genetic mechanisms of invasion success. Using restriction site-associated DNA (RAD) tag sequencing, here we developed a high-quality resource of 14,119 out of 158,821 SNPs for B. schlosseri. These SNPs were relatively evenly distributed at each chromosome. SNP annotations showed that the majority of SNPs (63.20%) were located at intergenic regions, and 21.51% and 14.58% were located at introns and exons, respectively. In addition, the potential use of the developed SNPs for population genomics studies was primarily assessed, such as the estimate of observed heterozygosity (H O ), expected heterozygosity (H E ), nucleotide diversity (π), Wright's inbreeding coefficient (F IS ) and effective population size (Ne). Our developed SNP resource would provide future studies the genome-wide genetic markers for genetic and genomic investigations, such as genetic bases of micro-evolutionary processes responsible for invasion success.

  19. Adaptive capacity and community-based natural resource management.

    Science.gov (United States)

    Armitage, Derek

    2005-06-01

    Why do some community-based natural resource management strategies perform better than others? Commons theorists have approached this question by developing institutional design principles to address collective choice situations, while other analysts have critiqued the underlying assumptions of community-based resource management. However, efforts to enhance community-based natural resource management performance also require an analysis of exogenous and endogenous variables that influence how social actors not only act collectively but do so in ways that respond to changing circumstances, foster learning, and build capacity for management adaptation. Drawing on examples from northern Canada and Southeast Asia, this article examines the relationship among adaptive capacity, community-based resource management performance, and the socio-institutional determinants of collective action, such as technical, financial, and legal constraints, and complex issues of politics, scale, knowledge, community and culture. An emphasis on adaptive capacity responds to a conceptual weakness in community-based natural resource management and highlights an emerging research and policy discourse that builds upon static design principles and the contested concepts in current management practice.

  20. Biobanking and translation of human genetics and genomics for infectious diseases

    Directory of Open Access Journals (Sweden)

    Ivan Branković

    2014-06-01

    Full Text Available Biobanks are invaluable resources in genomic research of both the infectious diseases and their hosts. This article examines the role of biobanks in basic research of infectious disease genomics, as well as the relevance and applicability of biobanks in the translation of impending knowledge and the clinical uptake of knowledge of infectious diseases. Our research identifies potential fields of interaction between infectious disease genomics and biobanks, in line with global trends in the integration of genome-based knowledge into clinical practice. It also examines various networks and biobanks that specialize in infectious diseases (including HIV, HPV and Chlamydia trachomatis, and provides examples of successful research and clinical uptake stemming from these biobanks. Finally, it outlines key issues with respect to data privacy in infectious disease genomics, as well as the utility of adequately designed and maintained electronic health records. We maintain that the public should be able to easily access a clear and detailed outline of regulations and procedures for sample and data utilization by academic or commercial investigators, and also should be able to understand the precise roles of relevant governing bodies. This would ultimately facilitate uptake by researchers and clinics. As a result of the efforts and resources invested by several networks and consortia, there is an increasing awareness of the prospective uses of biobanks in advancing infectious disease genomic research, diagnostics and their clinical management.