WorldWideScience

Sample records for essential signaling component

  1. Actin is an essential component of plant gravitropic signaling pathways

    Science.gov (United States)

    Braun, Markus; Hauslage, Jens; Limbach, Christoph

    2003-08-01

    A role of the actin cytoskeleton in the different phases of gravitropism in higher plant organs seems obvious, but experimental evidence is still inconclusive and contradictory. In gravitropically tip-growing rhizoids and protonemata, however, it is well documented that actin is an essential component of the tip-growth machinery and is involved either in the cellular mechanisms that lead to gravity sensing and in the processes of the graviresponses that result in the reorientation of the growth direction. All these processes depend on a complexly organized and highly dynamic organization of actin filaments whose diverse functions are coordinated by numerous associated proteins. Actin filaments and myosins mediate the transport of secretory vehicles to the growing tip and precisely control the delivery of cell wall material. In addition, both cell types use a very efficient actomyosin-based system to control and correct the position of their statoliths and to direct sedimenting statoliths to confined graviperception sites at the plasma membrane. The studies presented in this paper provide evidence for the essential role of actin in plant gravity sensing and the gravitropic responses. A unique actin-organizing center exists in the tip of characean rhizoids and protonemata which is associated with and dynamically regulated by a specific set of actin-dynamizing proteins. It is concluded that this highly dynamic apical actin array is an essential prerequisite for gravity sensing and gravity-oriented tip growth.

  2. Spinal glutamatergic neurons defined by EphA4 signaling are essential components of normal locomotor circuits

    DEFF Research Database (Denmark)

    Borgius, Lotta; Nishimaru, Hiroshi; Caldeira, Vanessa

    2014-01-01

    EphA4 signaling is essential for the spatiotemporal organization of neuronal circuit formation. In mice, deletion of this signaling pathway causes aberrant midline crossing of axons from both brain and spinal neurons and the complete knock-outs (KOs) exhibit a pronounced change in motor behavior...

  3. Protein arginine methyltransferase 5 is an essential component of the hypoxia-inducible factor 1 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ji-Hong; Choi, Yong-Joon; Cho, Chung-Hyun [Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Park, Jong-Wan, E-mail: parkjw@snu.ac.kr [Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer HIF-1{alpha} is expressed PRMT5-dependently in hypoxic cancer cells. Black-Right-Pointing-Pointer The HIF-1 regulation of hypoxia-induced genes is attenuated in PRMT5-knocked-down cells. Black-Right-Pointing-Pointer The de novo synthesis of HIF-1{alpha} depends on PRMT5. Black-Right-Pointing-Pointer PRMT5 is involved in the HIF-1{alpha} translation initiated by 5 Prime UTR of HIF-1{alpha} mRNA. -- Abstract: Protein arginine methyltransferase 5 (PRMT5) is an enzyme that transfers one or two methyl groups to the arginine residues of histones or non-histone proteins, and that plays critical roles in cellular processes as diverse as receptor signaling and gene expression. Furthermore, PRMT5 is highly expressed in tumors, where it may be associated with tumor growth. Although much research has been conducted on PRMT5, little is known regarding its role in adaption to hypoxia. As hypoxia-inducible factor 1 (HIF-1) is a key player in hypoxic response, we examined the possible involvement of PRMT5 in the HIF-1 signaling pathway. Of the siRNAs targeting PRMT1-8, only PRMT5 siRNA attenuated the hypoxic induction of HIF-1{alpha} in A549 cells, and this result was reproducible in all three cancer cell lines examined. PRMT5 knock-down also repressed the promoter activities and the transcript levels of HIF-1-governed genes. Mechanistically, de novo synthesis of HIF-1{alpha} protein was reduced in PRMT5-knocked-down A549 cells, and this was rescued by PRMT5 restoration. In contrast, HIF-1{alpha} transcription, RNA processing, and protein stability were unaffected by PRMT5 knock-down. Furthermore, PRMT5 was found to be essential for the HIF-1{alpha} translation initiated by the 5 Prime UTR of HIF-1{alpha} mRNA. Given our results and previous reports, we believe that PRMT5 probably promotes tumor growth by stimulating cell proliferation and by participating in the construction of a tumor-favorable microenvironment via HIF-1 activation.

  4. Protein arginine methyltransferase 5 is an essential component of the hypoxia-inducible factor 1 signaling pathway

    International Nuclear Information System (INIS)

    Lim, Ji-Hong; Choi, Yong-Joon; Cho, Chung-Hyun; Park, Jong-Wan

    2012-01-01

    Highlights: ► HIF-1α is expressed PRMT5-dependently in hypoxic cancer cells. ► The HIF-1 regulation of hypoxia-induced genes is attenuated in PRMT5-knocked-down cells. ► The de novo synthesis of HIF-1α depends on PRMT5. ► PRMT5 is involved in the HIF-1α translation initiated by 5′ UTR of HIF-1α mRNA. -- Abstract: Protein arginine methyltransferase 5 (PRMT5) is an enzyme that transfers one or two methyl groups to the arginine residues of histones or non-histone proteins, and that plays critical roles in cellular processes as diverse as receptor signaling and gene expression. Furthermore, PRMT5 is highly expressed in tumors, where it may be associated with tumor growth. Although much research has been conducted on PRMT5, little is known regarding its role in adaption to hypoxia. As hypoxia-inducible factor 1 (HIF-1) is a key player in hypoxic response, we examined the possible involvement of PRMT5 in the HIF-1 signaling pathway. Of the siRNAs targeting PRMT1–8, only PRMT5 siRNA attenuated the hypoxic induction of HIF-1α in A549 cells, and this result was reproducible in all three cancer cell lines examined. PRMT5 knock-down also repressed the promoter activities and the transcript levels of HIF-1-governed genes. Mechanistically, de novo synthesis of HIF-1α protein was reduced in PRMT5-knocked-down A549 cells, and this was rescued by PRMT5 restoration. In contrast, HIF-1α transcription, RNA processing, and protein stability were unaffected by PRMT5 knock-down. Furthermore, PRMT5 was found to be essential for the HIF-1α translation initiated by the 5′ UTR of HIF-1α mRNA. Given our results and previous reports, we believe that PRMT5 probably promotes tumor growth by stimulating cell proliferation and by participating in the construction of a tumor-favorable microenvironment via HIF-1 activation.

  5. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance.

    Science.gov (United States)

    Kim, Sunmi; Kang, Jung-Youn; Cho, Dong-Im; Park, Ji Hye; Kim, Soo Young

    2004-10-01

    Phytohormone abscisic acid (ABA) regulates stress-responsive gene expression during vegetative growth, which is mediated largely by cis-elements sharing the ACGTGGC consensus. Although many transcription factors are known to bind the elements in vitro, only a few have been demonstrated to have in vivo functions and their specific roles in ABA/stress responses are mostly unknown. Here, we report that ABF2, an ABF subfamily member of bZIP proteins interacting with the ABA-responsive elements, is involved in ABA/stress responses. Its overexpression altered ABA sensitivity, dehydration tolerance, and the expression levels of ABA/stress-regulated genes. Furthermore, ABF2 overexpression promoted glucose-induced inhibition of seedling development, whereas its mutation impaired glucose response. The reduced sugar sensitivity was not observed with mutants of two other ABF family members, ABF3 and ABF4. Instead, these mutants displayed defects in ABA, salt, and dehydration responses, which were not observed with the abf2 mutant. Our data indicate distinct roles of ABF family members: whereas ABF3 and ABF4 play essential roles in ABA/stress responses, ABF2 is required for normal glucose response. We also show that ABF2 overexpression affects multiple stress tolerance.

  6. Carbon Monoxide: An Essential Signalling Molecule

    Science.gov (United States)

    Mann, Brian E.

    Carbon monoxide (CO), like nitric oxide (NO), is an essential signalling molecule in humans. It is active in the cardiovascular system as a vasodilator. In addition, CO possesses anti-inflammatory, anti-apoptotic and anti-proliferative properties and protects tissues from hypoxia and reperfusion injury. Some of its applications in animal models include suppression of organ graft rejection and safeguarding the heart during reperfusion after cardiopulmonary bypass surgery. CO also suppresses arteriosclerotic lesions following angioplasty, reverses established pulmonary hypertension and mitigates the development of post-operative ileus in the murine small intestine and the development of cerebral malaria in mice as well as graft-induced intimal hyperplasia in pigs. There have been several clinical trials using air-CO mixtures for the treatment of lung-, heart-, kidney- and abdominal-related diseases. This review examines the research involving the development of classes of compounds (with particular emphasis on metal carbonyls) that release CO, which could be used in clinically relevant conditions. The review is drawn not only from published papers in the chemical literature but also from the extensive biological literature and patents on CO-releasing molecules (CO-RMs).

  7. High Frequency Components Recovery in Music Signals

    Directory of Open Access Journals (Sweden)

    V. Sebesta

    1999-04-01

    Full Text Available A new technique is presented which improves the subjective quality of band-limited music by recovery of high frequency components. Sequences of harmonics are found in the band-limited signal and these sequences are expanded to the high frequency band to estimate the lost part of spectrum. High frequency signal is generated to match this estimation and is added to the band-limited signal.

  8. Evolutionary conservation of plant gibberellin signalling pathway components

    Directory of Open Access Journals (Sweden)

    Reski Ralf

    2007-11-01

    Full Text Available Abstract Background: Gibberellins (GA are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. Results: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. Conclusion: Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth.

  9. [Chemical components from essential oil of Pandanus amaryllifolius leaves].

    Science.gov (United States)

    Chen, Xiao-Kai; Ge, Fa-Huan

    2014-04-01

    To analyze the chemical compositions of Pandanus amaryllifolius leaves essential oil extracted by steam distillation. The essential oil of Pandanus amaryllifolius leaves was analyzed by gas chromatography-mass spectrum, and the relative content of each component was determined by area normalization method. 128 peaks were separated and 95 compounds were identified, which weighed 97.75%. The main chemical components of the essential oil were phytol (42.15%), squalene (16.81%), what's more pentadecanal (6.17%), pentadecanoic acid (4.49%), 3, 7, 11, 15-tetramethyl-2-hexadecen-1-ol (3.83%), phytone (2.05%) and the other 74 chemical compositions were firstly identified from the essential oil of Pandanus amaryllifolius leaves. The chemical compositions of Pandanu samaryllifolius leaves essential oil was systematically, deeply isolated and identified for the first time. This experiment has provided scientific foundation for further utilization of Pandanus amaryllifolius leaves.

  10. Essentialism goes social: belief in social determinism as a component of psychological essentialism.

    Science.gov (United States)

    Rangel, Ulrike; Keller, Johannes

    2011-06-01

    Individuals tend to explain the characteristics of others with reference to an underlying essence, a tendency that has been termed psychological essentialism. Drawing on current conceptualizations of essentialism as a fundamental mode of social thinking, and on prior studies investigating belief in genetic determinism (BGD) as a component of essentialism, we argue that BGD cannot constitute the sole basis of individuals' essentialist reasoning. Accordingly, we propose belief in social determinism (BSD) as a complementary component of essentialism, which relies on the belief that a person's essential character is shaped by social factors (e.g., upbringing, social background). We developed a scale to measure this social component of essentialism. Results of five correlational studies indicate that (a) BGD and BSD are largely independent, (b) BGD and BSD are related to important correlates of essentialist thinking (e.g., dispositionism, perceived group homogeneity), (c) BGD and BSD are associated with indicators of fundamental epistemic and ideological motives, and (d) the endorsement of each lay theory is associated with vital social-cognitive consequences (particularly stereotyping and prejudice). Two experimental studies examined the idea that the relationship between BSD and prejudice is bidirectional in nature. Study 6 reveals that rendering social-deterministic explanations salient results in increased levels of ingroup favoritism in individuals who chronically endorse BSD. Results of Study 7 show that priming of prejudice enhances endorsement of social-deterministic explanations particularly in persons habitually endorsing prejudiced attitudes. 2011 APA, all rights reserved

  11. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis

    DEFF Research Database (Denmark)

    Bisicchia, Paola; Noone, David; Lioliou, Efthimia

    2007-01-01

    Adaptation of bacteria to the prevailing environmental and nutritional conditions is often mediated by two-component signal transduction systems (TCS). The Bacillus subtilis YycFG TCS has attracted special attention as it is essential for viability and its regulon is poorly defined. Here we show...

  12. Characteristic odor components of essential oil from Scutellaria laeteviolacea.

    Science.gov (United States)

    Miyazawa, Mitsuo; Nomura, Machi; Marumoto, Shinsuke; Mori, Kiyoshige

    2013-01-01

    The essential oils from aerial parts of Scutellaria laeteviolacea was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The characteristic odor components were also detected in the oil using gas chromatography-olfactometry (GC-O) analysis and aroma extraction dilution analysis (AEDA). As a result, 100 components (accounting for 99.11 %) of S. laeteviolacea, were identified. The major components of S. laeteviolacea oil were found to be 1-octen-3-ol (27.72 %), germacrene D (21.67 %),and β-caryophyllene (9.18 %). The GC-O and AEDA results showed that 1-octen-3-ol, germacrene D, germacrene B, and β-caryophyllene were the most characteristic odor components of the oil. These compounds are thought to contribute to the unique flavor of this plant.

  13. Understanding science teacher enhancement programs: Essential components and a model

    Science.gov (United States)

    Spiegel, Samuel Albert

    Researchers and practioners alike recognize that "the national goal that every child in the United States has access to high-quality school education in science and mathematics cannot be realized without the availability of effective professional development of teachers" (Hewson, 1997, p. 16). Further, there is a plethora of reports calling for the improvement of professional development efforts (Guskey & Huberman, 1995; Kyle, 1995; Loucks-Horsley, Hewson, Love, & Stiles, 1997). In this study I analyze a successful 3-year teacher enhancement program, one form of professional development, to: (1) identify essential components of an effective teacher enhancement program; and (2) create a model to identify and articulate the critical issues in designing, implementing, and evaluating teacher enhancement programs. Five primary sources of information were converted into data: (1) exit questionnaires, (2) exit surveys, (3) exit interview transcripts, (4) focus group transcripts, and (5) other artifacts. Additionally, a focus group was used to conduct member checks. Data were analyzed in an iterative process which led to the development of the list of essential components. The Components are categorized by three organizers: Structure (e.g., science research experience, a mediator throughout the program), Context (e.g., intensity, collaboration), and Participant Interpretation (e.g., perceived to be "safe" to examine personal beliefs and practices, actively engaged). The model is based on: (1) a 4-year study of a successful teacher enhancement program; (2) an analysis of professional development efforts reported in the literature; and (3) reflective discussions with implementors, evaluators, and participants of professional development programs. The model consists of three perspectives, cognitive, symbolic interaction, and organizational, representing different viewpoints from which to consider issues relevant to the success of a teacher enhancement program. These

  14. Extracellular matrix component signaling in cancer

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A. B.; Leitinger, Birgit; Gullberg, Donald

    2016-01-01

    Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motil...... as well as matrix constitution and protein crosslinking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression. [on SciFinder(R)]...

  15. IQGAP1 is a novel CXCR2-interacting protein and essential component of the "chemosynapse".

    Directory of Open Access Journals (Sweden)

    Nicole F Neel

    Full Text Available Chemotaxis is essential for a number of physiological processes including leukocyte recruitment. Chemokines initiate intracellular signaling pathways necessary for chemotaxis through binding seven transmembrane G protein-couple receptors. Little is known about the proteins that interact with the intracellular domains of chemokine receptors to initiate cellular signaling upon ligand binding. CXCR2 is a major chemokine receptor expressed on several cell types, including endothelial cells and neutrophils. We hypothesize that multiple proteins interact with the intracellular domains of CXCR2 upon ligand stimulation and these interactions comprise a "chemosynapse", and play important roles in transducing CXCR2 mediated signaling processes.In an effort to define the complex of proteins that assemble upon CXCR2 activation to relay signals from activated chemokine receptors, a proteomics approach was employed to identify proteins that co-associate with CXCR2 with or without ligand stimulation. The components of the CXCR2 "chemosynapse" are involved in processes ranging from intracellular trafficking to cytoskeletal modification. IQ motif containing GTPase activating protein 1 (IQGAP1 was among the novel proteins identified to interact directly with CXCR2. Herein, we demonstrate that CXCR2 co-localizes with IQGAP1 at the leading edge of polarized human neutrophils and CXCR2 expressing differentiated HL-60 cells. Moreover, amino acids 1-160 of IQGAP1 directly interact with the carboxyl-terminal domain of CXCR2 and stimulation with CXCL8 enhances IQGAP1 association with Cdc42.Our studies indicate that IQGAP1 is a novel essential component of the CXCR2 "chemosynapse".

  16. Two Component Signal Transduction in Desulfovibrio Species

    Energy Technology Data Exchange (ETDEWEB)

    Luning, Eric; Rajeev, Lara; Ray, Jayashree; Mukhopadhyay, Aindrila

    2010-05-17

    The environmentally relevant Desulfovibrio species are sulfate-reducing bacteria that are of interest in the bioremediation of heavy metal contaminated water. Among these, the genome of D. vulgaris Hildenborough encodes a large number of two component systems consisting of 72 putative response regulators (RR) and 64 putative histidinekinases (HK), the majority of which are uncharacterized. We classified the D. vulgaris Hildenborough RRs based on their output domains and compared the distribution of RRs in other sequenced Desulfovibrio species. We have successfully purified most RRs and several HKs as His-tagged proteins. We performed phospho-transfer experiments to verify relationships between cognate pairs of HK and RR, and we have also mapped a few non-cognate HK-RR pairs. Presented here are our discoveries from the Desulfovibrio RR categorization and results from the in vitro studies using purified His tagged D. vulgaris HKs and RRs.

  17. [Main Components of Xinjiang Lavender Essential Oil Determined by Partial Least Squares and Near Infrared Spectroscopy].

    Science.gov (United States)

    Liao, Xiang; Wang, Qing; Fu, Ji-hong; Tang, Jun

    2015-09-01

    This work was undertaken to establish a quantitative analysis model which can rapid determinate the content of linalool, linalyl acetate of Xinjiang lavender essential oil. Totally 165 lavender essential oil samples were measured by using near infrared absorption spectrum (NIR), after analyzing the near infrared spectral absorption peaks of all samples, lavender essential oil have abundant chemical information and the interference of random noise may be relatively low on the spectral intervals of 7100~4500 cm(-1). Thus, the PLS models was constructed by using this interval for further analysis. 8 abnormal samples were eliminated. Through the clustering method, 157 lavender essential oil samples were divided into 105 calibration set samples and 52 validation set samples. Gas chromatography mass spectrometry (GC-MS) was used as a tool to determine the content of linalool and linalyl acetate in lavender essential oil. Then the matrix was established with the GC-MS raw data of two compounds in combination with the original NIR data. In order to optimize the model, different pretreatment methods were used to preprocess the raw NIR spectral to contrast the spectral filtering effect, after analysizing the quantitative model results of linalool and linalyl acetate, the root mean square error prediction (RMSEP) of orthogonal signal transformation (OSC) was 0.226, 0.558, spectrally, it was the optimum pretreatment method. In addition, forward interval partial least squares (FiPLS) method was used to exclude the wavelength points which has nothing to do with determination composition or present nonlinear correlation, finally 8 spectral intervals totally 160 wavelength points were obtained as the dataset. Combining the data sets which have optimized by OSC-FiPLS with partial least squares (PLS) to establish a rapid quantitative analysis model for determining the content of linalool and linalyl acetate in Xinjiang lavender essential oil, numbers of hidden variables of two

  18. Source Signals Separation and Reconstruction Following Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    WANG Cheng

    2014-02-01

    Full Text Available For separation and reconstruction of source signals from observed signals problem, the physical significance of blind source separation modal and independent component analysis is not very clear, and its solution is not unique. Aiming at these disadvantages, a new linear and instantaneous mixing model and a novel source signals separation reconstruction solving method from observed signals based on principal component analysis (PCA are put forward. Assumption of this new model is statistically unrelated rather than independent of source signals, which is different from the traditional blind source separation model. A one-to-one relationship between linear and instantaneous mixing matrix of new model and linear compound matrix of PCA, and a one-to-one relationship between unrelated source signals and principal components are demonstrated using the concept of linear separation matrix and unrelated of source signals. Based on this theoretical link, source signals separation and reconstruction problem is changed into PCA of observed signals then. The theoretical derivation and numerical simulation results show that, in despite of Gauss measurement noise, wave form and amplitude information of unrelated source signal can be separated and reconstructed by PCA when linear mixing matrix is column orthogonal and normalized; only wave form information of unrelated source signal can be separated and reconstructed by PCA when linear mixing matrix is column orthogonal but not normalized, unrelated source signal cannot be separated and reconstructed by PCA when mixing matrix is not column orthogonal or linear.

  19. The Types of Essentials Oil Components Isolated From the Leaves of Citrus Aurantifolia and Citrus Nobilis

    OpenAIRE

    Wulandari, Mutiara Juni; Mohammad Anwar Jamaludin,, Lailatul Riska, Agustin Laela Prunama; Mumun Nurmilawati, Indra Fauzi

    2015-01-01

    Essential oil or known as the eteris oil (etheric oil) was result from secondary metabolism of a plant. In general essential oil contains of citronellal, Citronelal, Citronelol, Limonen, β-Pinene dan sabinene. The components essential oil derived from citrus plants commonly used by perfume industry, on other hand it is used as essentials oil orange flavour addition in some drinks and food, and also as an antioxidant and anti cancer. One of the essential oil is produced by Citrus aurantifolia ...

  20. Signal-dependent independent component analysis by tunable mother wavelets

    International Nuclear Information System (INIS)

    Seo, Kyung Ho

    2006-02-01

    The objective of this study is to improve the standard independent component analysis when applied to real-world signals. Independent component analysis starts from the assumption that signals from different physical sources are statistically independent. But real-world signals such as EEG, ECG, MEG, and fMRI signals are not statistically independent perfectly. By definition, standard independent component analysis algorithms are not able to estimate statistically dependent sources, that is, when the assumption of independence does not hold. Therefore before independent component analysis, some preprocessing stage is needed. This paper started from simple intuition that wavelet transformed source signals by 'well-tuned' mother wavelet will be simplified sufficiently, and then the source separation will show better results. By the correlation coefficient method, the tuning process between source signal and tunable mother wavelet was executed. Gamma component of raw EEG signal was set to target signal, and wavelet transform was executed by tuned mother wavelet and standard mother wavelets. Simulation results by these wavelets was shown

  1. Components of the essential oil from Matteuccia struthiopteris.

    Science.gov (United States)

    Miyazawa, Mitsuo; Horiuchi, Eri; Kawata, Jyunichi

    2007-01-01

    A steam distilled oil obtained from Matteuccia struthiopteris was analyzed by GC and GC/MS. The oil was found to contain 103 volatile components, and (E)-phytol (24.8%), nonanal (15.1%) and decanal (7.6%) as the main compounds. The oil included two aldehydes known as sea-weed like odor, (8Z, 11Z, 14Z)-heptadecatrienal (0.6%) and (8Z, 11Z)-heptadecadienal (0.1%). The most characteristic aroma compound was (6Z)-nonenal.

  2. Virtual Library: An essential component of virtual education

    Directory of Open Access Journals (Sweden)

    M zarghani

    2015-06-01

    Full Text Available Abstract Introduction: Library is one of the essential elements of universities which provide some important educational needs of students. Virtual education can not be exempted and virtual libraries are important support for virtual training programs. The purpose of this study is to evaluate the viewpoint of administrators and students in virtual education centers about the virtual library, its role and resources. Methods: This study was a descriptive survey. The research instrument was a researcher made questionnaire that its validity and reliability was confirmed. The study population consisted of 19 virtual training centers in Tehran city. Out of 19 centers, simple randomized sampling was done in five Centers. The sample size was 360 students. Data collection was conducted online and descriptive statistics using SPSS 18 and Excel software were used. Results: The results showed that viewpoints of administrators and students about the mission and services of virtual libraries in some cases were similar and in some cases were different. One of the administrators’ reasons for setting up a virtual learning system was lifelong learning, and lack of knowledge about virtual libraries was the reason for inadequate use of virtual libraries. The best format of virtual library from the administrators’ and students’ viewpoint, was portal document format (PDF. Conclusion: One of the most important function of a virtual library, is lifelong learning and empowering users to provide information and educational needs. The main reason for not setting up a virtual library is t lack of knowledge about it.

  3. ACCOUNTING, AN ESSENTIAL COMPONENT OF THE INFORMATION SYSTEM

    Directory of Open Access Journals (Sweden)

    PALIU -POPA LUCIA

    2013-02-01

    Full Text Available In the context of deep financial and economic transformations taking place both nationally and globally, theneed and appropriateness of ongoing and increased involvement of accounting information in the management processis increasingly obvious under the increasing credibility and relevance of such information in user perception. Althoughthe data, information and knowledge provided by accounting are not the only ones characterizing a particular economicunit, we believe they are an essential element for analysis and assessment of the entity's statement of assets, motivationaccording to which accounting is seen by the management, and not only, as the core of the information system.Thus, the accounting information experiences a wide revaluation on all the decision-making stages specific toa field of activity, materialized, for this purpose, in economic and financial indicators that are obtained either directlyfrom synthetic and analytical accounts, or through calculations based on them, regularly and periodically, dependingon the need and possibility of operational knowledge of such indicators or only at certain times.Therefore the main purpose of the accounting information system is to provide each user, according to itsresponsibilities and tasks, with all the necessary information, representing both an interface between the operating andthe management system of the entity, but also an element connecting the internal and the external environment of thecompany, a perspective that motivates our scientific approach orientation in the research of accounting informationand its role in the decision making process.

  4. Characteristic odor components of essential oils from Eurya japonica.

    Science.gov (United States)

    Motooka, Ryota; Usami, Atsushi; Nakahashi, Hiroshi; Koutari, Satoshi; Nakaya, Satoshi; Shimizu, Ryoyu; Tsuji, Kaoru; Marumoto, Shinsuke; Miyazawa, Mitsuo

    2015-01-01

    The chemical compositions of essential oils from the flower and aerial parts (i.e., leaf and branch) of Eurya japonica were determined and quantified using gas chromatography-mass spectrometry (GC-MS). A total of 87 and 50 compounds were detected in the oils from the flower and aerial parts, respectively. The main compounds of the flower oil were linalool (14.0%), (9Z)-tricosene (12.0%), and nonanal (7.4%). In the oil from the aerial parts, linalool (37.7%), α-terpineol (13.5%), and geraniol (9.6%) were detected. In the oils from the flower and aerial parts, 13 and 8 aroma-active compounds were identified by GC-olfactometry (GC-O) analysis, respectively. The key aroma-active compounds of the flower oil were heptanal [fatty, green, flavor dilution (FD) = 128, odor activity value (OAV) = 346], nonanal (sweet, citrus, FD = 128, OAV = 491), and eugenol (sweet, spicy, FD = 64, OAV = 62): in the oil from the aerial parts, the key aroma-active compounds were linalool (sweet, citrus, FD = 64, OAV = 95), (E)-β-damascenone (sweet, FD = 256, OAV = 4000), and (E)-β-ionone (floral, violet, FD = 128, OAV = 120). This study revealed that nonanal and eugenol impart the sweet, citrus, and spicy odor of the flower oil, while (E)-β-damascenone and (E)-β-ionone contribute the floral and sweet odor of the oil from the aerial parts.

  5. GLOBAL TEAM MANAGEMENT: AN ESSENTIAL COMPONENT OF FIRMS’ INNOVATION STRATEGY

    Directory of Open Access Journals (Sweden)

    AZİM ÖZTÜRK

    2013-05-01

    Full Text Available In the world marketplace some firms compete successfully and others fail to gain global competitive advantage. Some researchers argue that innovation strategy is the answer to successfully meeting today’s and tomorrow’s global business challenges.  An important aspect of the innovation strategy is managing global teams effectively.  Thus, firms of tomorrow will be characterized by values such as teamwork, innovation, cultural diversity, and a global mindset.  The rapid globalization of business, and increasing competition will continue to drive the need for effective teamwork and/in innovation management.  The purpose of our research is to gain insight into global team management and its role as a major component of innovation strategy.  We discuss the changing and developing functions of teamwork, examine the characteristics of global teams, and finally offer a process to achieve effective global team management.

  6. The Hedgehog Signal Induced Modulation of Bone Morphogenetic Protein Signaling: An Essential Signaling Relay for Urinary Tract Morphogenesis

    Science.gov (United States)

    Nakagata, Naomi; Miyagawa, Shinichi; Suzuki, Kentaro; Kitazawa, Sohei; Yamada, Gen

    2012-01-01

    Background Congenital diseases of the urinary tract are frequently observed in infants. Such diseases present a number of developmental anomalies such as hydroureter and hydronephrosis. Although some genetically-modified mouse models of growth factor signaling genes reproduce urinary phenotypes, the pathogenic mechanisms remain obscure. Previous studies suggest that a portion of the cells in the external genitalia and bladder are derived from peri-cloacal mesenchymal cells that receive Hedgehog (Hh) signaling in the early developmental stages. We hypothesized that defects in such progenitor cells, which give rise to urinary tract tissues, may be a cause of such diseases. Methodology/Principal Findings To elucidate the pathogenic mechanisms of upper urinary tract malformations, we analyzed a series of Sonic hedgehog (Shh) deficient mice. Shh−/− displayed hydroureter and hydronephrosis phenotypes and reduced expression of several developmental markers. In addition, we suggested that Shh modulation at an early embryonic stage is responsible for such phenotypes by analyzing the Shh conditional mutants. Tissue contribution assays of Hh-responsive cells revealed that peri-cloacal mesenchymal cells, which received Hh signal secreted from cloacal epithelium, could contribute to the ureteral mesenchyme. Gain- and loss-of-functional mutants for Hh signaling revealed a correlation between Hh signaling and Bone morphogenetic protein (Bmp) signaling. Finally, a conditional ablation of Bmp receptor type IA (BmprIA) gene was examined in Hh-responsive cell lineages. This system thus made it possible to analyze the primary functions of the growth factor signaling relay. The defective Hh-to-Bmp signaling relay resulted in severe urinary tract phenotypes with a decrease in the number of Hh-responsive cells. Conclusions/Significance This study identified the essential embryonic stages for the pathogenesis of urinary tract phenotypes. These results suggested that Hh

  7. The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ian G Woods

    2005-03-01

    Full Text Available Hedgehog signaling is required for many aspects of development in vertebrates and invertebrates. Misregulation of the Hedgehog pathway causes developmental abnormalities and has been implicated in certain types of cancer. Large-scale genetic screens in zebrafish have identified a group of mutations, termed you-class mutations, that share common defects in somite shape and in most cases disrupt Hedgehog signaling. These mutant embryos exhibit U-shaped somites characteristic of defects in slow muscle development. In addition, Hedgehog pathway mutations disrupt spinal cord patterning. We report the positional cloning of you, one of the original you-class mutations, and show that it is required for Hedgehog signaling in the development of slow muscle and in the specification of ventral fates in the spinal cord. The you gene encodes a novel protein with conserved EGF and CUB domains and a secretory pathway signal sequence. Epistasis experiments support an extracellular role for You upstream of the Hedgehog response mechanism. Analysis of chimeras indicates that you mutant cells can appropriately respond to Hedgehog signaling in a wild-type environment. Additional chimera analysis indicates that wild-type you gene function is not required in axial Hedgehog-producing cells, suggesting that You is essential for transport or stability of Hedgehog signals in the extracellular environment. Our positional cloning and functional studies demonstrate that You is a novel extracellular component of the Hedgehog pathway in vertebrates.

  8. [Extraction and analysis of chemical components of essential oil in Thymus vulgaris of tissue culture].

    Science.gov (United States)

    Li, Xiao-Dong; Yang, Li; Xu, Shi-Qian; Li, Jian-Guo; Cheng, Zhi-Hui; Dang, Jian-Zhang

    2011-10-01

    To extract the essential oils from the Seedlings, the Aseptic Seedlings and the Tissue Culture Seedlings of Thymus vulgaris and analyze their chemical components and the relative contents. The essential oils were extracted by steam distillation, the chemical components and the relative contents were identified and analyzed by gas chromatography-mass spectrometry (GC/MS) and peak area normalization method. The main chemical components of essential oil in these three samples had no significant difference, they all contained the main components of essential oil in Thymus vulgaris: Thymol, Carvacrol, o-Cymene, gamma-Terpinene, Caryophyllene et al. and only had a slight difference in the relative content. This study provides important theoretical foundation and data reference for further study on production of essential oil in thyme by tissue culture technology.

  9. Reactive oxygen species and hormone signaling cascades in endophytic bacterium induced essential oil accumulation in Atractylodes lancea.

    Science.gov (United States)

    Zhou, Jia-Yu; Li, Xia; Zhao, Dan; Deng-Wang, Meng-Yao; Dai, Chuan-Chao

    2016-09-01

    Pseudomonas fluorescens induces gibberellin and ethylene signaling via hydrogen peroxide in planta . Ethylene activates abscisic acid signaling. Hormones increase sesquiterpenoid biosynthesis gene expression and enzyme activity, inducing essential oil accumulation. Atractylodes lancea is a famous Chinese medicinal plant, whose main active components are essential oils. Wild A. lancea has become endangered due to habitat destruction and over-exploitation. Although cultivation can ensure production of the medicinal material, the essential oil content in cultivated A. lancea is significantly lower than that in the wild herb. The application of microbes as elicitors has become an effective strategy to increase essential oil accumulation in cultivated A. lancea. Our previous study identified an endophytic bacterium, Pseudomonas fluorescens ALEB7B, which can increase essential oil accumulation in A. lancea more efficiently than other endophytes; however, the underlying mechanisms remain unknown (Physiol Plantarum 153:30-42, 2015; Appl Environ Microb 82:1577-1585, 2016). This study demonstrates that P. fluorescens ALEB7B firstly induces hydrogen peroxide (H2O2) signaling in A. lancea, which then simultaneously activates gibberellin (GA) and ethylene (ET) signaling. Subsequently, ET activates abscisic acid (ABA) signaling. GA and ABA signaling increase expression of HMGR and DXR, which encode key enzymes involved in sesquiterpenoid biosynthesis, leading to increased levels of the corresponding enzymes and then an accumulation of essential oils. Specific reactive oxygen species and hormone signaling cascades induced by P. fluorescens ALEB7B may contribute to high-efficiency essential oil accumulation in A. lancea. Illustrating the regulation mechanisms underlying P. fluorescens ALEB7B-induced essential oil accumulation not only provides the theoretical basis for the inducible synthesis of terpenoids in many medicinal plants, but also further reveals the complex and diverse

  10. WRKY Transcription Factors: Key Components in Abscisic Acid Signaling

    Science.gov (United States)

    2011-01-01

    networks that take inputs from numerous stimuli and that they are involved in mediating responses to numerous phytohormones including salicylic acid ... jasmonic acid , ABA and GA. These roles in multiple signalling pathways may in turn partly explain the pleiotropic effects commonly seen when TF genes are...Review article WRKY transcription factors: key components in abscisic acid signalling Deena L. Rushton1, Prateek Tripathi1, Roel C. Rabara1, Jun Lin1

  11. Characteristic chemical components of the essential oil from white kwao krua (Pueraria mirifica).

    Science.gov (United States)

    Yagi, Nobuo; Nakahashi, Hiroshi; Kobayashi, Tomohiro; Miyazawa, Mitsuo

    2013-01-01

    The components of the essential oil from the roots of Pueraria mirifica were analyzed by capillary gas chromatography-mass spectrometry (GC-MS). Eighty-two components, representing 88.5% of the total oil, were identified by GC-MS. The main component of the oil was 2-pentylfuran, followed by hexanal and hexadecanol. With regard to the odor components from the essential oil of P. mirifica as determined by gas chromatography-olfactometry and aroma extract dilution analysis, it was revealed that phenylacetaldehyde and (2E)-nonenal imparted the green odor of the oil, and geraniol contributed to the sweet odor.

  12. BMPRIA mediated signaling is essential for temporomandibular joint development in mice.

    Directory of Open Access Journals (Sweden)

    Shuping Gu

    Full Text Available The central importance of BMP signaling in the development and homeostasis of synovial joint of appendicular skeleton has been well documented, but its role in the development of temporomandibular joint (TMJ, also classified as a synovial joint, remains completely unknown. In this study, we investigated the function of BMPRIA mediated signaling in TMJ development in mice by transgenic loss-of- and gain-of-function approaches. We found that BMPRIA is expressed in the cranial neural crest (CNC-derived developing condyle and glenoid fossa, major components of TMJ, as well as the interzone mesenchymal cells. Wnt1-Cre mediated tissue specific inactivation of BmprIa in CNC lineage led to defective TMJ development, including failure of articular disc separation from a hypoplastic condyle, persistence of interzone cells, and failed formation of a functional fibrocartilage layer on the articular surface of the glenoid fossa and condyle, which could be at least partially attributed to the down-regulation of Ihh in the developing condyle and inhibition of apoptosis in the interzone. On the other hand, augmented BMPRIA signaling by Wnt1-Cre driven expression of a constitutively active form of BmprIa (caBmprIa inhibited osteogenesis of the glenoid fossa and converted the condylar primordium from secondary cartilage to primary cartilage associated with ectopic activation of Smad-dependent pathway but inhibition of JNK pathway, leading to TMJ agenesis. Our results present unambiguous evidence for an essential role of finely tuned BMPRIA mediated signaling in TMJ development.

  13. Application of PLE for the determination of essential oil components from Thymus vulgaris L.

    Science.gov (United States)

    Dawidowicz, Andrzej L; Rado, Ewelina; Wianowska, Dorota; Mardarowicz, Marek; Gawdzik, Jan

    2008-08-15

    Essential plants, due to their long presence in human history, their status in culinary arts, their use in medicine and perfume manufacture, belong to frequently examined stock materials in scientific and industrial laboratories. Because of a large number of freshly cut, dried or frozen plant samples requiring the determination of essential oil amount and composition, a fast, safe, simple, efficient and highly automatic sample preparation method is needed. Five sample preparation methods (steam distillation, extraction in the Soxhlet apparatus, supercritical fluid extraction, solid phase microextraction and pressurized liquid extraction) used for the isolation of aroma-active components from Thymus vulgaris L. are compared in the paper. The methods are mainly discussed with regard to the recovery of components which typically exist in essential oil isolated by steam distillation. According to the obtained data, PLE is the most efficient sample preparation method in determining the essential oil from the thyme herb. Although co-extraction of non-volatile ingredients is the main drawback of this method, it is characterized by the highest yield of essential oil components and the shortest extraction time required. Moreover, the relative peak amounts of essential components revealed by PLE are comparable with those obtained by steam distillation, which is recognized as standard sample preparation method for the analysis of essential oils in aromatic plants.

  14. Essential role of Stat6 in IL-4 signalling.

    Science.gov (United States)

    Takeda, K; Tanaka, T; Shi, W; Matsumoto, M; Minami, M; Kashiwamura, S; Nakanishi, K; Yoshida, N; Kishimoto, T; Akira, S

    1996-04-18

    Interleukin-4 (IL-4) is a pleiotropic lymphokine which plays an important role in the immune system. IL-4 activates two distinct signalling pathways through tyrosine phosphorylation of Stat6, a signal transducer and activator of transcription, and of a 170K protein called 4PS. To investigate the functional role of Stat6 in IL-4 signalling, we generated mice deficient in Stat6 by gene targeting. We report here that in the mutant mice, expression of CD23 and major histocompatibility complex (MHC) class II in resting B cells was not enhanced in response to IL-4. IL-4 induced B-cell proliferation costimulated by anti-IgM antibody was abolished. The T-cell proliferative response was also notably reduced. Furthermore, production of Th2 cytokines from T cells as well as IgE and IgG1 responses after nematode infection were profoundly reduced. These findings agreed with those obtained in IL-4 deficient mice or using antibodies to IL-4 and the IL-4 receptor. We conclude that Stat6 plays a central role in exerting IL-4 mediated biological responses.

  15. Nitrogen - essential macronutrient and signal controlling flowering time

    DEFF Research Database (Denmark)

    Weber, Konrad; Burow, Meike

    2018-01-01

    Nitrogen, as limiting nutrient for plant growth and crop yield, is a main component of fertilizers and heavily used in modern agriculture. Early reports from over-application of fertilizers in crop production have shown to repress the transition from vegetative to reproductive phase. For the mode...

  16. Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components

    Directory of Open Access Journals (Sweden)

    Patricia Escobar

    2010-03-01

    Full Text Available The chemical composition and biological activities of 19 essential oils and seven of their major components were tested against free and intracellular forms of Leishmania chagasi and Trypanosoma cruzi parasites as well as Vero and THP-1 mammalian cell lines. The essential oils were obtained from different species of Lippia, a widely distributed genus of Colombian plants. They were extracted by microwave radiation-assisted hydro-distillation and characterised by GC-FID and GC-MS. The major components were geranial, neral, limonene, nerol, carvacrol, p-cymene, γ-terpinene, carvone and thymol. The essential oil of Lippia alba exhibited the highest activity against T. cruzi epimastigotes and intracellular amastigotes with an IC50 of 5.5 μg/mL and 12.2 μg/mL, respectively. The essential oil of Lippia origanoides had an IC50 of 4.4 μg/mL in L. chagasi promastigotes and exhibited no toxicity in mammalian cells. Thymol (IC50 3.2 ± 0.4 μg/mL and S-carvone (IC50 6.1 ± 2.2 μg/mL, two of the major components of the active essential oils, were active on intracellular amastigotes of T. cruziinfected Vero cells, with a selective index greater than 10. None of the essential oils or major components tested in this study was active on amastigotes of L. chagasi infected THP-1 cells.

  17. Effect of Light Spectral Quality on Essential Oil Components in Ocimum Basilicum and Salvia Officinalis Plants

    Directory of Open Access Journals (Sweden)

    A. S. IVANITSKIKH

    2014-07-01

    Full Text Available In plants grown with artificial lighting, variations in light spectral composition can be used for the directed biosynthesis of the target substances including essential oils, e.g. in plant factories. We studied the effect of light spectral quality on the essential oil composition in Ocimum basilicum and Salvia officinalis plants grown in controlled environment. The variable-spectrum light modules were designed using three types of high-power light-emitting diodes (LEDs with emission peaked in red, blue and red light, white LEDs, and high-pressure sodium lamps as reference. Qualitative and quantitative essential oil determinations were conducted using gas chromatography with mass selective detection and internal standard method.Sweet basil plant leaves contain essential oils (са. 1 % including linalool, pinene, eugenol, camphor, cineole, and other components. And within the genetic diversity of the species, several cultivar groups can be identified according to the flavor (aroma perceived by humans: eugenol, clove, camphor, vanilla basil. Essential oil components produce particular flavor of the basil leaves. In our studies, we are using two sweet basil varieties differing in the essential oil qualitative composition – “Johnsons Dwarf” (camphor as a major component of essential oils and “Johnsons Lemon Flavor” (contains large amount of citral defining its lemon flavor.In sage, essential oil composition is also very variable. As for the plant responses to the light environment, the highest amount of the essential oils was observed at the regimes with white and red + blue LED light. And it was three times less with red light LEDs alone. In the first two environments, thujone accumulation was higher in comparison with camphor, while red LED light and sodium lamp light favored camphor biosynthesis (three times more than thujone. The highest amount of eucalyptol was determined in plants grown with red LEDs.

  18. Determination of some components of the essential oil of origanum syriacuml

    International Nuclear Information System (INIS)

    Zaizafoun, G.; Aoudeh, A.

    1998-01-01

    During the study of origanum syriacuml. Plant seasonably, we found that the concentration of essential oil changes according to the life cycle of the plant. Where observed unknown components which have not been reported in any previous studies. The concentration of these compounds were very low in the most of the year except in the month of October where the concentration was exceptionally high our samples were collected from suburbs of Lattakia, these the essential oil was analyzed using GC technique, high concentration of two components was encountered in three zones of the fire studied. (Author)

  19. CENTRAL REGION COMPONENT1, a Novel Synaptonemal Complex Component, Is Essential for Meiotic Recombination Initiation in Rice[C][W

    Science.gov (United States)

    Miao, Chunbo; Tang, Ding; Zhang, Honggen; Wang, Mo; Li, Yafei; Tang, Shuzhu; Yu, Hengxiu; Gu, Minghong; Cheng, Zhukuan

    2013-01-01

    In meiosis, homologous recombination entails programmed DNA double-strand break (DSB) formation and synaptonemal complex (SC) assembly coupled with the DSB repair. Although SCs display extensive structural conservation among species, their components identified are poorly conserved at the sequence level. Here, we identified a novel SC component, designated CENTRAL REGION COMPONENT1 (CRC1), in rice (Oryza sativa). CRC1 colocalizes with ZEP1, the rice SC transverse filament protein, to the central region of SCs in a mutually dependent fashion. Consistent with this colocalization, CRC1 interacts with ZEP1 in yeast two-hybrid assays. CRC1 is orthologous to Saccharomyces cerevisiae pachytene checkpoint2 (Pch2) and Mus musculus THYROID RECEPTOR-INTERACTING PROTEIN13 (TRIP13) and may be a conserved SC component. Additionally, we provide evidence that CRC1 is essential for meiotic DSB formation. CRC1 interacts with HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 (PAIR1) in vitro, suggesting that these proteins act as a complex to promote DSB formation. PAIR2, the rice ortholog of budding yeast homolog pairing1, is required for homologous chromosome pairing. We found that CRC1 is also essential for the recruitment of PAIR2 onto meiotic chromosomes. The roles of CRC1 identified here have not been reported for Pch2 or TRIP13. PMID:23943860

  20. Central region component1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice.

    Science.gov (United States)

    Miao, Chunbo; Tang, Ding; Zhang, Honggen; Wang, Mo; Li, Yafei; Tang, Shuzhu; Yu, Hengxiu; Gu, Minghong; Cheng, Zhukuan

    2013-08-01

    In meiosis, homologous recombination entails programmed DNA double-strand break (DSB) formation and synaptonemal complex (SC) assembly coupled with the DSB repair. Although SCs display extensive structural conservation among species, their components identified are poorly conserved at the sequence level. Here, we identified a novel SC component, designated central region component1 (CRC1), in rice (Oryza sativa). CRC1 colocalizes with ZEP1, the rice SC transverse filament protein, to the central region of SCs in a mutually dependent fashion. Consistent with this colocalization, CRC1 interacts with ZEP1 in yeast two-hybrid assays. CRC1 is orthologous to Saccharomyces cerevisiae pachytene checkpoint2 (Pch2) and Mus musculus THYROID receptor-interacting protein13 (TRIP13) and may be a conserved SC component. Additionally, we provide evidence that CRC1 is essential for meiotic DSB formation. CRC1 interacts with homologous pairing aberration in rice meiosis1 (PAIR1) in vitro, suggesting that these proteins act as a complex to promote DSB formation. PAIR2, the rice ortholog of budding yeast homolog pairing1, is required for homologous chromosome pairing. We found that CRC1 is also essential for the recruitment of PAIR2 onto meiotic chromosomes. The roles of CRC1 identified here have not been reported for Pch2 or TRIP13.

  1. Sea sand disruption method (SSDM) as a valuable tool for isolating essential oil components from conifers.

    Science.gov (United States)

    Dawidowicz, Andrzej L; Czapczyńska, Natalia B

    2011-11-01

    Essential oils are one of nature's most precious gifts with surprisingly potent and outstanding properties. Coniferous oils, for instance, are nowadays being used extensively to treat or prevent many types of infections, modify immune responses, soothe inflammations, stabilize moods, and to help ease all forms of non-acute pain. Given the broad spectrum of usage of coniferous essential oils, a fast, safe, simple, and efficient sample-preparation method is needed in the estimation procedure of essential oil components in fresh plant material. Generally, the time- and energy-consuming steam distillation (SD) is applied for this purpose. This paper will compare SD, pressurized liquid extraction (PLE), matrix solid-phase dispersion (MSPD), and the sea sand disruption method (SSDM) as isolation techniques to obtain aroma components from Scots pine (Pinus sylvestris), spruce (Picea abies), and Douglas fir (Pseudotsuga menziesii). According to the obtained data, SSDM is the most efficient sample preparation method in determining the essential oil composition of conifers. Moreover, SSDM requires small organic solvent amounts and a short extraction time, which makes it an advantageous alternative procedure for the routine analysis of coniferous oils. The superiority of SSDM over MSPD efficiency is ascertained, as there are no chemical interactions between the plant cell components and the sand. This fact confirms the reliability and efficacy of SSDM for the analysis of volatile oil components. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  2. Principal Component Analysis: Resources for an Essential Application of Linear Algebra

    Science.gov (United States)

    Pankavich, Stephen; Swanson, Rebecca

    2015-01-01

    Principal Component Analysis (PCA) is a highly useful topic within an introductory Linear Algebra course, especially since it can be used to incorporate a number of applied projects. This method represents an essential application and extension of the Spectral Theorem and is commonly used within a variety of fields, including statistics,…

  3. School Climate: An Essential Component of a Comprehensive School Safety Plan

    Science.gov (United States)

    Stark, Heidi

    2017-01-01

    The intentional assessment and management of school climate is an essential component of a comprehensive school safety plan. The value of this preventive aspect of school safety is often diminished as schools invest resources in physical security measures as a narrowly focused effort to increase school safety (Addington, 2009). This dissertation…

  4. Delphi-research for exploring essential components and preconditions for case management for people with dementia.

    NARCIS (Netherlands)

    Verkade, P.J.; Meijel, B. van; Brink, C.; Os-Medendorp, H. van; Koekkoek, B.; Francke, A.L.

    2010-01-01

    Background: Case management programmes for home-dwelling people with dementia and their informal carers exist in multiple forms and shapes. The aim of this research was to identify the essential components of case management for people with dementia as well as the preconditions for an effective

  5. 76 FR 35408 - Essential Fish Habitat (EFH) Components of Fishery Management Plans (Northeast Multispecies...

    Science.gov (United States)

    2011-06-17

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XR75 Essential Fish Habitat (EFH) Components of Fishery Management Plans (Northeast Multispecies, Atlantic Sea Scallop...: E-mail: Habitat[email protected] . Mail: Paul J. Howard, Executive Director, New England Fishery...

  6. Authenticity analysis of citrus essential oils by HPLC-UV-MS on oxygenated heterocyclic components

    Directory of Open Access Journals (Sweden)

    Hao Fan

    2015-03-01

    Full Text Available Citrus essential oils are widely applied in food industry as the backbone of citrus flavors. Unfortunately, due to relatively simple chemical composition and tremendous price differences among citrus species, adulteration has been plaguing the industry since its inception. Skilled blenders are capable of making blends that are almost indistinguishable from authentic oils through conventional gas chromatography analysis. A reversed-phase high performance liquid chromatography (HPLC method was developed for compositional study of nonvolatile constituents in essential oils from major citrus species. The nonvolatile oxygenated heterocyclic components identified in citrus oils were proved to be more effective as markers in adulteration detection than the volatile components. Authors are hoping such an analysis procedure can be served as a routine quality control test for authenticity evaluation in citrus essential oils.

  7. Physiological responses to taste signals of functional food components.

    Science.gov (United States)

    Narukawa, Masataka

    2018-02-01

    The functions of food have three categories: nutrition, palatability, and bioregulation. As the onset of lifestyle-related diseases has increased, many people have shown interest in functional foods that are beneficial to bioregulation. We believe that functional foods should be highly palatable for increased acceptance from consumers. In order to design functional foods with a high palatability, we have investigated about the palatability, especially in relation to the taste of food. In this review, we discuss (1) the identification of taste receptors that respond to functional food components; (2) an analysis of the peripheral taste transduction system; and (3) the investigation of the relationship between physiological functions and taste signals.

  8. Alpinia Essential Oils and Their Major Components against Rhodnius nasutus, a Vector of Chagas Disease

    Directory of Open Access Journals (Sweden)

    Thamiris de A. de Souza

    2018-01-01

    Full Text Available Species of the genus Alpinia are widely used by the population and have many described biological activities, including activity against insects. In this paper, we describe the bioactivity of the essential oil of two species of Alpinia genus, A. zerumbet and A. vittata, against Rhodnius nasutus, a vector of Chagas disease. The essential oils of these two species were obtained by hydrodistillation and analyzed by GC-MS. The main constituent of A. zerumbet essential oil (OLALPZER was terpinen-4-ol, which represented 19.7% of the total components identified. In the essential oil of A. vittata (OLALPVIT the monoterpene β-pinene (35.3% was the main constituent. The essential oils and their main constituents were topically applied on R. nasutus fifth-instar nymphs. In the first 10 min of application, OLALPVIT and OLALPZER at 125 μg/mL provoked 73.3% and 83.3% of mortality, respectively. Terpinen-4-ol at 25 μg/mL and β-pinene at 44 μg/mL provoked 100% of mortality. The monitoring of resistant insects showed that both essential oils exhibited antifeedant activity. These results suggest the potential use of A. zerumbet and A. vittata essential oils and their major constituents to control R. nasutus population.

  9. A study on the crack inspection signal characteristics for power plant components by phased array UT

    International Nuclear Information System (INIS)

    Cho, Yong Sang; Lim, Sang Gyu; Kil, Du Song

    2001-01-01

    Phased array ultrasonic testing system has become available for practical application in complicated geometry such as turbine blade root, tenon, disc in power industry. This research describes the characteristics of phased array UT signal for various type of blade roots in thermal Power Plant turbines. This application of Phased array ultrasonic testing system has been promoted mainly to save inspection time and labor cost of turbine inspection. The characteristic of phase array UT signal for power plant component is very simple to understand but to difficult for perform the inspection. Since our sophisticated inspection technique and systems are essential for the inspection of steam turbine blade roots that require high reliability, we intend to develop new technology and improve phased array technique based on the wide and much experience for the inspection of turbine components.

  10. Seasonal variation of mono- and sesquiterpenoid components in the essential oil of Dracocephalum kotschyi Boiss.

    Directory of Open Access Journals (Sweden)

    G. Asghari

    2014-10-01

    Full Text Available Background and objectives: Dracocephalum kotschyi is a plant which belongs to the Lamiaceae family and exists mostly in south-west Asian countries, including Iran. This plant is used as antispasmodic, analgesic and anti-inflammatory to treat rheumatoid diseases. Methods: In order to investigate the impact of the harvesting time changes on the quantity and quality of mono- and sesquiterpenoid components of D. kotschyi aerial parts, ten samples were collected from cultivated plants from 19 April to 27 August 2013. Also samples of flower and root were harvested in order to investigate their essential oil components. The essential oils were obtained through hydrodistillation method. The components were studied and identified by GC and GC ⁄ MS systems. Results: The highest yield of the essential oil was obtained on 3 May (1.10% V.W and the lowest on 28 July (0.29% V.W. Totally 55 compounds were identified in the essential oil while the highest percentage belonged to monoterpenes especially the oxygenated ones. Most variations were observed in geraniol (1.40-15.34%, geranyl acetate (trace-14.41% and neryl acetate (0.62-17.51%. The major value in most cases belonged to geranial. Conclusion: the results of this study indicate that the harvesting time of plant is an effective factor in the quality and quantity of theessential oil of Dracocephalum kotschyi.

  11. Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components.

    Science.gov (United States)

    Singh, Gurdip; Marimuthu, Palanisamy; de Heluani, Carola S; Catalan, Cesar A N

    2006-01-11

    In the present study, chemical constituents of the essential oil and oleoresin of the seed from Carum nigrum obtained by hydrodistillation and Soxhlet extraction using acetone, respectively, have been studied by GC and GC-MS techniques. The major component was dillapiole (29.9%) followed by germacrene B (21.4%), beta-caryophyllene (7.8%), beta-selinene (7.1%), and nothoapiole (5.8%) along with many other components in minor amounts. Seventeen components were identified in the oleoresin (Table 2) with dillapiole as a major component (30.7%). It also contains thymol (19.1%), nothoapiole (15.2.3%), and gamma-elemene (8.0%). The antioxidant activity of both the essential oil and oleoresin was evaluated in mustard oil by monitoring peroxide, thiobarbituric acid, and total carbonyl and p-anisidine values of the oil substrate. The results showed that both the essential oil and oleoresin were able to reduce the oxidation rate of the mustard oil in the accelerated condition at 60 degrees C in comparison with synthetic antioxidants such as butylated hydroxyanisole and butylated hydroxytoluene at 0.02%. In addition, individual antioxidant assays such as linoleic acid assay, DPPH scavenging activity, reducing power, hydroxyl radical scavenging, and chelating effects have been used. The C. nigrum seed essential oil exhibited complete inhibition against Bacillus cereus and Pseudomonas aeruginosa at 2000 and 3000 ppm, respectively, by agar well diffusion method. Antifungal activity was determined against a panel of foodborne fungi such as Aspergillus niger, Penicillium purpurogenum, Penicillium madriti, Acrophialophora fusispora, Penicillium viridicatum, and Aspergillus flavus. The fruit essential oil showed 100% mycelial zone inhibition against P. purpurogenum and A. fusispora at 3000 ppm in the poison food method. Hence, both oil and oleoresin could be used as an additive in food and pharmaceutical preparations after screening.

  12. Volatile Components of the Essential Oil of Artemisia montana and Their Sedative Effects.

    Science.gov (United States)

    Kunihiro, Kento; Myoda, Takao; Tajima, Noriaki; Gotoh, Kotaro; Kaneshima, Tai; Someya, Takao; Toeda, Kazuki; Fujimori, Takane; Nishizawa, Makoto

    2017-08-01

    The sedative effects of volatile components in the essential oil of Artemisia montana ("Yomogi") were investigated and measured using gas chromatography-mass spectrometry (GC-MS). Major components identified included 1,8-cineol, camphor, borneol, α-piperitone, and caryophyllene oxide. Among them, 1,8-cineol exhibited the highest flavor dilution (FD) value in an aroma extract dilution analysis (AEDA), followed by borneol, o-cymene, β-thujone, and bornyl acetate. The sedative effects of yomogi oil aroma were evaluated by sensory testing, analysis of salivary α-amylase activity, and measurement of relative fluctuation of oxygenated hemoglobin concentration in the brain using near-infrared spectroscopy (NIRS). All results indicated the stress-reducing effects of the essential oil following nasal exposure, and according to the NIRS analysis, 1,8-cineol is likely responsible for the sedative effects of yomogi oil.

  13. The AAA-ATPase NVL2 is a telomerase component essential for holoenzyme assembly

    Energy Technology Data Exchange (ETDEWEB)

    Her, Joonyoung [Departments of Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749 (Korea, Republic of); Chung, In Kwon, E-mail: topoviro@yonsei.ac.kr [Departments of Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Identification of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. Black-Right-Pointing-Pointer NVL2 associates with catalytically active telomerase via an interaction with hTERT. Black-Right-Pointing-Pointer NVL2 is a telomerase component essential for holoenzyme assembly. Black-Right-Pointing-Pointer ATP-binding activity of NVL2 is required for hTERT binding and telomerase assembly. -- Abstract: Continued cell proliferation requires telomerase to maintain functional telomeres that are essential for chromosome integrity. Although the core enzyme includes a telomerase reverse transcriptase (TERT) and a telomerase RNA component (TERC), a number of auxiliary proteins have been identified to regulate telomerase assembly, localization, and enzymatic activity. Here we describe the characterization of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. NVL2 interacts and co-localizes with hTERT in the nucleolus. NLV2 is also found in association with catalytically competent telomerase in cell lysates through an interaction with hTERT. Depletion of endogenous NVL2 by small interfering RNA led to a decrease in hTERT without affecting the steady-state levels of hTERT mRNA, thereby reducing telomerase activity, suggesting that NVL2 is an essential component of the telomerase holoenzyme. We also found that ATP-binding activity of NVL2 is required for hTERT binding as well as telomerase assembly. Our findings suggest that NVL2, in addition to its role in ribosome biosynthesis, is essential for telomerase biogenesis and provides an alternative approach for inhibiting telomerase activity in cancer.

  14. A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development.

    Science.gov (United States)

    Xiao, Ying; Thoresen, Daniel T; Miao, Lingling; Williams, Jonathan S; Wang, Chaochen; Atit, Radhika P; Wong, Sunny Y; Brownell, Isaac

    2016-07-01

    The Sonic hedgehog (Shh) signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance.

  15. A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development.

    Directory of Open Access Journals (Sweden)

    Ying Xiao

    2016-07-01

    Full Text Available The Sonic hedgehog (Shh signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance.

  16. An Anion Conductance, the Essential Component of the Hydroxyl-Radical-Induced Ion Current in Plant Roots

    Directory of Open Access Journals (Sweden)

    Igor Pottosin

    2018-03-01

    Full Text Available Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•-induced activation of massive K+ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from −130 to −70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions. Application of Gd3+ and NPPB, non-specific blockers of cation and anion conductance, respectively, reduced HO•-induced ion fluxes instantaneously, implying a direct block of the dual conductance. The selectivity of an early instantaneous HO•-induced whole cell current fluctuated from more anionic to more cationic and vice versa, developing a higher cation selectivity at later times. The parallel electroneutral efflux of K+ and anions should underlie a substantial leak of the cellular electrolyte, which may affect the cell’s turgor and metabolic status. The physiological implications of these findings are discussed in the context of cell fate determination, and ROS and cytosolic K+ signaling.

  17. Effectiveness of electron beam microbial decontamination and change of essential oil components in fennel

    International Nuclear Information System (INIS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohtsu, Naomi; Chikuta, Yasuhiro; Mino, Yoshiki; Aoki, Kenji; Ohta, Masatoshi

    2008-01-01

    The effectiveness of electron beam (EB) disinfection and sterilization technology and the changes of essential oil components in fennel were investigated. The absorbed dose was maximal at a depth of 0.9-1.0 g/cm 2 , which was 130% of the surface dose of 15 kGy in packed fennel irradiated with 5 MeV EB in a downward direction, and decreased in the deepest layer. As a result, in a fennel bacterial count of 10 5 cfu/g, a microbial contamination level below 1.0x10 3 cfu/g was obtained at a packing depth of 2.3 g/cm 2 and at the absorbed dose of more than 3 kGy. The bacteria in fennel were highly sensitive to EB irradiation. Furthermore, EB irradiation had no effect on the essential oil content of fennel, and no change of the essential oil components was found at the irradiation level necessary for decontamination. (author)

  18. Acaricidal activity and repellency of essential oil from Piper aduncum and its components against Tetranychus urticae.

    Science.gov (United States)

    Araújo, Mário J C; Câmara, Cláudio A G; Born, Flávia S; Moraes, Marcílio M; Badji, César A

    2012-06-01

    The chemical composition of essential oil of leaves of Piper aduncum L., growing wild in a fragment of the Atlantic Rainforest biome in northeastern Brazil, was determined through gas chromatography-mass spectrometry. The acaricidal activity and repellency of the essential oil and its components [dillapiole (0.28 g/ml), α-humulene (0.016 g/ml), (E)-nerolidol (0.0007 g/ml) and β-caryophyllene (0.0021 g/ml)] were evaluated in the laboratory against adults of Tetranychus urticae Koch. The mites were more susceptible to the oil in fumigation tests (LC(50) = 0.01 μl/l of air) than in contact test with closed Petri dish (LC(50) = 7.17 μl/ml); mortality was reduced by approximately 50 % in the latter test. The repellent action of the oil and toxicity by fumigation and contact did not differ significantly from the positive control (eugenol). The repellent activity was attributed to the components (E)-nerolidol, α-humulene and β-caryophyllene, whereas toxicity by fumigation and contact was attributed to β-caryophyllene. The effect of Piper oil and the role of its components regarding host plant preference with a two-choice leaf disk test are also discussed.

  19. Acne severity grading: determining essential clinical components and features using a Delphi consensus.

    Science.gov (United States)

    Tan, Jerry; Wolfe, Barat; Weiss, Jonathan; Stein-Gold, Linda; Bikowski, Joseph; Del Rosso, James; Webster, Guy F; Lucky, Anne; Thiboutot, Diane; Wilkin, Jonathan; Leyden, James; Chren, Mary-Margaret

    2012-08-01

    There are multiple global scales for acne severity grading but no singular standard. Our objective was to determine the essential clinical components (content items) and features (property-related items) for an acne global grading scale for use in research and clinical practice using an iterative method, the Delphi process. Ten acne experts were invited to participate in a Web-based Delphi survey comprising 3 iterative rounds of questions. In round 1, the experts identified the following clinical components (primary acne lesions, number of lesions, extent, regional involvement, secondary lesions, and patient experiences) and features (clinimetric properties, ease of use, categorization of severity based on photographs or text, and acceptance by all stakeholders). In round 2, consensus for inclusion in the scale was established for primary lesions, number, sites, and extent; as well as clinimetric properties and ease of use. In round 3, consensus for inclusion was further established for categorization and acceptance. Patient experiences were excluded and no consensus was achieved for secondary lesions. The Delphi panel consisted solely of the United States (U.S.)-based acne experts. Using an established method for achieving consensus, experts in acne vulgaris concluded that an ideal acne global grading scale would comprise the essential clinical components of primary acne lesions, their quantity, extent, and facial and extrafacial sites of involvement; with features of clinimetric properties, categorization, efficiency, and acceptance. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  20. Identifying the essential components of cultural competence in a Chinese nursing context: A qualitative study.

    Science.gov (United States)

    Cai, Duanying; Kunaviktikul, Wipada; Klunklin, Areewan; Sripusanapan, Acharaporn; Avant, Patricia Kay

    2017-06-01

    This qualitative study using semi-structured interviews was conducted to identify the essential components of cultural competence from the perspective of Chinese nurses. A purposive sample of 20 nurse experts, including senior clinical nurses, nurse administrators, and educators in transcultural nursing, was recruited. Using thematic analysis, four themes: awareness, attitudes, knowledge, and skills, with two subthemes for each, were identified. Notably, culture in China was understood in a broad way. The participants' responses focused upon demographic attributes, individuality, and efforts to facilitate quality care rather than on the cultural differences of ethnicity and race and developing the capacity to change discrimination or health disparities. A greater understanding of cultural competence in the Chinese nursing context, in which a dominant cultural group exists, is essential to facilitate the provision of culturally competent care to diverse populations. © 2016 John Wiley & Sons Australia, Ltd.

  1. Activity of essential oils and individual components against acetyl- and butyrylcholinesterase.

    Science.gov (United States)

    Orhan, Ilkay; Kartal, Murat; Kan, Yüksel; Sener, Bilge

    2008-01-01

    We have tested acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of nineteen essential oils obtained from cultivated plants, namely one from Anethum graveolens L. (organic fertilizer), two from Foeniculum vulgare Mill. collected at fully-mature and flowering stages (organic fertilizer), two from Melissa officinalis L. (cultivated using organic and chemical fertilizers), two from Mentha piperita L. and M. spicata L. (organic fertilizer), two from Lavandula officinalis Chaix ex Villars (cultivated using organic and chemical fertilizers), two from Ocimum basilicum L. (green and purple-leaf varieties cultivated using only organic fertilizer), four from Origanum onites L., O. vulgare L., O. munitiflorum Hausskn., and O. majorana L. (cultivated using organic fertilizer), two from Salvia sclarea L. (organic and chemical fertilizers), one from S. officinalis L. (organic fertilizer), and one from Satureja cuneifolia Ten. (organic fertilizer) by a spectrophotometric method of Ellman using ELISA microplate-reader at 1 mg/ml concentration. In addition, a number of single components widely encountered in most of the essential oils [gamma-terpinene, 4-allyl anisole, (-)-carvone, dihydrocarvone, (-)-phencone, cuminyl alcohol, cumol, 4-isopropyl benzaldehyde, trans-anethole, camphene, iso-borneol, (-)-borneol, L-bornyl acetate, 2-decanol, 2-heptanol, methyl-heptanol, farnesol, nerol, iso-pulegol, 1,8-cineole, citral, citronellal, citronellol, geraniol, linalool, alpha-pinene, beta-pinene, piperitone, iso-menthone, menthofurane, linalyl oxide, linalyl ester, geranyl ester, carvacrol, thymol, menthol, vanilline, and eugenol] was also screened for the same activity in the same manner. Almost all of the essential oils showed a very high inhibitory activity (over 80%) against both enzymes, whereas the single components were not as active as the essential oils.

  2. In vitro susceptibility of Trypanosoma brucei brucei to selected essential oils and their major components.

    Science.gov (United States)

    Costa, Sonya; Cavadas, Cláudia; Cavaleiro, Carlos; Salgueiro, Lígia; do Céu Sousa, Maria

    2018-07-01

    Aiming for discovering effective and harmless antitrypanosomal agents, 17 essential oils and nine major components were screened for their effects on T. b. brucei. The essential oils were obtained by hydrodistillation from fresh plant material and analyzed by GC and GC-MS. The trypanocidal activity was assessed using blood stream trypomastigotes cultures of T. b. brucei and the colorimetric resazurin method. The MTT test was used to assess the cytotoxicity of essential oils on macrophage cells and Selectivity Indexes were calculated. Of the 17 essential oils screened three showed high trypanocidal activity (IC 50  oils had no cytotoxic effects on macrophage cells showing the highest values of Selectivity Index (63.4, 9.0 and 11.8, respectively). The oils of Distichoselinum tenuifolium, Lavandula viridis, Origanum virens, Seseli tortuosom, Syzygium aromaticum, and Thymbra capitata also exhibited activity (IC 50 of 10-25 μg/mL) but showed cytotoxicity on macrophages. Of the nine compounds tested, α-pinene (IC 50 of 2.9 μg/mL) and citral (IC 50 of 18.9 μg/mL) exhibited the highest anti-trypanosomal activities. Citral is likely the active component of C. citratus and α-pinene is responsible for the antitrypanosomal effects of J. oxycedrus. The present work leads us to propose the J. oxycedrus, C. citratus and L. luisieri oils as valuable sources of new molecules for African Sleeping Sickness treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Beta-arrestins - scaffolds and signalling elements essential for WNT/Frizzled signalling pathways?

    Czech Academy of Sciences Publication Activity Database

    Schulte, G.; Schambony, A.; Bryja, Vítězslav

    2010-01-01

    Roč. 159, č. 5 (2010), s. 1051-1058 ISSN 0007-1188 R&D Projects: GA ČR(CZ) GC204/09/J030 Grant - others:GA ČR(CZ) GA204/09/0498; GA AV ČR(CZ) KJB501630801 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : beta-arrestin * Wnt signaling * dishevelled Subject RIV: BO - Biophysics Impact factor: 4.925, year: 2010

  4. Studies on the improvement of the components of essential oil of genus Mentha by radiation

    International Nuclear Information System (INIS)

    Ono, Seiroku

    1980-01-01

    M. arvensis L. var. piperascens M sub(AL). (2 n = 96, R sup(a)Rsup(a)SS JJ AA, main component menthol) as the material the elucidation of biosynthetic mechanisms of essential oil was attempted. As the result it has been demonstrated that the biosynthesis is completed between 84 - 86 days after placing individual cells in the culture medium, especially on 85 days. Such an elucidation serves as the criteria of the biosynthetic pathway elucidation and it is the first accomplishment in the world. Next, the irradiation with γ-rays of 55R/min, total dose 19.5 KR gives a marked effect, and by this method a new plant (rose mint) having aroma similar to rose oil has been established, and this new plant has been designated as ''rose mint.'' This new improved plant can yield about 1 Kg of essential oil from 30 Kg of plant, and in comparing to 1 Kg of essential oil obtained from about 10 6 rose flowers by the conventional method, the yield is enormously greater and its wide application can be expected in the future. This newly developed breeding method can be also applied to other plants where the extraction of the plant compositions is desired, and at present this method is applied to the Perilla by which a new plant having sweet taste has been successfully established. (author)

  5. In Vitro Control of Post-Harvest Fruit Rot Fungi by Some Plant Essential Oil Components

    Directory of Open Access Journals (Sweden)

    Gian Luigi Rana

    2012-02-01

    Full Text Available Eight substances that are main components of the essential oils from three Mediterranean aromatic plants (Verbena officinalis, Thymus vulgaris and Origanum vulgare, previously found active against some phytopathogenic Fungi and Stramenopila, have been tested in vitro against five etiological agents of post-harvest fruit decay, Botrytis cinerea, Penicillium italicum, P. expansum, Phytophthora citrophthora and Rhizopus stolonifer. The tested compounds were β-fellandrene, β-pinene, camphene, carvacrol, citral, o-cymene, γ-terpinene and thymol. Citral exhibited a fungicidal action against P. citrophthora; carvacrol and thymol showed a fungistatic activity against P. citrophthora and R. stolonifer. Citral and carvacrol at 250 ppm, and thymol at 150 and 250 ppm stopped the growth of B. cinerea. Moreover, thymol showed fungistatic and fungicidal action against P. italicum. Finally, the mycelium growth of P. expansum was inhibited in the presence of 250 ppm of thymol and carvacrol. These results represent an important step toward the goal to use some essential oils or their components as natural preservatives for fruits and foodstuffs, due to their safety for consumer healthy and positive effect on shelf life extension of agricultural fresh products.

  6. Radiosensitivity on the components of essential oil in the genus Mentha

    International Nuclear Information System (INIS)

    Ono, Seiroku

    1992-01-01

    The effects of seed irradiation using X-rays (20KR) on the components of the essential oil in the adult plant were investigated using Mentha arvensis L. var. piperascens Malinvaud (2n=96). 1. X-ray irradiation produced almost no effect on the dry matter weight and content of essential oil at any stage of growth. 2. Using X-ray irradiation, the level of free menthol was increased, and ester menthol and menthone were decreased. This seemed to suggest that menthol was synthesized by the reduction of the menthone. 3. The content of free menthol was found to increase linearly toward leaves of the upper level, while the content of menthone was found to gradually decrease and, finally, to disappear in leaves at fifth level of leaves. 4. No difference was found in the ratios of contents of inorganic component between the first and second harvest seasons. There was also no difference in the content of total nitrogen at any location of leaves, except when an increased concentration of nitrogen at the seventh level of leaves was found. (author)

  7. Variation in Myrtus communis L. Essential Oil Composition and its Antibacterial Activities Components

    International Nuclear Information System (INIS)

    Al-Mairiri, A.; Swied, G.; Hallab, L. A.; Oda, A.

    2016-01-01

    The Myrtus communis L. leaves samples were collected from five locations of its native grown areas in Lattakia, Syria, during their blooming seasons (June, 2009). Essential oil (EO) extraction was carried out by hydro-distillation in a Clevenger apparatus. The EO was analysed by both gas chromatography-Flame Ionization Detector (GC-FID) and gas chromatography/mass (GC/MS) techniques. The EO yield of the dry samples was found to be around 1.88%. The main identified components of EO were: alpha-pinene 30.40%, 1,8-cineole 17.66%, limonene 8.96%, myrtenol 5.78%, and beta-caryophyllene 5.00%. The bulk EO and the separated components were tested for their antibacterial activities against Escherichia coli O157, Salmonella typhimurium, Klebsiella pneumoniae, Yersinia enterocolitica O9, Brucella melitensis, Proteus spp., and Pseudomonas aeruginosa by using broth micro-dilution method. It was found that citronellal and nerol were the most effective components against all pathogens. (author)

  8. Biocidal effects of Piper hispidinervum (Piperaceae) essential oil and synergism among its main components.

    Science.gov (United States)

    Andrés, M F; Rossa, G E; Cassel, E; Vargas, R M F; Santana, O; Díaz, C E; González-Coloma, A

    2017-11-01

    In this study we evaluated the effect of a pressure gradient (1-2 atm) in the extraction and composition of the essential oil (EO) of Piper hispidinervum by steam distillation. We also evaluated the insect antifeedant effects (Spodoptera littoralis, Leptinotarsa decemlineata, Myzus persicae and Rhopalosiphum padi) and nematicidal activity (Meloidogyne javanica) of the oils, their major components and their synergistic interactions. Safrole was the major component (78-81%) followed by terpinolene (5-9%). The EOs tested were effective insect antifeedants. Safrole, explained most of the insect antifeedant action of P. hispidinervum EOs. When safrole and terpinolene were tested in binary combinations, low ratios of safrole improved the antifeedant effects of terpinolene. P. hispidinervum EOs caused higher mortality of M. javanica juveniles than their major components. In binary combinations, low ratios of terpinolene increased the nematicidal effects of safrole. The EO treatment strongly suppressed nematode egg hatching and juvenile infectivity. P. hispidinervum EOs affected the germination of S. lycopersicum and L. sativa mostly at 24 h of treatment, being L. sativa the most sensitive. Safrole moderately affected germination and root growth of L. sativa, S. lycopersicum and L. perenne. Terpinolene only affected S. lycopersicum root growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Trypanin, a component of the flagellar Dynein regulatory complex, is essential in bloodstream form African trypanosomes.

    Directory of Open Access Journals (Sweden)

    Katherine S Ralston

    2006-09-01

    Full Text Available The Trypanosoma brucei flagellum is a multifunctional organelle with critical roles in motility, cellular morphogenesis, and cell division. Although motility is thought to be important throughout the trypanosome lifecycle, most studies of flagellum structure and function have been restricted to the procyclic lifecycle stage, and our knowledge of the bloodstream form flagellum is limited. We have previously shown that trypanin functions as part of a flagellar dynein regulatory system that transmits regulatory signals from the central pair apparatus and radial spokes to axonemal dyneins. Here we investigate the requirement for this dynein regulatory system in bloodstream form trypanosomes. We demonstrate that trypanin is localized to the flagellum of bloodstream form trypanosomes, in a pattern identical to that seen in procyclic cells. Surprisingly, trypanin RNA interference is lethal in the bloodstream form. These knockdown mutants fail to initiate cytokinesis, but undergo multiple rounds of organelle replication, accumulating multiple flagella, nuclei, kinetoplasts, mitochondria, and flagellum attachment zone structures. These findings suggest that normal flagellar beat is essential in bloodstream form trypanosomes and underscore the emerging concept that there is a dichotomy between trypanosome lifecycle stages with respect to factors that contribute to cell division and cell morphogenesis. This is the first time that a defined dynein regulatory complex has been shown to be essential in any organism and implicates the dynein regulatory complex and other enzymatic regulators of flagellar motility as candidate drug targets for the treatment of African sleeping sickness.

  10. N-wasp is essential for the negative regulation of B cell receptor signaling.

    Directory of Open Access Journals (Sweden)

    Chaohong Liu

    2013-11-01

    Full Text Available Negative regulation of receptor signaling is essential for controlling cell activation and differentiation. In B-lymphocytes, the down-regulation of B-cell antigen receptor (BCR signaling is critical for suppressing the activation of self-reactive B cells; however, the mechanism underlying the negative regulation of signaling remains elusive. Using genetically manipulated mouse models and total internal reflection fluorescence microscopy, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP, which is coexpressed with WASP in all immune cells, is a critical negative regulator of B-cell signaling. B-cell-specific N-WASP gene deletion causes enhanced and prolonged BCR signaling and elevated levels of autoantibodies in the mouse serum. The increased signaling in N-WASP knockout B cells is concurrent with increased accumulation of F-actin at the B-cell surface, enhanced B-cell spreading on the antigen-presenting membrane, delayed B-cell contraction, inhibition in the merger of signaling active BCR microclusters into signaling inactive central clusters, and a blockage of BCR internalization. Upon BCR activation, WASP is activated first, followed by N-WASP in mouse and human primary B cells. The activation of N-WASP is suppressed by Bruton's tyrosine kinase-induced WASP activation, and is restored by the activation of SH2 domain-containing inositol 5-phosphatase that inhibits WASP activation. Our results reveal a new mechanism for the negative regulation of BCR signaling and broadly suggest an actin-mediated mechanism for signaling down-regulation.

  11. Comparative analysis of essential oil components of two Pinus species from Taibai Mountain in China.

    Science.gov (United States)

    Zhang, Yuan; Wang, Zhezhi

    2010-08-01

    Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were used to compare between the essential oil components from needles of Pinus armandii Franch versus P. tabulaeformis Carr., growing on the same site at Taibai Mountain, China. Under optimum extraction and analysis conditions, 65 and 66 constituents each were identified in P. armandii and P. tabulaeformis, which accounted for 87.9% and 87.1%, respectively, of their oils. Based on their terpene compositions, we concluded that these species belong to a high-caryophyllene chemotype, with sesquiterpenes comprising 54.4% to 54.8% of the total contents. We also determined minor qualitative and major quantitative variations in some compounds. Compared with that from P. tabulaeformis, P. armandii oil had more gamma-muurolene (7.5%), terpinolene (5.8%), and longifolene (5.7%). In contrast, alpha-pinene (8.6%) and caryophyllene oxide (7.4%) were the dominant compounds in P. tabulaeformis.

  12. Components from the Essential oil of Centaurea aeolica Guss. and C. diluta Aiton from Sicily, Italy

    Directory of Open Access Journals (Sweden)

    Mariem Ben Jemia

    2015-06-01

    Full Text Available Volatile components from florets, leaves and stems and branches of Centaurea aeolica Guss. harvested in Lipari, Sicily, Italy, were analysed by gas phase chomatography (GC and gas chomatography mass spectrometry (GC-MS. The main constituents were β-eudesmol, caryophyllene oxide, ( E -12-norcaryophyll-5-en-2-one and hexahydrofarnesylacetone in flowers, hexahydrofarnesylacetone, 2-methyloctadecane and tricosane in the leaves and hexadecanoic acid , caryophyllene oxide and β-eudesmol in the stems and branches . The analysis of the essential oil of the aerial parts of Centaurea diluta Aiton gave mainly fatty acids and derivatives, the main ones being hexadecanoic acid and (Z,Z-9,12-octadecadienoic acid methyl ester.

  13. The plant i-AAA protease controls the turnover of an essential mitochondrial protein import component.

    Science.gov (United States)

    Opalińska, Magdalena; Parys, Katarzyna; Murcha, Monika W; Jańska, Hanna

    2018-01-29

    Mitochondria are multifunctional organelles that play a central role in energy metabolism. Owing to the life-essential functions of these organelles, mitochondrial content, quality and dynamics are tightly controlled. Across the species, highly conserved ATP-dependent proteases prevent malfunction of mitochondria through versatile activities. This study focuses on a molecular function of the plant mitochondrial inner membrane-embedded AAA protease (denoted i -AAA) FTSH4, providing its first bona fide substrate. Here, we report that the abundance of the Tim17-2 protein, an essential component of the TIM17:23 translocase (Tim17-2 together with Tim50 and Tim23), is directly controlled by the proteolytic activity of FTSH4. Plants that are lacking functional FTSH4 protease are characterized by significantly enhanced capacity of preprotein import through the TIM17:23-dependent pathway. Taken together, with the observation that FTSH4 prevents accumulation of Tim17-2, our data point towards the role of this i -AAA protease in the regulation of mitochondrial biogenesis in plants. © 2018. Published by The Company of Biologists Ltd.

  14. Evolutionary Recycling of Light Signaling Components in Fleshy Fruits: New Insights on the Role of Pigments to Monitor Ripening

    OpenAIRE

    Llorente, Briardo; D?Andrea, Lucio; Rodr?guez-Concepci?n, Manuel

    2016-01-01

    Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum) affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mec...

  15. Exploring fMRI Data for Periodic Signal Components

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Nielsen, Finn Årup; Larsen, Jan

    2002-01-01

    We use a Bayesian framework to detect periodic components in fMRI data. The resulting detector is sensitive to periodic components with a flexible number of harmonics and with arbitrary amplitude and phases of the harmonics. It is possible to detect the correct number of harmonics in periodic sig...

  16. Structure and assembly of the essential RNA ring component of a viral DNA packaging motor.

    Science.gov (United States)

    Ding, Fang; Lu, Changrui; Zhao, Wei; Rajashankar, Kanagalaghatta R; Anderson, Dwight L; Jardine, Paul J; Grimes, Shelley; Ke, Ailong

    2011-05-03

    Prohead RNA (pRNA) is an essential component in the assembly and operation of the powerful bacteriophage 29 DNA packaging motor. The pRNA forms a multimeric ring via intermolecular base-pairing interactions between protomers that serves to guide the assembly of the ring ATPase that drives DNA packaging. Here we report the quaternary structure of this rare multimeric RNA at 3.5 Å resolution, crystallized as tetrameric rings. Strong quaternary interactions and the inherent flexibility helped rationalize how free pRNA is able to adopt multiple oligomerization states in solution. These characteristics also allowed excellent fitting of the crystallographic pRNA protomers into previous prohead/pRNA cryo-EM reconstructions, supporting the presence of a pentameric, but not hexameric, pRNA ring in the context of the DNA packaging motor. The pentameric pRNA ring anchors itself directly to the phage prohead by interacting specifically with the fivefold symmetric capsid structures that surround the head-tail connector portal. From these contacts, five RNA superhelices project from the pRNA ring, where they serve as scaffolds for binding and assembly of the ring ATPase, and possibly mediate communication between motor components. Construction of structure-based designer pRNAs with little sequence similarity to the wild-type pRNA were shown to fully support the packaging of 29 DNA.

  17. Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration.

    Science.gov (United States)

    Farkas, Johanna E; Freitas, Polina D; Bryant, Donald M; Whited, Jessica L; Monaghan, James R

    2016-08-01

    The Mexican axolotl (Ambystoma mexicanum) is capable of fully regenerating amputated limbs, but denervation of the limb inhibits the formation of the post-injury proliferative mass called the blastema. The molecular basis behind this phenomenon remains poorly understood, but previous studies have suggested that nerves support regeneration via the secretion of essential growth-promoting factors. An essential nerve-derived factor must be found in the blastema, capable of rescuing regeneration in denervated limbs, and its inhibition must prevent regeneration. Here, we show that the neuronally secreted protein Neuregulin-1 (NRG1) fulfills all these criteria in the axolotl. Immunohistochemistry and in situ hybridization of NRG1 and its active receptor ErbB2 revealed that they are expressed in regenerating blastemas but lost upon denervation. NRG1 was localized to the wound epithelium prior to blastema formation and was later strongly expressed in proliferating blastemal cells. Supplementation by implantation of NRG1-soaked beads rescued regeneration to digits in denervated limbs, and pharmacological inhibition of NRG1 signaling reduced cell proliferation, blocked blastema formation and induced aberrant collagen deposition in fully innervated limbs. Taken together, our results show that nerve-dependent NRG1/ErbB2 signaling promotes blastemal proliferation in the regenerating limb and may play an essential role in blastema formation, thus providing insight into the longstanding question of why nerves are required for axolotl limb regeneration. © 2016. Published by The Company of Biologists Ltd.

  18. The Ihh signal is essential for regulating proliferation and hypertrophy of cultured chicken chondrocytes.

    Science.gov (United States)

    Ma, R S; Zhou, Z L; Luo, J W; Zhang, H; Hou, J F

    2013-10-01

    The Indian hedgehog (Ihh) signal plays a vital role in regulating proliferation and hypertrophy of chondrocytes. To investigate its function in postnatal chicken (Gallus gallus) chondrocytes, cyclopamine was used to inhibit Ihh signaling. The MTT and ALP assays revealed the downgrade-proliferation and upgrade-differentiation of chondrocytes. To further elucidate the mechanism, the mRNA expression levels of Ihh, parathyroid hormone related protein (PTHrP), Gli-2, Bcl-2, Bone Morphogenetic Protein 6 (BMP-6), type X collagen (Col X) and type II collagen (Col II) were detected by quantitative real-time RT-PCR analysis, and the protein expressions of Ihh, Col X, and Col II were determined using Western blot analysis. After the Ihh signal was blocked, chondrocytes demonstrated high expression levels of PTHrP and Col X and low levels of Gli-2, BMP-6, Bcl-2 and Col II although Ihh expression was increased. Based on these results, the Ihh signal is essential for balancing chicken chondrocyte proliferation and hypertrophy, and the regulatory function of PTHrP acts in an Ihh-dependent manner. Furthermore, BMP-6 and Bcl-2 played roles in maintaining the development of chondrocytes and may be downstream regulatory factors of Ihh signaling. © 2013.

  19. WRKY transcription factors: key components in abscisic acid signalling.

    Science.gov (United States)

    Rushton, Deena L; Tripathi, Prateek; Rabara, Roel C; Lin, Jun; Ringler, Patricia; Boken, Ashley K; Langum, Tanner J; Smidt, Lucas; Boomsma, Darius D; Emme, Nicholas J; Chen, Xianfeng; Finer, John J; Shen, Qingxi J; Rushton, Paul J

    2012-01-01

    WRKY transcription factors (TFs) are key regulators of many plant processes, including the responses to biotic and abiotic stresses, senescence, seed dormancy and seed germination. For over 15 years, limited evidence has been available suggesting that WRKY TFs may play roles in regulating plant responses to the phytohormone abscisic acid (ABA), notably some WRKY TFs are ABA-inducible repressors of seed germination. However, the roles of WRKY TFs in other aspects of ABA signalling, and the mechanisms involved, have remained unclear. Recent significant progress in ABA research has now placed specific WRKY TFs firmly in ABA-responsive signalling pathways, where they act at multiple levels. In Arabidopsis, WRKY TFs appear to act downstream of at least two ABA receptors: the cytoplasmic PYR/PYL/RCAR-protein phosphatase 2C-ABA complex and the chloroplast envelope-located ABAR-ABA complex. In vivo and in vitro promoter-binding studies show that the target genes for WRKY TFs that are involved in ABA signalling include well-known ABA-responsive genes such as ABF2, ABF4, ABI4, ABI5, MYB2, DREB1a, DREB2a and RAB18. Additional well-characterized stress-inducible genes such as RD29A and COR47 are also found in signalling pathways downstream of WRKY TFs. These new insights also reveal that some WRKY TFs are positive regulators of ABA-mediated stomatal closure and hence drought responses. Conversely, many WRKY TFs are negative regulators of seed germination, and controlling seed germination appears a common function of a subset of WRKY TFs in flowering plants. Taken together, these new data demonstrate that WRKY TFs are key nodes in ABA-responsive signalling networks. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  20. [Study on the chemical components, antimicrobial and antitumor activities of the essential oil from the leaves of Zanthoxylum avicennae].

    Science.gov (United States)

    Zhang, Da-Shuai; Zhong, Qiong-Xin; Song, Xin-Ming; Liu, Wen-Jie; Wang, Jing; Zhang, Qiong-Yu

    2012-08-01

    To study the chemical constituents, antimicrobial activity and antitumor activity of the essential oil from Zanthoxylum avicennae. The essential oil from the leaves of Zanthoxylum avicennae was extracted by steam distillation. The components of the essential oil were separated and identified by GC-MS. 72 components were identified and accounted for 98.15% of the all peak area. The essential oil exhibited strong antitumor activity against K-562 human tumor cell lines with IC50 of 1.76 microg/mL. It also exhibited moderate antimicrobial activity against three bacteria. The essential oil of Zanthoxylum avicennae contains various active constituents. This result provides scientific reference for the pharmacological further research of Zanthoxylum avicennae.

  1. Myrtaceae Plant Essential Oils and their β-Triketone Components as Insecticides against Drosophila suzukii

    Directory of Open Access Journals (Sweden)

    Chung Gyoo Park

    2017-06-01

    Full Text Available Spotted wing drosophila (SWD, Drosophila suzukii (Matsumura, Diptera: Drosophilidae is recognized as an economically important pest in North America and Europe as well as in Asia. Assessments were made for fumigant and contact toxicities of six Myrtaceae plant essential oils (EOs and their components to find new alternative types of insecticides active against SWD. Among the EOs tested, Leptospermum citratum EO, consisting mainly of geranial and neral, exhibited effective fumigant activity. Median lethal dose (LD50; mg/L values of L. citratum were 2.39 and 3.24 for males and females, respectively. All tested EOs except Kunzea ambigua EO exhibited effective contact toxicity. LD50 (µg/fly values for contact toxicity of manuka and kanuka were 0.60 and 0.71, respectively, for males and 1.10 and 1.23, respectively, for females. The LD50 values of the other 3 EOs-L. citratum, allspice and clove bud were 2.11–3.31 and 3.53–5.22 for males and females, respectively. The non-polar fraction of manuka and kanuka did not show significant contact toxicity, whereas the polar and triketone fractions, composed of flavesone, isoleptospermone and leptospermone, exhibited efficient activity with the LD50 values of 0.13–0.37 and 0.22–0.57 µg/fly for males and females, respectively. Our results indicate that Myrtaceae plant EOs and their triketone components can be used as alternatives to conventional insecticides.

  2. Signalling components of the house mouse mate recognition system

    Czech Academy of Sciences Publication Activity Database

    Bímová, Barbora; Albrecht, Tomáš; Macholán, Miloš; Piálek, Jaroslav

    2009-01-01

    Roč. 80, č. 1 (2009), s. 20-27 ISSN 0376-6357 R&D Projects: GA AV ČR IAA600930506 Institutional research plan: CEZ:AV0Z60930519; CEZ:AV0Z50450515 Keywords : Faeces * Olfactory communication * Salivary and rogen binding protein * Sexual preferences * Urinary signals Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.527, year: 2009

  3. Global-scale equatorial Rossby waves as an essential component of solar internal dynamics

    Science.gov (United States)

    Löptien, Björn; Gizon, Laurent; Birch, Aaron C.; Schou, Jesper; Proxauf, Bastian; Duvall, Thomas L.; Bogart, Richard S.; Christensen, Ulrich R.

    2018-05-01

    The Sun’s complex dynamics is controlled by buoyancy and rotation in the convection zone. Large-scale flows are dominated by vortical motions1 and appear to be weaker than expected in the solar interior2. One possibility is that waves of vorticity due to the Coriolis force, known as Rossby waves3 or r modes4, remove energy from convection at the largest scales5. However, the presence of these waves in the Sun is still debated. Here, we unambiguously discover and characterize retrograde-propagating vorticity waves in the shallow subsurface layers of the Sun at azimuthal wavenumbers below 15, with the dispersion relation of textbook sectoral Rossby waves. The waves have lifetimes of several months, well-defined mode frequencies below twice the solar rotational frequency, and eigenfunctions of vorticity that peak at the equator. Rossby waves have nearly as much vorticity as the convection at the same scales, thus they are an essential component of solar dynamics. We observe a transition from turbulence-like to wave-like dynamics around the Rhines scale6 of angular wavenumber of approximately 20. This transition might provide an explanation for the puzzling deficit of kinetic energy at the largest spatial scales.

  4. Tob38, a novel essential component in the biogenesis of β-barrel proteins of mitochondria

    Science.gov (United States)

    Waizenegger, Thomas; Habib, Shukry J; Lech, Maciej; Mokranjac, Dejana; Paschen, Stefan A; Hell, Kai; Neupert, Walter; Rapaport, Doron

    2004-01-01

    Insertion of β-barrel proteins into the outer membrane of mitochondria is mediated by the TOB complex. Known constituents of this complex are Tob55 and Mas37. We identified a novel component, Tob38. It is essential for viability of yeast and the function of the TOB complex. Tob38 is exposed on the surface of the mitochondrial outer membrane. It interacts with Mas37 and Tob55 and is associated with Tob55 even in the absence of Mas37. The Tob38–Tob55 core complex binds precursors of β-barrel proteins and facilitates their insertion into the outer membrane. Depletion of Tob38 results in strongly reduced levels of Tob55 and Mas37 and the residual proteins no longer form a complex. Tob38-depleted mitochondria are deficient in the import of β-barrel precursor proteins, but not of other outer membrane proteins or proteins of other mitochondrial subcompartments. We conclude that Tob38 has a crucial function in the biogenesis of β-barrel proteins of mitochondria. PMID:15205677

  5. HSP90 is essential for Jak-STAT signaling in classical Hodgkin lymphoma cells

    Directory of Open Access Journals (Sweden)

    Kube Dieter

    2009-07-01

    Full Text Available Abstract In classical Hodgkin lymphoma (cHL chemotherapeutic regimens are associated with stagnant rates of secondary malignancies requiring the development of new therapeutic strategies. We and others have shown that permanently activated Signal Transducer and Activator of Transcription (STAT molecules are essential for cHL cells. Recently an overexpression of heat-shock protein 90 (HSP90 in cHL cells has been shown and inhibition of HSP90 seems to affect cHL cell survival. Here we analysed the effects of HSP90 inhibition by geldanamycin derivative 17-AAG or RNA interference (RNAi on aberrant Jak-STAT signaling in cHL cells. Treatment of cHL cell lines with 17-AAG led to reduced cell proliferation and a complete inhibition of STAT1, -3, -5 and -6 tyrosine phosphorylation probably as a result of reduced protein expression of Janus kinases (Jaks. RNAi-mediated inhibition of HSP90 showed similar effects on Jak-STAT signaling in L428 cHL cells. These results suggest a central role of HSP90 in permanently activated Jak-STAT signaling in cHL cells. Therapeutics targeting HSP90 may be a promising strategy in cHL and other cancer entities associated with deregulated Jak-STAT pathway activation.

  6. STRIP1, a core component of STRIPAK complexes, is essential for normal mesoderm migration in the mouse embryo.

    Science.gov (United States)

    Bazzi, Hisham; Soroka, Ekaterina; Alcorn, Heather L; Anderson, Kathryn V

    2017-12-19

    Regulated mesoderm migration is necessary for the proper morphogenesis and organ formation during embryonic development. Cell migration and its dependence on the cytoskeleton and signaling machines have been studied extensively in cultured cells; in contrast, remarkably little is known about the mechanisms that regulate mesoderm cell migration in vivo. Here, we report the identification and characterization of a mouse mutation in striatin-interacting protein 1 ( Strip1 ) that disrupts migration of the mesoderm after the gastrulation epithelial-to-mesenchymal transition (EMT). STRIP1 is a core component of the biochemically defined mammalian striatin-interacting phosphatases and kinase (STRIPAK) complexes that appear to act through regulation of protein phosphatase 2A (PP2A), but their functions in mammals in vivo have not been examined. Strip1 -null mutants arrest development at midgestation with profound disruptions in the organization of the mesoderm and its derivatives, including a complete failure of the anterior extension of axial mesoderm. Analysis of cultured mesoderm explants and mouse embryonic fibroblasts from null mutants shows that the mesoderm migration defect is correlated with decreased cell spreading, abnormal focal adhesions, changes in the organization of the actin cytoskeleton, and decreased velocity of cell migration. The results show that STRIPAK complexes are essential for cell migration and tissue morphogenesis in vivo. Copyright © 2017 the Author(s). Published by PNAS.

  7. [Comparison of chemical components of essential oils in needles of Pinus massoniana Lamb and Pinus elliottottii Engelm from Guangxi].

    Science.gov (United States)

    Shen, Changmao; Duan, Wengui; Cen, Bo; Tan, Jianhui

    2006-11-01

    Essential oils were extracted by steam distillation from the needles of Pinus massoniana Lamb and Pinus elliottottii Engelm grown in Guangxi. Various factors such as pine needle dosage and extraction time which may influence the oil yield were investigated. The optimum conditions were found to be as follows: pine needle dosage 700 g, extraction time 5 h. The essential oil yields from the needles of Pinus massoniana Lamb and Pinus elliottottii Engelm were 0.45% and 0.19%, respectively. Moreover, the chemical compositions of the essential oils were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Sixty four components in the essential oil from needle of Pinus massoniana Lamb were separated and twenty of them (98.59%) were identified while seventy three components in the essential oil from needle of Pinus elliottottii Engelm were separated and twenty nine of them (94.23%) were identified. Generally, the compositions of the essential oils from needles of the two varieties were similar but the contents of some compounds differed greatly. Especially, the content of alpha-pinene in the essential oils from Pinus massoniana Lamb needles was 2.6 times as that from Pinus elliottottii Engelm needles, but the content of beta-pinene was less than the latter. Mono- and sesquiterpenes were the main composition of the essential oils from Pinus massoniana Lamb and Pinus elliottottii Engelm needles.

  8. LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin.

    Directory of Open Access Journals (Sweden)

    Anderly C Chueh

    2009-01-01

    Full Text Available We have previously identified and characterized the phenomenon of ectopic human centromeres, known as neocentromeres. Human neocentromeres form epigenetically at euchromatic chromosomal sites and are structurally and functionally similar to normal human centromeres. Recent studies have indicated that neocentromere formation provides a major mechanism for centromere repositioning, karyotype evolution, and speciation. Using a marker chromosome mardel(10 containing a neocentromere formed at the normal chromosomal 10q25 region, we have previously mapped a 330-kb CENP-A-binding domain and described an increased prevalence of L1 retrotransposons in the underlying DNA sequences of the CENP-A-binding clusters. Here, we investigated the potential role of the L1 retrotransposons in the regulation of neocentromere activity. Determination of the transcriptional activity of a panel of full-length L1s (FL-L1s across a 6-Mb region spanning the 10q25 neocentromere chromatin identified one of the FL-L1 retrotransposons, designated FL-L1b and residing centrally within the CENP-A-binding clusters, to be transcriptionally active. We demonstrated the direct incorporation of the FL-L1b RNA transcripts into the CENP-A-associated chromatin. RNAi-mediated knockdown of the FL-L1b RNA transcripts led to a reduction in CENP-A binding and an impaired mitotic function of the 10q25 neocentromere. These results indicate that LINE retrotransposon RNA is a previously undescribed essential structural and functional component of the neocentromeric chromatin and that retrotransposable elements may serve as a critical epigenetic determinant in the chromatin remodelling events leading to neocentromere formation.

  9. Canonical Wnt/β-catenin signalling is essential for optic cup formation.

    Directory of Open Access Journals (Sweden)

    Anna-Carin Hägglund

    Full Text Available A multitude of signalling pathways are involved in the process of forming an eye. Here we demonstrate that β-catenin is essential for eye development as inactivation of β-catenin prior to cellular specification in the optic vesicle caused anophthalmia in mice. By achieving this early and tissue-specific β-catenin inactivation we find that retinal pigment epithelium (RPE commitment was blocked and eye development was arrested prior to optic cup formation due to a loss of canonical Wnt signalling in the dorsal optic vesicle. Thus, these results show that Wnt/β-catenin signalling is required earlier and play a more central role in eye development than previous studies have indicated. In our genetic model system a few RPE cells could escape β-catenin inactivation leading to the formation of a small optic rudiment. The optic rudiment contained several neural retinal cell classes surrounded by an RPE. Unlike the RPE cells, the neural retinal cells could be β-catenin-negative revealing that differentiation of the neural retinal cell classes is β-catenin-independent. Moreover, although dorsoventral patterning is initiated in the mutant optic vesicle, the neural retinal cells in the optic rudiment displayed almost exclusively ventral identity. Thus, β-catenin is required for optic cup formation, commitment to RPE cells and maintenance of dorsal identity of the retina.

  10. Affective Learning and Personal Information Management: Essential Components of Information Literacy

    Science.gov (United States)

    Cahoy, Ellysa Stern

    2013-01-01

    "Affective competence," managing the feelings and emotions that students encounter throughout the content creation/research process, is essential to academic success. Just as it is crucial for students to acquire core literacies, it is essential that they learn how to manage the anxieties and emotions that will emerge throughout all…

  11. Pannexin 1 channels play essential roles in urothelial mechanotransduction and intercellular signaling.

    Directory of Open Access Journals (Sweden)

    Hiromitsu Negoro

    Full Text Available Urothelial cells respond to bladder distension with ATP release, and ATP signaling within the bladder and from the bladder to the CNS is essential for proper bladder function. In other cell types, pannexin 1 (Panx1 channels provide a pathway for mechanically-induced ATP efflux and for ATP-induced ATP release through interaction with P2X7 receptors (P2X7Rs. We report that Panx1 and P2X7R are functionally expressed in the bladder mucosa and in immortalized human urothelial cells (TRT-HU1, and participate in urothelial ATP release and signaling. ATP release from isolated rat bladders induced by distention was reduced by the Panx1 channel blocker mefloquine (MFQ and was blunted in mice lacking Panx1 or P2X7R expression. Hypoosmotic shock induced YoPro dye uptake was inhibited by MFQ and the P2X7R blocker A438079 in TRT-HU1 cells, and was also blunted in primary urothelial cells derived from mice lacking Panx1 or P2X7R expression. Rinsing-induced mechanical stimulation of TRT-HU1 cells triggered ATP release, which was reduced by MFQ and potentiated in low divalent cation solution (LDPBS, a condition known to enhance P2X7R activation. ATP signaling evaluated as intercellular Ca2+ wave radius was significantly larger in LDPBS, reduced by MFQ and by apyrase (ATP scavenger. These findings indicate that Panx1 participates in urothelial mechanotransduction and signaling by providing a direct pathway for mechanically-induced ATP release and by functionally interacting with P2X7Rs.

  12. The Peroxisomal Targeting Signal 1 in sterol carrier protein 2 is autonomous and essential for receptor recognition

    Directory of Open Access Journals (Sweden)

    Bond Charles S

    2011-03-01

    Full Text Available Abstract Background The majority of peroxisomal matrix proteins destined for translocation into the peroxisomal lumen are recognised via a C-terminal Peroxisomal Target Signal type 1 by the cycling receptor Pex5p. The only structure to date of Pex5p in complex with a cargo protein is that of the C-terminal cargo-binding domain of the receptor with sterol carrier protein 2, a small, model peroxisomal protein. In this study, we have tested the contribution of a second, ancillary receptor-cargo binding site, which was found in addition to the characterised Peroxisomal Target Signal type 1. Results To investigate the function of this secondary interface we have mutated two key residues from the ancillary binding site and analyzed the level of binding first by a yeast-two-hybrid assay, followed by quantitative measurement of the binding affinity and kinetics of purified protein components and finally, by in vivo measurements, to determine translocation capability. While a moderate but significant reduction of the interaction was found in binding assays, we were not able to measure any significant defects in vivo. Conclusions Our data therefore suggest that at least in the case of sterol carrier protein 2 the contribution of the second binding site is not essential for peroxisomal import. At this stage, however, we cannot rule out that other cargo proteins may require this ancillary binding site.

  13. Perceived Synchrony of Frog Multimodal Signal Components Is Influenced by Content and Order.

    Science.gov (United States)

    Taylor, Ryan C; Page, Rachel A; Klein, Barrett A; Ryan, Michael J; Hunter, Kimberly L

    2017-10-01

    Multimodal signaling is common in communication systems. Depending on the species, individual signal components may be produced synchronously as a result of physiological constraint (fixed) or each component may be produced independently (fluid) in time. For animals that rely on fixed signals, a basic prediction is that asynchrony between the components should degrade the perception of signal salience, reducing receiver response. Male túngara frogs, Physalaemus pustulosus, produce a fixed multisensory courtship signal by vocalizing with two call components (whines and chucks) and inflating a vocal sac (visual component). Using a robotic frog, we tested female responses to variation in the temporal arrangement between acoustic and visual components. When the visual component lagged a complex call (whine + chuck), females largely rejected this asynchronous multisensory signal in favor of the complex call absent the visual cue. When the chuck component was removed from one call, but the robofrog inflation lagged the complex call, females responded strongly to the asynchronous multimodal signal. When the chuck component was removed from both calls, females reversed preference and responded positively to the asynchronous multisensory signal. When the visual component preceded the call, females responded as often to the multimodal signal as to the call alone. These data show that asynchrony of a normally fixed signal does reduce receiver responsiveness. The magnitude and overall response, however, depend on specific temporal interactions between the acoustic and visual components. The sensitivity of túngara frogs to lagging visual cues, but not leading ones, and the influence of acoustic signal content on the perception of visual asynchrony is similar to those reported in human psychophysics literature. Virtually all acoustically communicating animals must conduct auditory scene analyses and identify the source of signals. Our data suggest that some basic

  14. Antifungal effect of essential oil components against Aspergillus niger when loaded into silica mesoporous supports

    Czech Academy of Sciences Publication Activity Database

    Bernardos, A.; Marina, T.; Žáček, Petr; Pérez-Esteve, É.; Martínez-Manez, R.; Lhotka, M.; Kouřimská, L.; Pulkrábek, J.; Klouček, P.

    2015-01-01

    Roč. 95, č. 14 (2015), s. 2824-2831 ISSN 0022-5142 Institutional support: RVO:61388963 Keywords : essential oils * encapsulation * cyclodextrin * controlled release * antifungal activity Subject RIV: EE - Microbiology, Virology Impact factor: 2.076, year: 2015

  15. The effects of drying on the chemical components of essential oils of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... The significance of the effect of drying on essential oil composition of this plant is discussed. ... addition, the in vitro antimicrobial activities of its oils have ..... methods on the flavour quality of marjoram (Origanum majorana L.),.

  16. Motile cilia of human airway epithelia contain hedgehog signaling components that mediate noncanonical hedgehog signaling.

    Science.gov (United States)

    Mao, Suifang; Shah, Alok S; Moninger, Thomas O; Ostedgaard, Lynda S; Lu, Lin; Tang, Xiao Xiao; Thornell, Ian M; Reznikov, Leah R; Ernst, Sarah E; Karp, Philip H; Tan, Ping; Keshavjee, Shaf; Abou Alaiwa, Mahmoud H; Welsh, Michael J

    2018-02-06

    Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gα i and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses. Copyright © 2018 the Author(s). Published by PNAS.

  17. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice.

    Science.gov (United States)

    Ayano, Madoka; Kani, Takahiro; Kojima, Mikiko; Sakakibara, Hitoshi; Kitaoka, Takuya; Kuroha, Takeshi; Angeles-Shim, Rosalyn B; Kitano, Hidemi; Nagai, Keisuke; Ashikari, Motoyuki

    2014-10-01

    Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  18. Female preferences for aposematic signal components in a polymorphic poison frog

    NARCIS (Netherlands)

    Maan, Martine E.; Cummings, Molly E.

    Aposematic signals may be subject to conflicting selective pressures from predators and conspecifics. We studied female preferences for different components of aposematic coloration in the polymorphic poison frog Oophaga pumilio across several phenotypically distinct populations. This frog shows

  19. Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom

    NARCIS (Netherlands)

    Sokovic, M.; Griensven, van L.J.L.D.

    2006-01-01

    Essential oils of Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angusti folia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium and their components; linalyl acetate, linalool, limonene, ¿-pinene, ß-pinene, 1,8-cineole, camphor,

  20. At-Risk Programs for Middle School and High School: Essential Components and Recommendations for Administrators and Teachers.

    Science.gov (United States)

    Bateman, Susan; Karr-Kidwell, PJ

    This paper provides an extensive literature review concerning at-risk students and their needs, identifies the essential components necessary for effective at-risk programming, and describes successful at-risk programs and recommendations for administrators and teachers at the middle- and high-school levels. The literature review presents research…

  1. Discrimination of Parkinsonian Tremor From Essential Tremor by Voting Between Different EMG Signal Processing Techniques

    Directory of Open Access Journals (Sweden)

    A Hossen

    2014-06-01

    Full Text Available Parkinson's disease (PD and essential tremor (ET are the two most common disorders that cause involuntary muscle shaking movements, or what is called "tremor”. PD is a neurodegenerative disease caused by the loss of dopamine receptors which control and adjust the movement of the body. On the other hand, ET is a neurological movement disorder which also causes tremors and shaking, but it is not related to dopamine receptor loss; it is simply a tremor. The differential diagnosis between these two disorders is sometimes difficult to make clinically because of the similarities of their symptoms; additionally, the available tests are complex and expensive. Thus, the objective of this paper is to discriminate between these two disorders with simpler, cheaper and easier ways by using electromyography (EMG signal processing techniques. EMG and accelerometer records of 39 patients with PD and 41 with ET were acquired from the Hospital of Kiel University in Germany and divided into a trial group and a test group. Three main techniques were applied: the wavelet-based soft-decision technique, statistical signal characterization (SSC of the spectrum of the signal, and SSC of the amplitude variation of the Hilbert transform. The first technique resulted in a discrimination efficiency of 80% on the trial set and 85% on the test set. The second technique resulted in an efficiency of 90% on the trial set and 82.5% on the test set. The third technique resulted in an 87.5% efficiency on the trial set and 65.5% efficiency on the test set. Lastly, a final vote was done to finalize the discrimination using these three techniques, and as a result of the vote, accuracies of 92.5%, 85.0% and 88.75% were obtained on the trial data, test data and total data, respectively.

  2. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls.

    Directory of Open Access Journals (Sweden)

    Mathieu Lévesque

    2007-11-01

    Full Text Available Axolotls (urodele amphibians have the unique ability, among vertebrates, to perfectly regenerate many parts of their body including limbs, tail, jaw and spinal cord following injury or amputation. The axolotl limb is the most widely used structure as an experimental model to study tissue regeneration. The process is well characterized, requiring multiple cellular and molecular mechanisms. The preparation phase represents the first part of the regeneration process which includes wound healing, cellular migration, dedifferentiation and proliferation. The redevelopment phase represents the second part when dedifferentiated cells stop proliferating and redifferentiate to give rise to all missing structures. In the axolotl, when a limb is amputated, the missing or wounded part is regenerated perfectly without scar formation between the stump and the regenerated structure. Multiple authors have recently highlighted the similarities between the early phases of mammalian wound healing and urodele limb regeneration. In mammals, one very important family of growth factors implicated in the control of almost all aspects of wound healing is the transforming growth factor-beta family (TGF-beta. In the present study, the full length sequence of the axolotl TGF-beta1 cDNA was isolated. The spatio-temporal expression pattern of TGF-beta1 in regenerating limbs shows that this gene is up-regulated during the preparation phase of regeneration. Our results also demonstrate the presence of multiple components of the TGF-beta signaling machinery in axolotl cells. By using a specific pharmacological inhibitor of TGF-beta type I receptor, SB-431542, we show that TGF-beta signaling is required for axolotl limb regeneration. Treatment of regenerating limbs with SB-431542 reveals that cellular proliferation during limb regeneration as well as the expression of genes directly dependent on TGF-beta signaling are down-regulated. These data directly implicate TGF

  3. Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating

    International Nuclear Information System (INIS)

    Wang Wen-Bo; Zhang Xiao-Dong; Chang Yuchan; Wang Xiang-Li; Wang Zhao; Chen Xi; Zheng Lei

    2016-01-01

    In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the independent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor. (paper)

  4. Soy Components Genistein and Lunasin Regulate E-Cadherin and Wnt Signaling in Mammary Epithelial Cells

    Science.gov (United States)

    Enhanced Wnt/beta-catenin signaling and loss of E-cadherin expression are considered hallmarks of tumorigenesis. We previously showed by microarray gene profiling that dietary intake of soy-based AIN-93G diets altered components of Wnt/beta-catenin signaling in rat mammary epithelial cells. To furth...

  5. The effects of drying on the chemical components of essential oils of ...

    African Journals Online (AJOL)

    Calendula officinalis is a medicinal plant whose essential oils are used for various purposes. The oils were extracted by hydrodistillation from fresh leaves, dry leaves and fresh flowers of the herb yielding 0.06, 0.03 and 0.09%, respectively. The analysis of the oils by GC-MS revealed a total of 30, 21 and 24 compounds from ...

  6. Evaluation of essential oil components from the fruit peelings of sindhri and langra varieties of mango (mangifera indica L.)

    International Nuclear Information System (INIS)

    Baloch, F. S.; Tahir, S. S.; Jilani, N. S.; Khokhar, A. L.; Rajput, M. T.

    2017-01-01

    The present study was carried out to evaluate essential oil contents found in the fruit peelings of the two varieties of Mango (Mangifera indica L.), belonging to family Anacardiaceae which is commonly called Cashew family. Genus Mangifera has about forty species in S.E. Asia and Indo Malaya region. Several Mango varieties are cultivated in many areas of Pakistan. For this study GC-MS was used for the characterization of the extracted essential oil. Two Mango varieties namely, Sindhri and Langra were selected from Mirpurkhas district. Essential oil was extracted from Mango peelings by hydro distillation method. The total 34 essential oil components ranging between 0.16-49.4% identified from the Sindhri and Langra Mango varieties. Bicyclo [4.1.0] hept-3-ene, 3, 7, 7-trimethyl-, (1S) was found abundant in both varieties with 49.46% and 47.93%, respectively. Yield of essential oil was found to be 3.25% in fresh Mango fruit peelings of Sindhri, whereas 1.04% was present in Langra variety. Result of present study indicated that peelings of Mango varieties could be used as a source of many useful components. (author)

  7. Gastroprotective activity of essential oil of the Syzygium aromaticum and its major component eugenol in different animal models.

    Science.gov (United States)

    Santin, José Roberto; Lemos, Marivane; Klein-Júnior, Luiz Carlos; Machado, Isabel Daufenback; Costa, Philipe; de Oliveira, Ana Paula; Tilia, Crislaine; de Souza, Juliana Paula; de Sousa, João Paulo Barreto; Bastos, Jairo Kenupp; de Andrade, Sérgio Faloni

    2011-02-01

    Syzygium aromaticum, a medicinal plant commonly known as clove, is used to treat toothache, respiratory disorders, inflammation, and gastrointestinal disorders. From the flower buds of S. aromaticum, it is possible to obtain an essential oil comprised of a mixture of aliphatic and cyclic volatile terpenes and phenylpropanoids, being eugenol as the main component. The aims of this study were: (1) to extract the essential oil of the flower buds of S. aromaticum, (2) to identify and quantify the main component of the essential oil, and (3) to evaluate its antiulcer activity using different animal models. Assays were performed using the following protocols in rats: indomethacin-induced and ethanol/HCl-induced ulcer model. Both essential oils from S. aromaticum and eugenol displayed antiulcer activities in the rat models of indomethacin- and ethanol-induced ulcer. Studies focusing on the possible mechanisms of gastroprotection were also undertaken using the following experiments: evaluation of gastric secretion by the pylorus-ligated model, determination of mucus in gastric content, participation of nitric oxide (NO) and endogenous sulfhydryl in gastric protection. The results show that there was no significant effect on the volume of gastric juice and total acidity. However, the quantification of free gastric mucus showed that the clove oil and eugenol were capable of significantly enhancing mucus production. With regard to the NO and endogenous sulfhydryls, the results demonstrated that the gastroprotection induced by clove oil and eugenol are not related to the activities of the nitric oxide and endogenous sulfhydryls. No sign of toxicity was observed in the acute toxicity study. In conclusion, the results of this study show that essential oil of S. aromaticum, as well as its main component (eugenol), possesses antiulcer activity. The data suggest that the effectiveness of the essential oil and eugenol is based on its ability to stimulate the synthesis of mucus, an

  8. Volatile components of essential oil from cultivated Myrica gale var. tomentosa and its antioxidant and antimicrobial activities.

    Science.gov (United States)

    Nakata, Mayuko; Myoda, Takao; Wakita, Yoichi; Sato, Takahiro; Tanahashi, Ikuko; Toeda, Kazuki; Fujimori, Takane; Nishizawa, Makoto

    2013-01-01

    Aromatic components in the essential oil prepared from the leaves of cultivated Myrica gale var. tomentosa were compared with those from oil derived wild plants by using gas chromatography-mass spectroscopy (GC/MS). We found that essential oils from both the wild and cultivated plants contained similar aromatic components such as β-elemenone, selina 3,7(11)-diene, myrcene, limonene, cymene, 1,8-cineole, and β-pinene, but the content ratio of the oil was significantly different, which might yield differences in the aromatic properties. The aroma impact components of the essential oils were also determined using GC/MS-Olfactometry (GC/MS-O) and aroma extract dilution analysis. Eight aromatic compounds, including linalool, limonene, and 1,8-cineole, were shown to contribute to the aromatic properties of cultivated M. gale var. tomentosa. The strongest aromatic note was defined as linalool, followed by limonene, 1,8-cineole, and β-elemenone. The essential oil, ethanol (EtOH), 1,3-butylene glycol (BG), and 1,3-propanediol (PD) extracts prepared from the leaves of cultivated M. gale var. tomentosa also showed antioxidant and antimicrobial activities, that is, they demonstrated scavenger activity against hydroxyl and superoxide radicals in the aqueous phase, and showed inhibitory effects on lipid peroxidation. The essential oil extracts also exhibited antimicrobial activity against gram-positive bacteria, with the lowest minimum inhibitory concentration value against Bacillus subtilis. In conclusion, the essential oil and solvent extracts from cultivated M. gala var. tomentosa have a potential for utilization as food and cosmetic ingredients.

  9. Component composition of essential oils and ultrastructure of secretory cells of resin channel needles Juniperus communis (Cupressaceae

    Directory of Open Access Journals (Sweden)

    N. V. Gerling

    2015-12-01

    Full Text Available The results of determining the qualitative and quantitative composition of essential oil Juniperus communis, growing under the canopy of spruce blueberry sphagnum subzone middle taiga. Juniperus communis essential oil is liquid light yellow color. The content of essential oil was 0.46 % in shoots with needles. 37 substances of components identified. Mass fraction of components in the essential oil of Juniperus communis reached 89 %. The highest percentage of occupied fraction of monoterpenes (82.3 %, the proportion of sesquiterpenes less than 0.5 % of the total composition of essential oils, alcohols 3.5 and 0.7 % esters. In monoterpenes fraction predominant α-pinene (24.5–32.6 %, β-pinene (15–20.3 % and α-phellandrene (6.4–8.8 %. Essential oil of Juniperus communis is characterized by high content of monoterpenoids in contrast to other conifers of the taiga zone. All stages of biosynthesis essential oils occur in the epithelial cells of the resin channel (terpenoidogennyh cells. An oval shape have epithelial cells of the resin channel needles in transverse sections the Juniperus communis, which is situated vacuole in the center. Large number of lipid globules (up to 40 noted in the hyaloplasm of explored cells. Leucoplasts surrounded by membranes of smooth endoplasmic reticulum in cross sections of epithelial cells in resin channel of juniper. Endoplasmic reticulum is poorly developed in epithelial cells, which corresponds to the low content of sesquiterpenes in the needles during the study period. Development of large leucoplasts and large number of mitochondria associated with predominance of synthesis monoterpenoids the in the epithelium cells resin channel.

  10. Anti-termite activity of essential oil and its components from Myristica ...

    African Journals Online (AJOL)

    Michael Horsfall

    termite activity test followed the method of (Kang et al. 1990). Samples of 10, 25, and 50 mg of fruit essential oil as well as 1 and 5 mg of each individual compound dissolved in 600 µl of acetone were applied to 1 g filter paper samples (What man #3, 8.5 cm in diam). A piece of filter paper treated with solvent only was used ...

  11. Histone H2A.Z is essential for estrogen receptor signaling

    Science.gov (United States)

    Gévry, Nicolas; Hardy, Sara; Jacques, Pierre-Étienne; Laflamme, Liette; Svotelis, Amy; Robert, François; Gaudreau, Luc

    2009-01-01

    Incorporation of H2A.Z into the chromatin of inactive promoters has been shown to poise genes for their expression. Here we provide strong evidence that H2A.Z is incorporated into the promoter regions of estrogen receptor (ERα) target genes only upon gene induction, and that, in a cyclic pattern. Moreover, members of the human H2A.Z-depositing complex, p400, also follow the same gene recruitment kinetics as H2A.Z. Importantly, cellular depletion of H2A.Z or p400 leads to a severe defect in estrogen signaling, including loss of estrogen-specific cell proliferation. We find that incorporation of H2A.Z within TFF1 promoter chromatin allows nucleosomes to adopt preferential positions along the DNA translational axis. Finally, we provide evidence that H2A.Z is essential to allow estrogen-responsive enhancer function. Taken together, our results provide strong mechanistic insight into how H2A.Z regulates ERα-mediated gene expression and provide a novel link between H2A.Z–p400 and ERα-dependent gene regulation and enhancer function. PMID:19515975

  12. Anti-oxidant activity and major chemical component analyses of twenty-six commercially available essential oils

    Directory of Open Access Journals (Sweden)

    Hsiao-Fen Wang

    2017-10-01

    Full Text Available This study analyzed 26 commercially available essential oils and their major chemical components to determine their antioxidant activity levels by measuring their total phenolic content (TPC, reducing power (RP, β-carotene bleaching (BCB activity, trolox equivalent antioxidant capacity (TEAC, and 1,1-diphenyl-2-picrylhydrazyl free radical scavenging (DFRS ability. The clove bud and thyme borneol essential oils had the highest RP, BCB activity levels, and TPC values among the 26 commercial essential oils. Furthermore, of the 26 essential oils, the clove bud and ylang ylang complete essential oils had the highest TEAC values, and the clove bud and jasmine absolute essential oils had the highest DFRS ability. At a concentration of 2.5 mg/mL, the clove bud and thyme borneol essential oils had RP and BCB activity levels of 94.56% ± 0.06% and 24.64% ± 0.03% and 94.58% ± 0.01% and 89.33% ± 0.09%, respectively. At a concentration of 1 mg/mL, the clove bud and thyme borneol essential oils showed TPC values of 220.00 ± 0.01 and 69.05 ± 0.01 mg/g relative to gallic acid equivalents, respectively, and the clove bud and ylang ylang complete essential oils had TEAC values of 809.00 ± 0.01 and 432.33 ± 0.01 μM, respectively. The clove bud and jasmine absolute essential oils showed DFRS abilities of 94.13% ± 0.01% and 78.62% ± 0.01%, respectively. Phenolic compounds of the clove bud, thyme borneol and jasmine absolute essential oils were eugenol (76.08%, thymol (14.36% and carvacrol (12.33%, and eugenol (0.87%, respectively. The phenolic compounds in essential oils were positively correlated with the RP, BCB activity, TPC, TEAC, and DFRS ability.

  13. Anti-oxidant activity and major chemical component analyses of twenty-six commercially available essential oils.

    Science.gov (United States)

    Wang, Hsiao-Fen; Yih, Kuang-Hway; Yang, Chao-Hsun; Huang, Keh-Feng

    2017-10-01

    This study analyzed 26 commercially available essential oils and their major chemical components to determine their antioxidant activity levels by measuring their total phenolic content (TPC), reducing power (RP), β-carotene bleaching (BCB) activity, trolox equivalent antioxidant capacity (TEAC), and 1,1-diphenyl-2-picrylhydrazyl free radical scavenging (DFRS) ability. The clove bud and thyme borneol essential oils had the highest RP, BCB activity levels, and TPC values among the 26 commercial essential oils. Furthermore, of the 26 essential oils, the clove bud and ylang ylang complete essential oils had the highest TEAC values, and the clove bud and jasmine absolute essential oils had the highest DFRS ability. At a concentration of 2.5 mg/mL, the clove bud and thyme borneol essential oils had RP and BCB activity levels of 94.56% ± 0.06% and 24.64% ± 0.03% and 94.58% ± 0.01% and 89.33% ± 0.09%, respectively. At a concentration of 1 mg/mL, the clove bud and thyme borneol essential oils showed TPC values of 220.00 ± 0.01 and 69.05 ± 0.01 mg/g relative to gallic acid equivalents, respectively, and the clove bud and ylang ylang complete essential oils had TEAC values of 809.00 ± 0.01 and 432.33 ± 0.01 μM, respectively. The clove bud and jasmine absolute essential oils showed DFRS abilities of 94.13% ± 0.01% and 78.62% ± 0.01%, respectively. Phenolic compounds of the clove bud, thyme borneol and jasmine absolute essential oils were eugenol (76.08%), thymol (14.36%) and carvacrol (12.33%), and eugenol (0.87%), respectively. The phenolic compounds in essential oils were positively correlated with the RP, BCB activity, TPC, TEAC, and DFRS ability. Copyright © 2017. Published by Elsevier B.V.

  14. Phosphate sink containing two-component signaling systems as tunable threshold devices

    DEFF Research Database (Denmark)

    Amin, Munia; Kothamachu, Varun B; Feliu, Elisenda

    2014-01-01

    Synthetic biology aims to design de novo biological systems and reengineer existing ones. These efforts have mostly focused on transcriptional circuits, with reengineering of signaling circuits hampered by limited understanding of their systems dynamics and experimental challenges. Bacterial two......-component signaling systems offer a rich diversity of sensory systems that are built around a core phosphotransfer reaction between histidine kinases and their output response regulator proteins, and thus are a good target for reengineering through synthetic biology. Here, we explore the signal-response relationship...... rapid signal termination, whereby one of the RRs acts as a phosphate sink towards the other RR (i.e. the output RR), but also implements a sigmoidal signal-response relationship. We identify two mathematical conditions on system parameters that are necessary for sigmoidal signal-response relationships...

  15. Analysis of market signals in a competitive electricity market using components of network rental

    International Nuclear Information System (INIS)

    Amarasinghe, L.Y.C.; Annakkage, U.D.

    2009-01-01

    In the competitive electricity market, Locational Marginal Prices (LMPs) are important pricing signals for the participants as the effects of transmission losses and binding constraints are embedded in LMPs. While these LMPs provide valuable information at each location, they do not provide a detailed description in terms of contributing terms. The LMP components, on the other hand, show the explicit decomposition of LMP into contributing components, and thus, can be considered as better market signals. However, the effects of transmission losses cannot be explicitly seen from the LMP components. In this paper, the components of network rental is proposed to be used as a method in analyzing market signals, by decomposing the network rental into contributing components among the consumers. Since, the network rental is the surplus paid by all the consumers, components of network rental show how each consumer has actually overpaid due to losses and each binding constraint separately. A case study is also presented to demonstrate the potential of this proposed method in market signal analysis. (author)

  16. Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform.

    Science.gov (United States)

    Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan

    2016-01-01

    Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.

  17. 454 Transcriptome sequencing suggests a role for two-component signalling in cellularization and differentiation of barley endosperm transfer cells.

    Science.gov (United States)

    Thiel, Johannes; Hollmann, Julien; Rutten, Twan; Weber, Hans; Scholz, Uwe; Weschke, Winfriede

    2012-01-01

    Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs). Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS) system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and TCS signalling. Our findings suggest an integral

  18. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria

    Science.gov (United States)

    Mith, Hasika; Duré, Rémi; Delcenserie, Véronique; Zhiri, Abdesselam; Daube, Georges; Clinquart, Antoine

    2014-01-01

    This study was undertaken to determine the in vitro antimicrobial activities of 15 commercial essential oils and their main components in order to pre-select candidates for potential application in highly perishable food preservation. The antibacterial effects against food-borne pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and enterohemorrhagic Escherichia coli O157:H7) and food spoilage bacteria (Brochothrix thermosphacta and Pseudomonas fluorescens) were tested using paper disk diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Most of the tested essential oils exhibited antimicrobial activity against all tested bacteria, except galangal oil. The essential oils of cinnamon, oregano, and thyme showed strong antimicrobial activities with MIC ≥ 0.125 μL/mL and MBC ≥ 0.25 μL/mL. Among tested bacteria, P. fluorescens was the most resistant to selected essential oils with MICs and MBCs of 1 μL/mL. The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria. These materials could be served as an important natural alternative to prevent bacterial growth in food products. PMID:25473498

  19. Cytotoxicity Evaluation of Essential Oil and its Component from Zingiber officinale Roscoe.

    Science.gov (United States)

    Lee, Yongkyu

    2016-07-01

    Zingiber officinale Roscoe has been widely used as a folk medicine to treat various diseases, including cancer. This study aims to re-examine the therapeutic potential of co-administration of natural products and cancer chemotherapeutics. Candidate material for this project, α-zingiberene, was extracted from Zingiber officinale Roscoe, and α-zingiberene makes up 35.02 ± 0.30% of its total essential oil. α-Zingiberene showed low IC50 values, 60.6 ± 3.6, 46.2 ± 0.6, 172.0 ± 6.6, 80.3 ± 6.6 (μg/mL) in HeLa, SiHa, MCF-7 and HL-60 cells each. These values are a little bit higher than IC50 values of general essential oil in those cells. The treatment of α-zingiberene produced nucleosomal DNA fragmentation in SiHa cells, and the percentage of sub-diploid cells increased in a concentration-dependent manner in SiHa cells, hallmark features of apoptosis. Mitochondrial cytochrome c activation and an in vitro caspase-3 activity assay demonstrated that the activation of caspases accompanies the apoptotic effect of α-zingiberene, which mediates cell death. These results suggest that the apoptotic effect of α-zingiberene on SiHa cells may converge caspase-3 activation through the release of mitochondrial cytochrome c into cytoplasm. It is considered that anti-proliferative effect of α-zingiberene is a result of apoptotic effects, and α-zingiberene is worth furthermore study to develop it as cancer chemotherapeutics.

  20. SUBJECT TEACHERS’ ICT COMPETENCE AS ESSENTIAL COMPONENT IN THE MODERN SPECIAL SCHOOLS

    Directory of Open Access Journals (Sweden)

    Zinaida O. Motylkova

    2014-12-01

    Full Text Available In the article there are analyzed causes that prevent schools and teachers to make full use of the opportunities that appear when using ICT. The subject teachers’ ICT competence is considered as a necessary component of modern school. The results of questionnaire of teachers’ interviews, discussions and active observations in Kyiv special residential schools (for people with hearing impairments are analyzed. It was concluded the relevance of systematic ICT inclusion in the learning process. Currently it becomes necessary to develop a system involving ICT training, purposeful preparation of teachers of special schools to use these technologies in the learning process.

  1. Complex Signal Kurtosis and Independent Component Analysis for Wideband Radio Frequency Interference Detection

    Science.gov (United States)

    Schoenwald, Adam; Mohammed, Priscilla; Bradley, Damon; Piepmeier, Jeffrey; Wong, Englin; Gholian, Armen

    2016-01-01

    Radio-frequency interference (RFI) has negatively implicated scientific measurements across a wide variation passive remote sensing satellites. This has been observed in the L-band radiometers SMOS, Aquarius and more recently, SMAP [1, 2]. RFI has also been observed at higher frequencies such as K band [3]. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements [4]. This work explores the use of ICA (Independent Component Analysis) as a blind source separation technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.

  2. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  3. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains.

    Science.gov (United States)

    Bücherl, Christoph A; Jarsch, Iris K; Schudoma, Christian; Segonzac, Cécile; Mbengue, Malick; Robatzek, Silke; MacLean, Daniel; Ott, Thomas; Zipfel, Cyril

    2017-03-06

    Cell surface receptors govern a multitude of signalling pathways in multicellular organisms. In plants, prominent examples are the receptor kinases FLS2 and BRI1, which activate immunity and steroid-mediated growth, respectively. Intriguingly, despite inducing distinct signalling outputs, both receptors employ common downstream signalling components, which exist in plasma membrane (PM)-localised protein complexes. An important question is thus how these receptor complexes maintain signalling specificity. Live-cell imaging revealed that FLS2 and BRI1 form PM nanoclusters. Using single-particle tracking we could discriminate both cluster populations and we observed spatiotemporal separation between immune and growth signalling platforms. This finding was confirmed by visualising FLS2 and BRI1 within distinct PM nanodomains marked by specific remorin proteins and differential co-localisation with the cytoskeleton. Our results thus suggest that signalling specificity between these pathways may be explained by the spatial separation of FLS2 and BRI1 with their associated signalling components within dedicated PM nanodomains.

  4. A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

    Directory of Open Access Journals (Sweden)

    Dong-Sup Lee

    2015-01-01

    Full Text Available Independent Component Analysis (ICA, one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: insta- bility and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to vali- date the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.

  5. Effects of Gamma Irradiation on Active Components in Essential Oils of Cinnamomum verum J.S.Presl

    International Nuclear Information System (INIS)

    Thongphasuk, Piyanuch; Thongphasuk, Jarunee; Eamsiri, Jarurut; Pongpat, Suchada

    2009-07-01

    Full text: Gamma irradiation is one of the methods utilized to reduce microbial contamination of medicinal herbs. Since irradiation may also affect active compounds of the irradiated herbs, the objective of this research is to study the effect of gamma irradiation (10 and 25 kGy) from cobalt-60 on active compounds in essential oils of Cinnamomum verum J.S.Presl by using GC-MS. The results showed that gamma irradiation at the dose of 10 and 25 kGy does not significantly affect active components in essential oils such as alpha-pinene, camphene, 1,8-cineole, alpha-copaene, benzaldehyde, linalool, bornyl acetate, terpinen-4-0l, alpha-terpineol, benzylacetaldehyde, Z-cinnamaldehyde, E-cinnamaldehyde, and cinnamic acid

  6. Low dose gamma irradiation enhances defined signaling components of intercellular reactive oxygen-mediated apoptosis induction

    International Nuclear Information System (INIS)

    Bauer, G

    2011-01-01

    Transformed cells are selectively removed by intercellular ROS-mediated induction of apoptosis. Signaling is based on the HOCl and the NO/peroxynitrite pathway (major pathways) and the nitryl chloride and the metal-catalyzed Haber-Weiss pathway (minor pathways). During tumor progression, resistance against intercellular induction of apoptosis is acquired through expression of membrane-associated catalase. Low dose radiation of nontransformed cells has been shown to enhance intercellular induction of apoptosis. The present study was performed to define the signaling components which are modulated by low dose gamma irradiation. Low dose radiation induced the release of peroxidase from nontransformed, transformed and tumor cells. Extracellular superoxide anion generation was strongly enhanced in the case of transformed cells and tumor cells, but not in nontransformed cells. Enhancement of peroxidase release and superoxide anion generation either increased intercellular induction of apoptosis of transformed cells, or caused a partial protection under specific signaling conditions. In tumor cells, low dose radiation enhanced the production of major signaling components, but this had no effect on apoptosis induction, due to the strong resistance mechanism of tumor cells. Our data specify the nature of low dose radiation-induced effects on specific signaling components of intercellular induction of apoptosis at defined stages of multistep carcinogenesis.

  7. Expression of insulin signalling components in the sensory epithelium of the human saccule

    DEFF Research Database (Denmark)

    Degerman, Eva; Rauch, Uwe; Lindberg, Sven

    2013-01-01

    signalling components in the inner ear is sparce. Our immunohistochemistry approach has shown that the insulin receptor, insulin receptor substrate 1 (IRS1), protein kinase B (PKB) and insulin-sensitive glucose transporter (GLUT4) are expressed in the sensory epithelium of the human saccule, which also...

  8. The expression of essential components for human influenza virus internalisation in Vero and MDCK cells.

    Science.gov (United States)

    Ugiyadi, Maharani; Tan, Marselina I; Giri-Rachman, Ernawati A; Zuhairi, Fawzi R; Sumarsono, Sony H

    2014-05-01

    MDCK and Vero cell lines have been used as substrates for influenza virus replication. However, Vero cells produced lower influenza virus titer yield compared to MDCK. Influenza virus needs molecules for internalisation of the virus into the host cell, such as influenza virus receptor and clathrin. Human influenza receptor is usually a membrane protein containing Sia(α2,6) Gal, which is added into the protein in the golgi apparatus by α2,6 sialyltransferase (SIAT1). Light clathrin A (LCA), light clathrin B (LCB) and heavy clathrin (HC) are the main components needed for virus endocytosis. Therefore, it is necessary to compare the expression of SIAT1 and clathrin in Vero and MDCK cells. This study is reporting the expression of SIAT1 and clathrin observed in both cells with respect to the levels of (1) RNA by using RT-PCR, (2) protein by using dot blot analysis and confocal microscope. The results showed that Vero and MDCK cells expressed both SIAT1 and clathrin proteins, and the expression of SIAT1 in MDCK was higher compared to Vero cells. On the other hand, the expressions of LCA, LCB and HC protein in MDCK cells were not significantly different to Vero cells. This result showed that the inability of Vero cells to internalize H1N1 influenza virus was possibly due to the lack of transmembrane protein receptor which contained Sia(α2,6) Gal.

  9. Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating

    Science.gov (United States)

    Wen-Bo, Wang; Xiao-Dong, Zhang; Yuchan, Chang; Xiang-Li, Wang; Zhao, Wang; Xi, Chen; Lei, Zheng

    2016-01-01

    In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the independent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor. Project supported by the National Science and Technology, China (Grant No. 2012BAJ15B04), the National Natural Science Foundation of China (Grant Nos. 41071270 and 61473213), the Natural Science Foundation of Hubei Province, China (Grant No. 2015CFB424), the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics, China (Grant No. SOED1405), the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science, China (Grant No. Z201303), and the Hubei Key Laboratory Foundation of Transportation Internet of Things, Wuhan University of Technology, China (Grant No.2015III015-B02).

  10. Signal extraction and wave field separation in tunnel seismic prediction by independent component analysis

    Science.gov (United States)

    Yue, Y.; Jiang, T.; Zhou, Q.

    2017-12-01

    In order to ensure the rationality and the safety of tunnel excavation, the advanced geological prediction has been become an indispensable step in tunneling. However, the extraction of signal and the separation of P and S waves directly influence the accuracy of geological prediction. Generally, the raw data collected in TSP system is low quality because of the numerous disturb factors in tunnel projects, such as the power interference and machine vibration interference. It's difficult for traditional method (band-pass filtering) to remove interference effectively as well as bring little loss to signal. The power interference, machine vibration interference and the signal are original variables and x, y, z component as observation signals, each component of the representation is a linear combination of the original variables, which satisfy applicable conditions of independent component analysis (ICA). We perform finite-difference simulations of elastic wave propagation to synthetic a tunnel seismic reflection record. The method of ICA was adopted to process the three-component data, and the results show that extract the estimates of signal and the signals are highly correlated (the coefficient correlation is up to more than 0.93). In addition, the estimates of interference that separated from ICA and the interference signals are also highly correlated, and the coefficient correlation is up to more than 0.99. Thus, simulation results showed that the ICA is an ideal method for extracting high quality data from mixed signals. For the separation of P and S waves, the conventional separation techniques are based on physical characteristics of wave propagation, which require knowledge of the near-surface P and S waves velocities and density. Whereas the ICA approach is entirely based on statistical differences between P and S waves, and the statistical technique does not require a priori information. The concrete results of the wave field separation will be presented in

  11. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    International Nuclear Information System (INIS)

    Sun, Jianzhong; Zuo, Hongfu; Liu, Pengpeng; Wen, Zhenhua

    2013-01-01

    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion. (paper)

  12. Insecticidal Activity of Essential Oil of Carum Carvi Fruits from China and Its Main Components against Two Grain Storage Insects

    Directory of Open Access Journals (Sweden)

    Shu Shan Du

    2010-12-01

    Full Text Available During our screening program for agrochemicals from Chinese medicinal herbs and wild plants, the essential oil of Carum carvi fruits was found to possess strong contact toxicity against Sitophilus zeamais and Tribolium castaneum adults, with LD50 values of 3.07 and 3.29 mg/adult, respectively, and also showed strong fumigant toxicity against the two grain storage insects with LC50 values of 3.37 and 2.53 mg/L, respectively. The essential oil obtained by hydrodistillation was investigated by GC and GC-MS. The main components of the essential oil were identified to be (R-carvone (37.98% and D-limonene (26.55% followed by α-pinene (5.21, cis-carveol (5.01% and b-myrcene (4.67%. (R-Carvone and D-limonene were separated and purified by silica gel column chromatography and preparative thin layer chromatography, and further identified by means of physicochemical and spectrometric analysis. (R-Carvone and D-limonene showed strong contact toxicity against S. zeamais (LD50 = 2.79 and 29.86 mg/adult and T. castaneum (LD50 = 2.64 and 20.14 mg/adult. (R-Carvone and D-limonene also possessed strong fumigant toxicity against S. zeamais (LC50 = 2.76 and 48.18 mg/L and T. castaneum adults (LC50 = 1.96 and 19.10 mg/L.

  13. Overall Architecture of the Intraflagellar Transport (IFT)-B Complex Containing Cluap1/IFT38 as an Essential Component of the IFT-B Peripheral Subcomplex*

    Science.gov (United States)

    Katoh, Yohei; Terada, Masaya; Nishijima, Yuya; Takei, Ryota; Nozaki, Shohei; Hamada, Hiroshi; Nakayama, Kazuhisa

    2016-01-01

    Intraflagellar transport (IFT) is essential for assembly and maintenance of cilia and flagella as well as ciliary motility and signaling. IFT is mediated by multisubunit complexes, including IFT-A, IFT-B, and the BBSome, in concert with kinesin and dynein motors. Under high salt conditions, purified IFT-B complex dissociates into a core subcomplex composed of at least nine subunits and at least five peripherally associated proteins. Using the visible immunoprecipitation assay, which we recently developed as a convenient protein-protein interaction assay, we determined the overall architecture of the IFT-B complex, which can be divided into core and peripheral subcomplexes composed of 10 and 6 subunits, respectively. In particular, we identified TTC26/IFT56 and Cluap1/IFT38, neither of which was included with certainty in previous models of the IFT-B complex, as integral components of the core and peripheral subcomplexes, respectively. Consistent with this, a ciliogenesis defect of Cluap1-deficient mouse embryonic fibroblasts was rescued by exogenous expression of wild-type Cluap1 but not by mutant Cluap1 lacking the binding ability to other IFT-B components. The detailed interaction map as well as comparison of subcellular localization of IFT-B components between wild-type and Cluap1-deficient cells provides insights into the functional relevance of the architecture of the IFT-B complex. PMID:26980730

  14. Overall Architecture of the Intraflagellar Transport (IFT)-B Complex Containing Cluap1/IFT38 as an Essential Component of the IFT-B Peripheral Subcomplex.

    Science.gov (United States)

    Katoh, Yohei; Terada, Masaya; Nishijima, Yuya; Takei, Ryota; Nozaki, Shohei; Hamada, Hiroshi; Nakayama, Kazuhisa

    2016-05-20

    Intraflagellar transport (IFT) is essential for assembly and maintenance of cilia and flagella as well as ciliary motility and signaling. IFT is mediated by multisubunit complexes, including IFT-A, IFT-B, and the BBSome, in concert with kinesin and dynein motors. Under high salt conditions, purified IFT-B complex dissociates into a core subcomplex composed of at least nine subunits and at least five peripherally associated proteins. Using the visible immunoprecipitation assay, which we recently developed as a convenient protein-protein interaction assay, we determined the overall architecture of the IFT-B complex, which can be divided into core and peripheral subcomplexes composed of 10 and 6 subunits, respectively. In particular, we identified TTC26/IFT56 and Cluap1/IFT38, neither of which was included with certainty in previous models of the IFT-B complex, as integral components of the core and peripheral subcomplexes, respectively. Consistent with this, a ciliogenesis defect of Cluap1-deficient mouse embryonic fibroblasts was rescued by exogenous expression of wild-type Cluap1 but not by mutant Cluap1 lacking the binding ability to other IFT-B components. The detailed interaction map as well as comparison of subcellular localization of IFT-B components between wild-type and Cluap1-deficient cells provides insights into the functional relevance of the architecture of the IFT-B complex. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species.

    Science.gov (United States)

    Hindle, Matthew M; Martin, Sarah F; Noordally, Zeenat B; van Ooijen, Gerben; Barrios-Llerena, Martin E; Simpson, T Ian; Le Bihan, Thierry; Millar, Andrew J

    2014-08-02

    The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.

  16. Evolutionary recycling of light signaling components in fleshy fruits: new insights on the role of pigments to monitor ripening

    Directory of Open Access Journals (Sweden)

    Briardo eLlorente

    2016-03-01

    Full Text Available Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mechanisms originally devoted to sense and respond to environmental light cues have been re-adapted during evolution to provide plants with useful information on fruit ripening progression. In particular, the presence of chlorophylls in green fruit can strongly influence the spectral composition of the light filtered through the fruit pericarp. The concomitant changes in light quality can be perceived and transduced by phytochromes and phytochrome-interacting factors, respectively, to regulate gene expression and in turn modulate the production of carotenoids, a family of metabolites that are relevant for the final pigmentation of ripe fruits. We raise the hypothesis that the evolutionary recycling of light-signaling components to finely adjust pigmentation to the actual ripening stage of the fruit may have represented a selective advantage for primeval fleshy-fruited plants even before the extinction of dinosaurs.

  17. Evolutionary Recycling of Light Signaling Components in Fleshy Fruits: New Insights on the Role of Pigments to Monitor Ripening.

    Science.gov (United States)

    Llorente, Briardo; D'Andrea, Lucio; Rodríguez-Concepción, Manuel

    2016-01-01

    Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum) affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mechanisms originally devoted to sense and respond to environmental light cues have been re-adapted during evolution to provide plants with useful information on fruit ripening progression. In particular, the presence of chlorophylls in green fruit can strongly influence the spectral composition of the light filtered through the fruit pericarp. The concomitant changes in light quality can be perceived and transduced by phytochromes (PHYs) and PHY-interacting factors, respectively, to regulate gene expression and in turn modulate the production of carotenoids, a family of metabolites that are relevant for the final pigmentation of ripe fruits. We raise the hypothesis that the evolutionary recycling of light-signaling components to finely adjust pigmentation to the actual ripening stage of the fruit may have represented a selective advantage for primeval fleshy-fruited plants even before the extinction of dinosaurs.

  18. PRAS40 is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection.

    Directory of Open Access Journals (Sweden)

    Zhao Zhong Chong

    Full Text Available Emerging strategies that center upon the mammalian target of rapamycin (mTOR signaling for neurodegenerative disorders may bring effective treatment for a number of difficult disease entities. Here we show that erythropoietin (EPO, a novel agent for nervous system disorders, prevents apoptotic SH-SY5Y cell injury in an oxidative stress model of oxygen-glucose deprivation through phosphatidylinositol-3-kinase (PI 3-K/protein kinase B (Akt dependent activation of mTOR signaling and phosphorylation of the downstream pathways of p70 ribosomal S6 kinase (p70S6K, eukaryotic initiation factor 4E-binding protein 1 (4EBP1, and proline rich Akt substrate 40 kDa (PRAS40. PRAS40 is an important regulatory component either alone or in conjunction with EPO signal transduction that can determine cell survival through apoptotic caspase 3 activation. EPO and the PI 3-K/Akt pathways control cell survival and mTOR activity through the inhibitory post-translational phosphorylation of PRAS40 that leads to subcellular binding of PRAS40 to the cytoplasmic docking protein 14-3-3. However, modulation and phosphorylation of PRAS40 is independent of other protective pathways of EPO that involve extracellular signal related kinase (ERK 1/2 and signal transducer and activator of transcription (STAT5. Our studies highlight EPO and PRAS40 signaling in the mTOR pathway as potential therapeutic strategies for development against degenerative disorders that lead to cell demise.

  19. Blind Extraction of Chaotic Signals by Using the Fast Independent Component Analysis Algorithm

    International Nuclear Information System (INIS)

    Hong-Bin, Chen; Jiu-Chao, Feng; Yong, Fang

    2008-01-01

    We report the results of using the fast independent component analysis (FastICA) algorithm to realize blind extraction of chaotic signals. Two cases are taken into consideration: namely, the mixture is noiseless or contaminated by noise. Pre-whitening is employed to reduce the effect of noise before using the FastICA algorithm. The correlation coefficient criterion is adopted to evaluate the performance, and the success rate is defined as a new criterion to indicate the performance with respect to noise or different mixing matrices. Simulation results show that the FastICA algorithm can extract the chaotic signals effectively. The impact of noise, the length of a signal frame, the number of sources and the number of observed mixtures on the performance is investigated in detail. It is also shown that regarding a noise as an independent source is not always correct

  20. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity.

    Science.gov (United States)

    Wang, Dashan

    2018-06-01

    The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. GPCR signaling plays an important role in T cell activation, homeostasis and function. GPCR signaling is critical in regulating T cell immunity.

  1. Intermittent IL-7 Signaling Essential for T cell Homeostasis | Center for Cancer Research

    Science.gov (United States)

    In order for the immune system to mount an appropriate response to foreign antigens throughout a person’s life, the body must maintain a sufficient population of circulating mature, naïve T cells, a process known as T cell homeostasis. Previous studies revealed that this process depends upon signaling from the cytokine interleukin-7 (IL-7) as well as from the T cell antigen receptor (TCR). Intriguingly, signals from each pathway affect the other and lead to their alternating activation: IL-7 binding to its receptor leads to increasing expression of the TCR co-receptor CD8; sufficient CD8 expression allows TCRs to signal when bound to self-ligands, blocking IL-7 signaling; suppressed IL-7 signals lead to down-regulation of CD8 and ligand disengagement, which allows T cells to again respond to IL-7. Alfred Singer, M.D., and his colleagues in CCR’s Experimental Immunology Branch set out to understand how this intricate pathway promotes T cell survival.

  2. Blind Separation of Acoustic Signals Combining SIMO-Model-Based Independent Component Analysis and Binary Masking

    Directory of Open Access Journals (Sweden)

    Hiekata Takashi

    2006-01-01

    Full Text Available A new two-stage blind source separation (BSS method for convolutive mixtures of speech is proposed, in which a single-input multiple-output (SIMO-model-based independent component analysis (ICA and a new SIMO-model-based binary masking are combined. SIMO-model-based ICA enables us to separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources in their original form at the microphones. Thus, the separated signals of SIMO-model-based ICA can maintain the spatial qualities of each sound source. Owing to this attractive property, our novel SIMO-model-based binary masking can be applied to efficiently remove the residual interference components after SIMO-model-based ICA. The experimental results reveal that the separation performance can be considerably improved by the proposed method compared with that achieved by conventional BSS methods. In addition, the real-time implementation of the proposed BSS is illustrated.

  3. [Anti-Candida albicans activity of essential oils including Lemongrass (Cymbopogon citratus) oil and its component, citral].

    Science.gov (United States)

    Abe, Shigeru; Sato, Yuichi; Inoue, Shigeharu; Ishibashi, Hiroko; Maruyama, Naho; Takizawa, Toshio; Oshima, Haruyuki; Yamaguchi, Hideyo

    2003-01-01

    The effects of 12 essential oils, popularly used as antifungal treatments in aromatherapy, on growth of Candida albicans were investigated. Mycelial growth of C. albicans, which is known to give the fungus the capacity to invade mucosal tissues, was inhibited in the medium containing 100 micro g/ml of the oils: lemongrass (Cymbopogon citratus), thyme (Thymus vulgaris), patchouli (Pogostemon cablin) and cedarwood (Cedrus atlantica). Not only lemongrass oil but also citral, a major component of lemongrass oil (80%), in the range of 25 and 200 micro g/ml inhibited the mycelial growth but allowed yeast-form growth. More than 200 micro g/ml of citral clearly inhibited both mycelial and yeast-form growth of C. albicans. These results provide experimental evidence suggesting the potential value of lemongrass oil for the treatment of oral or vaginal candidiasis.

  4. Analysis and Classification of Acoustic Emission Signals During Wood Drying Using the Principal Component Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ho Yang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Ki Bok [Chungnam National University, Daejeon (Korea, Republic of)

    2003-06-15

    In this study, acoustic emission (AE) signals due to surface cracking and moisture movement in the flat-sawn boards of oak (Quercus Variablilis) during drying under the ambient conditions were analyzed and classified using the principal component analysis. The AE signals corresponding to surface cracking showed higher in peak amplitude and peak frequency, and shorter in rise time than those corresponding to moisture movement. To reduce the multicollinearity among AE features and to extract the significant AE parameters, correlation analysis was performed. Over 99% of the variance of AE parameters could be accounted for by the first to the fourth principal components. The classification feasibility and success rate were investigated in terms of two statistical classifiers having six independent variables (AE parameters) and six principal components. As a result, the statistical classifier having AE parameters showed the success rate of 70.0%. The statistical classifier having principal components showed the success rate of 87.5% which was considerably than that of the statistical classifier having AE parameters

  5. Analysis and Classification of Acoustic Emission Signals During Wood Drying Using the Principal Component Analysis

    International Nuclear Information System (INIS)

    Kang, Ho Yang; Kim, Ki Bok

    2003-01-01

    In this study, acoustic emission (AE) signals due to surface cracking and moisture movement in the flat-sawn boards of oak (Quercus Variablilis) during drying under the ambient conditions were analyzed and classified using the principal component analysis. The AE signals corresponding to surface cracking showed higher in peak amplitude and peak frequency, and shorter in rise time than those corresponding to moisture movement. To reduce the multicollinearity among AE features and to extract the significant AE parameters, correlation analysis was performed. Over 99% of the variance of AE parameters could be accounted for by the first to the fourth principal components. The classification feasibility and success rate were investigated in terms of two statistical classifiers having six independent variables (AE parameters) and six principal components. As a result, the statistical classifier having AE parameters showed the success rate of 70.0%. The statistical classifier having principal components showed the success rate of 87.5% which was considerably than that of the statistical classifier having AE parameters

  6. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis

    NARCIS (Netherlands)

    Juffermans, N. P.; Florquin, S.; Camoglio, L.; Verbon, A.; Kolk, A. H.; Speelman, P.; van Deventer, S. J.; van der Poll, T.

    2000-01-01

    Interleukin (IL)-1 signaling is required for the containment of infections with intracellular microorganisms, such as Listeria monocytogenes and Leishmania major. To determine the role of IL-1 in the host response to tuberculosis, we infected IL-1 type I receptor-deficient (IL-1R(-/-)) mice, in

  7. Toxic and hormetic-like effects of three components of citrus essential oils on adult Mediterranean fruit flies (Ceratitis capitata.

    Directory of Open Access Journals (Sweden)

    Stella A Papanastasiou

    Full Text Available Plant essential oils (EOs and a wide range of their individual components are involved in a variety of biological interactions with insect pests including stimulatory, deterrent, toxic and even hormetic effects. Both the beneficial and toxic properties of citrus EOs on the Mediterranean fruit fly (medfly have been experimentally evidenced over the last years. However, no information is available regarding the toxic or beneficial effects of the major components of citrus EOs via contact with the adults of the Mediterranean fruit fly. In the present study, we explored the toxicity of limonene, linalool and α-pinene (3 of the main compounds of citrus EOs against adult medflies and identified the effects of sub-lethal doses of limonene on fitness traits in a relaxed [full diet (yeast and sugar] and in a stressful (sugar only feeding environment. Our results demonstrate that all three compounds inferred high toxicity to adult medflies regardless of the diet, with males being more sensitive than females. Sub-lethal doses of limonene (LD20 enhanced the lifespan of adult medflies when they were deprived of protein. Fecundity was positively affected when females were exposed to limonene sub-lethal doses. Therefore, limonene, a major constituent of citrus EOs, induces high mortality at increased doses and positive effects on life history traits of medfly adults through contact at low sub-lethal doses. A hormetic-like effect of limonene to adult medflies and its possible underlying mechanisms are discussed.

  8. Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity.

    Science.gov (United States)

    Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Nakagawa, Atsushi; Furukawa, Takahisa

    2017-09-26

    Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7- null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7 -deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity.

  9. Essential roles of Gab1 tyrosine phosphorylation in growth factor-mediated signaling and angiogenesis.

    Science.gov (United States)

    Wang, Weiye; Xu, Suowen; Yin, Meimei; Jin, Zheng Gen

    2015-02-15

    Growth factors and their downstream receptor tyrosine kinases (RTKs) mediate a number of biological processes controlling cell function. Adaptor (docking) proteins, which consist exclusively of domains and motifs that mediate molecular interactions, link receptor activation to downstream effectors. Recent studies have revealed that Grb2-associated-binders (Gab) family members (including Gab1, Gab2, and Gab3), when phosphorylated on tyrosine residues, provide binding sites for multiple effector proteins, such as Src homology-2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) and phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, thereby playing important roles in transducing RTKs-mediated signals into pathways with diversified biological functions. Here, we provide an up-to-date overview on the domain structure and biological functions of Gab1, the most intensively studied Gab family protein, in growth factor signaling and biological functions, with a special focus on angiogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Retinoic acid signaling in B-cells is essential for oral immunization and microflora composition

    Science.gov (United States)

    Pantazi, Eirini; Marks, Ellen; Stolarczyk, Emilie; Lycke, Nils; Noelle, Randolph J.; Elgueta, Raul

    2015-01-01

    Retinoic acid (RA)3 is a critical regulator of the intestinal adaptive immune response. However, the intrinsic impact of RA on B cell differentiation in the regulation of gut humoral immunity in vivo has never been directly shown. To address this issue, we have been able to generate a mouse model where B-cells specifically express a dominant negative receptor α for RA. Here, we show that the silencing of RA signaling in B-cells reduces the numbers of IgA+ antibody secreting cells (ASC) both in vitro and in vivo, suggesting that RA has a direct effect on IgA plasma cell (PC) differentiation. Moreover, the lack of RA signaling in B-cells abrogates Ag-specific IgA responses after oral immunization and affects the microbiota composition. In conclusion, these results suggest that RA signaling in B-cells through the RA receptor α is important to generate an effective gut humoral response and to maintain a normal microbiota composition. PMID:26163586

  11. Cutting Edge: Retinoic Acid Signaling in B Cells Is Essential for Oral Immunization and Microflora Composition.

    Science.gov (United States)

    Pantazi, Eirini; Marks, Ellen; Stolarczyk, Emilie; Lycke, Nils; Noelle, Randolph J; Elgueta, Raul

    2015-08-15

    Retinoic acid (RA) is a critical regulator of the intestinal adaptive immune response. However, the intrinsic impact of RA on B cell differentiation in the regulation of gut humoral immunity in vivo has never been directly shown. To address this issue, we have been able to generate a mouse model where B cells specifically express a dominant-negative receptor α for RA. In this study, we show that the silencing of RA signaling in B cells reduces the numbers of IgA(+) Ab-secreting cells both in vitro and in vivo, suggesting that RA has a direct effect on IgA plasma cell differentiation. Moreover, the lack of RA signaling in B cells abrogates Ag-specific IgA responses after oral immunization and affects the microbiota composition. In conclusion, these results suggest that RA signaling in B cells through the RA receptor α is important to generate an effective gut humoral response and to maintain a normal microbiota composition. Copyright © 2015 by The American Association of Immunologists, Inc.

  12. Linearmycins Activate a Two-Component Signaling System Involved in Bacterial Competition and Biofilm Morphology

    Science.gov (United States)

    2017-01-01

    ABSTRACT Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilis. IMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that

  13. Essential oil from Zanthoxylum bungeanum Maxim. and its main components used as transdermal penetration enhancers: a comparative study.

    Science.gov (United States)

    Lan, Yi; Li, Hui; Chen, Yan-yan; Zhang, Ye-wen; Liu, Na; Zhang, Qing; Wu, Qing

    2014-11-01

    Our previous studies had confirmed that the essential oil from Zanthoxylum bungeanum Maxim. (Z. bungeanum oil) could effectively enhance the percutaneous permeation of drug molecules as a natural transdermal penetration enhancer. The aim of the present study is to investigate and compare the skin penetration enhancement effect of Z. bungeanum oil and its main components on traditional Chinese medicine (TCM) active components. Toxicities of Z. bungeanum oil and three selected terpene compounds (terpinen-4-ol, 1,8-cineole, and limonene) in epidermal keratinocytes (HaCaT) and dermal fibroblast (CCC-ESF-1) cell lines were measured using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Five model drugs in TCM external preparations, namely osthole (OT), tetramethylpyrazine (TMP), ferulic acid (FA), puerarin (PR), and geniposide (GP), which were selected based on their lipophilicity denoted by logKo/w, were tested using in vitro permeation studies in which vertical Franz diffusion cells and rat abdominal skin were employed. The secondary structure changes of skin stratum corneum (SC) and drug thermodynamic activities were investigated to understand their mechanisms of action using Fourier transform infrared (FTIR) spectroscopy and saturation solubility studies, respectively. It was found that Z. bungeanum oil showed lower toxicities in both HaCaT cells and CCC-ESF-1 cells compared with three terpene compounds used alone. The enhancement permeation capacities by all tested agents were in the following increasing order: terpinen-4-ol≈1,8-cineolecomponents in TCM preparations.

  14. SNMP is a signaling component required for pheromone sensitivity in Drosophila.

    Science.gov (United States)

    Jin, Xin; Ha, Tal Soo; Smith, Dean P

    2008-08-05

    The only known volatile pheromone in Drosophila, 11-cis-vaccenyl acetate (cVA), mediates a variety of behaviors including aggregation, mate recognition, and sexual behavior. cVA is detected by a small set of olfactory neurons located in T1 trichoid sensilla on the antennae of males and females. Two components known to be required for cVA reception are the odorant receptor Or67d and the extracellular pheromone-binding protein LUSH. Using a genetic screen for cVA-insensitive mutants, we have identified a third component required for cVA reception: sensory neuron membrane protein (SNMP). SNMP is a homolog of CD36, a scavenger receptor important for lipoprotein binding and uptake of cholesterol and lipids in vertebrates. In humans, loss of CD36 is linked to a wide range of disorders including insulin resistance, dyslipidemia, and atherosclerosis, but how CD36 functions in lipid transport and signal transduction is poorly understood. We show that SNMP is required in pheromone-sensitive neurons for cVA sensitivity but is not required for sensitivity to general odorants. Using antiserum to SNMP infused directly into the sensillum lymph, we show that SNMP function is required on the dendrites of cVA-sensitive neurons; this finding is consistent with a direct role in cVA signal transduction. Therefore, pheromone perception in Drosophila should serve as an excellent model to elucidate the role of CD36 members in transmembrane signaling.

  15. Cloning of a two-component signal transduction system of Xanthomonas campestris pv. phaseoli var. fuscans strain BXPF65

    DEFF Research Database (Denmark)

    Chan, JWYF; Maynard, Scott; Goodwin, PH

    1998-01-01

    A putative two-component signal transduction system was amplified and cloned from the plant pathogenic bacterium Xanthomonas campestris pv. phaseoli var. fuscans isolate BXPF65. The 620 bp amplified fragment was sequenced and analyzed with the BLAST Enhanced Alignment Utility (BEAUTY). BEAUTY...... that the putative histidine kinase has homology with conserved “transmitter” domains of sensor proteins in two-component signal transduction systems. RFLP analysis using the putative signal transduction system showed polymorphisms among the strains....

  16. Nuclear import and export signals are essential for proper cellular trafficking and function of ZIC3.

    Science.gov (United States)

    Bedard, James E J; Purnell, Jennifer D; Ware, Stephanie M

    2007-01-15

    Missense, frameshift and nonsense mutations in the zinc finger transcription factor ZIC3 cause heterotaxy as well as isolated congenital heart disease. Previously, we developed transactivation and subcellular localization assays to test the function of ZIC3 point mutations. Aberrant cytoplasmic localization suggested that the pathogenesis of ZIC3 mutations results, at least in part, from failure of appropriate cellular trafficking. To further investigate this hypothesis, the nucleocytoplasmic shuttling properties of ZIC3 have been examined. Subcellular localization assays designed to span the entire open-reading frame of wild-type and mutant ZIC3 proteins identified the presence of nucleocytoplasmic transport signals. ZIC3 domain mapping indicates that a relatively large region containing the zinc finger binding sites and a known GLI interacting domain is required for transport to the nucleus. Site-directed mutagenesis of critical residues within two putative nuclear localization signals (NLSs) leads to loss of nuclear localization. No further decrease was observed when both NLS sites were mutated, suggesting that mutation of either NLS site is sufficient for loss of importin-mediated nuclear localization. Additionally, we identify a cryptic CRM-1-dependent nuclear export signal (NES) within ZIC3, and identify a mutation within this region in a patient with heterotaxy. These results provide the first evidence that control of cellular trafficking of ZIC3 is critical for function and suggest a possible mechanism for transcriptional control during left-right patterning. Identification of mutations in mapped NLS or NES domains in heterotaxy patients demonstrates the functional importance of these domains in cardiac morphogenesis and allows for integration of structural analysis with developmental function.

  17. Separation of PbWO4 and BGO signals into Cerenkov and scintillation components

    International Nuclear Information System (INIS)

    Voena, C

    2009-01-01

    We present results from beam tests performed in 2007 on PbWO 4 and BGO crystals in the context of the DREAM project. Signals from high energy electrons and pions are analyzed and the possibility of separating the contributions from Cerenkov (C) and scintillation (S) light for individual events is investigated. Different methods exploiting the difference in timing, in the spectra and in the directionality of the two types of light have been developed to determine the contribution of the two components. In the BGO crystal, Cerenkov signals have been enhanced with the use of optical filters and the ratio C/S is measured with good precision (∼20-30% for energy deposits less than 1 GeV).

  18. Plasmodium falciparum Adhesins Play an Essential Role in Signalling and Activation of Invasion into Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Wai-Hong Tham

    2015-12-01

    Full Text Available The most severe form of malaria in humans is caused by the protozoan parasite Plasmodium falciparum. The invasive form of malaria parasites is termed a merozoite and it employs an array of parasite proteins that bind to the host cell to mediate invasion. In Plasmodium falciparum, the erythrocyte binding-like (EBL and reticulocyte binding-like (Rh protein families are responsible for binding to specific erythrocyte receptors for invasion and mediating signalling events that initiate active entry of the malaria parasite. Here we have addressed the role of the cytoplasmic tails of these proteins in activating merozoite invasion after receptor engagement. We show that the cytoplasmic domains of these type 1 membrane proteins are phosphorylated in vitro. Depletion of PfCK2, a kinase implicated to phosphorylate these cytoplasmic tails, blocks P. falciparum invasion of red blood cells. We identify the crucial residues within the PfRh4 cytoplasmic domain that are required for successful parasite invasion. Live cell imaging of merozoites from these transgenic mutants show they attach but do not penetrate erythrocytes implying the PfRh4 cytoplasmic tail conveys signals important for the successful completion of the invasion process.

  19. Real-time classification of signals from three-component seismic sensors using neural nets

    Science.gov (United States)

    Bowman, B. C.; Dowla, F.

    1992-05-01

    Adaptive seismic data acquisition systems with capabilities of signal discrimination and event classification are important in treaty monitoring, proliferation, and earthquake early detection systems. Potential applications include monitoring underground chemical explosions, as well as other military, cultural, and natural activities where characteristics of signals change rapidly and without warning. In these applications, the ability to detect and interpret events rapidly without falling behind the influx of the data is critical. We developed a system for real-time data acquisition, analysis, learning, and classification of recorded events employing some of the latest technology in computer hardware, software, and artificial neural networks methods. The system is able to train dynamically, and updates its knowledge based on new data. The software is modular and hardware-independent; i.e., the front-end instrumentation is transparent to the analysis system. The software is designed to take advantage of the multiprocessing environment of the Unix operating system. The Unix System V shared memory and static RAM protocols for data access and the semaphore mechanism for interprocess communications were used. As the three-component sensor detects a seismic signal, it is displayed graphically on a color monitor using X11/Xlib graphics with interactive screening capabilities. For interesting events, the triaxial signal polarization is computed, a fast Fourier Transform (FFT) algorithm is applied, and the normalized power spectrum is transmitted to a backpropagation neural network for event classification. The system is currently capable of handling three data channels with a sampling rate of 500 Hz, which covers the bandwidth of most seismic events. The system has been tested in laboratory setting with artificial events generated in the vicinity of a three-component sensor.

  20. CEUS: An essential component in a multimodality approach to small nodules in patients at high-risk for hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyun-Jung, E-mail: Hyun-Jung.jang@uhn.ca [Department of Medical Imaging, Toronto General Hospital, University of Toronto, 585 University Avenue, Toronto, Ontario M5G 2N2 (Canada); Kim, Tae Kyoung, E-mail: Taekyoung.Kim@uhn.ca [Department of Medical Imaging, Toronto General Hospital, University of Toronto, 585 University Avenue, Toronto, Ontario M5G 2N2 (Canada); Burns, Peter N, E-mail: burns@sri.utoronto.ca [Department of Imaging Research, University of Toronto, Sunnybrook Health Sciences centre, 2075 Bayview Avenue, Toronto ON M4 N 3M5 (Canada); Wilson, Stephanie R, E-mail: Stephanie.wilson@albertahealthservices.ca [Department of Radiology, University of Calgary, Foothills Medical Centre, 1403 29 Street NW, Calgary, AB T2R 1M5 (Canada)

    2015-09-15

    Highlights: • CEUS resolves hypervascular pseudolesions, frequent on CT and MR, from vascular shunts. • US has the advantage of showing a baseline nodule for characterization. • CEUS shows excellent sensitivity to contrast agents, providing superior arterial phase sensitivity. • Real-time CEUS performance shows optimally perfusion patterns of benign tumor nodules. • CEUS performed at surveillance detection of nodules is efficient and effective. - Abstract: Contrast-enhanced ultrasound (CEUS) plays an essential role in the evaluation of small nodules in livers at high-risk for hepatocellular carcinoma (HCC) and offers unique advantages over CT/MRI. These include the sensitive depiction of arterial hypervascularity of HCC, better demonstration of rapid washout for non-HCC malignancy as well as of very late washout of HCC. Visualization of early vascular filling patterns for benign hypervascular lesions is of indisputable value. A frequently uncounted benefit of CEUS includes the value of its performance following nodule detection at ultrasound surveillance, including one-stop exclusion of typical benignancy, preclusion of arterial pseudolesions shown on CT/MR, and the avoidance of miscorrelation of a nodule on surveillance and subsequent diagnostic imaging. Therefore, CEUS can effectively be used in the diagnostic algorithm for new liver nodules detected during HCC surveillance. Despite the fact that CEUS is actively used as a major diagnostic test for HCC in Asia, Europe, and Canada with increasing demands in clinical practice, CEUS is not included in the diagnostic tests for HCC in some major practice guidelines. In this manuscript, we focus on small nodules in patients at high-risk for HCC, and review some of the unique advantages of CEUS that contribute to lesion characterization and subsequent patient management, showing why CEUS should be an essential component of the diagnostic algorithm for HCC.

  1. Electrical Signal Path Study and Component Assay for the MAJORANA N-Type Segmented Contact Detector

    Energy Technology Data Exchange (ETDEWEB)

    Amman, Mark; Bergevin, Marc; Chan, Yuen-Dat; Detwiler, Jason A.; Fujikawa, Brian .; Lesko, Kevin T.; Luke, Paul N.; Prior, Gersende; Poon, Alan W.; Smith, Alan R.; Vetter, Kai; Yaver, Harold; Zimmermann, Sergio

    2009-02-24

    The purpose of the present electrical signal path study is to explore the various issues related to the deployment of highly-segmented low-background Ge detectors for the MAJORANA double-beta decay experiment. A significant challenge is to simultaneously satisfy competing requirements for the mechanical design, electrical readout performance, and radiopurity specifications from the MAJORANA project. Common to all rare search experiments, there is a very stringent limit on the acceptable radioactivity level of all the electronics components involved. Some of the findings are summarized in this report.

  2. Electrical Signal Path Study and Component Assay for the MAJORANA N-Type Segmented Contact Detector

    International Nuclear Information System (INIS)

    Amman, Mark; Bergevin, Marc; Chan, Yuen-Dat; Detwiler, Jason A.; Fujikawa, Brian; Lesko, Kevin T.; Luke, Paul N.; Prior, Gersende; Poon, Alan W.; Smith, Alan R.; Vetter, Kai; Yaver, Harold; Zimmermann, Sergio

    2009-01-01

    The purpose of the present electrical signal path study is to explore the various issues related to the deployment of highly-segmented low-background Ge detectors for the MAJORANA double-beta decay experiment. A significant challenge is to simultaneously satisfy competing requirements for the mechanical design, electrical readout performance, and radiopurity specifications from the MAJORANA project. Common to all rare search experiments, there is a very stringent limit on the acceptable radioactivity level of all the electronics components involved. Some of the findings are summarized in this report.

  3. Access to Paediatric Essential Medicines: A Survey of Prices, Availability, Affordability and Price Components in Shaanxi Province, China

    Science.gov (United States)

    Wang, Xiao; Fang, Yu; Yang, Shimin; Jiang, Minghuan; Yan, Kangkang; Wu, Lina; Lv, Bing; Shen, Qian

    2014-01-01

    Objective To evaluate the prices and availability of paediatric essential medicines in Shaanxi Province, China. Methods Price and availability data for 28 paediatric essential medicines were collected from 60 public hospitals and 60 retail pharmacies in six areas of Shaanxi Province using a standardised methodology developed by the World Health Organization and Health Action International, during November to December 2012. Affordability was measured as the number of days’ wages required for the lowest-paid unskilled government worker to purchase standard treatments for common conditions. Data on medicine price components were collected from hospitals, wholesalers and distributors to obtain price mark-ups. Findings The mean availabilities of originator brands (OBs) and lowest-priced generics (LPGs) were 10.8% and 27.3% in the public hospitals and 11.9% and 20.6% in the private pharmacies. The public procurement and retail prices were 2.25 and 2.59 times the international reference prices (IRPs) for three OBs, and 0.52 and 0.93 times for 20 LPGs. In the private sector, the final prices for OBs and LPGs were 3.89 and 1.25 times their IRPs. The final price in the private sector was 2.7% lower than in the public sector for OBs, and 14.1% higher for LPGs. Generally, standard treatments cost less than 1 day’s wages in both sectors. Distribution mark-ups applied to brand salbutamol in Xi'an was 65.5%, and up to 185.3% for generic. Cumulative mark-ups for LPGs in Ankang were also high, from 33% to 50%. The manufacturer’s selling price is the largest contributor to the final price in both areas. Conclusions The government should approve a list of national paediatric essential medicines. The availability, price and affordability of these should be improved in both public hospitals and private pharmacies to enable children to obtain effective treatment. Measures should be taken to improve the efficiency of the centralised medicine purchasing system. PMID:24595099

  4. Access to paediatric essential medicines: a survey of prices, availability, affordability and price components in Shaanxi Province, China.

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    Full Text Available OBJECTIVE: To evaluate the prices and availability of paediatric essential medicines in Shaanxi Province, China. METHODS: Price and availability data for 28 paediatric essential medicines were collected from 60 public hospitals and 60 retail pharmacies in six areas of Shaanxi Province using a standardised methodology developed by the World Health Organization and Health Action International, during November to December 2012. Affordability was measured as the number of days' wages required for the lowest-paid unskilled government worker to purchase standard treatments for common conditions. Data on medicine price components were collected from hospitals, wholesalers and distributors to obtain price mark-ups. FINDINGS: The mean availabilities of originator brands (OBs and lowest-priced generics (LPGs were 10.8% and 27.3% in the public hospitals and 11.9% and 20.6% in the private pharmacies. The public procurement and retail prices were 2.25 and 2.59 times the international reference prices (IRPs for three OBs, and 0.52 and 0.93 times for 20 LPGs. In the private sector, the final prices for OBs and LPGs were 3.89 and 1.25 times their IRPs. The final price in the private sector was 2.7% lower than in the public sector for OBs, and 14.1% higher for LPGs. Generally, standard treatments cost less than 1 day's wages in both sectors. Distribution mark-ups applied to brand salbutamol in Xi'an was 65.5%, and up to 185.3% for generic. Cumulative mark-ups for LPGs in Ankang were also high, from 33% to 50%. The manufacturer's selling price is the largest contributor to the final price in both areas. CONCLUSIONS: The government should approve a list of national paediatric essential medicines. The availability, price and affordability of these should be improved in both public hospitals and private pharmacies to enable children to obtain effective treatment. Measures should be taken to improve the efficiency of the centralised medicine purchasing system.

  5. An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway.

    Directory of Open Access Journals (Sweden)

    Mariana Serpeloni

    Full Text Available In eukaryotic cells, different RNA species are exported from the nucleus via specialized pathways. The mRNA export machinery is highly integrated with mRNA processing, and includes a different set of nuclear transport adaptors as well as other mRNA binding proteins, RNA helicases, and NPC-associated proteins. The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, a widespread and neglected human disease which is endemic to Latin America. Gene expression in Trypanosoma has unique characteristics, such as constitutive polycistronic transcription of protein-encoding genes and mRNA processing by trans-splicing. In general, post-transcriptional events are the major points for regulation of gene expression in these parasites. However, the export pathway of mRNA from the nucleus is poorly understood. The present study investigated the function of TcSub2, which is a highly conserved protein ortholog to Sub2/ UAP56, a component of the Transcription/Export (TREX multiprotein complex connecting transcription with mRNA export in yeast/human. Similar to its orthologs, TcSub2 is a nuclear protein, localized in dispersed foci all over the nuclei -except the fibrillar center of nucleolus- and at the interface between dense and non-dense chromatin areas, proposing the association of TcSub2 with transcription/processing sites. These findings were analyzed further by BrUTP incorporation assays and confirmed that TcSub2 is physically associated with active RNA polymerase II (RNA pol II, but not RNA polymerase I (RNA pol I or Spliced Leader (SL transcription, demonstrating participation particularly in nuclear mRNA metabolism in T. cruzi. The double knockout of the TcSub2 gene is lethal in T. cruzi, suggesting it has an essential function. Alternatively, RNA interference assays were performed in Trypanosoma brucei. It allowed demonstrating that besides being an essential protein, its knockdown causes mRNA accumulation in the nucleus and

  6. The NDR kinase scaffold HYM1/MO25 is essential for MAK2 map kinase signaling in Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Anne Dettmann

    2012-09-01

    Full Text Available Cell communication is essential for eukaryotic development, but our knowledge of molecules and mechanisms required for intercellular communication is fragmentary. In particular, the connection between signal sensing and regulation of cell polarity is poorly understood. In the filamentous ascomycete Neurospora crassa, germinating spores mutually attract each other and subsequently fuse. During these tropic interactions, the two communicating cells rapidly alternate between two different physiological states, probably associated with signal delivery and response. The MAK2 MAP kinase cascade mediates cell-cell signaling. Here, we show that the conserved scaffolding protein HYM1/MO25 controls the cell shape-regulating NDR kinase module as well as the signal-receiving MAP kinase cascade. HYM1 functions as an integral part of the COT1 NDR kinase complex to regulate the interaction with its upstream kinase POD6 and thereby COT1 activity. In addition, HYM1 interacts with NRC1, MEK2, and MAK2, the three kinases of the MAK2 MAP kinase cascade, and co-localizes with MAK2 at the apex of growing cells. During cell fusion, the three kinases of the MAP kinase module as well as HYM1 are recruited to the point of cell-cell contact. hym-1 mutants phenocopy all defects observed for MAK2 pathway mutants by abolishing MAK2 activity. An NRC1-MEK2 fusion protein reconstitutes MAK2 signaling in hym-1, while constitutive activation of NRC1 and MEK2 does not. These data identify HYM1 as a novel regulator of the NRC1-MEK2-MAK2 pathway, which may coordinate NDR and MAP kinase signaling during cell polarity and intercellular communication.

  7. Essential Role of DAP12 Signaling in Macrophage Programming into a Fusion-Competent State

    Science.gov (United States)

    Helming, Laura; Tomasello, Elena; Kyriakides, Themis R.; Martinez, Fernando O.; Takai, Toshiyuki; Gordon, Siamon; Vivier, Eric

    2009-01-01

    Multinucleated giant cells, formed by fusion of macrophages, are a hallmark of granulomatous inflammation. With a genetic approach, we show that signaling through the adaptor protein DAP12 (DNAX activating protein of 12 kD), its associated receptor triggering receptor expressed by myeloid cells 2 (TREM-2), and the downstream protein tyrosine kinase Syk is required for the cytokine-induced formation of giant cells and that overexpression of DAP12 potentiates macrophage fusion. We also present evidence that DAP12 is a general macrophage fusion regulator and is involved in modulating the expression of several macrophage-associated genes, including those encoding known mediators of macrophage fusion, such as DC-STAMP and Cadherin 1. Thus, DAP12 is involved in programming of macrophages through the regulation of gene and protein expression to induce a fusion-competent state. PMID:18957693

  8. Fibroblast growth factor receptor signaling is essential for normal mammary gland development and stem cell function.

    Science.gov (United States)

    Pond, Adam C; Bin, Xue; Batts, Torey; Roarty, Kevin; Hilsenbeck, Susan; Rosen, Jeffrey M

    2013-01-01

    Fibroblast growth factor (FGF) signaling plays an important role in embryonic stem cells and adult tissue homeostasis, but the function of FGFs in mammary gland stem cells is less well defined. Both FGFR1 and FGFR2 are expressed in basal and luminal mammary epithelial cells (MECs), suggesting that together they might play a role in mammary gland development and stem cell dynamics. Previous studies have demonstrated that the deletion of FGFR2 resulted only in transient developmental defects in branching morphogenesis. Using a conditional deletion strategy, we investigated the consequences of FGFR1 deletion alone and then the simultaneous deletion of both FGFR1 and FGFR2 in the mammary epithelium. FGFR1 deletion using a keratin 14 promoter-driven Cre-recombinase resulted in an early, yet transient delay in development. However, no reduction in functional outgrowth potential was observed following limiting dilution transplantation analysis. In contrast, a significant reduction in outgrowth potential was observed upon the deletion of both FGFR1 and FGFR2 in MECs using adenovirus-Cre. Additionally, using a fluorescent reporter mouse model to monitor Cre-mediated recombination, we observed a competitive disadvantage following transplantation of both FGFR1/R2-null MECs, most prominently in the basal epithelial cells. This correlated with the complete loss of the mammary stem cell repopulating population in the FGFR1/R2-attenuated epithelium. FGFR1/R2-null MECs were partially rescued in chimeric outgrowths containing wild-type MECs, suggesting the potential importance of paracrine mechanisms involved in the maintenance of the basal epithelial stem cells. These studies document the requirement for functional FGFR signaling in mammary stem cells during development. Copyright © 2012 AlphaMed Press.

  9. DotU and VgrG, core components of type VI secretion systems, are essential for Francisella LVS pathogenicity.

    Directory of Open Access Journals (Sweden)

    Jeanette E Bröms

    Full Text Available The Gram-negative bacterium Francisella tularensis causes tularemia, a disease which requires bacterial escape from phagosomes of infected macrophages. Once in the cytosol, the bacterium rapidly multiplies, inhibits activation of the inflammasome and ultimately causes death of the host cell. Of importance for these processes is a 33-kb gene cluster, the Francisella pathogenicity island (FPI, which is believed to encode a type VI secretion system (T6SS. In this study, we analyzed the role of the FPI-encoded proteins VgrG and DotU, which are conserved components of type VI secretion (T6S clusters. We demonstrate that in F. tularensis LVS, VgrG was shown to form multimers, consistent with its suggested role as a trimeric membrane puncturing device in T6SSs, while the inner membrane protein DotU was shown to stabilize PdpB/IcmF, another T6SS core component. Upon infection of J774 cells, both ΔvgrG and ΔdotU mutants did not escape from phagosomes, and subsequently, did not multiply or cause cytopathogenicity. They also showed impaired activation of the inflammasome and marked attenuation in the mouse model. Moreover, all of the DotU-dependent functions investigated here required the presence of three residues that are essentially conserved among all DotU homologues. Thus, in agreement with a core function in T6S clusters, VgrG and DotU play key roles for modulation of the intracellular host response as well as for the virulence of F. tularensis.

  10. Altered Expression of Wnt Signaling Pathway Components in Osteogenesis of Mesenchymal Stem Cells in Osteoarthritis Patients.

    Science.gov (United States)

    Tornero-Esteban, Pilar; Peralta-Sastre, Ascensión; Herranz, Eva; Rodríguez-Rodríguez, Luis; Mucientes, Arkaitz; Abásolo, Lydia; Marco, Fernando; Fernández-Gutiérrez, Benjamín; Lamas, José Ramón

    2015-01-01

    Osteoarthritis (OA) is characterized by altered homeostasis of joint cartilage and bone, whose functional properties rely on chondrocytes and osteoblasts, belonging to mesenchymal stem cells (MSCs). WNT signaling acts as a hub integrating and crosstalking with other signaling pathways leading to the regulation of MSC functions. The aim of this study was to evaluate the existence of a differential signaling between Healthy and OA-MSCs during osteogenesis. MSCs of seven OA patients and six healthy controls were isolated, characterised and expanded. During in vitro osteogenesis, cells were recovered at days 1, 10 and 21. RNA and protein content was obtained. Expression of WNT pathway genes was evaluated using RT-qPCR. Functional studies were also performed to study the MSC osteogenic commitment and functional and post-traslational status of β-catenin and several receptor tyrosine kinases. Several genes were downregulated in OA-MSCs during osteogenesis in vitro. These included soluble Wnts, inhibitors, receptors, co-receptors, several kinases and transcription factors. Basal levels of β-catenin were higher in OA-MSCs, but calcium deposition and expression of osteogenic genes was similar between Healthy and OA-MSCs. Interestingly an increased phosphorylation of p44/42 MAPK (ERK1/2) signaling node was present in OA-MSCs. Our results point to the existence in OA-MSCs of alterations in expression of Wnt pathway components during in vitro osteogenesis that are partially compensated by post-translational mechanisms modulating the function of other pathways. We also point the relevance of other signaling pathways in OA pathophysiology suggesting their role in the maintenance of joint homeostasis through modulation of MSC osteogenic potential.

  11. The late endosomal HOPS complex anchors active G-protein signaling essential for pathogenesis in magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Ravikrishna Ramanujam

    Full Text Available In Magnaporthe oryzae, the causal ascomycete of the devastating rice blast disease, the conidial germ tube tip must sense and respond to a wide array of requisite cues from the host in order to switch from polarized to isotropic growth, ultimately forming the dome-shaped infection cell known as the appressorium. Although the role for G-protein mediated Cyclic AMP signaling in appressorium formation was first identified almost two decades ago, little is known about the spatio-temporal dynamics of the cascade and how the signal is transmitted through the intracellular network during cell growth and morphogenesis. In this study, we demonstrate that the late endosomal compartments, comprising of a PI3P-rich (Phosphatidylinositol 3-phosphate highly dynamic tubulo-vesicular network, scaffold active MagA/GαS, Rgs1 (a GAP for MagA, Adenylate cyclase and Pth11 (a non-canonical GPCR in the likely absence of AKAP-like anchors during early pathogenic development in M. oryzae. Loss of HOPS component Vps39 and consequently the late endosomal function caused a disruption of adenylate cyclase localization, cAMP signaling and appressorium formation. Remarkably, exogenous cAMP rescued the appressorium formation defects associated with VPS39 deletion in M. oryzae. We propose that sequestration of key G-protein signaling components on dynamic late endosomes and/or endolysosomes, provides an effective molecular means to compartmentalize and control the spatio-temporal activation and rapid downregulation (likely via vacuolar degradation of cAMP signaling amidst changing cellular geometry during pathogenic development in M. oryzae.

  12. The concept of the pedagogical system of the higher technical educational establishment: essential characteristics of its components

    Directory of Open Access Journals (Sweden)

    Ольга Петрівна Лучанінова

    2016-03-01

    Full Text Available The article discusses the essential characteristics of the components of the concept of modern educational system of higher technical educational institutions.We believe that the important role in organization of pedagogical system of the modern higher technical educational establishment belongs to qualitatively new approaches: humanistic and ideological, andragogical, facilitating, personal, cultural, diversificational, cordocentrism, systematic and activity approach, interactive.The concept of pedagogical system will be effective, if the main fundamentals of the Concept are included into the plans of pedagogical work of the higher educational establishments and their structural subdivisions; if the organizational and methodological facilities and studying and generalizing of the experience in organization of the pedagogical activities in the other higher educational establishments are prepared; if the scientific and methodological conferences, seminars, round-table discussion meetings, trainings and so on are organized and held; if we  promote active exchange of the theoretical and methodological aspects of the pedagogical system, of new approaches, forms and methods of the pedagogical activities; if we consider the questions of the Concept implementation at the meetings of the pedagogical work councils, educational and methodological commissions and the like.The offered authors Concept of the pedagogical system of the higher technical educational establishment should help the educators modulate the pedagogical process, involve various institutions and the society to the active participation in the educational and pedagogical process.

  13. Predominant membrane localization is an essential feature of the bacterial signal recognition particle receptor

    Directory of Open Access Journals (Sweden)

    Graumann Peter

    2009-11-01

    Full Text Available Abstract Background The signal recognition particle (SRP receptor plays a vital role in co-translational protein targeting, because it connects the soluble SRP-ribosome-nascent chain complex (SRP-RNCs to the membrane bound Sec translocon. The eukaryotic SRP receptor (SR is a heterodimeric protein complex, consisting of two unrelated GTPases. The SRβ subunit is an integral membrane protein, which tethers the SRP-interacting SRα subunit permanently to the endoplasmic reticulum membrane. The prokaryotic SR lacks the SRβ subunit and consists of only the SRα homologue FtsY. Strikingly, although FtsY requires membrane contact for functionality, cell fractionation studies have localized FtsY predominantly to the cytosolic fraction of Escherichia coli. So far, the exact function of the soluble SR in E. coli is unknown, but it has been suggested that, in contrast to eukaryotes, the prokaryotic SR might bind SRP-RNCs already in the cytosol and only then initiates membrane targeting. Results In the current study we have determined the contribution of soluble FtsY to co-translational targeting in vitro and have re-analysed the localization of FtsY in vivo by fluorescence microscopy. Our data show that FtsY can bind to SRP-ribosome nascent chains (RNCs in the absence of membranes. However, these soluble FtsY-SRP-RNC complexes are not efficiently targeted to the membrane. In contrast, we observed effective targeting of SRP-RNCs to membrane-bond FtsY. These data show that soluble FtsY does not contribute significantly to cotranslational targeting in E. coli. In agreement with this observation, our in vivo analyses of FtsY localization in bacterial cells by fluorescence microscopy revealed that the vast majority of FtsY was localized to the inner membrane and that soluble FtsY constituted only a negligible species in vivo. Conclusion The exact function of the SRP receptor (SR in bacteria has so far been enigmatic. Our data show that the bacterial SR is

  14. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells

    Directory of Open Access Journals (Sweden)

    Hofmann Thomas

    2007-07-01

    Full Text Available Abstract Background A growing number of TRP channels have been identified as key players in the sensation of smell, temperature, mechanical forces and taste. TRPM5 is known to be abundantly expressed in taste receptor cells where it participates in sweet, amino acid and bitter perception. A role of TRPM5 in other sensory systems, however, has not been studied so far. Results Here, we systematically investigated the expression of TRPM5 in rat and mouse tissues. Apart from taste buds, where we found TRPM5 to be predominantly localized on the basolateral surface of taste receptor cells, TRPM5 immunoreactivity was seen in other chemosensory organs – the main olfactory epithelium and the vomeronasal organ. Most strikingly, we found solitary TRPM5-enriched epithelial cells in all parts of the respiratory and gastrointestinal tract. Based on their tissue distribution, the low cell density, morphological features and co-immunostaining with different epithelial markers, we identified these cells as brush cells (also known as tuft, fibrillovesicular, multivesicular or caveolated cells. In terms of morphological characteristics, brush cells resemble taste receptor cells, while their origin and biological role are still under intensive debate. Conclusion We consider TRPM5 to be an intrinsic signaling component of mammalian chemosensory organs, and provide evidence for brush cells being an important cellular correlate in the periphery.

  15. Two-Component Signal Transduction System SaeRS Positively Regulates Staphylococcus epidermidis Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Qiang Lou

    2014-01-01

    Full Text Available Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS. Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.

  16. Cullin1-P is an Essential Component of Non-Self Recognition System in Self-Incompatibility in Petunia.

    Science.gov (United States)

    Kubo, Ken-Ichi; Tsukahara, Mai; Fujii, Sota; Murase, Kohji; Wada, Yuko; Entani, Tetsuyuki; Iwano, Megumi; Takayama, Seiji

    2016-11-01

    Self-incompatibility (SI) in flowering plants is a genetic reproductive barrier to distinguish self- and non-self pollen to promote outbreeding. In Solanaceae, self-pollen is rejected by the ribonucleases expressed in the styles (S-RNases), via its cytotoxic function. On the other side, the male-determinant is the S-locus F-box proteins (SLFs) expressed in pollen. Multiple SLFs collaboratively detoxify non-self S-RNases, therefore, non-self recognition is the mode of self-/non-self discrimination in Solanaceae. It is considered that SLFs function as a substrate-recognition module of the Skp1-Cullin1-F-box (SCF) complex that inactivates non-self S-RNases via their polyubiquitination, which leads to degradation by 26S proteasome. In fact, PhSSK1 (Petunia hybrida SLF-interacting Skp1-like1) was identified as a specific component of SCF SLF and was shown to be essential for detoxification of S-RNase in Petunia However, different molecules are proposed as the candidate Cullin1, another component of SCF SLF , and there is as yet no definite conclusion. Here, we identified five Cullin1s from the expressed sequence tags (ESTs) derived from the male reproductive organ in Petunia Among them, only PhCUL1-P was co-immunoprecipitated with S 7 -SLF2. In vitro protein-binding assay suggested that PhSSK1 specifically forms a complex with PhCUL1-P in an SLF-dependent manner. Knockdown of PhCUL1-P suppressed fertility of transgenic pollen in cross-compatible pollination in the functional S-RNase-dependent manner. These results suggested that SCF SLF selectively uses PhCUL1-P. Phylogeny of Cullin1s indicates that CUL1-P is recruited into the SI machinery during the evolution of Solanaceae, suggesting that the SI components have evolved differently among species in Solanaceae and Rosaceae, despite both families sharing the S-RNase-based SI. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For

  17. Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells.

    Science.gov (United States)

    Lyons, Amy; Coleman, Michael; Riis, Sarah; Favre, Cedric; O'Flanagan, Ciara H; Zhdanov, Alexander V; Papkovsky, Dmitri B; Hursting, Stephen D; O'Connor, Rosemary

    2017-10-13

    Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) and PGC-1α-related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals.

    Science.gov (United States)

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2014-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the

  19. Description of Some Ecological Factors in Three Forest Sites in Lorestan Province and Their Impact on Myrtle (Myrtus communis L. Essential Oil Yield and Chemical Components

    Directory of Open Access Journals (Sweden)

    Z. Mir-Azadi

    2013-03-01

    Full Text Available Due to the side effects of chemical drugs, special attention is given recently to pharmaceutical plants. Myrtle (Myrtus communis L. is one of the valuable pharmaceutical plants, which is distributed over the vast areas of Iran. Yield and components of essential oil of this plant is dependent on ecological and genetic factors. In order to describe some ecological factors that affect myrtle in Lorestan province, three forest sites (Sepiddasht, Chame-moord, and Hamzeh Camp were selected. Some effective ecological factors on type of essential oil were measured and compared among the sites. To compare the yield and components of essential oil, myrtle leaves were collected during flowering stage in each site. Leaves were dried in open air conditions and the oil was extracted by distillation. Yield of essential oil was calculated and its components were identified by GC and GC/MS. Results showed that maximum yield belongs to Sepiddasht site. The altitude and soil Na, P, and organic carbon content of this site is quite different from other two sites. The main components of essential oils of these three sites had considerable differences. The amount of 9,10 anthracenedione was 29.1% in Sepiddasht site, while it was not found in the oil of Chame-moord site. It seems that differences in ecological and soil properties of the tree sites could have major effect on essential oil yield and its composition.

  20. Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4°C.

    Science.gov (United States)

    Villamizar, Luz Helena; Cardoso, Maria das Graças; Andrade, Juliana de; Teixeira, Maria Luisa; Soares, Maurilio José

    2017-02-01

    Recent studies showed that essential oils from different pepper species (Piper spp.) have promising leishmanicidal and trypanocidal activities. In search for natural compounds against Trypanosoma cruzi, different forms of the parasite were incubated for 24 h at 28ºC or 4ºC with Piper aduncum essential oil (PaEO) or its main constituents linalool and nerolidol. PaEO chemical composition was obtained by GC-MS. Drug activity assays were based on cell counting, MTT data or infection index values. The effect of PaEO on the T. cruzi cell cycle and mitochondrial membrane potential was evaluated by flow cytometry. PaEO was effective against cell-derived (IC50/24 h: 2.8 μg/mL) and metacyclic (IC50/24 h: 12.1 μg/mL) trypomastigotes, as well as intracellular amastigotes (IC50/24 h: 9 μg/mL). At 4ºC - the temperature of red blood cells (RBCs) storage in blood banks - cell-derived trypomastigotes were more sensitive to PaEO (IC50/24 h = 3.8 μg/mL) than to gentian violet (IC50/24 h = 24.7 mg/mL). Cytotoxicity assays using Vero cells (37ºC) and RBCs (4ºC) showed that PaEO has increased selectivity for cell-derived trypomastigotes. Flow cytometry analysis showed that PaEO does not affect the cell cycle of T. cruzi epimastigotes, but decreases their mitochondrial membrane potential. GC-MS data identified nerolidol and linalool as major components of PaEO, and linalool had trypanocidal effect (IC50/24 h: 306 ng/mL) at 4ºC. The trypanocidal effect of PaEO is likely due to the presence of linalool, which may represent an interesting candidate for use in the treatment of potentially contaminated RBCs bags at low temperature.

  1. Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4°C

    Directory of Open Access Journals (Sweden)

    Luz Helena Villamizar

    Full Text Available BACKGROUND Recent studies showed that essential oils from different pepper species (Piper spp. have promising leishmanicidal and trypanocidal activities. OBJECTIVES In search for natural compounds against Trypanosoma cruzi, different forms of the parasite were incubated for 24 h at 28ºC or 4ºC with Piper aduncum essential oil (PaEO or its main constituents linalool and nerolidol. METHODS PaEO chemical composition was obtained by GC-MS. Drug activity assays were based on cell counting, MTT data or infection index values. The effect of PaEO on the T. cruzi cell cycle and mitochondrial membrane potential was evaluated by flow cytometry. FINDINGS PaEO was effective against cell-derived (IC50/24 h: 2.8 μg/mL and metacyclic (IC50/24 h: 12.1 μg/mL trypomastigotes, as well as intracellular amastigotes (IC50/24 h: 9 μg/mL. At 4ºC - the temperature of red blood cells (RBCs storage in blood banks - cell-derived trypomastigotes were more sensitive to PaEO (IC50/24 h = 3.8 μg/mL than to gentian violet (IC50/24 h = 24.7 mg/mL. Cytotoxicity assays using Vero cells (37ºC and RBCs (4ºC showed that PaEO has increased selectivity for cell-derived trypomastigotes. Flow cytometry analysis showed that PaEO does not affect the cell cycle of T. cruzi epimastigotes, but decreases their mitochondrial membrane potential. GC-MS data identified nerolidol and linalool as major components of PaEO, and linalool had trypanocidal effect (IC50/24 h: 306 ng/mL at 4ºC. MAIN CONCLUSION The trypanocidal effect of PaEO is likely due to the presence of linalool, which may represent an interesting candidate for use in the treatment of potentially contaminated RBCs bags at low temperature.

  2. Combining RNA interference and kinase inhibitors against cell signalling components involved in cancer

    International Nuclear Information System (INIS)

    O'Grady, Michael; Raha, Debasish; Hanson, Bonnie J; Bunting, Michaeline; Hanson, George T

    2005-01-01

    The transcription factor activator protein-1 (AP-1) has been implicated in a large variety of biological processes including oncogenic transformation. The tyrosine kinases of the epidermal growth factor receptor (EGFR) constitute the beginning of one signal transduction cascade leading to AP-1 activation and are known to control cell proliferation and differentiation. Drug discovery efforts targeting this receptor and other pathway components have centred on monoclonal antibodies and small molecule inhibitors. Resistance to such inhibitors has already been observed, guiding the prediction of their use in combination therapies with other targeted agents such as RNA interference (RNAi). This study examines the use of RNAi and kinase inhibitors for qualification of components involved in the EGFR/AP-1 pathway of ME180 cells, and their inhibitory effects when evaluated individually or in tandem against multiple components of this important disease-related pathway. AP-1 activation was assessed using an ME180 cell line stably transfected with a beta-lactamase reporter gene under the control of AP-1 response element following epidermal growth factor (EGF) stimulation. Immunocytochemistry allowed for further quantification of small molecule inhibition on a cellular protein level. RNAi and RT-qPCR experiments were performed to assess the amount of knockdown on an mRNA level, and immunocytochemistry was used to reveal cellular protein levels for the targeted pathway components. Increased potency of kinase inhibitors was shown by combining RNAi directed towards EGFR and small molecule inhibitors acting at proximal or distal points in the pathway. After cellular stimulation with EGF and analysis at the level of AP-1 activation using a β-lactamase reporter gene, a 10–12 fold shift or 2.5–3 fold shift toward greater potency in the IC 50 was observed for EGFR and MEK-1 inhibitors, respectively, in the presence of RNAi targeting EGFR. EGFR pathway components were qualified as

  3. Negative regulation of Toll-like receptor signaling plays an essential role in homeostasis of the intestine.

    Science.gov (United States)

    Biswas, Amlan; Wilmanski, Jeanette; Forsman, Huamei; Hrncir, Tomas; Hao, Liming; Tlaskalova-Hogenova, Helena; Kobayashi, Koichi S

    2011-01-01

    A healthy intestinal tract is characterized by controlled homeostasis due to the balanced interaction between commensal bacteria and the host mucosal immune system. Human and animal model studies have supported the hypothesis that breakdown of this homeostasis may underlie the pathogenesis of inflammatory bowel diseases. However, it is not well understood how intestinal microflora stimulate the intestinal mucosal immune system and how such activation is regulated. Using a spontaneous, commensal bacteria-dependent colitis model in IL-10-deficient mice, we investigated the role of TLR and their negative regulation in intestinal homeostasis. In addition to IL-10(-/-) MyD88(-/-) mice, IL-10(-/-) TLR4(-/-) mice exhibited reduced colitis compared to IL-10(-/-) mice, indicating that TLR4 signaling plays an important role in inducing colitis. Interestingly, the expression of IRAK-M, a negative regulator of TLR signaling, is dependent on intestinal commensal flora, as IRAK-M expression was reduced in mice re-derived into a germ-free environment, and introduction of commensal bacteria into germ-free mice induced IRAK-M expression. IL-10(-/-) IRAK-M(-/-) mice exhibited exacerbated colitis with increased inflammatory cytokine gene expression. Therefore, this study indicates that intestinal microflora stimulate the colitogenic immune system through TLR and negative regulation of TLR signaling is essential in maintaining intestinal homeostasis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bruton's tyrosine kinase is essential for hydrogen peroxide-induced calcium signaling.

    Science.gov (United States)

    Qin, S; Chock, P B

    2001-07-10

    Using Btk-deficient DT40 cells and the transfectants expressing wild-type Btk or Btk mutants in either kinase (Arg(525) to Gln), Src homology 2 (SH2, Arg(307) to Ala), or pleckstrin homology (PH, Arg(28) to Cys) domains, we investigated the roles and structure-function relationships of Btk in hydrogen peroxide-induced calcium mobilization. Our genetic evidence showed that Btk deficiency resulted in a significant reduction in hydrogen peroxide-induced calcium response. This impaired calcium signaling is correlated with the complete elimination of IP3 production and the significantly reduced tyrosine phosphorylation of PLCgamma2 in Btk-deficient DT40 cells. All of these defects were fully restored by the expression of wild-type Btk in Btk-deficient DT40 cells. The data from the point mutation study revealed that a defect at any one of the three functional domains would prevent a full recovery of Btk-mediated hydrogen peroxide-induced intracellular calcium mobilization. However, mutation at either the SH2 or PH domain did not affect the hydrogen peroxide-induced activation of Btk. Mutation at the SH2 domain abrogates both IP3 generation and calcium release, while the mutant with the nonfunctional PH domain can partially activate PLCgamma2 and catalyze IP3 production but fails to produce significant calcium mobilization. Thus, these observations suggest that Btk-dependent tyrosine phosphorylation of PLCgamma2 is required but not sufficient for hydrogen peroxide-induced calcium mobilization. Furthermore, hydrogen peroxide stimulates a Syk-, but not Btk-, dependent tyrosine phosphorylation of B cell linker protein BLNK. The overall results, together with those reported earlier [Qin et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 7118], are consistent with the notion that functional SH2 and PH domains are required for Btk to form a complex with PLCgamma2 through BLNK in order to position the Btk, PLCgamma2, and phosphatidylinositol 4,5-bisphosphate in close proximity for

  5. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR.

    Directory of Open Access Journals (Sweden)

    Benjamin P Howden

    2011-11-01

    Full Text Available Antimicrobial resistance in Staphylococcus aureus is a major public health threat, compounded by emergence of strains with resistance to vancomycin and daptomycin, both last line antimicrobials. Here we have performed high throughput DNA sequencing and comparative genomics for five clinical pairs of vancomycin-susceptible (VSSA and vancomycin-intermediate ST239 S. aureus (VISA; each pair isolated before and after vancomycin treatment failure. These comparisons revealed a frequent pattern of mutation among the VISA strains within the essential walKR two-component regulatory locus involved in control of cell wall metabolism. We then conducted bi-directional allelic exchange experiments in our clinical VSSA and VISA strains and showed that single nucleotide substitutions within either walK or walR lead to co-resistance to vancomycin and daptomycin, and caused the typical cell wall thickening observed in resistant clinical isolates. Ion Torrent genome sequencing confirmed no additional regulatory mutations had been introduced into either the walR or walK VISA mutants during the allelic exchange process. However, two potential compensatory mutations were detected within putative transport genes for the walK mutant. The minimal genetic changes in either walK or walR also attenuated virulence, reduced biofilm formation, and led to consistent transcriptional changes that suggest an important role for this regulator in control of central metabolism. This study highlights the dramatic impacts of single mutations that arise during persistent S. aureus infections and demonstrates the role played by walKR to increase drug resistance, control metabolism and alter the virulence potential of this pathogen.

  6. Antifungal and Anti-Biofilm Activity of Essential Oil Active Components against Cryptococcus neoformans and Cryptococcus laurentii

    Directory of Open Access Journals (Sweden)

    Poonam Kumari

    2017-11-01

    Full Text Available Cryptococcosis is an emerging and recalcitrant systemic infection occurring in immunocompromised patients. This invasive fungal infection is difficult to treat due to the ability of Cryptococcus neoformans and Cryptococcus laurentii to form biofilms resistant to standard antifungal treatment. The toxicity concern of these drugs has stimulated the search for natural therapeutic alternatives. Essential oil and their active components (EO-ACs have shown to possess the variety of biological and pharmacological properties. In the present investigation the effect of six (EO-ACs sourced from Oregano oil (Carvacrol, Cinnamon oil (Cinnamaldehyde, Lemongrass oil (Citral, Clove oil (Eugenol, Peppermint oil (Menthol and Thyme oil (thymol against three infectious forms; planktonic cells, biofilm formation and preformed biofilm of C. neoformans and C. laurentii were evaluated as compared to standard drugs. Data showed that antibiofilm activity of the tested EO-ACs were in the order: thymol>carvacrol>citral>eugenol=cinnamaldehyde>menthol respectively. The three most potent EO-ACs, thymol, carvacrol, and citral showed excellent antibiofilm activity at a much lower concentration against C. laurentii in comparison to C. neoformans indicating the resistant nature of the latter. Effect of the potent EO-ACs on the biofilm morphology was visualized using scanning electron microscopy (SEM and confocal laser scanning microscopy (CLSM, which revealed the absence of extracellular polymeric matrix (EPM, reduction in cellular density and alteration in the surface morphology of biofilm cells. Further, to realize the efficacy of the EO-ACs in terms of human safety, cytotoxicity assays and co-culture model were evaluated. Thymol and carvacrol as compared to citral were the most efficient in terms of human safety in keratinocyte- Cryptococcus sp. co-culture infection model suggesting that these two can be further exploited as cost-effective and non-toxic anti

  7. Bioelectric signal classification using a recurrent probabilistic neural network with time-series discriminant component analysis.

    Science.gov (United States)

    Hayashi, Hideaki; Shima, Keisuke; Shibanoki, Taro; Kurita, Yuichi; Tsuji, Toshio

    2013-01-01

    This paper outlines a probabilistic neural network developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower-dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model that incorporates a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into a neural network so that parameters can be obtained appropriately as network coefficients according to backpropagation-through-time-based training algorithm. The network is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. In the experiments conducted during the study, the validity of the proposed network was demonstrated for EEG signals.

  8. Oviposition Deterrent and Larvicidal and Pupaecidal Activity of Seven Essential Oils and their Major Components against Culex quinquefasciatus Say (Diptera: Culicidae): Synergism–antagonism Effects

    Science.gov (United States)

    Andrade-Ochoa, Sergio; Sánchez-Aldana, Daniela; Chacón-Vargas, Karla Fabiola; Rivera-Chavira, Blanca E.; Camacho, Alejandro D.; Nogueda-Torres, Benjamín

    2018-01-01

    The larvicidal activity of essential oils cinnamon (Cinnamomum verum J. Presl), Mexican lime (Citrus aurantifolia Swingle) cumin (Cuminum cyminum Linnaeus), clove (Syzygium aromaticum (L.) Merr. & L.M.Perry), laurel (Laurus nobilis Linnaeus), Mexican oregano (Lippia berlandieri Schauer) and anise (Pimpinella anisum Linnaeus)) and their major components are tested against larvae and pupae of Culex quinquefasciatus Say. Third instar larvae and pupae are used for determination of lethality and mortality. Essential oils with more than 90% mortality after a 30-min treatment are evaluated at different time intervals. Of the essential oils tested, anise and Mexican oregano are effective against larvae, with a median lethal concentration (LC50) of 4.7 and 6.5 µg/mL, respectively. Anise essential oil and t-anethole are effective against pupae, with LC50 values of 102 and 48.7 µg/mL, respectively. Oregano essential oil and carvacrol also have relevant activities. A kinetic analysis of the larvicidal activity, the oviposition deterrent effect and assays of the effects of the binary mixtures of chemical components are undertaken. Results show that anethole has synergistic effects with other constituents. This same effect is observed for carvacrol and thymol. Limonene shows antagonistic effect with β-pinene. The high larvicidal and pupaecidal activities of essential oils and its components demonstrate that they can be potential substitutes for chemical compounds used in mosquitoes control programs. PMID:29443951

  9. Essential roles of insulin, AMPK signaling and lysyl and prolyl hydroxylases in the biosynthesis and multimerization of adiponectin.

    Science.gov (United States)

    Zhang, Lin; Li, Ming-Ming; Corcoran, Marie; Zhang, Shaoping; Cooper, Garth J S

    2015-01-05

    Post-translational modifications (PTMs) of the adiponectin molecule are essential for its full bioactivity, and defects in PTMs leading to its defective production and multimerization have been linked to the mechanisms of insulin resistance, obesity, and type-2 diabetes. Here we observed that, in differentiated 3T3-L1 adipocytes, decreased insulin signaling caused by blocking of insulin receptors (InsR) with an anti-InsR blocking antibody, increased rates of adiponectin secretion, whereas concomitant elevations in insulin levels counteracted this effect. Adenosine monophosphate-activated protein kinase (AMPK) signaling regulated adiponectin production by modulating the expression of adiponectin receptors, the secretion of adiponectin, and eventually the expression of adiponectin itself. We found that lysyl hydroxylases (LHs) and prolyl hydroxylases (PHs) were expressed in white-adipose tissue of ob/ob mice, wherein LH3 levels were increased compared with controls. In differentiated 3T3-L1 adipocytes, both non-specific inhibition of LHs and PHs by dipyridyl, and specific inhibition of LHs by minoxidil and of P4H with ethyl-3,4-dihydroxybenzoate, caused significant suppression of adiponectin production, more particularly of the higher-order isoforms. Transient gene knock-down of LH3 (Plod3) caused a suppressive effect, especially on the high molecular-weight (HMW) isoforms. These data indicate that PHs and LHs are both required for physiological adiponectin production and in particular are essential for the formation/secretion of the HMW isoforms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Shp2-Dependent ERK Signaling Is Essential for Induction of Bergmann Glia and Foliation of the Cerebellum

    Science.gov (United States)

    Li, Kairong; Leung, Alan W.; Guo, Qiuxia; Yang, Wentian

    2014-01-01

    Folding of the cortex and the persistence of radial glia (RG)-like cells called Bergmann glia (BG) are hallmarks of the mammalian cerebellum. Similar to basal RG in the embryonic neocortex, BG maintain only basal processes and continuously express neural stem cell markers. Past studies had focused on the function of BG in granule cell migration and how granule cell progenitors (GCP) regulate cerebellar foliation. The molecular control of BG generation and its role in cerebellar foliation are less understood. Here, we have analyzed the function of the protein tyrosine phosphatase Shp2 in mice by deleting its gene Ptpn11 in the entire cerebellum or selectively in the GCP lineage. Deleting Ptpn11 in the entire cerebellum by En1-cre blocks transformation of RG into BG but preserves other major cerebellar cell types. In the absence of BG, inward invagination of GCP persists but is uncoupled from the folding of the Purkinje cell layer and the basement membrane, leading to disorganized lamination and an absence of cerebellar folia. In contrast, removing Ptpn11 in the GCP lineage by Atoh1-cre has no effect on cerebellar development, indicating that Shp2 is not cell autonomously required in GCP. Furthermore, we demonstrate that Ptpn11 interacts with Fgf8 and is essential for ERK activation in RG and nascent BG. Finally, expressing constitutively active MEK1 rescues BG formation and cerebellar foliation in Shp2-deficient cerebella. Our results demonstrate an essential role of Shp2 in BG specification via fibroblast growth factor/extracellular signal-regulated protein kinase signaling, and reveal a crucial function of BG in organizing cerebellar foliation. PMID:24431450

  11. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, Alireza [University of Tennessee, Knoxville (UTK); Qi, Hairong [ORNL; Fugate, David L [ORNL; Kuruganti, Teja [ORNL

    2015-01-01

    Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumption of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.

  12. TAB2 Is Essential for Prevention of Apoptosis in Fetal Liver but Not for Interleukin-1 Signaling

    Science.gov (United States)

    Sanjo, Hideki; Takeda, Kiyoshi; Tsujimura, Tohru; Ninomiya-Tsuji, Jun; Matsumoto, Kunihiro; Akira, Shizuo

    2003-01-01

    The proinflammatory cytokine interleukin-1 (IL-1) transmits a signal via several critical cytoplasmic proteins such as MyD88, IRAKs and TRAF6. Recently, serine/threonine kinase TAK1 and TAK1 binding protein 1 and 2 (TAB1/2) have been identified as molecules involved in IL-1-induced TRAF6-mediated activation of AP-1 and NF-κB via mitogen-activated protein (MAP) kinases and IκB kinases, respectively. However, their physiological functions remain to be clarified. To elucidate their roles in vivo, we generated TAB2-deficient mice. The TAB2 deficiency was embryonic lethal due to liver degeneration and apoptosis. This phenotype was similar to that of NF-κB p65-, IKKβ-, and NEMO/IKKγ-deficient mice. However, the IL-1-induced activation of NF-κB and MAP kinases was not impaired in TAB2-deficient embryonic fibroblasts. These findings demonstrate that TAB2 is essential for embryonic development through prevention of liver apoptosis but not for the IL-1 receptor-mediated signaling pathway. PMID:12556483

  13. Detection of oscillatory components in noise signals and its application to fast detection of sodium boiling in LMFBR's

    International Nuclear Information System (INIS)

    Ehrhardt, J.

    1975-09-01

    In general, the surveillance of technical plants is performed by observating the mean value of measured signals. In this method not all information included in these signals is used. On the other hand - for example in a reactor - disturbances are possible which generate small oscillatory components in the measured signals. In general, these oscillatory components do not influence the mean value of the signals and consequently do not activate the conventional control system; however they can be found by analysis of the signal's noise component. For the detection of these oscillatory signals the observation of the frequency spectra of the noise signals is particularly advantageous because they produce peaks at the oscillation frequencies. In this paper a new detection system for the fast detection of suddenly appearing peaks in the frequency spectra of noise signals is presented. The prototype of a compact detection unit was developed which continuously computes the power spectral density (PSD) of noise signals and simultaneously supervises the PSD for peaks in the relevant frequency range. The detection method is not affected by the frequency dependance of the PSD and is applicable to any noise signal. General criteria were developed to enable the determination of the optimal detection system and its sensitivity. The upper limits of false alarm rate and detection time were taken into account. The detection criteria are applicable to all noise signals with approximately normally distributed amplitudes. Theoretical results were confirmed in a number of experiments; special experimental and theoretical parameter studies were done for the optimal detection of sodium boiling in LMFBR's. Computations based on these results showed that local and integral sodium boiling can be detected in a wide core range of SNR 300 by observing fluctuations of the neutron flux. In this connection it is important to point out that no additional core instrumentation is necessary because the

  14. Chemosensory responses to the repellent nepeta essential oil and its major component nepetalactone by the yellow fever mosquito, aedes aegypti, a vector of zika virus

    Science.gov (United States)

    Nepeta essential oil (Neo) (catnip) and its major component, nepetalactone, have long been known to repel insects including mosquitoes. However, the neural mechanisms through which these repellents are detected by mosquitoes, including the yellow fever mosquito Aedes aegypti, an important vector of...

  15. Evidence that Mediator is essential for Pol II transcription, but is not a required component of the preinitiation complex in vivo.

    Science.gov (United States)

    Petrenko, Natalia; Jin, Yi; Wong, Koon Ho; Struhl, Kevin

    2017-07-12

    The Mediator complex has been described as a general transcription factor, but it is unclear if it is essential for Pol II transcription and/or is a required component of the preinitiation complex (PIC) in vivo. Here, we show that depletion of individual subunits, even those essential for cell growth, causes a general but only modest decrease in transcription. In contrast, simultaneous depletion of all Mediator modules causes a drastic decrease in transcription. Depletion of head or middle subunits, but not tail subunits, causes a downstream shift in the Pol II occupancy profile, suggesting that Mediator at the core promoter inhibits promoter escape. Interestingly, a functional PIC and Pol II transcription can occur when Mediator is not detected at core promoters. These results provide strong evidence that Mediator is essential for Pol II transcription and stimulates PIC formation, but it is not a required component of the PIC in vivo.

  16. A signal-substrate match in the substrate-borne component of a multimodal courtship display

    Directory of Open Access Journals (Sweden)

    Damian O. ELIAS, Andrew C. MASON, Eileen A. HEBETS

    2010-06-01

    Full Text Available The environment can impose strong limitations on the efficacy of signal transmission. In particular, for vibratory communication, the signaling environment is often extremely heterogeneous at very small scales. Nevertheless, natural selection is expected to select for signals well-suited to effective transmission. Here, we test for substrate-dependent signal efficacy in the wolf spider Schizocosa stridulans Stratton 1991. We first explore the transmission characteristics of this important signaling modality by playing recorded substrate-borne signals through three different substrates (leaf litter, pine litter, and red clay and measuring the propagated signal. We found that the substrate-borne signal of S. stridulans attenuates the least on leaf litter, the substrate upon which the species is naturally found. Next, by assessing mating success with artificially muted and non-muted males across different signaling substrates (leaf litter, pine litter, and sand, we explored the relationship between substrate-borne signaling and substrate for mating success. We found that muted males were unsuccessful in obtaining copulations regardless of substrate, while mating success was dependent on the signaling substrate for non-muted males. For non-muted males, more males copulated on leaf litter than any other substrate. Taken together, these results confirm the importance of substrate-borne signaling in S. stridulans and suggest a match between signal properties and signal efficacy – leaf litter transmits the signal most effectively and males are most successful in obtaining copulations on leaf litter [Current Zoology 56 (3: 370–378, 2010].

  17. The Removal of EOG Artifacts From EEG Signals Using Independent Component Analysis and Multivariate Empirical Mode Decomposition.

    Science.gov (United States)

    Wang, Gang; Teng, Chaolin; Li, Kuo; Zhang, Zhonglin; Yan, Xiangguo

    2016-09-01

    The recorded electroencephalography (EEG) signals are usually contaminated by electrooculography (EOG) artifacts. In this paper, by using independent component analysis (ICA) and multivariate empirical mode decomposition (MEMD), the ICA-based MEMD method was proposed to remove EOG artifacts (EOAs) from multichannel EEG signals. First, the EEG signals were decomposed by the MEMD into multiple multivariate intrinsic mode functions (MIMFs). The EOG-related components were then extracted by reconstructing the MIMFs corresponding to EOAs. After performing the ICA of EOG-related signals, the EOG-linked independent components were distinguished and rejected. Finally, the clean EEG signals were reconstructed by implementing the inverse transform of ICA and MEMD. The results of simulated and real data suggested that the proposed method could successfully eliminate EOAs from EEG signals and preserve useful EEG information with little loss. By comparing with other existing techniques, the proposed method achieved much improvement in terms of the increase of signal-to-noise and the decrease of mean square error after removing EOAs.

  18. Attenuation of artifacts in EEG signals measured inside an MRI scanner using constrained independent component analysis

    International Nuclear Information System (INIS)

    Rasheed, Tahir; Lee, Young-Koo; Lee, Soo Yeol; Kim, Tae-Seong

    2009-01-01

    Integration of electroencephalography (EEG) and functional magnetic imaging (fMRI) resonance will allow analysis of the brain activities at superior temporal and spatial resolution. However simultaneous acquisition of EEG and fMRI is hindered by the enhancement of artifacts in EEG, the most prominent of which are ballistocardiogram (BCG) and electro-oculogram (EOG) artifacts. The situation gets even worse if the evoked potentials are measured inside MRI for their minute responses in comparison to the spontaneous brain responses. In this study, we propose a new method of attenuating these artifacts from the spontaneous and evoked EEG data acquired inside an MRI scanner using constrained independent component analysis with a priori information about the artifacts as constraints. With the proposed techniques of reference function generation for the BCG and EOG artifacts as constraints, our new approach performs significantly better than the averaged artifact subtraction (AAS) method. The proposed method could be an alternative to the conventional ICA method for artifact attenuation, with some advantages. As a performance measure we have achieved much improved normalized power spectrum ratios (INPS) for continuous EEG and correlation coefficient (cc) values with outside MRI visual evoked potentials for visual evoked EEG, as compared to those obtained with the AAS method. The results show that our new approach is more effective than the conventional methods, almost fully automatic, and no extra ECG signal measurements are involved

  19. Adaptation to Environmental Stimuli within the Host: Two-Component Signal Transduction Systems of Mycobacterium tuberculosis

    Science.gov (United States)

    Bretl, Daniel J.; Demetriadou, Chrystalla; Zahrt, Thomas C.

    2011-01-01

    Summary: Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis. PMID:22126994

  20. 3D Organotypic Culture Model to Study Components of ERK Signaling.

    Science.gov (United States)

    Chioni, Athina-Myrto; Bajwa, Rabia Tayba; Grose, Richard

    2017-01-01

    Organotypic models are 3D in vitro representations of an in vivo environment. Their complexity can range from an epidermal replica to the establishment of a cancer microenvironment. These models have been used for many years, in an attempt to mimic the structure and function of cells and tissues found inside the body. Methods for developing 3D organotypic models differ according to the tissue of interest and the experimental design. For example, cultures may be grown submerged in culture medium and or at an air-liquid interface. Our group is focusing on an air-liquid interface 3D organotypic model. These cultures are grown on a nylon membrane-covered metal grid with the cells embedded in a Collagen-Matrigel gel. This allows cells to grow in an air-liquid interface to enable diffusion and nourishment from the medium below. Subsequently, the organotypic cultures can be used for immunohistochemical staining of various components of ERK signaling, which is a key player in mediating communication between cells and their microenvironment.

  1. Acaricidal activity of pine essential oils and their main components against Tyrophagus putrescentiae, a stored food mite.

    Science.gov (United States)

    Macchioni, F; Cioni, P L; Flamini, G; Morelli, I; Perrucci, S; Franceschi, A; Macchioni, G; Ceccarini, L

    2002-07-31

    Some essential oils obtained from the branches of four Pinus species (P. pinea L., P. halepensis Mill., P. pinaster Soil in Ait., and P. nigra Arnold) have been evaluated for their acaricidal activity by aerial diffusion against the stored food mite Tyrophagus putrescentiae (L.). All the essential oils showed a good efficacy, but P. pinea oil and its two constituents 1,8-cineole and limonene were the most effective compounds, showing 100% acaricidal activity at 8 microL; 1,8-cineole showed the same activity at 6 microL.

  2. Insecticidal Activity of Essential Oil of Carum Carvi Fruits from China and Its Main Components against Two Grain Storage Insects

    OpenAIRE

    Fang, Rui; Jiang, Cai Hong; Wang, Xiu Yi; Zhang, Hai Ming; Liu, Zhi Long; Zhou, Ligang; Du, Shu Shan; Deng, Zhi Wei

    2010-01-01

    During our screening program for agrochemicals from Chinese medicinal herbs and wild plants, the essential oil of Carum carvi fruits was found to possess strong contact toxicity against Sitophilus zeamais and Tribolium castaneum adults, with LD50 values of 3.07 and 3.29 mg/adult, respectively, and also showed strong fumigant toxicity against the two grain storage insects with LC50 values of 3.37 and 2.53 mg/L, respectively. The essential oil obtained by hydrodistillation was investigated by G...

  3. Essential Oil of Pinus koraiensis Exerts Antiobesic and Hypolipidemic Activity via Inhibition of Peroxisome Proliferator-Activated Receptors Gamma Signaling

    Directory of Open Access Journals (Sweden)

    Hyun-Suk Ko

    2013-01-01

    Full Text Available Our group previously reported that essential oil of Pinus koraiensis (EOPK exerts antihyperlipidemic effects via upregulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A. In the present study, we investigated the antiobesity and hypolipidemic mechanism of EOPK using in vitro 3T3-L1 cells and in vivo HFD-fed rats. EOPK markedly suppressed fat accumulation and intracellular triglyceride associated with downregulation of adipogenic transcription factor expression, including PPARγ and CEBPα in the differentiated 3T3-L1 adipocytes. Additionally, EOPK attenuated the expression levels of FABP and GPDH as target genes of PPARγ during adipocyte differentiation. Furthermore, PPARγ inhibitor GW9662 enhanced the decreased expression of FABP and PPARγ and fat accumulation induced by EOPK. To confirm the in vitro activity of EOPK, animal study was performed by administering normal diet, HFD, and/or EOPK at the dose of 100 or 200 mg/kg for 6 weeks. Consistently, EOPK significantly suppressed body weight gain, serum triglyceride, total cholesterol, LDL cholesterol, and AI value and increased HDL cholesterol in a dose-dependent manner. Immunohistochemistry revealed that EOPK treatment abrogated the expression of PPARγ in the liver tissue sections of EOPK-treated rats. Taken together, our findings suggest that EOPK has the antiobesic and hypolipidemic potential via inhibition of PPARγ-related signaling.

  4. Essential Oil of Pinus koraiensis Exerts Antiobesic and Hypolipidemic Activity via Inhibition of Peroxisome Proliferator-Activated Receptors Gamma Signaling.

    Science.gov (United States)

    Ko, Hyun-Suk; Lee, Hyo-Jeong; Lee, Hyo-Jung; Sohn, Eun Jung; Yun, Miyong; Lee, Min-Ho; Kim, Sung-Hoon

    2013-01-01

    Our group previously reported that essential oil of Pinus koraiensis (EOPK) exerts antihyperlipidemic effects via upregulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A. In the present study, we investigated the antiobesity and hypolipidemic mechanism of EOPK using in vitro 3T3-L1 cells and in vivo HFD-fed rats. EOPK markedly suppressed fat accumulation and intracellular triglyceride associated with downregulation of adipogenic transcription factor expression, including PPAR γ and CEBP α in the differentiated 3T3-L1 adipocytes. Additionally, EOPK attenuated the expression levels of FABP and GPDH as target genes of PPAR γ during adipocyte differentiation. Furthermore, PPAR γ inhibitor GW9662 enhanced the decreased expression of FABP and PPAR γ and fat accumulation induced by EOPK. To confirm the in vitro activity of EOPK, animal study was performed by administering normal diet, HFD, and/or EOPK at the dose of 100 or 200 mg/kg for 6 weeks. Consistently, EOPK significantly suppressed body weight gain, serum triglyceride, total cholesterol, LDL cholesterol, and AI value and increased HDL cholesterol in a dose-dependent manner. Immunohistochemistry revealed that EOPK treatment abrogated the expression of PPAR γ in the liver tissue sections of EOPK-treated rats. Taken together, our findings suggest that EOPK has the antiobesic and hypolipidemic potential via inhibition of PPAR γ -related signaling.

  5. Evaluation of symbiosis with Mycorhizzal on yield, yield components and essential oil of fennel (Foeniculum vulgare Mill. and ajowan (Carum copticum L. under different nitrogen levels

    Directory of Open Access Journals (Sweden)

    J. Shabahang

    2016-05-01

    Full Text Available In order to investigate the effects of mycorrhiza symbiosis and different nitrogen levels on yield, yield components and essential oil content and yield of fennel (Foeniculum vulgare Mill. and ajowan (Carum copticum L., a field experiment was arranged in a factoriel based on a randomized complete block design with three replications at the Agricultural Research Station, Ferdowsi University of Mashhad during growing season 2009-2010. The first and the second factors were inoculation with mycorrhiza (with and without inoculation and nitrogen levels as Urea (0, 50 and 100 kg.ha-1, respectively. Inculated soil with 200 g mycorrhiza (Glomus intraradaices was applied at planting time. Urea was used in two stages such as plating time and one month after that. Ceriteria such as yield components (including number of branch, umbel, umbellet, seed and seed weight, biological and seed yield, harvest index and essential oil content and yield of fennel and ajowan were measured. Results showed that yield components, seed yield, biological yield, harvest index, essential oil content and yield of fennel and ajowan were affected by mycorrhiza and nitrogen level. Mycorrhiza increased fennel and ajowan seed yield (with 35 and 85%, respectively and essential oil content (with 34 and 30%, respectively. The highest and the lowest 1000-seed weight of fennel and ajowan obsevered in inoculation (2.9 and 0.3 g and control (2.1 and 0.2 g, respectively. Nitrogen improved all growth characteristics and decreased essential oil content. There were not significant differences between mycorrhiza and nitrogen interaction. Inoculation with mycorrhiza enhanced root development and hence availability of nutrients, particularly phosphorus. Also, nitrogen is the cause of increasement of photosynthesis rate and duration which promote growth and yield, but it declined essential oil content of two species.

  6. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria

    Science.gov (United States)

    2013-01-01

    Background The main objective of this study was the phytochemical characterization of four indigenous essential oils obtained from spices and their antibacterial activities against the multidrug resistant clinical and soil isolates prevalent in Pakistan, and ATCC reference strains. Methods Chemical composition of essential oils from four Pakistani spices cumin (Cuminum cyminum), cinnamon (Cinnamomum verum), cardamom (Amomum subulatum) and clove (Syzygium aromaticum) were analyzed on GC/MS. Their antibacterial activities were investigated by minimum inhibitory concentration (MIC) and Thin-Layer Chromatography-Bioautographic (TLC-Bioautographic) assays against pathogenic strains Salmonella typhi (D1 Vi-positive), Salmonella typhi (G7 Vi-negative), Salmonella paratyphi A, Escherichia coli (SS1), Staphylococcus aureus, Pseudomonas fluorescens and Bacillus licheniformis (ATCC 14580). The data were statistically analyzed by using Analysis of Variance (ANOVA) and Least Significant Difference (LSD) method to find out significant relationship of essential oils biological activities at p essential oils, oil from the bark of C. verum showed best antibacterial activities against all selected bacterial strains in the MIC assay, especially with 2.9 mg/ml concentration against S. typhi G7 Vi-negative and P. fluorescens strains. TLC-bioautography confirmed the presence of biologically active anti-microbial components in all tested essential oils. P. fluorescens was found susceptible to C. verum essential oil while E. coli SS1 and S. aureus were resistant to C. verum and A. subulatum essential oils, respectively, as determined in bioautography assay. The GC/MS analysis revealed that essential oils of C. cyminum, C. verum, A. subulatum, and S. aromaticum contain 17.2% cuminaldehyde, 4.3% t-cinnamaldehyde, 5.2% eucalyptol and 0.73% eugenol, respectively. Conclusions Most of the essential oils included in this study possessed good antibacterial activities against selected multi

  7. Fetal ECG Extraction from Abdominal Signals: A Review on Suppression of Fundamental Power Line Interference Component and Its Harmonics

    OpenAIRE

    Ţarălungă, Dragoş-Daniel; Ungureanu, Georgeta-Mihaela; Gussi, Ilinca; Strungaru, Rodica; Wolf, Werner

    2014-01-01

    Interference of power line (PLI) (fundamental frequency and its harmonics) is usually present in biopotential measurements. Despite all countermeasures, the PLI still corrupts physiological signals, for example, electromyograms (EMG), electroencephalograms (EEG), and electrocardiograms (ECG). When analyzing the fetal ECG (fECG) recorded on the maternal abdomen, the PLI represents a particular strong noise component, being sometimes 10 times greater than the fECG signal, and thus impairing the...

  8. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1998-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway...

  9. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1999-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway. C...

  10. The oligomeric assembly of the novel haem-degrading protein HbpS is essential for interaction with its cognate two-component sensor kinase

    NARCIS (Netherlands)

    Ortiz de Orué Lucana, Darío; Bogel, Gabriele; Zou, Peijian; Groves, Matthew R

    2009-01-01

    HbpS, a novel protein of previously unknown function from Streptomyces reticuli, is up-regulated in response to haemin- and peroxide-based oxidative stress and interacts with the SenS/SenR two-component signal transduction system. In this study, we report the high-resolution crystal structures (2.2

  11. Identifying essential components of a digital health innovation ecosystem for the Namibian context: findings from a Delphi study

    CSIR Research Space (South Africa)

    Iyawa, GE

    2017-01-01

    Full Text Available The concept of digital health innovation ecosystems is an emerging body of literature which suggests that components of digital health, innovation and digital ecosystems are important in the administration and delivery of healthcare services...

  12. Preliminary study on electron paramagnetic resonance (EPR) signal properties of mobile phone components for dose estimation in radiation accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byeong Ryong; Ha, Wi Ho; Park, Sun Hoo; Lee, Jin Kyeong; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2015-12-15

    We have investigated the EPR signal properties in 12 components of two mobile phones (LCD, OLED) using electron paramagnetic resonance (EPR) spectrometer in this study.EPR measurements were performed at normal atmospheric conditions using Bruker EXEXSYS-II E500 spectrometer with X-band bridge, and samples were irradiated by {sup 137}C{sub s} gamma-ray source. To identify the presence of radiation-induced signal (RIS), the EPR spectra of each sample were measured unirradiated and irradiated at 50 Gy. Then, dose-response curve and signal intensity variating by time after irradiation were measured. As a result, the signal intensity increased after irradiation in all samples except the USIM plastic and IC chip. Among the samples, cover glass(CG), lens, light guide plate(LGP) and diffusion sheet have shown fine linearity (R{sup 2} > 0.99). Especially, the LGP had ideal characteristics for dosimetry because there were no signal in 0 Gy and high rate of increase in RIS. However, this sample showed weakness in fading. Signal intensity of LGP and Diffusion Sheet decreased by 50% within 72 hours after irradiation, while signals of Cover Glass and Lens were stably preserved during the short period of time. In order to apply rapidly EPR dosimetry using mobile phone components in large-scale radiation accidents, further studies on signal differences for same components of the different mobile phone, fading, pretreatment of samples and processing of background signal are needed. However, it will be possible to do dosimetry by dose-additive method or comparative method using unirradiated same product in small-scale accident.

  13. MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation--divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation

    DEFF Research Database (Denmark)

    Sondergaard, B-C; Schultz, N; Madsen, S H

    2010-01-01

    Matrix metalloproteinases (MMPs) and aggrecanases are essential players in cartilage degradation. However, the signaling pathways that results in MMP and/or aggrecanase synthesis and activation are not well understood. We investigated the molecular events leading to MMP- and aggrecanase-mediated ......Matrix metalloproteinases (MMPs) and aggrecanases are essential players in cartilage degradation. However, the signaling pathways that results in MMP and/or aggrecanase synthesis and activation are not well understood. We investigated the molecular events leading to MMP- and aggrecanase......-mediated cartilage degradation....

  14. Extraction of fast neuronal changes from multichannel functional near-infrared spectroscopy signals using independent component analysis

    Science.gov (United States)

    Morren, Geert; Wolf, Martin; Lemmerling, Philippe; Wolf, Ursula; Choi, Jee H.; Gratton, Enrico; De Lathauwer, Lieven; Van Huffel, Sabine

    2002-06-01

    Fast changes in the range of milliseconds in the optical properties of cerebral tissue, which are associated with brain activity, can be detected using non-invasive near-infrared spectroscopy (NIRS). These changes in light scattering are due to an alteration in the refractive index at neuronal membranes. The aim of this study was to develop highly sensitive data analysis algorithms to detect this fast signal, which is small compared to other physiological signals. A frequency-domain tissue oximeter, whose laser diodes were modulated at 110MHz was used. The amplitude, mean intensity and phase of the modulated optical signal was measured at 96Hz sample rate. The probe consisting of 4 crossed source detector pairs was placed above the motor cortex, contralateral to the hand performing a tapping exercise consisting of alternating rest- and tapping periods of 20s each. The tapping frequency, which was set to 3.55Hz or 2.5 times the heart rate of the subject to avoid the influence of harmonics on the signal, could not be observed in any of the individual signals measured by the detectors. An adaptive filter was used to remove the arterial pulsatility from the optical signals. Independent Component Analysis allowed to separate signal components in which the tapping frequency was clearly visible.

  15. Antibacterial activity and mechanism of action of Monarda punctata essential oil and its main components against common bacterial pathogens in respiratory tract.

    Science.gov (United States)

    Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min

    2014-01-01

    The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2', 7'-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results.

  16. Method for the radiographic examination of the walls or components of an essentially closed vessel, and also the provision of means for the application of the method

    International Nuclear Information System (INIS)

    1978-01-01

    Method for the radiographic examination of the wall ports or supporting components of an essentially closed vessel, whereby one brings to the side of the vessel walls or supports under examination a radiation source and, to the opposite side, a radiation sensitive film, the film being irradiated by the source and thereafter developed, characterised in that one introduces into the inside of the vessel a hollow tube at a unique distance from the wall or support component, at least one end of the hollow tube being fed out and in which the hollow tube, during the period of the examination, the irradiation source or an irradiation sensitive film is introduced. (G.C.)

  17. Effect of Salicylic Acid on Yield, Component Yield and Essential Oil of Black Cumin (Nigella sativa L. under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    E. Rezaei Chiyaneh

    2014-12-01

    Full Text Available Since the production of medicinal plants can be influenced by environmental factors such as water limitation. In other hand salicylic acid as a plant regulator can enhance drought resistance in plants. In order to investigate the effect of different irrigation intervals on yield, yield components and essential oil of black cumin (Nigella sativa L., a field experiment was conducted a farm located in West Azerbaijan province- city Nagadeh, West- Azerbaijan, during growing season of 2011- 2012. The experiment was arranged as split plot based on a randomized complete block design with three replications. Irrigation intervals (6, 12 and 18 days and three levels of salicylic acid concentration (0, 0.5 and 1 mM considered as in main plots and sub-plots, respectively. Results showed that irrigation had significant effects on all characteristics such as Plant height, number of follicule per plant, number of seed per follicule, biological yield, grain yield, essential oil content and essential oil yield with the exception of 1000- seed weight. With increasing irrigation intervals from 6 to 18 days, plant height, number of follicule per plant, number of seed per follicule, biological yield, grain yield, essential oil percentage and essential oil yield were decreased up to 49, 52, 40, 35, 43, 20 and 55 %, respectively. In contrast, yield components and yield were enhanced up to treatments 0.5 mM of salicylic acid. Grain yield and essential oil yield with application of 0.5 mM salicylic acid increased up to 13 and 11 % compared to control, respectively. It seems that due to the limited sources of water in the region irrigation after 12 days and 0.5 mM salicylic acid concentration are suitable for black cumin grain production.

  18. Determination of Essential Oil Bioactive Components and Rosmarinic Acid of Salvia officinalis Cultivated under Different Intra-row Spacing

    Directory of Open Access Journals (Sweden)

    Mohammad ABU DARWISH

    2013-05-01

    Full Text Available Salvia officinalis, known also as sage, is a medicinal plant belonging to the Lamiaceae family that spreads all over the word in several countries. The demand for the raw material and extracts of this plant is increasing due to its numerous applications in pharmacy, food and herbal tea production. The present study investigated for the first time the effect of 15, 30 and 45 cm intra-row spacing (plant density on the main constituents of sage essential oils and rosmarinic acid content. The highest content of essential oils (2.7% and rosmarinic acid (2.0% were obtained in plants grown using 15 cm planting space. Likewise, close spacing resulted also in a substantial content of 1,8-cineole (47-50%, GC/FID; 55-60%, GC/MS. This work indicated that 1,8-cineole chemotype was a dominant character of cultivated S. officinalis in south of Jordan. In general, the percent of α-thujone in essential oil was not affected by intra-row spacing. However, the percent of β-thujone decreased from (2-3%, GC/MS in plants grown using 15 cm intra-row spacing to (1-2%, GC/MS in plants grown using 30 and 45 cm intra-row spacing. The highest content of α-and β-pinene was recorded in plants grown using 45 cm planting space (8-10%, GC/FID; 5-6% GC/MS. Based on GC/MS, camphor compound was enriched (9-10% in sage plants grown under 15 cm spacing and greater than in plants grown under 30 (6-7% or 45 cm (5-6% spacing. The results make the potential use of sage extracts in the treatment of some human disorders or illness an area of further research.

  19. Gqalpha-linked PLCbeta and PLCgamma are essential components of the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade

    Science.gov (United States)

    Sex pheromone production for most moths is regulated by pheromone biosynthesis activating neuropeptide (PBAN). In Bombyx mori, PBAN binding triggers the opening of store-operated Ca2+ channels, suggesting the involvement of a receptor-activated phospholipase C (PLC). In this study, we found that P...

  20. Acquisition of electrical signals using commercial electronic components for detection system of Lead ion in distilled water

    Science.gov (United States)

    Pujiyanto; Yasin, M.; Rusydi, F.

    2018-03-01

    Development of lead ion detection systems is expected to have an advantage in terms of simplicity of the device and easy for concentration analysis of a lead ion with very high performance. One important part of lead ion detection systems are electrical signal acquisition parts. The electrical signal acquisition part uses the main electronic components: non inverting op-amplifier, instrumentation amplifier, multiplier circuit and logarithmic amplifier. Here will be shown the performance of lead ion detection systems when the existing electrical signal processors use commercial electronic components. The results that can be drawn from this experimental were the lead ion sensor that has been developed can be used to detect lead ions with a sensitivity of 10.48 mV/ppm with the linearity 97.11% and had a measurement range of 0.1 ppm to 80 ppm.

  1. Orphan receptor GPR179 forms macromolecular complexes with components of metabotropic signaling cascade in retina ON-bipolar neurons.

    Science.gov (United States)

    Orlandi, Cesare; Cao, Yan; Martemyanov, Kirill A

    2013-10-29

    In the mammalian retina, synaptic transmission between light-excited rod photoreceptors and downstream ON-bipolar neurons is indispensable for dim vision, and disruption of this process leads to congenital stationary night blindness in human patients. The ON-bipolar neurons use the metabotropic signaling cascade, initiated by the mGluR6 receptor, to generate depolarizing responses to light-induced changes in neurotransmitter glutamate release from the photoreceptor axonal terminals. Evidence for the identity of the components involved in transducing these signals is growing rapidly. Recently, the orphan receptor, GPR179, a member of the G protein-coupled receptor (GPCR) superfamily, has been shown to be indispensable for the synaptic responses of ON-bipolar cells. In our study, we investigated the interaction of GPR179 with principle components of the signal transduction cascade. We used immunoprecipitation and proximity ligation assays in transfected cells and native retinas to characterize the protein-protein interactions involving GPR179. The influence of cascade components on GPR179 localization was examined through immunohistochemical staining of the retinas from genetic mouse models. We demonstrated that, in mouse retinas, GPR179 forms physical complexes with the main components of the metabotropic cascade, recruiting mGluR6, TRPM1, and the RGS proteins. Elimination of mGluR6 or RGS proteins, but not TRPM1, detrimentally affects postsynaptic targeting or GPR179 expression. These observations suggest that the mGluR6 signaling cascade is scaffolded as a macromolecular complex in which the interactions between the components ensure the optimal spatiotemporal characteristics of signal transduction.

  2. The human keratinocyte two-dimensional gel protein database (update 1995): mapping components of signal transduction pathways

    DEFF Research Database (Denmark)

    Celis, J E; Rasmussen, H H; Gromov, P

    1995-01-01

    identified (protein name, organelle components, etc.) using a procedure or a combination of procedures that include (i) comigration with known human proteins, (ii) 2-D gel immunoblotting using specific antibodies, (iii) microsequencing of Coomassie Brilliant Blue stained proteins, (iv) mass spectrometry, (v......)vaccinia virus expression of full length cDNAs, and (vi) in vitro transcription/translation of full-length cDNAs. This year, special emphasis has been given to the identification of signal transduction components by using 2-D gel immunoblotting of crude keratinocyte lysates in combination with enhanced......--through a systematic study of ekeratinocytes--qualitative and quantitative information on proteins and their genes that may allow us to identify abnormal patterns of gene expression and to pinpoint signaling pathways and components affected in various skin diseases, cancer included. Udgivelsesdato: 1995-Dec...

  3. PSM/SH2-B distributes selected mitogenic receptor signals to distinct components in the PI3-kinase and MAP kinase signaling pathways.

    Science.gov (United States)

    Deng, Youping; Xu, Hu; Riedel, Heimo

    2007-02-15

    The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.

  4. Gene expression profiling with principal component analysis depicts the biological continuum from essential thrombocythemia over polycythemia vera to myelofibrosis

    DEFF Research Database (Denmark)

    Skov, Vibe; Thomassen, Mads; Riley, Caroline H

    2012-01-01

    The recent discovery of the Janus activating kinase 2 V617F mutation in most patients with polycythemia vera (PV) and half of those with essential thrombocythemia (ET) and primary myelofibrosis (PMF) has favored the hypothesis of a biological continuum from ET over PV to PMF. We performed gene...... with biological relevant overlaps between the different entities. Moreover, the analysis separates Janus activating kinase 2-negative ET patients from Janus activating kinase 2-positive ET patients. Functional annotation analysis demonstrates that clusters of gene ontology terms related to inflammation, immune...... system, apoptosis, RNA metabolism, and secretory system were the most significantly deregulated terms in the three different disease groups. Our results yield further support for the hypothesis of a biological continuum originating from ET over PV to PMF. Functional analysis suggests an important...

  5. ANTIFUNGAL ACTIVITY OF VOLATILE COMPONENTS GENERATED BY ESSENTIAL OILS AGAINST THE GENUS PENICILLIUM ISOLATED FROM BAKERY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Miroslava Císarová

    2015-02-01

    Full Text Available The aim of this study was evaluation of the antifungal activity of 5 essential oils (EOs. We concretely used thyme, clove, basil, jasmine and rosemary EOs by vapor contact against the fungal species, namely Penicillium citrinum, P. chrysogenum, P. hordei, P. citreonigrum, and P. viridicatum and their ability to affect production of mycotoxins. Each fungus was inoculated in the centre on Czapek Yeast Autolysate Agar (CYA dishes. Dishes were tightly sealed with parafilm and incubated for fourteen days at 25 ± 1 °C (three replicates were used for each treatment. Volatile phase effect of 50 μl of the essential oils was found to inhibit on growth of Penicillium spp.. Complete growth inhibition of the isolates by EOs of thyme and clove was observed. The EO of basil had antifungal effect on growth of P. citreonigrum only after 3rd and 7th day of the incubation at concentration 100 % of EO, like a P. viridicatum, which was inhibited by basil EO (100 % in comparison with control sets. Data was evaluated statistically by 95.0 % Tukey HSD test. In this study we also tested potentional effect of EOs to affect production of mycotoxins of tested Penicillium isolates which are potential toxigenic fungi. After 14 days of incubation with EOs (100 % with control sets, they were screened for a production of mycotoxins by TLC chromatography. Results showed non affecting production of mycotoxins by tested EOs. Conclusions indicate that volatile phase of combinations of thyme oil and clove oil showed good potential in the inhibition of growth of Penicillium spp. EOs should find a practical application in the inhibition of the fungal mycelial growth in some kind of the food.

  6. Anterior Gradient 2 (AGR2) Induced Epidermal Growth Factor Receptor (EGFR) Signaling Is Essential for Murine Pancreatitis-Associated Tissue Regeneration

    Science.gov (United States)

    Wodziak, Dariusz; Dong, Aiwen; Basin, Michael F.; Lowe, Anson W.

    2016-01-01

    A recently published study identified Anterior Gradient 2 (AGR2) as a regulator of EGFR signaling by promoting receptor presentation from the endoplasmic reticulum to the cell surface. AGR2 also promotes tissue regeneration in amphibians and fish. Whether AGR2-induced EGFR signaling is essential for tissue regeneration in higher vertebrates was evaluated using a well-characterized murine model for pancreatitis. The impact of AGR2 expression and EGFR signaling on tissue regeneration was evaluated using the caerulein-induced pancreatitis mouse model. EGFR signaling and cell proliferation were examined in the context of the AGR2-/- null mouse or with the EGFR-specific tyrosine kinase inhibitor, AG1478. In addition, the Hippo signaling coactivator YAP1 was evaluated in the context of AGR2 expression during pancreatitis. Pancreatitis-induced AGR2 expression enabled EGFR translocation to the plasma membrane, the initiation of cell signaling, and cell proliferation. EGFR signaling and tissue regeneration were partially inhibited by the tyrosine kinase inhibitor AG1478, but absent in the AGR2-/- null mouse. AG1478-treated and AGR2-/- null mice with pancreatitis died whereas all wild-type controls recovered. YAP1 activation was also dependent on pancreatitis-induced AGR2 expression. AGR2-induced EGFR signaling was essential for tissue regeneration and recovery from pancreatitis. The results establish tissue regeneration as a major function of AGR2-induced EGFR signaling in adult higher vertebrates. Enhanced AGR2 expression and EGFR signaling are also universally present in human pancreatic cancer, which support a linkage between tissue injury, regeneration, and cancer pathogenesis. PMID:27764193

  7. Non-destructive testing of high heat flux components of fusion devices by infrared thermography: modeling and signal processing

    International Nuclear Information System (INIS)

    Cismondi, Fabio

    2007-01-01

    In Plasma Facing Components (PFCs) the joint of the CFC armour material onto the metallic CuCrZr heat sink needs to be significant defects free. Detection of material flaws is a major issue of the PFCs acceptance protocol. A Non-Destructive Technique (NDT) based upon active infrared thermography allows testing PFCs on SATIR tests bed in Cadarache. Up to now defect detection was based on the comparison of the surface temperature evolution of the inspected component with that of a supposed 'defect-free' one (used as a reference element). This work deals with improvement of thermal signal processing coming from SATIR. In particular the contributions of the thermal modelling and statistical signal processing converge in this work. As for thermal modelling, the identification of a sensitive parameter to defect presence allows improving the quantitative estimation of defect Otherwise Finite Element (FE) modeling of SATIR allows calculating the so called deterministic numerical tile. Statistical approach via the Monte Carlo technique extends the numerical tile concept to the numerical population concept. As for signal processing, traditional statistical treatments allow a better localization of the bond defect processing thermo-signal by itself, without utilising a reference signal. Moreover the problem of detection and classification of random signals can be solved by maximizing the signal-to-noise ratio. Two filters maximizing the signal-to-noise ratio are optimized: the stochastic matched filter aims at detects detection and the constrained stochastic matched filter aims at defects classification. Performances are quantified and methods are compared via the ROC curves. (author)

  8. EGF-CFC proteins are essential coreceptors for the TGF-β signals Vg1 and GDF1

    Science.gov (United States)

    Cheng, Simon K.; Olale, Felix; Bennett, James T.; Brivanlou, Ali H.; Schier, Alexander F.

    2003-01-01

    The TGF-β signals Nodal, Activin, GDF1, and Vg1 have been implicated in mesoderm induction and left-right patterning. Nodal and Activin both activate Activin receptors, but only Nodal requires EGF-CFC coreceptors for signaling. We report that Vg1 and GDF1 signaling in zebrafish also depends on EGF-CFC proteins, but not on Nodal signals. Correspondingly, we find that in Xenopus Vg1 and GDF1 bind to and signal through Activin receptors only in the presence of EGF-CFC proteins. These results establish that multiple TGF-β signals converge on Activin receptor/EGF-CFC complexes and suggest a more widespread requirement for coreceptors in TGF-β signaling than anticipated previously. PMID:12514096

  9. Performance comparison of independent component analysis algorithms for fetal cardiac signal reconstruction: a study on synthetic fMCG data

    International Nuclear Information System (INIS)

    Mantini, D; II, K E Hild; Alleva, G; Comani, S

    2006-01-01

    Independent component analysis (ICA) algorithms have been successfully used for signal extraction tasks in the field of biomedical signal processing. We studied the performances of six algorithms (FastICA, CubICA, JADE, Infomax, TDSEP and MRMI-SIG) for fetal magnetocardiography (fMCG). Synthetic datasets were used to check the quality of the separated components against the original traces. Real fMCG recordings were simulated with linear combinations of typical fMCG source signals: maternal and fetal cardiac activity, ambient noise, maternal respiration, sensor spikes and thermal noise. Clusters of different dimensions (19, 36 and 55 sensors) were prepared to represent different MCG systems. Two types of signal-to-interference ratios (SIR) were measured. The first involves averaging over all estimated components and the second is based solely on the fetal trace. The computation time to reach a minimum of 20 dB SIR was measured for all six algorithms. No significant dependency on gestational age or cluster dimension was observed. Infomax performed poorly when a sub-Gaussian source was included; TDSEP and MRMI-SIG were sensitive to additive noise, whereas FastICA, CubICA and JADE showed the best performances. Of all six methods considered, FastICA had the best overall performance in terms of both separation quality and computation times

  10. Community-based health care is an essential component of a resilient health system: evidence from Ebola outbreak in Liberia

    Directory of Open Access Journals (Sweden)

    Kendra Siekmans

    2017-01-01

    Full Text Available Abstract Background Trained community health workers (CHW enhance access to essential primary health care services in contexts where the health system lacks capacity to adequately deliver them. In Liberia, the Ebola outbreak further disrupted health system function. The objective of this study is to examine the value of a community-based health system in ensuring continued treatment of child illnesses during the outbreak and the role that CHWs had in Ebola prevention activities. Methods A descriptive observational study design used mixed methods to collect data from CHWs (structured survey, n = 60; focus group discussions, n = 16, government health facility workers and project staff. Monthly data on child diarrhea and pneumonia treatment were gathered from CHW case registers and local health facility records. Results Coverage for community-based treatment of child diarrhea and pneumonia continued throughout the outbreak in project areas. A slight decrease in cases treated during the height of the outbreak, from 50 to 28% of registers with at least one treatment per month, was attributed to directives not to touch others, lack of essential medicines and fear of contracting Ebola. In a climate of distrust, where health workers were reluctant to treat patients, sick people were afraid to self-identify and caregivers were afraid to take children to the clinic, CHWs were a trusted source of advice and Ebola prevention education. These findings reaffirm the value of recruiting and training local workers who are trusted by the community and understand the social and cultural complexities of this relationship. “No touch” integrated community case management (iCCM guidelines distributed at the height of the outbreak gave CHWs renewed confidence in assessing and treating sick children. Conclusions Investments in community-based health service delivery contributed to continued access to lifesaving treatment for child pneumonia and diarrhea

  11. Community-based health care is an essential component of a resilient health system: evidence from Ebola outbreak in Liberia.

    Science.gov (United States)

    Siekmans, Kendra; Sohani, Salim; Boima, Tamba; Koffa, Florence; Basil, Luay; Laaziz, Saïd

    2017-01-17

    Trained community health workers (CHW) enhance access to essential primary health care services in contexts where the health system lacks capacity to adequately deliver them. In Liberia, the Ebola outbreak further disrupted health system function. The objective of this study is to examine the value of a community-based health system in ensuring continued treatment of child illnesses during the outbreak and the role that CHWs had in Ebola prevention activities. A descriptive observational study design used mixed methods to collect data from CHWs (structured survey, n = 60; focus group discussions, n = 16), government health facility workers and project staff. Monthly data on child diarrhea and pneumonia treatment were gathered from CHW case registers and local health facility records. Coverage for community-based treatment of child diarrhea and pneumonia continued throughout the outbreak in project areas. A slight decrease in cases treated during the height of the outbreak, from 50 to 28% of registers with at least one treatment per month, was attributed to directives not to touch others, lack of essential medicines and fear of contracting Ebola. In a climate of distrust, where health workers were reluctant to treat patients, sick people were afraid to self-identify and caregivers were afraid to take children to the clinic, CHWs were a trusted source of advice and Ebola prevention education. These findings reaffirm the value of recruiting and training local workers who are trusted by the community and understand the social and cultural complexities of this relationship. "No touch" integrated community case management (iCCM) guidelines distributed at the height of the outbreak gave CHWs renewed confidence in assessing and treating sick children. Investments in community-based health service delivery contributed to continued access to lifesaving treatment for child pneumonia and diarrhea during the Ebola outbreak, making communities more resilient when

  12. MCP/CCR2 signaling is essential for recruitment of mesenchymal progenitor cells during the early phase of fracture healing.

    Directory of Open Access Journals (Sweden)

    Masahiro Ishikawa

    Full Text Available OBJECTIVE: The purpose of this study was to investigate chemokine profiles and their functional roles in the early phase of fracture healing in mouse models. METHODS: The expression profiles of chemokines were examined during fracture healing in wild-type (WT mice using a polymerase chain reaction array and histological staining. The functional effect of monocyte chemotactic protein-1 (MCP-1 on primary mouse bone marrow stromal cells (mBMSCs was evaluated using an in vitro migration assay. MCP-1-/- and C-C chemokine receptor 2 (CCR2-/- mice were fractured and evaluated by histological staining and micro-computed tomography (micro-CT. RS102895, an antagonist of CCR2, was continuously administered in WT mice before or after rib fracture and evaluated by histological staining and micro-CT. Bone graft exchange models were created in WT and MCP-1-/- mice and were evaluated by histological staining and micro-CT. RESULTS: MCP-1 and MCP-3 expression in the early phase of fracture healing were up-regulated, and high levels of MCP-1 and MCP-3 protein expression observed in the periosteum and endosteum in the same period. MCP-1, but not MCP-3, increased migration of mBMSCs in a dose-dependent manner. Fracture healing in MCP-1-/- and CCR2-/- mice was delayed compared with WT mice on day 21. Administration of RS102895 in the early, but not in the late phase, caused delayed fracture healing. Transplantation of WT-derived graft into host MCP-1-/- mice significantly increased new bone formation in the bone graft exchange models. Furthermore, marked induction of MCP-1 expression in the periosteum and endosteum was observed around the WT-derived graft in the host MCP-1-/- mouse. Conversely, transplantation of MCP-1-/- mouse-derived grafts into host WT mice markedly decreased new bone formation. CONCLUSIONS: MCP-1/CCR2 signaling in the periosteum and endosteum is essential for the recruitment of mesenchymal progenitor cells in the early phase of fracture healing.

  13. A detailed study on chemical characterization of essential oil components of two Plectranthus species grown in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Merajuddin Khan

    2016-11-01

    Full Text Available The chemical composition of the essential oils of Plectranthus cylindraceus and Plectranthus arabicus grown in Saudi Arabia were analyzed using gas chromatography techniques (GC–MS, GC–FID, Co-GC, LRI determination, and database and literature searches using two different stationary phase columns (polar and nonpolar. The analysis led to the characterization of a total of 157 different compounds from both oils. In the oil derived from P. cylindraceus, 79 compounds were identified, whereas 132 compounds were identified in the oil derived from P. arabicus; these compounds account for 95.2% and 98.4% of the total oil compositions, respectively. The major constituents of P. cylindraceus oil were patchouli alcohol (55.5 ± 0.01%, 1,8-cineole (6.0 ± 0.01% and valerianol (3.8 ± 0.18%, whereas, the main compounds of the P. arabicus oil were 1,8-cineole (50.5 ± 1.37%, β-pinene (7.0 ± 0.08%, camphor (6.3 ± 0.19% and β-myrcene (4.1 ± 0.10%. To the best of our knowledge, patchouli alcohol found in high concentration in the P. cylindraceus oil has never been reported from the genus Plectranthus. Moreover, this is the first phytochemical study of P. arabicus.

  14. Islamic Culture as an Essential Component of a Comprehensive Approach to Development: Some Lessons from the Malaysian ‘Miracle’

    Directory of Open Access Journals (Sweden)

    Muhammad Arif Zakaullah

    1995-12-01

    Full Text Available This paper argues that many developing countries in general, and Muslim countries in particular, have failed to achieve a commendable level of development, despite their rich resource base and good economic policies. This is mainly due to the internal conflicts within their societies which have adversely affected their strength. The paper emphasizes the need for a peaceful Conflict Resolution Mechanism (CRM, and argues that the institutions and practices based on Islamic values, when used as components of CRM, can not only resolve the conflicts, but are also capable of producing an overall environment conducive to sustained growth. In support of this position, the paper presents a detailed case study of the CRM of the Malaysian society that has been built into Malay Islamic culture and has contributed enormously to the country's remarkable development.

  15. “Take in two parks and call me in the morning” – Perception of parks as an essential component of our healthcare system

    Directory of Open Access Journals (Sweden)

    A.J. Mowen

    2017-06-01

    Full Text Available As a feature of the built neighborhood environment, parks have been associated with a range of positive health outcomes. Recognition of these contributions has prompted advocates to suggest parks are a part of our healthcare system. Despite these developments, park investments have declined over the past decade nationally, lagging behind expenditures on other community services such as health. Perhaps the idea of parks as a solution to the nation's health concerns has not diffused across the population. To date, however, public perception of parks' role in healthcare has not been documented. This study responds to this gap by assessing whether parks are perceived as an essential part of the healthcare system. Self-administered surveys were completed by a statewide sample of Pennsylvania adults (2014 and by a sample of primary care clinic visitors in Hershey, Pennsylvania (2015. Participants from both studies were asked the extent they agreed with the following statement: Parks, trails, and open space are an essential component of our healthcare system. Response was also compared across demographic characteristics to assess whether this belief was universally held. Findings indicate 73% of the statewide sample and 68% of the clinical sample agreed parks, trails, and open space are an essential element of the healthcare system. Males, those with lower levels of educational attainment, and rural residents were statistically less likely to agree with this statement. Results indicate widespread belief in parks as an essential part of the healthcare system, suggesting consideration of health-sector investments in these settings.

  16. The Ets Transcription Factor GABP Is a Component of the Hippo Pathway Essential for Growth and Antioxidant Defense

    Directory of Open Access Journals (Sweden)

    Hongtan Wu

    2013-05-01

    Full Text Available The transcriptional coactivator Yes-associated protein (YAP plays an important role in organ-size control and tumorigenesis. However, how Yap gene expression is regulated remains unknown. This study shows that the Ets family member GABP binds to the Yap promoter and activates YAP transcription. The depletion of GABP downregulates YAP, resulting in a G1/S cell-cycle block and increased cell death, both of which are substantially rescued by reconstituting YAP. GABP can be inactivated by oxidative mechanisms, and acetaminophen-induced glutathione depletion inhibits GABP transcriptional activity and depletes YAP. In contrast, activating YAP by deleting Mst1/Mst2 strongly protects against acetaminophen-induced liver injury. Similar to its effects on YAP, Hippo signaling inhibits GABP transcriptional activity through several mechanisms. In human liver cancers, enhanced YAP expression is correlated with increased nuclear expression of GABP. Therefore, we conclude that GABP is an activator of Yap gene expression and a potential therapeutic target for cancers driven by YAP.

  17. A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway.

    Science.gov (United States)

    Salašová, Alena; Yokota, Chika; Potěšil, David; Zdráhal, Zbyněk; Bryja, Vítězslav; Arenas, Ernest

    2017-07-11

    Autosomal-dominant mutations in the Park8 gene encoding Leucine-rich repeat kinase 2 (LRRK2) have been identified to cause up to 40% of the genetic forms of Parkinson's disease. However, the function and molecular pathways regulated by LRRK2 are largely unknown. It has been shown that LRRK2 serves as a scaffold during activation of WNT/β-catenin signaling via its interaction with the β-catenin destruction complex, DVL1-3 and LRP6. In this study, we examine whether LRRK2 also interacts with signaling components of the WNT/Planar Cell Polarity (WNT/PCP) pathway, which controls the maturation of substantia nigra dopaminergic neurons, the main cell type lost in Parkinson's disease patients. Co-immunoprecipitation and tandem mass spectrometry was performed in a mouse substantia nigra cell line (SN4741) and human HEK293T cell line in order to identify novel LRRK2 binding partners. Inhibition of the WNT/β-catenin reporter, TOPFlash, was used as a read-out of WNT/PCP pathway activation. The capacity of LRRK2 to regulate WNT/PCP signaling in vivo was tested in Xenopus laevis' early development. Our proteomic analysis identified that LRRK2 interacts with proteins involved in WNT/PCP signaling such as the PDZ domain-containing protein GIPC1 and Integrin-linked kinase (ILK) in dopaminergic cells in vitro and in the mouse ventral midbrain in vivo. Moreover, co-immunoprecipitation analysis revealed that LRRK2 binds to two core components of the WNT/PCP signaling pathway, PRICKLE1 and CELSR1, as well as to FLOTILLIN-2 and CULLIN-3, which regulate WNT secretion and inhibit WNT/β-catenin signaling, respectively. We also found that PRICKLE1 and LRRK2 localize in signalosomes and act as dual regulators of WNT/PCP and β-catenin signaling. Accordingly, analysis of the function of LRRK2 in vivo, in X. laevis revelaed that LRKK2 not only inhibits WNT/β-catenin pathway, but induces a classical WNT/PCP phenotype in vivo. Our study shows for the first time that LRRK2 activates the WNT

  18. In vitro activity of essential oils of Lippia sidoides and Lippia gracilis and their major chemical components against Thielaviopsis paradoxa, causal agent of stem bleeding in coconut palms

    Directory of Open Access Journals (Sweden)

    Rejane Rodrigues da Costa e Carvalho

    2013-01-01

    Full Text Available Essential oils of Lippia sidoides, Lippia gracilis and their main chemical components were investigated for in vitro control of Thielaviopsis paradoxa. Mycelial growth and a number of pathogen conidia were inhibited by the essential oil of L. sidoides at all concentrations tested (0.2; 0.5; 1.0; 3.0 µL mL-1. L. sidoides oil contained 42.33% thymol and 4.56% carvacrol, while L. gracilis oil contained 10% thymol and 41.7% carvacrol. Mycelial growth and conidial production of T. paradoxa were completely inhibited by thymol at a 0.3 µL m-1 concentration. The results suggest that thymol could potentially be used for controlling coconut stem bleeding.

  19. Shewanella oneidensis MR-1 chemotaxis proteins and electron-transport chain components essential for congregation near insoluble electron acceptors.

    Science.gov (United States)

    Harris, H Wayne; El-Naggar, Mohamed Y; Nealson, Kenneth H

    2012-12-01

    Shewanella oneidensis MR-1 cells utilize a behaviour response called electrokinesis to increase their speed in the vicinity of IEAs (insoluble electron acceptors), including manganese oxides, iron oxides and poised electrodes [Harris, El-Naggar, Bretschger, Ward, Romine, Obraztsova and Nealson (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 326-331]. However, it is not currently understood how bacteria remain in the vicinity of the IEA and accumulate both on the surface and in the surrounding medium. In the present paper, we provide results indicating that cells that have contacted the IEAs swim faster than those that have not recently made contact. In addition, fast-swimming cells exhibit an enhancement of swimming reversals leading to rapid non-random accumulation of cells on, and adjacent to, mineral particles. We call the observed accumulation near IEAs 'congregation'. Congregation is eliminated by the loss of a critical gene involved with EET (extracellular electron transport) (cymA, SO_4591) and is altered or eliminated in several deletion mutants of homologues of genes that are involved with chemotaxis or energy taxis in Escherichia coli. These genes include chemotactic signal transduction protein (cheA-3, SO_3207), methyl-accepting chemotaxis proteins with the Cache domain (mcp_cache, SO_2240) or the PAS (Per/Arnt/Sim) domain (mcp_pas, SO_1385). In the present paper, we report studies of S. oneidensis MR-1 that lend some insight into how microbes in this group can 'sense' the presence of a solid substrate such as a mineral surface, and maintain themselves in the vicinity of the mineral (i.e. via congregation), which may ultimately lead to attachment and biofilm formation.

  20. An integrative review and evidence-based conceptual model of the essential components of pre-service education.

    Science.gov (United States)

    Johnson, Peter; Fogarty, Linda; Fullerton, Judith; Bluestone, Julia; Drake, Mary

    2013-08-28

    With decreasing global resources, a pervasive critical shortage of skilled health workers, and a growing disease burden in many countries, the need to maximize the effectiveness and efficiency of pre-service education in low-and middle-income countries has never been greater. We performed an integrative review of the literature to analyse factors contributing to quality pre-service education and created a conceptual model that shows the links between essential elements of quality pre-service education and desired outcomes. The literature contains a rich discussion of factors that contribute to quality pre-service education, including the following: (1) targeted recruitment of qualified students from rural and low-resource settings appears to be a particularly effective strategy for retaining students in vulnerable communities after graduation; (2) evidence supports a competency-based curriculum, but there is no clear evidence supporting specific curricular models such as problem-based learning; (3) the health workforce must be well prepared to address national health priorities; (4) the role of the preceptor and preceptors' skills in clinical teaching, identifying student learning needs, assessing student learning, and prioritizing and time management are particularly important; (5) modern, Internet-enabled medical libraries, skills and simulation laboratories, and computer laboratories to support computer-aided instruction are elements of infrastructure meriting strong consideration; and (6) all students must receive sufficient clinical practice opportunities in high-quality clinical learning environments in order to graduate with the competencies required for effective practice. Few studies make a link between PSE and impact on the health system. Nevertheless, it is logical that the production of a trained and competent staff through high-quality pre-service education and continuing professional development activities is the foundation required to achieve the

  1. [Detection of quadratic phase coupling between EEG signal components by nonparamatric and parametric methods of bispectral analysis].

    Science.gov (United States)

    Schmidt, K; Witte, H

    1999-11-01

    Recently the assumption of the independence of individual frequency components in a signal has been rejected, for example, for the EEG during defined physiological states such as sleep or sedation [9, 10]. Thus, the use of higher-order spectral analysis capable of detecting interrelations between individual signal components has proved useful. The aim of the present study was to investigate the quality of various non-parametric and parametric estimation algorithms using simulated as well as true physiological data. We employed standard algorithms available for the MATLAB. The results clearly show that parametric bispectral estimation is superior to non-parametric estimation in terms of the quality of peak localisation and the discrimination from other peaks.

  2. Target of rapamycin signalling mediates the lifespan-extending effects of dietary restriction by essential amino acid alteration

    NARCIS (Netherlands)

    Emran, S.; Yang, M.Y.; He, X.L.; Zandveld, J.; Piper, M.D.W.

    2014-01-01

    Dietary restriction (DR), defined as a moderate reduction in food intake short of malnutrition, has been shown to extend healthy lifespan in a diverse range of organisms, from yeast to primates. Reduced signalling through the insulin/IGF-like (IIS) and Target of Rapamycin (TOR) signalling pathways

  3. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity.

    Directory of Open Access Journals (Sweden)

    Vincent T van Hees

    Full Text Available INTRODUCTION: Human body acceleration is often used as an indicator of daily physical activity in epidemiological research. Raw acceleration signals contain three basic components: movement, gravity, and noise. Separation of these becomes increasingly difficult during rotational movements. We aimed to evaluate five different methods (metrics of processing acceleration signals on their ability to remove the gravitational component of acceleration during standardised mechanical movements and the implications for human daily physical activity assessment. METHODS: An industrial robot rotated accelerometers in the vertical plane. Radius, frequency, and angular range of motion were systematically varied. Three metrics (Euclidian norm minus one [ENMO], Euclidian norm of the high-pass filtered signals [HFEN], and HFEN plus Euclidean norm of low-pass filtered signals minus 1 g [HFEN+] were derived for each experimental condition and compared against the reference acceleration (forward kinematics of the robot arm. We then compared metrics derived from human acceleration signals from the wrist and hip in 97 adults (22-65 yr, and wrist in 63 women (20-35 yr in whom daily activity-related energy expenditure (PAEE was available. RESULTS: In the robot experiment, HFEN+ had lowest error during (vertical plane rotations at an oscillating frequency higher than the filter cut-off frequency while for lower frequencies ENMO performed better. In the human experiments, metrics HFEN and ENMO on hip were most discrepant (within- and between-individual explained variance of 0.90 and 0.46, respectively. ENMO, HFEN and HFEN+ explained 34%, 30% and 36% of the variance in daily PAEE, respectively, compared to 26% for a metric which did not attempt to remove the gravitational component (metric EN. CONCLUSION: In conclusion, none of the metrics as evaluated systematically outperformed all other metrics across a wide range of standardised kinematic conditions. However, choice

  4. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity.

    Science.gov (United States)

    van Hees, Vincent T; Gorzelniak, Lukas; Dean León, Emmanuel Carlos; Eder, Martin; Pias, Marcelo; Taherian, Salman; Ekelund, Ulf; Renström, Frida; Franks, Paul W; Horsch, Alexander; Brage, Søren

    2013-01-01

    Human body acceleration is often used as an indicator of daily physical activity in epidemiological research. Raw acceleration signals contain three basic components: movement, gravity, and noise. Separation of these becomes increasingly difficult during rotational movements. We aimed to evaluate five different methods (metrics) of processing acceleration signals on their ability to remove the gravitational component of acceleration during standardised mechanical movements and the implications for human daily physical activity assessment. An industrial robot rotated accelerometers in the vertical plane. Radius, frequency, and angular range of motion were systematically varied. Three metrics (Euclidian norm minus one [ENMO], Euclidian norm of the high-pass filtered signals [HFEN], and HFEN plus Euclidean norm of low-pass filtered signals minus 1 g [HFEN+]) were derived for each experimental condition and compared against the reference acceleration (forward kinematics) of the robot arm. We then compared metrics derived from human acceleration signals from the wrist and hip in 97 adults (22-65 yr), and wrist in 63 women (20-35 yr) in whom daily activity-related energy expenditure (PAEE) was available. In the robot experiment, HFEN+ had lowest error during (vertical plane) rotations at an oscillating frequency higher than the filter cut-off frequency while for lower frequencies ENMO performed better. In the human experiments, metrics HFEN and ENMO on hip were most discrepant (within- and between-individual explained variance of 0.90 and 0.46, respectively). ENMO, HFEN and HFEN+ explained 34%, 30% and 36% of the variance in daily PAEE, respectively, compared to 26% for a metric which did not attempt to remove the gravitational component (metric EN). In conclusion, none of the metrics as evaluated systematically outperformed all other metrics across a wide range of standardised kinematic conditions. However, choice of metric explains different degrees of variance in

  5. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells.

    Directory of Open Access Journals (Sweden)

    Kelly P Nevin

    Full Text Available The mechanisms by which Geobacter sulfurreducens transfers electrons through relatively thick (>50 microm biofilms to electrodes acting as a sole electron acceptor were investigated. Biofilms of Geobacter sulfurreducens were grown either in flow-through systems with graphite anodes as the electron acceptor or on the same graphite surface, but with fumarate as the sole electron acceptor. Fumarate-grown biofilms were not immediately capable of significant current production, suggesting substantial physiological differences from current-producing biofilms. Microarray analysis revealed 13 genes in current-harvesting biofilms that had significantly higher transcript levels. The greatest increases were for pilA, the gene immediately downstream of pilA, and the genes for two outer c-type membrane cytochromes, OmcB and OmcZ. Down-regulated genes included the genes for the outer-membrane c-type cytochromes, OmcS and OmcT. Results of quantitative RT-PCR of gene transcript levels during biofilm growth were consistent with microarray results. OmcZ and the outer-surface c-type cytochrome, OmcE, were more abundant and OmcS was less abundant in current-harvesting cells. Strains in which pilA, the gene immediately downstream from pilA, omcB, omcS, omcE, or omcZ was deleted demonstrated that only deletion of pilA or omcZ severely inhibited current production and biofilm formation in current-harvesting mode. In contrast, these gene deletions had no impact on biofilm formation on graphite surfaces when fumarate served as the electron acceptor. These results suggest that biofilms grown harvesting current are specifically poised for electron transfer to electrodes and that, in addition to pili, OmcZ is a key component in electron transfer through differentiated G. sulfurreducens biofilms to electrodes.

  6. Multidisciplinary Difficult Airway Course: An Essential Educational Component of a Hospital-Wide Difficult Airway Response Program.

    Science.gov (United States)

    Leeper, W Robert; Haut, Elliott R; Pandian, Vinciya; Nakka, Sajan; Dodd-O, Jeffrey; Bhatti, Nasir; Hunt, Elizabeth A; Saheed, Mustapha; Dalesio, Nicholas; Schiavi, Adam; Miller, Christina; Kirsch, Thomas D; Berkow, Lauren

    2018-04-05

    A hospital-wide difficult airway response team was developed in 2008 at The Johns Hopkins Hospital with three central pillars: operations, safety monitoring, and education. The objective of this study was to assess the outcomes of the educational pillar of the difficult airway response team program, known as the multidisciplinary difficult airway course (MDAC). The comprehensive, full-day MDAC involves trainees and staff from all provider groups who participate in airway management. The MDAC occurs within the Johns Hopkins Medicine Simulation Center approximately four times per year and uses a combination of didactic lectures, hands-on sessions, and high-fidelity simulation training. Participation in MDAC is the main intervention being investigated in this study. Data were collected prospectively using course evaluation survey with quantitative and qualitative components, and prepost course knowledge assessment multiple choice questions (MCQ). Outcomes include course evaluation scores and themes derived from qualitative assessments, and prepost course knowledge assessment MCQ scores. Tertiary care academic hospital center PARTICIPANTS: Students, residents, fellows, and practicing physicians from the departments of Surgery, Otolaryngology Head and Neck Surgery, Anesthesiology/Critical Care Medicine, and Emergency Medicine; advanced practice providers (nurse practitioners and physician assistants), nurse anesthetists, nurses, and respiratory therapists. Totally, 23 MDACs have been conducted, including 499 participants. Course evaluations were uniformly positive with mean score of 86.9 of 95 points. Qualitative responses suggest major value from high-fidelity simulation, the hands-on skill stations, and teamwork practice. MCQ scores demonstrated significant improvement: median (interquartile range) pre: 69% (60%-81%) vs post: 81% (72%-89%), p < 0.001. Implementation of a MDAC successfully disseminated principles and protocols to all airway providers. Demonstrable

  7. Fetal ECG Extraction from Abdominal Signals: A Review on Suppression of Fundamental Power Line Interference Component and Its Harmonics

    Directory of Open Access Journals (Sweden)

    Dragoş-Daniel Ţarălungă

    2014-01-01

    Full Text Available Interference of power line (PLI (fundamental frequency and its harmonics is usually present in biopotential measurements. Despite all countermeasures, the PLI still corrupts physiological signals, for example, electromyograms (EMG, electroencephalograms (EEG, and electrocardiograms (ECG. When analyzing the fetal ECG (fECG recorded on the maternal abdomen, the PLI represents a particular strong noise component, being sometimes 10 times greater than the fECG signal, and thus impairing the extraction of any useful information regarding the fetal health state. Many signal processing methods for cancelling the PLI from biopotentials are available in the literature. In this review study, six different principles are analyzed and discussed, and their performance is evaluated on simulated data (three different scenarios, based on five quantitative performance indices.

  8. Fetal ECG extraction from abdominal signals: a review on suppression of fundamental power line interference component and its harmonics.

    Science.gov (United States)

    Ţarălungă, Dragoş-Daniel; Ungureanu, Georgeta-Mihaela; Gussi, Ilinca; Strungaru, Rodica; Wolf, Werner

    2014-01-01

    Interference of power line (PLI) (fundamental frequency and its harmonics) is usually present in biopotential measurements. Despite all countermeasures, the PLI still corrupts physiological signals, for example, electromyograms (EMG), electroencephalograms (EEG), and electrocardiograms (ECG). When analyzing the fetal ECG (fECG) recorded on the maternal abdomen, the PLI represents a particular strong noise component, being sometimes 10 times greater than the fECG signal, and thus impairing the extraction of any useful information regarding the fetal health state. Many signal processing methods for cancelling the PLI from biopotentials are available in the literature. In this review study, six different principles are analyzed and discussed, and their performance is evaluated on simulated data (three different scenarios), based on five quantitative performance indices.

  9. Identification of the feedforward component in manual control with predictable target signals.

    Science.gov (United States)

    Drop, Frank M; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus M; Mulder, Max

    2013-12-01

    In the manual control of a dynamic system, the human controller (HC) often follows a visible and predictable reference path. Compared with a purely feedback control strategy, performance can be improved by making use of this knowledge of the reference. The operator could effectively introduce feedforward control in conjunction with a feedback path to compensate for errors, as hypothesized in literature. However, feedforward behavior has never been identified from experimental data, nor have the hypothesized models been validated. This paper investigates human control behavior in pursuit tracking of a predictable reference signal while being perturbed by a quasi-random multisine disturbance signal. An experiment was done in which the relative strength of the target and disturbance signals were systematically varied. The anticipated changes in control behavior were studied by means of an ARX model analysis and by fitting three parametric HC models: two different feedback models and a combined feedforward and feedback model. The ARX analysis shows that the experiment participants employed control action on both the error and the target signal. The control action on the target was similar to the inverse of the system dynamics. Model fits show that this behavior can be modeled best by the combined feedforward and feedback model.

  10. Processing of pulse oximeter signals using adaptive filtering and autocorrelation to isolate perfusion and oxygenation components

    Science.gov (United States)

    Ibey, Bennett; Subramanian, Hariharan; Ericson, Nance; Xu, Weijian; Wilson, Mark; Cote, Gerard L.

    2005-03-01

    A blood perfusion and oxygenation sensor has been developed for in situ monitoring of transplanted organs. In processing in situ data, motion artifacts due to increased perfusion can create invalid oxygenation saturation values. In order to remove the unwanted artifacts from the pulsatile signal, adaptive filtering was employed using a third wavelength source centered at 810nm as a reference signal. The 810 nm source resides approximately at the isosbestic point in the hemoglobin absorption curve where the absorbance of light is nearly equal for oxygenated and deoxygenated hemoglobin. Using an autocorrelation based algorithm oxygenation saturation values can be obtained without the need for large sampling data sets allowing for near real-time processing. This technique has been shown to be more reliable than traditional techniques and proven to adequately improve the measurement of oxygenation values in varying perfusion states.

  11. A procedure to correct the effects of a relative delay between the quadrature components of radar signals at base band

    Directory of Open Access Journals (Sweden)

    Grydeland

    2005-01-01

    Full Text Available The real and imaginary parts of baseband signals are obtained from a real narrow-band signal by quadrature mixing, i.e. by mixing with cosine and sine signals at the narrow band's selected center frequency. We address the consequences of a delay between the outputs of the quadrature mixer, which arise when digital samples of the quadrature baseband signals are not synchronised, i.e. when the real and imaginary components have been shifted by one or more samples with respect to each other. Through analytical considerations and simulations of such an error on different synthetic signals, we show how this error can be expected to afflict different measurements. In addition, we show the effect of the error on actual incoherent scatter radar data obtained by two different digital receiver systems used in parallel at the EISCAT Svalbard Radar (ESR. The analytical considerations indicate a procedure to correct the error, albeit with some limitations due to a small singular region. We demonstrate the correction procedure on actually afflicted data and compare the results to simultaneously acquired unafflicted data. We also discuss the possible data analysis strategies, including some that avoid dealing directly with the singular region mentioned above.

  12. Signal-to-noise contribution of principal component loads in reconstructed near-infrared Raman tissue spectra.

    Science.gov (United States)

    Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R

    2010-01-01

    The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can

  13. The Signaling Role of CD40 Ligand in Platelet Biology and in Platelet Component Transfusion

    Science.gov (United States)

    Aoui, Chaker; Prigent, Antoine; Sut, Caroline; Tariket, Sofiane; Hamzeh-Cognasse, Hind; Pozzetto, Bruno; Richard, Yolande; Cognasse, Fabrice; Laradi, Sandrine; Garraud, Olivier

    2014-01-01

    The CD40 ligand (CD40L) is a transmembrane molecule of crucial interest in cell signaling in innate and adaptive immunity. It is expressed by a variety of cells, but mainly by activated T-lymphocytes and platelets. CD40L may be cleaved into a soluble form (sCD40L) that has a cytokine-like activity. Both forms bind to several receptors, including CD40. This interaction is necessary for the antigen specific immune response. Furthermore, CD40L and sCD40L are involved in inflammation and a panoply of immune related and vascular pathologies. Soluble CD40L is primarily produced by platelets after activation, degranulation and cleavage, which may present a problem for transfusion. Soluble CD40L is involved in adverse transfusion events including transfusion related acute lung injury (TRALI). Although platelet storage designed for transfusion occurs in sterile conditions, platelets are activated and release sCD40L without known agonists. Recently, proteomic studies identified signaling pathways activated in platelet concentrates. Soluble CD40L is a good candidate for platelet activation in an auto-amplification loop. In this review, we describe the immunomodulatory role of CD40L in physiological and pathological conditions. We will focus on the main signaling pathways activated by CD40L after binding to its different receptors. PMID:25479079

  14. Hedgehog Signaling Components Are Expressed in Choroidal Neovascularization in Laser-induced Retinal Lesion

    International Nuclear Information System (INIS)

    Nochioka, Katsunori; Okuda, Hiroaki; Tatsumi, Kouko; Morita, Shoko; Ogata, Nahoko; Wanaka, Akio

    2016-01-01

    Choroidal neovascularization is one of the major pathological changes in age-related macular degeneration, which causes devastating blindness in the elderly population. The molecular mechanism of choroidal neovascularization has been under extensive investigation, but is still an open question. We focused on sonic hedgehog signaling, which is implicated in angiogenesis in various organs. Laser-induced injuries to the mouse retina were made to cause choroidal neovascularization. We examined gene expression of sonic hedgehog, its receptors (patched1, smoothened, cell adhesion molecule down-regulated by oncogenes (Cdon) and biregional Cdon-binding protein (Boc)) and downstream transcription factors (Gli1-3) using real-time RT-PCR. At seven days after injury, mRNAs for Patched1 and Gli1 were upregulated in response to injury, but displayed no upregulation in control retinas. Immunohistochemistry revealed that Patched1 and Gli1 proteins were localized to CD31-positive endothelial cells that cluster between the wounded retina and the pigment epithelium layer. Treatment with the hedgehog signaling inhibitor cyclopamine did not significantly decrease the size of the neovascularization areas, but the hedgehog agonist purmorphamine made the areas significantly larger than those in untreated retina. These results suggest that the hedgehog-signaling cascade may be a therapeutic target for age-related macular degeneration

  15. Intercellular communication in Helicobacter pylori: luxS is essential for the production of an extracellular signaling molecule.

    Science.gov (United States)

    Forsyth, M H; Cover, T L

    2000-06-01

    Individual bacteria of numerous species can communicate and coordinate their actions via the production, release, and detection of extracellular signaling molecules. In this study, we used the Vibrio harveyi luminescence bioassay to determine whether Helicobacter pylori produces such a factor. Cell-free conditioned media from H. pylori strains 60190 and 26695 each induced >100-fold-greater luminescence in V. harveyi than did sterile culture medium. The H. pylori signaling molecule had a molecular mass of 100-fold-greater luminescence in the V. harveyi bioassay than did conditioned medium from either mutant strain. Production of the signaling molecule was restored in an H. pylori luxS null mutant strain by complementation with a single intact copy of luxS placed in a heterologous site on the chromosome. In addition, Escherichia coli DH5alpha produced autoinducer activity following the introduction of an intact copy of luxS from H. pylori. Production of the signaling molecule by H. pylori was growth phase dependent, with maximal production occurring in the mid-exponential phase of growth. Transcription of H. pylori vacA also was growth phase dependent, but this phenomenon was not dependent on luxS activity. These data indicate that H. pylori produces an extracellular signaling molecule related to AI-2 from V. harveyi. We speculate that this signaling molecule may play a role in regulating H. pylori gene expression.

  16. Extraction of a Weak Co-Channel Interfering Communication Signal Using Complex Independent Component Analysis

    Science.gov (United States)

    2013-06-01

    zarzoso/ biblio /tnn10.pdf"> % "Robust independent component analysis by iterative maximization</a> % <a href = "http://www.i3s.unice.fr/~zarzoso... biblio /tnn10.pdf"> % of the kurtosis contrast with algebraic optimal step size"</a>, % IEEE Transactions on Neural Networks, vol. 21, no. 2, % pp

  17. Residual Effect of Chemical and Animal Fertilizers and Compost on Yield, YieldComponents, Physiological Characteristics and Essential Oil Content of Matricaria chamomilla L. under Drought Stress conditions

    Directory of Open Access Journals (Sweden)

    a Ahmadian

    2011-02-01

    Full Text Available Abstract The residual effect of inorganic and organic fertilizers on growth and yield of plants is one of the important problems in nutrition. This study was conducted to determine the residual effect of different fertilizers on yield, yield components, physiological parameters and essential oil percentage of Matricaria chamomilla under drought stress. A split plot arrangement based on randomized completely block design (RCBD with three replication was conducted in 2009, at the University of Zabol. Treatments included W1 (non stress, W2 (75% FC and W3 (50% FC as main plot and three types of residual’s fertilizers: F1 (non fertilizer, F2 (chemical fertilizer, F3 (manure fertilizer and F4 (compost as sub plot. Results showed that water stress at W3 treatment reduced dry flower yield. Low water stress increased essential oil percentage and the highest oil was obtained in W2. In this experiment, free proline and total soluble carbohydrate concentration were increased under water stress. The residual’s manure and compost enhanced flower yield, percentage and yield of essential oil of chamomile at the second year. At a glance, animal manure application and light water stress (75% FC was recommended to obtain best quantitative and qualitative yield. Keywords: Water Stress, Fertilizer, Carbohydrate, Proline, Chamomile

  18. Composition and in vitro cytotoxic activities of essential oil of Hedychium spicatum from different geographical regions of western Himalaya by principal components analysis.

    Science.gov (United States)

    Mishra, Tripti; Pal, Mahesh; Meena, Sanjeev; Datta, Dipak; Dixit, Prateek; Kumar, Anil; Meena, Baleshwar; Rana, T S; Upreti, D K

    2016-01-01

    The rhizome of Hedychium spicatum has been widely used in traditional medicines. The present study deals with the evaluation of the cytotoxic potential of rhizome essential oils from four different regions of the Western Himalaya (India) along with comparative correlation analysis to characterise the bioactive cytotoxic component. The essential oils were coded as MHS-1, MHS-2, MHS-3 and MHS-4, and characterised using GC-FID and GC-MS. The main volatile compounds identified were 1,8-cineol, eudesmol, cubenol, spathulenol and α-cadinol. In vitro cytotoxic activities were assessed against human cancer cell lines such as, the lung (A549), colon (DLD-1, SW 620), breast (MCF-7, MDA-MB-231), head and neck (FaDu), and cervix (HeLa). MHS-4 is significantly active in comparison to other samples against all cancer cell lines. Sample MHS-4 has major proportion of monoterpene alcohol mainly 1,8-cineol. Principal components analysis was performed for the experimental results and all four samples were clustered according to their percentage inhibition at different doses.

  19. Evaluation of Yield, Yield Components and Essential Oil Content of Marigold (Calendula officinalis L. with the Use of Nitrogen and Vermicompost

    Directory of Open Access Journals (Sweden)

    Alireza Pazoki

    2016-10-01

    Full Text Available Environmenal problems resulting from application of nitrogen fertilizers in the production plant materials led agricultural specialists to use clean and alternative methods to towards the organic farming and use of organic fertilizers. In this study, thus, the effect of nitrogen and vermicompost fertilizer rates on yield, yield components, essential oil content and some morphological traits of marigold was studied in a split plot experiment based on completely randomized blocks design with 3 replications in Shahr-e-Rey region during 2013 growing season. Nitrogen rates with 3 levels (0, 60, 120 and 180 kg.ha-1 were assigned to main plots and vermicompost with 3 levels (0, 10, and 20 t.ha-1 to the sub plots. Mean comparison of simple effects indicated that the plants treated with 120 kg.ha-1 nitrogen fertilizer and 20 t.ha-1 organic fertilizer vermicompost produced higher trait values under study than control (non application of vermincompost. Interaction effect of experimented factors was significant on all traits under evaluation. Thus, highest seed yield (1567 kg.ha-1, biological yield (6664 kg.ha-1 and essential oil yield (8.85 kg.ha-1 obtained by the application of 120 kg.ha-1 nitrogen fertilizer and 20 t.ha-1 varmicompost. Based on the results obtained it could be said that nitrogen and vermicompost may improve seed and biological yield and yield components of marigold.

  20. The Protective Effect of Lavender Essential Oil and Its Main Component Linalool against the Cognitive Deficits Induced by D-Galactose and Aluminum Trichloride in Mice

    Directory of Open Access Journals (Sweden)

    Pan Xu

    2017-01-01

    Full Text Available Lavender essential oil (LO is a traditional medicine used for the treatment of Alzheimer’s disease (AD. It was extracted from Lavandula angustifolia Mill. This study was designed to investigate the effects of lavender essential oil (LO and its active component, linalool (LI, against cognitive impairment induced by D-galactose (D-gal and AlCl3 in mice and to explore the related mechanisms. Our results revealed that LO (100 mg/kg or LI (100 mg/kg significantly protected the cognitive impairments as assessed by the Morris water maze test and step-though test. The mechanisms study demonstrated that LO and LI significantly protected the decreased activity of superoxide dismutase (SOD, glutathione peroxidase (GPX, and protected the increased activity of acetylcholinesterase (AChE and content of malondialdehyde (MDA. Besides, they protected the suppressed nuclear factor-erythroid 2-related factor 2 (Nrf2 and heme oxygenase-1 (HO-1 expression significantly. Moreover, the decreased expression of synapse plasticity-related proteins, calcium-calmodulin-dependent protein kinase II (CaMKII, p-CaMKII, brain-derived neurotrophic factor (BDNF, and TrkB in the hippocampus were increased with drug treatment. In conclusion, LO and its active component LI have protected the oxidative stress, activity of cholinergic function and expression of proteins of Nrf2/HO-1 pathway, and synaptic plasticity. It suggest that LO, especially LI, could be a potential agent for improving cognitive impairment in AD.

  1. In-vitro antimicrobial activity and identification of bioactive components using GC-MS of commercially available essential oils in Saudi Arabia.

    Science.gov (United States)

    Ashraf, Syed Amir; Al-Shammari, Eyad; Hussain, Talib; Tajuddin, Shaikh; Panda, Bibhu Prasad

    2017-11-01

    This study was designed to evaluate antimicrobial activity and chemical composition of four different plant essential oils i.e. Ginger oil (GiO), Black seed oil (BSO), Oregano oil (OO) and Rose oil (RO) against different bacterial and fungal strains. Anti-microbial activities of selected essential oils were determined by the microbiological technique using Agar well diffusion assay. After in vitro study, most of the essential oils showed antimicrobial activity against all the selected pathogens. Among all the tested oils, GiO showed strong antimicrobial activity. GiO showed highest antimicrobial activity against Shigella (119.79%), Enteococcus hirae (110.61%) and Escherichia coli (106.02%), when compared with the tetracycline (50 µg/mL) activity. However, Antifungal activity of GiO was found to be present against Candida albicans and Aspergilluas flavus , when compared with clotrimazole (50 µg/mL) activity. Among all the selected bacteria, BSO showed maximum antimicrobial activity against the E. coli followed by Citrobacter freundii. Moreover, BSO had highest zone of inhibition against the C. ablicans (33.58%). OO indicated that, Shigella had the highest sensitivity (12.6 ± 0.58, 131.25%), followed by E. hirae (19.1 ± 0.61, 96.46%) and Salmonella typhi (15.2 ± 0.27, 83.06%) when compared with tetracycline activity. OO showed poor sensitivity against all the selected fungal strains. Furthermore, Gas Chromatography analysis revealed that, Gingerol (10.86%) was the chief chemical constituents found in GiO followed by α -Sesquiphellandrene (6.29%), Zingiberene (5.88%). While, BSO, OO and RO had higher percentage of p-Cymene (6.90%), Carvacrol (15.87%) and Citronellol (8.07%) respectively. The results exhibited that the essential oils used for this study was the richest source for antimicrobial activity which indicates the presence of broad spectrum antimicrobial compounds in these essential oils. Hence, essential oils and their components can be

  2. Independent component analysis based digital signal processing in coherent optical fiber communication systems

    Science.gov (United States)

    Li, Xiang; Luo, Ming; Qiu, Ying; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan; Yang, Qi

    2018-02-01

    In this paper, channel equalization techniques for coherent optical fiber transmission systems based on independent component analysis (ICA) are reviewed. The principle of ICA for blind source separation is introduced. The ICA based channel equalization after both single-mode fiber and few-mode fiber transmission for single-carrier and orthogonal frequency division multiplexing (OFDM) modulation formats are investigated, respectively. The performance comparisons with conventional channel equalization techniques are discussed.

  3. Attenuation of spin resonance signals in media with the multi-component system of collectivized electrons

    International Nuclear Information System (INIS)

    Vojtenko, V.A.

    1995-01-01

    Universal relaxation theory of spectral line form at electron scattering light with spin flip at scattering of neutrons and at electron paramagnetic resonance, is plotted. Signals of spin resonances are shown to be subjected to strong attenuation caused by mutual transformations of various current carriers in multicomponent spin systems contained in intermetallic actinides with heavy fermions, in HTSC-crystals, in indirect highly alloyed semiconductors, solid solutions and superlattices. Physical reasons of observation of light strong scattering with spin flip in intermetallic actinides with semi-width independent of the wave vector are discussed. 19 refs

  4. CagI is an essential component of the Helicobacter pylori Cag type IV secretion system and forms a complex with CagL.

    Directory of Open Access Journals (Sweden)

    Kieu Thuy Pham

    Full Text Available Helicobacter pylori, the causative agent of type B gastritis, peptic ulcers, gastric adenocarcinoma and MALT lymphoma, uses the Cag type IV secretion system to induce a strong proinflammatory response in the gastric mucosa and to inject its effector protein CagA into gastric cells. CagA translocation results in altered host cell gene expression profiles and cytoskeletal rearrangements, and it is considered as a major bacterial virulence trait. Recently, it has been shown that binding of the type IV secretion apparatus to integrin receptors on target cells is a crucial step in the translocation process. Several bacterial proteins, including the Cag-specific components CagL and CagI, have been involved in this interaction. Here, we have examined the localization and interactions of CagI in the bacterial cell. Since the cagI gene overlaps and is co-transcribed with the cagL gene, the role of CagI for type IV secretion system function has been difficult to assess, and conflicting results have been reported regarding its involvement in the proinflammatory response. Using a marker-free gene deletion approach and genetic complementation, we show now that CagI is an essential component of the Cag type IV secretion apparatus for both CagA translocation and interleukin-8 induction. CagI is distributed over soluble and membrane-associated pools and seems to be partly surface-exposed. Deletion of several genes encoding essential Cag components has an impact on protein levels of CagI and CagL, suggesting that both proteins require partial assembly of the secretion apparatus. Finally, we show by co-immunoprecipitation that CagI and CagL interact with each other. Taken together, our results indicate that CagI and CagL form a functional complex which is formed at a late stage of secretion apparatus assembly.

  5. The fast ratio: A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz

    International Nuclear Information System (INIS)

    Durcan, Julie A.; Duller, Geoff A.T.

    2011-01-01

    The signal from the fast component is usually considered preferable for quartz optically stimulated luminescence (OSL) dating, however its presence in a continuous wave (CW) OSL signal is often assumed, rather than verified. This paper presents an objective measure (termed the fast ratio) for testing the dominance of the fast component in the initial part of a quartz OSL signal. The ratio is based upon the photo ionisation cross-sections of the fast and medium components and the power of the measurement equipment used to record the OSL signal, and it compares parts of the OSL signal selected to represent the fast and medium components. The ability of the fast ratio to distinguish between samples whose CW-OSL signal is dominated by the fast and non-fast components is demonstrated by comparing the fast ratio with the contribution of the fast component calculated from curve deconvolution of measured OSL signals and from simulated data. The ratio offers a rapid method for screening a large number of OSL signals obtained for individual equivalent dose estimates, it can be calculated and applied as easily as other routine screening methods, and is transferrable between different aliquots, samples and measurement equipment. - Highlights: → Fast ratio is a measure which tests dominance of fast component in quartz OSL signals. → A fast ratio above 20 implies a CW-OSL signal is dominated by fast component. → Fast ratio can be easily and rapidly applied to a large number of OSL signals. → Uses include signal comparison, data screening, identify need for further analysis.

  6. Epithelial-stromal interaction via Notch signaling is essential for the full maturation of gut-associated lymphoid tissues.

    Science.gov (United States)

    Obata, Yuuki; Kimura, Shunsuke; Nakato, Gaku; Iizuka, Keito; Miyagawa, Yurika; Nakamura, Yutaka; Furusawa, Yukihiro; Sugiyama, Machiko; Suzuki, Keiichiro; Ebisawa, Masashi; Fujimura, Yumiko; Yoshida, Hisahiro; Iwanaga, Toshihiko; Hase, Koji; Ohno, Hiroshi

    2014-12-01

    Intrinsic Notch signaling in intestinal epithelial cells restricts secretory cell differentiation. In gut-associated lymphoid tissue (GALT), stromal cells located beneath the follicle-associated epithelium (FAE) abundantly express the Notch ligand delta-like 1 (Dll1). Here, we show that mice lacking Rbpj-a gene encoding a transcription factor implicated in Notch signaling-in intestinal epithelial cells have defective GALT maturation. This defect can be attributed to the expansion of goblet cells, which leads to the down-regulation of CCL20 in FAE. These data demonstrate that epithelial Notch signaling maintained by stromal cells contributes to the full maturation of GALT by restricting secretory cell differentiation in FAE. © 2014 The Authors.

  7. Epithelial–stromal interaction via Notch signaling is essential for the full maturation of gut-associated lymphoid tissues

    Science.gov (United States)

    Obata, Yuuki; Kimura, Shunsuke; Nakato, Gaku; Iizuka, Keito; Miyagawa, Yurika; Nakamura, Yutaka; Furusawa, Yukihiro; Sugiyama, Machiko; Suzuki, Keiichiro; Ebisawa, Masashi; Fujimura, Yumiko; Yoshida, Hisahiro; Iwanaga, Toshihiko; Hase, Koji; Ohno, Hiroshi

    2014-01-01

    Intrinsic Notch signaling in intestinal epithelial cells restricts secretory cell differentiation. In gut-associated lymphoid tissue (GALT), stromal cells located beneath the follicle-associated epithelium (FAE) abundantly express the Notch ligand delta-like 1 (Dll1). Here, we show that mice lacking Rbpj—a gene encoding a transcription factor implicated in Notch signaling—in intestinal epithelial cells have defective GALT maturation. This defect can be attributed to the expansion of goblet cells, which leads to the down-regulation of CCL20 in FAE. These data demonstrate that epithelial Notch signaling maintained by stromal cells contributes to the full maturation of GALT by restricting secretory cell differentiation in FAE. Subject Categories Development & Differentiation; Immunology; Signal Transduction PMID:25378482

  8. Shared and unique components of human population structure and genome-wide signals of positive selection in South Asia.

    Science.gov (United States)

    Metspalu, Mait; Romero, Irene Gallego; Yunusbayev, Bayazit; Chaubey, Gyaneshwer; Mallick, Chandana Basu; Hudjashov, Georgi; Nelis, Mari; Mägi, Reedik; Metspalu, Ene; Remm, Maido; Pitchappan, Ramasamy; Singh, Lalji; Thangaraj, Kumarasamy; Villems, Richard; Kivisild, Toomas

    2011-12-09

    South Asia harbors one of the highest levels genetic diversity in Eurasia, which could be interpreted as a result of its long-term large effective population size and of admixture during its complex demographic history. In contrast to Pakistani populations, populations of Indian origin have been underrepresented in previous genomic scans of positive selection and population structure. Here we report data for more than 600,000 SNP markers genotyped in 142 samples from 30 ethnic groups in India. Combining our results with other available genome-wide data, we show that Indian populations are characterized by two major ancestry components, one of which is spread at comparable frequency and haplotype diversity in populations of South and West Asia and the Caucasus. The second component is more restricted to South Asia and accounts for more than 50% of the ancestry in Indian populations. Haplotype diversity associated with these South Asian ancestry components is significantly higher than that of the components dominating the West Eurasian ancestry palette. Modeling of the observed haplotype diversities suggests that both Indian ancestry components are older than the purported Indo-Aryan invasion 3,500 YBP. Consistent with the results of pairwise genetic distances among world regions, Indians share more ancestry signals with West than with East Eurasians. However, compared to Pakistani populations, a higher proportion of their genes show regionally specific signals of high haplotype homozygosity. Among such candidates of positive selection in India are MSTN and DOK5, both of which have potential implications in lipid metabolism and the etiology of type 2 diabetes. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Identification and characterization of novel defence and PCD signalling components in Arabidopsis

    DEFF Research Database (Denmark)

    Xie, Wenjun

    rescued syp121 syp122 ssdx (suppressor of syntaxin-related death) lines were collected. SSD genes are typically required for pathogen defence. In this PhD project, using some of these triple mutant lines, SSD6 and SSD12 were identified to be novel genes by Mutmap and complementation test. SSD6 encode...... a large protein with at least six domains with predicted functions, and mutations in five of these showed that they are important for the lesion mimic phenotype of syp121 syp122. Subcellular localization showed SSD6 to function on the ER. In the project, a split-GFP Gateway vector system was developed...... for topology studies of membrane proteins, and SSD6 was found to be an ER membrane-anchored cytosolic protein. The position of SSD6 in the defence signalling network was studied using syp121 syp122 ssd6 ssdy quadruple mutants, which suggested that SSD6 is not involved in any known signalling pathway. All...

  10. A short study to assess the potential of independent component analysis for motion artifact separation in wearable pulse oximeter signals.

    Science.gov (United States)

    Yao, Jianchu; Warren, Steve

    2005-01-01

    Motion artifact reduction and separation become critical when medical sensors are used in wearable monitoring scenarios. Previous research has demonstrated that independent component analysis (ICA) can be applied to pulse oximeter signals to separate photoplethysmographic (PPG) data from motion artifacts, ambient light, and other interference in low-motion environments. However, ICA assumes that all source signal component pairs are mutually independent. It is important to assess the statistical independence of the source components in PPG data, especially if ICA is to be applied in ambulatory monitoring environments, where motion artifacts can have a substantial effect on the quality of data received from light-based sensors. This paper addresses the statistical relationship between motion artifacts and PPG data by calculating the correlation coefficients between arterial volume variations and motion over a range of stationary to high-motion conditions. Analyses indicate that motion significantly affects arterial flow, so care must be taken when applying ICA to light-based sensor data acquired from wearable platforms.

  11. The PP2A Regulatory Subunit Tap46, a Component of the TOR Signaling Pathway, Modulates Growth and Metabolism in Plants[W

    Science.gov (United States)

    Ahn, Chang Sook; Han, Jeong-A; Lee, Ho-Seok; Lee, Semi; Pai, Hyun-Sook

    2011-01-01

    Tap42/α4, a regulatory subunit of protein phosphatase 2A, is a downstream effector of the target of rapamycin (TOR) protein kinase, which regulates cell growth in coordination with nutrient and environmental conditions in yeast and mammals. In this study, we characterized the functions and phosphatase regulation of plant Tap46. Depletion of Tap46 resulted in growth arrest and acute plant death with morphological markers of programmed cell death. Tap46 interacted with PP2A and PP2A-like phosphatases PP4 and PP6. Tap46 silencing modulated cellular PP2A activities in a time-dependent fashion similar to TOR silencing. Immunoprecipitated full-length and deletion forms of Arabidopsis thaliana TOR phosphorylated recombinant Tap46 protein in vitro, supporting a functional link between Tap46 and TOR. Tap46 depletion reproduced the signature phenotypes of TOR inactivation, such as dramatic repression of global translation and activation of autophagy and nitrogen mobilization, indicating that Tap46 may act as a positive effector of TOR signaling in controlling those processes. Additionally, Tap46 silencing in tobacco (Nicotiana tabacum) BY-2 cells caused chromatin bridge formation at anaphase, indicating its role in sister chromatid segregation. These findings suggest that Tap46, in conjunction with associated phosphatases, plays an essential role in plant growth and development as a component of the TOR signaling pathway. PMID:21216945

  12. Downstream components of RhoA required for signal pathway of superoxide formation during phagocytosis of serum opsonized zymosans in macrophages.

    Science.gov (United States)

    Kim, Jun Sub; Kim, Jae Gyu; Jeon, Chan Young; Won, Ha Young; Moon, Mi Young; Seo, Ji Yeon; Kim, Jong Il; Kim, Jaebong; Lee, Jae Yong; Choi, Soo Young; Park, Jinseu; Yoon Park, Jung Han; Ha, Kwon Soo; Kim, Pyeung Hyeun; Park, Jae Bong

    2005-12-31

    Rac1 and Rac2 are essential for the control of oxidative burst catalyzed by NADPH oxidase. It was also documented that Rho is associated with the superoxide burst reaction during phagocytosis of serum- (SOZ) and IgG-opsonized zymosan particles (IOZ). In this study, we attempted to reveal the signal pathway components in the superoxide formation regulated by Rho GTPase. Tat-C3 blocked superoxide production, suggesting that RhoA is essentially involved in superoxide formation during phagocytosis of SOZ. Conversely SOZ activated both RhoA and Rac1/2. Inhibition of RhoA-activated kinase (ROCK), an important downstream effector of RhoA, by Y27632 and myosin light chain kinase (MLCK) by ML-7 abrogated superoxide production by SOZ. Extracellular signaling-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were activated during phagocytosis of SOZ, and Tat-C3 and SB203580 reduced ERK1/2 and p38 MAPK activation, suggesting that RhoA and p38 MAPK may be upstream regulators of ERK1/2. Inhibition of ERK1/2, p38 MAPK, phosphatidyl inositol 3-kinase did not block translocation of RhoA to membranes, suggesting that RhoA is upstream to these kinases. Inhibition of RhoA by Tat-C3 blocked phosphorylation of p47(PHOX). Taken together, RhoA, ROCK, p38MAPK, ERK1/2, and p47(PHOX) may be subsequently activated, leading to activation of NADPH oxidase to produce superoxide.

  13. Effect of essential oils of Syzygium aromaticum and Cinnamomum zeylanicum and their major components on biofilm production in Staphylococcus aureus strains isolated from milk of cows with mastitis.

    Science.gov (United States)

    Budri, P E; Silva, N C C; Bonsaglia, E C R; Fernandes Júnior, A; Araújo Júnior, J P; Doyama, J T; Gonçalves, J L; Santos, M V; Fitzgerald-Hughes, D; Rall, V L M

    2015-09-01

    Bovine mastitis is an inflammation of the mammary glands of cows and causes significant economic losses in dairy cattle. Staphylococcus aureus is one of the microorganisms most commonly isolated. Novel agents are required in agricultural industries to prevent the development of mastitis. The production of biofilm by Staph. aureus facilitates the adhesion of bacteria to solid surfaces and contributes to the transmission and maintenance of these bacteria. The effect of the essential oils of Syzygium aromaticum (clove; EOSA) and Cinnamomum zeylanicum (cinnamon; EOCZ) and their major components, eugenol and cinnamaldehyde, on Staph. aureus biofilm formation on different surfaces was investigated. The results showed a significant inhibition of biofilm production by EOSA on polystyrene and stainless steel surfaces (69.4 and 63.6%, respectively). However, its major component, eugenol, was less effective on polystyrene and stainless steel (52.8 and 19.6%, respectively). Both EOCZ and its major component, cinnamaldehyde, significantly reduced biofilm formation on polystyrene (74.7 and 69.6%, respectively) and on stainless steel surfaces (45.3 and 44.9%, respectively). These findings suggest that EOSA, EOCZ, and cinnamaldehyde may be considered for applications such as sanitization in the food industry. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Residues essential for Panton-Valentine leukocidin S component binding to its cell receptor suggest both plasticity and adaptability in its interaction surface.

    Directory of Open Access Journals (Sweden)

    Benoit-Joseph Laventie

    Full Text Available Panton-Valentine leukocidin (PVL, a bicomponent staphylococcal leukotoxin, is involved in the poor prognosis of necrotizing pneumonia. The present study aimed to elucidate the binding mechanism of PVL and in particular its cell-binding domain. The class S component of PVL, LukS-PV, is known to ensure cell targeting and exhibits the highest affinity for the neutrophil membrane (Kd∼10(-10 M compared to the class F component of PVL, LukF-PV (Kd∼10(-9 M. Alanine scanning mutagenesis was used to identify the residues involved in LukS-PV binding to the neutrophil surface. Nineteen single alanine mutations were performed in the rim domain previously described as implicated in cell membrane interactions. Positions were chosen in order to replace polar or exposed charged residues and according to conservation between leukotoxin class S components. Characterization studies enabled to identify a cluster of residues essential for LukS-PV binding, localized on two loops of the rim domain. The mutations R73A, Y184A, T244A, H245A and Y250A led to dramatically reduced binding affinities for both human leukocytes and undifferentiated U937 cells expressing the C5a receptor. The three-dimensional structure of five of the mutants was determined using X-ray crystallography. Structure analysis identified residues Y184 and Y250 as crucial in providing structural flexibility in the receptor-binding domain of LukS-PV.

  15. The loss of essential oil components induced by the Purge Time in the Pressurized Liquid Extraction (PLE) procedure of Cupressus sempervirens.

    Science.gov (United States)

    Dawidowicz, Andrzej L; Czapczyńska, Natalia B; Wianowska, Dorota

    2012-05-30

    The influence of different Purge Times on the effectiveness of Pressurized Liquid Extraction (PLE) of volatile oil components from cypress plant matrix (Cupressus sempervirens) was investigated, applying solvents of diverse extraction efficiencies. The obtained results show the decrease of the mass yields of essential oil components as a result of increased Purge Time. The loss of extracted components depends on the extrahent type - the greatest mass yield loss occurred in the case of non-polar solvents, whereas the smallest was found in polar extracts. Comparisons of the PLE method with Sea Sand Disruption Method (SSDM), Matrix Solid-Phase Dispersion Method (MSPD) and Steam Distillation (SD) were performed to assess the method's accuracy. Independent of the solvent and Purge Time applied in the PLE process, the total mass yield was lower than the one obtained for simple, short and relatively cheap low-temperature matrix disruption procedures - MSPD and SSDM. Thus, in the case of volatile oils analysis, the application of these methods is advisable. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Influence of a component of solar irradiance on radon signals at 1000 meter depth at the Gran Sasso Laboratory, Italy

    Science.gov (United States)

    Gazit-Yaari (Charit-Yaari), N.; Steinitz, G.; Piatibratova, O.

    2012-04-01

    Exploratory monitoring of radon is conducted at one site at the deep underground Gran Sasso National Laboratory (LNGS; 1,000m below the surface). Monitoring is performed in a small secluded space separated by a sealed partition from the entirety of the laboratory environment in air in contact with the exposed surrounding calcareous country rock. Overall radon levels are low (0.45 kBq/m3). Utilizing both alpha and gamma-ray detectors measurements (15-minute resolution) cover a time span of ca. 600 days. Systematic and recurring radon signals are recorded consisting of two primary signal types: a) non-periodic Multi-Day (MD) signals lasting 2-10 days, and b) Daily Radon (DR) signals - which are of a periodic nature exhibiting a primary 24-hour cycle. Temperature in the closed enclosure is stable (11.5±0.3 °C) and pressure reflects above surface barometric variations. Analysis and comparison in the time and frequency domains (FFT) of local environmental data (P, T) indicates that these do not drive radon variation in air at the site. The phenomenology of the MD and DR signals is similar to situations encountered at other locations where radon is monitored with a high time resolution in geogas at upper crustal levels. Using the Continuous Wavelet Transform analysis tool a different variation pattern is observed for time series consisting of day-time and night-time measurement of the gamma radiation from radon progeny. Applying the same analysis to the time series of local air pressure does not reveal a day-time and night-time difference. The observation of a differing day/night pattern in the gamma radiation from radon at LNGS is similar to further occurrences at other subsurface locations. Production of a day/night pattern must be related to rotation of Earth around its axis. This phenomenon is a further confirmation of the recent proposition as to the influence of a component of solar irradiance on the nuclear radiation from radon in air. The occurrence of these

  17. Convergence of PASTA kinase and two-component signaling in response to cell wall stress in Enterococcus faecalis.

    Science.gov (United States)

    Kellogg, Stephanie L; Kristich, Christopher J

    2018-04-09

    Two common signal transduction mechanisms used by bacteria to sense and respond to changing environments are two-component systems (TCSs) and eukaryotic-like Ser/Thr kinases and phosphatases (eSTK/Ps). Enterococcus faecalis is a Gram-positive bacterium and serious opportunistic pathogen that relies on both a TCS and an eSTK/P pathway for intrinsic resistance to cell wall-targeting antibiotics. The TCS consists of a histidine kinase (CroS) and response regulator (CroR) that become activated upon exposure of cells to cell wall-targeting antibiotics, leading to modulation of gene expression. The eSTK/P pathway consists of a transmembrane kinase (IreK) and its cognate phosphatase (IreP), which act antagonistically to mediate antibiotic resistance through an unknown mechanism. Because both CroS/R and IreK/P contribute to enterococcal resistance towards cell wall-targeting antibiotics, we hypothesized these signaling systems are intertwined. To test this hypothesis, we analyzed CroR phosphorylation and CroS/R-dependent gene expression to probe the influence of IreK and IreP on CroS/R signaling. In addition, we analyzed the phosphorylation state of CroS which revealed IreK-dependent phosphorylation of a Thr residue important for CroS function. Our results are consistent with a model in which IreK positively influences CroR-dependent gene expression through phosphorylation of CroS to promote antimicrobial resistance in E. faecalis Importance Two-component signaling systems (TCSs) and eukaryotic-like Ser/Thr kinases (eSTKs) are used by bacteria to sense and adapt to changing environments. Understanding how these pathways are regulated to promote bacterial survival is critical for a more complete understanding of bacterial stress responses and physiology. The opportunistic pathogen Enterococcus faecalis relies on both a TCS (CroS/R) and an eSTK (IreK) for intrinsic resistance to cell wall-targeting antibiotics. We probed the relationship between CroS/R and IreK, revealing

  18. Ingestion of onion soup high in quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in man: a pilot study.

    Science.gov (United States)

    Hubbard, Gary P; Wolffram, Siegfried; de Vos, Ric; Bovy, Arnaud; Gibbins, Jonathan M; Lovegrove, Julie A

    2006-09-01

    Epidemiological data suggest that those who consume a diet rich in quercetin-containing foods may have a reduced risk of CVD. Furthermore, in vitro and ex vivo studies have observed the inhibition of collagen-induced platelet activation by quercetin. The aim of the present study was to investigate the possible inhibitory effects of quercetin ingestion from a dietary source on collagen-stimulated platelet aggregation and signalling. A double-blind randomised cross-over pilot study was undertaken. Subjects ingested a soup containing either a high or a low amount of quercetin. Plasma quercetin concentrations and platelet aggregation and signalling were assessed after soup ingestion. The high-quercetin soup contained 69 mg total quercetin compared with the low-quercetin soup containing 5 mg total quercetin. Plasma quercetin concentrations were significantly higher after high-quercetin soup ingestion than after low-quercetin soup ingestion and peaked at 2.59 (sem 0.42) mumol/l. Collagen-stimulated (0.5 mug/ml) platelet aggregation was inhibited after ingestion of the high-quercetin soup in a time-dependent manner. Collagen-stimulated tyrosine phosphorylation of a key component of the collagen-signalling pathway via glycoprotein VI, Syk, was significantly inhibited by ingestion of the high-quercetin soup. The inhibition of Syk tyrosine phosphorylation was correlated with the area under the curve for the high-quercetin plasma profile. In conclusion, the ingestion of quercetin from a dietary source of onion soup could inhibit some aspects of collagen-stimulated platelet aggregation and signalling ex vivo. This further substantiates the epidemiological data suggesting that those who preferentially consume high amounts of quercetin-containing foods have a reduced risk of thrombosis and potential CVD risk.

  19. Rhythmic Components in Extracranial Brain Signals Reveal Multifaceted Task Modulation of Overlapping Neuronal Activity.

    Directory of Open Access Journals (Sweden)

    Roemer van der Meij

    Full Text Available Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials. Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance.

  20. Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates

    Czech Academy of Sciences Publication Activity Database

    Kozmiková, Iryna; Candiani, S.; Fabian, Peter; Gurská, Daniela; Kozmik, Zbyněk

    2013-01-01

    Roč. 382, č. 2 (2013), s. 538-554 ISSN 0012-1606 R&D Projects: GA ČR GCP305/10/J064; GA MŠk EE2.3.30.0027 Institutional support: RVO:68378050 Keywords : Bmp signaling * axial patterning * cell fate * chordates * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.637, year: 2013

  1. Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse.

    Science.gov (United States)

    Engert, Silvia; Burtscher, Ingo; Liao, W Perry; Dulev, Stanimir; Schotta, Gunnar; Lickert, Heiko

    2013-08-01

    Several signalling cascades are implicated in the formation and patterning of the three principal germ layers, but their precise temporal-spatial mode of action in progenitor populations remains undefined. We have used conditional gene deletion of mouse β-catenin in Sox17-positive embryonic and extra-embryonic endoderm as well as vascular endothelial progenitors to address the function of canonical Wnt signalling in cell lineage formation and patterning. Conditional mutants fail to form anterior brain structures and exhibit posterior body axis truncations, whereas initial blood vessel formation appears normal. Tetraploid rescue experiments reveal that lack of β-catenin in the anterior visceral endoderm results in defects in head organizer formation. Sox17 lineage tracing in the definitive endoderm (DE) shows a cell-autonomous requirement for β-catenin in midgut and hindgut formation. Surprisingly, wild-type posterior visceral endoderm (PVE) in midgut- and hindgut-deficient tetraploid chimera rescues the posterior body axis truncation, indicating that the PVE is important for tail organizer formation. Upon loss of β-catenin in the visceral endoderm and DE lineages, but not in the vascular endothelial lineage, Sox17 expression is not maintained, suggesting downstream regulation by canonical Wnt signalling. Strikingly, Tcf4/β-catenin transactivation complexes accumulated on Sox17 cis-regulatory elements specifically upon endoderm induction in an embryonic stem cell differentiation system. Together, these results indicate that the Wnt/β-catenin signalling pathway regulates Sox17 expression for visceral endoderm pattering and DE formation and provide the first functional evidence that the PVE is necessary for gastrula organizer gene induction and posterior axis development.

  2. Antimicrobial impact of the components of essential oil of Litsea cubeba from Taiwan and antimicrobial activity of the oil in food systems.

    Science.gov (United States)

    Liu, Tai-Ti; Yang, Tsung-Shi

    2012-05-01

    Using natural additives to preserve foods has become popular due to consumer demands for nature and safety. Antimicrobial activity is one of the most important properties in many plant essential oils (EOs). The antimicrobial activity of the essential oil of Litsea cubeba (LC-EO) from Taiwan and the antimicrobial impact of individual volatile components in the oil on pathogens or spoilage microorganisms: Vibrio parahaemolyticus, Listeria monocytogenes, Lactobacillus plantarum, and Hansenula anomala in vitro, and the antimicrobial activity of the LC-EO against these organisms in food systems were studied. The "antimicrobial impact" (AI) is a new term that combines the effects of minimal microbicidal concentration (MMC) and quantity of an antimicrobial substance. The AI can quantitatively reflect the relative importance of individual components of the EO on the entire antimicrobial activity of the EO. The MMCs of the LC-EO against V. parahaemolyticus, L. monocytogenes, L. plantarum, and H. anomala were determined as 750, 750, 1500, and 375 μg/g, respectively in vitro. The MMCs of the LC-EO were 3000, 6000, and 12,000 μg/g for L. monocytogenes in tofu stored at 4 °C, 25 °C, and 37 °C, respectively. The temperature affected the bacterial growth which consequently influenced the MMCs of the LC-EO. The MMCs of the LC-EO were 3000, 6000, and 375 μg/g for Vibrio spp. in oysters, L. plantarum in orange-milk beverage, and H. anomala in soy sauce, respectively. Except for soy sauce, the food systems exhibited marked matrix effects on diminishing the antimicrobial activity of the LC-EO. Averagely, citral accounted for ca 70% of the total AI value for all the tested organisms, and the rest of the AI value of the LC-EO was determined by all the tested compounds (ca 4%) and the unidentified compounds (ca 26%). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Combination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States

    Directory of Open Access Journals (Sweden)

    Ateke Goshvarpour

    2016-06-01

    Full Text Available Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV. In the present study, considering the non-stationary and non-linear characteristics of HRV, empirical mode decomposition technique was utilized as a feature extraction approach. Materials and Methods In order to induce the emotional states, images indicating four emotional states, i.e., happiness, peacefulness, sadness, and fearfulness were presented. Simultaneously, HRV was recorded in 47 college students. The signals were decomposed into some intrinsic mode functions (IMFs. For each IMF and different IMF combinations, 17 standard and non-linear parameters were extracted. Wilcoxon test was conducted to assess the difference between IMF parameters in different emotional states. Afterwards, a probabilistic neural network was used to classify the features into emotional classes. Results Based on the findings, maximum classification rates were achieved when all IMFs were fed into the classifier. Under such circumstances, the proposed algorithm could discriminate the affective states with sensitivity, specificity, and correct classification rate of 99.01%, 100%, and 99.09%, respectively. In contrast, the lowest discrimination rates were attained by IMF1 frequency and its combinations. Conclusion The high performance of the present approach indicated that the proposed method is applicable for automatic emotion recognition.

  4. Use of novel compounds for pest control: insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar.

    Science.gov (United States)

    Panella, Nicholas A; Dolan, Marc C; Karchesy, Joseph J; Xiong, Yeping; Peralta-Cruz, Javier; Khasawneh, Mohammad; Montenieri, John A; Maupin, Gary O

    2005-05-01

    Laboratory bioassays were conducted to determine the activity of 15 natural products isolated from essential oil components extracted from the heartwood of Alaska yellow cedar, Chamaecyparis nootkatensis (D. Don) Spach., against Ixodes scapularis Say nymphs, Xenopsylla cheopis (Rothchild), and Aedes aegypti (L.) adults. Four of the compounds from the essential oil have been identified as monoterpenes, five as eremophilane sesquiterpenes, five as eremophilane sesquiterpene derivatives from valencene and nootkatone, and one as a sesquiterpene outside the eremophilane parent group. Carvacrol was the only monoterpene that demonstrated biocidal activity against ticks, fleas, and mosquitoes with LC50 values after 24 h of 0.0068, 0.0059, and 0.0051% (wt:vol), respectively. Nootkatone from Alaska yellow cedar was the most effective of the eremophilane sesquiterpenes against ticks (LC50 = 0.0029%), whereas the nootkatone grapefruit extract exhibited the greatest biocidal activity against fleas (LC50 = 0.0029%). Mosquitoes were most susceptible to one of the derivatives of valencene, valencene-13-aldehyde (LC50 = 0.0024%), after 24 h. Bioassays to determine residual activity of the most effective products were conducted at 1, 2, 4, and 6 wk after initial treatment. Residual LC50 values for nootkatone did not differ significantly at 4 wk posttreatment from the observations made at the initial 24-h treatment. The ability of these natural products to kill arthropods at relatively low concentrations represents an alternative to the use of synthetic pesticides for control of disease vectors.

  5. [Effect of β-cyclodextrin inclusion complex on transport of major components of Xiangfu Siwu decoction essential oil in Caco-2 cell monolayer model].

    Science.gov (United States)

    Xi, Jun-zuan; Qian, Da-wei; Duan, Jin-ao; Liu, Pei; Zhu, Yue; Zhu, Zhen-hua; Zhang, Li

    2015-08-01

    Although the essential oil of Xiangfu Siwu decoction (XFSWD) has strong pharmacological activity, its special physical and chemical properties restrict the clinical application and curative effect. In this paper, Xiangfu Siwu decoction essential oil (XFS-WO) was prepared by forming inclusion complex with β-cyclodextrin (β-CD). The present study is to investigate the effect of β-CD inclusion complex on the transport of major components of XFSWO using Caco-2 cell monolayer model, thus to research the effect of this formation on the absorption of drugs with low solubility and high permeability, which belong to class 2 in biopharmaceutics classification system. A sensitive and rapid UPLC-MS/MS method was developed for simultaneous quantification of senkyunolide A, 3-n-butylphthalide, Z-ligustilide, dehydrocostus lactone and α-cyperone, which are active compounds in XFSWO. The transport parameters were analyzed and compared in free oil and its β-CD inclusion complex. The result revealed that the formation of XFSWO/β-CD inclusion complex has significantly increased the transportation and absorption of major active ingredients than free oil. Accordingly, it can be speculated that cyclodextrin inclusion complex can improve bioavailability of poorly water-soluble drugs. Above all these mentioned researches, it provided foundation and basis for physiological disposition and pharmaceutical study of XFSWD.

  6. Equation-free analysis of two-component system signalling model reveals the emergence of co-existing phenotypes in the absence of multistationarity.

    Directory of Open Access Journals (Sweden)

    Rebecca B Hoyle

    Full Text Available Phenotypic differences of genetically identical cells under the same environmental conditions have been attributed to the inherent stochasticity of biochemical processes. Various mechanisms have been suggested, including the existence of alternative steady states in regulatory networks that are reached by means of stochastic fluctuations, long transient excursions from a stable state to an unstable excited state, and the switching on and off of a reaction network according to the availability of a constituent chemical species. Here we analyse a detailed stochastic kinetic model of two-component system signalling in bacteria, and show that alternative phenotypes emerge in the absence of these features. We perform a bifurcation analysis of deterministic reaction rate equations derived from the model, and find that they cannot reproduce the whole range of qualitative responses to external signals demonstrated by direct stochastic simulations. In particular, the mixed mode, where stochastic switching and a graded response are seen simultaneously, is absent. However, probabilistic and equation-free analyses of the stochastic model that calculate stationary states for the mean of an ensemble of stochastic trajectories reveal that slow transcription of either response regulator or histidine kinase leads to the coexistence of an approximate basal solution and a graded response that combine to produce the mixed mode, thus establishing its essential stochastic nature. The same techniques also show that stochasticity results in the observation of an all-or-none bistable response over a much wider range of external signals than would be expected on deterministic grounds. Thus we demonstrate the application of numerical equation-free methods to a detailed biochemical reaction network model, and show that it can provide new insight into the role of stochasticity in the emergence of phenotypic diversity.

  7. Seasonal and diurnal variability of essential oil and its components in Origanum onites L. grown in the ecological conditions of Çukurova

    Directory of Open Access Journals (Sweden)

    Kirpik, Muzaffer

    2005-12-01

    Full Text Available Turkish Oregano ( Origanum onites L. is one of the most commonly collected from nature as well as cultivated Origanum species in Turkey . In addition, Turkish Oregano is the most exported Origanum species from Turkey to the entire World. In this study, the seasonal and diurnal variability of the essential oil content in Origanum onites L. grown in the ecological conditions of Çukurova was studied from September 2000-August 2001. Monthly variability of the essential oil composition was also studied. The plant cuttings collected from the region were rooted in the greenhouse and transferred to the field in a split plot design with three replications. One year later from transplanting, fresh leaves from the top shoots were collected every week three times a day on Monday (at 08.00, 12.00 and 16.00 o'clock throughout the year. The content and composition of the essential oil were analysed in fresh leaf samples by hydrodistillation. The essential oil content changed according to the seasons and the hour of day. The highest essential oil content (% 1.92 was found in the post-flowering -at the beginning of the seed formation period in the afternoon harvests during the second half of June (40th week. The essential oil composition varied monthly and the highest value (% 73.65 of carvacrol, the main component of the essential oil, was obtained from the flowering period in MayEl orégano turco ( Origanum onites L. es uno de los más recolectados de la naturaleza así como la especie de orégano más cultivada en Turquía. Además es la especie de orégano más exportada desde Turquía a todo el mundo. En este trabajo se estudió la variabilidad estacional y diurna del contenido de aceite esencial de Origanum onites L. cultivado en las condiciones ecológicas de Çukurova desde Septiembre de 2000 a Agosto de 2001. Se estudió también la variabilidad mensual de la composición del aceite esencial. Los plantones recogidos en la región fueron plantados en un

  8. Speckle noise reduction technique for Lidar echo signal based on self-adaptive pulse-matching independent component analysis

    Science.gov (United States)

    Xu, Fan; Wang, Jiaxing; Zhu, Daiyin; Tu, Qi

    2018-04-01

    Speckle noise has always been a particularly tricky problem in improving the ranging capability and accuracy of Lidar system especially in harsh environment. Currently, effective speckle de-noising techniques are extremely scarce and should be further developed. In this study, a speckle noise reduction technique has been proposed based on independent component analysis (ICA). Since normally few changes happen in the shape of laser pulse itself, the authors employed the laser source as a reference pulse and executed the ICA decomposition to find the optimal matching position. In order to achieve the self-adaptability of algorithm, local Mean Square Error (MSE) has been defined as an appropriate criterion for investigating the iteration results. The obtained experimental results demonstrated that the self-adaptive pulse-matching ICA (PM-ICA) method could effectively decrease the speckle noise and recover the useful Lidar echo signal component with high quality. Especially, the proposed method achieves 4 dB more improvement of signal-to-noise ratio (SNR) than a traditional homomorphic wavelet method.

  9. Independent component analysis for the extraction of reliable protein signal profiles from MALDI-TOF mass spectra.

    Science.gov (United States)

    Mantini, Dante; Petrucci, Francesca; Del Boccio, Piero; Pieragostino, Damiana; Di Nicola, Marta; Lugaresi, Alessandra; Federici, Giorgio; Sacchetta, Paolo; Di Ilio, Carmine; Urbani, Andrea

    2008-01-01

    Independent component analysis (ICA) is a signal processing technique that can be utilized to recover independent signals from a set of their linear mixtures. We propose ICA for the analysis of signals obtained from large proteomics investigations such as clinical multi-subject studies based on MALDI-TOF MS profiling. The method is validated on simulated and experimental data for demonstrating its capability of correctly extracting protein profiles from MALDI-TOF mass spectra. The comparison on peak detection with an open-source and two commercial methods shows its superior reliability in reducing the false discovery rate of protein peak masses. Moreover, the integration of ICA and statistical tests for detecting the differences in peak intensities between experimental groups allows to identify protein peaks that could be indicators of a diseased state. This data-driven approach demonstrates to be a promising tool for biomarker-discovery studies based on MALDI-TOF MS technology. The MATLAB implementation of the method described in the article and both simulated and experimental data are freely available at http://www.unich.it/proteomica/bioinf/.

  10. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor.

    Science.gov (United States)

    Jang, Donghwan; Kwon, Hayeong; Jeong, Kyuho; Lee, Jaewoong; Pak, Yunbae

    2015-06-01

    Here, we explored flotillin-1-mediated regulation of insulin-like growth factor-1 (IGF-1) signaling. Flotillin-1-deficient cells exhibited a reduction in the activation of IGF-1 receptor (IGF-1R), ERK1/2 and Akt pathways, and the transcriptional activation of Elk-1 and the proliferation in response to IGF-1 were reduced in these cells. We found that IGF-1-independent flotillin-1 palmitoylation at Cys34 in the endoplasmic reticulum (ER) was required for the ER exit and the plasma membrane localization of flotillin-1 and IGF-1R. IGF-1-dependent depalmitoylation and repalmitoylation of flotillin-1 sustained tyrosine kinase activation of the plasma-membrane-targeted IGF-1R. Dysfunction and blocking the turnover of flotillin-1 palmitoylation abrogated cancer cell proliferation after IGF-1R signaling activation. Our data show that flotillin-1 palmitoylation is a new mechanism by which the intracellular localization and activation of IGF-1R are controlled. © 2015. Published by The Company of Biologists Ltd.

  11. Autocrine Semaphorin3A signaling is essential for the maintenance of stem-like cells in lung cancer

    International Nuclear Information System (INIS)

    Yamada, Daisuke; Takahashi, Kensuke; Kawahara, Kohichi; Maeda, Takehiko

    2016-01-01

    Cancer stem-like cells (CSCs) exist in tumor tissues composed of heterogeneous cell population and are characterized by their self-renewal capacity and tumorigenicity. Many studies demonstrate that eradication of CSCs prevents development and recurrences of tumor; yet, molecules critical for the maintenance of CSCs have not been completely understood. We previously reported that Semaphorin3A (Sema3a) knockdown suppressed the tumorigenicity and proliferative capacity of Lewis lung carcinoma (LLC) cells. Therefore, we identified Sema3a as an essential factor for the establishment or maintenance of CSCs derived from LLC (LLC-stem cell). shRNA against Sema3a was introduced into LLC cells to establish a LLC-stem cell line and its effects on tumorigenesis, sphere formation, and mTORC1 activity were tested. Sema3a knockdown completely abolished tumorigenicity and the sphere-formation and self-renewal ability of LLC-stem cells. The Sema3a knockdown was also associated with decreased expression of mRNA for stem cell markers. The self-renewal ability abolished by Sema3a knockdown could not be recovered by exogenous addition of recombinant SEMA3A. In addition, the activity of mammalian target of rapamycin complex 1 (mTORC1) and the expression of its substrate p70S6K1 were also decreased. These results demonstrate that Sema3a is a potential therapeutic target in eradication of CSCs. - Highlights: • Sema3a enhances tumorigenic capacity of cancer stem-like cells. • Sema3a is essential for the maintenance of cancer stem-like cells. • Sema3a can be a therapeutic target to eradicate cancer stem-like cells.

  12. Differential recognition of geometric isomers by the boll weevil,Anthonomus grandis Boh. (Coleoptera: Curculionidae): Evidence for only three essential components in aggregation pheromone.

    Science.gov (United States)

    Dickens, J C; Prestwich, G D

    1989-02-01

    For two decades, the aggregation pheromone of the boll weevil,Anthonomus grandis Boh. (Coleoptera: Curculionidae), was thought to consist of four compounds: I [(+)-(Z)-2-isopropenyl-1-methylcyclobutane ethanol]; II [(Z)-3,3-dimethyl-Δ(I,β)-cyclohexane ethanol]; III [(Z)-3,3-dimethyl-Δ(1,α)-cyclohexane acetaldehyde); and IV [(E)-3,3-dimethyl-Δ(1,α)-cyclohexane acetaldehyde). Evidence is presented from behavioral and electrophysiological studies to show that only three of these components, I, II, and IV, are essential for attraction. Competitive field tests, in which each possible three-component blend was tested against the four-component mixture, demonstrated that omission of I, II. or IV resulted in decreased trap captures (P < 0.01). Trap captures by these blends lacking I, II, or IV resembled those by the hexane solvent alone in a similar experiment. However, omission of III did not significantly alter field attractiveness of the blend. Dosage-response curves constructed from electroantennogram responses of both males and females to serial dilutions of III, IV, and a 50∶50 mixture of the geometric isomers III and IV showed both sexes to be 10- to 100-fold more sensitive to IV than III. Data from the electrophysiological studies were consistent with a single acceptor type for the (E)-cyclohexylidene aldehyde, IV, for males, and possibly one or two acceptor types for III and IV for females. Possible roles for the (Z)-cyclohexylidene aldehyde, III, and implications for the pheromonal attractant currently used in boll weevil eradication/suppression programs are discussed.

  13. Modular and coordinated expression of immune system regulatory and signaling components in the developing and adult nervous system.

    Science.gov (United States)

    Monzón-Sandoval, Jimena; Castillo-Morales, Atahualpa; Crampton, Sean; McKelvey, Laura; Nolan, Aoife; O'Keeffe, Gerard; Gutierrez, Humberto

    2015-01-01

    During development, the nervous system (NS) is assembled and sculpted through a concerted series of neurodevelopmental events orchestrated by a complex genetic programme. While neural-specific gene expression plays a critical part in this process, in recent years, a number of immune-related signaling and regulatory components have also been shown to play key physiological roles in the developing and adult NS. While the involvement of individual immune-related signaling components in neural functions may reflect their ubiquitous character, it may also reflect a much wider, as yet undescribed, genetic network of immune-related molecules acting as an intrinsic component of the neural-specific regulatory machinery that ultimately shapes the NS. In order to gain insights into the scale and wider functional organization of immune-related genetic networks in the NS, we examined the large scale pattern of expression of these genes in the brain. Our results show a highly significant correlated expression and transcriptional clustering among immune-related genes in the developing and adult brain, and this correlation was the highest in the brain when compared to muscle, liver, kidney and endothelial cells. We experimentally tested the regulatory clustering of immune system (IS) genes by using microarray expression profiling in cultures of dissociated neurons stimulated with the pro-inflammatory cytokine TNF-alpha, and found a highly significant enrichment of immune system-related genes among the resulting differentially expressed genes. Our findings strongly suggest a coherent recruitment of entire immune-related genetic regulatory modules by the neural-specific genetic programme that shapes the NS.

  14. Effects of mycorrhiza inoculation and different irrigation levels on yield, yield components and essential oil contents of fennel (Foeniculum vulgare Mill. and ajwain (Trachyspermum ammi L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2016-05-01

    complete block design with three replications at the Agricultural Research Station, the Ferdowsi University of Mashhad, Iran during two growing seasons of 2009-2010 and 2010-2011. Mycorrhiza inoculation (with and without inoculation and irrigation levels (1000, 2000 and 3000 m3.ha-1 were allocated to the first and the second factors, respectively. Several criteria such as yield components (including branch numbers per plant, umbel number per branch, umbellet number per umbel, seed number per umbellet and 1000-seed weight, biological yield, seed yield, harvest index, essential oil content and essential oil yield of fennel and ajwain were measured. Results and Discussion Results indicated that the simple effects of mycorrhiza inoculation and irrigation levels on the biological and seed yields, harvest index (HI, yield components, essential oil content and essential oil yield of fennel and ajwain were significant (p≤0.01. The maximum biological yield of fennel (5.3 g.m-2 and ajwain (4.3 g.m-2 were observed in mycorrhiza inoculation. Mycorrhiza inoculation enhanced seed yield of fennel and ajwain up to 46% and 97% compared with control, respectively. The highest essential oil content of fennel (4.2% and ajwain (3.0% were obtained in mycorrhiza inoculation. The highest and the lowest seed yield of fennel and ajwain were observed in 3000 m3.ha-1 (1.6 and 0.9 g.m-2 and 1000 m3.ha-1 (1.4 and 0.7 g.m-2 irrigation levels, respectively. The maximum essential oil content of fennel and ajwain were obtained in 3000 m3.ha-1 (4.0% and 3.4% and the minimum were for 1000 m3.ha-1 (3.2% and 2.9%. Interaction effects among mycorrhiza inoculation and different irrigation levels on the biological yield, HI and some yield components of fennel (such as branch number per plant, umbel numbel per branch, umbellet number per umbel and seed number per umbellet and ajwain (such as umbellet number per umbel, seed number per umbellet and 1000 seed weight scale fern number, seed number and 1000 seed

  15. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes.

    Science.gov (United States)

    Sarwar, Zaara; Garza, Anthony G

    2016-02-01

    When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Hypocretin/orexin signaling in the hypothalamic paraventricular nucleus is essential for the expression of nicotine withdrawal.

    Science.gov (United States)

    Plaza-Zabala, Ainhoa; Flores, África; Maldonado, Rafael; Berrendero, Fernando

    2012-02-01

    Hypocretin (orexin) signaling is involved in drug addiction. In this study, we investigated the role of these hypothalamic neuropeptides in nicotine withdrawal by using behavioral and neuroanatomical approaches. Nicotine withdrawal syndrome was precipitated by mecamylamine (2 mg/kg, subcutaneous) in C57BL/6J nicotine-dependent mice (25 mg/kg/day for 14 days) pretreated with the hypocretin receptor 1 (Hcrtr-1) antagonist SB334867 (5 and 10 mg/kg, intraperitoneal), the hypocretin receptor 2 antagonist TCSOX229 (5 and 10 mg/kg, intraperitoneal), and in preprohypocretin knockout mice. c-Fos expression was analyzed in several brain areas related to nicotine dependence by immunofluorescence techniques. Retrograde tracing with rhodamine-labeled fluorescent latex microspheres was used to determine whether the hypocretin neurons project directly to the paraventricular nucleus of the hypothalamus (PVN), and SB334867 was locally administered intra-PVN (10 nmol/side) to test the specific involvement of Hcrtr-1 in this brain area during nicotine withdrawal. Somatic signs of nicotine withdrawal were attenuated in mice pretreated with SB334867 and in preprohypocretin knockout mice. No changes were found in TCSOX229 pretreated animals. Nicotine withdrawal increased the percentage of hypocretin cells expressing c-Fos in the perifornical, dorsomedial, and lateral hypothalamus. In addition, the increased c-Fos expression in the PVN during withdrawal was dependent on hypocretin transmission through Hcrtr-1 activation. Hypocretin neurons directly innervate the PVN and the local infusion of SB334867 into the PVN decreased the expression of nicotine withdrawal. These data demonstrate that hypocretin signaling acting on Hcrtr-1 in the PVN plays a crucial role in the expression of nicotine withdrawal. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Budding yeast ATM/ATR control meiotic double-strand break (DSB levels by down-regulating Rec114, an essential component of the DSB-machinery.

    Directory of Open Access Journals (Sweden)

    Jesús A Carballo

    2013-06-01

    Full Text Available An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs. Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks.

  18. Budding Yeast ATM/ATR Control Meiotic Double-Strand Break (DSB) Levels by Down-Regulating Rec114, an Essential Component of the DSB-machinery

    Science.gov (United States)

    Carballo, Jesús A.; Panizza, Silvia; Serrentino, Maria Elisabetta; Johnson, Anthony L.; Geymonat, Marco; Borde, Valérie; Klein, Franz; Cha, Rita S.

    2013-01-01

    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or “DSB homeostasis”, might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks. PMID:23825959

  19. Verification of γ-Amino-Butyric Acid (GABA) Signaling System Components in Periodontal Ligament Cells In Vivo and In Vitro.

    Science.gov (United States)

    Konermann, Anna; Kantarci, Alpdogan; Wilbert, Steven; Van Dyke, Thomas; Jäger, Andreas

    2016-11-01

    CNS key neurotransmitter γ-amino-butyric acid (GABA) and its signaling components are likewise detectable in non-neuronal tissues displaying inter alia immunomodulatory functions. This study aimed at identifying potential glutamate decarboxylase (GAD)65 and GABA receptor expression in periodontal ligament (PDL) cells in vivo and in vitro, with particular regard to inflammation and mechanical loading. Gene expression was analyzed in human PDL cells at rest or in response to IL-1ß (5 ng/ml) or TNFα (5 ng/ml) challenge via qRT-PCR. Western blot determined constitutive receptor expression, and confocal laser scanning fluorescence microscopy visualized expression changes induced by inflammation. ELISA quantified GAD65 release. Immunocytochemistry was performed for GABA component detection in vitro on mechanically loaded PDL cells, and in vivo on rat upper jaw biopsies with mechanically induced root resorptions. Statistical significance was set at p GABA B1 , GABA B2 , GABA A1 , and GABA A3 were ubiquitously expressed both on gene and protein level. GABA A2 and GAD65 were undetectable in resting cells, but induced by inflammation. GABA B1 exhibited the highest basal gene expression (6.97 % ± 0.16). IL-1ß markedly increased GABA B2 on a transcriptional (57.28-fold ± 12.40) and protein level seen via fluorescence microscopy. TNFα-stimulated PDL cells released GAD65 (3.68 pg/ml ± 0.17 after 24 h, 5.77 pg/ml ± 0.65 after 48 h). Immunocytochemistry revealed GAD65 expression in mechanically loaded PDL cells. In vivo, GABA components were varyingly expressed in an inflammatory periodontal environment. PDL cells differentially express GABA signaling components and secrete GAD65. Inflammation and mechanical loading regulate these neurotransmitter molecules, which are also detectable in vivo and are potentially involved in periodontal pathophysiology.

  20. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy.

    Science.gov (United States)

    Vlahakis, Ariadne; Graef, Martin; Nunnari, Jodi; Powers, Ted

    2014-07-22

    The highly conserved Target of Rapamycin (TOR) kinase is a central regulator of cell growth and metabolism in response to nutrient availability. TOR functions in two structurally and functionally distinct complexes, TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2). Through TORC1, TOR negatively regulates autophagy, a conserved process that functions in quality control and cellular homeostasis and, in this capacity, is part of an adaptive nutrient deprivation response. Here we demonstrate that during amino acid starvation TOR also operates independently as a positive regulator of autophagy through the conserved TORC2 and its downstream target protein kinase, Ypk1. Under these conditions, TORC2-Ypk1 signaling negatively regulates the Ca(2+)/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing eIF2α kinase, Gcn2, and to promote autophagy. Our work reveals that the TORC2 pathway regulates autophagy in an opposing manner to TORC1 to provide a tunable response to cellular metabolic status.

  1. Quantitative evaluation of deep and shallow tissue layers' contribution to fNIRS signal using multi-distance optodes and independent component analysis.

    Science.gov (United States)

    Funane, Tsukasa; Atsumori, Hirokazu; Katura, Takusige; Obata, Akiko N; Sato, Hiroki; Tanikawa, Yukari; Okada, Eiji; Kiguchi, Masashi

    2014-01-15

    To quantify the effect of absorption changes in the deep tissue (cerebral) and shallow tissue (scalp, skin) layers on functional near-infrared spectroscopy (fNIRS) signals, a method using multi-distance (MD) optodes and independent component analysis (ICA), referred to as the MD-ICA method, is proposed. In previous studies, when the signal from the shallow tissue layer (shallow signal) needs to be eliminated, it was often assumed that the shallow signal had no correlation with the signal from the deep tissue layer (deep signal). In this study, no relationship between the waveforms of deep and shallow signals is assumed, and instead, it is assumed that both signals are linear combinations of multiple signal sources, which allows the inclusion of a "shared component" (such as systemic signals) that is contained in both layers. The method also assumes that the partial optical path length of the shallow layer does not change, whereas that of the deep layer linearly increases along with the increase of the source-detector (S-D) distance. Deep- and shallow-layer contribution ratios of each independent component (IC) are calculated using the dependence of the weight of each IC on the S-D distance. Reconstruction of deep- and shallow-layer signals are performed by the sum of ICs weighted by the deep and shallow contribution ratio. Experimental validation of the principle of this technique was conducted using a dynamic phantom with two absorbing layers. Results showed that our method is effective for evaluating deep-layer contributions even if there are high correlations between deep and shallow signals. Next, we applied the method to fNIRS signals obtained on a human head with 5-, 15-, and 30-mm S-D distances during a verbal fluency task, a verbal working memory task (prefrontal area), a finger tapping task (motor area), and a tetrametric visual checker-board task (occipital area) and then estimated the deep-layer contribution ratio. To evaluate the signal separation

  2. Transcriptional Responses of Escherichia coli to a Small-Molecule Inhibitor of LolCDE, an Essential Component of the Lipoprotein Transport Pathway

    Science.gov (United States)

    Lorenz, Christian; Dougherty, Thomas J.

    2016-01-01

    ABSTRACT In Gram-negative bacteria, a dedicated machinery consisting of LolABCDE components targets lipoproteins to the outer membrane. We used a previously identified small-molecule inhibitor of the LolCDE complex of Escherichia coli to assess the global transcriptional consequences of interference with lipoprotein transport. Exposure of E. coli to the LolCDE inhibitor at concentrations leading to minimal and significant growth inhibition, followed by transcriptome sequencing, identified a small group of genes whose transcript levels were decreased and a larger group whose mRNA levels increased 10- to 100-fold compared to those of untreated cells. The majority of the genes whose mRNA concentrations were reduced were part of the flagellar assembly pathway, which contains an essential lipoprotein component. Most of the genes whose transcript levels were elevated encode proteins involved in selected cell stress pathways. Many of these genes are involved with envelope stress responses induced by the mislocalization of outer membrane lipoproteins. Although several of the genes whose RNAs were induced have previously been shown to be associated with the general perturbation of the cell envelope by antibiotics, a small subset was affected only by LolCDE inhibition. Findings from this work suggest that the efficiency of the Lol system function may be coupled to a specific monitoring system, which could be exploited in the development of reporter constructs suitable for use for screening for additional inhibitors of lipoprotein trafficking. IMPORTANCE Inhibition of the lipoprotein transport pathway leads to E. coli death and subsequent lysis. Early significant changes in the levels of RNA for a subset of genes identified to be associated with some periplasmic and envelope stress responses were observed. Together these findings suggest that disruption of this key pathway can have a severe impact on balanced outer membrane synthesis sufficient to affect viability. PMID

  3. Transcriptional Responses of Escherichia coli to a Small-Molecule Inhibitor of LolCDE, an Essential Component of the Lipoprotein Transport Pathway.

    Science.gov (United States)

    Lorenz, Christian; Dougherty, Thomas J; Lory, Stephen

    2016-12-01

    In Gram-negative bacteria, a dedicated machinery consisting of LolABCDE components targets lipoproteins to the outer membrane. We used a previously identified small-molecule inhibitor of the LolCDE complex of Escherichia coli to assess the global transcriptional consequences of interference with lipoprotein transport. Exposure of E. coli to the LolCDE inhibitor at concentrations leading to minimal and significant growth inhibition, followed by transcriptome sequencing, identified a small group of genes whose transcript levels were decreased and a larger group whose mRNA levels increased 10- to 100-fold compared to those of untreated cells. The majority of the genes whose mRNA concentrations were reduced were part of the flagellar assembly pathway, which contains an essential lipoprotein component. Most of the genes whose transcript levels were elevated encode proteins involved in selected cell stress pathways. Many of these genes are involved with envelope stress responses induced by the mislocalization of outer membrane lipoproteins. Although several of the genes whose RNAs were induced have previously been shown to be associated with the general perturbation of the cell envelope by antibiotics, a small subset was affected only by LolCDE inhibition. Findings from this work suggest that the efficiency of the Lol system function may be coupled to a specific monitoring system, which could be exploited in the development of reporter constructs suitable for use for screening for additional inhibitors of lipoprotein trafficking. Inhibition of the lipoprotein transport pathway leads to E. coli death and subsequent lysis. Early significant changes in the levels of RNA for a subset of genes identified to be associated with some periplasmic and envelope stress responses were observed. Together these findings suggest that disruption of this key pathway can have a severe impact on balanced outer membrane synthesis sufficient to affect viability. Copyright © 2016 Lorenz et al.

  4. Principle component analysis (PCA) for investigation of relationship between population dynamics of microbial pathogenesis, chemical and sensory characteristics in beef slices containing Tarragon essential oil.

    Science.gov (United States)

    Alizadeh Behbahani, Behrooz; Tabatabaei Yazdi, Farideh; Shahidi, Fakhri; Mortazavi, Seyed Ali; Mohebbi, Mohebbat

    2017-04-01

    Principle component analysis (PCA) was employed to examine the effect of the exerted treatments on the beef shelf life as well as discovering the correlations between the studied responses. Considering the variability of the dimensions of the responses, correlation coefficients were applied to form the matrix and extract the eigenvalue. Antimicrobial effect was evaluated on 10 pathogenic microorganisms through the methods of hole-plate diffusion method, disk diffusion method, pour plate method, minimum inhibitory concentration and minimum bactericidal/fungicidal concentration. Antioxidant potential and total phenolic content were examined through the method of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteu method, respectively. The components were identified through gas chromatography and gas chromatography/mass spectrometry. Barhang seed mucilage (BSM) based edible coating containing 0, 0.5, 1 and 1.5% (w/w) Tarragon (T) essential oil mix were applied on beef slices to control the growth of pathogenic microorganisms. Microbiological (total viable count, psychrotrophic count, Escherichia coli, Staphylococcus aureus and fungi), chemical (thiobarbituric acid, peroxide value and pH) and sensory characteristics (odor, color and overall acceptability) analysis measurements were made during the storage periodically. PCA was employed to examine the effect of the exerted treatments on the beef shelf life as well as discovering the correlations between the studied responses. Considering the variability of the dimensions of the responses, correlation coefficients were applied to form the matrix and extract the eigenvalue. The PCA showed that the properties of the uncoated meat samples on the 9th, 12th, 15th and 18th days of storage are continuously changing independent of the exerted treatments on the other samples. This reveals the effect of the exerted treatments on the samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction

    Directory of Open Access Journals (Sweden)

    Kinnamon Sue C

    2001-04-01

    Full Text Available Abstract Background Taste receptor cells are responsible for transducing chemical stimuli into electrical signals that lead to the sense of taste. An important second messenger in taste transduction is IP3, which is involved in both bitter and sweet transduction pathways. Several components of the bitter transduction pathway have been identified, including the T2R/TRB taste receptors, phospholipase C β2, and the G protein subunits α-gustducin, β3, and γ13. However, the identity of the IP3 receptor subtype in this pathway is not known. In the present study we used immunocytochemistry on rodent taste tissue to identify the IP3 receptors expressed in taste cells and to examine taste bud expression patterns for IP3R3. Results Antibodies against Type I, II, and III IP3 receptors were tested on sections of rat and mouse circumvallate papillae. Robust cytoplasmic labeling for the Type III IP3 receptor (IP3R3 was found in a large subset of taste cells in both species. In contrast, little or no immunoreactivity was seen with antibodies against the Type I or Type II IP3 receptors. To investigate the potential role of IP3R3 in bitter taste transduction, we used double-label immunocytochemistry to determine whether IP3R3 is expressed in the same subset of cells expressing other bitter signaling components. IP3R3 immunoreactive taste cells were also immunoreactive for PLCβ2 and γ13. Alpha-gustducin immunoreactivity was present in a subset of IP3R3, PLCβ2, and γ13 positive cells. Conclusions IP3R3 is the dominant form of the IP3 receptor expressed in taste cells and our data suggest it plays an important role in bitter taste transduction.

  6. VIB1, a link between glucose signaling and carbon catabolite repression, is essential for plant cell wall degradation by Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Yi Xiong

    2014-08-01

    Full Text Available Filamentous fungi that thrive on plant biomass are the major producers of hydrolytic enzymes used to decompose lignocellulose for biofuel production. Although induction of cellulases is regulated at the transcriptional level, how filamentous fungi sense and signal carbon-limited conditions to coordinate cell metabolism and regulate cellulolytic enzyme production is not well characterized. By screening a transcription factor deletion set in the filamentous fungus Neurospora crassa for mutants unable to grow on cellulosic materials, we identified a role for the transcription factor, VIB1, as essential for cellulose utilization. VIB1 does not directly regulate hydrolytic enzyme gene expression or function in cellulosic inducer signaling/processing, but affects the expression level of an essential regulator of hydrolytic enzyme genes, CLR2. Transcriptional profiling of a Δvib-1 mutant suggests that it has an improper expression of genes functioning in metabolism and energy and a deregulation of carbon catabolite repression (CCR. By characterizing new genes, we demonstrate that the transcription factor, COL26, is critical for intracellular glucose sensing/metabolism and plays a role in CCR by negatively regulating cre-1 expression. Deletion of the major player in CCR, cre-1, or a deletion of col-26, did not rescue the growth of Δvib-1 on cellulose. However, the synergistic effect of the Δcre-1; Δcol-26 mutations circumvented the requirement of VIB1 for cellulase gene expression, enzyme secretion and cellulose deconstruction. Our findings support a function of VIB1 in repressing both glucose signaling and CCR under carbon-limited conditions, thus enabling a proper cellular response for plant biomass deconstruction and utilization.

  7. Mutation of the Streptococcus gordonii Thiol-Disulfide Oxidoreductase SdbA Leads to Enhanced Biofilm Formation Mediated by the CiaRH Two-Component Signaling System.

    Directory of Open Access Journals (Sweden)

    Lauren Davey

    Full Text Available Streptococcus gordonii is a commensal inhabitant of human oral biofilms. Previously, we identified an enzyme called SdbA that played an important role in biofilm formation by S. gordonii. SdbA is thiol-disulfide oxidoreductase that catalyzes disulfide bonds in secreted proteins. Surprisingly, inactivation of SdbA results in enhanced biofilm formation. In this study we investigated the basis for biofilm formation by the ΔsdbA mutant. The results revealed that biofilm formation was mediated by the interaction between the CiaRH and ComDE two-component signalling systems. Although it did not affect biofilm formation by the S. gordonii parent strain, CiaRH was upregulated in the ΔsdbA mutant and it was essential for the enhanced biofilm phenotype. The biofilm phenotype was reversed by inactivation of CiaRH or by the addition of competence stimulating peptide, the production of which is blocked by CiaRH activity. Competition assays showed that the enhanced biofilm phenotype also corresponded to increased oral colonization in mice. Thus, the interaction between SdbA, CiaRH and ComDE affects biofilm formation both in vitro and in vivo.

  8. Expression of factors and key components associated with the PI3K signaling pathway in colon cancer.

    Science.gov (United States)

    Chen, Hua; Gao, Junyi; Du, Zhenhua; Zhang, Xuequn; Yang, Fei; Gao, Wei

    2018-04-01

    The pathophysiology of colorectal cancer (CRC) has not been fully elucidated. The dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway frequently contributes to the tumorigenesis and progression of human cancer. The aim of the present study was to explore the expression and clinical significance of a number of associated factors and key components of the PI3K signaling pathway, including phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (p110α), phosphorylated protein kinase B (p-Akt) Ser473, p-mammalian target of rapamycin (mTOR) Ser2448, cyclin D1, cyclin dependent kinase (CDK)4, RELA proto-oncogene, nuclear factor-κβ subunit (p65), Ras and extracellular signal-regulated kinase (ERK)1/2 in human CRC. The expression of target proteins was detected using immunohistochemistry (IHC) in 65 CRC cases and 15 colonic adenoma cases. The association between the expression of target proteins and clinical pathological parameters was analyzed using a χ 2 test. IHC results revealed that the expression of all target proteins was significantly increased in CRC tissues compared with in colonic adenoma tissues (P0.05). Cyclin D1, CDK4 and Ras were revealed to be expressed significantly higher in poorly differentiated CRC compared with moderately differentiated CRC (Pcancer tissues with lymph node metastasis compared with cancer tissues without lymph node metastasis (P<0.05). These results suggest that the target proteins may all participate in the tumorigenesis of CRC. Furthermore, cyclin D1, CDK4, Ras, p65 and ERK1/2 may be important in the progression of CRC. The results of the present study may provide novel predictive factors and therapeutic targets for CRC.

  9. Structural and Functional Analysis of the Signal-Transducing Linker in the pH-Responsive One-Component System CadC of Escherichia coli.

    Science.gov (United States)

    Buchner, Sophie; Schlundt, Andreas; Lassak, Jürgen; Sattler, Michael; Jung, Kirsten

    2015-07-31

    The pH-responsive one-component signaling system CadC in Escherichia coli belongs to the family of ToxR-like proteins, whose members share a conserved modular structure, with an N-terminal cytoplasmic winged helix-turn-helix DNA-binding domain being followed by a single transmembrane helix and a C-terminal periplasmic pH-sensing domain. In E. coli CadC, a cytoplasmic linker comprising approximately 50 amino acids is essential for transmission of the signal from the sensor to the DNA-binding domain. However, the mechanism of transduction is poorly understood. Using NMR spectroscopy, we demonstrate here that the linker region is intrinsically disordered in solution. Furthermore, mutational analyses showed that it tolerates a range of amino acid substitutions (altering polarity, rigidity and α-helix-forming propensity), is robust to extension but is sensitive to truncation. Indeed, truncations either reversed the expression profile of the target operon cadBA or decoupled expression from external pH altogether. CadC dimerizes via its periplasmic domain, but light-scattering analysis provided no evidence for dimerization of the isolated DNA-binding domain, with or without the linker region. However, bacterial two-hybrid analysis revealed that CadC forms stable dimers in a stimulus- and linker-dependent manner, interacting only at pHpH. Thus, we propose that the disordered CadC linker is required for transducing the pH-dependent response of the periplasmic sensor into a structural rearrangement that facilitates dimerization of the cytoplasmic CadC DNA-binding domain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Chemical composition analysis of the essential oil of Solanumn nigrum L. by HS/SPME method and calculation of the biochemical coefficients of the components

    Directory of Open Access Journals (Sweden)

    Avat (Arman Taherpour

    2017-05-01

    Full Text Available The volatile constituents of the essential oil of wild Solanumn nigrum L. obtained from the Kurdistan of Iraq were extracted by head-space/solid-phase micro-extraction (HS/SPME and were analyzed by gas chromatography (GC and gas chromatography/mass spectrometry (GC/MS. Of a total of twenty compounds in the oil, all of them were identified. The main components were as follows: Dillapiole (22.22%, α-Cadinol (16.47%, para-Cymene (10.01%, (E-1-(2,6,6-Trimethyl-1,3-cyclohexadien-1-yl-2-buten-1-one or β-damascenone (9.08%, α-Phellandrene (8.48%, β-Pinene (5.93%, α-Bisabolol acetate (4.53%, (Z,E-4,6,8-Megastigmatriene (4.09%, Phytol (2.49%, Linalyl butanoate (2.13%, 8-methylene-tricyclo[3.2.1.0(2,4]octane (2.60% and Limonene (2.03%. Some physicochemical properties, such as the logarithm of calculated octanol–water partitioning coefficients (logKow and total biodegradation (TBd in mol/h were calculated for compounds 1–20 from S. nigrum L.

  11. Assessment of antioxidative, chelating, and DNA-protective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol, eucalyptol) of plants and intact Rosmarinus officinalis oil.

    Science.gov (United States)

    Horvathova, Eva; Navarova, Jana; Galova, Eliska; Sevcovicova, Andrea; Chodakova, Lenka; Snahnicanova, Zuzana; Melusova, Martina; Kozics, Katarina; Slamenova, Darina

    2014-07-16

    Selected components of plant essential oils and intact Rosmarinus officinalis oil (RO) were investigated for their antioxidant, iron-chelating, and DNA-protective effects. Antioxidant activities were assessed using four different techniques. DNA-protective effects on human hepatoma HepG2 cells and plasmid DNA were evaluated with the help of the comet assay and the DNA topology test, respectively. It was observed that whereas eugenol, carvacrol, and thymol showed high antioxidative effectiveness in all assays used, RO manifested only antiradical effect and borneol and eucalyptol did not express antioxidant activity at all. DNA-protective ability against hydrogen peroxide (H2O2)-induced DNA lesions was manifested by two antioxidants (carvacrol and thymol) and two compounds that do not show antioxidant effects (RO and borneol). Borneol was able to preserve not only DNA of HepG2 cells but also plasmid DNA against Fe(2+)-induced damage. This paper evaluates the results in the light of experiences of other scientists.

  12. Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral.

    Science.gov (United States)

    Korenblum, Elisa; Regina de Vasconcelos Goulart, Fátima; de Almeida Rodrigues, Igor; Abreu, Fernanda; Lins, Ulysses; Alves, Péricles Barreto; Blank, Arie Fitzgerald; Valoni, Erika; Sebastián, Gina V; Alviano, Daniela Sales; Alviano, Celuta Sales; Seldin, Lucy

    2013-08-10

    The anti-corrosion effect and the antimicrobial activity of lemongrass essential oil (LEO) against the planktonic and sessile growth of a sulfate reducing bacterium (SRB) were evaluated. Minimum inhibitory concentration (MIC) of LEO and its major component, the citral, was 0.17 mg ml-1. In addition, both LEO and citral showed an immediate killing effect against SRB in liquid medium, suggesting that citral is responsible for the antimicrobial activity of LEO against SRB. Transmission electron microscopy revealed that the MIC of LEO caused discernible cell membrane alterations and formed electron-dense inclusions. Neither biofilm formation nor corrosion was observed on carbon steel coupons after LEO treatment. LEO was effective for the control of the planktonic and sessile SRB growth and for the protection of carbon steel coupons against biocorrosion. The application of LEO as a potential biocide for SRB growth control in petroleum reservoirs and, consequently, for souring prevention, and/or as a coating protection against biocorrosion is of great interest for the petroleum industries.

  13. Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral

    Science.gov (United States)

    2013-01-01

    The anti-corrosion effect and the antimicrobial activity of lemongrass essential oil (LEO) against the planktonic and sessile growth of a sulfate reducing bacterium (SRB) were evaluated. Minimum inhibitory concentration (MIC) of LEO and its major component, the citral, was 0.17 mg ml-1. In addition, both LEO and citral showed an immediate killing effect against SRB in liquid medium, suggesting that citral is responsible for the antimicrobial activity of LEO against SRB. Transmission electron microscopy revealed that the MIC of LEO caused discernible cell membrane alterations and formed electron-dense inclusions. Neither biofilm formation nor corrosion was observed on carbon steel coupons after LEO treatment. LEO was effective for the control of the planktonic and sessile SRB growth and for the protection of carbon steel coupons against biocorrosion. The application of LEO as a potential biocide for SRB growth control in petroleum reservoirs and, consequently, for souring prevention, and/or as a coating protection against biocorrosion is of great interest for the petroleum industries. PMID:23938023

  14. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene.

    Science.gov (United States)

    Kordali, Saban; Cakir, Ahmet; Ozer, Hakan; Cakmakci, Ramazan; Kesdek, Memis; Mete, Ebru

    2008-12-01

    The chemical composition of essential oil isolated by hydrodistillation from the aerial parts of Origanum acutidens was analyzed by GC-MS. Carvacrol (87.0%), p-cymene (2.0%), linalool acetate (1.7%), borneol (1.6%) and beta-caryophyllene (1.3%) were found to be as main constituents. Antifungal, phytotoxic and insecticidal activities of the oil and its aromatic monoterpene constituents, carvacrol, p-cymene and thymol were also determined. The antifungal assays showed that O. acutidens oil, carvacrol and thymol completely inhibited mycelial growth of 17 phytopathogenic fungi and their antifungal effects were higher than commercial fungicide, benomyl. However, p-cymene possessed lower antifungal activity. The oil, carvacrol and thymol completely inhibited the seed germination and seedling growth of Amaranthus retroflexus, Chenopodium album and Rumex crispus and also showed a potent phytotoxic effect against these plants. However, p-cymene did not show any phytotoxic effect. Furthermore, O. acutidens oil showed 68.3% and 36.7% mortality against Sitophilus granarius and Tribolium confusum adults, respectively. The findings of the present study suggest that antifungal and herbicidal properties of the oil can be attributed to its major component, carvacrol, and these agents have a potential to be used as fungicide, herbicide as well as insecticide.

  15. Identification of amino-acid residues in the V protein of peste des petits ruminants essential for interference and suppression of STAT-mediated interferon signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xusheng, E-mail: maxushengtt@163.com [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China); Yang, Xing [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China); Nian, Xiaofeng [Institute of Pathogen Biology and Immunology, Hebei North University, Zhangjiakou 07500 (China); Zhang, Zhidong; Dou, Yongxi [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China); Zhang, Xuehu [Gansu Agricultural University, Lanzhou (China); Luo, Xuenong; Su, Junhong; Zhu, Qiyun [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China); Cai, Xuepeng, E-mail: caixp@vip.163.com [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China)

    2015-09-15

    Peste des petits ruminants virus (PPRV) causes a fatal disease in small ruminants. V protein of PPRV plays a pivotal role in interfering with host innate immunity by blocking IFNs signaling through interacting with STAT1 and STAT2. In the present study, the results demonstrated that PPRV V protein blocks IFN actions in a dose dependent manner and restrains the translocation of STAT1/2 proteins. We speculate that the translocation inhibition might be caused by the interfering of the downstream of STAT protein. Mutagenesis defines that Cys cluster and Trp motif of PPRV V protein are essential for STAT-mediated IFN signaling. These findings give a new sight for the further studies to understand the delicate mechanism of PPRV to escape the IFN signaling. - Highlights: • PPRV V protein inhibits type I IFN production and blocks its activation. • PPRV V protein negatively regulates activation of ISRE and GAS promoter. • PPRV V protein inhibits nuclear translocation of STAT protein by non-degradation. • PNT and VCT domain of PPRV V protein inhibit IFN transduction. • PPRV V protein binds with STAT protein via some conserved motifs.

  16. Apurinic/apyrimidinic endonuclease1/redox factor-1 (Ape1/Ref-1) is essential for IL-21-induced signal transduction through ERK1/2 pathway

    International Nuclear Information System (INIS)

    Juliana, Farha M.; Nara, Hidetoshi; Onoda, Tadashi; Rahman, Mizanur; Araki, Akemi; Jin, Lianjin; Fujii, Hodaka; Tanaka, Nobuyuki; Hoshino, Tomoaki; Asao, Hironobu

    2012-01-01

    Highlights: ► IL-21 induces nuclear accumulation of Ape1/Ref-1 protein. ► Ape1/Ref-1 is indispensable in IL-21-induced cell proliferation and survival signal. ► Ape1/Ref-1 is required for IL-21-induced ERK1/2 activation. -- Abstract: IL-21 is a pleiotropic cytokine that regulates T-cell and B-cell differentiation, NK-cell activation, and dendritic cell functions. IL-21 activates the JAK-STAT, ERK, and PI3K pathways. We report here that Ape1/Ref-1 has an essential role in IL-21-induced cell growth signal transduction. Overexpression of Ape1/Ref-1 enhances IL-21-induced cell proliferation, but it is suppressed by overexpressing an N-terminal deletion mutant of Ape1/Ref-1 that lacks the redox domain. Furthermore, knockdown of the Ape1/Ref-1 mRNA dramatically compromises IL-21-induced ERK1/2 activation and cell proliferation with increasing cell death. These impaired activities are recovered by the re-expression of Ape1/Ref-1 in the knockdown cells. Our findings are the first demonstration that Ape1/Ref-1 is an indispensable molecule for the IL-21-mediated signal transduction through ERK1/2 activation.

  17. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling.

    Science.gov (United States)

    Das, Anindita; Xi, Lei; Kukreja, Rakesh C

    2005-04-01

    We investigated the effect of sildenafil in protection against necrosis or apoptosis in cardiomyocytes. Adult mouse ventricular myocytes were treated with sildenafil (1 or 10 microM) for 1 h before 40 min of simulated ischemia (SI). Necrosis was determined by trypan blue exclusion and lactate dehydrogenase release following SI alone or plus 1 or 18 h of reoxygenation (RO). Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated nick end labeling assay and mitochondrial membrane potential measured using a fluorescent probe 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1). Sildenafil reduced necrosis as indicated by decrease in trypan blue-positive myocytes and leakage of lactate dehydrogenase compared with untreated cells after either SI or SI-RO. The number of terminal deoxynucleotidyl transferase-mediated nick end labeling-positive myocytes or loss of JC-1 fluorescence following SI and 18 h of RO was attenuated in the sildenafil-treated group with concomitant inhibition of caspase 3 activity. An early increase in Bcl-2 to Bax ratio with sildenafil treatment was also observed in myocytes after SI-RO. The increase of Bcl-2 expression by sildenafil was inhibited by nitric-oxide synthase (NOS) inhibitor, L-nitro-amino-methyl-ester. The drug also enhanced mRNA and protein content of inducible NOS (iNOS) and endothelial NOS (eNOS) in the myocytes. Sildenafil-induced protection against necrosis and apoptosis was absent in the myocytes derived from iNOS knock-out mice and was attenuated in eNOS knock-out myocytes. The up-regulation of Bcl-2 expression by sildenafil was also absent in iNOS-deficient myocytes. Reverse transcription-PCR, Western blots, and immunohistochemical assay confirmed the expression of phosphodiesterase-5 in mouse cardiomyocytes. These data provide strong evidence for a direct protective effect of sildenafil against necrosis and apoptosis through NO signaling pathway. The results may have possible

  18. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP3K1.

    Directory of Open Access Journals (Sweden)

    Nick Warr

    2011-05-01

    Full Text Available In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans.

  19. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening.

    Science.gov (United States)

    Shan, Wei; Kuang, Jian-fei; Chen, Lei; Xie, Hui; Peng, Huan-huan; Xiao, Yun-yi; Li, Xue-ping; Chen, Wei-xin; He, Quan-guang; Chen, Jian-ye; Lu, Wang-jin

    2012-09-01

    The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1-MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1-MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components.

  20. Aminoacylation of the N-terminal cysteine is essential for Lol-dependent release of lipoproteins from membranes but does not depend on lipoprotein sorting signals.

    Science.gov (United States)

    Fukuda, Ayumu; Matsuyama, Shin-Ichi; Hara, Takashi; Nakayama, Jiro; Nagasawa, Hiromichi; Tokuda, Hajime

    2002-11-08

    Lipoproteins are present in a wide variety of bacteria and are anchored to membranes through lipids attached to the N-terminal cysteine. The Lol system of Escherichia coli mediates the membrane-specific localization of lipoproteins. Aspartate at position 2 functions as a Lol avoidance signal and causes the retention of lipoproteins in the inner membrane, whereas lipoproteins having residues other than aspartate at position 2 are released from the inner membrane and localized to the outer membrane by the Lol system. Phospholipid:apolipoprotein transacylase, Lnt, catalyzes the last step of lipoprotein modification, converting apolipoprotein into mature lipoprotein. To reveal the importance of this aminoacylation for the Lol-dependent membrane localization, apolipoproteins were prepared by inhibiting lipoprotein maturation. Lnt was also purified and used to convert apolipoprotein into mature lipoprotein in vitro. The release of these lipoproteins was examined in proteoliposomes. We show here that the aminoacylation is essential for the Lol-dependent release of lipoproteins from membranes. Furthermore, lipoproteins with aspartate at position 2 were found to be aminoacylated both in vivo and in vitro, indicating that the lipoprotein-sorting signal does not affect lipid modification.

  1. New small molecule inhibitors of UPR activation demonstrate that PERK, but not IRE1α signaling is essential for promoting adaptation and survival to hypoxia

    International Nuclear Information System (INIS)

    Cojocari, Dan; Vellanki, Ravi N.; Sit, Brandon; Uehling, David; Koritzinsky, Marianne; Wouters, Bradly G.

    2013-01-01

    Background and purpose: The unfolded protein response (UPR) is activated in response to hypoxia-induced stress in the endoplasmic reticulum (ER) and consists of three distinct signaling arms. Here we explore the potential of targeting two of these arms with new potent small-molecule inhibitors designed against IRE1α and PERK. Methods: We utilized shRNAs and small-molecule inhibitors of IRE1α (4μ8c) and PERK (GSK-compound 39). XBP1 splicing and DNAJB9 mRNA was measured by qPCR and was used to monitor IRE1α activity. PERK activity was monitored by immunoblotting eIF2α phosphorylation and qPCR of DDIT3 mRNA. Hypoxia tolerance was measured using proliferation and clonogenic cell survival assays of cells exposed to mild or severe hypoxia in the presence of the inhibitors. Results: Using knockdown experiments we show that PERK is essential for survival of KP4 cells while knockdown of IRE1α dramatically decreases the proliferation and survival of HCT116 during hypoxia. Further, we show that in response to both hypoxia and other ER stress-inducing agents both 4μ8c and the PERK inhibitor are selective and potent inhibitors of IRE1α and PERK activation, respectively. However, despite potent inhibition of IRE1α activation, 4μ8c had no effect on cell proliferation or clonogenic survival of cells exposed to hypoxia. This was in contrast to the inactivation of PERK signaling with the PERK inhibitor, which reduced tolerance to hypoxia and other ER stress inducing agents. Conclusions: Our results demonstrate that IRE1α but not its splicing activity is important for hypoxic cell survival. The PERK signaling arm is uniquely important for promoting adaptation and survival during hypoxia-induced ER stress and should be the focus of future therapeutic efforts

  2. Essential roles of aspartate aminotransferase 1 and vesicular glutamate transporters in β-cell glutamate signaling for incretin-induced insulin secretion.

    Directory of Open Access Journals (Sweden)

    Naoya Murao

    Full Text Available Incretins (GLP-1 and GIP potentiate insulin secretion through cAMP signaling in pancreatic β-cells in a glucose-dependent manner. We recently proposed a mechanistic model of incretin-induced insulin secretion (IIIS that requires two critical processes: 1 generation of cytosolic glutamate through the malate-aspartate (MA shuttle in glucose metabolism and 2 glutamate transport into insulin granules by cAMP signaling to promote insulin granule exocytosis. To directly prove the model, we have established and characterized CRISPR/Cas9-engineered clonal mouse β-cell lines deficient for the genes critical in these two processes: aspartate aminotransferase 1 (AST1, gene symbol Got1, a key enzyme in the MA shuttle, which generates cytosolic glutamate, and the vesicular glutamate transporters (VGLUT1, VGLUT2, and VGLUT3, gene symbol Slc17a7, Slc17a6, and Slc17a8, respectively, which participate in glutamate transport into secretory vesicles. Got1 knockout (KO β-cell lines were defective in cytosolic glutamate production from glucose and showed impaired IIIS. Unexpectedly, different from the previous finding that global Slc17a7 KO mice exhibited impaired IIIS from pancreatic islets, β-cell specific Slc17a7 KO mice showed no significant impairment in IIIS, as assessed by pancreas perfusion experiment. Single Slc17a7 KO β-cell lines also retained IIIS, probably due to compensatory upregulation of Slc17a6. Interestingly, triple KO of Slc17a7, Slc17a6, and Slc17a8 diminished IIIS, which was rescued by exogenously introduced wild-type Slc17a7 or Slc17a6 genes. The present study provides direct evidence for the essential roles of AST1 and VGLUTs in β-cell glutamate signaling for IIIS and also shows the usefulness of the CRISPR/Cas9 system for studying β-cells by simultaneous disruption of multiple genes.

  3. Performance comparison of six independent components analysis algorithms for fetal signal extraction from real fMCG data

    International Nuclear Information System (INIS)

    Hild, Kenneth E; Alleva, Giovanna; Nagarajan, Srikantan; Comani, Silvia

    2007-01-01

    In this study we compare the performance of six independent components analysis (ICA) algorithms on 16 real fetal magnetocardiographic (fMCG) datasets for the application of extracting the fetal cardiac signal. We also compare the extraction results for real data with the results previously obtained for synthetic data. The six ICA algorithms are FastICA, CubICA, JADE, Infomax, MRMI-SIG and TDSEP. The results obtained using real fMCG data indicate that the FastICA method consistently outperforms the others in regard to separation quality and that the performance of an ICA method that uses temporal information suffers in the presence of noise. These two results confirm the previous results obtained using synthetic fMCG data. There were also two notable differences between the studies based on real and synthetic data. The differences are that all six ICA algorithms are independent of gestational age and sensor dimensionality for synthetic data, but depend on gestational age and sensor dimensionality for real data. It is possible to explain these differences by assuming that the number of point sources needed to completely explain the data is larger than the dimensionality used in the ICA extraction

  4. The AtNFXL1 gene functions as a signaling component of the type A trichothecene-dependent response

    Science.gov (United States)

    Asano, Tomoya; Yasuda, Michiko; Nakashita, Hideo; Kimura, Makoto; Yamaguchi1, Kazuo

    2008-01-01

    Phytopathogenic Fusarium species produce the trichothecene family of phytotoxins, which function as a virulence factor during infection of plants. Trichothecenes are classifiable into four major groups by their chemical structures. Recently, the AtNFXL1 gene was reported as a type A trichothecene T-2 toxin-inducible gene. The AtNFXL1 gene encodes a putative transcription factor with similarity to the human transcription repressor NF-X1. The atnfxl1 mutant exhibited hypersensitivity phenotype to T-2 toxin but not to type B deoxynivalenol (DON) in comparison with wild type when Arabidopsis thaliana grew on agar medium containing trichothecenes. The absence or presence of a carbonyl group at the C8 position distinguishes type A and type B. Growth defect by another type A trichothecene diacetoxyscirpenol (DAS), was weakly enhanced in the atnfxl1 mutant. Diacetoxyscirpenol is distinguishable from T-2 toxin only by the absence of an isovaleryl group at the C8 position. Correspondingly, the AtNFXL1 promoter activity was apparently induced in T-2 toxin-treated and DAS-treated plants. In contrast, DON failed to induce the AtNFXL1 promoter activity. Consequently, the AtNFXL1 gene functions as a signaling component of the type A trichothecene-dependent response in Arabidopsis. In addition, the C8 position of trichothecenes might be closely related to the function of AtNFXL1 gene. PMID:19704430

  5. MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease.

    Science.gov (United States)

    Baril, Martin; Racine, Marie-Eve; Penin, François; Lamarre, Daniel

    2009-02-01

    The mitochondrial antiviral signaling (MAVS) protein plays a central role in innate antiviral immunity. Upon recognition of a virus, intracellular receptors of the RIG-I-like helicase family interact with MAVS to trigger a signaling cascade. In this study, we investigate the requirement of the MAVS structure for enabling its signaling by structure-function analyses and resonance energy transfer approaches in live cells. We now report the essential role of the MAVS oligomer in signal transduction and map the transmembrane domain as the main determinant of dimerization. A combination of mutagenesis and computational methods identified a cluster of residues making favorable van der Waals interactions at the MAVS dimer interface. We also correlated the activation of IRF3 and NF-kappaB with MAVS oligomerization rather than its mitochondrial localization. Finally, we demonstrated that MAVS oligomerization is disrupted upon expression of HCV NS3/4A protease, suggesting a mechanism for the loss of antiviral signaling. Altogether, our data suggest that the MAVS oligomer is essential in the formation of a multiprotein membrane-associated signaling complex and enables downstream activation of IRF3 and NF-kappaB in antiviral innate immunity.

  6. Progesterone signaling mediated through progesterone receptor membrane component-1 in ovarian cells with special emphasis on ovarian cancer.

    Science.gov (United States)

    Peluso, John J

    2011-08-01

    Various ovarian cell types including granulosa cells and ovarian surface epithelial cells express the progesterone (P4) binding protein, progesterone receptor membrane component-1 (PGRMC1). PGRMC1 is also expressed in ovarian tumors. PGRMC1 plays an essential role in promoting the survival of both normal and cancerous ovarian cell in vitro. Given the clinical significance of factors that regulate the viability of ovarian cancer, this review will focus on the role of PGRMC1 in ovarian cancer, while drawing insights into the mechanism of PGRMC1's action from cell lines derived from healthy ovaries as well as ovarian tumors. Studies using PGRMC1siRNA demonstrated that P4's ability to inhibit ovarian cells from undergoing apoptosis in vitro is dependent on PGRMC1. To confirm the importance of PGRMC1, the ability of PGRMC1-deplete ovarian cancer cell lines to form tumors in intact nude mice was assessed. Compared to PGRMC1-expressing ovarian cancer cells, PGRMC1-deplete ovarian cancer cells formed tumors in fewer mice (80% compared to 100% for controls). Moreover, the number of tumors derived from PGRMC1-deplete ovarian cancer cells was 50% of that observed in controls. Finally, the tumors that formed from PGRMC1-deplete ovarian cancer cells were about a fourth the size of tumors derived from ovarian cancer cells with normal levels of PGRMC1. One reason for PGRMC1-deplete tumors being smaller is that they had a poorly developed microvasculature system. How PGRMC1 regulates cell viability and in turn tumor growth is not known but part of the mechanism likely involves the regulation of genes that promote cell survival and inhibit apoptosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Risk management of ochratoxigenic fungi and ochratoxin A in maize grains by bioactive EVOH films containing individual components of some essential oils.

    Science.gov (United States)

    Tarazona, Andrea; Gómez, José V; Gavara, Rafael; Mateo-Castro, Rufino; Gimeno-Adelantado, José V; Jiménez, Misericordia; Mateo, Eva M

    2018-03-23

    Aspergillus steynii and Aspergillus tubingensis are possibly the main ochratoxin A (OTA) producing species in Aspergillus section Circumdati and section Nigri, respectively. OTA is a potent nephrotoxic, teratogenic, embryotoxic, genotoxic, neurotoxic, carcinogenic and immunosuppressive compound being cereals the first source of OTA in the diet. In this study bioactive ethylene-vinyl alcohol copolymer (EVOH) films containing cinnamaldehyde (CINHO), linalool (LIN), isoeugenol (IEG) or citral (CIT) which are major components of some plant essential oils (EOs) were produced and tested against A. steynii and A. tubingensis growth and OTA production in partly milled maize grains. Due to the favourable safety profile, these bioactive compounds are considered in the category "GRAS". The study was carried out under different water activity (0.96 and 0.99 a w ), and temperature (24 and 32 °C) conditions. ANOVA showed that class of film, fungal species, a w and temperature and their interactions significantly affected growth rates (GR), ED 50 and ED 90 and the doses for total fungal growth inhibition and OTA production. The most effective EVOH films against both species were those containing CINHO. ED 50 , ED 90 and doses for total growth and OTA inhibition were 165-405, 297-614, 333-666 μg of EVOH-CINHO/plate (25 g of maize grains), respectively, depending on environmental conditions. The least efficient were EVOH-LIN films. ED 50 , ED 90 and doses for total growth and OTA inhibition were 2800->3330, >3330 and >3330 μg of EVOH-LIN/plate (25 g of maize grains), respectively. The effectiveness of the bioactive films increased with increasing doses. Overall, A. tubingensis was less sensitive to treatments than A. steynii. Depending on the species, a w and temperature affected GR and OTA production in a different way. In A. steynii cultures, optimal growth occurred at 0.96 a w and 32 °C while optimal OTA production happened at 0.99 a w and 32 °C. In A

  8. MUSIC-CONTENT-ADAPTIVE ROBUST PRINCIPAL COMPONENT ANALYSIS FOR A SEMANTICALLY CONSISTENT SEPARATION OF FOREGROUND AND BACKGROUND IN MUSIC AUDIO SIGNALS

    OpenAIRE

    Papadopoulos , Hélène; Ellis , Daniel P.W.

    2014-01-01

    International audience; Robust Principal Component Analysis (RPCA) is a technique to decompose signals into sparse and low rank components, and has recently drawn the attention of the MIR field for the problem of separating leading vocals from accompaniment, with appealing re-sults obtained on small excerpts of music. However, the perfor-mance of the method drops when processing entire music tracks. We present an adaptive formulation of RPCA that incorporates music content information to guid...

  9. Classification Technique for Ultrasonic Weld Inspection Signals using a Neural Network based on 2-dimensional fourier Transform and Principle Component Analysis

    International Nuclear Information System (INIS)

    Kim, Jae Joon

    2004-01-01

    Neural network-based signal classification systems are increasingly used in the analysis of large volumes of data obtained in NDE applications. Ultrasonic inspection methods on the other hand are commonly used in the nondestructive evaluation of welds to detect flaws. An important characteristic of ultrasonic inspection is the ability to identify the type of discontinuity that gives rise to a peculiar signal. Standard techniques rely on differences in individual A-scans to classify the signals. This paper proposes an ultrasonic signal classification technique based on the information tying in the neighboring signals. The approach is based on a 2-dimensional Fourier transform and the principal component analysis to generate a reduced dimensional feature vector for classification. Results of applying the technique to data obtained from the inspection of actual steel welds are presented

  10. Identification of the amino acids essential for LytSR-mediated signal transduction in Staphylococcus aureus and their roles in biofilm-specific gene expression

    Science.gov (United States)

    Lehman, McKenzie K.; Bose, Jeffrey L.; Sharma-Kuinkel, Batu K.; Moormeier, Derek E.; Endres, Jennifer L.; Sadykov, Marat R.; Biswas, Indranil; Bayles, Kenneth W.

    2015-01-01

    Summary Recent studies have demonstrated that expression of the Staphylococcus aureus lrgAB operon is specifically expressed within tower structures during biofilm development. To gain a better understanding of the mechanisms underlying this spatial control of lrgAB expression, we carried out a detailed analysis of the LytSR two-component system. Specifically, a conserved aspartic acid (Asp53) of the LytR response regulator was shown to be the target of phosphorylation, which resulted in enhanced binding to the lrgAB promoter and activation of transcription. In addition, we identified His390 of the LytS histidine kinase as the site of autophosphorylation and Asn394 as a critical amino acid involved in phosphatase activity. Interestingly, LytS-independent activation of LytR was observed during planktonic growth, with acetyl phosphate acting as a phosphodonor to LytR. In contrast, mutations disrupting the function of LytS prevented tower-specific lrgAB expression, providing insight into the physiologic environment within these structures. In addition, over activation of LytR led to increased lrgAB promoter activity during planktonic and biofilm growth and a change in biofilm morphology. Overall, the results of this study are the first to define the LytSR signal transduction pathway, as well as determine the metabolic context within biofilm tower structures that triggers these signaling events. PMID:25491472

  11. Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae

    Directory of Open Access Journals (Sweden)

    González-Candelas Fernando

    2011-02-01

    Full Text Available Abstract Background Two component systems (TCS are signal transduction pathways which typically consist of a sensor histidine kinase (HK and a response regulator (RR. In this study, we have analyzed the evolution of TCS of the OmpR/IIIA family in Lactobacillaceae and Leuconostocaceae, two families belonging to the group of lactic acid bacteria (LAB. LAB colonize nutrient-rich environments such as foodstuffs, plant materials and the gastrointestinal tract of animals thus driving the study of this group of both basic and applied interest. Results The genomes of 19 strains belonging to 16 different species have been analyzed. The number of TCS encoded by the strains considered in this study varied between 4 in Lactobacillus helveticus and 17 in Lactobacillus casei. The OmpR/IIIA family was the most prevalent in Lactobacillaceae accounting for 71% of the TCS present in this group. The phylogenetic analysis shows that no new TCS of this family has recently evolved in these Lactobacillaceae by either lineage-specific gene expansion or domain shuffling. Furthermore, no clear evidence of non-orthologous replacements of either RR or HK partners has been obtained, thus indicating that coevolution of cognate RR and HKs has been prevalent in Lactobacillaceae. Conclusions The results obtained suggest that vertical inheritance of TCS present in the last common ancestor and lineage-specific gene losses appear as the main evolutionary forces involved in their evolution in Lactobacillaceae, although some HGT events cannot be ruled out. This would agree with the genomic analyses of Lactobacillales which show that gene losses have been a major trend in the evolution of this group.

  12. Essential Function for PDLIM2 in Cell Polarization in Three-Dimensional Cultures by Feedback Regulation of the β1-Integrin–RhoA Signaling Axis

    Directory of Open Access Journals (Sweden)

    Ravi Kiran Deevi

    2014-05-01

    Full Text Available PDLIM2 is a cytoskeletal and nuclear PDZ-LIM domain protein that regulates the stability of Nuclear Factor kappa-B (NFκB and other transcription factors, and is required for polarized cell migration. PDLIM2 expression is suppressed by methylation in different cancers, but is strongly expressed in invasive breast cancer cells that have undergone an Epithelial Mesenchymal Transition (EMT. PDLIM2 is also expressed in non-transformed breast myoepithelial MCF10A cells and here we asked whether it is important for maintaining the polarized, epithelial phenotype of these cells. Suppression of PDLIM2 in MCF10A cells was sufficient to disrupt cell polarization and acini formation with increased proliferation and reduced apoptosis in the luminal space compared to control acini with hollow lumina. Spheroids with suppressed PDLIM2 exhibited increased expression of cell-cell and cell-matrix adhesion proteins including beta 1 (β1 integrin. Interestingly, levels of the Insulin-like growth factor 1 receptor (IGF-1 R and Receptor of activated protein kinase C 1 (RACK1, which scaffolds IGF-1R to β1 integrin, were also increased, indicating a transformed phenotype. Focal Adhesion Kinase (FAK and cofilin phosphorylation, and RhoA Guanosine Triphosphatase (GTPase activity were all enhanced in these spheroids compared to control acini. Importantly, inhibition of either FAK or Rho Kinase (ROCK was sufficient to rescue the polarity defect. We conclude that PDLIM2 expression is essential for feedback regulation of the β1-integrin-RhoA signalling axis and integration of cellular microenvironment signals with gene expression to control the polarity of breast epithelial acini structures. This is a mechanism by which PDLIM2 could mediate tumour suppression in breast epithelium.

  13. Synergetic Use of Principal Component Analysis Applied to Normed Physicochemical Measurements and GC × GC-MS to Reveal the Stabilization Effect of Selected Essential Oils on Heated Rapeseed Oil.

    Science.gov (United States)

    Sghaier, Lilia; Cordella, Christophe B Y; Rutledge, Douglas N; Lefèvre, Fanny; Watiez, Mickaël; Breton, Sylvie; Sassiat, Patrick; Thiebaut, Didier; Vial, Jérôme

    2017-06-01

    Lipid oxidation leads to the formation of volatile compounds and very often to off-flavors. In the case of the heating of rapeseed oil, unpleasant odors, characterized as a fishy odor, are emitted. In this study, 2 different essential oils (coriander and nutmeg essential oils) were added to refined rapeseed oil as odor masking agents. The aim of this work was to determine a potential antioxidant effect of these essential oils on the thermal stability of rapeseed oil subject to heating cycles between room temperature and 180 °C. For this purpose, normed determinations of different parameters (peroxide value, anisidine value, and the content of total polar compounds, free fatty acids and tocopherols) were carried out to examine the differences between pure and degraded oil. No significant difference was observed between pure rapeseed oil and rapeseed oil with essential oils for each parameter separately. However, a stabilizing effect of the essential oils, with a higher effect for the nutmeg essential oil was highlighted by principal component analysis applied on physicochemical dataset. Moreover, the analysis of the volatile compounds performed by GC × GC showed a substantial loss of the volatile compounds of the essential oils from the first heating cycle. © 2017 Institute of Food Technologists®.

  14. The chemistry and beneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices

    Science.gov (United States)

    Aromatic plants produce organic compounds that may be involved in the defense of plants against phytopathogenic insects, bacteria, fungi, and viruses. One of these compounds called carvacrol that is found in high concentrations in essential oils such as oregano has been reported to exhibit numerous...

  15. Efficient, highly enantioselective synthesis of selina-1,3, 7(11)-trien-8-one, a major component of the essential oil of Eugenia uniflora.

    Science.gov (United States)

    Kanazawa, A; Patin, A; Greene, A E

    2000-09-01

    The first synthesis of selina-1,3,7(11)-trien-8-one (1), a major constituent of the essential oil from the leaves of Eugenia uniflora, has been accomplished, with excellent stereo- and regiocontrol, in eight steps and in 12% overall yield from the known octalone derivative 2a.

  16. Activation of an essential calcium signaling pathway in Saccharomyces cerevisiae by Kch1 and Kch2, putative low-affinity potassium transporters.

    Science.gov (United States)

    Stefan, Christopher P; Zhang, Nannan; Sokabe, Takaaki; Rivetta, Alberto; Slayman, Clifford L; Montell, Craig; Cunningham, Kyle W

    2013-02-01

    In the budding yeast Saccharomyces cerevisiae, mating pheromones activate a high-affinity Ca(2+) influx system (HACS) that activates calcineurin and is essential for cell survival. Here we identify extracellular K(+) and a homologous pair of transmembrane proteins, Kch1 and Kch2 (Prm6), as necessary components of the HACS activation mechanism. Expression of Kch1 and especially Kch2 was strongly induced during the response to mating pheromones. When forcibly overexpressed, Kch1 and Kch2 localized to the plasma membrane and activated HACS in a fashion that depended on extracellular K(+) but not pheromones. They also promoted growth of trk1 trk2 mutant cells in low K(+) environments, suggesting they promote K(+) uptake. Voltage-clamp recordings of protoplasts revealed diminished inward K(+) currents in kch1 kch2 double-mutant cells relative to the wild type. Conversely, heterologous expression of Kch1 in HEK293T cells caused the appearance of inwardly rectifying K(+) currents. Collectively, these findings suggest that Kch1 and Kch2 directly promote K(+) influx and that HACS may electrochemically respond to K(+) influx in much the same way as the homologous voltage-gated Ca(2+) channels in most animal cell types.

  17. The effect of irradiation dose and storage time on the ESR signal in the cuticle of different components of the exoskeleton of Norway lobster (Nephrops norvegicus)

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, E.M. (Queen' s Univ., Belfast, Northern Ireland (United Kingdom)); Stevenson, M.H. (Department of Agriculture for Northern Ireland (United Kingdom). Food and Agricultural Chemistry Research Div. Queen' s Univ., Belfast, Northern Ireland (United Kingdom)); Gray, R. (Department for Agriculture for Northern Ireland (United Kingdom). Food and Agricultural Chemistry Research Div.)

    This paper examines the potential of ESR spectroscopy too determine if Norway lobsters have been irradiated. Ninety samples, each containing 3 whole Norway lobsters, were prepared, thirty were used as controls while the remaining sixty were given irradiation doses of approximately either 1 or 3 kGy. Following irradiation the samples were stored at 1[sup o]C for 0, 7, 14, 21 or 28 d. After each storage period the cuticle of the tail, carapace, claws and walking legs was removed, freeze-dried and ground prior to analysis using ESR spectroscopy. The control spectra were subtracted from their respective irradiated spectra thereby leaving the radiation-induced signal. Peak heights of the signals were measured. The ESR signals derived from the different components of the exoskeleton were similar in shape and varied only in their intensities. The claw samples gave the most intense signal while that from the walking legs was the weakest. There was a significant decay in the signal intensity over the storage period with the signal derived from cuticle of the claws showing the greatest diminution (44%) and that of the tail the least (17%). The signal intensities of the walking legs and carapace decreased by 22% and 30% respectively. In conclusion ESR spectroscopy is a useful technique for the qualitative detection of irradiated Norway lobster and shows considerable potential for quantification of dose received. (author).

  18. The effect of irradiation dose and storage time on the ESR signal in the cuticle of different components of the exoskeleton of Norway lobster (Nephrops norvegicus)

    International Nuclear Information System (INIS)

    Stewart, E.M.; Stevenson, M.H.; Gray, R.

    1993-01-01

    This paper examines the potential of ESR spectroscopy too determine if Norway lobsters have been irradiated. Ninety samples, each containing 3 whole Norway lobsters, were prepared, thirty were used as controls while the remaining sixty were given irradiation doses of approximately either 1 or 3 kGy. Following irradiation the samples were stored at 1 o C for 0, 7, 14, 21 or 28 d. After each storage period the cuticle of the tail, carapace, claws and walking legs was removed, freeze-dried and ground prior to analysis using ESR spectroscopy. The control spectra were subtracted from their respective irradiated spectra thereby leaving the radiation-induced signal. Peak heights of the signals were measured. The ESR signals derived from the different components of the exoskeleton were similar in shape and varied only in their intensities. The claw samples gave the most intense signal while that from the walking legs was the weakest. There was a significant decay in the signal intensity over the storage period with the signal derived from cuticle of the claws showing the greatest diminution (44%) and that of the tail the least (17%). The signal intensities of the walking legs and carapace decreased by 22% and 30% respectively. In conclusion ESR spectroscopy is a useful technique for the qualitative detection of irradiated Norway lobster and shows considerable potential for quantification of dose received. (author)

  19. 10-Hydroxy-2-decenoic Acid, the Major Lipid Component of Royal Jelly, Extends the Lifespan of Caenorhabditis elegans through Dietary Restriction and Target of Rapamycin Signaling

    Directory of Open Access Journals (Sweden)

    Yoko Honda

    2015-01-01

    Full Text Available Royal jelly (RJ produced by honeybees has been reported to possess diverse health-beneficial properties and has been implicated to have a function in longevity across diverse species as well as honeybees. 10-Hydroxy-2-decenoic acid (10-HDA, the major lipid component of RJ produced by honeybees, was previously shown to increase the lifespan of Caenorhabditis elegans. The objective of this study is to elucidate signaling pathways that are involved in the lifespan extension by 10-HDA. 10-HDA further extended the lifespan of the daf-2 mutants, which exhibit long lifespan through reducing insulin-like signaling (ILS, indicating that 10-HDA extended lifespan independently of ILS. On the other hand, 10-HDA did not extend the lifespan of the eat-2 mutants, which show long lifespan through dietary restriction caused by a food-intake defect. This finding indicates that 10-HDA extends lifespan through dietary restriction signaling. We further found that 10-HDA did not extend the lifespan of the long-lived mutants in daf-15, which encodes Raptor, a target of rapamycin (TOR components, indicating that 10-HDA shared some longevity control mechanisms with TOR signaling. Additionally, 10-HDA was found to confer tolerance against thermal and oxidative stress. 10-HDA increases longevity not through ILS but through dietary restriction and TOR signaling in C. elegans.

  20. 10-Hydroxy-2-decenoic Acid, the Major Lipid Component of Royal Jelly, Extends the Lifespan of Caenorhabditis elegans through Dietary Restriction and Target of Rapamycin Signaling.

    Science.gov (United States)

    Honda, Yoko; Araki, Yoko; Hata, Taketoshi; Ichihara, Kenji; Ito, Masafumi; Tanaka, Masashi; Honda, Shuji

    2015-01-01

    Royal jelly (RJ) produced by honeybees has been reported to possess diverse health-beneficial properties and has been implicated to have a function in longevity across diverse species as well as honeybees. 10-Hydroxy-2-decenoic acid (10-HDA), the major lipid component of RJ produced by honeybees, was previously shown to increase the lifespan of Caenorhabditis elegans. The objective of this study is to elucidate signaling pathways that are involved in the lifespan extension by 10-HDA. 10-HDA further extended the lifespan of the daf-2 mutants, which exhibit long lifespan through reducing insulin-like signaling (ILS), indicating that 10-HDA extended lifespan independently of ILS. On the other hand, 10-HDA did not extend the lifespan of the eat-2 mutants, which show long lifespan through dietary restriction caused by a food-intake defect. This finding indicates that 10-HDA extends lifespan through dietary restriction signaling. We further found that 10-HDA did not extend the lifespan of the long-lived mutants in daf-15, which encodes Raptor, a target of rapamycin (TOR) components, indicating that 10-HDA shared some longevity control mechanisms with TOR signaling. Additionally, 10-HDA was found to confer tolerance against thermal and oxidative stress. 10-HDA increases longevity not through ILS but through dietary restriction and TOR signaling in C. elegans.

  1. Effect of essential oils of Syzygium aromaticum and Cinnamomum zeylanicum and their major components on biofilm production in Staphylococcus aureus strains isolated from milk of cows with mastitis.

    OpenAIRE

    Budri, Paulo E; Silva, Nathalia CC; Bonsaglia, Erika CR; Fernandes Júnior, Ary; Araújo Júnior, Joao P; Doyama, Julio T; Gonçalves, Juliano L; Santos, M V; Fitzgerald-Hughes, Deirdre; Rall, Vera LM

    2015-01-01

    Bovine mastitis is an inflammation of the mammary glands of cows and causes significant economic losses in dairy cattle. Staphylococcus aureus is one of the microorganisms most commonly isolated. Novel agents are required in agricultural industries to prevent the development of mastitis. The production of biofilm by Staph. aureus facilitates the adhesion of bacteria to solid surfaces and contributes to the transmission and maintenance of these bacteria. The effect of the essential oils of Syz...

  2. Fumigant activity of plant essential oils and components from horseradish (Armoracia rusticana), anise (Pimpinella anisum) and garlic (Allium sativum) oils against Lycoriella ingenua (Diptera: Sciaridae).

    Science.gov (United States)

    Park, Ii-Kwon; Choi, Kwang-Sik; Kim, Do-Hyung; Choi, In-Ho; Kim, Lee-Sun; Bak, Won-Chull; Choi, Joon-Weon; Shin, Sang-Chul

    2006-08-01

    Plant essential oils from 40 plant species were tested for their insecticidal activities against larvae of Lycoriella ingénue (Dufour) using a fumigation bioassay. Good insecticidal activity against larvae of L. ingenua was achieved with essential oils of Chenopodium ambrosioides L., Eucalyptus globulus Labill, Eucalyptus smithii RT Baker, horseradish, anise and garlic at 10 and 5 microL L(-1) air. Horseradish, anise and garlic oils showed the most potent insecticidal activities among the plant essential oils. At 1.25 microL L(-1), horseradish, anise and garlic oils caused 100, 93.3 and 13.3% mortality, but at 0.625 microL L(-1) air this decreased to 3.3, 0 and 0% respectively. Analysis by gas chromatography-mass spectrometry led to the identification of one major compound from horseradish, and three each from anise and garlic oils. These seven compounds and m-anisaldehyde and o-anisaldehyde, two positional isomers of p-anisaldehyde, were tested individually for their insecticidal activities against larvae of L. ingenua. Allyl isothiocyanate was the most toxic, followed by trans-anethole, diallyl disulfide and p-anisaldehyde with LC(50) values of 0.15, 0.20, 0.87 and 1.47 microL L(-1) respectively.

  3. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling.

    Science.gov (United States)

    Khan, Sumbul Jawed; Abidi, Syeda Nayab Fatima; Skinner, Andrea; Tian, Yuan; Smith-Bolton, Rachel K

    2017-07-01

    Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth.

  4. Comparative Analysis of the Clinical Significance of Oscillatory Components in the Rhythmic Structure of Pulse Signal in the Diagnostics of Psychosomatic Disorders in School Age Children.

    Science.gov (United States)

    Desova, A A; Dorofeyuk, A A; Anokhin, A M

    2017-01-01

    We performed a comparative analysis of the types of spectral density typical of various parameters of pulse signal. The experimental material was obtained during the examination of school age children with various psychosomatic disorders. We also performed a typological analysis of the spectral density functions corresponding to the time series of different parameters of a single oscillation of pulse signals; the results of their comparative analysis are presented. We determined the most significant spectral components for two disordersin children: arterial hypertension and mitral valve prolapse.

  5. The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.).

    Science.gov (United States)

    Abdollahi Mandoulakani, Babak; Eyvazpour, Elham; Ghadimzadeh, Morteza

    2017-07-01

    Basil (Ocimum basilicum L.), a medicinal plant of the Lamiaceae family, is used in traditional medicine; its essential oil is a rich source of phenylpropanoids. Methylchavicol and methyleugenol are the most important constituents of basil essential oil. Drought stress is proposed to enhance the essential oil composition and expression levels of the genes involved in its biosynthesis. In the current investigation, an experiment based on a completely randomized design (CRD) with three replications was conducted in the greenhouse to study the effect of drought stress on the expression level of four genes involved in the phenylpropanoid biosynthesis pathway in O. basilicum c.v. Keshkeni luvelou. The genes studied were chavicol O-methyl transferase (CVOMT), eugenol O-methyl transferase (EOMT), cinnamate 4-hydroxylase (C4H), 4-coumarate coA ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD). The effect of drought stress on the essential oil compounds and their relationship with the expression levels of the studied genes were also investigated. Plants were subjected to levels of 100%, 75%, and 50% of field capacity (FC) at the 6-8 leaf stage. Essential oil compounds were identified by gas chromatography/mass spectrometry (GC-MS) at flowering stage and the levels of gene expression were determind by real time PCR in plant leaves at the same stage. Results showed that drought stress increased the amount of methylchavicol, methyleugenol, β-Myrcene and α-bergamotene. The maximum amount of these compounds was observed at 50% FC. Real-time PCR analysis revealed that severe drought stress (50% FC) increased the expression level of CVOMT and EOMT by about 6.46 and 46.33 times, respectively, whereas those of CAD relatively remained unchanged. The expression level of 4CL and C4H reduced under drought stress conditions. Our results also demonstrated that changes in the expression levels of CVOMT and EOMT are significantly correlated with methylchavicol (r = 0.94, P ≤ 0

  6. Convergent RANK- and c-Met-mediated signaling components predict survival of patients with prostate cancer: an interracial comparative study.

    Science.gov (United States)

    Hu, Peizhen; Chung, Leland W K; Berel, Dror; Frierson, Henry F; Yang, Hua; Liu, Chunyan; Wang, Ruoxiang; Li, Qinlong; Rogatko, Andre; Zhau, Haiyen E

    2013-01-01

    We reported (PLoS One 6 (12):e28670, 2011) that the activation of c-Met signaling in RANKL-overexpressing bone metastatic LNCaP cell and xenograft models increased expression of RANK, RANKL, c-Met, and phosphorylated c-Met, and mediated downstream signaling. We confirmed the significance of the RANK-mediated signaling network in castration resistant clinical human prostate cancer (PC) tissues. In this report, we used a multispectral quantum dot labeling technique to label six RANK and c-Met convergent signaling pathway mediators simultaneously in formalin fixed paraffin embedded (FFPE) tissue specimens, quantify the intensity of each expression at the sub-cellular level, and investigated their potential utility as predictors of patient survival in Caucasian-American, African-American and Chinese men. We found that RANKL and neuropilin-1 (NRP-1) expression predicts survival of Caucasian-Americans with PC. A Gleason score ≥ 8 combined with nuclear p-c-Met expression predicts survival in African-American PC patients. Neuropilin-1, p-NF-κB p65 and VEGF are predictors for the overall survival of Chinese men with PC. These results collectively support interracial differences in cell signaling networks that can predict the survival of PC patients.

  7. Convergent RANK- and c-Met-mediated signaling components predict survival of patients with prostate cancer: an interracial comparative study.

    Directory of Open Access Journals (Sweden)

    Peizhen Hu

    Full Text Available We reported (PLoS One 6 (12:e28670, 2011 that the activation of c-Met signaling in RANKL-overexpressing bone metastatic LNCaP cell and xenograft models increased expression of RANK, RANKL, c-Met, and phosphorylated c-Met, and mediated downstream signaling. We confirmed the significance of the RANK-mediated signaling network in castration resistant clinical human prostate cancer (PC tissues. In this report, we used a multispectral quantum dot labeling technique to label six RANK and c-Met convergent signaling pathway mediators simultaneously in formalin fixed paraffin embedded (FFPE tissue specimens, quantify the intensity of each expression at the sub-cellular level, and investigated their potential utility as predictors of patient survival in Caucasian-American, African-American and Chinese men. We found that RANKL and neuropilin-1 (NRP-1 expression predicts survival of Caucasian-Americans with PC. A Gleason score ≥ 8 combined with nuclear p-c-Met expression predicts survival in African-American PC patients. Neuropilin-1, p-NF-κB p65 and VEGF are predictors for the overall survival of Chinese men with PC. These results collectively support interracial differences in cell signaling networks that can predict the survival of PC patients.

  8. Task completion report for investigating why output signal-variable values differ from their output component-parameter values in test problem MST2

    International Nuclear Information System (INIS)

    Steinke, R.G.

    1997-01-01

    Signal-variable values and their component-parameter values differ in an end-of-timestep edit to the TRCOUT and TRCGRF files because signal variables have beginning-of-timestep values, and component parameters have end-of-timestep values. Oscillatory divergence in the MST2 standard test problem after 9000 s occurs because of TRAC-P's numerical evaluation at a 1000 material Courant number. The magnitude of that divergence has diminished by a factor of 3.5 from Version 5.3.01 to 5.4.15 and by a factor of 25 from Version 5.4.15 to 5.4.28. That divergence can be eliminated by evaluating MST2 with a maximum material Courant number of 500

  9. Multichannel Signals Reconstruction Based on Tunable Q-Factor Wavelet Transform-Morphological Component Analysis and Sparse Bayesian Iteration for Rotating Machines

    Directory of Open Access Journals (Sweden)

    Qing Li

    2018-04-01

    Full Text Available High-speed remote transmission and large-capacity data storage are difficult issues in signals acquisition of rotating machines condition monitoring. To address these concerns, a novel multichannel signals reconstruction approach based on tunable Q-factor wavelet transform-morphological component analysis (TQWT-MCA and sparse Bayesian iteration algorithm combined with step-impulse dictionary is proposed under the frame of compressed sensing (CS. To begin with, to prevent the periodical impulses loss and effectively separate periodical impulses from the external noise and additive interference components, the TQWT-MCA method is introduced to divide the raw vibration signal into low-resonance component (LRC, i.e., periodical impulses and high-resonance component (HRC, thus, the periodical impulses are preserved effectively. Then, according to the amplitude range of generated LRC, the step-impulse dictionary atom is designed to match the physical structure of periodical impulses. Furthermore, the periodical impulses and HRC are reconstructed by the sparse Bayesian iteration combined with step-impulse dictionary, respectively, finally, the final reconstructed raw signals are obtained by adding the LRC and HRC, meanwhile, the fidelity of the final reconstructed signals is tested by the envelop spectrum and error analysis, respectively. In this work, the proposed algorithm is applied to simulated signal and engineering multichannel signals of a gearbox with multiple faults. Experimental results demonstrate that the proposed approach significantly improves the reconstructive accuracy compared with the state-of-the-art methods such as non-convex Lq (q = 0.5 regularization, spatiotemporal sparse Bayesian learning (SSBL and L1-norm, etc. Additionally, the processing time, i.e., speed of storage and transmission has increased dramatically, more importantly, the fault characteristics of the gearbox with multiple faults are detected and saved, i.e., the

  10. Cumulative and Synergistic Effects of Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can We Listen for Open Water?

    Science.gov (United States)

    2013-09-30

    Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can we listen for... Soundscapes Under Sea Ice: Can we listen for open water? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...the source. These different sounds can be described as “ soundscapes ”, and graphically represented by comparing two or more features of the sound

  11. 10-Hydroxy-2-decenoic Acid, the Major Lipid Component of Royal Jelly, Extends the Lifespan of Caenorhabditis elegans through Dietary Restriction and Target of Rapamycin Signaling

    OpenAIRE

    Honda, Yoko; Araki, Yoko; Hata, Taketoshi; Ichihara, Kenji; Ito, Masafumi; Tanaka, Masashi; Honda, Shuji

    2015-01-01

    Royal jelly (RJ) produced by honeybees has been reported to possess diverse health-beneficial properties and has been implicated to have a function in longevity across diverse species as well as honeybees. 10-Hydroxy-2-decenoic acid (10-HDA), the major lipid component of RJ produced by honeybees, was previously shown to increase the lifespan of Caenorhabditis elegans. The objective of this study is to elucidate signaling pathways that are involved in the lifespan extension by 10-HDA. 10-HDA f...

  12. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis.

    Science.gov (United States)

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-06-02

    Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K(+)in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant.

  13. : Signal Decomposition of High Resolution Time Series River data to Separate Local and Regional Components of Conductivity

    Science.gov (United States)

    Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of a wastewater treatment facility along a river. Data was collected over 14-60 days, and several seasons. The power spectral densit...

  14. Signal Decomposition of High Resolution Time Series River Data to Separate Local and Regional Components of Conductivity

    Science.gov (United States)

    Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of an oil and gas wastewater treatment facility along a river. Data was collected over 14-60 days. The power spectral density was us...

  15. Modulation of Ras signaling alters the toxicity of hydroquinone, a benzene metabolite and component of cigarette smoke

    International Nuclear Information System (INIS)

    North, Matthew; Shuga, Joe; Fromowitz, Michele; Loguinov, Alexandre; Shannon, Kevin; Zhang, Luoping; Smith, Martyn T; Vulpe, Chris D

    2014-01-01

    Benzene is an established human leukemogen, with a ubiquitous environmental presence leading to significant population exposure. In a genome-wide functional screen in the yeast Saccharomyces cerevisiae, inactivation of IRA2, a yeast ortholog of the human tumor suppressor gene NF1 (Neurofibromin), enhanced sensitivity to hydroquinone, an important benzene metabolite. Increased Ras signaling is implicated as a causal factor in the increased pre-disposition to leukemia of individuals with mutations in NF1. Growth inhibition of yeast by hydroquinone was assessed in mutant strains exhibiting varying levels of Ras activity. Subsequently, effects of hydroquinone on both genotoxicity (measured by micronucleus formation) and proliferation of WT and Nf1 null murine hematopoietic precursors were assessed. Here we show that the Ras status of both yeast and mammalian cells modulates hydroquinone toxicity, indicating potential synergy between Ras signaling and benzene toxicity. Specifically, enhanced Ras signaling increases both hydroquinone-mediated growth inhibition in yeast and genotoxicity in mammalian hematopoetic precursors as measured by an in vitro erythroid micronucleus assay. Hydroquinone also increases proliferation of CFU-GM progenitor cells in mice with Nf1 null bone marrow relative to WT, the same cell type associated with benzene-associated leukemia. Together our findings show that hydroquinone toxicity is modulated by Ras signaling. Individuals with abnormal Ras signaling could be more vulnerable to developing myeloid diseases after exposure to benzene. We note that hydroquinone is used cosmetically as a skin-bleaching agent, including by individuals with cafe-au-lait spots (which may be present in individuals with neurofibromatosis who have a mutation in NF1), which could be unadvisable given our findings

  16. Proton extrusion is an essential signalling component in the HR of epidermal single cells in the barley-powdery mildew interaction

    DEFF Research Database (Denmark)

    Zhou, F.S.; Andersen, C.H.; Burhenne, K.

    2000-01-01

    We propose a model for activation of the epidermal cell hypersensitive response (HR) in the barley/powdery mildew interaction. The model suggests that the plasma membrane proton pump (H+-ATPase) of epidermal cells is activated following penetration by an avirulent powdery mildew fungus...... in the incompatible interaction; (4) race-specific proton extrusion is observed underneath epidermal tissue detached from leaves inoculated 15 h earlier; and (5) treatment of leaves with fusicoccin, an activator of the plasma membrane H+-ATPase, increases the number of HR-cells in the compatible interaction........ This will cause an acidification of the apoplast towards the mesophyll cells, thereby activating generation of H2O2 from the mesophyll, which subsequently triggers the epidermal cell to undergo HR. The model is supported by the following data: (1) the earliest HR-related H2O2 is found in the attachment zones...

  17. Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors

    Science.gov (United States)

    Li, Zhixiong; Yan, Xinping; Wang, Xuping; Peng, Zhongxiao

    2016-06-01

    In the complex gear transmission systems, in wind turbines a crack is one of the most common failure modes and can be fatal to the wind turbine power systems. A single sensor may suffer with issues relating to its installation position and direction, resulting in the collection of weak dynamic responses of the cracked gear. A multi-channel sensor system is hence applied in the signal acquisition and the blind source separation (BSS) technologies are employed to optimally process the information collected from multiple sensors. However, literature review finds that most of the BSS based fault detectors did not address the dependence/correlation between different moving components in the gear systems; particularly, the popular used independent component analysis (ICA) assumes mutual independence of different vibration sources. The fault detection performance may be significantly influenced by the dependence/correlation between vibration sources. In order to address this issue, this paper presents a new method based on the supervised order tracking bounded component analysis (SOTBCA) for gear crack detection in wind turbines. The bounded component analysis (BCA) is a state of art technology for dependent source separation and is applied limitedly to communication signals. To make it applicable for vibration analysis, in this work, the order tracking has been appropriately incorporated into the BCA framework to eliminate the noise and disturbance signal components. Then an autoregressive (AR) model built with prior knowledge about the crack fault is employed to supervise the reconstruction of the crack vibration source signature. The SOTBCA only outputs one source signal that has the closest distance with the AR model. Owing to the dependence tolerance ability of the BCA framework, interfering vibration sources that are dependent/correlated with the crack vibration source could be recognized by the SOTBCA, and hence, only useful fault information could be preserved in

  18. ON THE SOLAR ORIGIN OF THE SIGNAL AT 220.7 μHz: A POSSIBLE COMPONENT OF A g-MODE?

    International Nuclear Information System (INIS)

    Jimenez, A.; Garcia, R. A.

    2009-01-01

    Gravity modes in the Sun have been the object of a long and difficult search in recent decades. Thanks to the data accumulated with the last generation of instruments (BiSON, GONG, and three helioseismic instruments aboard the Solar and Heliospheric Observatory (SOHO)), scientists have been able to find signatures of their presence. However, the individual detection of such modes remains evasive. In this article, we study the signal at 220.7 μHz which is a peak that is present in most of the helioseismic data of the last 10 years. This signal has already been identified as being a component of a g-mode candidate detected in the GOLF Doppler velocity signal. The nature of this peak is studied in particular using the VIRGO/SPM instrument aboard SOHO. First we analyze all the available instrumental data of VIRGO and SOHO (housekeeping) to reject any possible instrumental origin. No relation was found, implying that the signal has a solar origin. Using Monte Carlo simulations, we find, with more than 99% confidence level, that the signal found in VIRGO/SPM is very unlikely to be due to pure noise.

  19. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato

    Czech Academy of Sciences Publication Activity Database

    Visentin, I.; Vitali, M.; Ferrero, M.; Zhang, Y.; Ruyter-Spira, C.; Novák, Ondřej; Strnad, Miroslav; Lovisolo, C.; Schubert, A.; Cardinale, F.

    2016-01-01

    Roč. 212, č. 4 (2016), s. 954-963 ISSN 0028-646X R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : abscisic-acid * plant-responses * lotus-japonicus * biosynthesis * arabidopsis * pea * hormone * growth * xylem * soil * abscisic acid (ABA) * drought * strigolactones (SL) * systemic signalling * tomato (Solanum lycopersicum) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.330, year: 2016

  20. A Conserved Two-Component Signal Transduction System Controls the Response to Phosphate Starvation in Bifidobacterium breve UCC2003.

    NARCIS (Netherlands)

    Alvarez-Martin, P.; Fernandez, M.; O'Connell-Motherway, M.; O'Connell, K.J.; Sauvageot, N.; Fitzgerald, G.F.; Macsharry, J.; Zomer, A.L.; Sinderen, D. van

    2012-01-01

    This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (P(i)) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of

  1. Independent component analysis using prior information for signal detection in a functional imaging system of the retina

    NARCIS (Netherlands)

    Barriga, E. Simon; Pattichis, Marios; Ts’o, Dan; Abramoff, Michael; Kardon, Randy; Kwon, Young; Soliz, Peter

    2011-01-01

    Independent component analysis (ICA) is a statistical technique that estimates a set of sources mixed by an unknown mixing matrix using only a set of observations. For this purpose, the only assumption is that the sources are statistically independent. In many applications, some information about

  2. Corrosion at the head-neck interface of current designs of modular femoral components: essential questions and answers relating to corrosion in modular head-neck junctions.

    Science.gov (United States)

    Osman, K; Panagiotidou, A P; Khan, M; Blunn, G; Haddad, F S

    2016-05-01

    There is increasing global awareness of adverse reactions to metal debris and elevated serum metal ion concentrations following the use of second generation metal-on-metal total hip arthroplasties. The high incidence of these complications can be largely attributed to corrosion at the head-neck interface. Severe corrosion of the taper is identified most commonly in association with larger diameter femoral heads. However, there is emerging evidence of varying levels of corrosion observed in retrieved components with smaller diameter femoral heads. This same mechanism of galvanic and mechanically-assisted crevice corrosion has been observed in metal-on-polyethylene and ceramic components, suggesting an inherent biomechanical problem with current designs of the head-neck interface. We provide a review of the fundamental questions and answers clinicians and researchers must understand regarding corrosion of the taper, and its relevance to current orthopaedic practice. Cite this article: Bone Joint J 2016;98-B:579-84. ©2016 The British Editorial Society of Bone & Joint Surgery.

  3. Synergism Effect of the Essential Oil from Ocimum basilicum var. Maria Bonita and Its Major Components with Fluconazole and Its Influence on Ergosterol Biosynthesis

    Science.gov (United States)

    Cardoso, Nathalia N. R.; Alviano, Celuta S.; Blank, Arie F.; Romanos, Maria Teresa V.; Fonseca, Beatriz B.; Rozental, Sonia; Rodrigues, Igor A.; Alviano, Daniela S.

    2016-01-01

    The aim of this study was to evaluate the activity of the EO and its major components of Ocimum basilicum var. Maria Bonita, a genetically improved cultivar, against the fluconazole sensitive and resistant strains of Candida albicans and Cryptococcus neoformans. Geraniol presented better results than the EO, with a low MIC (76 μg/mL against C. neoformans and 152 μg/mL against both Candida strains). The combination of EO, linalool, or geraniol with fluconazole enhanced their antifungal activity, especially against the resistant strain (MIC reduced to 156, 197, and 38 μg/mL, resp.). The ergosterol assay showed that subinhibitory concentrations of the substances were able to reduce the amount of sterol extracted. The substances tested were able to reduce the capsule size which suggests they have an important mechanism of action. Transmission electron microscopy demonstrated cell wall destruction of C. neoformans after treatment with subinhibitory concentrations. In C. albicans ultrastructure alterations such as irregularities in the membrane, presence of vesicles, and cell wall thickening were observed. The biofilm formation was inhibited in both C. albicans strains at MIC and twice MIC. These results provide further support for the use of O. basilicum EO and its major components as a potential source of antifungal agents. PMID:27274752

  4. Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice.

    Science.gov (United States)

    Friedman, Mendel; Henika, Philip R; Levin, Carol E; Mandrell, Robert E

    2004-09-22

    We evaluated 17 plant essential oils and nine oil compounds for antibacterial activity against the foodborne pathogens Escherichia coli O157:H7 and Salmonella enterica in apple juices in a bactericidal assay in terms of % of the sample that resulted in a 50% decrease in the number of bacteria (BA(50)). The 10 compounds most active against E. coli (60 min BA(50) range in clear juice, 0.018-0.093%) were carvacrol, oregano oil, geraniol, eugenol, cinnamon leaf oil, citral, clove bud oil, lemongrass oil, cinnamon bark oil, and lemon oil. The corresponding compounds against S. enterica (BA(50) range, 0.0044-0.011%) were Melissa oil, carvacrol, oregano oil, terpeineol, geraniol, lemon oil, citral, lemongrass oil, cinnamon leaf oil, and linalool. The activity (i) was greater for S. enterica than for E. coli, (ii) increased with incubation temperature and storage time, and (iii) was not affected by the acidity of the juices. The antibacterial agents could be divided into two classes: fast-acting and slow-acting. High-performance liquid chromatography analysis showed that the bactericidal results are related to the composition of the oils. These studies provide information about new ways to protect apple juice and other foods against human pathogens.

  5. Characteristic Chemical Components and Aroma-active Compounds of the Essential Oils from Ranunculus nipponicus var. submersus Used in Japanese Traditional Food.

    Science.gov (United States)

    Nakaya, Satoshi; Usami, Atsushi; Yorimoto, Tomohito; Miyazawa, Mitsuo

    2015-01-01

    Ranunculus nipponicus var. submersus is an aquatic macrophyte; it is known as a wild edible plant in Japan for a long time. In this study, the essential oils from the fresh and dried aerial parts of R. nipponicus var. submersus were extracted by hydrodistillation and analyzed by gas chromatography (GC) and GC-mass spectrometry (GC-MS). Moreover, important aroma-active compounds were also detected in the oil using GC-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). Thus, 98 compounds (accounting for 93.86%) of the oil were identified. The major compounds in fresh plant oil were phytol (41.94%), heptadecane (5.92%), and geranyl propionate (5.76%), while those of. Dried plant oil were β-ionone (23.54%), 2-hexenal (8.75%), and dihydrobovolide (4.81%). The fresh and dried oils had the green-floral and citrus-floral odor, respectively. The GC-O and AEDA results show that phenylacetaldehyde (green, floral odor, FD-factor = 8) and β-ionone (violet-floral odor, FD-factor = 8) were the most characteristic odor compounds of the fresh oils. β-Cyclocitral (citrus odor, FD-factor = 64) and β-ionone (violet-floral odor, FD-factor = 64) were the most characteristic odor compounds of the dried oil. These compounds are thought to contribute to the flavor of R. nipponicus var. submersus.

  6. Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5

    DEFF Research Database (Denmark)

    Madsen, Esben B; Antolín-Llovera, Meritxell; Grossmann, Christina

    2011-01-01

    and cloning of downstream components, little is known about the activation and signalling mechanisms of the Nod-factor receptors themselves. Here we show that both receptor proteins localize to the plasma membrane, and present evidence for heterocomplex formation initiating downstream signalling. Expression...... of NFR1 and NFR5 in Nicotiana benthamiana and Allium ampeloprasum (leek) cells caused a rapid cell-death response. The signalling leading to cell death was abrogated using a kinase-inactive variant of NFR1. In these surviving cells, a clear interaction between NFR1 and NFR5 was detected in vivo through...

  7. Cognitive Component Analysis

    DEFF Research Database (Denmark)

    Feng, Ling

    2008-01-01

    This dissertation concerns the investigation of the consistency of statistical regularities in a signaling ecology and human cognition, while inferring appropriate actions for a speech-based perceptual task. It is based on unsupervised Independent Component Analysis providing a rich spectrum...... of audio contexts along with pattern recognition methods to map components to known contexts. It also involves looking for the right representations for auditory inputs, i.e. the data analytic processing pipelines invoked by human brains. The main ideas refer to Cognitive Component Analysis, defined...... as the process of unsupervised grouping of generic data such that the ensuing group structure is well-aligned with that resulting from human cognitive activity. Its hypothesis runs ecologically: features which are essentially independent in a context defined ensemble, can be efficiently coded as sparse...

  8. Novel processing of Barkhausen noise signal for assessment of residual stress in surface ground components exhibiting poor magnetic response

    International Nuclear Information System (INIS)

    Vashista, M.; Paul, S.

    2011-01-01

    The Barkhausen Noise Analysis (BNA) technique has been utilised to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal and two newly proposed parameters, namely 'count' and 'event', have been shown to correlate linearly with the residual stress upon grinding, with judicious choice of user defined 'threshold', even when the micro-magnetic response of the work material is poor. In the present study, residual stress induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with unhardened bearing steel for benchmarking. Moreover, similar correlation has been established, when primarily compressive stress is induced upon high speed grinding using cBN wheel with moderately deep cut suppressing the micro-magnetic response from the ground medium carbon steel as the work material. - Highlights: → The problem of work materials exhibiting poor BN response and poor Barkhausen Noise response is identified. → A novel signal processing strategy is introduced to address the issue of poor micro-magnetic response of some ferromagnetic material. → Potential of newly introduced BN parameters has been studied. → These two BN parameters exhibited linear correlation with residual stress for work material with poor micro-magnetic response.

  9. Developmental programming: effect of prenatal steroid excess on intraovarian components of insulin signaling pathway and related proteins in sheep.

    Science.gov (United States)

    Ortega, Hugo H; Rey, Florencia; Velazquez, Melisa M L; Padmanabhan, Vasantha

    2010-06-01

    Prenatal testosterone (T) excess increases ovarian follicular recruitment, follicular persistence, insulin resistance, and compensatory hyperinsulinemia. Considering the importance of insulin in ovarian physiology, in this study, using prenatal T- and dihydrotestosterone (DHT, a nonaromatizable androgen)-treated female sheep, we tested the hypothesis that prenatal androgen excess alters the intraovarian insulin signaling cascade and metabolic mediators that have an impact on insulin signaling. Changes in ovarian insulin receptor (INSRB), insulin receptor substrate 1 (IRS1), mammalian target of rapamycin (MTOR), phosphatidylinositol 3-kinase (PIK3), peroxisome proliferator-activated receptor-gamma (PPARG), and adiponectin proteins were determined at fetal (Days 90 and 140), postpubertal (10 mo), and adult (21 mo) ages by immunohistochemistry. Results indicated that these proteins were expressed in granulosa, theca, and stromal compartments, with INSRB, IRS1, PPARG, and adiponectin increasing in parallel with advanced follicular differentiation. Importantly, prenatal T excess induced age-specific changes in PPARG and adiponectin expression, with increased PPARG expression evident during fetal life and decreased antral follicular adiponectin expression during adult life. Comparison of developmental changes in prenatal T and DHT-treated females found that the effects on PPARG were programmed by androgenic actions of T, whereas the effects on adiponectin were likely by its estrogenic action. These results suggest a role for PPARG in the programming of ovarian disruptions by prenatal T excess, including a decrease in antral follicular adiponectin expression and a contributory role for adiponectin in follicular persistence and ovulatory failure.

  10. Essential Tremor

    Science.gov (United States)

    ... Treatment There is no definitive cure for essential tremor. Symptomatic drug therapy may include propranolol or other beta blockers and primidone, an anticonvulsant drug. Eliminating tremor "triggers" ...

  11. Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes

    Science.gov (United States)

    McNay, Ewan C.; Recknagel, Andrew K.

    2011-01-01

    Understanding of the role of insulin in the brain has gradually expanded, from initial conceptions of the brain as insulin-insensitive through identification of a role in regulation of feeding to recent demonstration of insulin as a key component of hippocampal memory processes. Conversely, systemic insulin resistance such as that seen in type 2 diabetes is associated with a range of cogntive and neural deficits. Here we review the evidence for insulin as a cognitive and neural modulator, including potential effector mechanisms, and examine the impact that type 2 diabetes has on these mechanisms in order to identify likely bases for the cognitive impairments seen in type 2 diabetic patients. PMID:21907815

  12. 5S Ribosomal RNA Is an Essential Component of a Nascent Ribosomal Precursor Complex that Regulates the Hdm2-p53 Checkpoint

    Directory of Open Access Journals (Sweden)

    Giulio Donati

    2013-07-01

    Full Text Available Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted.

  13. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint.

    Science.gov (United States)

    Donati, Giulio; Peddigari, Suresh; Mercer, Carol A; Thomas, George

    2013-07-11

    Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A Genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome Activation.

    Science.gov (United States)

    Schmid-Burgk, Jonathan L; Chauhan, Dhruv; Schmidt, Tobias; Ebert, Thomas S; Reinhardt, Julia; Endl, Elmar; Hornung, Veit

    2016-01-01

    Inflammasomes are high molecular weight protein complexes that assemble in the cytosol upon pathogen encounter. This results in caspase-1-dependent pro-inflammatory cytokine maturation, as well as a special type of cell death, known as pyroptosis. The Nlrp3 inflammasome plays a pivotal role in pathogen defense, but at the same time, its activity has also been implicated in many common sterile inflammatory conditions. To this effect, several studies have identified Nlrp3 inflammasome engagement in a number of common human diseases such as atherosclerosis, type 2 diabetes, Alzheimer disease, or gout. Although it has been shown that known Nlrp3 stimuli converge on potassium ion efflux upstream of Nlrp3 activation, the exact molecular mechanism of Nlrp3 activation remains elusive. Here, we describe a genome-wide CRISPR/Cas9 screen in immortalized mouse macrophages aiming at the unbiased identification of gene products involved in Nlrp3 inflammasome activation. We employed a FACS-based screen for Nlrp3-dependent cell death, using the ionophoric compound nigericin as a potassium efflux-inducing stimulus. Using a genome-wide guide RNA (gRNA) library, we found that targeting Nek7 rescued macrophages from nigericin-induced lethality. Subsequent studies revealed that murine macrophages deficient in Nek7 displayed a largely blunted Nlrp3 inflammasome response, whereas Aim2-mediated inflammasome activation proved to be fully intact. Although the mechanism of Nek7 functioning upstream of Nlrp3 yet remains elusive, these studies provide a first genetic handle of a component that specifically functions upstream of Nlrp3. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Seven novel probe systems for real-time PCR provide absolute single-base discrimination, higher signaling, and generic components.

    Science.gov (United States)

    Murray, James L; Hu, Peixu; Shafer, David A

    2014-11-01

    We have developed novel probe systems for real-time PCR that provide higher specificity, greater sensitivity, and lower cost relative to dual-labeled probes. The seven DNA Detection Switch (DDS)-probe systems reported here employ two interacting polynucleotide components: a fluorescently labeled probe and a quencher antiprobe. High-fidelity detection is achieved with three DDS designs: two internal probes (internal DDS and Flip probes) and a primer probe (ZIPR probe), wherein each probe is combined with a carefully engineered, slightly mismatched, error-checking antiprobe. The antiprobe blocks off-target detection over a wide range of temperatures and facilitates multiplexing. Other designs (Universal probe, Half-Universal probe, and MacMan probe) use generic components that enable low-cost detection. Finally, single-molecule G-Force probes employ guanine-mediated fluorescent quenching by forming a hairpin between adjacent C-rich and G-rich sequences. Examples provided show how these probe technologies discriminate drug-resistant Mycobacterium tuberculosis mutants, Escherichia coli O157:H7, oncogenic EGFR deletion mutations, hepatitis B virus, influenza A/B strains, and single-nucleotide polymorphisms in the human VKORC1 gene. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  16. Meiosis-specific cohesin component, Stag3 is essential for maintaining centromere chromatid cohesion, and required for DNA repair and synapsis between homologous chromosomes.

    Science.gov (United States)

    Hopkins, Jessica; Hwang, Grace; Jacob, Justin; Sapp, Nicklas; Bedigian, Rick; Oka, Kazuhiro; Overbeek, Paul; Murray, Steve; Jordan, Philip W

    2014-07-01

    Cohesins are important for chromosome structure and chromosome segregation during mitosis and meiosis. Cohesins are composed of two structural maintenance of chromosomes (SMC1-SMC3) proteins that form a V-shaped heterodimer structure, which is bridged by a α-kleisin protein and a stromal antigen (STAG) protein. Previous studies in mouse have shown that there is one SMC1 protein (SMC1β), two α-kleisins (RAD21L and REC8) and one STAG protein (STAG3) that are meiosis-specific. During meiosis, homologous chromosomes must recombine with one another in the context of a tripartite structure known as the synaptonemal complex (SC). From interaction studies, it has been shown that there are at least four meiosis-specific forms of cohesin, which together with the mitotic cohesin complex, are lateral components of the SC. STAG3 is the only meiosis-specific subunit that is represented within all four meiosis-specific cohesin complexes. In Stag3 mutant germ cells, the protein level of other meiosis-specific cohesin subunits (SMC1β, RAD21L and REC8) is reduced, and their localization to chromosome axes is disrupted. In contrast, the mitotic cohesin complex remains intact and localizes robustly to the meiotic chromosome axes. The instability of meiosis-specific cohesins observed in Stag3 mutants results in aberrant DNA repair processes, and disruption of synapsis between homologous chromosomes. Furthermore, mutation of Stag3 results in perturbation of pericentromeric heterochromatin clustering, and disruption of centromere cohesion between sister chromatids during meiotic prophase. These defects result in early prophase I arrest and apoptosis in both male and female germ cells. The meiotic defects observed in Stag3 mutants are more severe when compared to single mutants for Smc1β, Rec8 and Rad21l, however they are not as severe as the Rec8, Rad21l double mutants. Taken together, our study demonstrates that STAG3 is required for the stability of all meiosis-specific cohesin

  17. Meiosis-specific cohesin component, Stag3 is essential for maintaining centromere chromatid cohesion, and required for DNA repair and synapsis between homologous chromosomes.

    Directory of Open Access Journals (Sweden)

    Jessica Hopkins

    2014-07-01

    Full Text Available Cohesins are important for chromosome structure and chromosome segregation during mitosis and meiosis. Cohesins are composed of two structural maintenance of chromosomes (SMC1-SMC3 proteins that form a V-shaped heterodimer structure, which is bridged by a α-kleisin protein and a stromal antigen (STAG protein. Previous studies in mouse have shown that there is one SMC1 protein (SMC1β, two α-kleisins (RAD21L and REC8 and one STAG protein (STAG3 that are meiosis-specific. During meiosis, homologous chromosomes must recombine with one another in the context of a tripartite structure known as the synaptonemal complex (SC. From interaction studies, it has been shown that there are at least four meiosis-specific forms of cohesin, which together with the mitotic cohesin complex, are lateral components of the SC. STAG3 is the only meiosis-specific subunit that is represented within all four meiosis-specific cohesin complexes. In Stag3 mutant germ cells, the protein level of other meiosis-specific cohesin subunits (SMC1β, RAD21L and REC8 is reduced, and their localization to chromosome axes is disrupted. In contrast, the mitotic cohesin complex remains intact and localizes robustly to the meiotic chromosome axes. The instability of meiosis-specific cohesins observed in Stag3 mutants results in aberrant DNA repair processes, and disruption of synapsis between homologous chromosomes. Furthermore, mutation of Stag3 results in perturbation of pericentromeric heterochromatin clustering, and disruption of centromere cohesion between sister chromatids during meiotic prophase. These defects result in early prophase I arrest and apoptosis in both male and female germ cells. The meiotic defects observed in Stag3 mutants are more severe when compared to single mutants for Smc1β, Rec8 and Rad21l, however they are not as severe as the Rec8, Rad21l double mutants. Taken together, our study demonstrates that STAG3 is required for the stability of all meiosis

  18. KNIME essentials

    CERN Document Server

    Bakos, Gábor

    2013-01-01

    KNIME Essentials is a practical guide aimed at getting the results you want, as quickly as possible.""Knime Essentials"" is written for data analysts looking to quickly get up to speed using the market leader in data processing tools, KNIME. No knowledge of KNIME is required, but we will assume that you have some background in data processing.

  19. Growth-arresting Activity of Acmella Essential Oil and its Isolated Component D-Limonene (1, 8 P-Mentha Diene) against Trichophyton rubrum (Microbial Type Culture Collection 296).

    Science.gov (United States)

    Padhan, Diptikanta; Pattnaik, Smaranika; Behera, Ajaya Kumar

    2017-10-01

    Spilanthes acmella is used as a remedy in toothache complaints by the tribal people of Western part of Odisha, India. The objective of this study was to study the growth-arresting activity of an indigenous Acmella essential oil (EO) ( S. acmella Murr, Asteraceae ) and its isolated component, d-limonene against Trichophyton rubrum (microbial type culture collection 296). The EO was extracted from flowers of indigenous S. acmella using Clevenger's apparatus and analyzed by gas chromatography-mass spectrometry (GC-MS). High pressure liquid chromatography (HPLC) was carried out to isolate the major constituent. The isolated fraction was subjected to fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The antidermatophytic activity was screened for using "disc diffusion" and "slant dilution" method followed by optical, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies. The molecular dockings were made between d-limonene with cell wall synthesis-related key enzymes (14 methyl deaminase and monooxygenase). The GC-MS analysis EO had inferred the presence of 7 number of major (≥2%) components. The component with highest peak area (%) was found to be 41.02. The HPLC-isolated fraction was identified as d-limonene (1,8 p-Mentha-diene) by FTIR and NMR. Qualitative and quantitative assays had suggested the growth inhibitory activity of Acmella EO and its component. Shrinkage, evacuation, cell wall puncture, and leakage of cellular constituents by the activity of Acmella oil and d-limonene were evidenced from optical, SEM, and TEM studies. The computer simulation had predicted the binding strengths of d-limonene and fluconazole with dermatophyte cell wall enzymes. There could have been synergistic action of all or some of compounds present in indigenous Acmella EO. There was presence of seven number of (d-limonene, ocimene, β-myrcene, cyclohexene, 3-(1, 5-dimethyl-4-hexenyl)-6-methylene,

  20. Measuring, processing and evaluation of dynamic signal components of diagnostic systems and instrumentation and control systems at the Temelin NPP

    International Nuclear Information System (INIS)

    Stulik, P.; Sipek, B.

    2005-10-01

    The quality of the RVMS measuring chains was examined during an outage of the Temelin-1 reactor unit. This consisted of a defined measurement of the measuring chain output of the ionization chambers of the power zone and thermocouples by the RVMS system, processing of the time series obtained, and evaluation of the spectral parameters within the given frequency band. The results of evaluation were classified for the transfer function values along with their differences and for the phase shift values. The dynamic components of the resistance thermometers on the primary loops of the Temelin-1 and 2 reactor units were measured and the measurements were evaluated. The results in the frequency region, in the form of spectral characteristics for both the hot and cold legs, indicate that the non-invasive determination of the dynamics of the resistance thermometer measuring chains can serve as a promising basic tool for the diagnosis and life monitoring of this important in-service measurement

  1. Statistical and time domain signal analysis of the thermal behaviour of wind turbine drive train components under dynamic operation conditions

    International Nuclear Information System (INIS)

    Nienhaus, K; Baltes, R; Bernet, C; Hilbert, M

    2012-01-01

    Gearboxes and generators are fundamental components of all electrical machines and the backbone of all electricity generation. Since the wind energy represents one of the key energy sources of the future, the number of wind turbines installed worldwide is rapidly increasing. Unlike in the past wind turbines are more often positioned in arctic as well as in desert like regions, and thereby exposed to harsh environmental conditions. Especially the temperature in those regions is a key factor that defines the design and choice of components and materials of the drive train. To optimize the design and health monitoring under varying temperatures it is important to understand the thermal behaviour dependent on environmental and machine parameters. This paper investigates the behaviour of the stator temperature of the double fed induction generator of a wind turbine. Therefore, different scenarios such as start of the turbine after a long period of no load, stop of the turbine after a long period of full load and others are isolated and analysed. For each scenario the dependences of the temperature on multiple wind turbine parameters such as power, speed and torque are studied. With the help of the regression analysis for multiple variables, it is pointed out which parameters have high impact on the thermal behaviour. Furthermore, an analysis was done to study the dependences in the time domain. The research conducted is based on 10 months of data of a 2 MW wind turbine using an adapted data acquisition system for high sampled data. The results appear promising, and lead to a better understanding of the thermal behaviour of a wind turbine drive train. Furthermore, the results represent the base of future research of drive trains under harsh environmental conditions, and it can be used to improve the fault diagnosis and design of electrical machines.

  2. The Effect of Application of Nitrogen Fertilizer and Nano-Organic Manure on Yield, Yield Components and Essential Oil of Fennel (Foeniculum vulgar Mill.

    Directory of Open Access Journals (Sweden)

    S Khoshpeyk

    2017-03-01

    emergence. The rest of irrigation was done every 5 days. The spacing between plants were 20 cm that was achieved by thinning plants in 3-4 leaves stage .Weeding was done manually tree times. Fennel harvesting was done in early September at the time of physiological maturity. At the first five plants harvested randomly from each plot for measurement of plant height, the number of lateral branches per plant, the number of umbels per plant, the number of seeds per umbel, the number of seeds per plant, weight of 1000 seed and fresh and dry weight of plant. Then for measurement of biomass, grain yield and harvest index, one m-2 of center of each plot was harvested. Seed and straw essence were measured using distillation method with distilled water by Clevenger apparatus. The data was analyzed using the SAS software. Means comparisons were done with Duncan’s multiple rang test at 5% probability. Results and Discussion Results showed that height, the number of lateral branches, the number of umbels per plants, the number of seeds per plant, 1000 seed weight, dry weight, seed yield, straw yield, biological yield, harvest index, and essence yield were affected by nano-organic manure. Nitrogen fertilizers had significant effect on height, the number of seeds per umbrella, the number of seeds per plant, plant fresh and dry weight, seed yield, straw yield, biological yield and essence yields while the number of lateral branches, umbels per plant, seed weight and harvest index was not affected by this factor. The interaction of nano- organic manure and nitrogen fertilizer had not significant effect on the measurement characteristics. While the application of 10 ton ha-1 of nano-organic manure or 25 kg ha-1 of nitrogen fertilizer could increase biological, seed, straw and essential oil yield, higher amount utilization values of each treatment had no effect .Consumption of 25 kg ha-1 of nitrogen fertilizer increased seed yield by increasing the biological yield, while 10 tons ha-1 nano

  3. Electronics I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electronics I covers fundamentals of semiconductor devices, junction diodes, bipolar junction transistors, power supplies, multitransistor circuits, small signals, low-frequency anal

  4. SPL8 Acts Together with the Brassinosteroid-Signaling Component BIM1 in Controlling Arabidopsis thaliana Male Fertility

    Directory of Open Access Journals (Sweden)

    Shuping Xing

    2013-06-01

    Full Text Available The non-miR156 targeted SBP-box gene SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8 (SPL8, plays an important role in Arabidopsis anther development, where its loss-of-function results in a semi-sterile phenotype. Fully male-sterile plants are obtained when a spl8 loss-of-function mutation is introduced into a 35S:MIR156 genetic background, thereby revealing functional redundancy between SPL8 and miR156-targeted SBP-box genes. Here, we show that BIM1, a gene encoding a bHLH protein involved in brassinosteroid signaling and embryonic patterning, functions redundantly with SPL8 in its requirement for male fertility. Although bim1 single mutants displayed a mild fertility problem due to shortened filaments in some flowers, mutation of BIM1 significantly enhanced the semi-sterile phenotype of the spl8 mutant. Expression of both SPL8 and BIM1 was detected in overlapping expression domains during early anther developmental stages. Our data suggest that in regulating anther development, SPL8 and BIM1 function cooperatively in a common complex or in synergistic pathways. Phylogenetic analysis supports the idea of an evolutionary conserved function for both genes in angiosperm anther development.

  5. Effects of Sowing Date, Planting Pattern and Nitrogen Levels on Leaf and Flower Essential Oil, Yield and Component Yield Grain of Buckwheat (Fagopyroum esculentum Moench

    Directory of Open Access Journals (Sweden)

    M. R Sobhani

    2017-12-01

    Full Text Available Introduction Buckwheat which has been scientifically named Fagopyrum esculentum can be considered as a yearling broad-leaved plant belonging to the family of Polygonaceae which is known as false Cereal. Its seeds are in use as a nutritional and medicinal product that is due to the rutin content of them. As the population is rapidly increasing worldwide, a solution must be found to supply necessary food. What agriculture science is responsible for is to produce more products with better quality in order to meet this increasing population’s needs so that food poverty and starvation are more likely to be removed and keep food safety. Considering the fact that buckwheat is of a variety of medical, industrial and food applications and in our country and some other ones, it has not been seriously cultivated, this plant must be used as a new plant and it should be extensively applied in multiple planting systems (summer planting for commercial goals through producing seeds while its nutritional value is more than grain and it can be regarded as a rich source of high quality protein, amino acid necessary for lysine, high starch percent, minerals and vitamins for different applications involving cake flour, frumenty and soup and improving the optimal rate of rutin as a secondary metabolite having effective medical features concerning our country’s climatic conditions. Materials and Methods In order to investigate the effects of sowing date, planting patterns and nitrogen on leaf and flower rutin, yield and yield component of Buckwheat plant, a field study was conducted during 2010 and 2011 in Agricultural Research Institute of Arak, Iran. The experimental design was regarded as the randomized complete block design in the form of split plot factorial with three replications. Planting treatments as the fundamental elements may be implemented at two levels including the mounds with the width of 50 cm associated with two planting rows regarding the

  6. A conserved two-component signal transduction system controls the response to phosphate starvation in Bifidobacterium breve UCC2003.

    Science.gov (United States)

    Alvarez-Martin, Pablo; Fernández, Matilde; O'Connell-Motherway, Mary; O'Connell, Kerry Joan; Sauvageot, Nicolas; Fitzgerald, Gerald F; MacSharry, John; Zomer, Aldert; van Sinderen, Douwe

    2012-08-01

    This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (P(i)) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of pstSCAB, specifying a predicted P(i) transporter system, as well as that of phoU, which encodes a putative P(i)-responsive regulatory protein. This interaction is assumed to cause transcriptional modulation under conditions of P(i) limitation. Our data suggest that the phoRP genes are subject to positive autoregulation and, together with pstSCAB and presumably phoU, represent the complete regulon controlled by the phoRP-encoded 2CRS in B. breve UCC2003. Determination of the minimal PhoP binding region combined with bioinformatic analysis revealed the probable recognition sequence of PhoP, designated here as the PHO box, which together with phoRP is conserved among many high-GC-content Gram-positive bacteria. The importance of the phoRP 2CRS in the response of B. breve to P(i) starvation conditions was confirmed by analysis of a B. breve phoP insertion mutant which exhibited decreased growth under phosphate-limiting conditions compared to its parent strain UCC2003.

  7. Astronomy essentials

    CERN Document Server

    Brass, Charles O

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Astronomy includes the historical perspective of astronomy, sky basics and the celestial coordinate systems, a model and the origin of the solar system, the sun, the planets, Kepler'

  8. Evidence for the Induction of Key Components of the NOTCH Signaling Pathway via Deltamethrin and Azamethiphos Treatment in the Sea Louse Caligus rogercresseyi

    Directory of Open Access Journals (Sweden)

    Sebastian Boltaña

    2016-05-01

    Full Text Available The extensive use of organophosphates and pyrethroids in the aquaculture industry has negatively impacted parasite sensitivity to the delousing effects of these antiparasitics, especially among sea lice species. The NOTCH signaling pathway is a positive regulator of ABC transporter subfamily C expression and plays a key role in the generation and modulation of pesticide resistance. However, little is known about the molecular mechanisms behind pesticide resistance, partly due to the lack of genomic and molecular information on the processes involved in the resistance mechanism of sea lice. Next-generation sequencing technologies provide an opportunity for rapid and cost-effective generation of genome-scale data. The present study, through RNA-seq analysis, determined that the sea louse Caligus rogercresseyi (C. rogercresseyi specifically responds to the delousing drugs azamethiphos and deltamethrin at the transcriptomic level by differentially activating mRNA of the NOTCH signaling pathway and of ABC genes. These results suggest that frequent antiparasitic application may increase the activity of inhibitory mRNA components, thereby promoting inhibitory NOTCH output and conditions for increased resistance to delousing drugs. Moreover, data analysis underscored that key functions of NOTCH/ABC components were regulated during distinct phases of the drug response, thus indicating resistance modifications in C. rogercresseyi resulting from the frequent use of organophosphates and pyrethroids.

  9. The Lack of the Essential LptC Protein in the Trans-Envelope Lipopolysaccharide Transport Machine Is Circumvented by Suppressor Mutations in LptF, an Inner Membrane Component of the Escherichia coli Transporter

    KAUST Repository

    Benedet, Mattia

    2016-08-16

    The lipopolysaccharide (LPS) transport (Lpt) system is responsible for transferring LPS from the periplasmic surface of the inner membrane (IM) to the outer leaflet of the outer membrane (OM), where it plays a crucial role in OM selective permeability. In E. coli seven essential proteins are assembled in an Lpt trans-envelope complex, which is conserved in gamma-Proteobacteria. LptBFG constitute the IMABC transporter, LptDE form the OM translocon for final LPS delivery, whereas LptC, an IM-anchored protein with a periplasmic domain, interacts with the IM ABC transporter, the periplasmic protein LptA, and LPS. Although essential, LptC can tolerate several mutations and its role in LPS transport is unclear. To get insights into the functional role of LptC in the Lpt machine we searched for viable mutants lacking LptC by applying a strong double selection for lptC deletion mutants. Genome sequencing of viable Delta lptC mutants revealed single amino acid substitutions at a unique position in the predicted large periplasmic domain of the IM component LptF (LptF(SupC)). In complementation tests, lptF(SupC) mutants suppress lethality of both Delta lptC and lptC conditional expressionmutants. Our data show that mutations in a specific residue of the predicted LptF periplasmic domain can compensate the lack of the essential protein LptC, implicate such LptF domain in the formation of the periplasmic bridge between the IM and OM complexes, and suggest that LptC may have evolved to improve the performance of an ancestral six-component Lpt machine.

  10. The Lack of the Essential LptC Protein in the Trans-Envelope Lipopolysaccharide Transport Machine Is Circumvented by Suppressor Mutations in LptF, an Inner Membrane Component of the Escherichia coli Transporter

    KAUST Repository

    Benedet, Mattia; Falchi, Federica A.; Puccio, Simone; Di Benedetto, Cristiano; Peano, Clelia; Polissi, Alessandra; Deho, Gianni

    2016-01-01

    The lipopolysaccharide (LPS) transport (Lpt) system is responsible for transferring LPS from the periplasmic surface of the inner membrane (IM) to the outer leaflet of the outer membrane (OM), where it plays a crucial role in OM selective permeability. In E. coli seven essential proteins are assembled in an Lpt trans-envelope complex, which is conserved in gamma-Proteobacteria. LptBFG constitute the IMABC transporter, LptDE form the OM translocon for final LPS delivery, whereas LptC, an IM-anchored protein with a periplasmic domain, interacts with the IM ABC transporter, the periplasmic protein LptA, and LPS. Although essential, LptC can tolerate several mutations and its role in LPS transport is unclear. To get insights into the functional role of LptC in the Lpt machine we searched for viable mutants lacking LptC by applying a strong double selection for lptC deletion mutants. Genome sequencing of viable Delta lptC mutants revealed single amino acid substitutions at a unique position in the predicted large periplasmic domain of the IM component LptF (LptF(SupC)). In complementation tests, lptF(SupC) mutants suppress lethality of both Delta lptC and lptC conditional expressionmutants. Our data show that mutations in a specific residue of the predicted LptF periplasmic domain can compensate the lack of the essential protein LptC, implicate such LptF domain in the formation of the periplasmic bridge between the IM and OM complexes, and suggest that LptC may have evolved to improve the performance of an ancestral six-component Lpt machine.

  11. Evaluation of expression of the Wnt signaling components in canine mammary tumors via RT2 Profiler PCR Array and immunochemistry assays.

    Science.gov (United States)

    Yu, Fang; Rasotto, Roberta; Zhang, Hong; Pei, Shimin; Zhou, Bin; Yang, Xu; Jin, Yipeng; Zhang, Di; Lin, Degui

    2017-09-30

    The Wnt signaling pathway and its key component β-catenin have critical roles in the development of diseases such as tumors in mammals. However, little has been reported about involvement of the Wnt/β-catenin signaling pathway in canine mammary tumors (CMTs). The present study detected expression of 30 Wnt signaling pathway-related genes in CMTs; the results are potentially useful for molecular-based diagnosis of CMTs and the development of new targeted therapies. Significant upregulations of dickkopf-1 protein, secreted frizzled-related sequence protein 1 (SFRP1), frizzled 3, β-catenin, and lymphoid enhancer-binding factor 1 (LEF1) were detected in highly malignant CMTs compared to levels in normal mammary gland tissues; moreover, highly significant upregulation of WNT5A was observed in low malignancy CMTs. Downregulation was only detected for SFRP4 in malignant CMT samples. The subcellular location of β-catenin and cyclin D1 in 100 CMT samples was investigated via immunohistochemical analysis, and significantly increased expressions of β-catenin in cytoplasm and cyclin D1 in nuclei were revealed. Western blotting analysis revealed that the expression of β-catenin and LEF1 increased in in the majority of CMT samples. Taken together, the results provide important evidence of the activation status of the Wnt pathway in CMTs and valuable clues to identifying biomarkers for molecular-based diagnosis of CMT.

  12. Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method

    Science.gov (United States)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2011-10-01

    The article presents a novel non-linear multivariate and multiscale statistical process monitoring and signal denoising method which combines the strengths of the Kernel Principal Component Analysis (KPCA) non-linear multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD) to handle multiscale system dynamics. The proposed method which enables us to cope with complex even severe non-linear systems with a wide dynamic range was named the EEMD-based multiscale KPCA (EEMD-MSKPCA). The method is quite general in nature and could be used in different areas for various tasks even without any really deep understanding of the nature of the system under consideration. Its efficiency was first demonstrated by an illustrative example, after which the applicability for the task of bearing fault detection, diagnosis and signal denosing was tested on simulated as well as actual vibration and acoustic emission (AE) signals measured on purpose-built large-size low-speed bearing test stand. The positive results obtained indicate that the proposed EEMD-MSKPCA method provides a promising tool for tackling non-linear multiscale data which present a convolved picture of many events occupying different regions in the time-frequency plane.

  13. The AutoAssociative Neural Network in signal analysis: II. Application to on-line monitoring of a simulated BWR component

    International Nuclear Information System (INIS)

    Marseguerra, M.; Zoia, A.

    2005-01-01

    In this paper, Robust AutoAssociative Neural Networks (RAANN) are applied to a series of signals produced by the Halden simulator of the 1200MWe BWR Forsmark-3 plant in Sweden. The applications concern: - correction of drifts and gross errors in sensors, for diagnostic and control purposes, - cluster analysis, to individuate a failed component and the intensity of the failure, - forecasting system signals, for safety or economic purposes, - reconstruction of unmeasured signals (virtual sensors). In the attainment of the above results, the geometric interpretation of the mapping performed by the network, propounded in Part I of this work, has provided a reasoned choice of the most critical free parameter, i.e., the number f of nodes of the bottleneck layer, thus allowing a deep understanding of the network functioning and also avoiding the traditional and troubling procedure of selection by trial-and-error. The theoretical basis of this analysis, discussed in details in the companion paper, is founded on the idea of dimension and in particular of fractal dimension, which has been used as a numerical estimator of f

  14. Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Keiji Nishida

    Full Text Available Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1, as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply.

  15. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2.

    Science.gov (United States)

    Guha, Manti; Fang, Ji-Kang; Monks, Robert; Birnbaum, Morris J; Avadhani, Narayan G

    2010-10-15

    Mitochondrial respiratory stress (also called mitochondrial retrograde signaling) activates a Ca(2+)/calcineurin-mediated signal that culminates in transcription activation/repression of a large number of nuclear genes. This signal is propagated through activation of the regulatory proteins NFκB c-Rel/p50, C/EBPδ, CREB, and NFAT. Additionally, the heterogeneous ribonucleoprotein A2 (hnRNPA2) functions as a coactivator in up-regulating the transcription of Cathepsin L, RyR1, and Glut-4, the target genes of stress signaling. Activation of IGF1R, which causes a metabolic switch to glycolysis, cell invasiveness, and resistance to apoptosis, is a phenotypic hallmark of C2C12 myoblasts subjected to mitochondrial stress. In this study, we report that mitochondrial stress leads to increased expression, activation, and nuclear localization of Akt1. Mitochondrial respiratory stress also activates Akt1-gene expression, which involves hnRNPA2 as a coactivator, indicating a complex interdependency of these two factors. Using Akt1(-/-) mouse embryonic fibroblasts and Akt1 mRNA-silenced C2C12 cells, we show that Akt1-mediated phosphorylation is crucial for the activation and recruitment of hnRNPA2 to the enhanceosome complex. Akt1 mRNA silencing in mtDNA-depleted cells resulted in reversal of the invasive phenotype, accompanied by sensitivity to apoptotic stimuli. These results show that Akt1 is an important regulator of the nuclear transcriptional response to mitochondrial stress.

  16. Surface mu heavy chain signals down-regulation of the V(D)J-recombinase machinery in the absence of surrogate light chain components.

    Science.gov (United States)

    Galler, Gunther R; Mundt, Cornelia; Parker, Mathew; Pelanda, Roberta; Mårtensson, Inga-Lill; Winkler, Thomas H

    2004-06-07

    Early B cell development is characterized by stepwise, ordered rearrangement of the immunoglobulin (Ig) heavy (HC) and light (LC) chain genes. Only one of the two alleles of these genes is used to produce a receptor, a phenomenon referred to as allelic exclusion. It has been suggested that pre-B cell receptor (pre-BCR) signals are responsible for down-regulation of the VDJH-recombinase machinery (Rag1, Rag2, and terminal deoxynucleotidyl transferase [TdT]), thereby preventing further rearrangement on the second HC allele. Using a mouse model, we show that expression of an inducible muHC transgene in Rag2-/- pro-B cells induces down-regulation of the following: (a) TdT protein, (b) a transgenic green fluorescent protein reporter reflecting endogenous Rag2 expression, and (c) Rag1 primary transcripts. Similar effects were also observed in the absence of surrogate LC (SLC) components, but not in the absence of the signaling subunit Ig-alpha. Furthermore, in wild-type mice and in mice lacking either lambda5, VpreB1/2, or the entire SLC, the TdT protein is down-regulated in muHC+LC- pre-B cells. Surprisingly, muHC without LC is expressed on the surface of pro-/pre-B cells from lambda5-/-, VpreB1-/-VpreB2-/-, and SLC-/- mice. Thus, SLC or LC is not required for muHC cell surface expression and signaling in these cells. Therefore, these findings offer an explanation for the occurrence of HC allelic exclusion in mice lacking SLC components.

  17. Principal components

    NARCIS (Netherlands)

    Hallin, M.; Hörmann, S.; Piegorsch, W.; El Shaarawi, A.

    2012-01-01

    Principal Components are probably the best known and most widely used of all multivariate analysis techniques. The essential idea consists in performing a linear transformation of the observed k-dimensional variables in such a way that the new variables are vectors of k mutually orthogonal

  18. Essential role for SphK1/S1P signaling to regulate hypoxia-inducible factor 2α expression and activity in cancer.

    Science.gov (United States)

    Bouquerel, P; Gstalder, C; Müller, D; Laurent, J; Brizuela, L; Sabbadini, R A; Malavaud, B; Pyronnet, S; Martineau, Y; Ader, I; Cuvillier, O

    2016-03-14

    The sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway has been reported to modulate the expression of the canonical transcription factor hypoxia-inducible HIF-1α in multiple cell lineages. HIF-2α is also frequently overexpressed in solid tumors but its role has been mostly studied in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, where HIF-2α has been established as a driver of a more aggressive disease. In this study, the role of SphK1/S1P signaling with regard to HIF-2α was investigated in various cancer cell models including ccRCC cells. Under hypoxic conditions or in ccRCC lacking a functional von Hippel-Lindau (VHL) gene and expressing high levels of HIF-2α, SphK1 activity controls HIF-2α expression and transcriptional activity through a phospholipase D (PLD)-driven mechanism. SphK1 silencing promotes a VHL-independent HIF-2α loss of expression and activity and reduces cell proliferation in ccRCC. Importantly, downregulation of SphK1 is associated with impaired Akt and mTOR signaling in ccRCC. Taking advantage of a monoclonal antibody neutralizing extracellular S1P, we show that inhibition of S1P extracellular signaling blocks HIF-2α accumulation in ccRCC cell lines, an effect mimicked when the S1P transporter Spns2 or the S1P receptor 1 (S1P1) is silenced. Here, we report the first evidence that the SphK1/S1P signaling pathway regulates the transcription factor hypoxia-inducible HIF-2α in diverse cancer cell lineages notably ccRCC, where HIF-2α has been established as a driver of a more aggressive disease. These findings demonstrate that SphK1/S1P signaling may act as a canonical regulator of HIF-2α expression in ccRCC, giving support to its inhibition as a therapeutic strategy that could contribute to reduce HIF-2 activity in ccRCC.

  19. Magnitude And Distance Determination From The First Few Seconds Of One Three Components Seismological Station Signal Using Support Vector Machine Regression Methods

    Science.gov (United States)

    Ochoa Gutierrez, L. H.; Vargas Jimenez, C. A.; Niño Vasquez, L. F.

    2011-12-01

    The "Sabana de Bogota" (Bogota Savannah) is the most important social and economical center of Colombia. Almost the third of population is concentrated in this region and generates about the 40% of Colombia's Internal Brute Product (IBP). According to this, the zone presents an elevated vulnerability in case that a high destructive seismic event occurs. Historical evidences show that high magnitude events took place in the past with a huge damage caused to the city and indicate that is probable that such events can occur in the next years. This is the reason why we are working in an early warning generation system, using the first few seconds of a seismic signal registered by three components and wide band seismometers. Such system can be implemented using Computational Intelligence tools, designed and calibrated to the particular Geological, Structural and environmental conditions present in the region. The methods developed are expected to work on real time, thus suitable software and electronic tools need to be developed. We used Support Vector Machines Regression (SVMR) methods trained and tested with historic seismic events registered by "EL ROSAL" Station, located near Bogotá, calculating descriptors or attributes as the input of the model, from the first 6 seconds of signal. With this algorithm, we obtained less than 10% of mean absolute error and correlation coefficients greater than 85% in hypocentral distance and Magnitude estimation. With this results we consider that we can improve the method trying to have better accuracy with less signal time and that this can be a very useful model to be implemented directly in the seismological stations to generate a fast characterization of the event, broadcasting not only raw signal but pre-processed information that can be very useful for accurate Early Warning Generation.

  20. Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca²⁺ signals at key decision points in the life cycle of malaria parasites.

    Directory of Open Access Journals (Sweden)

    Mathieu Brochet

    2014-03-01

    Full Text Available Many critical events in the Plasmodium life cycle rely on the controlled release of Ca²⁺ from intracellular stores to activate stage-specific Ca²⁺-dependent protein kinases. Using the motility of Plasmodium berghei ookinetes as a signalling paradigm, we show that the cyclic guanosine monophosphate (cGMP-dependent protein kinase, PKG, maintains the elevated level of cytosolic Ca²⁺ required for gliding motility. We find that the same PKG-dependent pathway operates upstream of the Ca²⁺ signals that mediate activation of P. berghei gametocytes in the mosquito and egress of Plasmodium falciparum merozoites from infected human erythrocytes. Perturbations of PKG signalling in gliding ookinetes have a marked impact on the phosphoproteome, with a significant enrichment of in vivo regulated sites in multiple pathways including vesicular trafficking and phosphoinositide metabolism. A global analysis of cellular phospholipids demonstrates that in gliding ookinetes PKG controls phosphoinositide biosynthesis, possibly through the subcellular localisation or activity of lipid kinases. Similarly, phosphoinositide metabolism links PKG to egress of P. falciparum merozoites, where inhibition of PKG blocks hydrolysis of phosphatidylinostitol (4,5-bisphosphate. In the face of an increasing complexity of signalling through multiple Ca²⁺ effectors, PKG emerges as a unifying factor to control multiple cellular Ca²⁺ signals essential for malaria parasite development and transmission.

  1. Fatty acid modification of Wnt1 and Wnt3a at serine is prerequisite for lipidation at cysteine and is essential for Wnt signalling

    Czech Academy of Sciences Publication Activity Database

    Doubravská, Lenka; Krausová, Michaela; Gradl, D.; Vojtěchová, Martina; Tůmová, Lucie; Lukáš, Jan; Valenta, Tomáš; Pospíchalová, Vendula; Fafílek, Bohumil; Plachý, Jiří; Sebesta, O.; Kořínek, Vladimír

    2011-01-01

    Roč. 23, č. 5 (2011), s. 837-848 ISSN 0898-6568 R&D Projects: GA ČR(CZ) GA204/07/1567; GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : Wnt signaling * post-translational modification * acylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.058, year: 2011

  2. Economic security: an essential component of recovery.

    Science.gov (United States)

    Cook, Judith A; Mueser, Kim T

    2013-03-01

    People with psychiatric disabilities often face complex financial situations that make them unable to exercise choice in how their financial resources are allocated to needs including health care, housing, education, leisure pursuits, and other important life activities. One avenue to address these barriers is by helping people increase their financial literacy or knowledge of how to manage and budget their money effectively, accumulate assets, and reduce or deal with debt. However, our field has not focused sufficient attention on improving the financial literacy of the people we serve. Unfortunately, people with mental illness are significantly less likely to have any savings than those without mental illness. This makes them excellent candidates for state and federal programs that help low-income individuals accumulate savings that are exempt from asset limits for all federal means-tested programs. Growing out of these efforts, a field known as "asset-based welfare" has evolved to understand the role of assets in the promotion of individual and collective welfare. In an uncertain economy, the time is right for the field of psychiatric rehabilitation to expand its focus to include community and economic development activities that promote financial security. PsycINFO Database Record (c) 2013 APA, all rights reserved

  3. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?

    Science.gov (United States)

    Dimoska, Aneta; Johnstone, Stuart J; Barry, Robert J

    2006-11-01

    The N2 and P3 components have been separately associated with response inhibition in the stop-signal task, and more recently, the N2 has been implicated in the detection of response-conflict. To isolate response inhibition activity from early sensory processing, the present study compared processing of the stop-signal with that of a task-irrelevant tone, which subjects were instructed to ignore. Stop-signals elicited a larger N2 on failed-stop trials and a larger P3 on successful-stop trials, relative to ignore-signal trials, likely reflecting activity related to failed and successful stopping, respectively. ERPs between fast and slow reaction-time (RT) groups were also examined as it was hypothesised that greater inhibitory activation to stop faster responses would manifest in the component reflecting this process. Successful-stop P3 showed the anticipated effect (globally larger amplitude in the fast than slow RT group), supporting its association with the stopping of an ongoing response. In contrast, N2 was larger in the slow than fast RT group, and in contrast to the predictions of the response-conflict hypothesis, successful-stop N2 and the response-locked error-negativity (Ne) differed in scalp distribution. These findings indicate that the successful-stop N2 may be better explained as a deliberate form of response control or selection, which the slow RT group employed as a means of increasing the likelihood of a successful-stop. Finally, a comparison of stimulus and response-locked ERPs revealed that the failed-stop N2 and P3 appeared to reflect error-related activity, best observed in the response-locked Ne and error-positivity (Pe). Together these findings indicate that the successful-stop N2 and P3 reflect functionally distinct aspects of response control that are dependent upon performance strategies, while failed-stop N2 and P3 reflect error-related activity.

  4. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32

    Directory of Open Access Journals (Sweden)

    Sugiyama Hideaki

    2011-05-01

    Full Text Available Abstract Background Elevated numbers of regulatory T cells (Tregs have been implicated in certain cancers. Depletion of Tregs has been shown to increase anti-tumor immunity. Tregs also play a critical role in the suppression of autoimmune responses. The study of Tregs has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32, also known as Glycoprotein A Repetitions Predominant (GARP, has been postulated as a novel surface marker of activated Tregs. However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of Tregs expressing LRRC32. Results Using naturally-occurring freshly isolated Tregs, we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ Tregs are distinct from LRRC32- Tregs with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ Tregs are more potent suppressors than LRRC32- Tregs. Conclusions A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent Treg populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of Tregs and the refinement of immunotherapeutic strategies aimed at targeting these cells.

  5. IL-1RI (Interleukin-1 Receptor Type I Signalling is Essential for Host Defence and Hemichannel Activity During Acute Central Nervous System Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Juan Xiong

    2012-03-01

    Full Text Available Staphylococcus aureus is a common aetiological agent of bacterial brain abscesses. We have previously established that a considerable IL-1 (interleukin-1 response is elicited immediately following S. aureus infection, where the cytokine can exert pleiotropic effects on glial activation and blood–brain barrier permeability. To assess the combined actions of IL-1α and IL-1β during CNS (central nervous system infection, host defence responses were evaluated in IL-1RI (IL-1 receptor type I KO (knockout animals. IL-1RI KO mice were exquisitely sensitive to intracerebral S. aureus infection, as demonstrated by enhanced mortality rates and bacterial burdens within the first 24 h following pathogen exposure compared with WT (wild-type animals. Loss of IL-1RI signalling also dampened the expression of select cytokines and chemokines, concomitant with significant reductions in neutrophil and macrophage infiltrates into the brain. In addition, the opening of astrocyte hemichannels during acute infection was shown to be dependent on IL-1RI activity. Collectively, these results demonstrate that IL-1RI signalling plays a pivotal role in the genesis of immune responses during the acute stage of brain abscess development through S. aureus containment, inflammatory mediator production, peripheral immune cell recruitment, and regulation of astrocyte hemichannel activity. Taken in the context of previous studies with MyD88 (myeloid differentiation primary response gene 88 and TLR2 (Toll-like receptor 2 KO animals, the current report advances our understanding of MyD88-dependent cascades and implicates IL-1RI signalling as a major antimicrobial effector pathway during acute brain-abscess formation.

  6. Identification of potential genetic components involved in the deviant quorum-sensing signaling pathways of Burkholderia glumae through a functional genomics approach

    Directory of Open Access Journals (Sweden)

    Ruoxi eChen

    2015-03-01

    Full Text Available Burkholderia glumae is the chief causal agent for bacterial panicle blight of rice. The acyl-homoserine lactone (AHL-mediated quorum-sensing (QS system dependent on a pair of luxI and luxR homologs, tofI and tofR, is the primary cell-to-cell signaling mechanism determining the virulence of this bacterium. Production of toxoflavin, a major virulence factor of B. glumae, is known to be dependent on the tofI/tofR QS system. In our previous study, however, it was observed that B. glumae mutants defective in tofI or tofR produced toxoflavin if they grew on the surface of a solid medium, suggesting that alternative signaling pathways independent of tofI or tofR are activated in that growth condition for the production of toxoflavin. In this study, potential genetic components involved in the tofI- and tofR-independent signaling pathways for toxoflavin production were sought through screening random mini-Tn5 mutants of B. glumae to better understand the intercellular signaling pathways of this pathogen. Fifteen and three genes were initially identified as the potential genetic elements of the tofI- and tofR-independent pathways, respectively. Especially, the ORF (bglu_2g06320 divergently transcribed from toxJ, which encodes an orphan LuxR protein and controls toxoflavin biosynthesis, was newly identified in this study as a gene required for the tofR-independent toxoflavin production and named as toxK. Among those genes, flhD, dgcB, and wyzB were further studied to validate their functions in the tofI-independent toxoflavin production, and similar studies were also conducted with qsmR and toxK for their functions in the tofR-independent toxoflavin production. This work provides a foundation for future comprehensive studies of the intercellular signaling systems of B. glumae and other related pathogenic bacteria.

  7. Activation by insulin and amino acids of signaling components leading to translation initiation in skeletal muscle of neonatal pigs is developmentally regulated.

    Science.gov (United States)

    Suryawan, Agus; Orellana, Renan A; Nguyen, Hanh V; Jeyapalan, Asumthia S; Fleming, Jillian R; Davis, Teresa A

    2007-12-01

    Insulin and amino acids act independently to stimulate protein synthesis in skeletal muscle of neonatal pigs, and the responses decrease with development. The purpose of this study was to compare the separate effects of fed levels of INS and AA on the activation of signaling components leading to translation initiation and how these responses change with development. Overnight-fasted 6- (n = 4/group) and 26-day-old (n = 6/ group) pigs were studied during 1) euinsulinemic-euglycemiceuaminoacidemic conditions (controls), 2) euinsulinemic-euglycemichyperaminoacidemic clamps (AA), and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps (INS). INS, but not AA, increased the phosphorylation of protein kinase B (PKB) and tuberous sclerosis 2 (TSC2). Both INS and AA increased protein synthesis and the phosphorylation of mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase-1, and eukaryotic initiation factor (eIF)4E-binding protein 1 (4E-BP1), and these responses were higher in 6-day-old compared with 26-day-old pigs. Both INS and AA decreased the binding of 4E-BP1 to eIF4E and increased eIF4E binding to eIF4G; these effects were greater in 6-day-old than in 26-day-old pigs. Neither INS nor AA altered the composition of mTORC1 (raptor, mTOR, and GbetaL) or mTORC2 (rictor, mTOR, and GbetaL) complexes. Furthermore, neither INS, AA, nor age had any effect on the abundance of Rheb and the phosphorylation of AMP-activated protein kinase and eukaryotic elongation factor 2. Our results suggest that the activation by insulin and amino acids of signaling components leading to translation initiation is developmentally regulated and parallels the developmental decline in protein synthesis in skeletal muscle of neonatal pigs.

  8. Stomatal Closure and SA-, JA/ET-Signaling Pathways Are Essential for Bacillus amyloliquefaciens FZB42 to Restrict Leaf Disease Caused by Phytophthora nicotianae in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Liming Wu

    2018-04-01

    Full Text Available Bacillus amyloliquefaciens FZB42 is a plant growth-promoting rhizobacterium that induces resistance to a broad spectrum of pathogens. This study analyzed the mechanism by which FZB42 restricts leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana. The oomycete foliar pathogen P. nicotianae is able to reopen stomata which had been closed by the plant innate immune response to initiate penetration and infection. Here, we showed that root colonization by B. amyloliquefaciens FZB42 restricted pathogen-mediated stomatal reopening in N. benthamiana. Abscisic acid (ABA and salicylic acid (SA-regulated pathways mediated FZB42-induced stomatal closure after pathogen infection. Moreover, the defense-related genes PR-1a, LOX, and ERF1, involved in the SA and jasmonic acid (JA/ethylene (ET signaling pathways, respectively, were overexpressed, and levels of the hormones SA, JA, and ET increased in the leaves of B. amyloliquefaciens FZB42-treated wild type plants. Disruption of one of these three pathways in N. benthamiana plants increased susceptibility to the pathogen. These suggest that SA- and JA/ET-dependent signaling pathways were important in plant defenses against the pathogen. Our data thus explain a biocontrol mechanism of soil rhizobacteria in a plant.

  9. Neuronal IFN-beta-induced PI3K/Akt-FoxA1 signalling is essential for generation of FoxA1(+)Treg cells

    DEFF Research Database (Denmark)

    Liu, Yawei; Marin, Andrea; Ejlerskov, Patrick

    2017-01-01

    Neurons reprogramme encephalitogenic T cells (Tenc) to regulatory T cells (Tregs), either FoxP3(+)Tregs or FoxA1(+)Tregs. We reported previously that neuronal ability to generate FoxA1(+)Tregs was central to preventing neuroinflammation in experimental autoimmune encephalomyelitis (EAE). Mice...... lacking interferon (IFN)-β were defective in generating FoxA1(+)Tregs in the brain. Here we show that lack of neuronal IFNβ signalling is associated with the absence of programme death ligand-1 (PDL1), which prevents their ability to reprogramme Tenc cells to FoxA1(+)Tregs. Passive transfer-EAE via IFNβ......-competent Tenc cells to mice lacking IFNβ and active induced-EAE in mice lacking its receptor, IFNAR, in the brain (Nes(Cre):Ifnar(fl/fl)) result in defective FoxA1(+)Tregs generation and aggravated neuroinflammation. IFNβ activates neuronal PI3K/Akt signalling and Akt binds to transcription factor FoxA1...

  10. Fcγ-receptor IIa-mediated Src Signaling Pathway Is Essential for the Antibody-Dependent Enhancement of Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Wakako Furuyama

    2016-12-01

    Full Text Available Antibody-dependent enhancement (ADE of Ebola virus (EBOV infection has been demonstrated in vitro, raising concerns about the detrimental potential of some anti-EBOV antibodies. ADE has been described for many viruses and mostly depends on the cross-linking of virus-antibody complexes to cell surface Fc receptors, leading to enhanced infection. However, little is known about the molecular mechanisms underlying this phenomenon. Here we show that Fcγ-receptor IIa (FcγRIIa-mediated intracellular signaling through Src family protein tyrosine kinases (PTKs is required for ADE of EBOV infection. We found that deletion of the FcγRIIa cytoplasmic tail abolished EBOV ADE due to decreased virus uptake into cellular endosomes. Furthermore, EBOV ADE, but not non-ADE infection, was significantly reduced by inhibition of the Src family protein PTK pathway, which was also found to be important to promote phagocytosis/macropinocytosis for viral uptake into endosomes. We further confirmed a significant increase of the Src phosphorylation mediated by ADE. These data suggest that antibody-EBOV complexes bound to the cell surface FcγRIIa activate the Src signaling pathway that leads to enhanced viral entry into cells, providing a novel perspective for the general understanding of ADE of virus infection.

  11. Peroxiredoxin 2 is essential for maintaining cancer stem cell-like phenotype through activation of Hedgehog signaling pathway in colon cancer.

    Science.gov (United States)

    Wang, Rong; Wei, Jinlai; Zhang, Shouru; Wu, Xingye; Guo, Jinbao; Liu, Maoxi; Du, Kunli; Xu, Jun; Peng, Linglong; Lv, Zhenbing; You, Wenxian; Xiong, Yongfu; Fu, Zhongxue

    2016-12-27

    Cancer stem cells (CSCs) are a key target for reducing tumor growth, metastasis, and recurrence. Redox status is a critical factor in the maintenance of CSCs, and the antioxidant enzyme Peroxiredoxin 2 (Prdx2) plays an important role in the development of colon cancer. Therefore, we investigated the contribution of Prdx2 to the maintenance of stemness of colon CSCs. Here, we used short-hairpin RNAs and a Prdx2-overexpression vector to determine the effects of Prdx2. We demonstrated that knockdown of Prdx2 reduced the self-renewal and sphere formation and resulted in increased 5-FU-induced apoptosis in human colon CSCs. Prdx2 overexpression induced reversion of the self-renewal and sphere formation. Furthermore, the effects of Prdx2 resulted in an altered expression of stemness associated with the Hh/Gli1 signaling pathway. Finally, knockdown of Prdx2 in CD133+ cells reduced the volume of xenograft tumors in BALB/c-nu mice. Taken together, colon CSCs overexpress Prdx2, which promotes their stem cell properties via the Hh/Gli1 signaling pathway. The results suggest that Prdx2 may be an effective therapeutic target for the elimination of CSCs in colorectal cancer.

  12. Signaling triggered by Thy-1 interaction with ß3 integrin on astrocytes is an essential step towards unraveling neuronal Thy-1 function

    Directory of Open Access Journals (Sweden)

    ANA MARIA AVALOS

    2002-01-01

    Full Text Available Thy-1 is an abundant neuronal glycoprotein in mammals. Despite such prevalence, Thy-1 function remains largely obscure in the absence of a defined ligand. Recently described evidence that Thy-1 interacts with ß3 integrin on astrocytes will be discussed. Thy-1 binding to ß3 integrin triggers tyrosine phosphorylation of focal adhesion proteins in astrocytes, thereby promoting focal adhesion formation, cell attachment and spreading. Thy-1 has been reported to modulate neurite outgrowth by triggering a cellular response in neurons. However, our data indicate that Thy-1 can also initiate signaling events that promote adhesion of adjacent astrocytes to the underlying surface. Preliminary results suggest that morphological changes observed in the actin cytoskeleton of astrocytes as a consequence of Thy-1 binding is mediated by small GTPases from the Rho family. Our findings argue that Thy-1 functions in a bimodal fashion, as a receptor on neuronal cells and as a ligand for ß3 integrin receptor on astrocytes. Since Thy-1 is implicated in the inhibition of neurite outgrowth, signaling events in astrocytes are likely to play an important role in this process

  13. Essential AOP

    DEFF Research Database (Denmark)

    De Fraine, Bruno; Ernst, Erik; Südholt, Mario

    2010-01-01

    Aspect-oriented programming (AOP) has produced interesting language designs, but also ad hoc semantics that needs clarification. We contribute to this clarification with a calculus that models essential AOP, both simpler and more general than existing formalizations. In AOP, advice may intercept...

  14. Highcharts essentials

    CERN Document Server

    Shahid, Bilal

    2014-01-01

    If you are a web developer with a basic knowledge of HTML, CSS, and JavaScript and want to quickly get started with this web charting technology, this is the book for you. This book will also serve as an essential guide to those who have probably used a similar library and are now looking at migrating to Highcharts.

  15. Swift essentials

    CERN Document Server

    Blewitt, Alex

    2014-01-01

    Whether you are a seasoned Objective-C developer or new to the Xcode platform, Swift Essentials will provide you with all you need to know to get started with the language. Prior experience with iOS development is not necessary, but will be helpful to get the most out of the book.

  16. Salinity-induced inhibition of growth in the aquatic pteridophyte Azolla microphylla primarily involves inhibition of photosynthetic components and signaling molecules as revealed by proteome analysis.

    Science.gov (United States)

    Thagela, Preeti; Yadav, Ravindra Kumar; Mishra, Vagish; Dahuja, Anil; Ahmad, Altaf; Singh, Pawan Kumar; Tiwari, Budhi Sagar; Abraham, Gerard

    2017-01-01

    Salinity stress causes adverse physiological and biochemical changes in the growth and productivity of a plant. Azolla, a symbiotic pteridophyte and potent candidate for biofertilizer due to its nitrogen fixation ability, shows reduced growth and nitrogen fixation during saline stress. To better understand regulatory components involved in salinity-induced physiological changes, in the present study, Azolla microphylla plants were exposed to NaCl (6.74 and 8.61 ds/m) and growth, photochemical reactions of photosynthesis, ion accumulation, and changes in cellular proteome were studied. Maximum dry weight was accumulated in control and untreated plant while a substantial decrease in dry weight was observed in the plants exposed to salinity. Exposure of the organism to different concentrations of salt in hydroponic conditions resulted in differential level of Na + and K + ion accumulation. Comparative analysis of salinity-induced proteome changes in A. microphylla revealed 58 salt responsive proteins which were differentially expressed during the salt exposure. Moreover, 42 % spots among differentially expressed proteins were involved in different signaling events. The identified proteins are involved in photosynthesis, energy metabolism, amino acid biosynthesis, protein synthesis, and defense. Downregulation of these key metabolic proteins appears to inhibit the growth of A. microphylla in response to salinity. Altogether, the study revealed that in Azolla, increased salinity primarily affected signaling and photosynthesis that in turn leads to reduced biomass.

  17. Determination of Magnitude and Location of Earthquakes With Only Five Seconds of a Three Component Broadband Sensor Signal Located Near Bogota, Colombia Using Support Vector Machines

    Science.gov (United States)

    Ochoa Gutierrez, L. H.; Vargas Jiménez, C. A.; Niño Vasquez, L. F., Sr.

    2017-12-01

    Early warning generation for earthquakes that occur near the city of Bogotá-Colombia is extremely important. Using the information of a broadband and three component station, property of the Servicio Geológico Colombiano (SGC), called El Rosal, which is located very near the city, we developed a model based on support vector machines techniques (SVM), with a standardized polynomial kernel, using as descriptors or input data, seismic signal features, complemented by the hipocentral parameters calculated for each one of the reported events. The model was trained and evaluated by cross correlation and was used to predict, with only five seconds of signal, the magnitude and location of a seismic event. With the proposed model we calculated local magnitude with an accuracy of 0.19 units of magnitude, epicentral distance with an accuracy of about 11 k, depth with a precision of approximately 40 km and the azimuth of arrival with a precision of 45°. This research made a significant contribution for early warning generation for the country, in particular for the city of Bogotá. These models will be implemented in the future in the "Red Sismológica de la Sabana de Bogotá y sus Alrededores (RSSB)" which belongs to the Universidad Nacional de Colombia.

  18. Systems level analysis of two-component signal transduction systems in Erwinia amylovora: Role in virulence, regulation of amylovoran biosynthesis and swarming motility

    Directory of Open Access Journals (Sweden)

    Sundin George W

    2009-05-01

    Full Text Available Abstract Background Two-component signal transduction systems (TCSTs, consisting of a histidine kinase (HK and a response regulator (RR, represent a major paradigm for signal transduction in prokaryotes. TCSTs play critical roles in sensing and responding to environmental conditions, and in bacterial pathogenesis. Most TCSTs in Erwinia amylovora have either not been identified or have not yet been studied. Results We used a systems approach to identify TCST and related signal transduction genes in the genome of E. amylovora. Comparative genomic analysis of TCSTs indicated that E. amylovora TCSTs were closely related to those of Erwinia tasmaniensis, a saprophytic enterobacterium isolated from apple flowers, and to other enterobacteria. Forty-six TCST genes in E. amylovora including 17 sensor kinases, three hybrid kinases, 20 DNA- or ligand-binding RRs, four RRs with enzymatic output domain (EAL-GGDEF proteins, and two kinases were characterized in this study. A systematic TCST gene-knockout experiment was conducted, generating a total of 59 single-, double-, and triple-mutants. Virulence assays revealed that five of these mutants were non-pathogenic on immature pear fruits. Results from phenotypic characterization and gene expression experiments indicated that several groups of TCST systems in E. amylovora control amylovoran biosynthesis, one of two major virulence factors in E. amylovora. Both negative and positive regulators of amylovoran biosynthesis were identified, indicating a complex network may control this important feature of pathogenesis. Positive (non-motile, EnvZ/OmpR, negative (hypermotile, GrrS/GrrA, and intermediate regulators for swarming motility in E. amylovora were also identified. Conclusion Our results demonstrated that TCSTs in E. amylovora played major roles in virulence on immature pear fruit and in regulating amylovoran biosynthesis and swarming motility. This suggested presence of regulatory networks governing

  19. The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress.

    Directory of Open Access Journals (Sweden)

    Louise F Thatcher

    Full Text Available Glutathione S-transferases (GSTs play important roles in the protection of cells against toxins and oxidative damage where one Arabidopsis member, GSTF8, has become a commonly used marker gene for early stress and defense responses. A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (enhanced stress response 1 mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to encode a KH-domain containing RNA-binding protein (At5g53060. Whole transcriptome sequencing of esr1-1 identified altered expression of genes involved in responses to biotic and abiotic stimuli, hormone signaling pathways and developmental processes. In particular was an overall significant enrichment for jasmonic acid (JA mediated processes in the esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility and we found the expression of some but not all were reduced in esr1-1. The esr1-1 mutant was not impaired in other aspects of JA-signalling such as JA- sensitivity or development, suggesting ESR1 functions in specific components of the JA-signaling pathway. Examination of salicylic acid (SA regulated marker genes in esr1-1 showed no increase in basal or SA induced expression suggesting repression of JA-regulated genes is not due to antagonistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins with ESR1 unlinking JA-mediated growth and defense responses.

  20. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32).

    Science.gov (United States)

    Chan, Derek V; Somani, Ally-Khan; Young, Andrew B; Massari, Jessica V; Ohtola, Jennifer; Sugiyama, Hideaki; Garaczi, Edina; Babineau, Denise; Cooper, Kevin D; McCormick, Thomas S

    2011-05-26

    Elevated numbers of regulatory T cells (T(regs)) have been implicated in certain cancers. Depletion of T(regs) has been shown to increase anti-tumor immunity. T(regs) also play a critical role in the suppression of autoimmune responses. The study of T(regs) has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32), also known as Glycoprotein A Repetitions Predominant (GARP), has been postulated as a novel surface marker of activated T(regs). However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of T(regs) expressing LRRC32. Using naturally-occurring freshly isolated T(regs), we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ T(regs) are distinct from LRRC32- T(regs) with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ T(regs) are more potent suppressors than LRRC32- T(regs). A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent T(reg) populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of T(regs) and the refinement of immunotherapeutic strategies aimed at targeting these cells.

  1. Active Components with Inhibitory Activities on IFN-γ/STAT1 and IL-6/STAT3 Signaling Pathways from Caulis Trachelospermi

    Directory of Open Access Journals (Sweden)

    Xiao-Ting Liu

    2014-08-01

    Full Text Available Initial investigation for new active herbal extract with inhibiting activity on JAK/STAT signaling pathway revealed that the extract of Caulis Trachelospermi, which was separated by 80% alcohol extraction and subsequent HP-20 macroporous resin column chromatography, was founded to strongly inhibit IFN-γ-induced STAT1-responsive luciferase activity (IFN-γ/STAT1 with IC50 value of 2.43 μg/mL as well as inhibiting IL-6-induced STAT3-responsive luciferase activity (IL-6/STAT3 with IC50 value of 1.38 μg/mL. Subsequent study on its active components led to the isolation and identification of two new dibenzylbutyrolactone lignans named 4-demethyltraxillaside (1 and nortrachelogenin 4-O-β-d-glucopyranoside (2, together with six known compounds. The lignan compounds 1–4 together with other lignan compounds isolated in previous study were tested the activities on IFN-γ/STAT1 and IL-6/STAT3 pathways. The following result showed that the main components trachelogenin and arctigenin had corresponding activities on IFN-γ/STAT1 pathway with IC50 values of 3.14 μM and 9.46 μM as well as trachelogenin, arctigenin and matairesinol strongly inhibiting IL-6/STAT3 pathway with IC50 values of 3.63 μM, 6.47 μM and 2.92 μM, respectively.

  2. Essential roles for lines in mediating leg and antennal proximodistal patterning and generating a stable Notch signaling interface at segment borders.

    Science.gov (United States)

    Greenberg, Lina; Hatini, Victor

    2009-06-01

    The Drosophila leg imaginal disc provides a paradigm with which to understand the fundamental developmental mechanisms that generate an intricate appendage structure. Leg formation depends on the subdivision of the leg proximodistal (PD) axis into broad domains by the leg gap genes. The leg gap genes act combinatorially to initiate the expression of the Notch ligands Delta (Dl) and Serrate (Ser) in a segmental pattern. Dl and Ser induce the expression of a set of transcriptional regulators along the segment border, which mediate leg segment growth and joint morphogenesis. Here we show that Lines accumulates in nuclei in the presumptive tarsus and the inter-joints of proximal leg segments and governs the formation of these structures by destabilizing the nuclear protein Bowl. Across the presumptive tarsus, lines modulates the opposing expression landscapes of the leg gap gene dachshund (dac) and the tarsal PD genes, bric-a-brac 2 (bab), apterous (ap) and BarH1 (Bar). In this manner, lines inhibits proximal tarsal fates and promotes medial and distal tarsal fates. Across proximal leg segments, lines antagonizes bowl to promote Dl expression by relief-of-repression. In turn, Dl signals asymmetrically to stabilize Bowl in adjacent distal cells. Bowl, then, acts cell-autonomously, together with one or more redundant factors, to repress Dl expression. Together, lines and bowl act as a binary switch to generate a stable Notch signaling interface between Dl-expressing cells and adjacent distal cell. lines plays analogous roles in developing antennae, which are serially homologous to legs, suggesting evolutionarily conserved roles for lines in ventral appendage formation.

  3. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling

    Science.gov (United States)

    Barrington, Chloe L.; Katsanis, Nicholas

    2017-01-01

    The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure. PMID:28291807

  4. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    Sarah C Goetz

    Full Text Available The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure.

  5. The nuclear retention signal of HPV16 L2 protein is essential for incoming viral genome to transverse the trans-Golgi network

    International Nuclear Information System (INIS)

    DiGiuseppe, Stephen; Bienkowska-Haba, Malgorzata; Hilbig, Lydia; Sapp, Martin

    2014-01-01

    The Human papillomavirus (HPV) capsid is composed of the major and minor capsid proteins, L1 and L2, respectively. Infectious entry requires a complex series of conformational changes in both proteins that lead to uptake and allow uncoating to occur. During entry, the capsid is disassembled and host cyclophilins dissociate L1 protein from the L2/DNA complex. Herein, we describe a mutant HPV16 L2 protein (HPV16 L2-R302/5A) that traffics pseudogenome to the trans-Golgi network (TGN) but fails to egress. Our data provide further evidence that HPV16 traffics through the TGN and demonstrates that L2 is essential for TGN egress. Furthermore, we show that cyclophilin activity is required for the L2/DNA complex to be transported to the TGN which is accompanied by a reduced L1 protein levels. - Highlights: • mNLS mutant HPV16 L2 protein traffics pseudogenome to the TGN but fails to egress. • Cyclophilin activity is required for trafficking of the L2/DNA complex to the TGN. • Majority of L1 protein is shed from the L2/DNA complex prior to reaching the TGN

  6. The nuclear retention signal of HPV16 L2 protein is essential for incoming viral genome to transverse the trans-Golgi network

    Energy Technology Data Exchange (ETDEWEB)

    DiGiuseppe, Stephen; Bienkowska-Haba, Malgorzata; Hilbig, Lydia; Sapp, Martin, E-mail: msapp1@lsuhsc.edu

    2014-06-15

    The Human papillomavirus (HPV) capsid is composed of the major and minor capsid proteins, L1 and L2, respectively. Infectious entry requires a complex series of conformational changes in both proteins that lead to uptake and allow uncoating to occur. During entry, the capsid is disassembled and host cyclophilins dissociate L1 protein from the L2/DNA complex. Herein, we describe a mutant HPV16 L2 protein (HPV16 L2-R302/5A) that traffics pseudogenome to the trans-Golgi network (TGN) but fails to egress. Our data provide further evidence that HPV16 traffics through the TGN and demonstrates that L2 is essential for TGN egress. Furthermore, we show that cyclophilin activity is required for the L2/DNA complex to be transported to the TGN which is accompanied by a reduced L1 protein levels. - Highlights: • mNLS mutant HPV16 L2 protein traffics pseudogenome to the TGN but fails to egress. • Cyclophilin activity is required for trafficking of the L2/DNA complex to the TGN. • Majority of L1 protein is shed from the L2/DNA complex prior to reaching the TGN.

  7. Lipids as tumoricidal components of human α-lactalbumin made lethal to tumor cells (HAMLET): unique and shared effects on signaling and death.

    Science.gov (United States)

    Ho, James C S; Storm, Petter; Rydström, Anna; Bowen, Ben; Alsin, Fredrik; Sullivan, Louise; Ambite, Inès; Mok, K H; Northen, Trent; Svanborg, Catharina

    2013-06-14

    Long-chain fatty acids are internalized by receptor-mediated mechanisms or receptor-independent diffusion across cytoplasmic membranes and are utilized as nutrients, building blocks, and signaling intermediates. Here we describe how the association of long-chain fatty acids to a partially unfolded, extracellular protein can alter the presentation to target cells and cellular effects. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin and oleic acid (OA). As OA lacks independent tumoricidal activity at concentrations equimolar to HAMLET, the contribution of the lipid has been debated. We show by natural abundance (13)C NMR that the lipid in HAMLET is deprotonated and by chromatography that oleate rather than oleic acid is the relevant HAMLET constituent. Compared with HAMLET, oleate (175 μm) showed weak effects on ion fluxes and gene expression. Unlike HAMLET, which causes metabolic paralysis, fatty acid metabolites were less strongly altered. The functional overlap increased with higher oleate concentrations (500 μm). Cellular responses to OA were weak or absent, suggesting that deprotonation favors cellular interactions of fatty acids. Fatty acids may thus exert some of their essential effects on host cells when in the deprotonated state and when presented in the context of a partially unfolded protein.

  8. Essential role of the NO signaling pathway in the hippocampal CA1 in morphine-associated memory depends on glutaminergic receptors.

    Science.gov (United States)

    Shen, Fang; Wang, Xue-Wei; Ge, Fei-Fei; Li, Yi-Jing; Cui, Cai-Lian

    2016-03-01

    The nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP-dependent protein kinase (PKG) signaling pathway has been reported to play a key role in memory processing. However, little is known about its role in drug-associated reward memory. Here, we report the following. 1) The NO pathway in the CA1 is critical for the retrieval of morphine-associated reward memory. Specifically, the nNOS, sGC and PKG protein levels in the CA1 were increased after the expression of morphine conditioned place preference (CPP). Intra-CA1 injection of an NOS, sGC or PKG inhibitor prevented morphine CPP expression. 2) The involvement of the NO pathway in morphine CPP requires NR2B-containing NMDA receptors (NR2B-NMDARs). NR2B-NMDAR expression was elevated in the CA1 following morphine CPP expression, and intra-CA1 injection of the NR2B-NMDAR antagonist Ro25-6981 not only blocked morphine CPP expression but also inhibited the up-regulation of nNOS, sGC and PKG. Moreover, the Ro25-6981-induced blockade of morphine CPP was abolished by intra-CA1 injection of a NOS substrate or an sGC activator. 3) The NR2B-NMDAR stimulated the NO pathway by up-regulating the phosphorylation of Akt(Ser473). Morphine CPP expression enhanced the pAkt(Ser473) level, which has been corroborated to regulate nNOS activity, and this effect was reversed by intra-CA1 injection of Ro25-6981. 4) GluR1 acted downstream of the NO pathway. The membrane level of GluR1 in the CA1 was increased after morphine CPP expression, and this effect was prevented by pre-injection of a PKG inhibitor into the CA1. Additionally, co-immunoprecipitation revealed an interaction between PKG and GluR1; this result further indicated a role of PKG in regulating GluR1 trafficking. Collectively, the results of our study demonstrated that the activation of the NR2B-NMDAR/NO/sGC/PKG signaling pathway is necessary for the retrieval of morphine-associated reward memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Linux Essentials

    CERN Document Server

    Smith, Roderick W

    2012-01-01

    A unique, full-color introduction to Linux fundamentals Serving as a low-cost, secure alternative to expensive operating systems, Linux is a UNIX-based, open source operating system. Full-color and concise, this beginner's guide takes a learning-by-doing approach to understanding the essentials of Linux. Each chapter begins by clearly identifying what you will learn in the chapter, followed by a straightforward discussion of concepts that leads you right into hands-on tutorials. Chapters conclude with additional exercises and review questions, allowing you to reinforce and measure your underst

  10. Essential SQLAlchemy

    CERN Document Server

    Copeland, Rick

    2008-01-01

    Essential SQLAlchemy introduces a high-level open-source code library that makes it easier for Python programmers to access relational databases such as Oracle, DB2, MySQL, PostgreSQL, and SQLite. SQLAlchemy has become increasingly popular since its release, but it still lacks good offline documentation. This practical book fills the gap, and because a developer wrote it, you get an objective look at SQLAlchemy's tools rather than an advocate's description of all the "cool" features. SQLAlchemy includes both a database server-independent SQL expression language and an object-relational mappe

  11. Prezi essentials

    CERN Document Server

    Sinclair, Domi

    2014-01-01

    If you want to learn Prezi, and specifically design within Prezi, this is the book for you. Perhaps you already know a bit about Prezi but have never used it, or perhaps you have used Prezi before but want to learn how to incorporate your own custom design elements. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic design concepts and the use of Prezi, but prior experience is not essential.

  12. Complement component 1, q subcomponent binding protein (C1QBP) in lipid rafts mediates hepatic metastasis of pancreatic cancer by regulating IGF-1/IGF-1R signaling.

    Science.gov (United States)

    Shi, Haojun; Fang, Winston; Liu, Minda; Fu, Deliang

    2017-10-01

    Pancreatic cancer shows a remarkable predilection for hepatic metastasis. Complement component 1, q subcomponent binding protein (C1QBP) can mediate growth factor-induced cancer cell chemotaxis and distant metastasis by activation of receptor tyrosine kinases. Coincidentally, insulin-like growth factor-1 (IGF-1) derived from the liver and cancer cells itself has been recognized as a critical inducer of hepatic metastasis. However, the mechanism underlying IGF-1-dependent hepatic metastasis of pancreatic cancer, in which C1QBP may be involved, remains unknown. In the study, we demonstrated a significant association between C1QBP expression and hepatic metastasis in patients with pancreatic cancer. IGF-1 induced the translocation of C1QBP from cytoplasm to lipid rafts and further drove the formation of CD44 variant 6 (CD44v6)/C1QBP complex in pancreatic cancer cells. C1QBP interacting with CD44v6 in lipid rafts promoted phosphorylation of IGF-1R and thus activated downstream PI3K and MAPK signaling pathways which mediated metastatic potential of pancreatic cancer cells including proliferation, apoptosis, invasion, adhesion and energy metabolism. Furthermore, C1QBP knockdown suppressed hepatic metastasis of pancreatic cancer cells in nude mice. We therefore conclude that C1QBP in lipid rafts serves a key regulator of IGF-1/IGF-1R-induced hepatic metastasis from pancreatic cancer. Our findings about C1QBP in lipid rafts provide a novel strategy to block IGF-1/IGF-1R signaling in pancreatic cancer and a reliable premise for more efficient combined modality therapies. © 2017 UICC.

  13. Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) essential oils and their main components to enhance itraconazole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains.

    Science.gov (United States)

    Scalas, Daniela; Mandras, Narcisa; Roana, Janira; Tardugno, Roberta; Cuffini, Anna Maria; Ghisetti, Valeria; Benvenuti, Stefania; Tullio, Vivian

    2018-05-03

    Cryptococcal infections, besides being a problem for immunocompromised patients, are occasionally being a problem for immunocompetent patients. In addition, the lower susceptibility of this yeast to azoles is a growing problem in health care. To date, there are very few molecules with any activity towards Cryptococcus neoformans, leading to heightened interest in finding new alternatives or adjuvants to conventional drugs for the treatment of mycosis caused by this yeast. Since the essential oils (EOs) are considered as a potential rich source of bioactive antimicrobial compounds, we evaluated the antifungal activity of Origanum vulgare (oregano), Pinus sylvestris (pine), and Thymus vulgaris (thyme red) EOs, and their components (α-pinene, carvacrol, thymol) compared with fluconazole, itraconazole, and voriconazole, against C.neoformans clinical strains. Then, we investigated the effect of EOs and components in combination with itraconazole. EO composition was analysed by Gas chromatography-mass spectrometry (GC-MS). A broth microdilution method was used to evaluate the susceptibility of C.neoformans to azoles, EOs and components. Checkerboard tests, isobolograms and time-kill assays were carried out for combination studies. Six C.neoformans isolates were susceptible to azoles, while one C.neoformans exhibited a reduced susceptibility to all tested azole drugs. All EOs exerted a good inhibitory activity against all C.neoformans strains. Pine EO was the most effective. Among components, thymol exerted the most remarkable activity. By checkerboard testing and isobolographic analysis, combinations of itraconazole with oregano, pine, or thyme EOs, and carvacrol were found to be synergistic (FICI≤0.5) against azole susceptible C.neoformans. Regarding the azole not susceptible C.neoformans strain, the synergistic effect with itraconazole was observed with thyme EO (chemotype: thymol 26.52%; carvacrol 7.85%), and carvacrol. Time-kill assays confirmed the synergistic

  14. Genetic evidence for an essential role of neuronally expressed IL-6 signal transducer gp130 in the induction and maintenance of experimentally induced mechanical hypersensitivity in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Constantin Cristina E

    2011-09-01

    Full Text Available Abstract Tenderness and mechanical allodynia are key symptoms of malignant tumor, inflammation and neuropathy. The proinflammatory cytokine interleukin-6 (IL-6 is causally involved in all three pathologies. IL-6 not only regulates innate immunity and inflammation but also causes nociceptor sensitization and hyperalgesia. In general and in most cell types including immune cells and sensory neurons, IL-6 binds soluble μ receptor subunits which heteromerizes with membrane bound IL-6 signal transducer gp130. In the present study, we used a conditional knock-out strategy to investigate the importance of signal transducer gp130 expressed in C nociceptors for the generation and maintenance of mechanical hypersensitivity. Nociceptors were sensitized to mechanical stimuli by experimental tumor and this nociceptor sensitization was preserved at later stages of the pathology in control mice. However, in mice with a conditional deletion of gp130 in Nav1.8 expressing nociceptors mechanical hypersensitivity by experimental tumor, nerve injury or inflammation recovery was not preserved in the maintenance phase and nociceptors exhibited normal mechanical thresholds comparable to untreated mice. Together, the results argue for IL-6 signal transducer gp130 as an essential prerequisite in nociceptors for long-term mechanical hypersensitivity associated with cancer, inflammation and nerve injury.

  15. Forward modeling of fluctuating dietary 13C signals to validate 13C turnover models of milk and milk components from a diet-switch experiment.

    Directory of Open Access Journals (Sweden)

    Alexander Braun

    Full Text Available Isotopic variation of food stuffs propagates through trophic systems. But, this variation is dampened in each trophic step, due to buffering effects of metabolic and storage pools. Thus, understanding of isotopic variation in trophic systems requires knowledge of isotopic turnover. In animals, turnover is usually quantified in diet-switch experiments in controlled conditions. Such experiments usually involve changes in diet chemical composition, which may affect turnover. Furthermore, it is uncertain if diet-switch based turnover models are applicable under conditions with randomly fluctuating dietary input signals. Here, we investigate if turnover information derived from diet-switch experiments with dairy cows can predict the isotopic composition of metabolic products (milk, milk components and feces under natural fluctuations of dietary isotope and chemical composition. First, a diet-switch from a C3-grass/maize diet to a pure C3-grass diet was used to quantify carbon turnover in whole milk, lactose, casein, milk fat and feces. Data were analyzed with a compartmental mixed effects model, which allowed for multiple pools and intra-population variability, and included a delay between feed ingestion and first tracer appearance in outputs. The delay for milk components and whole milk was ~12 h, and that of feces ~20 h. The half-life (t½ for carbon in the feces was 9 h, while lactose, casein and milk fat had a t½ of 10, 18 and 19 h. The (13C kinetics of whole milk revealed two pools, a fast pool with a t½ of 10 h (likely representing lactose, and a slower pool with a t½ of 21 h (likely including casein and milk fat. The diet-switch based turnover information provided a precise prediction (RMSE ~0.2 ‰ of the natural (13C fluctuations in outputs during a 30 days-long period when cows ingested a pure C3 grass with naturally fluctuating isotope composition.

  16. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    International Nuclear Information System (INIS)

    Si, Lina; Shi, Jin; Gao, Wenqun; Zheng, Min; Liu, Lingjuan; Zhu, Jing; Tian, Jie

    2014-01-01

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  17. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Si, Lina; Shi, Jin; Gao, Wenqun [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Zheng, Min [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Liu, Lingjuan; Zhu, Jing [Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Tian, Jie, E-mail: jietian@cqmu.edu.cn [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China)

    2014-07-18

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  18. Essential astrophysics

    CERN Document Server

    Lang, Kenneth R

    2013-01-01

    Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialized courses in the future. Astronomical examples are provide...

  19. Principal component and discriminant analyses as powerful tools to support taxonomic identification and their use for functional and phylogenetic signal detection of isolated fossil shark teeth.

    Directory of Open Access Journals (Sweden)

    Giuseppe Marramà

    Full Text Available Identifying isolated teeth of fossil selachians only based on qualitative characters is sometimes hindered by similarity in their morphology, resulting often in heated taxonomic debates. On the other hand, the use of quantitative characters (i.e. measurements has been often neglected or underestimated in characterization and identification of fossil teeth of selachians. Here we show that, employing a robust methodological protocol based on principal component and discriminant analyses on a sample of 175 isolated fossil teeth of lamniform sharks, the traditional morphometrics can be useful to support and complement the classic taxonomic identification made on qualitative features. Furthermore, we show that discriminant analysis can be successfully useful to assign indeterminate isolated shark teeth to a certain taxon. Finally, the degree of separation of the clusters might be used to predict functional and probably also phylogenetic signals in lamniform shark teeth. However, this needs to be tested in the future employing teeth of more extant and extinct lamniform sharks and it must be pointed out that this approach does not replace in any way the qualitative analysis, but it is intended to complement and support it.

  20. A Fusion Approach to Feature Extraction by Wavelet Decomposition and Principal Component Analysis in Transient Signal Processing of SAW Odor Sensor Array

    Directory of Open Access Journals (Sweden)

    Prashant SINGH

    2011-03-01

    Full Text Available This paper presents theoretical analysis of a new approach for development of surface acoustic wave (SAW sensor array based odor recognition system. The construction of sensor array employs a single polymer interface for selective sorption of odorant chemicals in vapor phase. The individual sensors are however coated with different thicknesses. The idea of sensor coating thickness variation is for terminating solvation and diffusion kinetics of vapors into polymer up to different stages of equilibration on different sensors. This is expected to generate diversity in information content of the sensors transient. The analysis is based on wavelet decomposition of transient signals. The single sensor transients have been used earlier for generating odor identity signatures based on wavelet approximation coefficients. In the present work, however, we exploit variability in diffusion kinetics due to polymer thicknesses for making odor signatures. This is done by fusion of the wavelet coefficients from different sensors in the array, and then applying the principal component analysis. We find that the present approach substantially enhances the vapor class separability in feature space. The validation is done by generating synthetic sensor array data based on well-established SAW sensor theory.

  1. Plastid-to-Nucleus Retrograde Signals Are Essential for the Expression of Nuclear Starch Biosynthesis Genes during Amyloplast Differentiation in Tobacco BY-2 Cultured Cells1[W][OA

    Science.gov (United States)

    Enami, Kazuhiko; Ozawa, Tomoki; Motohashi, Noriko; Nakamura, Masayuki; Tanaka, Kan; Hanaoka, Mitsumasa

    2011-01-01

    Amyloplasts, a subtype of plastid, are found in nonphotosynthetic tissues responsible for starch synthesis and storage. When tobacco (Nicotiana tabacum) Bright Yellow-2 cells are cultured in the presence of cytokinin instead of auxin, their plastids differentiate from proplastids to amyloplasts. In this program, it is well known that the expression of nucleus-encoded starch biosynthesis genes, such as ADP-Glucose Pyrophosphorylase (AgpS) and Granule-Bound Starch Synthase (GBSS), is specifically induced. In this study, we investigated the roles of plastid gene expression in amyloplast differentiation. Microarray analysis of plastid genes revealed that no specific transcripts were induced in amyloplasts. Nevertheless, amyloplast development accompanied with starch biosynthesis was drastically inhibited in the presence of plastid transcription/translation inhibitors. Surprisingly, the expression of nuclear AgpS and GBSS was significantly repressed by the addition of these inhibitors, suggesting that a plastid-derived signal(s) that reflects normal plastid gene expression was essential for nuclear gene expression. A series of experiments was performed to examine the effects of intermediates and inhibitors of tetrapyrrole biosynthesis, since some of the intermediates have been characterized as candidates for plastid-to-nucleus retrograde signals. Addition of levulinic acid, an inhibitor of tetrapyrrole biosynthesis, resulted in the up-regulation of nuclear AgpS and GBSS gene expression as well as starch accumulation, while the addition of heme showed opposite effects. Thus, these results indicate that plastid transcription and/or translation are required for normal amyloplast differentiation, regulating the expression of specific nuclear genes by unknown signaling mechanisms that can be partly mediated by tetrapyrrole intermediates. PMID:21771917

  2. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity

    Directory of Open Access Journals (Sweden)

    T.I. Omotayo

    2015-04-01

    Full Text Available The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump.

  3. HDInsight essentials

    CERN Document Server

    Nadipalli, Rajesh

    2013-01-01

    This book is a fast-paced guide full of step-by-step instructions on how to build a multi-node Hadoop cluster on Windows servers.If you are a data architect or developer who wants to understand how to transform your data using open source software, such as MapReduce, Hive, Pig and JavaScript, and also leverage the Windows infrastructure; this book is perfect for you. It is also ideal if you are part of a team who is starting or planning a Hadoop implementation, and you want to understand the key components of Hadoop, and how HDInsight provides added value in administration and reporting.

  4. Role of the two component signal transduction system CpxAR in conferring cefepime and chloramphenicol resistance in Klebsiella pneumoniae NTUH-K2044.

    Directory of Open Access Journals (Sweden)

    Vijaya Bharathi Srinivasan

    Full Text Available BACKGROUND: Klebsiella pneumoniae is a gram-negative, non-motile, facultative anaerobe belonging to the Enterobacteriaceae family of the γ-Proteobacteria class in the phylum Proteobacteria. Multidrug resistant K. pneumoniae have caused major therapeutic problems worldwide due to emergence of extended-spectrum β-lactamase producing strains. Two-component systems serve as a basic stimulus-response coupling mechanism to allow organisms to sense and respond to changes in many different environmental conditions including antibiotic stress. PRINCIPAL FINDINGS: In the present study, we investigated the role of an uncharacterized cpxAR operon in bacterial physiology and antimicrobial resistance by generating isogenic mutant (ΔcpxAR deficient in the CpxA/CpxR component derived from the hyper mucoidal K1 strain K. pneumoniae NTUH-K2044. The behaviour of ΔcpxAR was determined under hostile conditions, reproducing stresses encountered in the gastrointestinal environment and deletion resulted in higher sensitivity to bile, osmotic and acid stresses. The ΔcpxAR was more susceptible to β-lactams and chloramphenicol than the wild-type strain, and complementation restored the altered phenotypes. The relative change in expression of acrB, acrD, eefB efflux genes were decreased in cpxAR mutant as evidenced by qRT-PCR. Comparison of outer membrane protein profiles indicated a conspicuous difference in the knock out background. Gel shift assays demonstrated direct binding of CpxR(KP to promoter region of ompC(KP in a concentration dependent manner. CONCLUSIONS AND SIGNIFICANCE: The Cpx envelope stress response system is known to be activated by alterations in pH, membrane composition and misfolded proteins, and this systematic investigation reveals its direct involvement in conferring antimicrobial resistance against clinically significant antibiotics for the very first time. Overall results displayed in this report reflect the pleiotropic role of the Cpx

  5. Areca nut components stimulate ADAM17, IL-1α, PGE2 and 8-isoprostane production in oral keratinocyte: role of reactive oxygen species, EGF and JAK signaling.

    Science.gov (United States)

    Chang, Mei-Chi; Chan, Chiu-Po; Chen, Yi-Jane; Hsien, Hsiang-Chi; Chang, Ya-Ching; Yeung, Sin-Yuet; Jeng, Po-Yuan; Cheng, Ru-Hsiu; Hahn, Liang-Jiunn; Jeng, Jiiang-Huei

    2016-03-29

    Betel quid (BQ) chewing is an etiologic factor of oral submucous fibrosis (OSF) and oral cancer. There are 600 million BQ chewers worldwide. The mechanisms for the toxic and inflammatory responses of BQ are unclear. In this study, both areca nut (AN) extract (ANE) and arecoline stimulated epidermal growth factor (EGF) and interleukin-1α (IL-1α) production of gingival keratinocytes (GKs), whereas only ANE can stimulate a disintegrin and metalloproteinase 17 (ADAM17), prostaglandin E2 (PGE2) and 8-isoprostane production. ANE-induced EGF production was inhibited by catalase. Addition of anti-EGF neutralizing antibody attenuated ANE-induced cyclooxygenase-2 (COX-2), mature ADAM9 expression and PGE2 and 8-isoprostane production. ANE-induced IL-1α production was inhibited by catalase, anti-EGF antibody, PD153035 (EGF receptor antagonist) and U0126 (MEK inhibitor) but not by α-naphthoflavone (cytochrome p450-1A1 inhibitor). ANE-induced ADAM17 production was inhibited by pp2 (Src inhibitor), U0126, α-naphthoflavone and aspirin. AG490 (JAK inhibitor) prevented ANE-stimulated ADAM17, IL-1α, PGE2 production, COX-2 expression, ADAM9 maturation, and the ANE-induced decline in keratin 5 and 14, but showed little effect on cdc2 expression and EGF production. Moreover, ANE-induced 8-isoprostane production by GKs was inhibited by catalase, anti-EGF antibody, AG490, pp2, U0126, α-naphthoflavone, Zinc protoporphyrin (ZnPP) and aspirin. These results indicate that AN components may involve in BQ-induced oral cancer by induction of reactive oxygen species, EGF/EGFR, IL-1α, ADAMs, JAK, Src, MEK/ERK, CYP1A1, and COX signaling pathways, and the aberration of cell cycle and differentiation. Various blockers against ROS, EGF, IL-1α, ADAM, JAK, Src, MEK, CYP1A1, and COX can be used for prevention or treatment of BQ chewing-related diseases.

  6. Essential Oils and Antifungal Activity

    Science.gov (United States)

    Coppola, Raffaele; De Feo, Vincenzo

    2017-01-01

    Since ancient times, folk medicine and agro-food science have benefitted from the use of plant derivatives, such as essential oils, to combat different diseases, as well as to preserve food. In Nature, essential oils play a fundamental role in protecting the plant from biotic and abiotic attacks to which it may be subjected. Many researchers have analyzed in detail the modes of action of essential oils and most of their components. The purpose of this brief review is to describe the properties of essential oils, principally as antifungal agents, and their role in blocking cell communication mechanisms, fungal biofilm formation, and mycotoxin production. PMID:29099084

  7. Structural characterization of the heme-based oxygen sensor, AfGcHK, its interactions with the cognate response regulator, and their combined mechanism of action in a bacterial two-component signaling system

    Czech Academy of Sciences Publication Activity Database

    Stráňava, M.; Martínek, V.; Man, Petr; Fojtíková, V.; Kavan, Daniel; Vaněk, O.; Shimizu, T.; Martínková, M.

    2016-01-01

    Roč. 84, č. 10 (2016), s. 1375-1389 ISSN 1097-0134 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : heme-based oxygen sensor * histidine kinase * two-component signal transduction system Subject RIV: CE - Biochemistry

  8. Essential parameters in eddy current inspection

    International Nuclear Information System (INIS)

    Stepinski, T.

    2000-05-01

    Our aim was to qualitatively analyze a number of variables that may affect the result of eddy current (EC) inspection but because of various reasons are not considered as essential in common practice. In the report we concentrate on such variables that can vary during or between inspections but their influence is not determined during routine calibrations. We present a qualitative analysis of the influence of the above-mentioned variables on the ability to detect and size flaws using mechanized eddy current testing (ET). ET employs some type of coil or probe, sensing magnetic flux generated by eddy currents induced in the tested specimen. An amplitude-phase modulated signal (with test frequency f0 ) from the probe is sensed by the EC instrument. The amplitude-phase modulated signal is amplified and demodulated in phase-sensitive detectors removing carrier frequency f0 from the signal. The detectors produce an in-phase and a quadrature component of the signal defining it as a point in the impedance plane. Modern instruments are provided with a screen presenting the demodulated and filtered signal in complex plane. We focus on such issues, related to the EC equipment as, probe matching, distortion introduced by phase discriminators and signal filters, and the influence of probe resolution and lift-off on sizing. The influence of different variables is investigated by means of physical reasoning employing theoretical models and demonstrated using simulated and real EC signals. In conclusion, we discuss the way in which the investigated variables may affect the result of ET. We also present a number of practical recommendations for the users of ET and indicate the areas that are to be further analyzed

  9. The adaptor molecule signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is essential in mechanisms involving the Fyn tyrosine kinase for induction and progression of collagen-induced arthritis.

    Science.gov (United States)

    Zhong, Ming-Chao; Veillette, André

    2013-11-01

    Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types.

  10. Frizzled 2 is a key component in the regulation of TOR signaling-mediated egg production in the mosquito Aedes aegypti.

    Science.gov (United States)

    Weng, Shih-Che; Shiao, Shin-Hong

    2015-06-01

    The Wnt signaling pathway was first discovered as a key event in embryonic development and cell polarity in Drosophila. Recently, several reports have shown that Wnt stimulates translation and cell growth by activating the mTOR pathway in mammals. Previous studies have demonstrated that the Target of Rapamycin (TOR) pathway plays an important role in mosquito vitellogenesis. However, the interactions between these two pathways are poorly understood in the mosquito. In this study, we hypothesized that factors from the TOR and Wnt signaling pathways interacted synergistically in mosquito vitellogenesis. Our results showed that silencing Aedes aegypti Frizzled 2 (AaFz2), a transmembrane receptor of the Wnt signaling pathway, decreased the fecundity of mosquitoes. We showed that AaFz2 was highly expressed at the transcriptional and translational levels in the female mosquito 6 h after a blood meal, indicating amino acid-stimulated expression of AaFz2. Notably, the phosphorylation of S6K, a downstream target of the TOR pathway, and the expression of vitellogenin were inhibited in the absence of AaFz2. A direct link was found in this study between Wnt and TOR signaling in the regulation of mosquito reproduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A novel gene's role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior-posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos.

    Science.gov (United States)

    Khadka, Anita; Martínez-Bartolomé, Marina; Burr, Stephanie D; Range, Ryan C

    2018-01-01

    The anterior neuroectoderm (ANE) in many deuterostome embryos (echinoderms, hemichordates, urochordates, cephalochordates, and vertebrates) is progressively restricted along the anterior-posterior axis to a domain around the anterior pole. In the sea urchin embryo, three integrated Wnt signaling branches (Wnt/β-catenin, Wnt/JNK, and Wnt/PKC) govern this progressive restriction process, which begins around the 32- to 60-cell stage and terminates by the early gastrula stage. We previously have established that several secreted Wnt modulators of the Dickkopf and secreted Frizzled-related protein families (Dkk1, Dkk3, and sFRP-1/5) are expressed within the ANE and play important roles in modulating the Wnt signaling network during this process. In this study, we use morpholino and dominant-negative interference approaches to characterize the function of a novel Frizzled-related protein, secreted Frizzled-related protein 1 (sFRP-1), during ANE restriction. sFRP-1 appears to be related to a secreted Wnt modulator, sFRP3/4, that is essential to block Wnt signaling and establish the ANE in vertebrates. Here, we show that the sea urchin sFRP3/4 orthologue is not expressed during ANE restriction in the sea urchin embryo. Instead, our results indicate that ubiquitously expressed maternal sFRP-1 and Fzl1/2/7 signaling act together as early as the 32- to 60-cell stage to antagonize the ANE restriction mechanism mediated by Wnt/β-catenin and Wnt/JNK signaling. Then, starting from the blastula stage, Fzl5/8 signaling activates zygotic sFRP-1 within the ANE territory, where it works with the secreted Wnt antagonist Dkk1 (also activated by Fzl5/8 signaling) to antagonize Wnt1/Wnt8-Fzl5/8-JNK signaling in a negative feedback mechanism that defines the outer ANE territory boundary. Together, these data indicate that maternal and zygotic sFRP-1 protects the ANE territory by antagonizing the Wnt1/Wnt8-Fzl5/8-JNK signaling pathway throughout ANE restriction, providing precise

  12. A novel gene’s role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior–posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos

    Directory of Open Access Journals (Sweden)

    Anita Khadka

    2018-01-01

    Full Text Available Abstract The anterior neuroectoderm (ANE in many deuterostome embryos (echinoderms, hemichordates, urochordates, cephalochordates, and vertebrates is progressively restricted along the anterior–posterior axis to a domain around the anterior pole. In the sea urchin embryo, three integrated Wnt signaling branches (Wnt/β-catenin, Wnt/JNK, and Wnt/PKC govern this progressive restriction process, which begins around the 32- to 60-cell stage and terminates by the early gastrula stage. We previously have established that several secreted Wnt modulators of the Dickkopf and secreted Frizzled-related protein families (Dkk1, Dkk3, and sFRP-1/5 are expressed within the ANE and play important roles in modulating the Wnt signaling network during this process. In this study, we use morpholino and dominant-negative interference approaches to characterize the function of a novel Frizzled-related protein, secreted Frizzled-related protein 1 (sFRP-1, during ANE restriction. sFRP-1 appears to be related to a secreted Wnt modulator, sFRP3/4, that is essential to block Wnt signaling and establish the ANE in vertebrates. Here, we show that the sea urchin sFRP3/4 orthologue is not expressed during ANE restriction in the sea urchin embryo. Instead, our results indicate that ubiquitously expressed maternal sFRP-1 and Fzl1/2/7 signaling act together as early as the 32- to 60-cell stage to antagonize the ANE restriction mechanism mediated by Wnt/β-catenin and Wnt/JNK signaling. Then, starting from the blastula stage, Fzl5/8 signaling activates zygotic sFRP-1 within the ANE territory, where it works with the secreted Wnt antagonist Dkk1 (also activated by Fzl5/8 signaling to antagonize Wnt1/Wnt8–Fzl5/8–JNK signaling in a negative feedback mechanism that defines the outer ANE territory boundary. Together, these data indicate that maternal and zygotic sFRP-1 protects the ANE territory by antagonizing the Wnt1/Wnt8–Fzl5/8–JNK signaling pathway throughout ANE

  13. Development of Adaptive AE Signal Pattern Recognition Program and Application to Classification of Defects in Metal Contact Regions of Rotating Component

    International Nuclear Information System (INIS)

    Lee, K. Y.; Lee, C. M.; Kim, J. S.

    1996-01-01

    In this study, the artificial defects in rotary compressor are classified using pattern recognition of acoustic emission signal. For this purpose the computer program is developed. The neural network classifier is compared with the statistical classifier such as the linear discriminant function classifier and empirical Bayesian classifier. It is concluded that the former is better. It is possible to acquire the recognition rate of above 99% by neural network classifier

  14. Noise Reduction, Atmospheric Pressure Admittance Estimation and Long-Period Component Extraction in Time-Varying Gravity Signals Using Ensemble Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Linsong Wang

    2015-01-01

    Full Text Available Time-varying gravity signals, with their nonlinear, non-stationary and multi-scale characteristics, record the physical responses of various geodynamic processes and consist of a blend of signals with various periods and amplitudes, corresponding to numerous phenomena. Superconducting gravimeter (SG records are processed in this study using a multi-scale analytical method and corrected for known effects to reduce noise, to study geodynamic phenomena using their gravimetric signatures. Continuous SG (GWR-C032 gravity and barometric data are decomposed into a series of intrinsic mode functions (IMFs using the ensemble empirical mode decomposition (EEMD method, which is proposed to alleviate some unresolved issues (the mode mixing problem and the end effect of the empirical mode decomposition (EMD. Further analysis of the variously scaled signals is based on a dyadic filter bank of the IMFs. The results indicate that removing the high-frequency IMFs can reduce the natural and man-made noise in the data, which are caused by electronic device noise, Earth background noise and the residual effects of pre-processing. The atmospheric admittances based on frequency changes are estimated from the gravity and the atmospheric pressure IMFs in various frequency bands. These time- and frequency-dependent admittance values can be used effectively to improve the atmospheric correction. Using the EEMD method as a filter, the long-period IMFs are extracted from the SG time-varying gravity signals spanning 7 years. The resulting gravity residuals are well correlated with the gravity effect caused by the _ polar motion after correcting for atmospheric effects.

  15. Spectral components of laser Doppler flowmetry signals recorded in healthy and type 1 diabetic subjects at rest and during a local and progressive cutaneous pressure application: scalogram analyses

    International Nuclear Information System (INIS)

    Humeau, Anne; Koitka, Audrey; Abraham, Pierre; Saumet, Jean-Louis; L'Huillier, Jean-Pierre

    2004-01-01

    A significant transient increase in laser Doppler flowmetry (LDF) signals is observed in response to a local and progressive cutaneous pressure application in healthy subjects. This reflex may be impaired in diabetic patients. The work presents a signal processing providing the clarification of this phenomenon. Scalogram analyses of LDF signals recorded at rest and during a local and progressive cutaneous pressure application are performed on healthy and type 1 diabetic subjects. Three frequency bands, corresponding to myogenic, neurogenic and endothelial related metabolic activities, are studied. The results show that, at rest, the scalogram energy of each frequency band is significantly lower for diabetic patients than for healthy subjects, but the scalogram relative energies do not show any statistical difference between the two groups. Moreover, the neurogenic and endothelial related metabolic activities are significantly higher during the progressive pressure than at rest, in healthy and diabetic subjects. However, the relative contribution of the endothelial related metabolic activity is significantly higher during the progressive pressure than at rest, in the interval 200-400 s following the beginning of the pressure application, but only for healthy subjects. These results may improve knowledge on cutaneous microvascular responses to injuries or local pressures initiating diabetic complications

  16. Spectral components of laser Doppler flowmetry signals recorded in healthy and type 1 diabetic subjects at rest and during a local and progressive cutaneous pressure application: scalogram analyses

    Energy Technology Data Exchange (ETDEWEB)

    Humeau, Anne [Groupe ISAIP-ESAIP, 18 rue du 8 mai 1945, BP 80022, 49180 Saint Barthelemy d' Anjou cedex (France); Koitka, Audrey [Laboratoire de Physiologie et d' Explorations Vasculaires, Centre Hospitalier Universitaire d' Angers, 49033 Angers cedex 01 (France); Abraham, Pierre [Laboratoire de Physiologie et d' Explorations Vasculaires, Centre Hospitalier Universitaire d' Angers, 49033 Angers cedex 01 (France); Saumet, Jean-Louis [Laboratoire de Physiologie et d' Explorations Vasculaires, Centre Hospitalier Universitaire d' Angers, 49033 Angers cedex 01 (France); L' Huillier, Jean-Pierre [Ecole Nationale Superieure d' Arts et Metiers (ENSAM), Laboratoire Procedes-Materiaux-Instrumentation (LPMI), 2 boulevard du Ronceray, BP 3525, 49035 Angers cedex (France)

    2004-09-07

    A significant transient increase in laser Doppler flowmetry (LDF) signals is observed in response to a local and progressive cutaneous pressure application in healthy subjects. This reflex may be impaired in diabetic patients. The work presents a signal processing providing the clarification of this phenomenon. Scalogram analyses of LDF signals recorded at rest and during a local and progressive cutaneous pressure application are performed on healthy and type 1 diabetic subjects. Three frequency bands, corresponding to myogenic, neurogenic and endothelial related metabolic activities, are studied. The results show that, at rest, the scalogram energy of each frequency band is significantly lower for diabetic patients than for healthy subjects, but the scalogram relative energies do not show any statistical difference between the two groups. Moreover, the neurogenic and endothelial related metabolic activities are significantly higher during the progressive pressure than at rest, in healthy and diabetic subjects. However, the relative contribution of the endothelial related metabolic activity is significantly higher during the progressive pressure than at rest, in the interval 200-400 s following the beginning of the pressure application, but only for healthy subjects. These results may improve knowledge on cutaneous microvascular responses to injuries or local pressures initiating diabetic complications.

  17. The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress

    OpenAIRE

    Schelder, S.; Zaade, D.; Litsanov, B.; Bott, M.; Brocker, M.

    2011-01-01

    Copper is an essential cofactor for many enzymes but at high concentrations it is toxic for the cell. Copper ion concentrations ≥50 µM inhibited growth of Corynebacterium glutamicum. The transcriptional response to 20 µM Cu(2+) was studied using DNA microarrays and revealed 20 genes that showed a ≥ 3-fold increased mRNA level, including cg3281-cg3289. Several genes in this genomic region code for proteins presumably involved in the adaption to copper-induced stress, e. g. a multicopper oxidas...

  18. Hsp90 inhibition differentially destabilises MAP kinase and TGF-beta signalling components in cancer cells revealed by kinase-targeted chemoproteomics

    International Nuclear Information System (INIS)

    Haupt, Armin; Dahl, Andreas; Lappe, Michael; Lehrach, Hans; Gonzalez, Cayetano; Drewes, Gerard; Lange, Bodo MH; Joberty, Gerard; Bantscheff, Marcus; Fröhlich, Holger; Stehr, Henning; Schweiger, Michal R; Fischer, Axel; Kerick, Martin; Boerno, Stefan T

    2012-01-01

    The heat shock protein 90 (Hsp90) is required for the stability of many signalling kinases. As a target for cancer therapy it allows the simultaneous inhibition of several signalling pathways. However, its inhibition in healthy cells could also lead to severe side effects. This is the first comprehensive analysis of the response to Hsp90 inhibition at the kinome level. We quantitatively profiled the effects of Hsp90 inhibition by geldanamycin on the kinome of one primary (Hs68) and three tumour cell lines (SW480, U2OS, A549) by affinity proteomics based on immobilized broad spectrum kinase inhibitors ('kinobeads'). To identify affected pathways we used the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway classification. We combined Hsp90 and proteasome inhibition to identify Hsp90 substrates in Hs68 and SW480 cells. The mutational status of kinases from the used cell lines was determined using next-generation sequencing. A mutation of Hsp90 candidate client RIPK2 was mapped onto its structure. We measured relative abundances of > 140 protein kinases from the four cell lines in response to geldanamycin treatment and identified many new potential Hsp90 substrates. These kinases represent diverse families and cellular functions, with a strong representation of pathways involved in tumour progression like the BMP, MAPK and TGF-beta signalling cascades. Co-treatment with the proteasome inhibitor MG132 enabled us to classify 64 kinases as true Hsp90 clients. Finally, mutations in 7 kinases correlate with an altered response to Hsp90 inhibition. Structural modelling of the candidate client RIPK2 suggests an impact of the mutation on a proposed Hsp90 binding domain. We propose a high confidence list of Hsp90 kinase clients, which provides new opportunities for targeted and combinatorial cancer treatment and diagnostic applications

  19. CB1 Receptor-Mediated Signaling Underlies the Hippocampal Synaptic, Learning and Memory Deficits Following Treatment with JWH-081, a New Component of Spice/K2 Preparations

    OpenAIRE

    Basavarajappa, Balapal S.; Subbanna, Shivakumar

    2014-01-01

    Recently, synthetic cannabinoids have been sprayed onto plant material, which is subsequently packaged and sold as “Spice” or “K2” to mimic the effects of marijuana. A recent report identified several synthetic additives in samples of “Spice/K2”, including JWH-081, a synthetic ligand for the cannabinoid receptor 1 (CB1). The deleterious effects of JWH-081 on brain function are not known, particularly on CB1 signaling, synaptic plasticity, learning and memory. Here, we evaluated the effects of...

  20. An SVM-Based Classifier for Estimating the State of Various Rotating Components in Agro-Industrial Machinery with a Vibration Signal Acquired from a Single Point on the Machine Chassis

    Directory of Open Access Journals (Sweden)

    Ruben Ruiz-Gonzalez

    2014-11-01

    Full Text Available The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels.

  1. Degenerative Suspensory Ligament Desmitis (DSLD in Peruvian Paso Horses Is Characterized by Altered Expression of TGFβ Signaling Components in Adipose-Derived Stromal Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Wei Luo

    Full Text Available Equine degenerative suspensory ligament desmitis (DSLD in Peruvian Paso horses typically presents at 7-15 years and is characterized by lameness, focal disorganization of collagen fibrils, and chondroid deposition in the body of the ligament. With the aim of developing a test for disease risk (that can be used to screen horses before breeding we have quantified the expression of 76 TGFβ-signaling target genes in adipose-derived stromal fibroblasts (ADSCs from six DSLD-affected and five unaffected Paso horses. Remarkably, 35 of the genes showed lower expression (p<0.05 in cells from DSLD-affected animals and this differential was largely eliminated by addition of exogenous TGFβ1. Moreover, TGFβ1-mediated effects on expression were prevented by the TGFβR1/2 inhibitor LY2109761, showing that the signaling was via a TGFβR1/2 complex. The genes affected by the pathology indicate that it is associated with a generalized metabolic disturbance, since some of those most markedly altered in DSLD cells (ATF3, MAPK14, ACVRL1 (ALK1, SMAD6, FOS, CREBBP, NFKBIA, and TGFBR2 represent master-regulators in a wide range of cellular metabolic responses.

  2. Membrane-associated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signaling

    Science.gov (United States)

    Jaiswal, Dinesh Kumar; Mishra, Poonam; Subba, Pratigya; Rathi, Divya; Chakraborty, Subhra; Chakraborty, Niranjan

    2014-02-01

    Dehydration affects almost all the physiological processes including those that result in the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which in turn elicits a highly conserved signaling, the unfolded protein response (UPR). We investigated the dehydration-responsive membrane-associated proteome of a legume, chickpea, by 2-DE coupled with mass spectrometry. A total of 184 protein spots were significantly altered over a dehydration treatment of 120 h. Among the differentially expressed proteins, a non-canonical SUN domain protein, designated CaSUN1 (Cicer arietinum Sad1/UNC-84), was identified. CaSUN1 localized to the nuclear membrane and ER, besides small vacuolar vesicles. The transcripts were downregulated by both abiotic and biotic stresses, but not by abscisic acid treatment. Overexpression of CaSUN1 conferred stress tolerance in transgenic Arabidopsis. Furthermore, functional complementation of the yeast mutant, slp1, could rescue its growth defects. We propose that the function of CaSUN1 in stress response might be regulated via UPR signaling.

  3. The composition of the essential oil in the leaves of coleus-aromaticus bentham and their importance as a component of the species antiaphthosae ph-ned-ed-v

    NARCIS (Netherlands)

    Bos, R; Hendriks, H; van Os, FHL

    The leaves of Coleus aromaticus Bentham were used in the East Indian archipelago, mainly in cases of aphthous stomatitis. For this purpose the Dutch Pharmacopoeia Ed. v introduced the Species antiaphthosae withColeus leaves as an active component, because of their antiseptic qualities. Older

  4. Growth regulating properties of isoprene and isoprenoid-based essential oils.

    Science.gov (United States)

    Jones, Andrew Maxwell P; Shukla, Mukund R; Sherif, Sherif M; Brown, Paula B; Saxena, Praveen K

    2016-01-01

    Essential oils have growth regulating properties comparable to the well-documented methyl jasmonate and may be involved in localized and/or airborne plant communication. Aromatic plants employ large amounts of resources to produce essential oils. Some essential oils are known to contain compounds with plant growth regulating activities. However, the potential capacity of essential oils as airborne molecules able to modulate plant growth/development has remained uninvestigated. Here, we demonstrate that essential oils from eight taxonomically diverse plants applied in their airborne state inhibited auxin-induced elongation of Pisum sativum hypocotyls and Avena sativa coleoptiles. This response was also observed using five monoterpenes commonly found in essential oils as well as isoprene, the basic building block of terpenes. Upon transfer to ambient conditions, A. sativa coleoptiles resumed elongation, demonstrating an antagonistic relationship rather than toxicity. Inclusion of essential oils, monoterpenes, or isoprene into the headspace of culture vessels induced abnormal cellular growth along hypocotyls of Arabidopsis thaliana. These responses were also elicited by methyl jasmonate (MeJA); however, where methyl jasmonate inhibited root growth essential oils did not. Gene expression studies in A. thaliana also demonstrated differences between the MeJA and isoprenoid responses. This series of experiments clearly demonstrate that essential oils and their isoprenoid components interact with endogenous plant growth regulators when applied directly or as volatile components in the headspace. The similarities between isoprenoid and MeJA responses suggest that they may act in plant defence signalling. While further studies are needed to determine the ecological and evolutionary significance, the results of this study and the specialized anatomy associated with aromatic plants suggest that essential oils may act as airborne signalling molecules.

  5. CB1 receptor-mediated signaling underlies the hippocampal synaptic, learning, and memory deficits fo