WorldWideScience

Sample records for erosion prediction project

  1. Geospatial application of the Water Erosion Prediction Project (WEPP) Model

    Science.gov (United States)

    D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot

    2011-01-01

    The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltration, runoff, ET) component, which subsequently impacts the rest of the...

  2. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    Science.gov (United States)

    D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot

    2013-01-01

    At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillslopes and channels can be created and simulated with this GUI. However,...

  3. Adapting the Water Erosion Prediction Project (WEPP) model for forest applications

    Science.gov (United States)

    Shuhui Dun; Joan Q. Wu; William J. Elliot; Peter R. Robichaud; Dennis C. Flanagan; James R. Frankenberger; Robert E. Brown; Arthur C. Xu

    2009-01-01

    There has been an increasing public concern over forest stream pollution by excessive sedimentation due to natural or human disturbances. Adequate erosion simulation tools are needed for sound management of forest resources. The Water Erosion Prediction Project (WEPP) watershed model has proved useful in forest applications where Hortonian flow is the major form of...

  4. Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin

    Science.gov (United States)

    Erin S. Brooks; Mariana Dobre; William J. Elliot; Joan Q. Wu; Jan Boll

    2016-01-01

    Forest managers need methods to evaluate the impacts of management at the watershed scale. The Water Erosion Prediction Project (WEPP) has the ability to model disturbed forested hillslopes, but has difficulty addressing some of the critical processes that are important at a watershed scale, including baseflow and water yield. In order to apply WEPP to...

  5. Evaluating water erosion prediction project model using Cesium-137-derived spatial soil redistribution data

    Science.gov (United States)

    The lack of spatial soil erosion data has been a major constraint on the refinement and application of physically based erosion models. Spatially distributed models can only be thoroughly validated with distributed erosion data. The fallout cesium-137 has been widely used to generate spatial soil re...

  6. NASA's Evolutionary Xenon Thruster (NEXT) Project Qualification Propellant Throughput Milestone: Performance, Erosion, and Thruster Service Life Prediction After 450 kg

    Science.gov (United States)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 28,500 hr of operation and processed 466 kg of xenon throughput--more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  7. Fuels planning: science synthesis and integration; environmental consequences fact sheet 12: Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool

    Science.gov (United States)

    William Elliot; David Hall

    2005-01-01

    The Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool was developed to estimate sediment generated by fuel management activities. WEPP FuMe estimates sediment generated for 12 fuel-related conditions from a single input. This fact sheet identifies the intended users and uses, required inputs, what the model does, and tells the user how to obtain the...

  8. The development of U. S. soil erosion prediction and modeling

    Directory of Open Access Journals (Sweden)

    John M. Laflen

    2013-09-01

    Full Text Available Soil erosion prediction technology began over 70 years ago when Austin Zingg published a relationship between soil erosion (by water and land slope and length, followed shortly by a relationship by Dwight Smith that expanded this equation to include conservation practices. But, it was nearly 20 years before this work's expansion resulted in the Universal Soil Loss Equation (USLE, perhaps the foremost achievement in soil erosion prediction in the last century. The USLE has increased in application and complexity, and its usefulness and limitations have led to the development of additional technologies and new science in soil erosion research and prediction. Main among these new technologies is the Water Erosion Prediction Project (WEPP model, which has helped to overcome many of the shortcomings of the USLE, and increased the scale over which erosion by water can be predicted. Areas of application of erosion prediction include almost all land types: urban, rural, cropland, forests, rangeland, and construction sites. Specialty applications of WEPP include prediction of radioactive material movement with soils at a superfund cleanup site, and near real-time daily estimation of soil erosion for the entire state of Iowa.

  9. [Anti-erosion effect of hedgerows in hillside croplands of Danjiangkou based on the evaluation with water erosion prediction project (WEPP) model].

    Science.gov (United States)

    Xiong, Qin-xue; Liu, Zhang-yong; Yao, Gui-zhi; Li, Ben-zhou

    2010-09-01

    Based on the data of field experiments on the hillside croplands of Danjiangkou, Hubei Province of China, the input files of crop characters, management measures, slope gradient and length, and soil properties for running WEPP model (Hillslope version) were established. Combining with the local weather data, a simulation study with the model was made on the runoff and soil loss of the croplands protected by four kinds of hedgerows (Amorpha fruticosa, Lonicera japonica, Hemerocallis fulva, and Poa sphondylodes) in Danjiangkou area. The resulted showed that WEPP model could accurately simulate the anti-erosion effect of hedgerows in hillside farmlands in the study area. Using this model not only reduced test number, but also saved time and effort, being able to provide scientific basis for the popularization and application of hedgerows. Among the four hedgerows, Amorpha fruticosa had the best anti-erosion effect. According to the simulation, the optimal planting density of A. fruticosa hedgerows in the farmlands was 1 m x 15 m at slope gradient 5 degrees, 1 m x 10 m at slope gradient 15 degrees, and 1 m x 3 m at slope gradient 25 degrees.

  10. Comparison of WEPP and APEX runoff and erosion prediction at field scale in Goodwater Creek Experimental Watershed

    Science.gov (United States)

    The Water Erosion Prediction Project (WEPP) and the Agricultural Policy/Environmental eXtender (APEX) are process-based models that can predict spatial and temporal distributions of erosion for hillslopes and watersheds. This study applies the WEPP model to predict runoff and erosion for a 35-ha fie...

  11. Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation

    Science.gov (United States)

    Peters, A.; Lantermann, U.; el Moctar, O.

    2015-12-01

    The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.

  12. Cavitation erosion prediction on Francis turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, P.; Farhat, M.; Simoneau, R.; Lavigne, P. [Hydro-Quebec, Montreal, PQ (Canada); Pereira, F.; Dupont, P.; Avellan, F.; Caron, J.F. [IMHEF/EPFL, (France); Dorey, J.M.; Archer, A. [Electricite de France (EDF), 92 - Clamart (France). Dir. des Etudes et Recherches; and others

    1997-12-31

    On-board aggressiveness measurement methods were tested on a severely eroded prototype blade of a 266 MW Francis turbine: pressure, pit counting, DECER electrochemical and vibration measurements. The test program provided understanding of the heterogeneous erosion distribution of the prototype blades and quantitative data for comparison in subsequent tests on the model of the machine. Model tests and flow analysis were also performed, to detect cavitation on a Francis turbine model. The results are compared to those obtained on the prototype measurements. The model used for that study is built on the basis of a geometrical recovery of one of the most eroded blade of the prototype. Different methods were investigated to predict cavitation erosion on Francis turbines from model. They are based on measurement of pitting, pressure fluctuations and acceleration. The methods proposed are suitable to measure cavitation aggressiveness on model and on prototype, and that the level on the model is several orders of magnitude smaller than on the prototype. (author) 18 refs.

  13. The Current State of Predicting Furrow Irrigation Erosion

    Science.gov (United States)

    There continues to be a need to predict furrow irrigation erosion to estimate on- and off-site impacts of irrigation management. The objective of this paper is to review the current state of furrow erosion prediction technology considering four models: SISL, WEPP, WinSRFR and APEX. SISL is an empiri...

  14. Projected climate change impacts in rainfall erosivity over Brazil

    Science.gov (United States)

    Climate change projections and historical analyses have shown alterations in global precipitation dynamics, and therefore, it is also expected that there will be associated changes to soil erosion rates. The impacts of climate change on soil erosion may bring serious economic, social, and environmen...

  15. Understanding and Predicting Gun Barrel Erosion

    National Research Council Canada - National Science Library

    Johnston, Ian A

    2005-01-01

    The Australian Defence Force will soon have to contend with gun barrel erosion issues arising from the use of new low-vulnerability gun propellants, the acquisition of new ammunition and gun systems...

  16. Water erosion risk prediction in eucalyptus plantations

    Directory of Open Access Journals (Sweden)

    Mayesse Aparecida da Silva

    2014-04-01

    Full Text Available Eucalyptus plantations are normally found in vulnerable ecosystems such as steep slope, soil with low natural fertility and lands that were degraded by agriculture. The objective of this study was to obtain Universal Soil Loss Equation (USLE factors and use them to estimate water erosion risk in regions with eucalyptus planted. The USLE factors were obtained in field plots under natural rainfall in the Rio Doce Basin, MG, Brazil, and the model applied to assess erosion risk using USLE in a Geographic Information System. The study area showed rainfall-runoff erosivity values from 10,721 to 10,642 MJ mm ha-1 h-1 yr-1. Some soils (Latosols had very low erodibility values (2.0 x 10-4 and 1.0 x 10-4t h MJ-1 mm-1, the topographic factor ranged from 0.03 to 10.57 and crop and management factor values obtained for native forest, eucalyptus and planted pasture were 0.09, 0.12 and 0.22, respectively. Water erosion risk estimates for current land use indicated that the areas where should receive more attention were mainly areas with greater topographic factors and those with Cambisols. Planning of forestry activities in this region should consider implementation of other conservation practices beyond those already used, reducing areas with a greater risk of soil erosion and increasing areas with very low risk.

  17. Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility

    Science.gov (United States)

    Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila

    2018-02-01

    The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.

  18. Theoretical model for cavitation erosion prediction in centrifugal pump impeller

    International Nuclear Information System (INIS)

    Rayan, M.A.; Mahgob, M.M.; Mostafa, N.H.

    1990-01-01

    Cavitation is known to have great effects on pump hydraulic and mechanical characteristics. These effects are mainly described by deviation in pump performance, increasing vibration and noise level as well as erosion of blade and casing materials. In the present work, only the hydrodynamic aspect of cavitation was considered. The efforts were directed toward the study of cavitation inception, cavity mechanics and material erosion in order to clarify the macrohydrodynamic aspects of cavitation erosive wear in real machines. As a result of this study, it was found that cavitation damage can be predicted from model data. The obtained theoretical results show good agreement with the experimental results obtained in this investigation and with results of some other investigations. The application of the findings of this work will help the design engineer in predicting the erosion rate, according to the different operating conditions. (author)

  19. Erosion prediction for alpine slopes: a symbiosis of remote sensing and a physical based erosion model

    Science.gov (United States)

    Kaiser, Andreas; Neugirg, Fabian; Haas, Florian; Schindewolf, Marcus; Schmidt, Jürgen

    2014-05-01

    As rainfall simulations represent an established tool for quantifying soil detachment on cultivated area in lowlands and low mountain ranges, they are rarely used on steep slopes high mountain ranges. Still this terrain represents productive sediment sources of high morphodynamic. A quantitative differentiation between gravitationally and fluvially relocated material reveals a major challenge in understanding erosion on steep slopes: does solifluction as a result of melting in spring or heavy convective rainstorms during summer cause the essential erosion processes? This paper aims to answer this question by separating gravitational mass movement (solifluction, landslides, mudflow and needle ice) and runoff-induced detachment. First simulated rainstorm experiments are used to assess the sediment production on bare soil on a strongly inclined plot (1 m², 42°) in the northern limestone Alps. Throughout precipitation experiments runoff and related suspended sediments were quantified. In order to enlarge slope length virtually to around 20 m a runoff feeding device is additionally implemented. Soil physical parameters were derived from on-site sampling. The generated data is introduced to the physically based and catchment-scaled erosion model EROSION 3D to upscale plot size to small watershed conditions. Thus infiltration, runoff, detachment, transport and finally deposition can be predicted for single rainstorm events and storm sequences. Secondly, in order to separate gravitational mass movements and water erosion, a LiDAR and structure-from-motion based monitoring approach is carried out to produce high-resolution digital elevation models. A time series analysis of detachment and deposition from different points in time is implemented. Absolute volume losses are then compared to sediment losses calculated by the erosion model as the latter only generates data that is connected to water induced hillside erosion. This methodology will be applied in other watersheds

  20. Plume Mitigation: Soil Erosion and Lunar Prospecting Sensor Project

    Science.gov (United States)

    Metzger, Philip T.

    2014-01-01

    Demonstrate feasibility of the simplest, lowest-mass method of measuring density of a cloud of lunar soil ejected by rocket exhaust, using new math techniques with a small baseline laser/camera system. Focus is on exploring the erosion process that occurs when the exhaust plume of a lunar rocket impacts the regolith. Also, predicting the behavior of the lunar soil that would be blasted from a lunar landing/launch site shall assist in better design and protection of any future lunar settlement from scouring of structures and equipment. NASA is gathering experimental data to improve soil erosion models and understand how lunar particles enter the plume flow.

  1. A history of wind erosion prediction models in the United States Department of Agriculture: The Wind Erosion Prediction System (WEPS)

    Science.gov (United States)

    Development of the Wind Erosion Prediction System (WEPS) was officially inaugurated in 1985 by United States Department of Agriculture-Agricultural Research Service (USDA-ARS) scientists in response to customer requests, particularly those coming from the USDA Soil Conservation Service (SCS), for im...

  2. Predicting coastal cliff erosion using a Bayesian probabilistic model

    Science.gov (United States)

    Hapke, Cheryl J.; Plant, Nathaniel G.

    2010-01-01

    Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale.

  3. Experience in the application of erosion-corrosion prediction programs

    International Nuclear Information System (INIS)

    Castiella Villacampa, E.; Cacho Cordero, L.; Pascual Velazquez, A.; Casar Asuar, M.

    1994-01-01

    Recently the results of the Nuclear Regulatory Commission's follow-on programme relating to the application of erosion-corrosion supervision and control programs were published. The main problems encountered in their practical application are highlighted, namely those associated with prediction, calculation of minimum thickness acceptable by code, results analyses of the thicknesses measured using ultrasound technology, cases of incorrect substitution, etc. A number of power plants in Spain are currently using a computerised prediction and monitoring program for the erosion-corrosion phenomenon. The experience gained in the application of this program has been such that it has led to a number or benefits: an improvement in the application of the program, proof of its suitability to real situation, the establishment of a series of criteria relative to the inclusion or exclusion of consideration during data input, the monitoring of the phenomenon, selection of elements for inspection, etc. The report describes these areas, using typical examples as illustrations. (Author)

  4. Forest soil erosion prediction as influenced by wildfire and roads

    Science.gov (United States)

    Cao, L.; Brooks, E. S.; Elliot, W.

    2017-12-01

    Following a wildfire, the risk of erosion is greatly increased. Forest road networks may change the underlying topography and alter natural flow paths. Flow accumulation and energy can be redistributed by roads and alter soil erosion processes. A LiDAR (Light Detection and Ranging) DEM makes it possible to quantify road topography, and estimate how roads influence surface runoff and sediment transport in a fire-disturbed watershed. With GIS technology and a soil erosion model, this study was carried out to evaluate the effect of roads on erosion and sediment yield following the Emerald Fire southwest of Lake Tahoe. The GeoWEPP model was used to estimate onsite erosion and offsite sediment delivery from each hillslope polygon and channel segment before and after fire disturbance in part of the burned area. The GeoWEPP flow path method was used to estimate the post-fire erosion rate of each GIS pixel. A 2-m resolution LiDAR DEM was used as the terrain layer. The Emerald Fire greatly increased onsite soil loss and sediment yields within the fire boundary. Following the fire, 78.71% of the burned area had predicted sediment yields greater than 4 Mg/ha/yr, compared to the preburn condition when 65.3% of the study area was estimated to generate a sediment yield less than 0.25 Mg/ha/yr. Roads had a remarkable influence on the flow path simulation and sub-catchments delineation, affecting sediment transport process spatially. Road segments acted as barriers that intercepted overland runoff and reduced downslope flow energy accumulation, therefore reducing onsite soil loss downslope of the road. Roads also changed the boundary of sub-catchment and defined new hydrological units. Road segments can transport sediment from one sub-catchment to another. This in turn leads to the redistribution of sediment and alters sediment yield for some sub-catchments. Culverts and road drain systems are of vital importance in rerouting runoff and sediment. Conservation structures can be

  5. Long-term predictive capability of erosion models

    Science.gov (United States)

    Veerabhadra, P.; Buckley, D. H.

    1983-01-01

    A brief overview of long-term cavitation and liquid impingement erosion and modeling methods proposed by different investigators, including the curve-fit approach is presented. A table was prepared to highlight the number of variables necessary for each model in order to compute the erosion-versus-time curves. A power law relation based on the average erosion rate is suggested which may solve several modeling problems.

  6. Assessing and Predicting Erosion from Off Highway Vehicle Trails in Front-Range Rocky Mountain Watersheds.

    Science.gov (United States)

    Howard, M. J.; Silins, U.; Anderson, A.

    2016-12-01

    Off highway vehicle (OHV) trails have the potential to deliver sediment to sensitive headwater streams and increased OHV use is a growing watershed management concern in many Rocky Mountain regions. Predictive tools for estimating erosion and sediment inputs are needed to support assessment and management of erosion from OHV trail networks. The objective of this study was to a) assess erodibility (K factor) and total erosion from OHV trail networks in Rocky Mountain watersheds in south-west Alberta, Canada, and to b) evaluate the applicability of the Universal Soil Loss Equation (USLE) for predicting OHV trail erosion to support erosion management strategies. Measured erosion rates and erodibility (K) from rainfall simulation plots on OHV trails during the summers of 2014 and 2015 were compared to USLE predicted erosion from these same trails. Measured erodibility (K) from 23 rainfall simulation plots was highly variable (0.001-0.273 Mg*ha*hr/ha*MJ*mm) as was total seasonal erosion from 52 large trail sections (0.0595-43.3 Mg/ha) across trail segments of variable slope, stoniness, and trail use intensity. In particular, intensity of trail use had a large effect on both erodibility and total erosion that is not presently captured by erodibility indices (K) derived from soil characteristics. Results of this study suggest that while application of USLE for predicting erosion from OHV trail networks may be useful for initial coarse erosion assessment, a better understanding of the effect of factors such as road/trail use intensity on erodibility is needed to support use of USLE or associated erosion prediction tools for road/trail erosion management.

  7. Prediction of Soil Erosion Rates in Japan where Heavily Forested Landscape with Unstable Terrain

    Science.gov (United States)

    Nanko, K.; Oguro, M.; Miura, S.; Masaki, T.

    2016-12-01

    Soil is fundamental for plant growth, water conservation, and sustainable forest management. Multidisciplinary interest in the role of the soil in areas such as biodiversity, ecosystem services, land degradation, and water security has been growing (Miura et al., 2015). Forest is usually protective land use from soil erosion because vegetation buffers rainfall power and erosivity. However, some types of forest in Japan show high susceptibility to soil erosion due to little ground cover and steep slopes exceeding thirty degree, especially young Japanese cypress (Chamaecyparis obtusa) plantations (Miura et al., 2002). This is a critical issue for sustainable forest management because C. obtusaplantations account for 10% of the total forest coverage in Japan (Forestry Agency, 2009). Prediction of soil erosion rates on nationwide scale is necessary to make decision for future forest management plan. To predict and map soil erosion rates across Japan, we applied three soil erosion models, RUSLE (Revised Universal Soil Loss Equation, Wischmeier and Smith, 1978), PESERA (Pan-European Soil Erosion Risk Assessment, Kirkby et al., 2003), and RMMF (Revised Morgan-Morgan-Finney, Morgan, 2001). The grid scale is 1-km. RUSLE and PESERA are most widely used erosion models today. RMMF includes interactions between rainfall and vegetation, such as canopy interception and ratio of canopy drainage in throughfall. Evaporated rainwater by canopy interception, generally accounts for 15-20% in annual rainfall, does not contribute soil erosion. Whereas, larger raindrops generated by canopy drainage produced higher splash erosion rates than gross rainfall (Nanko et al., 2008). Therefore, rainfall redistribution process in canopy should be considered to predict soil erosion rates in forested landscape. We compared the results from three erosion models and analyze the importance of environmental factors for the prediction of soil erosion rates. This research was supported by the Environment

  8. Challenges in soil erosion research and prediction model development

    Science.gov (United States)

    Quantification of soil erosion has been traditionally considered as a surface hydrologic process with equations for soil detachment and sediment transport derived from the mechanics and hydraulics of the rainfall and surface flow. Under the current erosion modeling framework, the soil has a constant...

  9. Advanced experimental and numerical techniques for cavitation erosion prediction

    CERN Document Server

    Chahine, Georges; Franc, Jean-Pierre; Karimi, Ayat

    2014-01-01

    This book provides a comprehensive treatment of the cavitation erosion phenomenon and state-of-the-art research in the field. It is divided into two parts. Part 1 consists of seven chapters, offering a wide range of computational and experimental approaches to cavitation erosion. It includes a general introduction to cavitation and cavitation erosion, a detailed description of facilities and measurement techniques commonly used in cavitation erosion studies, an extensive presentation of various stages of cavitation damage (including incubation and mass loss), and insights into the contribution of computational methods to the analysis of both fluid and material behavior. The proposed approach is based on a detailed description of impact loads generated by collapsing cavitation bubbles and a physical analysis of the material response to these loads. Part 2 is devoted to a selection of nine papers presented at the International Workshop on Advanced Experimental and Numerical Techniques for Cavitation Erosion (Gr...

  10. Predicting the temporal relationship between soil cesium-137 and erosion rate

    International Nuclear Information System (INIS)

    Kachanoski, R.G.; De Jong, E.

    1984-01-01

    A model was developed that predicts the amount of 137 Cs remaining in soil as a function of time and erosion rate. The model accounts for atmospheric deposition, radioactive decay, tillage dilution, and erosion transport of 137 Cs, as well as seasonal differences in 137 Cs deposition and erosion rates. The model was used to estimate minimum resolution of erosion estimates based on detection limits and accuracy of 137 Cs measurement by gamma spectroscopy, as a function of time and erosion rate. The analysis showed that under Saskatchewan conditions, changes in 137 Cs at a given site can be used to estimate erosion rates between 0.5 and 10 kg m -2 yr -1 with reasonable precision, provided the sampling interval is at least 15 yr. The relationship of fraction of 137 Cs lost vs. erosion as predicted by the model was compared with other methods being used. The model was used to estimate erosion from selected Saskatchewan soils where 137 Cs levels were measured in 1966 and again in 1981. Erosion rates calculated with the model varied from 1 kg m -2 yr -1 for a sandy loam soil in continuous forage to 19 kg m -2 yr -1 for a similar soil in a crop-fallow rotation. Erosion estimates using the model were higher than those calculated by assuming that soil loss was directly proportional to 137 Cs loss, especially when 137 Cs loss was high

  11. Predicting soil erosion risk at the Alqueva dam watershed

    OpenAIRE

    Ferreira, Vera; Panagopoulos, Thomas

    2012-01-01

    Soil erosion is serious economic and environmental concern. Assessing soil erosion risk in the Alqueva dam watershed is urgently needed to conserve soil and water resources and prevent the accelerated dam siltation, taking into account the possible land-use changes, due to tourism development, intensification of irrigated farming and biomass production, as well as climate change. A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Info...

  12. Building Chinese wind data for Wind Erosion Prediction System using surrogate US data

    Science.gov (United States)

    Wind erosion is a global problem, especially in arid and semiarid regions of the world, which leads to land degradation and atmosphere pollution. The process-based Wind Erosion Prediction System (WEPS), developed by the USDA, is capable of simulating the windblown soil loss with changing weather and...

  13. The Rangeland Hydrology and Erosion Model: A dynamic approach for predicting soil loss on rangelands

    Science.gov (United States)

    In this study we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed agains...

  14. The role of bathymetry, wave obliquity and coastal curvature in dune erosion prediction

    NARCIS (Netherlands)

    Den Heijer, C.

    2013-01-01

    This study aims at reducing uncertainty in dune erosion predictions, in particular at complex dune coasts, in order to improve the assessment method for dune safety against flooding. To that end, state-of-the-art process-based dune erosion models are employed to further investigate issues

  15. Erosion Prediction Analysis and Landuse Planning in Gunggung Watershed, Bali, Indonesia

    Science.gov (United States)

    Trigunasih, N. M.; Kusmawati, T.; Yuli Lestari, N. W.

    2018-02-01

    The purpose of this research is to predict the erosion that occurs in Gunggung watershed and sustainable landuse management plan. This research used the USLE (Universal Soil Loss Equation) methodology. The method used observation / field survey and soil analysis at the Soil Laboratory of Faculty of Agriculture, Udayana University. This research is divided into 5 stages, (1) land unit determination, (2) Field observation and soil sampling, (3) Laboratory analysis and data collection, (4) Prediction of erosion using USLE (Universal Soil Loss Equation) method, (5) The permissible erosion determination (EDP) then (6) determines the level of erosion hazard based on the depth of the soil, as well as the soil conservation plan if the erosion is greater than the allowed erosion, and (7) determining landuse management plan for sustainable agriculture. Erosion which value is smaller than soil loss tolerance can be exploited in a sustainable manner, while erosion exceeds allowable erosion will be conservation measures. Conservation action is the improvement of vegetation and land management. Land management like improvements the terrace, addition of organic matter, increase plant density, planting ground cover and planting layered header system will increase the land capability classes. Land use recommended after management is mixed plantation high density with forest plants, mix plantation high density with patio bench construction, seasonal cultivation and perennial crops, cultivation of perennial crops and cultivation of seasonal crops.

  16. A history of wind erosion prediction models in the United States Department of Agriculture prior to the Wind Erosion Prediction System

    Science.gov (United States)

    Tatarko, John; Sporcic, Michael A.; Skidmore, Edward L.

    2013-09-01

    The Great Plains experienced an influx of settlers in the late 1850s-1900. Periodic drought was hard on both settlers and the soil and caused severe wind erosion. The period known as the Dirty Thirties, 1931-1939, produced many severe windstorms, and the resulting dusty sky over Washington, DC helped Hugh Hammond Bennett gain political support for the Soil Conservation Act of 1937 that started the USDA Soil Conservation Service (SCS). Austin W. Zingg and William S. Chepil began wind erosion studies at a USDA laboratory at Kansas State University in 1947. Neil P. Woodruff and Francis H. Siddoway published the first widely used model for wind erosion in 1965, called the Wind Erosion Equation (WEQ). The WEQ was solved using a series of charts and lookup tables. Subsequent improvements to WEQ included monthly magnitudes of the total wind, a computer version of WEQ programmed in FORTRAN, small-grain equivalents for range grasses, tillage systems, effects of residue management, crop row direction, cloddiness, monthly climate factors, and the weather. The SCS and the Natural Resources Conservation Service (NRCS) produced several computer versions of WEQ with the goal of standardizing and simplifying it for field personnel including a standalone version of WEQ was developed in the late 1990s using Microsoft Excel. Although WEQ was a great advancement to the science of prediction and control of wind erosion on cropland, it had many limitations that prevented its use on many lands throughout the United States and the world. In response to these limitations, the USDA developed a process-based model know as the Wind Erosion Prediction System (WEPS). The USDA Agricultural Research Service has taken the lead in developing science and technology for wind erosion prediction.

  17. Prediction method for cavitation erosion based on measurement of bubble collapse impact loads

    International Nuclear Information System (INIS)

    Hattori, S; Hirose, T; Sugiyama, K

    2009-01-01

    The prediction of cavitation erosion rates is important in order to evaluate the exact life of components. The measurement of impact loads in bubble collapses helps to predict the life under cavitation erosion. In this study, we carried out erosion tests and the measurements of impact loads in bubble collapses with a vibratory apparatus. We evaluated the incubation period based on a cumulative damage rule by measuring the impact loads of cavitation acting on the specimen surface and by using the 'constant impact load - number of impact loads curve' similar to the modified Miner's rule which is employed for fatigue life prediction. We found that the parameter Σ(F i α xn i ) (F i : impact load, n i : number of impacts and α: constant) is suitable for the evaluation of the erosion life. Moreover, we propose a new method that can predict the incubation period under various cavitation conditions.

  18. Comparison of 137Cs fallout redistribution analysis and conventional erosion-prediction models (WEPP, USLE)

    International Nuclear Information System (INIS)

    Sparovek, G.; Bacchi, O.O.S.; Ranieri, S.B.L.; Schnug, E.; De-Maria, I.C.

    2002-01-01

    Soil erosion is the most important component of the degradation of tropical agroecosystems. The rates of erosion should be considered in land evaluation and conservation planning assessment. The methods available for erosion prediction are not sufficiently well calibrated or validated for tropical soils, climates and crops. Thus, differences in estimated soil-erosion values may be expected, even if considering a single set of input data. Three methods for the estimation of soil erosion (USLE, WEPP, and 137 Cs) were applied to a watershed cultivated with sugarcane in southeastern Brazil. The absolute erosion-rate values and differences in the spatial distribution were evaluated. The overall results suggest important differences in the estimates obtained by the three methods. The differences occurred both in mean values and in geographic locations. The relative mean values for soil loss were USLE>> 137 Cs>WEPP and for standard deviations were USLE>WEPP> 137 Cs, indicating that USLE predicted the highest erosion values spread out over the widest range. The poor geographical coincidence of the results is evidence that values resulting from non-calibrated erosion methods should be considered only as qualitative indications. The method selection should consider overall site variability in relation to factors to which the methods are known to be sensitive. (author)

  19. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.

    2009-01-01

    The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.

  20. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  1. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  2. Predicted erosion and sediment delivery of fallout plutonium

    International Nuclear Information System (INIS)

    Foster, G.R.; Hakonson, T.E.

    1984-01-01

    Plutonium (Pu) from fallout after atmospheric explosion of nuclear weapons in the 1950s and 1960s is being redistributed over the landscape by soil erosion and carried on sediment by streams to oceans. Erosion rates computed with the Universal Soil Loss Equation for about 200,000 sample points on nonfederal land across the US were used to estimate Pu removal rates by soil erosion by water, Pu delivery in several major rivers, and concentration of Pu on the transported sediment. Estimates of average annual Pu delivery on sediment ranged from 0.002% of the initial fallout Pu inventory for the Savannah River basin to 0.08% for the Mississippi River basin. If the deposition of Pu had been uniformly 37 Bq/m 2 , the estimated Pu activity on suspended sediment ranged from about 0.26 Bq/kg of sediment for the Savannah River basin to 0.52 Bq/kg for the Columbia and Rio Grande river basins. After 1000 yr, about 9 to 48% of the initial Pu inventory will remain in US soils that are eroding. Much of the Pu on eroded sediment will travel only a short distance from its origin before its host sediment particles are deposited and permanently located, at least for a few hundred years. As much as 90% of the initially deposited Pu will remain, redistributed over the landscape by erosion and deposition. Although the delivery rate of Pu by rivers will not decrease greatly in the next 100 yr, a significant decrease will likely occur by 1000 yr

  3. Prediction of long-term erosion from landfill covers in the southwest

    International Nuclear Information System (INIS)

    Anderson, C.E.; Stormont, J.C.

    1997-01-01

    Erosion is a primary stressor of landfill covers, especially for climates with high intensity storms and low native plant density. Rills and gullies formed by discrete events can damage barrier layers and induce failure. Geomorphologic, empirical and physical modeling procedures are available to provide estimates of surface erosion, but numerical modeling requires accurate representation of the severe rainfall events that generate erosion. The National Weather Service precipitation frequency data and estimates of 5, 10, 15, 30 and 60-minute intensity can be statistically combined in a numerical model to obtain long-term erosion estimates. Physically based numerical models using the KINEROS and AHYMO programs have been utilized to predict the erosion from a southwestern landfill or waste containment site with 0.03, 0.05 and 0.08 meter per meter surface slopes. Results of AHYMO modeling were within 15 percent of average annual values computed with the empirical Universal Soil Loss Equation. However, the estimation of rill and gully formation that primarily degrades cover systems requires quantifying single events. For Southwestern conditions, a single 10-year storm can produce erosion quantifies equal to three times the average annual erosion and a 100-year storm can produce five times the average annual erosion

  4. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data from a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating using predictive computational...

  5. Numerical Investigation of Temperature Distribution in an Eroded Bend Pipe and Prediction of Erosion Reduced Thickness

    Science.gov (United States)

    Zhu, Hongjun; Feng, Guang; Wang, Qijun

    2014-01-01

    Accurate prediction of erosion thickness is essential for pipe engineering. The objective of the present paper is to study the temperature distribution in an eroded bend pipe and find a new method to predict the erosion reduced thickness. Computational fluid dynamic (CFD) simulations with FLUENT software are carried out to investigate the temperature field. And effects of oil inlet rate, oil inlet temperature, and erosion reduced thickness are examined. The presence of erosion pit brings about the obvious fluctuation of temperature drop along the extrados of bend. And the minimum temperature drop presents at the most severe erosion point. Small inlet temperature or large inlet velocity can lead to small temperature drop, while shallow erosion pit causes great temperature drop. The dimensionless minimum temperature drop is analyzed and the fitting formula is obtained. Using the formula we can calculate the erosion reduced thickness, which is only needed to monitor the outer surface temperature of bend pipe. This new method can provide useful guidance for pipeline monitoring and replacement. PMID:24719576

  6. Chapter 4. Predicting post-fire erosion and sedimentation risk on a landscape scale

    Science.gov (United States)

    MacDonald, L.H.; Sampson, R.; Brady, D.; Juarros, L.; Martin, Deborah

    2000-01-01

    Historic fire suppression efforts have increased the likelihood of large wildfires in much of the western U.S. Post-fire soil erosion and sedimentation risks are important concerns to resource managers. In this paper we develop and apply procedures to predict post-fire erosion and sedimentation risks on a pixel-, catchment-, and landscape-scale in central and western Colorado.Our model for predicting post-fire surface erosion risk is conceptually similar to the Revised Universal Soil Loss Equation (RUSLE). One key addition is the incorporation of a hydrophobicity risk index (HY-RISK) based on vegetation type, predicted fire severity, and soil texture. Post-fire surface erosion risk was assessed for each 90-m pixel by combining HYRISK, slope, soil erodibility, and a factor representing the likely increase in soil wetness due to removal of the vegetation. Sedimentation risk was a simple function of stream gradient. Composite surface erosion and sedimentation risk indices were calculated and compared across the 72 catchments in the study area.When evaluated on a catchment scale, two-thirds of the catchments had relatively little post-fire erosion risk. Steeper catchments with higher fuel loadings typically had the highest post-fire surface erosion risk. These were generally located along the major north-south mountain chains and, to a lesser extent, in west-central Colorado. Sedimentation risks were usually highest in the eastern part of the study area where a higher proportion of streams had lower gradients. While data to validate the predicted erosion and sedimentation risks are lacking, the results appear reasonable and are consistent with our limited field observations. The models and analytic procedures can be readily adapted to other locations and should provide useful tools for planning and management at both the catchment and landscape scale.

  7. Integration of fluvial erosion factors for predicting landslides along meandering rivers

    Science.gov (United States)

    Chen, Yi-chin; Chang, Kang-tsung; Ho, Jui-yi

    2015-04-01

    River incision and lateral erosion are important geomorphologic processes in mountainous areas of Taiwan. During a typhoon or storm event, the increase of water discharge, flow velocity, and sediment discharge enhances the power of river erosion on channel bank. After the materials on toe of hillslope were removed by river erosion, landslides were triggered at outer meander bends. Although it has been long expected that river erosion can trigger landslide, studies quantifying the effects of river erosion on landslide and the application of river erosion index in landslide prediction are still overlooked. In this study, we investigated the effect of river erosion on landslide in a particular meanders landscape of the Jhoukou River, southern Taiwan. We developed a semi-automatic model to separate meandering lines into several reach segments based on the inflection points and to calculate river erosion indexes, e.g. sinuosity of meander, stream power, and stream order, for each reach segment. This model, then, built the spatial relationship between the reaches and its corresponding hillslopes, of which the toe was eroded by the reach. Based on the spatial relationship, we quantified the correlations between these indexes and landslides triggered by Typhoon Morakot in 2009 to examine the effects of river erosion on landslide. The correlated indexes were then used as landslide predictors in logistic regression model. Results of the study showed that there is no significant correlation between landslide density and meander sinuosity. This may be a result of wider channel dispersing the erosion at a meandering reach. On the other hand, landslide density at concave bank is significantly higher than that at convex bank in the downstream (stream order > 3), but that is almost the same in the upstream (stream order bank. In contrast, river sediment in the downstream is an erosion agent eroding the concave bank laterally, but also depositing on the concave side and protecting

  8. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Science.gov (United States)

    2010-01-01

    .... (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K... 22161.) (b) The factors in the USLE equation are: (1) A is the estimation of average annual soil loss in... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to water...

  9. Wind erosion in semiarid landscapes: Predictive models and remote sensing methods for the influence of vegetation

    Science.gov (United States)

    Musick, H. Brad

    1993-01-01

    The objectives of this research are: to develop and test predictive relations for the quantitative influence of vegetation canopy structure on wind erosion of semiarid rangeland soils, and to develop remote sensing methods for measuring the canopy structural parameters that determine sheltering against wind erosion. The influence of canopy structure on wind erosion will be investigated by means of wind-tunnel and field experiments using structural variables identified by the wind-tunnel and field experiments using model roughness elements to simulate plant canopies. The canopy structural variables identified by the wind-tunnel and field experiments as important in determining vegetative sheltering against wind erosion will then be measured at a number of naturally vegetated field sites and compared with estimates of these variables derived from analysis of remotely sensed data.

  10. DES Prediction of Cavitation Erosion and Its Validation for a Ship Scale Propeller

    Science.gov (United States)

    Ponkratov, Dmitriy, Dr

    2015-12-01

    Lloyd's Register Technical Investigation Department (LR TID) have developed numerical functions for the prediction of cavitation erosion aggressiveness within Computational Fluid Dynamics (CFD) simulations. These functions were previously validated for a model scale hydrofoil and ship scale rudder [1]. For the current study the functions were applied to a cargo ship's full scale propeller, on which the severe cavitation erosion was reported. The performed Detach Eddy Simulation (DES) required a fine computational mesh (approximately 22 million cells), together with a very small time step (2.0E-4 s). As the cavitation for this type of vessel is primarily caused by a highly non-uniform wake, the hull was also included in the simulation. The applied method under predicted the cavitation extent and did not fully resolve the tip vortex; however, the areas of cavitation collapse were captured successfully. Consequently, the developed functions showed a very good prediction of erosion areas, as confirmed by comparison with underwater propeller inspection results.

  11. Validation of a probabilistic post-fire erosion model

    Science.gov (United States)

    Pete Robichaud; William J. Elliot; Sarah A. Lewis; Mary Ellen Miller

    2016-01-01

    Post-fire increases of runoff and erosion often occur and land managers need tools to be able to project the increased risk. The Erosion Risk Management Tool (ERMiT) uses the Water Erosion Prediction Project (WEPP) model as the underlying processor. ERMiT predicts the probability of a given amount of hillslope sediment delivery from a single rainfall or...

  12. The PredictAD project

    DEFF Research Database (Denmark)

    Antila, Kari; Lötjönen, Jyrki; Thurfjell, Lennart

    2013-01-01

    Alzheimer's disease (AD) is the most common cause of dementia affecting 36 million people worldwide. As the demographic transition in the developed countries progresses towards older population, the worsening ratio of workers per retirees and the growing number of patients with age-related illnes...... candidates and implement the framework in software. The results are currently used in several research projects, licensed to commercial use and being tested for clinical use in several trials....... objective of the PredictAD project was to find and integrate efficient biomarkers from heterogeneous patient data to make early diagnosis and to monitor the progress of AD in a more efficient, reliable and objective manner. The project focused on discovering biomarkers from biomolecular data...

  13. Predicting rainfall erosivity by momentum and kinetic energy in Mediterranean environment

    Science.gov (United States)

    Carollo, Francesco G.; Ferro, Vito; Serio, Maria A.

    2018-05-01

    Rainfall erosivity is an index that describes the power of rainfall to cause soil erosion and it is used around the world for assessing and predicting soil loss on agricultural lands. Erosivity can be represented in terms of both rainfall momentum and kinetic energy, both calculated per unit time and area. Contrasting results on the representativeness of these two variables are available: some authors stated that momentum and kinetic energy are practically interchangeable in soil loss estimation while other found that kinetic energy is the most suitable expression of rainfall erosivity. The direct and continuous measurements of momentum and kinetic energy by a disdrometer allow also to establish a relationship with rainfall intensity at the study site. At first in this paper a comparison between the momentum-rainfall intensity relationships measured at Palermo and El Teularet by an optical disdrometer is presented. For a fixed rainfall intensity the measurements showed that the rainfall momentum values measured at the two experimental sites are not coincident. However both datasets presented a threshold value of rainfall intensity over which the rainfall momentum assumes a quasi-constant value. Then the reliability of a theoretically deduced relationship, linking momentum, rainfall intensity and median volume diameter, is positively verified using measured raindrop size distributions. An analysis to assess which variable, momentum or kinetic energy per unit area and time, is the best predictor of erosivity in Italy and Spain was also carried out. This investigation highlighted that the rainfall kinetic energy per unit area and time can be substituted by rainfall momentum as index for estimating the rainfall erosivity, and this result does not depend on the site where precipitation occurs. Finally, rainfall intensity measurements and soil loss data collected from the bare plots equipped at Sparacia experimental area were used to verify the reliability of some

  14. How to diagnose rheumatoid arthritis early: a prediction model for persistent (erosive) arthritis

    NARCIS (Netherlands)

    Visser, Henk; le Cessie, Saskia; Vos, Koen; Breedveld, Ferdinand C.; Hazes, Johanna M. W.

    2002-01-01

    To develop a clinical model for the prediction, at the first visit, of 3 forms of arthritis outcome: self-limiting, persistent nonerosive, and persistent erosive arthritis. A standardized diagnostic evaluation was performed on 524 consecutive, newly referred patients with early arthritis.

  15. 75 FR 75961 - Notice of Implementation of the Wind Erosion Prediction System for Soil Erodibility System...

    Science.gov (United States)

    2010-12-07

    ... implementation of the WEPS system does not affect the Highly Erodible Map Unit List contained in the NRCS Field Office Technical Guide as of January 1, 1990. This 1990 list will continue to be used for all erodibility... plant damage, and predict PM-10 emissions when wind speeds exceed the erosion threshold. The WEPS model...

  16. Usability and Functional Enhancements to an Online Interface for Predicting Post Fire Erosion (WEPP-PEP)

    Science.gov (United States)

    Lew, Roger; Dobre, Mariana; Elliot, William; Robichaud, Pete; Brooks, Erin; Frankenberger, Jim

    2017-04-01

    There is an increased interest in the United States to use soil burn severity maps in watershed-scale hydrologic models to estimate post-fire sediment erosion from burned areas. This information is needed by stakeholders in order to concentrate their pre- or post-fire management efforts in ecologically sensitive areas to decrease the probability of post-fire sediment delivery. But these tools traditionally have been time consuming and difficult to use by managers because input datasets must be obtained and correctly processed for valid results. The Water Erosion Prediction Project (WEPP) has previously been developed as an online and easy-to-use interface to help land managers with running simulations without any knowledge of computer programming or hydrologic modeling. The interface automates the acquisition of DEM, climate, soils, and landcover data, and also automates channel and hillslope delineation for the users. The backend is built with Mapserver, GDAL, PHP, C++, Python while the front end uses OpenLayers, and, of course, JavaScript. The existing WEPP online interface was enhanced to provide better usability to stakeholders in United States (Forest Service, BLM, USDA) as well as to provide enhanced functionality for managing both pre-fire and post-fire treatments. Previously, only site administrators could add burn severity maps. The interface now allows users to create accounts to upload and share FlamMap prediction maps, differenced Normalized Burned Ratio (dNBR), or Burned Area Reflectance Classification (BARC) maps. All maps are loaded into a sortable catalog so users can quickly find their area of interest. Once loaded, the interface has been modified to support running comparisons between baseline condition with "no burn" and with a burn severity classification map. The interface has also been enhanced to allow users to conduct single storm analyses to examine, for example, how much soil loss would result after a 100-year storm. An OpenLayers map

  17. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion

    Science.gov (United States)

    Rahmati, Omid; Tahmasebipour, Nasser; Haghizadeh, Ali; Pourghasemi, Hamid Reza; Feizizadeh, Bakhtiar

    2017-12-01

    Gully erosion constitutes a serious problem for land degradation in a wide range of environments. The main objective of this research was to compare the performance of seven state-of-the-art machine learning models (SVM with four kernel types, BP-ANN, RF, and BRT) to model the occurrence of gully erosion in the Kashkan-Poldokhtar Watershed, Iran. In the first step, a gully inventory map consisting of 65 gully polygons was prepared through field surveys. Three different sample data sets (S1, S2, and S3), including both positive and negative cells (70% for training and 30% for validation), were randomly prepared to evaluate the robustness of the models. To model the gully erosion susceptibility, 12 geo-environmental factors were selected as predictors. Finally, the goodness-of-fit and prediction skill of the models were evaluated by different criteria, including efficiency percent, kappa coefficient, and the area under the ROC curves (AUC). In terms of accuracy, the RF, RBF-SVM, BRT, and P-SVM models performed excellently both in the degree of fitting and in predictive performance (AUC values well above 0.9), which resulted in accurate predictions. Therefore, these models can be used in other gully erosion studies, as they are capable of rapidly producing accurate and robust gully erosion susceptibility maps (GESMs) for decision-making and soil and water management practices. Furthermore, it was found that performance of RF and RBF-SVM for modelling gully erosion occurrence is quite stable when the learning and validation samples are changed.

  18. Prediction for disruption erosion of ITER plasma facing components; a comparison of experimental and numerical results

    International Nuclear Information System (INIS)

    Laan, J.G. van der; Akiba, M.; Seki, M.; Hassanein, A.; Tanchuk, V.

    1991-01-01

    An evaluation is given for the prediction for disruption erosion in the International Thermonuclear Engineering Reactor (ITER). At first, a description is given of the relation between plasma operating paramters and system dimensions to the predictions of loading parameters of Plasma Facing Components (PFC) in off-normal events. Numerical results from ITER parties on the prediction of disruption erosion are compared for a few typical cases and discussed. Apart from some differences in the codes, the observed discrepancies can be ascribed to different input data of material properties and boundary conditions. Some physical models for vapour shielding and their effects on numerical results are mentioned. Experimental results from ITER parties, obtained with electron and laser beams, are also compared. Erosion rates for the candidate ITER PFC materials are shown to depend very strongly on the energy deposition parameters, which are based on plasma physics considerations, and on the assumed material loss mechanisms. Lifetimes estimates for divertor plate and first wall armour are given for carbon, tungsten and beryllium, based on the erosion in the thermal quench phase. (orig.)

  19. Improved USLE-K factor prediction: A case study on water erosion areas in China

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2016-09-01

    Full Text Available Soil erodibility (K-factor is an essential factor in soil erosion prediction and conservation practises. The major obstacles to any accurate, large-scale soil erodibility estimation are the lack of necessary data on soil characteristics and the misuse of variable K-factor calculators. In this study, we assessed the performance of available erodibility estimators Universal Soil Loss Equation (USLE, Revised Universal Soil Loss Equation (RUSLE, Erosion Productivity Impact Calculator (EPIC and the Geometric Mean Diameter based (Dg model for different geographic regions based on the Chinese soil erodibility database (CSED. Results showed that previous estimators overestimated almost all K-values. Furthermore, only the USLE and Dg approaches could be directly and reliably applicable to black and loess soil regions. Based on the nonlinear best fitting techniques, we improved soil erodibility prediction by combining Dg and soil organic matter (SOM. The NSE, R2 and RE values were 0.94, 0.67 and 9.5% after calibrating the results independently; similar model performance was showed for the validation process. The results obtained via the proposed approach were more accurate that the former K-value predictions. Moreover, those improvements allowed us to effectively establish a regional soil erodibility map (1:250,000 scale of water erosion areas in China. The mean K-value of Chinese water erosion regions was 0.0321 (t ha h·(ha MJ mm−1 with a standard deviation of 0.0107 (t ha h·(ha MJ mm−1; K-values present a decreasing trend from North to South in water erosion areas in China. The yield soil erodibility dataset also satisfactorily corresponded to former K-values from different scales (local, regional, and national.

  20. Development of a catchment/landscape erosion prediction model (MINErosion 4) for post-mining landscapes in Central Queensland, Australia.

    Science.gov (United States)

    Khalifa, Ashraf; Yu, Bofu; Ghadiri, Hossain; Carroll, Chris; So, Hwat-Bing

    2010-05-01

    industry further require a tool that enables them to predict and manage the impact of on-site and offsite discharges from storm events and to identify the areas of high erosion risk. Work is in progress to develop a user friendly package MINErosion 4 by combining the hillslope model MINErosion 3 with ARC-GIS 9, which allows the prediction of sediment losses and deposition from proposed post-mining landscapes (designed based on criteria derived from MINErosion3) subjected to rainstorms with known recurrence intervals for selected locations. An option is provided to derive mean annual soil loss from these catchments and landscapes. Soil samples were collected from various locations on 6 minesites to provide a measure of variability in erodibilities across a minesite. The model was validated against 9 years of catchment data collected from previous projects and the agreement between predicted (Y) and measured (X) soil losses are good with regression equations of Y = 0.919 X (R2 = 0.81) for individual rainstorms, and Y= 1.473 X (R2 = 0.726) for average annual soil loss.

  1. Soil erosion model predictions using parent material/soil texture-based parameters compared to using site-specific parameters

    Science.gov (United States)

    R. B. Foltz; W. J. Elliot; N. S. Wagenbrenner

    2011-01-01

    Forested areas disturbed by access roads produce large amounts of sediment. One method to predict erosion and, hence, manage forest roads is the use of physically based soil erosion models. A perceived advantage of a physically based model is that it can be parameterized at one location and applied at another location with similar soil texture or geological parent...

  2. Pelton turbine Needle erosion prediction based on 3D three- phase flow simulation

    International Nuclear Information System (INIS)

    Chongji, Z; Yexiang, X; Wei, Z; Yangyang, Y; Lei, C; Zhengwei, W

    2014-01-01

    Pelton turbine, which applied to the high water head and small flow rate, is widely used in the mountainous area. During the operation period the sediment contained in the water does not only induce the abrasion of the buckets, but also leads to the erosion at the nozzle which may damage the needle structure. The nozzle and needle structure are mainly used to form high quality cylindrical jet and increase the efficiency of energy exchange in the runner to the most. Thus the needle erosion will lead to the deformation of jet, and then may cause the efficiency loss and cavitation. The favourable prediction of abrasion characteristic of needle can effectively guide the optimization design and maintenance of needle structure. This paper simulated the unsteady three-dimensional multi-phase flow in the nozzle and injected jet flow. As the jet containing water and sediment is injected into the free atmosphere air with high velocity, the VOF model was adopted to predict the water and air flow. The sediment is simplified into round solid particle and the discrete particle model (DPM) was employed to predict the needle abrasion characteristic. The sand particle tracks were analyzed to interpret the mechanism of sand erosion on the needle surface. And the numerical result of needle abrasion was obtained and compared with the abrasion field observation. The similarity of abrasion pattern between the numerical results and field observation illustrated the validity of the 3D multi-phase flow simulation method

  3. Pelton turbine Needle erosion prediction based on 3D three- phase flow simulation

    Science.gov (United States)

    Chongji, Z.; Yexiang, X.; Wei, Z.; Yangyang, Y.; Lei, C.; Zhengwei, W.

    2014-03-01

    Pelton turbine, which applied to the high water head and small flow rate, is widely used in the mountainous area. During the operation period the sediment contained in the water does not only induce the abrasion of the buckets, but also leads to the erosion at the nozzle which may damage the needle structure. The nozzle and needle structure are mainly used to form high quality cylindrical jet and increase the efficiency of energy exchange in the runner to the most. Thus the needle erosion will lead to the deformation of jet, and then may cause the efficiency loss and cavitation. The favourable prediction of abrasion characteristic of needle can effectively guide the optimization design and maintenance of needle structure. This paper simulated the unsteady three-dimensional multi-phase flow in the nozzle and injected jet flow. As the jet containing water and sediment is injected into the free atmosphere air with high velocity, the VOF model was adopted to predict the water and air flow. The sediment is simplified into round solid particle and the discrete particle model (DPM) was employed to predict the needle abrasion characteristic. The sand particle tracks were analyzed to interpret the mechanism of sand erosion on the needle surface. And the numerical result of needle abrasion was obtained and compared with the abrasion field observation. The similarity of abrasion pattern between the numerical results and field observation illustrated the validity of the 3D multi-phase flow simulation method.

  4. [Advance in researches on vegetation cover and management factor in the soil erosion prediction model].

    Science.gov (United States)

    Zhang, Yan; Yuan, Jianping; Liu, Baoyuan

    2002-08-01

    Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.

  5. Decadal climate prediction (project GCEP).

    Science.gov (United States)

    Haines, Keith; Hermanson, Leon; Liu, Chunlei; Putt, Debbie; Sutton, Rowan; Iwi, Alan; Smith, Doug

    2009-03-13

    Decadal prediction uses climate models forced by changing greenhouse gases, as in the International Panel for Climate Change, but unlike longer range predictions they also require initialization with observations of the current climate. In particular, the upper-ocean heat content and circulation have a critical influence. Decadal prediction is still in its infancy and there is an urgent need to understand the important processes that determine predictability on these timescales. We have taken the first Hadley Centre Decadal Prediction System (DePreSys) and implemented it on several NERC institute compute clusters in order to study a wider range of initial condition impacts on decadal forecasting, eventually including the state of the land and cryosphere. The eScience methods are used to manage submission and output from the many ensemble model runs required to assess predictive skill. Early results suggest initial condition skill may extend for several years, even over land areas, but this depends sensitively on the definition used to measure skill, and alternatives are presented. The Grid for Coupled Ensemble Prediction (GCEP) system will allow the UK academic community to contribute to international experiments being planned to explore decadal climate predictability.

  6. Development of a mobile application based on RUSLE model to predict erosion in olive groves

    Science.gov (United States)

    Marín Moreno, Víctor Javier; Redel, María Dolores; Taguas, Encarnación V.

    2017-04-01

    Apache Cordova, which are very efficient to facilitate its implementation in most of mobile platforms. The first evaluations from farmers and technicians are also presented in order to improve the first version. References: - Areal, F.J., Riesgo, L., 2014. Farmers' views on the future of olive farming in Andalusia, Spain. Land Use Policy 36 (2014) 543- 553. - CAPyDR, 2016. Aforo de producción de olivar en Andalucía, Campaña 2016-2017. Consejería de Agricultura, Pesca y Desarrollo Rural - Junta de Andalucía. Regional Government of Andalusia, Seville (2016) (Spain) - FAOSTAT -2016. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS STATISTICS. Accessed at: http://www.fao.org/faostat - Franco, J.A., 2011. Análisis de los factores de participación en programas agroambientales de lucha contra la erosión en el olivar. ITEA 107 (3), 169-183. - Renard, K. G., Foster, G. R., Wessies, G. A., Mccool, D. K., and Yoder, D. C., 1997. Predicting Soil Ero¬sion by Water: A Guide to Conservation Planning with the Revised Universal LossEquation (RUSLE). USDA Agriculture Handbook, No. 703. - Taguas, E.V., Gómez, J.A., 2015. Vulnerability of olive orchards under the current CAP (Common Agricultural Policy) regulations on soil erosion: a study case in Southern Spain. Land Use Policy, 42, 683-694

  7. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    Science.gov (United States)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  8. Particle Impact Erosion. Volume 4. User’s Manual Erosion Prediction Procedure for Rocket Nozzle Expansion Region

    Science.gov (United States)

    1983-05-01

    empirical erosion model, with use of the debris-layer model optional. 1.1 INTERFACE WITH ISPP ISPP is a collection of computer codes designed to calculate...expansion with the ODK code, 4. A two-dimensional, two-phase nozzle expansion with the TD2P code, 5. A turbulent boundary layer solution along the...INPUT THERMODYNAMIC DATA FOR TEMPERATURESBELOW 300°K OIF NEEDED) NO A• 11 READ SSP NAMELIST (ODE. BAL. ODK . TD2P. TEL. NOZZLE GEOMETRY) PROfLM 2

  9. KwaZulu-Natal coastal erosion events of 2006/2007 and 2011: A predictive tool?

    OpenAIRE

    Alan Smith; Lisa A. Guastella; Andrew A. Mather; Simon C. Bundy; Ivan D. Haigh

    2013-01-01

    Severe coastal erosion occurred along the KwaZulu-Natal coastline between mid-May and November 2011. Analysis of this erosion event and comparison with previous coastal erosion events in 2006/2007 offered the opportunity to extend the understanding of the time and place of coastal erosion strikes. The swells that drove the erosion hotspots of the 2011 erosion season were relatively low (significant wave heights were between 2 m and 4.5 m) but of long duration. Although swell height was import...

  10. The Predictive Validity of Projective Measures.

    Science.gov (United States)

    Suinn, Richard M.; Oskamp, Stuart

    Written for use by clinical practitioners as well as psychological researchers, this book surveys recent literature (1950-1965) on projective test validity by reviewing and critically evaluating studies which shed light on what may reliably be predicted from projective test results. Two major instruments are covered: the Rorschach and the Thematic…

  11. Measurement of erosion: Is it possible?

    NARCIS (Netherlands)

    Stroosnijder, L.

    2005-01-01

    Reasons for erosion measurements are: (1) to determine the environmental impact of erosion and conservation practices, (2) scientific erosion research; (3) development and evaluation of erosion control technology; (4) development of erosion prediction technology and (5) allocation of conservation

  12. Three procedures for estimating erosion from construction areas

    International Nuclear Information System (INIS)

    Abt, S.R.; Ruff, J.F.

    1978-01-01

    Erosion from many mining and construction sites can lead to serious environmental pollution problems. Therefore, erosion management plans must be developed in order that the engineer may implement measures to control or eliminate excessive soil losses. To properly implement a management program, it is necessary to estimate potential soil losses from the time the project begins to beyond project completion. Three methodologies are presented which project the estimated soil losses due to sheet or rill erosion of water and are applicable to mining and construction areas. Furthermore, the three methods described are intended as indicators of the state-of-the-art in water erosion prediction. The procedures herein do not account for gully erosion, snowmelt erosion, wind erosion, freeze-thaw erosion or extensive flooding

  13. CERAPP: Collaborative estrogen receptor activity prediction project

    DEFF Research Database (Denmark)

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra

    2016-01-01

    ). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. oBjectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project...... States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure-activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical......: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. conclusion: This project demonstrated...

  14. A history of wind erosion prediction models in the United States Department of Agriculture Prior to the Wind Erosion Prediction System

    Science.gov (United States)

    The Great Plains experienced an influx of settlers in the late 1850s to 1900. Periodic drought was hard on both settlers and the soil and caused severe wind erosion. The period known as the Dirty Thirties, 1931 to 1939, produced many severe windstorms, and the resulting dusty sky over Washington, D....

  15. Bentonite erosion: effects on the long term performance of the engineered barrier and radionuclide transport - The BELBAR project

    International Nuclear Information System (INIS)

    Sellin, P.; Sundman, D.; Bailey, L.; Missana, T.; Schaefer, T.; Cervinka, R.; Koskinen, K.

    2012-01-01

    Document available in extended abstract form only. BELBaR is a Collaborative Project within the Seventh Framework Programme of the European Atomic Energy Community (Euratom) for nuclear research and training activities. The main aim of BELBaR is to increase knowledge of the processes that control clay colloid stability, generation and its ability to transport radionuclides. The overall purpose of the project is to come up with a new way of treating issues in long-term safety/performance assessment. The project started March 1, 2012 and has a duration of 48 months. The project has 14 partners from seven European countries. The main aim of BELBaR is to reduce the uncertainties in the description of the effect of clay colloids on the long term performance of the engineered barrier and on radionuclide transport as illustrated in Figure 1. This is done by: - Improving the understanding on when bentonite colloids are unstable. For a given site/site evolution, this is critical information, since it determines whether or not clay colloids need to be included in the long-term assessment. - Improving the quantitative models for erosion on the bentonite barrier for the cases when the colloids are stable - Improving the understanding of how radionuclides attach to clay colloids. This information will be used to formulate improved transport models for the assessment of radionuclide transport in the geosphere. To meet the main aim a number of experimental and modelling activities will be undertaken within the project. BELBaR consists of six RTD (research and technical development) work packages and one project management work package. WP1 will have the responsibility to ensure that that the type and values of the parameters selected for experimental and modelling work are those that represent as much as possible the full range of conditions and situations that can be expected in a repository. Drawing on the work undertaken in WP 2 to 5, the general objective of this work package

  16. Automated lake-wide erosion predictions and economic damage calculations upstream of the Moses-Saunders power dam

    International Nuclear Information System (INIS)

    Zuzek, P.; Baird, W.F.; International Joint Commission, Ottawa, ON

    2008-01-01

    This presentation discussed an automated flood and erosion prediction system designed for the upstream sections of the Moses-Saunders power dam. The system included a wave prediction component along with 3-D maps, hourly run-ups, geographic information system (GIS) tools and a hazard analysis tool. Parcel, reach, township, and county databases were used to populate the system. The prediction system was used to develop detailed study sites of shore units in the study area. Shoreline classes included sand and cohesive buffs, low banks, coarse beaches, and cobble or boulder lags. Time series plots for Lake Ontario water and wave levels were presented. Great Lakes ice cover data were also included in the system as well as erosion predictions from 1961 to 1995. The system was also used to develop bluff recession equations and cumulative recession analyses for different regulation plans. Cumulative bluff recession and protection requirements were outlined. Screenshots of the flood and erosion prediction system interface were also included. tabs., figs

  17. Soil Erosion Prediction Using Morgan-Morgan-Finney Model in a GIS Environment in Northern Ethiopia Catchment

    Directory of Open Access Journals (Sweden)

    Gebreyesus Brhane Tesfahunegn

    2014-01-01

    Full Text Available Even though scientific information on spatial distribution of hydrophysical parameters is critical for understanding erosion processes and designing suitable technologies, little is known in Geographical Information System (GIS application in developing spatial hydrophysical data inputs and their application in Morgan-Morgan-Finney (MMF erosion model. This study was aimed to derive spatial distribution of hydrophysical parameters and apply them in the Morgan-Morgan-Finney (MMF model for estimating soil erosion in the Mai-Negus catchment, northern Ethiopia. Major data input for the model include climate, topography, land use, and soil data. This study demonstrated using MMF model that the rate of soil detachment varied from 170 t ha−1 y−1, whereas the soil transport capacity of overland flow (TC ranged from 5 t ha−1 y−1 to >42 t ha−1 y−1. The average soil loss estimated by TC using MMF model at catchment level was 26 t ha−1 y−1. In most parts of the catchment (>80%, the model predicted soil loss rates higher than the maximum tolerable rate (18 t ha−1 y−1 estimated for Ethiopia. Hence, introducing appropriate interventions based on the erosion severity predicted by MMF model in the catchment is crucial for sustainable natural resources management.

  18. Development of Erosive Burning Models for CFD Predictions of Solid Rocket Motor Internal Environments

    Science.gov (United States)

    Wang, Qun-Zhen

    2003-01-01

    Four erosive burning models, equations (11) to (14). are developed in this work by using a power law relationship to correlate (1) the erosive burning ratio and the local velocity gradient at propellant surfaces; (2) the erosive burning ratio and the velocity gradient divided by centerline velocity; (3) the erosive burning difference and the local velocity gradient at propellant surfaces; and (4) the erosive burning difference and the velocity gradient divided by centerline velocity. These models depend on the local velocity gradient at the propellant surface (or the velocity gradient divided by centerline velocity) only and, unlike other empirical models, are independent of the motor size. It was argued that, since the erosive burning is a local phenomenon occurring near the surface of the solid propellant, the erosive burning ratio should be independent of the bore diameter if it is correlated with some local flow parameters such as the velocity gradient at the propellant surface. This seems to be true considering the good results obtained by applying these models, which are developed from the small size 5 inch CP tandem motor testing, to CFD simulations of much bigger motors.

  19. Crust behavior and erosion rate prediction of EPR sacrificial material impinged by core melt jet

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gen; Liu, Ming, E-mail: ming.liu@mail.xjtu.edu.cn; Wang, Jinshi; Chong, Daotong; Yan, Junjie

    2017-04-01

    Highlights: • A numerical code was developed to analyze melt jet-concrete interaction in the frame of MPS method. • Crust and ablated concrete layer at UO{sub 2}-ZrO{sub 2} melt and concrete interface periodically developed and collapsed. • Concrete surface temperature fluctuated around a low temperature and ablation temperature. • Concrete erosion by Fe-Zr melt jet was significantly faster than that by UO{sub 2}-ZrO{sub 2} melt jet. - Abstract: Sacrificial material is a special ferro-siliceous concrete, designed in the ex-vessel core melt stabilization system of European Pressurized water Reactor (EPR). Given a localized break of RPV lower head, the melt directly impinges onto the dry concrete in form of compact jet. The concrete erosion behavior influences the failure of melt plug, and further affects melt spreading. In this study, a numerical code was developed in the frame of Moving Particle Semi-implicit (MPS) method, to analyze the crust behavior and erosion rate of sacrificial concrete, impinged by prototypic melt jet. In validation of numerical modeling, the time-dependent erosion depth and erosion configuration matched well with the experimental data. Sensitivity study of sacrificial concrete erosion indicates that the crust and ablated concrete layer presented at UO{sub 2}-ZrO{sub 2} melt and concrete interface, whereas no crust could be found in the interaction of Fe-Zr melt with concrete. The crust went through stabilization-fracture-reformation periodic process, accompanied with accumulating and collapsing of molten concrete layer. The concrete surface temperature fluctuated around a low temperature and ablation temperature. It increased as the concrete surface layer was heated to melting, and dropped down when the cold concrete was revealed. The erosion progression was fast in the conditions of small jet diameter and large concrete inclination angle, and it was significantly faster in the erosion by metallic melt jet than by oxidic melt jet.

  20. Thermal load resistance of erosion-monitoring beryllium maker tile for JET ITER like wall project

    International Nuclear Information System (INIS)

    Hirai, T.; Linke, J.; Sundelin, P.; Rubel, M.; Coad, J.P.; Matthews, G.F.; Lungu, C.P.

    2007-01-01

    The ITER reference materials, beryllium (Be), carbon fibre composite (CFC) and tungsten (W), have been tested separately in tokamaks. An integrated test demonstrating both compatibility of metal plasma facing components with high-power operation and acceptable tritium retention has not yet been carried out. At JET, the size, magnetic field strength and high plasma current allow to conducting tests with the combination of the materials. Thus, the ITER-like Wall (ILW) project has been launched. In the project, Be will be the plasmafacing material on the main chamber wall of JET. To assess the erosion of the Be tiles, a Be marker tile was proposed and designed. The test samples which simulate the JET Be marker tile have been produced in MEdC, Romania in order to study the thermal load resistance of the JET Be marker (20 x 20 mm 2 size with 30 mm height). The marker tile sample consists of bulk Be, high-Z interlayer (2-3 μm Ni coating) and 8-9 μm Be coating. Thermionic Vacuum Arc (TVA) techniques based on the electron-induced evaporation have been selected for this purpose. In the present work, the global characterization of the maker tile samples and thermal load tests were performed. After the pre-characterization (microstructure observation by scanning electron microscope and elemental analysis by means of Wavelength Dispersive X-ray Spectroscopy and Energy Dispersive X-ray Spectroscopy), the thermal loading tests were performed in the electron beam facility JUDITH. The coating consisted of tiny platelets of ∝0.1 um in diameter and localized larger platelets of 1 um in diameter. The surface and bulk temperature were observed during the tests. In the screening thermal load test, the samples were loaded to 6 MW/m 2 for 10 s. The layers did not show any macroscopic damages at up to 4.5 MW/m 2 for 10 s (45 MJ/m 2 ). However, the coating delaminated and the maker was damaged when the thermal loading reached at 5 MW/m 2 (∝50 MJ/m 2 ). Cyclic heat load tests were

  1. Developing relations between soil erodibilty factors in two different soil erosion prediction models (USLE/RUSLE and wWEPP) and fludization bed technique for mechanical soil cohesion

    Science.gov (United States)

    Soil erosion models are valuable analysis tools that scientists and engineers use to examine observed data sets and predict the effects of possible future soil loss. In the area of water erosion, a variety of modeling technologies are available, ranging from solely qualitative models, to merely quan...

  2. US Climate Variability and Predictability Project

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Mike [University Corporation for Atmospheric Research (UCAR), Boulder, CO (United States)

    2017-11-14

    The US CLIVAR Project Office administers the US CLIVAR Program with its mission to advance understanding and prediction of climate variability and change across timescales with an emphasis on the role of the ocean and its interaction with other elements of the Earth system. The Project Office promotes and facilitates scientific collaboration within the US and international climate and Earth science communities, addressing priority topics from subseasonal to centennial climate variability and change; the global energy imbalance; the ocean’s role in climate, water, and carbon cycles; climate and weather extremes; and polar climate changes. This project provides essential one-year support of the Project Office, enabling the participation of US scientists in the meetings of the US CLIVAR bodies that guide scientific planning and implementation, including the scientific steering committee that establishes program goals and evaluates progress of activities to address them, the science team of funded investigators studying the ocean overturning circulation in the Atlantic, and two working groups tackling the priority research topics of Arctic change influence on midlatitude climate and weather extremes and the decadal-scale widening of the tropical belt.

  3. Runoff erosion

    OpenAIRE

    Evelpidou, Niki (Ed.); Cordier, Stephane (Ed.); Merino, Agustin (Ed.); Figueiredo, Tomás de (Ed.); Centeri, Csaba (Ed.)

    2013-01-01

    Table of Contents PART I – THEORY OF RUNOFF EROSION CHAPTER 1 - RUNOFF EROSION – THE MECHANISMS CHAPTER 2 - LARGE SCALE APPROACHES OF RUNOFF EROSION CHAPTER 3 - MEASURING PRESENT RUNOFF EROSION CHAPTER 4 - MODELLING RUNOFF EROSION CHAPTER 5 - RUNOFF EROSION AND HUMAN SOCIETIES: THE INFLUENCE OF LAND USE AND MANAGEMENT PRACTICES ON SOIL EROSION PART II - CASE STUDIES CASE STUDIES – INTRODUCTION: RUNOFF EROSION IN MEDITERRANEAN AREA CASE STUDY 1: Soil Erosion Risk...

  4. Erosion corrosion in power plant piping systems - Calculation code for predicting wall thinning

    International Nuclear Information System (INIS)

    Kastner, W.; Erve, M.; Henzel, N.; Stellwag, B.

    1990-01-01

    Extensive experimental and theoretical investigations have been performed to develop a calculation code for wall thinning due to erosion corrosion in power plant piping systems. The so-called WATHEC code can be applied to single-phase water flow as well as to two-phase water/steam flow. Only input data which are available to the operator of the plant are taken into consideration. Together with a continuously updated erosion corrosion data base the calculation code forms one element of a weak point analysis for power plant piping systems which can be applied to minimize material loss due to erosion corrosion, reduce non-destructive testing and curtail monitoring programs for piping systems, recommend life-extending measures. (author). 12 refs, 17 figs

  5. Using high-performance mathematical modelling tools to predict erosion and sediment fluxes in peri-urban catchments

    Science.gov (United States)

    Pereira, André; Conde, Daniel; Ferreira, Carla S. S.; Walsh, Rory; Ferreira, Rui M. L.

    2017-04-01

    Deforestation and urbanization generally lead to increased soil erosion andthrough the indirect effect of increased overland flow and peak flood discharges. Mathematical modelling tools can be helpful for predicting the spatial distribution of erosion and the morphological changes on the channel network. This is especially useful to predict the impacts of land-use changes in parts of the watershed, namely due to urbanization. However, given the size of the computational domain (normally the watershed itself), the need for high spatial resolution data to model accurately sediment transport processes and possible need to model transcritical flows, the computational cost is high and requires high-performance computing techniques. The aim of this work is to present the latest developments of the hydrodynamic and morphological model STAV2D and its applicability to predict runoff and erosion at watershed scale. STAV2D was developed at CEris - Instituto Superior Técnico, Universidade de Lisboa - as a tool particularly appropriated to model strong transient flows in complex and dynamic geometries. It is based on an explicit, first-order 2DH finite-volume discretization scheme for unstructured triangular meshes, in which a flux-splitting technique is paired with a reviewed Roe-Riemann solver, yielding a model applicable to discontinuous flows over time-evolving geometries. STAV2D features solid transport in both Euleran and Lagrangian forms, with the aim of describing the transport of fine natural sediments and then the large individual debris. The model has been validated with theoretical solutions and laboratory experiments (Canelas et al., 2013 & Conde et al., 2015). STAV-2D now supports fully distributed and heterogeneous simulations where multiple different hardware devices can be used to accelerate computation time within a unified Object-Oriented approach: the source code for CPU and GPU has the same compilation units and requires no device specific branches, like

  6. A critical discussion on the applicability of Compound Topographic Index (CTI) for predicting ephemeral gully erosion

    Science.gov (United States)

    Casalí, Javier; Chahor, Youssef; Giménez, Rafael; Campo-Bescós, Miguel

    2016-04-01

    The so-called Compound Topographic Index (CTI) can be calculated for each grid cell in a DEM and be used to identify potential locations for ephemeral gullies (e. g.) based on land topography (CTI = A.S.PLANC, where A is upstream drainage area, S is local slope and PLANC is planform curvature, a measure of the landscape convergence) (Parker et al., 2007). It can be shown that CTI represents stream power per unit bed area and it considers the major parameters controlling the pattern and intensity of concentrated surface runoff in the field (Parker et al., 2007). However, other key variables controlling e.g. erosion (e. g. e.) such as soil characteristics, land-use and management, are not had into consideration. The critical CTI value (CTIc) "represents the intensity of concentrated overland flow necessary to initiate erosion and channelised flow under a given set of circumstances" (Parker et al., 2007). AnnAGNPS (Annualized Agriculture Non-Point Source) pollution model is an important management tool developed by (USDA) and uses CTI to locate potential ephemeral gullies. Then, and depending on rainfall characteristics of the period simulated by AnnAGNPS, potential e. g. can become "actual", and be simulated by the model accordingly. This paper presents preliminary results and a number of considerations after evaluating the CTI tool in Navarre. CTIc values found are similar to those cited by other authors, and the e. g. networks that on average occur in the area have been located reasonably well. After our experience we believe that it is necessary to distinguish between the CTIc corresponding to the location of headcuts whose migrations originate the e. g. (CTIc1); and the CTIc necessary to represent the location of the gully networks in the watershed (CTIc2), where gully headcuts are located in the upstream end of the gullies. Most scientists only consider one CTIc value, although, from our point of view, the two situations are different. CTIc1 would represent the

  7. Synthesising empirical results to improve predictions of post-wildfire runoff and erosion response

    Science.gov (United States)

    Richard A. Shakesby; John A. Moody; Deborah A. Martin; Pete Robichaud

    2016-01-01

    Advances in research into wildfire impacts on runoff and erosion have demonstrated increasing complexity of controlling factors and responses, which, combined with changing fire frequency, present challenges for modellers. We convened a conference attended by experts and practitioners in post-wildfire impacts, meteorology and related research, including...

  8. Predicting soil erosion using Rusle and NDVI time series from TM Landsat 5

    Directory of Open Access Journals (Sweden)

    Daniel Fonseca de Carvalho

    2014-03-01

    Full Text Available The objective of this work was to evaluate the seasonal variation of soil cover and rainfall erosivity, and their influences on the revised universal soil loss equation (Rusle, in order to estimate watershed soil losses in a temporal scale. Twenty-two TM Landsat 5 images from 1986 to 2009 were used to estimate soil use and management factor (C factor. A corresponding rainfall erosivity factor (R factor was considered for each image, and the other factors were obtained using the standard Rusle method. Estimated soil losses were grouped into classes and ranged from 0.13 Mg ha-1 on May 24, 2009 (dry season to 62.0 Mg ha-1 on March 11, 2007 (rainy season. In these dates, maximum losses in the watershed were 2.2 and 781.5 Mg ha-1 , respectively. Mean annual soil loss in the watershed was 109.5 Mg ha-1 , but the central area, with a loss of nearly 300.0 Mg ha-1 , was characterized as a site of high water-erosion risk. The use of C factor obtained from remote sensing data, associated to corresponding R factor, was fundamental to evaluate the soil erosion estimated by the Rusle in different seasons, unlike of other studies which keep these factors constant throughout time.

  9. Upper Gastrointestinal Symptoms Predictive of Candida Esophagitis and Erosive Esophagitis in HIV and Non-HIV Patients

    Science.gov (United States)

    Takahashi, Yuta; Nagata, Naoyoshi; Shimbo, Takuro; Nishijima, Takeshi; Watanabe, Koji; Aoki, Tomonori; Sekine, Katsunori; Okubo, Hidetaka; Watanabe, Kazuhiro; Sakurai, Toshiyuki; Yokoi, Chizu; Mimori, Akio; Oka, Shinichi; Uemura, Naomi; Akiyama, Junichi

    2015-01-01

    Abstract Upper gastrointestinal (GI) symptoms are common in both HIV and non-HIV-infected patients, but the difference of GI symptom severity between 2 groups remains unknown. Candida esophagitis and erosive esophagitis, 2 major types of esophagitis, are seen in both HIV and non-HIV-infected patients, but differences in GI symptoms that are predictive of esophagitis between 2 groups remain unknown. We aimed to determine whether GI symptoms differ between HIV-infected and non-HIV-infected patients, and identify specific symptoms of candida esophagitis and erosive esophagitis between 2 groups. We prospectively enrolled 6011 patients (HIV, 430; non-HIV, 5581) who underwent endoscopy and completed questionnaires. Nine upper GI symptoms (epigastric pain, heartburn, acid regurgitation, hunger cramps, nausea, early satiety, belching, dysphagia, and odynophagia) were evaluated using a 7-point Likert scale. Associations between esophagitis and symptoms were analyzed by the multivariate logistic regression model adjusted for age, sex, and proton pump inhibitors. Endoscopy revealed GI-organic diseases in 33.4% (2010/6.011) of patients. The prevalence of candida esophagitis and erosive esophagitis was 11.2% and 12.1% in HIV-infected patients, respectively, whereas it was 2.9% and 10.7 % in non-HIV-infected patients, respectively. After excluding GI-organic diseases, HIV-infected patients had significantly (P symptom scores for heartburn, hunger cramps, nausea, early satiety, belching, dysphagia, and odynophagia than non-HIV-infected patients. In HIV-infected patients, any symptom was not significantly associated with CD4 cell count. In multivariate analysis, none of the 9 GI symptoms were associated with candida esophagitis in HIV-infected patients, whereas dysphagia and odynophagia were independently (P HIV-infected patients. However, heartburn and acid regurgitation were independently (P symptom scores were reliable in both HIV (α, 0.86) and non-HIV-infected patients

  10. A GIS-model for predicting the impact of climate change on shore erosion in hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Penner, L.A.; Zimmer, T.A.M.; St Laurent, M.

    2008-01-01

    Shoreline erosion affects inland lakes and hydroelectric reservoirs in several ways. This poster described a vector-based geographic information system (GIS) model designed to predict changes in shore zone geometry, top-of-bluff recession, and eroded sediment volumes. The model was designed for use in Manitoba Hydro's reservoirs in northern Manitoba, and simulated near-shore downcutting and bank recession caused by wind-generated waves. Parameters for the model included deep water wave energy, and water level fluctuations. Effective wave energy was seen as a function of the water level fluctuation range, wave conditions, and near-shore slope. The model was validated by field monitoring studies that included repeated shore zone transect surveys and sediment coring studies. Results of the study showed that the model provides a systematic method of predicting potential changes in erosion associated with climatic change. The volume and mass of eroded sediment predicted for the different modelling scenarios will be used as input data for future sedimentation models. tabs., figs

  11. Simulation of dambreak flood with erosion effects (CEA R and D Project 718-G-641)

    International Nuclear Information System (INIS)

    Ko, P.Y.

    1990-01-01

    Most existing mathematical models applicable to dambreak analysis assume the river channel to be rigid. In reality, during the passage of dambreak waves, the banks and the bed of the valley will be eroded by the flood waves, affecting flood levels. A study was carried out to produce a numerical model suitable for use on a personal computer for the simulation of the dambreak wave along erosion-prone channels. The following features were determined to be essential: nonuniform and non-equilibrium transport of graded sediment should be considered; the user should be able to use the sediment transport function of choice; channel roughness should reflect the change of the river channel; armoring of the channel bed should be included; and bank erosion should be considered. Details are given of the mathematical analysis of dam failure, dynamic flood routing, and sediment routing. Preliminary testing showed that the model is usable to perform routing of a dambreak wave along an erodible river channel. Additional options may be added which include various hydraulic structures, description of debris flow, etc. With the inclusion of a width adjustment algorithm, it is able to estimate the vulnerability of river banks, which will be important for civil protection agencies in the preparation of emergency preparedness plans. 23 refs., 7 figs

  12. Lithium-system corrosion/erosion studies for the FMIT project

    International Nuclear Information System (INIS)

    Bazinet, G.D.

    1983-04-01

    The corrosion behavior of selected materials in a liquid lithium environment has been studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. The liquid lithium test resources and the capabilities of several laboratories were used to study specific concerns associated with the overall objective. Testing conditions ranged from approx. 3700 hours to approx. 6500 hours of exposure to flowing lithium at temperatures from 230 0 C to 270 0 C and static lithium at temperatures from 200 0 C to 500 0 C. Principal areas of investigation included lithium corrosion/erosion effects of FMIT lithium system materials (largely Type 304 and Type 304L austenitic stainless steels) and candidate materials for major system components

  13. Lithium-system corrosion/erosion studies for the FMIT project

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G D [comp.

    1983-04-01

    The corrosion behavior of selected materials in a liquid lithium environment has been studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. The liquid lithium test resources and the capabilities of several laboratories were used to study specific concerns associated with the overall objective. Testing conditions ranged from approx. 3700 hours to approx. 6500 hours of exposure to flowing lithium at temperatures from 230/sup 0/C to 270/sup 0/C and static lithium at temperatures from 200/sup 0/C to 500/sup 0/C. Principal areas of investigation included lithium corrosion/erosion effects of FMIT lithium system materials (largely Type 304 and Type 304L austenitic stainless steels) and candidate materials for major system components.

  14. Effectiveness of hydrological forest restoration projects on soil erosion control in Mediterranean catchment

    International Nuclear Information System (INIS)

    Castillo, V. M.; Boix Fayos, C.; Vente, J. de; Martinez-Mena, M.; Barbera, G. G.

    2009-01-01

    Extensive land use changes have occurred in many Mediterranean catchments as a result of reforestation and the abandonment of agricultural activities. Besides this, the establishment of check-dams has been promoted to reduce soil erosion and sediment transport. In this study a combination of field work, mapping and modelling was used to test influence of land use scenarios with and without sediment control structures on sediment yield at catchment scale. Model simulation shows that in a scenario without check-dams, the land used changes between 1956 and 1997 caused a progressive decrease in sediment yield of 54%. In a scenario without land use changes but with check-dams, about 77% of the sediment yield was retained behind the dams. Both land use changes and check-dams are effective measures decreasing sediment yield in catchment, however they act at very different temporal scales. (Author) 5 refs.

  15. Development of an Integrated Water and Wind Erosion Model

    Science.gov (United States)

    Flanagan, D. C.; Ascough, J. C.; Wagner, L. E.; Geter, W. F.

    2006-12-01

    Prediction technologies for soil erosion by the forces of wind or water have largely been developed independently from one another, especially within the United States. Much of this has been due to the initial creation of equations and models which were empirical in nature (i.e., Universal Soil Loss Equation, Wind Erosion Equation) and based upon separate water erosion or wind erosion plot and field measurements. Additionally, institutional organizations in place typically divided research efforts and funding to unique wind or water erosion research and modeling projects. However, during the past 20 years computer technologies and erosion modeling have progressed to the point where it is now possible to merge physical process-based computer simulation models into an integrated water and wind erosion prediction system. In a physically- based model, many of the processes which must be simulated for wind and water erosion computations are the same, e.g., climate, water balance, runoff, plant growth, etc. Model components which specifically deal with the wind or water detachment, transport and deposition processes are those that must differ, as well as any necessary parameterization of input variables (e.g., adjusted soil erodibilities, critical shear stresses, etc.) for those components. This presentation describes current efforts towards development of a combined wind and water erosion model, based in part upon technologies present in the Water Erosion Prediction Project (WEPP) and the Wind Erosion Prediction System (WEPS) models. Initial efforts during the past two years have resulted in modular modeling components that allow for prediction of infiltration, surface runoff, and water erosion at a hillslope scale within an Object Modeling System. Additional components currently in development include wind detachment at a single field point, continuous water balance, and unified plant growth. Challenges in this project are many, and include adequate field

  16. Formation of Valley Networks in a Cold and Icy Early Mars Climate: Predictions for Erosion Rates and Channel Morphology

    Science.gov (United States)

    Cassanelli, J.

    2017-12-01

    Mars is host to a diverse array of valley networks, systems of linear-to-sinuous depressions which are widely distributed across the surface and which exhibit branching patterns similar to the dendritic drainage patterns of terrestrial fluvial systems. Characteristics of the valley networks are indicative of an origin by fluvial activity, providing among the most compelling evidence for the past presence of flowing liquid water on the surface of Mars. Stratigraphic and crater age dating techniques suggest that the formation of the valley networks occurred predominantly during the early geologic history of Mars ( 3.7 Ga). However, whether the valley networks formed predominantly by rainfall in a relatively warm and wet early Mars climate, or by snowmelt and episodic rainfall in an ambient cold and icy climate, remains disputed. Understanding the formative environment of the valley networks will help distinguish between these warm and cold end-member early Mars climate models. Here we test a conceptual model for channel incision and evolution under cold and icy conditions with a substrate characterized by the presence of an ice-free dry active layer and subjacent ice-cemented regolith, similar to that found in the Antarctic McMurdo Dry Valleys. We implement numerical thermal models, quantitative erosion and transport estimates, and morphometric analyses in order to outline predictions for (1) the precise nature and structure of the substrate, (2) fluvial erosion/incision rates, and (3) channel morphology. Model predictions are compared against morphologic and morphometric observational data to evaluate consistency with the assumed cold climate scenario. In the cold climate scenario, the substrate is predicted to be characterized by a kilometers-thick globally-continuous cryosphere below a 50-100 meter thick desiccated ice-free zone. Initial results suggest that, with the predicted substrate structure, fluvial channel erosion and morphology in a cold early Mars

  17. Bottlenecks in Software Defect Prediction Implementation in Industrial Projects

    OpenAIRE

    Hryszko Jarosław; Madeyski Lech

    2015-01-01

    Case studies focused on software defect prediction in real, industrial software development projects are extremely rare. We report on dedicated R&D project established in cooperation between Wroclaw University of Technology and one of the leading automotive software development companies to research possibilities of introduction of software defect prediction using an open source, extensible software measurement and defect prediction framework called DePress (Defect Prediction in Software Syst...

  18. Calculation Methods of Topographic Factors Modification Using Data Digital Elevation Model (DEM To Predict Erosion

    Directory of Open Access Journals (Sweden)

    Hengki Simanjuntak

    2018-03-01

    Full Text Available Erosion  is a crucial information for sustainable management of land resources within a particular watershed. The information of erosion is needed for land resource management planning, and is generally counted by USLE (Universal Soil Loss Equation. One of the parameters in USLE is topographic factor (LS. The determinations of LS in erosion estimation model are vary, both in terms of LS factor equation, as well as in terms of the length of the slope (λ and slope (s measurements. There are at least 3 methods used to calculate slope factors in spatial operation, i.e (1 Input of the LS Value from Table (INT, (2 Flow accumulation, and (3 Cell Size. The study was designed to obtain a method of calculation that gives the smallest topographic factor and in order to obtain a LS factors that similar to the slope information. Research location in Kampa Sub watershed, The LS determination in Kampa Sub watershed basically are with (INT and without calculating λ and s. INT method is determination without calculating λ and s, LS value is generate from the contour map and DEM SRTM by giving LS value from table reference of LS value. The Flow Accumulation and Cell Size are determination of LS Value by calculating λ and s. The Flow Accumulation method modifies the determination of λ and s using the middle value of s, λ per land use, and λ and s per cell. Cell Size method determines λ using the amount of cell size. The results showed that the “cell size” and "INT" methods were the best method for topographic factor (LS calculation, because LS value of “cell size” and "INT" methods are smaller than the flow accumulation method and the LS value similar to the slope information. LS value from that methods generated weighted value in average of 0,55−0,58. Keywords: cell size, flow accumulation, flow direction, the length of the slope, USLE

  19. Predicting the Rate of River Bank Erosion Caused by Large Wood Log

    Science.gov (United States)

    Zhang, N.; Rutherfurd, I.; Ghisalberti, M.

    2016-12-01

    When a single tree falls into a river channel, flow is deflected and accelerated between the tree roots and the bank face, increasing shear stress and scouring the bank. The scallop shaped erosion increases the diversity of the channel morphology, but also causes concern for adjacent landholders. Concern about increased bank erosion is one of the main reasons for large wood to still be removed from channels in SE Australia. Further, the hydraulic effect of many logs in the channel can reduce overall bank erosion rates. Although both phenomena have been described before, this research develops a hydraulic model that estimates their magnitude, and tests and calibrates this model with flume and field measurements, with logs with various configurations and sizes. Specifically, the model estimates the change in excess shear stress on the bank associated . The model addresses the effect of the log angle, distance from bank, and log size and flow condition by solving the mass continuity and energy conservation between the cross section at the approaching flow and contracted flow. Then, we evaluate our model against flume experiment preformed with semi-realistic log models to represent logs in different sizes and decay stages by comparing the measured and simulated velocity increase in the gap between the log and the bank. The log angle, distance from bank, and flow condition are systemically varied for each log model during the experiment. Final, the calibrated model is compared with the field data collected in anabranching channels of Murray River in SE Australia where there are abundant instream logs and regulated and consistent high flow for irrigation. Preliminary results suggest that a log can significantly increase the shear stress on the bank, especially when it positions perpendicular to the flow. The shear stress increases with the log angle in a rising curve (The log angle is the angle between log trunk and flow direction. 0o means log is parallel to flow with

  20. Soil erosion assessment in the core area of the Loss Plateau

    Science.gov (United States)

    Yang, Bo; Wang, Quanjiu

    2017-11-01

    In order to explore the spatiotemporal evolution of erosion and sediment yield before and after Grain for Green Project in the Loss Plateau. The soil loss of Yulin is estimated by Chinese Water Erosion on Hill Slope Prediction Model. The result shows that the spatiotemporal variations of soil erosion are largely related to rainfall erosion distribution, slope, and land use type. The overall soil erosion categories in the south region are higher than that of the northwest. Mid slopes and valleys are the major topographical contributors to soil erosion. With the growth of slope gradient, soil erosion significantly increased. The soil loss has a decreasing tendency after Grain for Green Project. The results indicate that the vegetation restoration as part of the Grain for Green Project on the Loess Plateau is effective.

  1. Thermal load testing of erosion-monitoring beryllium marker tile for the ITER-Like Wall Project at JET

    International Nuclear Information System (INIS)

    Hirai, T.; Linke, J.; Rubel, M.; Coad, J.P.; Likonen, J.; Lungu, C.P.; Matthews, G.F.; Philipps, V.; Wessel, E.

    2008-01-01

    ITER-Like Wall Project has been launched at JET in order to perform a fully integrated test of plasma-facing materials. During the next major shutdown a full metal wall will be installed: tungsten in the divertor and beryllium in the main chamber. Beryllium erosion is one of key issues to be addressed. Special marker tiles have been designed for this purpose. Test coupons of such markers have been manufactured and examined. The performance test under high power deposition was carried in the electron beam facility JUDITH. The results of material characterization before and after high heat flux loads are presented. The samples survived, without macroscopic damage, power loads of up to 4.5 MW/m 2 for 10 s (surface temperature ∼650 deg. C) and 50 cyclic loads at 3.5 MW/m 2 lasting 10 s each (surface temperature ∼600 deg. C)

  2. Categorization of erosion control matting.

    Science.gov (United States)

    2012-05-29

    Erosion control is a critical aspect of any Georgia Department of Transportation (GDOT) : construction project, with the extreme negative impacts of high sediment loads in natural : waterways having been well documented. A variety of erosion control ...

  3. Predicting Software Projects Cost Estimation Based on Mining Historical Data

    OpenAIRE

    Najadat, Hassan; Alsmadi, Izzat; Shboul, Yazan

    2012-01-01

    In this research, a hybrid cost estimation model is proposed to produce a realistic prediction model that takes into consideration software project, product, process, and environmental elements. A cost estimation dataset is built from a large number of open source projects. Those projects are divided into three domains: communication, finance, and game projects. Several data mining techniques are used to classify software projects in terms of their development complexity. Data mining techniqu...

  4. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins.

    Science.gov (United States)

    Vigiak, Olga; Malagó, Anna; Bouraoui, Fayçal; Vanmaercke, Matthias; Poesen, Jean

    2015-12-15

    The Soil and Water Assessment Tool (SWAT) is used worldwide for water quality assessment and planning. This paper aimed to assess and adapt SWAT hillslope sediment yield model (Modified Universal Soil Loss Equation, MUSLE) for applications in large basins, i.e. when spatial data is coarse and model units are large; and to develop a robust sediment calibration method for large regions. The Upper Danube Basin (132,000km(2)) was used as case study representative of large European Basins. The MUSLE was modified to reduce sensitivity of sediment yields to the Hydrologic Response Unit (HRU) size, and to identify appropriate algorithms for estimating hillslope length (L) and slope-length factor (LS). HRUs gross erosion was broadly calibrated against plot data and soil erosion map estimates. Next, mean annual SWAT suspended sediment concentrations (SSC, mg/L) were calibrated and validated against SSC data at 55 gauging stations (622 station-years). SWAT annual specific sediment yields in subbasin reaches (RSSY, t/km(2)/year) were compared to yields measured at 33 gauging stations (87station-years). The best SWAT configuration combined a MUSLE equation modified by the introduction of a threshold area of 0.01km(2) where L and LS were estimated with flow accumulation algorithms. For this configuration, the SSC residual interquartile was less than +/-15mg/L both for the calibration (1995-2004) and the validation (2005-2009) periods. The mean SSC percent bias for 1995-2009 was 24%. RSSY residual interquartile was within +/-10t/km(2)/year, with a mean RSSY percent bias of 12%. Residuals showed no bias with respect to drainage area, slope, or spatial distribution. The use of multiple data types at multiple sites enabled robust simulation of sediment concentrations and yields of the region. The MUSLE modifications are recommended for use in large basins. Based on SWAT simulations, we present a sediment budget for the Upper Danube Basin. Copyright © 2015. Published by Elsevier B.V.

  5. Precision comparison of the erosion rates derived from 137Cs measurements models with predictions based on empirical relationship

    International Nuclear Information System (INIS)

    Yang Mingyi; Liu Puling; Li Liqing

    2004-01-01

    The soil samples were collected in 6 cultivated runoff plots with grid sampling method, and the soil erosion rates derived from 137 Cs measurements were calculated. The models precision of Zhang Xinbao, Zhou Weizhi, Yang Hao and Walling were compared with predictions based on empirical relationship, data showed that the precision of 4 models is high within 50m slope length except for the slope with low slope angle and short length. Relatively, the precision of Walling's model is better than that of Zhang Xinbao, Zhou Weizhi and Yang Hao. In addition, the relationship between parameter Γ in Walling's improved model and slope angle was analyzed, the ralation is: Y=0.0109 X 1.0072 . (authors)

  6. Rill erosion rates in burned forests

    Science.gov (United States)

    Joseph W. Wagenbrenner; Peter R. Robichaud

    2011-01-01

    Introduction Wildfires often produce large increases in runoff and erosion rates (e.g., Moody and Martin, 2009), and land managers need to predict the frequency and magnitude of postfire erosion to determine the needs for hazard response and possible erosion mitigation to reduce the impacts of increased erosion on public safety and valued resources. The Water Erosion...

  7. Evaluation of the rusle and disturbed wepp erosion models for predicting soil loss in the first year after wildfire in NW Spain.

    Science.gov (United States)

    Fernández, Cristina; Vega, José A

    2018-05-04

    Severe fire greatly increases soil erosion rates and overland-flow in forest land. Soil erosion prediction models are essential for estimating fire impacts and planning post-fire emergency responses. We evaluated the performance of a) the Revised Universal Soil Loss Equation (RUSLE), modified by inclusion of an alternative equation for the soil erodibility factor, and b) the Disturbed WEPP model, by comparing the soil loss predicted by the models and the soil loss measured in the first year after wildfire in 44 experimental field plots in NW Spain. The Disturbed WEPP has not previously been validated with field data for use in NW Spain; validation studies are also very scarce in other areas. We found that both models underestimated the erosion rates. The accuracy of the RUSLE model was low, even after inclusion of a modified soil erodibility factor accounting for high contents of soil organic matter. We conclude that neither model is suitable for predicting soil erosion in the first year after fire in NW Spain and suggest that soil burn severity should be given greater weighting in post-fire soil erosion modelling. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Projecting Soil Feedbacks to Atmospheric CO2 Following Erosion and Deposition on Centennial Timescales in Two Contrasting Forests: A Study of Critical Zone-Atmosphere Exchange

    Science.gov (United States)

    Billings, S. A.; Richter, D., Jr.; Ziegler, S. E.; Prestegaard, K. L.

    2016-12-01

    For almost 20 y there has been a growing recognition that erosion and associated lateral movement of SOC does not necessarily result in a net CO2 source from terrestrial sources to the atmosphere. Eroded SOC may undergo mineralization to CO2 at a more rapid pace than it would have in situ, but the eroding ecosystem continues to generate SOC at a potentially modified rate, and the eroding profile may also experience changing SOC mineralization rates. No one knows how these process rates may change upon erosion. Years ago, we introduced a model that computes the influence of erosion on biosphere-atmosphere CO2 exchange for any profile of interest. The model permits the user to test how assumptions of changing SOC production and mineralization can influence the degree to which erosion induces a net CO2 sink or source. Here we present an analogous model depicting how deposition of eroded SOC also can result in altered biosphere-atmosphere CO2 exchange. We employ both models to investigate how erosion and deposition in two contrasting forested regions may influence regional C budgets. Runoff-induced erosion in a boreal forest occurs at low rates, but removes C-rich, organic material; anthropogenically-enhanced erosion in a warm temperate forest removed both O- and mineral-rich A-horizons. Model runs (100 y) suggest that even though the great volume of mineral soil eroded from the temperate forest was relatively low-SOC, high erosion rates prompted greater potential for erosion to serve as a net CO2 sink compared to the boreal forest where C-rich material was lost but erosion rates remained low. The models further suggest that changes in SOC production and mineralization at eroding sites in both forest types are a greater influence on CO2 source or sink strength than analogous changes at depositional sites. The fate of eroded material and the influence of erosion and deposition on SOC dynamics remain knowledge gaps critical for projecting atmospheric CO2.

  9. Effects of polyacrylamide on soil erosion and nutrient losses from substrate material in steep rocky slope stabilization projects.

    Science.gov (United States)

    Chen, Zhang; Chen, Wenlu; Li, Chengjun; Pu, Yanpin; Sun, Haifeng

    2016-06-01

    Erosion of denuded steep rocky slopes causes increasing losses of nitrogen and phosphorus, which is a severe problem in rocky slope protection. Thus, it is important to determine the appropriate materials that can reduce the erodibility and losses of nitrogen and phosphorus of the soil. In this paper, twenty-seven simulated rainfall events were carried out in a greenhouse, in which the substrate material was artificial soil; nine types of anionic polyacrylamide (PAM) were studied, which consisted of three molecular weight (6, 12, and 18 Mg mol(-1)) and three charge density (10, 20, and 30%) formulations in a 3 by 3 factorial design. The results showed that: (1) Polyacrylamide application reduced total nitrogen losses by 35.3% to 50.0% and total phosphorus losses by 34.9% to 48.0% relative to the control group. (2) The losses of total nitrogen and total phosphorus had significant correlation with the molecular weight. Besides, the losses of total phosphorus, particulate-bound phosphorus and inorganic nitrogen (NH4-N) were significantly correlated with their molecular weight and charge density. However, the losses of dissolved organic nitrogen, inorganic nitrogen (NO3-N), dissolved organic phosphorus, inorganic phosphorus (PO4-P) were non-significantly correlated with molecular weight and charge density. (3) Particulate-bound nitrogen and phosphorus were responsible for the losses of nitrogen and phosphorus during runoff events, where particulate-bound nitrogen made up 71.7% to 73.2% of total nitrogen losses, and particulate-bound phosphorus made up 82.3% to 85.2% of total phosphorus losses. (4) Polyacrylamide treatments increased water-stable aggregates content by 32.3% to 59.1%, total porosity by 11.3% to 49.0%, final infiltrative rate by 41.3% to 72.5%, and reduced soil erosion by 18.9% to 39.8% compared with the control group. Overall, the results of this study indicated that polyacrylamide application in the steep rocky slope stabilization projects could

  10. Erosion and erosion-corrosion

    International Nuclear Information System (INIS)

    Isomoto, Yoshinori

    2008-01-01

    It is very difficult to interpret the technical term of erosion-corrosion' which is sometimes encountered in piping systems of power plants, because of complicated mechanisms and several confusing definitions of erosion-corrosion phenomena. 'FAC (flow accelerated corrosion)' is recently introduced as wall thinning of materials in power plant systems, as a representative of 'erosion-corrosion'. FAC is, however, not necessarily well understood and compared with erosion-corrosion. This paper describes firstly the origin, definition and fundamental understandings of erosion and erosion-corrosion, in order to reconsider and reconfirm the phenomena of erosion, erosion-corrosion and FAC. Next, typical mapping of erosion, corrosion, erosion-corrosion and FAC are introduced in flow velocity and environmental corrosiveness axes. The concept of damage rate in erosion-corrosion is finally discussed, connecting dissolution rate, mass transfer of metal ions in a metal oxide film and film growth. (author)

  11. Heartburn Severity Does Not Predict Disease Severity in Patients With Erosive Esophagitis

    Science.gov (United States)

    Fennerty, M. Brian; Johnson, David A.

    2006-01-01

    Background For patients with gastroesophageal reflux disease (GERD), it is often assumed by treating physicians that the severity of heartburn correlates with the severity of erosive esophagitis (EE). Objective This is a post hoc analysis of data from 5 clinical trials that investigate the relationship between the baseline severity of heartburn and the baseline severity of EE. Methods Patients with endoscopically confirmed EE were assessed for heartburn symptoms with a 4-point scale at baseline and during treatment for 8 weeks with various proton pump inhibitors in 5 double-blind trials in which esomeprazole was the common comparator. EE was graded with the Los Angeles (LA) classification system. In these trials, healing and symptom response were evaluated by endoscopy and questionnaire after 4 weeks of treatment. Patients who were not healed were treated for an additional 4 weeks and reevaluated. Results A total of 11,945 patients with endoscopically confirmed EE participated in the 5 trials, with patients receiving esomeprazole 40 mg (n = 5068), esomeprazole 20 mg (n = 1243), omeprazole 20 mg (n = 3018), or lansoprazole 30 mg (n = 2616). Approximately one quarter of the 11,945 GERD patients in these 5 trials had severe EE (defined as LA grades C or D), regardless of their baseline heartburn severity. Conclusion The severity of GERD symptoms does not correlate well with disease severity. These findings indicate that endoscopy may have value in GERD patients in identifying those with EE, and if empirical therapy is chosen, then longer courses (4-8 weeks) of antisecretory therapy may be necessary to ensure healing of unrecognized esophagitis. PMID:16926745

  12. Valuing Externalities of Watershed Restoration and Erosion Control Projects in Mediterranean Basins: A Comparative Analysis of the Contingent Valuation and Replacement Cost Methods

    OpenAIRE

    Saez, Maria Del Carmen Almansa; Calatrava-Requena, Javier

    2002-01-01

    The methodology used for Economic Valuation of the Externalities generated by the Watershead Restoration and Erosion Control Projects in the Hydrographic Basins of the Mediterranean Slope, is based on the Replacement Cost Method. Environmental Economics, however, today offer us other methodological possibilities, whose application to the valuation of this type of project may prove to be of interest. It is the case of the Contingent Valuation Method used for the evaluation of the effects of th...

  13. Buhne Point Shoreline Erosion Demonstration Project. Volume 1. Appendices A-D.

    Science.gov (United States)

    1987-08-01

    discussion, ;rojected costs are based on S.C rcr hour for latrers an’ S17 per hour for supervisors. These firures arc assumed to cover on!y waces and...in Phase Two, and simple " " economies of scale for the larger planting. The average dune grass planting labor in the Phase One project was 38 to 64...attributed to economies of scale, but may be attributed to greater crew efficiency. Other planting-related activities such as orientation, tool and

  14. MRI of the wrist and finger joints in inflammatory joint diseases at 1-year interval: MRI features to predict bone erosions

    International Nuclear Information System (INIS)

    Savnik, Anette; Malmskov, Hanne; Graff, Lykke B.; Danneskiold-Samsoee, Bente; Bliddal, Henning; Thomsen, Henrik S.; Nielsen, Henrik; Boesen, Jens

    2002-01-01

    The aim of this study was to assess the ability of MRI determined synovial volumes and bone marrow oedema to predict progressions in bone erosions after 1 year in patients with different types of inflammatory joint diseases. Eighty-four patients underwent MRI, laboratory and clinical examination at baseline and 1 year later. Magnetic resonance imaging of the wrist and finger joints was performed in 22 patients with rheumatoid arthritis less than 3 years (group 1) who fulfilled the American College of Rheumatology (ACR) criteria for rheumatoid arthritis, 18 patients with reactive arthritis or psoriatic arthritis (group 2), 22 patients with more than 3 years duration of rheumatoid arthritis, who fulfilled the ACR criteria for rheumatoid arthritis (group 3), and 20 patients with arthralgia (group 4). The volume of the synovial membrane was outlined manually before and after gadodiamide injection on the T1-weighted sequences in the finger joints. Bones with marrow oedema were summed up in the wrist and fingers on short-tau inversion recovery sequences. These MRI features was compared with the number of bone erosions 1 year later. The MR images were scored independently under masked conditions. The synovial volumes in the finger joints assessed on pre-contrast images was highly predictive of bone erosions 1 year later in patients with rheumatoid arthritis (groups 1 and 3). The strongest individual predictor of bone erosions at 1-year follow-up was bone marrow oedema, if present at the wrist at baseline. Bone erosions on baseline MRI were in few cases reversible at follow-up MRI. The total synovial volume in the finger joints, and the presence of bone oedema in the wrist bones, seems to be predictive for the number of bone erosions 1 year later and may be used in screening. The importance of very early bone changes on MRI and the importance of the reversibility of these findings remain to be clarified. (orig.)

  15. Predicting local distributions of erosion-corrosion wear sites for the piping in the nuclear power plant using CFD models

    International Nuclear Information System (INIS)

    Ferng, Y.M.

    2008-01-01

    The erosion-corrosion (E/C) wear is an essential degradation mechanism for the piping in the nuclear power plant, which results in the oxide mass loss from the inside of piping, the wall thinning, and even the pipe break. The pipe break induced by the E/C wear may cause costly plant repairs and personal injures. The measurement of pipe wall thickness is a useful tool for the power plant to prevent this incident. In this paper, CFD models are proposed to predict the local distributions of E/C wear sites, which include both the two-phase hydrodynamic model and the E/C models. The impacts of centrifugal and gravitational forces on the liquid droplet behaviors within the piping can be reasonably captured by the two-phase model. Coupled with these calculated flow characteristics, the E/C models can predicted the wear site distributions that show satisfactory agreement with the plant measurements. Therefore, the models proposed herein can assist in the pipe wall monitoring program for the nuclear power plant by way of concentrating the measuring point on the possible sites of severe E/C wear for the piping and reducing the measurement labor works

  16. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    Science.gov (United States)

    Lawrence N. Hudson; Joseph Wunderle M.; And Others

    2016-01-01

    The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to...

  17. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    NARCIS (Netherlands)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara; Hill, Samantha L L; Lysenko, Igor; De Palma, Adriana; Phillips, Helen R P; Alhusseini, Tamera I; Bedford, Felicity E; Bennett, Dominic J; Booth, Hollie; Burton, Victoria J; Chng, Charlotte W T; Choimes, Argyrios; Correia, David L P; Day, Julie; Echeverría-Londoño, Susy; Emerson, Susan R; Gao, Di; Garon, Morgan; Harrison, Michelle L K; Ingram, Daniel J; Jung, Martin; Kemp, Victoria; Kirkpatrick, Lucinda; Martin, Callum D; Pan, Yuan; Pask-Hale, Gwilym D; Pynegar, Edwin L; Robinson, Alexandra N; Sanchez-Ortiz, Katia; Senior, Rebecca A; Simmons, Benno I; White, Hannah J; Zhang, Hanbin; Aben, Job; Abrahamczyk, Stefan; Adum, Gilbert B; Aguilar-Barquero, Virginia; Aizen, Marcelo A; Albertos, Belén; Alcala, E L; Del Mar Alguacil, Maria; Alignier, Audrey; Ancrenaz, Marc; Andersen, Alan N; Arbeláez-Cortés, Enrique; Armbrecht, Inge; Arroyo-Rodríguez, Víctor; Aumann, Tom; Axmacher, Jan C; Azhar, Badrul; Azpiroz, Adrián B; Baeten, Lander; Bakayoko, Adama; Báldi, András; Banks, John E; Baral, Sharad K; Barlow, Jos; Barratt, Barbara I P; Barrico, Lurdes; Bartolommei, Paola; Barton, Diane M; Basset, Yves; Batáry, Péter; Bates, Adam J; Baur, Bruno; Bayne, Erin M; Beja, Pedro; Benedick, Suzan; Berg, Åke; Bernard, Henry; Berry, Nicholas J; Bhatt, Dinesh; Bicknell, Jake E; Bihn, Jochen H; Blake, Robin J; Bobo, Kadiri S; Bóçon, Roberto; Boekhout, Teun; Böhning-Gaese, Katrin; Bonham, Kevin J; Borges, Paulo A V; Borges, Sérgio H; Boutin, Céline; Bouyer, Jérémy; Bragagnolo, Cibele; Brandt, Jodi S; Brearley, Francis Q; Brito, Isabel; Bros, Vicenç; Brunet, Jörg; Buczkowski, Grzegorz; Buddle, Christopher M; Bugter, Rob; Buscardo, Erika; Buse, Jörn; Cabra-García, Jimmy; Cáceres, Nilton C; Cagle, Nicolette L; Calviño-Cancela, María; Cameron, Sydney A; Cancello, Eliana M; Caparrós, Rut; Cardoso, Pedro; Carpenter, Dan; Carrijo, Tiago F; Carvalho, Anelena L; Cassano, Camila R; Castro, Helena; Castro-Luna, Alejandro A; Rolando, Cerda B; Cerezo, Alexis; Chapman, Kim Alan; Chauvat, Matthieu; Christensen, Morten; Clarke, Francis M; Cleary, Daniel F R; Colombo, Giorgio; Connop, Stuart P; Craig, Michael D; Cruz-López, Leopoldo; Cunningham, Saul A; D'Aniello, Biagio; D'Cruze, Neil; da Silva, Pedro Giovâni; Dallimer, Martin; Danquah, Emmanuel; Darvill, Ben; Dauber, Jens; Davis, Adrian L V; Dawson, Jeff; de Sassi, Claudio; de Thoisy, Benoit; Deheuvels, Olivier; Dejean, Alain; Devineau, Jean-Louis; Diekötter, Tim; Dolia, Jignasu V; Domínguez, Erwin; Dominguez-Haydar, Yamileth; Dorn, Silvia; Draper, Isabel; Dreber, Niels; Dumont, Bertrand; Dures, Simon G; Dynesius, Mats; Edenius, Lars; Eggleton, Paul; Eigenbrod, Felix; Elek, Zoltán; Entling, Martin H; Esler, Karen J; de Lima, Ricardo F; Faruk, Aisyah; Farwig, Nina; Fayle, Tom M; Felicioli, Antonio; Felton, Annika M; Fensham, Roderick J; Fernandez, Ignacio C; Ferreira, Catarina C; Ficetola, Gentile F; Fiera, Cristina; Filgueiras, Bruno K C; Fırıncıoğlu, Hüseyin K; Flaspohler, David; Floren, Andreas; Fonte, Steven J; Fournier, Anne; Fowler, Robert E; Franzén, Markus; Fraser, Lauchlan H; Fredriksson, Gabriella M; Freire, Geraldo B; Frizzo, Tiago L M; Fukuda, Daisuke; Furlani, Dario; Gaigher, René; Ganzhorn, Jörg U; García, Karla P; Garcia-R, Juan C; Garden, Jenni G; Garilleti, Ricardo; Ge, Bao-Ming; Gendreau-Berthiaume, Benoit; Gerard, Philippa J; Gheler-Costa, Carla; Gilbert, Benjamin; Giordani, Paolo; Giordano, Simonetta; Golodets, Carly; Gomes, Laurens G L; Gould, Rachelle K; Goulson, Dave; Gove, Aaron D; Granjon, Laurent; Grass, Ingo; Gray, Claudia L; Grogan, James; Gu, Weibin; Guardiola, Moisès; Gunawardene, Nihara R; Gutierrez, Alvaro G; Gutiérrez-Lamus, Doris L; Haarmeyer, Daniela H; Hanley, Mick E; Hanson, Thor; Hashim, Nor R; Hassan, Shombe N; Hatfield, Richard G; Hawes, Joseph E; Hayward, Matt W; Hébert, Christian; Helden, Alvin J; Henden, John-André; Henschel, Philipp; Hernández, Lionel; Herrera, James P; Herrmann, Farina; Herzog, Felix; Higuera-Diaz, Diego; Hilje, Branko; Höfer, Hubert; Hoffmann, Anke; Horgan, Finbarr G; Hornung, Elisabeth; Horváth, Roland; Hylander, Kristoffer; Isaacs-Cubides, Paola; Ishida, Hiroaki; Ishitani, Masahiro; Jacobs, Carmen T; Jaramillo, Víctor J; Jauker, Birgit; Hernández, F Jiménez; Johnson, McKenzie F; Jolli, Virat; Jonsell, Mats; Juliani, S Nur; Jung, Thomas S; Kapoor, Vena; Kappes, Heike; Kati, Vassiliki; Katovai, Eric; Kellner, Klaus; Kessler, Michael; Kirby, Kathryn R; Kittle, Andrew M; Knight, Mairi E; Knop, Eva; Kohler, Florian; Koivula, Matti; Kolb, Annette; Kone, Mouhamadou; Kőrösi, Ádám; Krauss, Jochen; Kumar, Ajith; Kumar, Raman; Kurz, David J; Kutt, Alex S; Lachat, Thibault; Lantschner, Victoria; Lara, Francisco; Lasky, Jesse R; Latta, Steven C; Laurance, William F; Lavelle, Patrick; Le Féon, Violette; LeBuhn, Gretchen; Légaré, Jean-Philippe; Lehouck, Valérie; Lencinas, María V; Lentini, Pia E; Letcher, Susan G; Li, Qi; Litchwark, Simon A; Littlewood, Nick A; Liu, Yunhui; Lo-Man-Hung, Nancy; López-Quintero, Carlos A; Louhaichi, Mounir; Lövei, Gabor L; Lucas-Borja, Manuel Esteban; Luja, Victor H; Luskin, Matthew S; MacSwiney G, M Cristina; Maeto, Kaoru; Magura, Tibor; Mallari, Neil Aldrin; Malone, Louise A; Malonza, Patrick K; Malumbres-Olarte, Jagoba; Mandujano, Salvador; Måren, Inger E; Marin-Spiotta, Erika; Marsh, Charles J; Marshall, E J P; Martínez, Eliana; Martínez Pastur, Guillermo; Moreno Mateos, David; Mayfield, Margaret M; Mazimpaka, Vicente; McCarthy, Jennifer L; McCarthy, Kyle P; McFrederick, Quinn S; McNamara, Sean; Medina, Nagore G; Medina, Rafael; Mena, Jose L; Mico, Estefania; Mikusinski, Grzegorz; Milder, Jeffrey C; Miller, James R; Miranda-Esquivel, Daniel R; Moir, Melinda L; Morales, Carolina L; Muchane, Mary N; Muchane, Muchai; Mudri-Stojnic, Sonja; Munira, A Nur; Muoñz-Alonso, Antonio; Munyekenye, B F; Naidoo, Robin; Naithani, A; Nakagawa, Michiko; Nakamura, Akihiro; Nakashima, Yoshihiro; Naoe, Shoji; Nates-Parra, Guiomar; Navarrete Gutierrez, Dario A; Navarro-Iriarte, Luis; Ndang'ang'a, Paul K; Neuschulz, Eike L; Ngai, Jacqueline T; Nicolas, Violaine; Nilsson, Sven G; Noreika, Norbertas; Norfolk, Olivia; Noriega, Jorge Ari; Norton, David A; Nöske, Nicole M; Nowakowski, A Justin; Numa, Catherine; O'Dea, Niall; O'Farrell, Patrick J; Oduro, William; Oertli, Sabine; Ofori-Boateng, Caleb; Oke, Christopher Omamoke; Oostra, Vicencio; Osgathorpe, Lynne M; Otavo, Samuel Eduardo; Page, Navendu V; Paritsis, Juan; Parra-H, Alejandro; Parry, Luke; Pe'er, Guy; Pearman, Peter B; Pelegrin, Nicolás; Pélissier, Raphaël; Peres, Carlos A; Peri, Pablo L; Persson, Anna S; Petanidou, Theodora; Peters, Marcell K; Pethiyagoda, Rohan S; Phalan, Ben; Philips, T Keith; Pillsbury, Finn C; Pincheira-Ulbrich, Jimmy; Pineda, Eduardo; Pino, Joan; Pizarro-Araya, Jaime; Plumptre, A J; Poggio, Santiago L; Politi, Natalia; Pons, Pere; Poveda, Katja; Power, Eileen F; Presley, Steven J; Proença, Vânia; Quaranta, Marino; Quintero, Carolina; Rader, Romina; Ramesh, B R; Ramirez-Pinilla, Martha P; Ranganathan, Jai; Rasmussen, Claus; Redpath-Downing, Nicola A; Reid, J Leighton; Reis, Yana T; Rey Benayas, José M; Rey-Velasco, Juan Carlos; Reynolds, Chevonne; Ribeiro, Danilo Bandini; Richards, Miriam H; Richardson, Barbara A; Richardson, Michael J; Ríos, Rodrigo Macip; Robinson, Richard; Robles, Carolina A; Römbke, Jörg; Romero-Duque, Luz Piedad; Rös, Matthias; Rosselli, Loreta; Rossiter, Stephen J; Roth, Dana S; Roulston, T'ai H; Rousseau, Laurent; Rubio, André V; Ruel, Jean-Claude; Sadler, Jonathan P; Sáfián, Szabolcs; Saldaña-Vázquez, Romeo A; Sam, Katerina; Samnegård, Ulrika; Santana, Joana; Santos, Xavier; Savage, Jade; Schellhorn, Nancy A; Schilthuizen, Menno; Schmiedel, Ute; Schmitt, Christine B; Schon, Nicole L; Schüepp, Christof; Schumann, Katharina; Schweiger, Oliver; Scott, Dawn M; Scott, Kenneth A; Sedlock, Jodi L; Seefeldt, Steven S; Shahabuddin, Ghazala; Shannon, Graeme; Sheil, Douglas; Sheldon, Frederick H; Shochat, Eyal; Siebert, Stefan J; Silva, Fernando A B; Simonetti, Javier A; Slade, Eleanor M; Smith, Jo; Smith-Pardo, Allan H; Sodhi, Navjot S; Somarriba, Eduardo J; Sosa, Ramón A; Soto Quiroga, Grimaldo; St-Laurent, Martin-Hugues; Starzomski, Brian M; Stefanescu, Constanti; Steffan-Dewenter, Ingolf; Stouffer, Philip C; Stout, Jane C; Strauch, Ayron M; Struebig, Matthew J; Su, Zhimin; Suarez-Rubio, Marcela; Sugiura, Shinji; Summerville, Keith S; Sung, Yik-Hei; Sutrisno, Hari; Svenning, Jens-Christian; Teder, Tiit; Threlfall, Caragh G; Tiitsaar, Anu; Todd, Jacqui H; Tonietto, Rebecca K; Torre, Ignasi; Tóthmérész, Béla; Tscharntke, Teja; Turner, Edgar C; Tylianakis, Jason M; Uehara-Prado, Marcio; Urbina-Cardona, Nicolas; Vallan, Denis; Vanbergen, Adam J; Vasconcelos, Heraldo L; Vassilev, Kiril; Verboven, Hans A F; Verdasca, Maria João; Verdú, José R; Vergara, Carlos H; Vergara, Pablo M; Verhulst, Jort; Virgilio, Massimiliano; Vu, Lien Van; Waite, Edward M; Walker, Tony R; Wang, Hua-Feng; Wang, Yanping; Watling, James I; Weller, Britta; Wells, Konstans; Westphal, Catrin; Wiafe, Edward D; Williams, Christopher D; Willig, Michael R; Woinarski, John C Z; Wolf, Jan H D; Wolters, Volkmar; Woodcock, Ben A; Wu, Jihua; Wunderle, Joseph M; Yamaura, Yuichi; Yoshikura, Satoko; Yu, Douglas W; Zaitsev, Andrey S; Zeidler, Juliane; Zou, Fasheng; Collen, Ben; Ewers, Rob M; Mace, Georgina M; Purves, Drew W; Scharlemann, Jörn P W; Purvis, Andy

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of

  18. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    DEFF Research Database (Denmark)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara

    2017-01-01

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity ...

  19. PREDICTS: Projecting Responses of Ecological Diversity in Changing Terrestrial Systems

    Directory of Open Access Journals (Sweden)

    Georgina Mace

    2012-12-01

    Full Text Available The PREDICTS project (www.predicts.org.uk is a three-year NERC-funded project to model and predict at a global scale how local terrestrial diversity responds to human pressures such as land use, land cover, pollution, invasive species and infrastructure. PREDICTS is a collaboration between Imperial College London, the UNEP World Conservation Monitoring Centre, Microsoft Research Cambridge, UCL and the University of Sussex. In order to meet its aims, the project relies on extensive data describing the diversity and composition of biological communities at a local scale. Such data are collected on a vast scale through the committed efforts of field ecologists. If you have appropriate data that you would be willing to share with us, please get in touch (enquiries@predicts.org.uk. All contributions will be acknowledged appropriately and all data contributors will be included as co-authors on an open-access paper describing the database.

  20. Wind Plant Performance Prediction (WP3) Project

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Anna [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-26

    The methods for analysis of operational wind plant data are highly variable across the wind industry, leading to high uncertainties in the validation and bias-correction of preconstruction energy estimation methods. Lack of credibility in the preconstruction energy estimates leads to significant impacts on project financing and therefore the final levelized cost of energy for the plant. In this work, the variation in the evaluation of a wind plant's operational energy production as a result of variations in the processing methods applied to the operational data is examined. Preliminary results indicate that selection of the filters applied to the data and the filter parameters can have significant impacts in the final computed assessment metrics.

  1. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale

    2017-05-01

    The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha-1 h-1 yr-1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

  2. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets.

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale

    2017-05-01

    The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha -1  h -1  yr -1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

  3. Modeling soil erosion in a watershed

    OpenAIRE

    Lanuza, R.

    1999-01-01

    Most erosion models have been developed based on a plot scale and have limited application to a watershed due to the differences in aerial scale. In order to address this limitation, a GIS-assisted methodology for modeling soil erosion was developed using PCRaster to predict the rate of soil erosion at watershed level; identify the location of erosion prone areas; and analyze the impact of landuse changes on soil erosion. The general methodology of desktop modeling or soil erosion at watershe...

  4. Prediction of soil stability and erosion in semiarid regions using numerical hydrological model (MCAT) and airborne hyperspectral imagery

    Science.gov (United States)

    Brook, Anna; Wittenberg, Lea

    2015-04-01

    promising models is the MCAT, which is a MATLAB library of visual and numerical analysis tools for the evaluation of hydrological and environmental models. The model applied in this paper presents an innovative infrastructural system for predicting soil stability and erosion impacts. This integrated model is applicable to mixed areas with spatially varying soil properties, landscape, and land-cover characteristics. Data from a semiarid site in southern Israel was used to evaluate the model and analyze fundamental erosion mechanisms. The findings estimate the sensitivity of the suggested model to the physical parameters and encourage the use of hyperspectral remote sensing imagery (HSI). The proposed model is integrated according to the following stages: 1. The soil texture, aggregation, soil moisture estimated via airborne HSI data, including soil surface clay and calcium carbonate erosions; 2. The mechanical stability of soil assessed via pedo-transfer function corresponding to load dependent changes in soil physical properties due to pre-compression stress (set of equations study shear strength parameters take into account soil texture, aggregation, soil moisture and ecological soil variables); 3. The precipitation-related runoff model program (RMP) satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation; 4. The Monte Carlo Analysis Toolbox (MCAT), a library of visual and numerical analysis tools for the evaluation of hydrological and environmental models, is proposed as a tool for integrate all the approaches to an applicable model. The presented model overcomes the limitations of existing modeling methods by integrating physical data produced via HSI and yet stays generic in terms of space and time independency.

  5. RANS Based Methodology for Predicting the Influence of Leading Edge Erosion on Airfoil Performance

    Energy Technology Data Exchange (ETDEWEB)

    Langel, Christopher M. [Univ. of California, Davis, CA (United States). Dept. of Mechanical and Aerospace Engineering; Chow, Raymond C. [Univ. of California, Davis, CA (United States). Dept. of Mechanical and Aerospace Engineering; van Dam, C. P. [Univ. of California, Davis, CA (United States). Dept. of Mechanical and Aerospace Engineering; Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.

    2017-10-01

    The impact of surface roughness on flows over aerodynamically designed surfaces is of interested in a number of different fields. It has long been known the surface roughness will likely accelerate the laminar- turbulent transition process by creating additional disturbances in the boundary layer. However, there are very few tools available to predict the effects surface roughness will have on boundary layer flow. There are numerous implications of the premature appearance of a turbulent boundary layer. Increases in local skin friction, boundary layer thickness, and turbulent mixing can impact global flow properties compounding the effects of surface roughness. With this motivation, an investigation into the effects of surface roughness on boundary layer transition has been conducted. The effort involved both an extensive experimental campaign, and the development of a high fidelity roughness model implemented in a R ANS solver. Vast a mounts of experimental data was generated at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel for the calibration and validation of the roughness model described in this work, as well as future efforts. The present work focuses on the development of the computational model including a description of the calibration process. The primary methodology presented introduces a scalar field variable and associated transport equation that interacts with a correlation based transition model. The additional equation allows for non-local effects of surface roughness to be accounted for downstream of rough wall sections while maintaining a "local" formulation. The scalar field is determined through a boundary condition function that has been calibrated to flat plate cases with sand grain roughness. The model was initially tested on a NACA 0012 airfoil with roughness strips applied to the leading edge. Further calibration of the roughness model was performed using results from the companion experimental study on a NACA 633 -418 airfoil

  6. On the prediction of threshold friction velocity of wind erosion using soil reflectance spectroscopy

    Science.gov (United States)

    Li, Junran; Flagg, Cody B.; Okin, Gregory S.; Painter, Thomas H.; Dintwe, Kebonye; Belnap, Jayne

    2015-01-01

    Current approaches to estimate threshold friction velocity (TFV) of soil particle movement, including both experimental and empirical methods, suffer from various disadvantages, and they are particularly not effective to estimate TFVs at regional to global scales. Reflectance spectroscopy has been widely used to obtain TFV-related soil properties (e.g., moisture, texture, crust, etc.), however, no studies have attempted to directly relate soil TFV to their spectral reflectance. The objective of this study was to investigate the relationship between soil TFV and soil reflectance in the visible and near infrared (VIS–NIR, 350–2500 nm) spectral region, and to identify the best range of wavelengths or combinations of wavelengths to predict TFV. Threshold friction velocity of 31 soils, along with their reflectance spectra and texture were measured in the Mojave Desert, California and Moab, Utah. A correlation analysis between TFV and soil reflectance identified a number of isolated, narrow spectral domains that largely fell into two spectral regions, the VIS area (400–700 nm) and the short-wavelength infrared (SWIR) area (1100–2500 nm). A partial least squares regression analysis (PLSR) confirmed the significant bands that were identified by correlation analysis. The PLSR further identified the strong relationship between the first-difference transformation and TFV at several narrow regions around 1400, 1900, and 2200 nm. The use of PLSR allowed us to identify a total of 17 key wavelengths in the investigated spectrum range, which may be used as the optimal spectral settings for estimating TFV in the laboratory and field, or mapping of TFV using airborne/satellite sensors.

  7. Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models.

    Science.gov (United States)

    Vieira, D C S; Serpa, D; Nunes, J P C; Prats, S A; Neves, R; Keizer, J J

    2018-08-01

    Wildfires have become a recurrent threat for many Mediterranean forest ecosystems. The characteristics of the Mediterranean climate, with its warm and dry summers and mild and wet winters, make this a region prone to wildfire occurrence as well as to post-fire soil erosion. This threat is expected to be aggravated in the future due to climate change and land management practices and planning. The wide recognition of wildfires as a driver for runoff and erosion in burnt forest areas has created a strong demand for model-based tools for predicting the post-fire hydrological and erosion response and, in particular, for predicting the effectiveness of post-fire management operations to mitigate these responses. In this study, the effectiveness of two post-fire treatments (hydromulch and natural pine needle mulch) in reducing post-fire runoff and soil erosion was evaluated against control conditions (i.e. untreated conditions), at different spatial scales. The main objective of this study was to use field data to evaluate the ability of different erosion models: (i) empirical (RUSLE), (ii) semi-empirical (MMF), and (iii) physically-based (PESERA), to predict the hydrological and erosive response as well as the effectiveness of different mulching techniques in fire-affected areas. The results of this study showed that all three models were reasonably able to reproduce the hydrological and erosive processes occurring in burned forest areas. In addition, it was demonstrated that the models can be calibrated at a small spatial scale (0.5 m 2 ) but provide accurate results at greater spatial scales (10 m 2 ). From this work, the RUSLE model seems to be ideal for fast and simple applications (i.e. prioritization of areas-at-risk) mainly due to its simplicity and reduced data requirements. On the other hand, the more complex MMF and PESERA models would be valuable as a base of a possible tool for assessing the risk of water contamination in fire-affected water bodies and

  8. Predicting the effectiveness of different mulching techniques to reduce post-fire runoff and erosion in Mediterranean pine stands - does cover matter?

    Science.gov (United States)

    Vieira, Diana; Nunes, João; Prats, Sergio; Serpa, Dalila; Keizer, Jan

    2016-04-01

    Wildfires have become a recurrent threat for many forest ecosystems of the Mediterranean. The characteristics of the Mediterranean climate with its warm and dry summers and mild and wet winters make it prone to wildfire occurrence as well as to post-fire soil erosion. Furthermore, climate change and continuation of current land management practices and planning are generally expected to further increase this threat. The wide recognition of the effects of wildfires to enhance runoff and erosion has created a strong demand for model-based tools for predicting the post-fire hydrological and erosion response and, in particular, for predicting the effectiveness of post-fire forestry operations to mitigate these responses. Such a tool should allow to identify areas with elevated risks of soil erosion and to evaluate which measures should be applied and when to minimize these risks. A key element in evaluating these measures is also their costs, in order to optimize the use of the limited resources that are typically available for post-fire land management. In this study, two "treatments" are compared with control conditions (i.e. doing nothing) after a wildfire with a moderate soil burn severity: (i) 4 erosion plots were treated with hydro-mulch, (ii) 4 erosion plots were untreated but had a high pine needle cover quickly after the fire, due to needle cast from scorched pine crowns (often referred to as "natural mulching") (iii) 4 plots were untreated and had a very reduced protective litter cover . The main objective of this study was to asses if the revised MMF model could effectively predict the impacts of hydro-mulching and natural mulching with pine needle on runoff generation and the associated soil losses. If MMF could predict well the impact of natural mulching, it could be very useful in limiting the areas that should be considered for specific soil mitigation measures, especially in the case of wildfires that affect large areas with moderate severity. The

  9. Observations and predictions of wave runup, extreme water levels, and medium-term dune erosion during storm conditions

    OpenAIRE

    Suanez , Serge ,; Cancouët , Romain; Floc'h , France; Blaise , Emmanuel; Ardhuin , Fabrice; Filipot , Jean-François; Cariolet , Jean-Marie; Delacourt , Christophe

    2015-01-01

    Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot beach in North Brittany (France) over the past decade (2004–2014) has revealed significant morphological changes. Dune toe erosion/accretion records have been compared with extreme water level measurements, defined as the sum of (i) astronomic tide; (ii) storm surge; and (iii) vertical wave runup. Runup parameterization was conducted using swash limits, beach profiles, and hydrodynamic (Hm0, Tm0,–1, and high tide wa...

  10. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    OpenAIRE

    Hudson, L. N.; Newbold, T.; Contu, S.; Hill, S. L.; Lysenko, I.; De Palma, A.; Phillips, H. R.; Alhusseini, T. I.; Bedford, F. E.; Bennett, D. J.; Booth, H.; Burton, V. J.; Chng, C. W.; Choimes, A.; Correia, D. L.

    2017-01-01

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make free...

  11. Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands

    Science.gov (United States)

    Wenger, Amelia S.; Atkinson, Scott; Santini, Talitha; Falinski, Kim; Hutley, Nicholas; Albert, Simon; Horning, Ned; Watson, James E. M.; Mumby, Peter J.; Jupiter, Stacy D.

    2018-04-01

    Increasing development in tropical regions provides new economic opportunities that can improve livelihoods, but it threatens the functional integrity and ecosystem services provided by terrestrial and aquatic ecosystems when conducted unsustainably. Given the small size of many islands, communities may have limited opportunities to replace loss and damage to the natural resources upon which they depend for ecosystem service provisioning, thus heightening the need for proactive, integrated management. This study quantifies the effectiveness of management strategies, stipulated in logging codes-of-practice, at minimizing soil erosion and sediment runoff as clearing extent increases, using Kolombangara Island, Solomon Islands as a case study. Further, we examine the ability of erosion reduction strategies to maintain sustainable soil erosion rates and reduce potential downstream impacts to drinking water and environmental water quality. We found that increasing land clearing—even with best management strategies in place—led to unsustainable levels of soil erosion and significant impacts to downstream water quality, compromising the integrity of the land for future agricultural uses, consistent access to clean drinking water, and important downstream ecosystems. Our results demonstrate that in order to facilitate sustainable development, logging codes of practice must explicitly link their soil erosion reduction strategies to soil erosion and downstream water quality thresholds, otherwise they will be ineffective at minimizing the impacts of logging activities. The approach taken here to explicitly examine soil erosion rates and downstream water quality in relation to best management practices and increasing land clearing should be applied more broadly across a range of ecosystems to inform decision-making about the socioeconomic and environmental trade-offs associated with logging, and other types of land use change.

  12. Erosive gastritis

    International Nuclear Information System (INIS)

    Mohammed, S.H.; Conrad, C.; Kjoergaad, J.

    1982-01-01

    Erosive gastritis is a well-defined radiologic and endoscopic entity. It is one of the common causes of upper gastrointestinal bleeding, yet it is seldom diagnosed and often confused with a number of other diseases. This communication re-emphasizes the characteristic endoscopic and radiologic features of erosive gastritis and its differential diagnosis. Two representative cases are reported. (orig.)

  13. Erosive gastritis

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, S.H.; Conrad, C.; Kjoergaad, J.

    1982-08-01

    Erosive gastritis is a well-defined radiologic and endoscopic entity. It is one of the common causes of upper gastrointestinal bleeding, yet it is seldom diagnosed and often confused with a number of other diseases. This communication re-emphasizes the characteristic endoscopic and radiologic features of erosive gastritis and its differential diagnosis. Two representative cases are reported.

  14. Creep life prediction of super heater coils used in coal based thermal power plants subjected to fly ash erosion and oxide scale formation

    Science.gov (United States)

    Srinivasan, P.; Kushwaha, Shashank

    2018-04-01

    Super heater coils of the coal based thermal power plants and subjected to severe operating conditions from both steam side and gas side. Formation of oxide scale due to prolonged service lead to temperature raise of the tube and erosion due to fly ash present in the combusted gases leads to tube thinning. Both these factors lead to creep rupture of the coils much before the designed service life. Failure of super heater coils during service of the boiler leads to power loss and huge monitory loss to the power plants. An attempt is made to model the creep damage caused to the super heater coils using heat transfer analysis tube thinning due to erosive wear of the tubes. Combined effects of these parameters are taken into consideration to predict the life of the super heater coils. This model may be used to estimate the life of the coils operating under the severe operating conditions to prevent the unexpected failure of the coils.

  15. Predicting Effects of Corrosion Erosion of High Strength Steel Pipelines Elbow on CO2-Acetic Acid (HAc) Solution

    International Nuclear Information System (INIS)

    Asmara, Y. P.; Ismail, M. F.; Chui, L. Giok; Halimi, Jamiludin

    2016-01-01

    Simultaneously effect of erosion combined with corrosion becomes the most concern in oil and gas industries. It is due to the fast deterioration of metal as effects of solid particles mixed with corrosive environment. There are many corrosion software to investigate possible degradation mechanisms developed by researchers. They are using many combination factors of chemical reactions and physical process. However effects of CO 2 and acid on pipelines orientations are still remain uncovered in their simulation. This research will investigate combination effects of CO 2 and HAc on corrosion and erosion artificial environmental containing sands particles in 45°, 90° and 180° elbow pipelines. The research used theoretical calculations combined with experiments for verification. The main concerns are to investigate the maximum erosion corrosion rate and maximum shear stress at the surface. Methodology used to calculate corrosion rate are Linear Polarization Resistance (LPR) and weight loss. The results showed that at 45°, erosion rate is the more significant effects in contributing degradation of the metal. The effects of CO 2 and HAc gave significant effects when flow rate of the solution are high which reflect synergism effects of solid particles and those chemical compositions. (paper)

  16. Observations and Predictions of Wave Runup, Extreme Water Levels, and Medium-Term Dune Erosion during Storm Conditions

    Directory of Open Access Journals (Sweden)

    Serge Suanez

    2015-07-01

    Full Text Available Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot beach in North Brittany (France over the past decade (2004–2014 has revealed significant morphological changes. Dune toe erosion/accretion records have been compared with extreme water level measurements, defined as the sum of (i astronomic tide; (ii storm surge; and (iii vertical wave runup. Runup parameterization was conducted using swash limits, beach profiles, and hydrodynamic (Hm0, Tm0,–1, and high tide water level—HTWL data sets obtained from high frequency field surveys. The aim was to quantify in-situ environmental conditions and dimensional swash parameters for the best calibration of Battjes [1] runup formula. In addition, an empirical equation based on observed tidal water level and offshore wave height was produced to estimate extreme water levels over the whole period of dune morphological change monitoring. A good correlation between this empirical equation (1.01Hmoξo and field runup measurements (Rmax was obtained (R2 85%. The goodness of fit given by the RMSE was about 0.29 m. A good relationship was noticed between dune erosion and high water levels when the water levels exceeded the dune foot elevation. In contrast, when extreme water levels were below the height of the toe of the dune sediment budget increased, inducing foredune recovery. These erosion and accretion phases may be related to the North Atlantic Oscillation Index.

  17. How well does the Post-fire Erosion Risk Management Tool (ERMiT) really work?

    Science.gov (United States)

    Robichaud, Peter; Elliot, William; Lewis, Sarah; Miller, Mary Ellen

    2016-04-01

    The decision of where, when, and how to apply the most effective postfire erosion mitigation treatments requires land managers to assess the risk of damaging runoff and erosion events occurring after a fire. The Erosion Risk Management Tool (ERMiT) was developed to assist post fire assessment teams identify high erosion risk areas and effectiveness of various mitigation treatments to reduce that risk. ERMiT is a web-based application that uses the Water Erosion Prediction Project (WEPP) technology to estimate erosion, in probabilistic terms, on burned and recovering forest, range, and chaparral lands with and without the application of mitigation treatments. User inputs are processed by ERMiT to combine rain event variability with spatial and temporal variabilities of hillslope burn severity and soil properties which are then used as WEPP inputs. Since 2007, the model has been used in making hundreds of land management decisions in the US and elsewhere. We use eight published field study sites in the Western US to compare ERMiT predictions to observed hillslope erosion rates. Most sites experience only a few rainfall events that produced runoff and sediment except for a California site with a Mediterranean climate. When hillslope erosion occurred, significant correlations occurred between the observed hillslope erosion and those predicted by ERMiT. Significant correlation occurred for most mitigation treatments as well as the five recovery years. These model validation results suggest reasonable estimates of probabilistic post-fire hillslope sediment delivery when compared to observation.

  18. Mechanics of interrill erosion with wind-driven rain

    Science.gov (United States)

    The vector physics of wind-driven rain (WDR) differs from that of wind-free rain, and the interrill soil detachment equations in the Water Erosion Prediction Project (WEPP) model were not originally developed to deal with this phenomenon. This article provides an evaluation of the performance of the...

  19. Mechanics of Interrill Erosion with Wind-Driven Rain (WDR)

    Science.gov (United States)

    This article provides an evaluation analysis for the performance of the interrill component of the Water Erosion Prediction Project (WEPP) model for Wind-Driven Rain (WDR) events. The interrill delivery rates (Di) were collected in the wind tunnel rainfall simulator facility of the International Cen...

  20. Ability of One-Dimensional Hairsine-Rose Erosion Model to Predict Sediment Transport over a Soil with Significant Surface Stones

    Science.gov (United States)

    Jomaa, S.; Barry, D. A.; Sander, G. C.; Parlange, J.-Y.; Heng, B. C. P.; Tromp-van Meerveld, H. J.

    2010-05-01

    Surface stones affect erosion rates by reducing raindrop-driven detachment and protecting the original soil against overland flow induced-hydraulic stress. Numerous studies have shown that the effect of surface stones on erosion depends on both the stone characteristics (e.g., size, distribution) and the soil properties. The aim of this study was (i) to quantify how the stone characteristics can affect the total sediment concentration and the concentrations of the individual size classes, (ii) to test if stones affect preferentially a particular size class within the eroded sediment and (iii) to determine whether the 1D Hairsine-Rose (H-R) erosion model can represent the experimental data. A series of laboratory experiments were conducted using the 2 m × 6 m EPFL erosion flume for a high rainfall intensity (60 mm/h) event on a gentle slope (2.2%). The flume was divided into two identical 1-m wide flumes. This separation was done to allow simultaneous replicate experiments. Experiments were conducted with different configurations and scenarios (stone coverage, size and emplacement). Three coverage proportions (20%, 40%, and 70%), two stone diameters (3-4 and 6-7 cm) and two emplacement types (topsoil and partially embedded) were tested. For each experiment, the total sediment concentration, the concentration for the individual size classes, and the flume discharge were measured. Infiltration rates were measured at different depths and locations. A high resolution laser scanner provided details of the surface change due to erosion during the experiments. This technique allowed us to quantify the spatial distribution of eroded soil and to understand better if sediment transport is 1D or rather 2D over the flumes. The one-dimensional Hairsine-Rose (H-R) erosion model was used to fit the integrated data and to provide estimates of the parameters. The ability of the 1D H-R model to predict the measured sediment concentrations in the presence of stones in the soil matrix

  1. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    OpenAIRE

    Hudson, LN; Newbold, T; Contu, S; Hill, SLL; Lysenko, I; De Palma, A; Phillips, HRP; Alhusseini, TI; Bedford, FE; Bennett, DJ; Booth, H; Burton, VJ; Chng, CWT; Choimes, A; Correia, DLP

    2017-01-01

    The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make free...

  2. Soil erosion predictions from a landscape evolution model - An assessment of a post-mining landform using spatial climate change analogues.

    Science.gov (United States)

    Hancock, G R; Verdon-Kidd, D; Lowry, J B C

    2017-12-01

    Landscape Evolution Modelling (LEM) technologies provide a means by which it is possible to simulate the long-term geomorphic stability of a conceptual rehabilitated landform. However, simulations rarely consider the potential effects of anthropogenic climate change and consequently risk not accounting for the range of rainfall variability that might be expected in both the near and far future. One issue is that high resolution (both spatial and temporal) rainfall projections incorporating the potential effects of greenhouse forcing are required as input. However, projections of rainfall change are still highly uncertain for many regions, particularly at sub annual/seasonal scales. This is the case for northern Australia, where a decrease or an increase in rainfall post 2030 is considered equally likely based on climate model simulations. The aim of this study is therefore to investigate a spatial analogue approach to develop point scale hourly rainfall scenarios to be used as input to the CAESAR - Lisflood LEM to test the sensitivity of the geomorphic stability of a conceptual rehabilitated landform to potential changes in climate. Importantly, the scenarios incorporate the range of projected potential increase/decrease in rainfall for northern Australia and capture the expected envelope of erosion rates and erosion patterns (i.e. where erosion and deposition occurs) over a 100year modelled period. We show that all rainfall scenarios produce sediment output and gullying greater than that of the surrounding natural system, however a 'wetter' future climate produces the highest output. Importantly, incorporating analogue rainfall scenarios into LEM has the capacity to both improve landform design and enhance the modelling software. Further, the method can be easily transferred to other sites (both nationally and internationally) where rainfall variability is significant and climate change impacts are uncertain. Crown Copyright © 2017. Published by Elsevier B.V. All

  3. Upper Gastrointestinal Symptoms Predictive of Candida Esophagitis and Erosive Esophagitis in HIV and Non-HIV Patients: An Endoscopy-Based Cross-Sectional Study of 6011 Patients.

    Science.gov (United States)

    Takahashi, Yuta; Nagata, Naoyoshi; Shimbo, Takuro; Nishijima, Takeshi; Watanabe, Koji; Aoki, Tomonori; Sekine, Katsunori; Okubo, Hidetaka; Watanabe, Kazuhiro; Sakurai, Toshiyuki; Yokoi, Chizu; Mimori, Akio; Oka, Shinichi; Uemura, Naomi; Akiyama, Junichi

    2015-11-01

    Upper gastrointestinal (GI) symptoms are common in both HIV and non-HIV-infected patients, but the difference of GI symptom severity between 2 groups remains unknown. Candida esophagitis and erosive esophagitis, 2 major types of esophagitis, are seen in both HIV and non-HIV-infected patients, but differences in GI symptoms that are predictive of esophagitis between 2 groups remain unknown. We aimed to determine whether GI symptoms differ between HIV-infected and non-HIV-infected patients, and identify specific symptoms of candida esophagitis and erosive esophagitis between 2 groups.We prospectively enrolled 6011 patients (HIV, 430; non-HIV, 5581) who underwent endoscopy and completed questionnaires. Nine upper GI symptoms (epigastric pain, heartburn, acid regurgitation, hunger cramps, nausea, early satiety, belching, dysphagia, and odynophagia) were evaluated using a 7-point Likert scale. Associations between esophagitis and symptoms were analyzed by the multivariate logistic regression model adjusted for age, sex, and proton pump inhibitors.Endoscopy revealed GI-organic diseases in 33.4% (2010/6.011) of patients. The prevalence of candida esophagitis and erosive esophagitis was 11.2% and 12.1% in HIV-infected patients, respectively, whereas it was 2.9% and 10.7 % in non-HIV-infected patients, respectively. After excluding GI-organic diseases, HIV-infected patients had significantly (P symptom scores for heartburn, hunger cramps, nausea, early satiety, belching, dysphagia, and odynophagia than non-HIV-infected patients. In HIV-infected patients, any symptom was not significantly associated with CD4 cell count. In multivariate analysis, none of the 9 GI symptoms were associated with candida esophagitis in HIV-infected patients, whereas dysphagia and odynophagia were independently (P HIV-infected patients. However, heartburn and acid regurgitation were independently (P symptom scores were reliable in both HIV (α, 0.86) and non-HIV-infected patients (α, 0.85).This

  4. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models.

    Science.gov (United States)

    Teng, Hongfen; Liang, Zongzheng; Chen, Songchao; Liu, Yong; Viscarra Rossel, Raphael A; Chappell, Adrian; Yu, Wu; Shi, Zhou

    2018-04-18

    Soil erosion by water is accelerated by a warming climate and negatively impacts water security and ecological conservation. The Tibetan Plateau (TP) has experienced warming at a rate approximately twice that observed globally, and heavy precipitation events lead to an increased risk of erosion. In this study, we assessed current erosion on the TP and predicted potential soil erosion by water in 2050. The study was conducted in three steps. During the first step, we used the Revised Universal Soil Equation (RUSLE), publicly available data, and the most recent earth observations to derive estimates of annual erosion from 2002 to 2016 on the TP at 1-km resolution. During the second step, we used a multiple linear regression (MLR) model and a set of climatic covariates to predict rainfall erosivity on the TP in 2050. The MLR was used to establish the relationship between current rainfall erosivity data and a set of current climatic and other covariates. The coefficients of the MLR were generalised with climate covariates for 2050 derived from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) models to estimate rainfall erosivity in 2050. During the third step, soil erosion by water in 2050 was predicted using rainfall erosivity in 2050 and other erosion factors. The results show that the mean annual soil erosion rate on the TP under current conditions is 2.76tha -1 y -1 , which is equivalent to an annual soil loss of 559.59×10 6 t. Our 2050 projections suggested that erosion on the TP will increase to 3.17tha -1 y -1 and 3.91tha -1 y -1 under conditions represented by RCP2.6 and RCP8.5, respectively. The current assessment and future prediction of soil erosion by water on the TP should be valuable for environment protection and soil conservation in this unique region and elsewhere. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Seasonal variation and climate change impact in Rainfall Erosivity across Europe

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine; Ballabio, Cristiano

    2017-04-01

    residues, reduced tillage) in regions with high erosivity. Besides soil erosion mapping, the intra-annual analysis of rainfall erosivity is an important step towards flood prevention, hazard mitigation, ecosystem services, land use change and agricultural production. The application of REDES in combination with moderate climate change scenarios scenario (HadGEM RCP 4.5) resulted in predictions of erosivity in 2050. The overall increase of rainfall erosivity in Europe by 18% until 2050 are in line with projected increases of 17% for the U.S.A. The predicted mean rise of erosivity is also expected to increase the threat of soil erosion in Europe. The most noticeable increase of erosivity is projected for North-Central Europe, the English Channel, The Netherlands and Northern France. On the contrary, the Mediterranean basin show mixed trends. The success story with the compilation of REDES and first rainfall erosivity map of Europe was a driver to implement a Global Rainfall Erosivity Database (GloREDa). During the last 3 years, JRC was leading an effort to collect high temporal resolution rainfall data worldwide. In collaboration with 50 scientists worldwide and 100+ Meteorological and environmental Organisations, we have developed a Global Erosivity Database. In this database, we managed to include calculated erosivity values for 3,625 stations covering 63 countries worldwide.

  6. Macroweather Predictions and Climate Projections using Scaling and Historical Observations

    Science.gov (United States)

    Hébert, R.; Lovejoy, S.; Del Rio Amador, L.

    2017-12-01

    There are two fundamental time scales that are pertinent to decadal forecasts and multidecadal projections. The first is the lifetime of planetary scale structures, about 10 days (equal to the deterministic predictability limit), and the second is - in the anthropocene - the scale at which the forced anthropogenic variability exceeds the internal variability (around 16 - 18 years). These two time scales define three regimes of variability: weather, macroweather and climate that are respectively characterized by increasing, decreasing and then increasing varibility with scale.We discuss how macroweather temperature variability can be skilfully predicted to its theoretical stochastic predictability limits by exploiting its long-range memory with the Stochastic Seasonal and Interannual Prediction System (StocSIPS). At multi-decadal timescales, the temperature response to forcing is approximately linear and this can be exploited to make projections with a Green's function, or Climate Response Function (CRF). To make the problem tractable, we exploit the temporal scaling symmetry and restrict our attention to global mean forcing and temperature response using a scaling CRF characterized by the scaling exponent H and an inner scale of linearity τ. An aerosol linear scaling factor α and a non-linear volcanic damping exponent ν were introduced to account for the large uncertainty in these forcings. We estimate the model and forcing parameters by Bayesian inference using historical data and these allow us to analytically calculate a median (and likely 66% range) for the transient climate response, and for the equilibrium climate sensitivity: 1.6K ([1.5,1.8]K) and 2.4K ([1.9,3.4]K) respectively. Aerosol forcing typically has large uncertainty and we find a modern (2005) forcing very likely range (90%) of [-1.0, -0.3] Wm-2 with median at -0.7 Wm-2. Projecting to 2100, we find that to keep the warming below 1.5 K, future emissions must undergo cuts similar to Representative

  7. Modeling the fluid/soil interface erosion in the Hole Erosion Test

    Directory of Open Access Journals (Sweden)

    Kissi B.

    2012-07-01

    Full Text Available Soil erosion is a complex phenomenon which yields at its final stage to insidious fluid leakages under the hydraulic infrastructures known as piping and which are the main cause of their rupture. The Hole Erosion Test is commonly used to quantify the rate of piping erosion. In this work, The Hole Erosion Test is modelled by using Fluent software package. The aim is to predict the erosion rate of soil during the hole erosion test. The renormalization group theory – based k–ε turbulence model equations are used. This modelling makes it possible describing the effect of the clay concentration in flowing water on erosion. Unlike the usual one dimensional models, the proposed modelling shows that erosion is not uniform erosion along the hole length. In particular, the concentration of clay is found to increase noticeably the erosion rate.

  8. Soil erosion in Iran: Issues and solutions

    Science.gov (United States)

    Hamidreza Sadeghi, Seyed; Cerdà, Artemi

    2015-04-01

    Iran currently faces many soil erosion-related problems (see citations below). These issues are resulted from some inherent characteristic and anthropogenic triggering forces. Nowadays, the latter plays more important rule to accelerate the erosion with further emphasis on soil erosion-prone arid and semi arid regions of the country. This contribution attempts to identify and describe the existing main reasons behind accelerated soil erosion in Iran. Appropriate solutions viz. structural and non-structural approaches will be then advised to combat or minimise the problems. Iran can be used as a pilot research site to understand the soil erosion processes in semiarid, arid and mountainous terrain and our research will review the scientific literature and will give an insight of the soil erosion rates in the main factors of the soil erosion in Iran. Key words: Anthropogenic Erosion, Land Degradation; Sediment Management; Sediment Problems Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Aghili Nategh, N., Hemmat, A., & Sadeghi, M. (2014). Assessing confined and semi-confined compression curves of highly calcareous remolded soil amended with farmyard manure. Journal of Terramechanics, 53, 75-82. Arekhi, S., Bolourani, A. D., Shabani, A., Fathizad, H., Ahamdy-Asbchin, S. 2012. Mapping Soil Erosion and Sediment Yield Susceptibility using RUSLE, Remote Sensing and GIS (Case study: Cham Gardalan Watershed, Iran). Advances in Environmental Biology, 6(1), 109-124. Arekhi, S., Shabani, A., Rostamizad, G. 2012. Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran). Arabian Journal of Geosciences, 5(6), 1259-1267.Sadeghi, S. H., Moosavi, V., Karami, A., Behnia, N. 2012. Soil erosion assessment and prioritization of affecting factors at plot

  9. Erhversbetinget erosion?

    DEFF Research Database (Denmark)

    Dige, Irene; Gjørup, Hans; Nyvad, Bente

    2012-01-01

    Baggrund – I forbindelse med dental erosion er en grundig udredning af patienten vigtig, således at årsagen til erosionernes opståen findes, og der kan iværksættes adækvat forebyggende indsats. En sådan udredning er ikke mindst vigtig, når arbejdsmiljøet mistænkes. Patienttilfælde – En 30-årig...... arbejdsskade, men ikke anerkendt, da erosioner ikke er optaget på Arbejdsskadestyrelsens liste over erhvervssygdomme. En systematisk registrering af lignende tilfælde kunne imidlertid på sigt ændre retspraksis for fremtidige patienter med arbejdsbetinget erosion....... patient, der arbejder som pladesmed, blev henvist til Landsdels- og Videnscenter, Århus Sygehus, med henblik på udredning af patientens kraftige slid. Patienten udviste ikke-alderssvarende tandslid af emalje og dentin svarende til erosion forårsaget af syredampe i arbejdsmiljøet, muligvis forstærket af...

  10. Impact assessment of rainfall-vegetation on sedimentation and predicting erosion-prone region by GIS and RS

    Directory of Open Access Journals (Sweden)

    Mahboob Alam

    2016-03-01

    Full Text Available Water reservoirs are facing universal sedimentation problems worldwide. Land covers, whether natural or manmade, eventually change, and the vegetation cover and rainfall have a great effect on the sediment load. Traditional techniques for analysing this problem are time-consuming and spatially limited. Remote sensing (RS provides a convenient way to observe land cover changes, and geographic information system (GIS provides tools for geographic analysis. This study demonstrates a GIS-based methodology for calculating the impact of vegetation and rainfall on the sediment load using remotely sensed data. Moderate resolution imaging spectroradiometer data were used to observe temporal changes in the vegetation-cover area of the watershed surface. The total drainage area for the reservoir was calculated from shuttle radar topographic mission data. The annual rainfall amount was used to compute the annual available rainwater for the watershed, and the impact of the annual available rainwater on the vegetation-covered area was determined. In addition, areas that were adding sedimentation to the reservoir were identified. An inverse relationship between the rainfall and vegetation cover was observed, clearly showing the triggering of erosion.

  11. User manual of Soil and Cesium Transport (SACT), a program to predict long-term Cs distribution using USLE for soil erosion, transportation and deposition

    International Nuclear Information System (INIS)

    Saito, Hiroshi; Yamaguchi, Masaaki; Kitamura, Akihiro

    2016-12-01

    This manual provides useful and necessary information to users of 'SACT' (Soil and Cesium Transport), which Japan Atomic Energy Agency (JAEA) has developed to predict a long-term distribution of Cs deposited on the land surface of Fukushima due to the Fukushima Daiichi Nuclear Power Station accident on March 11, 2011. SACT calculates soil movement (erosion, transportation and deposition) and resulting Cs migration, and predicts its future distribution, with the assumption that Cs is adhered to soil initially. SACT uses USLE (Universal Soil Loss Equation) for potential soil loss and simple hydraulic equations for soil transportation and deposition in which soil is divided into course-grained sand and fine-grained silt/clay. The amount of Cs moved with soil is predicted by the amount of above-mentioned soil movement and concentration ratio of Cs for each grain-size. SACT utilizes the 'ArcGIS' software and the GIS (Geographical Information System). SACT is characterized by its simplicity which enables fast calculation for wide area for long-term duration, using existing simple equations including USLE. Data for used parameters are widely available, and site-specific calculations are possible by using data obtained from the targeted area. (author)

  12. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project.

    Science.gov (United States)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara; Hill, Samantha L L; Lysenko, Igor; De Palma, Adriana; Phillips, Helen R P; Alhusseini, Tamera I; Bedford, Felicity E; Bennett, Dominic J; Booth, Hollie; Burton, Victoria J; Chng, Charlotte W T; Choimes, Argyrios; Correia, David L P; Day, Julie; Echeverría-Londoño, Susy; Emerson, Susan R; Gao, Di; Garon, Morgan; Harrison, Michelle L K; Ingram, Daniel J; Jung, Martin; Kemp, Victoria; Kirkpatrick, Lucinda; Martin, Callum D; Pan, Yuan; Pask-Hale, Gwilym D; Pynegar, Edwin L; Robinson, Alexandra N; Sanchez-Ortiz, Katia; Senior, Rebecca A; Simmons, Benno I; White, Hannah J; Zhang, Hanbin; Aben, Job; Abrahamczyk, Stefan; Adum, Gilbert B; Aguilar-Barquero, Virginia; Aizen, Marcelo A; Albertos, Belén; Alcala, E L; Del Mar Alguacil, Maria; Alignier, Audrey; Ancrenaz, Marc; Andersen, Alan N; Arbeláez-Cortés, Enrique; Armbrecht, Inge; Arroyo-Rodríguez, Víctor; Aumann, Tom; Axmacher, Jan C; Azhar, Badrul; Azpiroz, Adrián B; Baeten, Lander; Bakayoko, Adama; Báldi, András; Banks, John E; Baral, Sharad K; Barlow, Jos; Barratt, Barbara I P; Barrico, Lurdes; Bartolommei, Paola; Barton, Diane M; Basset, Yves; Batáry, Péter; Bates, Adam J; Baur, Bruno; Bayne, Erin M; Beja, Pedro; Benedick, Suzan; Berg, Åke; Bernard, Henry; Berry, Nicholas J; Bhatt, Dinesh; Bicknell, Jake E; Bihn, Jochen H; Blake, Robin J; Bobo, Kadiri S; Bóçon, Roberto; Boekhout, Teun; Böhning-Gaese, Katrin; Bonham, Kevin J; Borges, Paulo A V; Borges, Sérgio H; Boutin, Céline; Bouyer, Jérémy; Bragagnolo, Cibele; Brandt, Jodi S; Brearley, Francis Q; Brito, Isabel; Bros, Vicenç; Brunet, Jörg; Buczkowski, Grzegorz; Buddle, Christopher M; Bugter, Rob; Buscardo, Erika; Buse, Jörn; Cabra-García, Jimmy; Cáceres, Nilton C; Cagle, Nicolette L; Calviño-Cancela, María; Cameron, Sydney A; Cancello, Eliana M; Caparrós, Rut; Cardoso, Pedro; Carpenter, Dan; Carrijo, Tiago F; Carvalho, Anelena L; Cassano, Camila R; Castro, Helena; Castro-Luna, Alejandro A; Rolando, Cerda B; Cerezo, Alexis; Chapman, Kim Alan; Chauvat, Matthieu; Christensen, Morten; Clarke, Francis M; Cleary, Daniel F R; Colombo, Giorgio; Connop, Stuart P; Craig, Michael D; Cruz-López, Leopoldo; Cunningham, Saul A; D'Aniello, Biagio; D'Cruze, Neil; da Silva, Pedro Giovâni; Dallimer, Martin; Danquah, Emmanuel; Darvill, Ben; Dauber, Jens; Davis, Adrian L V; Dawson, Jeff; de Sassi, Claudio; de Thoisy, Benoit; Deheuvels, Olivier; Dejean, Alain; Devineau, Jean-Louis; Diekötter, Tim; Dolia, Jignasu V; Domínguez, Erwin; Dominguez-Haydar, Yamileth; Dorn, Silvia; Draper, Isabel; Dreber, Niels; Dumont, Bertrand; Dures, Simon G; Dynesius, Mats; Edenius, Lars; Eggleton, Paul; Eigenbrod, Felix; Elek, Zoltán; Entling, Martin H; Esler, Karen J; de Lima, Ricardo F; Faruk, Aisyah; Farwig, Nina; Fayle, Tom M; Felicioli, Antonio; Felton, Annika M; Fensham, Roderick J; Fernandez, Ignacio C; Ferreira, Catarina C; Ficetola, Gentile F; Fiera, Cristina; Filgueiras, Bruno K C; Fırıncıoğlu, Hüseyin K; Flaspohler, David; Floren, Andreas; Fonte, Steven J; Fournier, Anne; Fowler, Robert E; Franzén, Markus; Fraser, Lauchlan H; Fredriksson, Gabriella M; Freire, Geraldo B; Frizzo, Tiago L M; Fukuda, Daisuke; Furlani, Dario; Gaigher, René; Ganzhorn, Jörg U; García, Karla P; Garcia-R, Juan C; Garden, Jenni G; Garilleti, Ricardo; Ge, Bao-Ming; Gendreau-Berthiaume, Benoit; Gerard, Philippa J; Gheler-Costa, Carla; Gilbert, Benjamin; Giordani, Paolo; Giordano, Simonetta; Golodets, Carly; Gomes, Laurens G L; Gould, Rachelle K; Goulson, Dave; Gove, Aaron D; Granjon, Laurent; Grass, Ingo; Gray, Claudia L; Grogan, James; Gu, Weibin; Guardiola, Moisès; Gunawardene, Nihara R; Gutierrez, Alvaro G; Gutiérrez-Lamus, Doris L; Haarmeyer, Daniela H; Hanley, Mick E; Hanson, Thor; Hashim, Nor R; Hassan, Shombe N; Hatfield, Richard G; Hawes, Joseph E; Hayward, Matt W; Hébert, Christian; Helden, Alvin J; Henden, John-André; Henschel, Philipp; Hernández, Lionel; Herrera, James P; Herrmann, Farina; Herzog, Felix; Higuera-Diaz, Diego; Hilje, Branko; Höfer, Hubert; Hoffmann, Anke; Horgan, Finbarr G; Hornung, Elisabeth; Horváth, Roland; Hylander, Kristoffer; Isaacs-Cubides, Paola; Ishida, Hiroaki; Ishitani, Masahiro; Jacobs, Carmen T; Jaramillo, Víctor J; Jauker, Birgit; Hernández, F Jiménez; Johnson, McKenzie F; Jolli, Virat; Jonsell, Mats; Juliani, S Nur; Jung, Thomas S; Kapoor, Vena; Kappes, Heike; Kati, Vassiliki; Katovai, Eric; Kellner, Klaus; Kessler, Michael; Kirby, Kathryn R; Kittle, Andrew M; Knight, Mairi E; Knop, Eva; Kohler, Florian; Koivula, Matti; Kolb, Annette; Kone, Mouhamadou; Kőrösi, Ádám; Krauss, Jochen; Kumar, Ajith; Kumar, Raman; Kurz, David J; Kutt, Alex S; Lachat, Thibault; Lantschner, Victoria; Lara, Francisco; Lasky, Jesse R; Latta, Steven C; Laurance, William F; Lavelle, Patrick; Le Féon, Violette; LeBuhn, Gretchen; Légaré, Jean-Philippe; Lehouck, Valérie; Lencinas, María V; Lentini, Pia E; Letcher, Susan G; Li, Qi; Litchwark, Simon A; Littlewood, Nick A; Liu, Yunhui; Lo-Man-Hung, Nancy; López-Quintero, Carlos A; Louhaichi, Mounir; Lövei, Gabor L; Lucas-Borja, Manuel Esteban; Luja, Victor H; Luskin, Matthew S; MacSwiney G, M Cristina; Maeto, Kaoru; Magura, Tibor; Mallari, Neil Aldrin; Malone, Louise A; Malonza, Patrick K; Malumbres-Olarte, Jagoba; Mandujano, Salvador; Måren, Inger E; Marin-Spiotta, Erika; Marsh, Charles J; Marshall, E J P; Martínez, Eliana; Martínez Pastur, Guillermo; Moreno Mateos, David; Mayfield, Margaret M; Mazimpaka, Vicente; McCarthy, Jennifer L; McCarthy, Kyle P; McFrederick, Quinn S; McNamara, Sean; Medina, Nagore G; Medina, Rafael; Mena, Jose L; Mico, Estefania; Mikusinski, Grzegorz; Milder, Jeffrey C; Miller, James R; Miranda-Esquivel, Daniel R; Moir, Melinda L; Morales, Carolina L; Muchane, Mary N; Muchane, Muchai; Mudri-Stojnic, Sonja; Munira, A Nur; Muoñz-Alonso, Antonio; Munyekenye, B F; Naidoo, Robin; Naithani, A; Nakagawa, Michiko; Nakamura, Akihiro; Nakashima, Yoshihiro; Naoe, Shoji; Nates-Parra, Guiomar; Navarrete Gutierrez, Dario A; Navarro-Iriarte, Luis; Ndang'ang'a, Paul K; Neuschulz, Eike L; Ngai, Jacqueline T; Nicolas, Violaine; Nilsson, Sven G; Noreika, Norbertas; Norfolk, Olivia; Noriega, Jorge Ari; Norton, David A; Nöske, Nicole M; Nowakowski, A Justin; Numa, Catherine; O'Dea, Niall; O'Farrell, Patrick J; Oduro, William; Oertli, Sabine; Ofori-Boateng, Caleb; Oke, Christopher Omamoke; Oostra, Vicencio; Osgathorpe, Lynne M; Otavo, Samuel Eduardo; Page, Navendu V; Paritsis, Juan; Parra-H, Alejandro; Parry, Luke; Pe'er, Guy; Pearman, Peter B; Pelegrin, Nicolás; Pélissier, Raphaël; Peres, Carlos A; Peri, Pablo L; Persson, Anna S; Petanidou, Theodora; Peters, Marcell K; Pethiyagoda, Rohan S; Phalan, Ben; Philips, T Keith; Pillsbury, Finn C; Pincheira-Ulbrich, Jimmy; Pineda, Eduardo; Pino, Joan; Pizarro-Araya, Jaime; Plumptre, A J; Poggio, Santiago L; Politi, Natalia; Pons, Pere; Poveda, Katja; Power, Eileen F; Presley, Steven J; Proença, Vânia; Quaranta, Marino; Quintero, Carolina; Rader, Romina; Ramesh, B R; Ramirez-Pinilla, Martha P; Ranganathan, Jai; Rasmussen, Claus; Redpath-Downing, Nicola A; Reid, J Leighton; Reis, Yana T; Rey Benayas, José M; Rey-Velasco, Juan Carlos; Reynolds, Chevonne; Ribeiro, Danilo Bandini; Richards, Miriam H; Richardson, Barbara A; Richardson, Michael J; Ríos, Rodrigo Macip; Robinson, Richard; Robles, Carolina A; Römbke, Jörg; Romero-Duque, Luz Piedad; Rös, Matthias; Rosselli, Loreta; Rossiter, Stephen J; Roth, Dana S; Roulston, T'ai H; Rousseau, Laurent; Rubio, André V; Ruel, Jean-Claude; Sadler, Jonathan P; Sáfián, Szabolcs; Saldaña-Vázquez, Romeo A; Sam, Katerina; Samnegård, Ulrika; Santana, Joana; Santos, Xavier; Savage, Jade; Schellhorn, Nancy A; Schilthuizen, Menno; Schmiedel, Ute; Schmitt, Christine B; Schon, Nicole L; Schüepp, Christof; Schumann, Katharina; Schweiger, Oliver; Scott, Dawn M; Scott, Kenneth A; Sedlock, Jodi L; Seefeldt, Steven S; Shahabuddin, Ghazala; Shannon, Graeme; Sheil, Douglas; Sheldon, Frederick H; Shochat, Eyal; Siebert, Stefan J; Silva, Fernando A B; Simonetti, Javier A; Slade, Eleanor M; Smith, Jo; Smith-Pardo, Allan H; Sodhi, Navjot S; Somarriba, Eduardo J; Sosa, Ramón A; Soto Quiroga, Grimaldo; St-Laurent, Martin-Hugues; Starzomski, Brian M; Stefanescu, Constanti; Steffan-Dewenter, Ingolf; Stouffer, Philip C; Stout, Jane C; Strauch, Ayron M; Struebig, Matthew J; Su, Zhimin; Suarez-Rubio, Marcela; Sugiura, Shinji; Summerville, Keith S; Sung, Yik-Hei; Sutrisno, Hari; Svenning, Jens-Christian; Teder, Tiit; Threlfall, Caragh G; Tiitsaar, Anu; Todd, Jacqui H; Tonietto, Rebecca K; Torre, Ignasi; Tóthmérész, Béla; Tscharntke, Teja; Turner, Edgar C; Tylianakis, Jason M; Uehara-Prado, Marcio; Urbina-Cardona, Nicolas; Vallan, Denis; Vanbergen, Adam J; Vasconcelos, Heraldo L; Vassilev, Kiril; Verboven, Hans A F; Verdasca, Maria João; Verdú, José R; Vergara, Carlos H; Vergara, Pablo M; Verhulst, Jort; Virgilio, Massimiliano; Vu, Lien Van; Waite, Edward M; Walker, Tony R; Wang, Hua-Feng; Wang, Yanping; Watling, James I; Weller, Britta; Wells, Konstans; Westphal, Catrin; Wiafe, Edward D; Williams, Christopher D; Willig, Michael R; Woinarski, John C Z; Wolf, Jan H D; Wolters, Volkmar; Woodcock, Ben A; Wu, Jihua; Wunderle, Joseph M; Yamaura, Yuichi; Yoshikura, Satoko; Yu, Douglas W; Zaitsev, Andrey S; Zeidler, Juliane; Zou, Fasheng; Collen, Ben; Ewers, Rob M; Mace, Georgina M; Purves, Drew W; Scharlemann, Jörn P W; Purvis, Andy

    2017-01-01

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.

  13. Effects of DTM resolution on slope steepness and soil loss prediction on hillslope profiles

    Science.gov (United States)

    Eder Paulo Moreira; William J. Elliot; Andrew T. Hudak

    2011-01-01

    Topographic attributes play a critical role in predicting erosion in models such as the Water Erosion Prediction Project (WEPP). The effects of four different high resolution hillslope profiles were studied using four different DTM resolutions: 1-m, 3-m, 5-m and 10-m. The WEPP model used a common scenario encountered in the forest environment and the selected hillslope...

  14. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    Science.gov (United States)

    Ghose-Hajra, M.; McCorquodale, A.; Mattson, G.; Jerolleman, D.; Filostrat, J.

    2015-03-01

    Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana's coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana's disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  15. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    Directory of Open Access Journals (Sweden)

    M. Ghose-Hajra

    2015-03-01

    Full Text Available Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana’s coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana’s disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  16. Research on cross - Project software defect prediction based on transfer learning

    Science.gov (United States)

    Chen, Ya; Ding, Xiaoming

    2018-04-01

    According to the two challenges in the prediction of cross-project software defects, the distribution differences between the source project and the target project dataset and the class imbalance in the dataset, proposing a cross-project software defect prediction method based on transfer learning, named NTrA. Firstly, solving the source project data's class imbalance based on the Augmented Neighborhood Cleaning Algorithm. Secondly, the data gravity method is used to give different weights on the basis of the attribute similarity of source project and target project data. Finally, a defect prediction model is constructed by using Trad boost algorithm. Experiments were conducted using data, come from NASA and SOFTLAB respectively, from a published PROMISE dataset. The results show that the method has achieved good values of recall and F-measure, and achieved good prediction results.

  17. A mathematical model of reservoir sediment quality prediction based on land-use and erosion processes in watershed

    Science.gov (United States)

    Junakova, N.; Balintova, M.; Junak, J.

    2017-10-01

    The aim of this paper is to propose a mathematical model for determining of total nitrogen (N) and phosphorus (P) content in eroded soil particles with emphasis on prediction of bottom sediment quality in reservoirs. The adsorbed nutrient concentrations are calculated using the Universal Soil Loss Equation (USLE) extended by the determination of the average soil nutrient concentration in top soils. The average annual vegetation and management factor is divided into five periods of the cropping cycle. For selected plants, the average plant nutrient uptake divided into five cropping periods is also proposed. The average nutrient concentrations in eroded soil particles in adsorbed form are modified by sediment enrichment ratio to obtain the total nutrient content in transported soil particles. The model was designed for the conditions of north-eastern Slovakia. The study was carried out in the agricultural basin of the small water reservoir Klusov.

  18. Categorization of erosion control matting for slope applications.

    Science.gov (United States)

    2013-12-25

    Erosion control is an important aspect of any Georgia Department of Transportation (GDOT) construction project, with the extreme negative impacts of high sediment loads in natural waterways having been well documented. Selection of a proper erosion c...

  19. Drought Prediction for Socio-Cultural Stability Project

    Science.gov (United States)

    Peters-Lidard, Christa; Eylander, John B.; Koster, Randall; Narapusetty, Balachandrudu; Kumar, Sujay; Rodell, Matt; Bolten, John; Mocko, David; Walker, Gregory; Arsenault, Kristi; hide

    2014-01-01

    The primary objective of this project is to answer the question: "Can existing, linked infrastructures be used to predict the onset of drought months in advance?" Based on our work, the answer to this question is "yes" with the qualifiers that skill depends on both lead-time and location, and especially with the associated teleconnections (e.g., ENSO, Indian Ocean Dipole) active in a given region season. As part of this work, we successfully developed a prototype drought early warning system based on existing/mature NASA Earth science components including the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5) forecasting model, the Land Information System (LIS) land data assimilation software framework, the Catchment Land Surface Model (CLSM), remotely sensed terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE) and remotely sensed soil moisture products from the Aqua/Advanced Microwave Scanning Radiometer - EOS (AMSR-E). We focused on a single drought year - 2011 - during which major agricultural droughts occurred with devastating impacts in the Texas-Mexico region of North America (TEXMEX) and the Horn of Africa (HOA). Our results demonstrate that GEOS-5 precipitation forecasts show skill globally at 1-month lead, and can show up to 3 months skill regionally in the TEXMEX and HOA areas. Our results also demonstrate that the CLSM soil moisture percentiles are a goof indicator of drought, as compared to the North American Drought Monitor of TEXMEX and a combination of Famine Early Warning Systems Network (FEWS NET) data and Moderate Resolution Imaging Spectrometer (MODIS)'s Normalizing Difference Vegetation Index (NDVI) anomalies over HOA. The data assimilation experiments produced mixed results. GRACE terrestrial water storage (TWS) assimilation was found to significantly improve soil moisture and evapotransportation, as well as drought monitoring via soil moisture percentiles, while AMSR-E soil moisture

  20. Application of PCARES in locating the soil erosion Hotspots in the Manupali River Watershed

    OpenAIRE

    Paningbatan, E.

    2004-01-01

    In this presentation the author covers: GIS mapping of land attributes, dynamic modeling of soil erosion at watershed scale using PCARES (Predicting Catchment Runoff and Soil Erosion for Sustainability), identifying soil erosion "hotspots" in the Manupali River watershed

  1. Buffer erosion in dilute groundwater

    International Nuclear Information System (INIS)

    Schatz, T.; Kanerva, N.; Martikainen, J.; Sane, P.; Olin, M.; Seppaelae, A.; Koskinen, K.

    2013-08-01

    One scenario of interest for repository safety assessment involves the loss of bentonite buffer material in contact with dilute groundwater flowing through a transmissive fracture interface. In order to examine the extrusion/erosion behavior of bentonite buffer material under such circumstances, a series of experiments were performed in a flow-through, 1 mm aperture, artificial fracture system. These experiments covered a range of solution chemistry (salt concentration and composition), material composition (sodium montmorillonite and admixtures with calcium montmorillonite), and flow velocity conditions. No erosion was observed for sodium montmorillonite against solution compositions from 0.5 g/L to 10 g/L NaCl. No erosion was observed for 50/50 calcium/sodium montmorillonite against 0.5 g/L NaCl. Erosion was observed for both sodium montmorillonite and 50/50 calcium/sodium montmorillonite against solution compositions ≤ 0.25 g/L NaCl. The calculated erosion rates for the tests with the highest levels of measured erosion, i.e., the tests run under the most dilute conditions (ionic strength (IS) < ∼1 mM), were well-correlated to flow velocity, whereas the calculated erosion rates for the tests with lower levels of measured erosion, i.e., the tests run under somewhat less dilute conditions (∼1 mM < IS < ∼4 mM), were not similarly correlated indicating that material and solution composition can significantly affect erosion rates. In every experiment, both erosive and non-erosive, emplaced buffer material extruded into the fracture and was observed to be impermeable to water flowing in the fracture effectively forming an extended diffusive barrier around the intersecting fracture/buffer interface. Additionally, a model which was developed previously to predict the rate of erosion of bentonite buffer material in low ionic strength water in rock fracture environments was applied to three different cases: sodium montmorillonite expansion in a vertical tube, a

  2. Increasing Prediction the Original Final Year Project of Student Using Genetic Algorithm

    Science.gov (United States)

    Saragih, Rijois Iboy Erwin; Turnip, Mardi; Sitanggang, Delima; Aritonang, Mendarissan; Harianja, Eva

    2018-04-01

    Final year project is very important forgraduation study of a student. Unfortunately, many students are not seriouslydidtheir final projects. Many of studentsask for someone to do it for them. In this paper, an application of genetic algorithms to predict the original final year project of a studentis proposed. In the simulation, the data of the final project for the last 5 years is collected. The genetic algorithm has several operators namely population, selection, crossover, and mutation. The result suggest that genetic algorithm can do better prediction than other comparable model. Experimental results of predicting showed that 70% was more accurate than the previous researched.

  3. Application of a catchment evolution model to the prediction of long-term erosion on the spoil heap at Ranger uranium mine. Supervising Scientist report 132

    International Nuclear Information System (INIS)

    Willgoose, G.

    1998-01-01

    There is a need to assess the long-term stability of engineered landforms associated with the rehabilitation of Ranger Uranium Mine, Northern Territory, Australia, as it is a requirement that mill tailings must be contained for periods in excess of 1000 years. The geomorphic model, SIBERIA, is calibrated on hydrology and erosion data collected by a combination of monitoring and rainfall simulation experiments on the waste rock dumps of Ranger. Preliminary analysis of Ranger's preferred above-grade and below-grade rehabilitation options suggests that erosion of the order of 7-8 m will occur on the structure in a period of 1000 years. This depth of erosion may be sufficient to compromise the integrity of the containment. It is shown that SIBERIA has significant advantages over steady-state erosion models. Suggestions are made for the design that will enhance the stability of the structure and extend the structural life of the containment

  4. Wind erosion modelling in a Sahelian environment

    NARCIS (Netherlands)

    Faye-Visser, S.M.; Sterk, G.; Karssenberg, D.

    2005-01-01

    In the Sahel field observations of wind-blown mass transport often show considerable spatial variation related to the spatial variation of the wind erosion controlling parameters, e.g. soil crust and vegetation cover. A model, used to predict spatial variation in wind erosion and deposition is a

  5. Cavitation erosion - scale effect and model investigations

    Science.gov (United States)

    Geiger, F.; Rutschmann, P.

    2015-12-01

    The experimental works presented in here contribute to the clarification of erosive effects of hydrodynamic cavitation. Comprehensive cavitation erosion test series were conducted for transient cloud cavitation in the shear layer of prismatic bodies. The erosion pattern and erosion rates were determined with a mineral based volume loss technique and with a metal based pit count system competitively. The results clarified the underlying scale effects and revealed a strong non-linear material dependency, which indicated significantly different damage processes for both material types. Furthermore, the size and dynamics of the cavitation clouds have been assessed by optical detection. The fluctuations of the cloud sizes showed a maximum value for those cavitation numbers related to maximum erosive aggressiveness. The finding suggests the suitability of a model approach which relates the erosion process to cavitation cloud dynamics. An enhanced experimental setup is projected to further clarify these issues.

  6. Application of the Water Erosion Prediction Project (WEPP) Model to simulate streamflow in a PNW forest watershed

    Science.gov (United States)

    A. Srivastava; M. Dobre; E. Bruner; W. J. Elliot; I. S. Miller; J. Q. Wu

    2011-01-01

    Assessment of water yields from watersheds into streams and rivers is critical to managing water supply and supporting aquatic life. Surface runoff typically contributes the most to peak discharge of a hydrograph while subsurface flow dominates the falling limb of hydrograph and baseflow contributes to streamflow from shallow unconfined aquifers primarily during the...

  7. Mapping monthly rainfall erosivity in Europe

    DEFF Research Database (Denmark)

    Ballabio, C; Meusburger, K; Klik, A

    2017-01-01

    to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive...... and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part...... selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency...

  8. A Model Suggestion to Predict Leverage Ratio for Construction Projects

    Directory of Open Access Journals (Sweden)

    Özlem Tüz

    2013-12-01

    Full Text Available Due to the nature, construction is an industry with high uncertainty and risk. Construction industry carries high leverage ratios. Firms with low equities work in big projects through progress payment system, but in this case, even a small negative in the planned cash flows constitute a major risk for the company.The use of leverage, with a small investment to achieve profit targets large-scale, high-profit, but also brings a high risk with it. Investors may lose all or the portion of the money. In this study, monitoring and measuring of the leverage ratio because of the displacement in cash inflows of construction projects which uses high leverage and low cash to do business in the sector is targeted. Cash need because of drifting the cash inflows may be seen due to the model. Work should be done in the early stages of the project with little capital but in the later stages, rapidly growing capital need arises.The values obtained from the model may be used to supply the capital held in the right time by anticipating the risks because of the delay in cashflow of construction projects which uses high leverage ratio.

  9. ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers

    Directory of Open Access Journals (Sweden)

    Sangeeta Lal

    2017-01-01

    Full Text Available Background: Software developers insert log statements in the source code to record program execution information. However, optimizing the number of log statements in the source code is challenging. Machine learning based within-project logging prediction tools, proposed in previous studies, may not be suitable for new or small software projects. For such software projects, we can use cross-project logging prediction. Aim: The aim of the study presented here is to investigate cross-project logging prediction methods and techniques. Method: The proposed method is ECLogger, which is a novel, ensemble-based, cross-project, catch-block logging prediction model. In the research We use 9 base classifiers were used and combined using ensemble techniques. The performance of ECLogger was evaluated on on three open-source Java projects: Tomcat, CloudStack and Hadoop. Results: ECLogger Bagging, ECLogger AverageVote, and ECLogger MajorityVote show a considerable improvement in the average Logged F-measure (LF on 3, 5, and 4 source -> target project pairs, respectively, compared to the baseline classifiers. ECLogger AverageVote performs best and shows improvements of 3.12% (average LF and 6.08% (average ACC – Accuracy. Conclusion: The classifier based on ensemble techniques, such as bagging, average vote, and majority vote outperforms the baseline classifier. Overall, the ECLogger AverageVote model performs best. The results show that the CloudStack project is more generalizable than the other projects.

  10. Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO(2) emissions.

    Science.gov (United States)

    Mouri, Goro; Oki, Taikan

    2010-01-01

    Understanding of solids deposition, erosion, and transport processes in sewer systems has improved considerably in the past decade. This has provided guidance for controlling sewer solids and associated acute pollutants to protect the environment and improve the operation of wastewater systems. Although measures to decrease combined sewer overflow (CSO) events have reduced the amount of discharged pollution, overflows continue to occur during rainy weather in combined sewer systems. The solution lies in the amount of water allotted to various processes in an effluent treatment system, in impact evaluation of water quality and prediction technology, and in stressing the importance of developing a control technology. Extremely contaminated inflow has been a serious research subject, especially in connection with the influence of rainy weather on nitrogen and organic matter removal efficiency in wastewater treatment plants (WWTP). An intensive investigation of an extremely polluted inflow load to WWTP during rainy weather was conducted in the city of Matsuyama, the region used for the present research on total suspended solid (TSS) concentration. Since the inflow during rainy weather can be as much as 400 times that in dry weather, almost all sewers are unsettled and overflowing when a rain event is more than moderate. Another concern is the energy consumed by wastewater treatment; this problem has become important from the viewpoint of reducing CO(2) emissions and overall costs. Therefore, while establishing a prediction technology for the inflow water quality characteristics of a sewage disposal plant is an important priority, the development of a management/control method for an effluent treatment system that minimises energy consumption and CO(2) emissions due to water disposal is also a pressing research topic with regards to the quality of treated water. The procedure to improve water quality must make use of not only water quality and biotic criteria, but also

  11. The use of spatial empirical models to estimate soil erosion in arid ecosystems.

    Science.gov (United States)

    Abdullah, Meshal; Feagin, Rusty; Musawi, Layla

    2017-02-01

    The central objective of this project was to utilize geographical information systems and remote sensing to compare soil erosion models, including Modified Pacific South-west Inter Agency Committee (MPSIAC), Erosion Potential Method (EPM), and Revised Universal Soil Loss Equation (RUSLE), and to determine their applicability for arid regions such as Kuwait. The northern portion of Umm Nigga, containing both coastal and desert ecosystems, falls within the boundaries of the de-militarized zone (DMZ) adjacent to Iraq and has been fenced off to restrict public access since 1994. Results showed that the MPSIAC and EPM models were similar in spatial distribution of erosion, though the MPSIAC had a more realistic spatial distribution of erosion and presented finer level details. The RUSLE presented unrealistic results. We then predicted the amount of soil loss between coastal and desert areas and fenced and unfenced sites for each model. In the MPSIAC and EPM models, soil loss was different between fenced and unfenced sites at the desert areas, which was higher at the unfenced due to the low vegetation cover. The overall results implied that vegetation cover played an important role in reducing soil erosion and that fencing is much more important in the desert ecosystems to protect against human activities such as overgrazing. We conclude that the MPSIAC model is best for predicting soil erosion for arid regions such as Kuwait. We also recommend the integration of field-based experiments with lab-based spatial analysis and modeling in future research.

  12. Climate change impact on soil erosion in the Mandakini River Basin, North India

    Science.gov (United States)

    Khare, Deepak; Mondal, Arun; Kundu, Sananda; Mishra, Prabhash Kumar

    2017-09-01

    Correct estimation of soil loss at catchment level helps the land and water resources planners to identify priority areas for soil conservation measures. Soil erosion is one of the major hazards affected by the climate change, particularly the increasing intensity of rainfall resulted in increasing erosion, apart from other factors like landuse change. Changes in climate have an adverse effect with increasing rainfall. It has caused increasing concern for modeling the future rainfall and projecting future soil erosion. In the present study, future rainfall has been generated with the downscaling of GCM (Global Circulation Model) data of Mandakini river basin, a hilly catchment in the state of Uttarakhand, India, to obtain future impact on soil erosion within the basin. The USLE is an erosion prediction model designed to predict the long-term average annual soil loss from specific field slopes in specified landuse and management systems (i.e., crops, rangeland, and recreational areas) using remote sensing and GIS technologies. Future soil erosion has shown increasing trend due to increasing rainfall which has been generated from the statistical-based downscaling method.

  13. Feature Subset Selection and Instance Filtering for Cross-project Defect Prediction - Classification and Ranking

    Directory of Open Access Journals (Sweden)

    Faimison Porto

    2016-12-01

    Full Text Available The defect prediction models can be a good tool on organizing the project's test resources. The models can be constructed with two main goals: 1 to classify the software parts - defective or not; or 2 to rank the most defective parts in a decreasing order. However, not all companies maintain an appropriate set of historical defect data. In this case, a company can build an appropriate dataset from known external projects - called Cross-project Defect Prediction (CPDP. The CPDP models, however, present low prediction performances due to the heterogeneity of data. Recently, Instance Filtering methods were proposed in order to reduce this heterogeneity by selecting the most similar instances from the training dataset. Originally, the similarity is calculated based on all the available dataset features (or independent variables. We propose that using only the most relevant features on the similarity calculation can result in more accurate filtered datasets and better prediction performances. In this study we extend our previous work. We analyse both prediction goals - Classification and Ranking. We present an empirical evaluation of 41 different methods by associating Instance Filtering methods with Feature Selection methods. We used 36 versions of 11 open source projects on experiments. The results show similar evidences for both prediction goals. First, the defect prediction performance of CPDP models can be improved by associating Feature Selection and Instance Filtering. Second, no evaluated method presented general better performances. Indeed, the most appropriate method can vary according to the characteristics of the project being predicted.

  14. Fallout radionuclide-based techniques for assessing the impact of soil conservation measures on erosion control and soil quality: an overview of the main lessons learnt under an FAO/IAEA Coordinated Research Project.

    Science.gov (United States)

    Dercon, G; Mabit, L; Hancock, G; Nguyen, M L; Dornhofer, P; Bacchi, O O S; Benmansour, M; Bernard, C; Froehlich, W; Golosov, V N; Haciyakupoglu, S; Hai, P S; Klik, A; Li, Y; Lobb, D A; Onda, Y; Popa, N; Rafiq, M; Ritchie, J C; Schuller, P; Shakhashiro, A; Wallbrink, P; Walling, D E; Zapata, F; Zhang, X

    2012-05-01

    This paper summarizes key findings and identifies the main lessons learnt from a 5-year (2002-2008) coordinated research project (CRP) on "Assessing the effectiveness of soil conservation measures for sustainable watershed management and crop production using fallout radionuclides" (D1.50.08), organized and funded by the International Atomic Energy Agency through the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The project brought together nineteen participants, from Australia, Austria, Brazil, Canada, Chile, China, Japan, Morocco, Pakistan, Poland, Romania, Russian Federation, Turkey, United Kingdom, United States of America and Vietnam, involved in the use of nuclear techniques and, more particularly, fallout radionuclides (FRN) to assess the relative impacts of different soil conservation measures on soil erosion and land productivity. The overall objective of the CRP was to develop improved land use and management strategies for sustainable watershed management through effective soil erosion control practices, by the use of ¹³⁷Cs (half-life of 30.2 years), ²¹⁰Pb(ex) (half-life of 22.3 years) and ⁷Be (half-life of 53.4 days) for measuring soil erosion over several spatial and temporal scales. The environmental conditions under which the different research teams applied the tools based on the use of fallout radionuclides varied considerably--a variety of climates, soils, topographies and land uses. Nevertheless, the achievements of the CRP, as reflected in this overview paper, demonstrate that fallout radionuclide-based techniques are powerful tools to assess soil erosion/deposition at several spatial and temporal scales in a wide range of environments, and offer potential to monitor soil quality. The success of the CRP has stimulated an interest in many IAEA Member States in the use of these methodologies to identify factors and practices that can enhance sustainable agriculture and minimize land degradation. Copyright

  15. Fallout radionuclide-based techniques for assessing the impact of soil conservation measures on erosion control and soil quality: an overview of the main lessons learnt under an FAO/IAEA Coordinated Research Project

    International Nuclear Information System (INIS)

    Dercon, G.; Mabit, L.; Nguyen, M.L.

    2012-01-01

    This paper summarizes key findings and identifies the main lessons learnt from a 5-year (2002-2008) coordinated research project (CRP) on Assessing the effectiveness of soil conservation measures for sustainable watershed management and crop production using fallout radionuclides (D1.50.08), organized and funded by the International Atomic Energy Agency through the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The project brought together nineteen participants, from Australia, Austria, Brazil, Canada, Chile, China, Japan, Morocco, Pakistan, Poland, Romania, Russian Federation, Turkey, United Kingdom, United States of America and Vietnam, involved in the use of nuclear techniques and, more particularly, fallout radionuclides (FRN) to assess the relative impacts of the different soil conservation measure on soil erosion and land productivity. The overall objective of the CRP was to develop improved land use and management strategies for sustainable watershed management through effective soil erosion control practices, by the use of 137 Cs (half-life of 30.2 years), 210 Pb ex (half-life of 22.3 years) and 7 Be (half-life of 53.4 days) for measuring soil erosion over several spatial and temporal scales. The environmental conditions under which the different research teams applied the tools based on the use of fallout radionuclides varied considerably - a variety of climates, soils, topographies and land uses. Nevertheless, the achievements of the CRP, as reflected in this overview paper, demonstrate that fallout radionuclide-based techniques are powerful tools to assess soil erosion/deposition at several spatial and temporal scales in a wide range of environments, and offer potential to monitor soil quality. The success of the CRP has stimulated an interest in many IAEA Member States in the use of these methodologies to identify factors and practices that can enhance sustainable agriculture and minimize land degradation. (author)

  16. A Model Suggestion to Predict Leverage Ratio for Construction Projects

    OpenAIRE

    Özlem Tüz; Şafak Ebesek

    2013-01-01

    Due to the nature, construction is an industry with high uncertainty and risk. Construction industry carries high leverage ratios. Firms with low equities work in big projects through progress payment system, but in this case, even a small negative in the planned cash flows constitute a major risk for the company.The use of leverage, with a small investment to achieve profit targets large-scale, high-profit, but also brings a high risk with it. Investors may lose all or the portion of th...

  17. Rainfall Erosivity in Europe

    DEFF Research Database (Denmark)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale

    2015-01-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the Rfactor in the USLE model and its revised version, RUSLE. At national...... and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based...

  18. Predicting Defects Using Information Intelligence Process Models in the Software Technology Project.

    Science.gov (United States)

    Selvaraj, Manjula Gandhi; Jayabal, Devi Shree; Srinivasan, Thenmozhi; Balasubramanie, Palanisamy

    2015-01-01

    A key differentiator in a competitive market place is customer satisfaction. As per Gartner 2012 report, only 75%-80% of IT projects are successful. Customer satisfaction should be considered as a part of business strategy. The associated project parameters should be proactively managed and the project outcome needs to be predicted by a technical manager. There is lot of focus on the end state and on minimizing defect leakage as much as possible. Focus should be on proactively managing and shifting left in the software life cycle engineering model. Identify the problem upfront in the project cycle and do not wait for lessons to be learnt and take reactive steps. This paper gives the practical applicability of using predictive models and illustrates use of these models in a project to predict system testing defects thus helping to reduce residual defects.

  19. Soil erosion assessment on hillslope of GCE using RUSLE model

    Indian Academy of Sciences (India)

    Md. Rabiul Islam

    2018-05-22

    May 22, 2018 ... A vegetation density available on these plots is measured ... Finally, erosion prediction is computed based on the RUSLE model in ... which is lower compared to the C value from the soil erosion ..... Comparison of rainfall erosivity factor (R) value. ...... Vorovencii I and Muntean D 2012 Evaluation of super-.

  20. Assessing soil erosion risk in the Tillabery landscape, Niger ...

    African Journals Online (AJOL)

    The results show that soil erosion output scenarios predict greater soil erosion in the study area from 2070 onwards. They suggest that human disturbance and topographic factors are the main impact factors in the affected areas. Key words: Tillabéry landscape (Niger), sheet and rill erosion modelling, data mining.

  1. Robotic weld overlay coatings for erosion control

    Science.gov (United States)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  2. Three Gorges Reservoir Area: soil erosion under natural condition vs. soil erosion under current land use

    Science.gov (United States)

    Schönbrodt, Sarah; Behrens, Thorsten; Scholten, Thomas

    2010-05-01

    Apparently, the current most prominent human-induced example for large scale environmental impact is the Three Gorges Dam in China. The flooding alongside the Yangtze River, and its tributaries results in a vast loss of settlement and farmland area with productive, fertile valley soils. Due to the associated high land use dynamic on uphill-sites, the soil resources are underlying high land use pressure. Within our study, the soil erosion under natural conditions is compared to the soil erosion under current land use after the impoundment. Both were modeled using the empirical Universal Soil Loss Equation (USLE) which is able to predict long-term annual soil loss with limited data. The database consists of digital terrain data (45 m resolution DEM, erosive slope length based on Monte-Carlo-Aggregation according to Behrens et al. (2008)), field investigations of recent erosion forms, and literature studies. The natural disposition to soil erosion was calculated considering the USLE factors R, S, and K. The soil erosion under current land use was calculated taking into account all USLE factors. The study area is the catchment of the Xiangxi River in the Three Gorges Reservoir area. Within the Xiangxi Catchment (3,200 km²) the highly dynamic backwater area (580 km²), and two micro-scale study sites (Xiangjiaba with 2.8 km², and Quyuan with 88 km²) are considered more detailed as they are directly affected by the river impoundment. Central features of the Xiangxi Catchment are the subtropical monsoon climate, an extremely steep sloping relief (mean slope angle 39°, SD 22.8°) artificially fractured by farmland terraces, and a high soil erodibility (mean K factor 0.37, SD 0.13). On the catchment scale the natural disposition to soil erosion makes up to mean 518.0 t ha-1 a-1. The maximum potential soil loss of 1,730.1 t ha-1 a-1 under natural conditions is reached in the Quyuan site (mean 635.8 t ha-1 a-1) within the backwater area (mean 582.9 t ha-1 a-1). In the

  3. Soil loss prediction in Guaraíra river experimental basin, Paraíba, Brazil based on two erosion simulation models

    Directory of Open Access Journals (Sweden)

    Jorge Flávio Cazé B. da Costa Silva

    2007-12-01

    Full Text Available In this study, two hydrological models to estimate soil losses and sediment yield due to sheet and channel erosion, at the basin outlet, are applied to Guaraíra River Experimental Basin, located in Paraíba State, northeastern Brazil. The soil erosion models are (a the classical Universal Soil Loss Equation (USLE, which is used to simulate annual and monthly soil losses; and (b Kineros model, which is used to simulate the sediment yield within the basin. Kineros model is a physically-based distributed model that uses a cascade of planes and channels to represent the basin and to describe the processes of interception, infiltration, surface runoff and erosion within the basin. The USLE is computed using land use, soil erodibility, topographic digital maps, as well as observed rainfall data. It was found that Guaraíra river experimental basin has a low potential for soil losses; however, specific areas which are susceptible to the erosion process in the basin could be detected by the modeling techniques coupled to a GIS (Geographic Information System.

  4. Estimation of wind erosion from construction of a railway in arid Northwest China

    Directory of Open Access Journals (Sweden)

    Benli Liu

    2017-06-01

    Full Text Available A state-of-the-art wind erosion simulation model, the Wind Erosion Prediction System and the United States Environmental Protection Agency's AP 42 emission factors formula, were combined together to evaluate wind-blown dust emissions from various construction units from a railway construction project in the dry Gobi land in Northwest China. The influence of the climatic factors: temperature, precipitation, wind speed and direction, soil condition, protective measures, and construction disturbance were taken into account. Driven by daily and sub-daily climate data and using specific detailed management files, the process-based WEPS model was able to express the beginning, active, and ending phases of construction, as well as the degree of disturbance for the entire scope of a construction project. The Lanzhou-Xinjiang High-speed Railway was selected as a representative study because of the diversities of different climates, soil, and working schedule conditions that could be analyzed. Wind erosion from different working units included the building of roadbeds, bridges, plants, temporary houses, earth spoil and barrow pit areas, and vehicle transportation were calculated. The total wind erosion emissions, 7406 t, for the first construction area of section LXS-15 with a 14.877 km length was obtained for quantitative analysis. The method used is applicable for evaluating wind erosion from other complex surface disturbance projects.

  5. Mapping erosion from space

    NARCIS (Netherlands)

    Vrieling, A.

    2007-01-01

    Soil erosion by water is the most important land degradation problem worldwide. Spatial information on erosion is required for defining effective soil and water conservation strategies. Satellite remote sensing can provide relevant input to regional erosion assessment. This thesis comprises a review

  6. Erosion-corrosion

    International Nuclear Information System (INIS)

    Aghili, B.

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment

  7. Assessing storm erosion hazards

    NARCIS (Netherlands)

    Ranasinghe, Ranasinghe W M R J B; Callaghan, D.; Ciavola, Paolo; Coco, Giovanni

    2017-01-01

    The storm erosion hazard on coasts is usually expressed as an erosion volume and/or associated episodic coastline retreat. The accurate assessment of present-day and future storm erosion volumes is a key task for coastal zone managers, planners and engineers. There are four main approaches that can

  8. Developing a stochastic traffic volume prediction model for public-private partnership projects

    Science.gov (United States)

    Phong, Nguyen Thanh; Likhitruangsilp, Veerasak; Onishi, Masamitsu

    2017-11-01

    Transportation projects require an enormous amount of capital investment resulting from their tremendous size, complexity, and risk. Due to the limitation of public finances, the private sector is invited to participate in transportation project development. The private sector can entirely or partially invest in transportation projects in the form of Public-Private Partnership (PPP) scheme, which has been an attractive option for several developing countries, including Vietnam. There are many factors affecting the success of PPP projects. The accurate prediction of traffic volume is considered one of the key success factors of PPP transportation projects. However, only few research works investigated how to predict traffic volume over a long period of time. Moreover, conventional traffic volume forecasting methods are usually based on deterministic models which predict a single value of traffic volume but do not consider risk and uncertainty. This knowledge gap makes it difficult for concessionaires to estimate PPP transportation project revenues accurately. The objective of this paper is to develop a probabilistic traffic volume prediction model. First, traffic volumes were estimated following the Geometric Brownian Motion (GBM) process. Monte Carlo technique is then applied to simulate different scenarios. The results show that this stochastic approach can systematically analyze variations in the traffic volume and yield more reliable estimates for PPP projects.

  9. Development of a wind farm noise propagation prediction model - project progress to date

    International Nuclear Information System (INIS)

    Robinson, P.; Bullmore, A.; Bass, J.; Sloth, E.

    1998-01-01

    This paper describes a twelve month measurement campaign which is part of a European project (CEC Project JOR3-CT95-0051) with the aim to substantially reduce the uncertainties involved in predicting environmentally radiated noise levels from wind farms (1). This will be achieved by comparing noise levels measure at varying distances from single and multiple sources over differing complexities of terrain with those predicted using a number of currently adopted sound propagation models. Specific objectives within the project are to: establish the important parameters controlling the propagation of wind farm noise to the far field; develop a planning tool for predicting wind farm noise emission levels under practically encountered conditions; place confidence limits on the upper and lower bounds of the noise levels predicted, thus enabling developers to quantify the risk whether noise emission from wind farms will cause nuisance to nearby residents. (Author)

  10. Fallout radionuclide-based techniques for assessing the impact of soil conservation measures on erosion control and soil quality: an overview of the main lessons learnt under an FAO/IAEA Coordinated Research Project

    International Nuclear Information System (INIS)

    Dercon, G.; Mabit, L.; Hancock, G.; Nguyen, M.L.; Dornhofer, P.; Bacchi, O.O.S.; Benmansour, M.; Bernard, C.; Froehlich, W.; Golosov, V.N.; Haciyakupoglu, S.; Hai, P.S.; Klik, A.

    2012-01-01

    This paper summarizes key findings and identifies the main lessons learnt from a 5-year (2002–2008) coordinated research project (CRP) on “Assessing the effectiveness of soil conservation measures for sustainable watershed management and crop production using fallout radionuclides” (D1.50.08), organized and funded by the International Atomic Energy Agency through the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The project brought together nineteen participants, from Australia, Austria, Brazil, Canada, Chile, China, Japan, Morocco, Pakistan, Poland, Romania, Russian Federation, Turkey, United Kingdom, United States of America and Vietnam, involved in the use of nuclear techniques and, more particularly, fallout radionuclides (FRN) to assess the relative impacts of different soil conservation measures on soil erosion and land productivity. The overall objective of the CRP was to develop improved land use and management strategies for sustainable watershed management through effective soil erosion control practices, by the use of 137 Cs (half-life of 30.2 years), 210 Pb ex (half-life of 22.3 years) and 7 Be (half-life of 53.4 days) for measuring soil erosion over several spatial and temporal scales. The environmental conditions under which the different research teams applied the tools based on the use of fallout radionuclides varied considerably – a variety of climates, soils, topographies and land uses. Nevertheless, the achievements of the CRP, as reflected in this overview paper, demonstrate that fallout radionuclide-based techniques are powerful tools to assess soil erosion/deposition at several spatial and temporal scales in a wide range of environments, and offer potential to monitor soil quality. The success of the CRP has stimulated an interest in many IAEA Member States in the use of these methodologies to identify factors and practices that can enhance sustainable agriculture and minimize land degradation. - Highlights:

  11. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  12. Managing dental erosion.

    Science.gov (United States)

    Curtis, Donald A; Jayanetti, Jay; Chu, Raymond; Staninec, Michal

    2012-01-01

    The clinical signs of dental erosion are initially subtle, yet often progress because the patient remains asymptomatic, unaware and uninformed. Erosion typically works synergistically with abrasion and attrition to cause loss of tooth structure, making diagnosis and management complex. The purpose of this article is to outline clinical examples of patients with dental erosion that highlight the strategy of early identification, patient education and conservative restorative management. Dental erosion is defined as the pathologic chronic loss of dental hard tissues as a result of the chemical influence of exogenous or endogenous acids without bacterial involvement. Like caries or periodontal disease, erosion has a multifactorial etiology and requires a thorough history and examination for diagnosis. It also requires patient understanding and compliance for improved outcomes. Erosion can affect the loss of tooth structure in isolation of other cofactors, but most often works in synergy with abrasion and attrition in the loss of tooth structure (Table 1). Although erosion is thought to be an underlying etiology of dentin sensitivity, erosion and loss of tooth structure often occurs with few symptoms. The purpose of this article is threefold: first, to outline existing barriers that may limit early management of dental erosion. Second, to review the clinical assessment required to establish a diagnosis of erosion. And third, to outline clinical examples that review options to restore lost tooth structure. The authors have included illustrations they hope will be used to improve patient understanding and motivation in the early management of dental erosion.

  13. Molybdenum erosion measurements in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, W.R. [Sandia National Labs., Albuquerque, NM (United States); LaBombard, B.; Lipshultz, B.; Pappas, D.; Pitcher, C.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); McCracken, G.M. [JET Joint Undertaking, Abingdon (United Kingdom)

    1998-05-01

    Erosion of molybdenum was measured on a set of 21 tiles after a run campaign of 1,090 shots in the Alcator C-Mod tokamak. The net erosion of molybdenum, was determined from changes in the depth of a thin chromium marker layer measured by Rutherford backscattering. Net Mo erosion was found to be approximately 150 nm near the outer divertor strike point, and much less everywhere else. Gross erosion rates by sputtering were estimated using ion energies and fluxes obtained from Langmuir probe measurements of edge-plasma conditions. Predicted net erosion using calculated gross erosion with prompt redeposition and measured net erosion agree within a factor of 3. Sputtering by boron and molybdenum impurities dominates erosion.

  14. A field method for soil erosion measurements in agricultural and natural lands

    Science.gov (United States)

    Y.P. Hsieh; K.T. Grant; G.C. Bugna

    2009-01-01

    Soil erosion is one of the most important watershed processes in nature, yet quantifying it under field conditions remains a challenge. The lack of soil erosion field data is a major factor hindering our ability to predict soil erosion in a watershed. We present here the development of a simple and sensitive field method that quantifies soil erosion and the resulting...

  15. Soil erosion assessment - Mind the gap

    Science.gov (United States)

    Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone

    2016-12-01

    Accurate assessment of erosion rates remains an elusive problem because soil loss is strongly nonunique with respect to the main drivers. In addressing the mechanistic causes of erosion responses, we discriminate between macroscale effects of external factors - long studied and referred to as "geomorphic external variability", and microscale effects, introduced as "geomorphic internal variability." The latter source of erosion variations represents the knowledge gap, an overlooked but vital element of geomorphic response, significantly impacting the low predictability skill of deterministic models at field-catchment scales. This is corroborated with experiments using a comprehensive physical model that dynamically updates the soil mass and particle composition. As complete knowledge of microscale conditions for arbitrary location and time is infeasible, we propose that new predictive frameworks of soil erosion should embed stochastic components in deterministic assessments of external and internal types of geomorphic variability.

  16. Numerical and experimental investigations on cavitation erosion

    Science.gov (United States)

    Fortes Patella, R.; Archer, A.; Flageul, C.

    2012-11-01

    A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.

  17. Preventing erosive risks after wildfire in Spain: advances and gaps

    Science.gov (United States)

    Fernández Filgueira, Cristina; Vega Hidalgo, José A.; Fontúrbel Lliteras, Teresa

    2017-04-01

    Galicia (NW Spain) is one of the most wildfire-affected areas in Western Europe and where the highest soil losses following fire are recorded in the Iberian Peninsula. During the last decade, mitigation of hydrological and erosive risk has been an important objective for researchers and forest managers. For this reason, research carried out has focused on three main issues: i) the development of operational tools to prioritize post-fire soil stabilization actions, based on soil burn severity indicators and remote sensed information, and testing of their ability to reflect degradation risk in relevant soil properties and subsequent soil erosion, ii) the development and testing of different soil stabilization treatments and their effectiveness for reducing erosion, following their application at broad scale, under the specific environmental conditions of Galicia and iii) the assessment of the performance of current erosion models as well as the development of empirical models to predict post-fire soil losses. On the other hand, the use of forest resources is an essential component of the regional incomes in NW Spain and consequently there is a pressing necessity for investigation on techniques suitable for reconciling soil conservation and sustainable use of those resources. In the framework of wildfire impacts this involve many and complex challenges. This scenario contrast with most of the Iberian Peninsula under Mediterranean influence where salvage logging is not a priority. As in other regions, post-fire hydrologic and erosive risk modeling, including threatened resources vulnerability evaluation is also a capital research need, particularly in a climate change context where dramatic changes in drivers such as precipitation, evapotranspiration and fire regime are expected. The study was funded by the National Institute of Agricultural Research of Spain (INIA) through project RTA2014-00011-C06-02, cofunded by FEDER and the Plan de Mejora e Innovación Forestal de

  18. Hydro-abrasive erosion on coated Pelton runners: Partial calibration of the IEC model based on measurements in HPP Fieschertal

    Science.gov (United States)

    Felix, D.; Abgottspon, A.; Albayrak, I.; Boes, R. M.

    2016-11-01

    At medium- and high-head hydropower plants (HPPs) on sediment-laden rivers, hydro-abrasive erosion on hydraulic turbines is a major economic issue. For optimization of such HPPs, there is an interest in equations to predict erosion depths. Such a semi-empirical equation suitable for engineering practice is proposed in the relevant guideline of the International Electrotechnical Commission (IEC 62364). However, for Pelton turbines no numerical values of the model's calibration parameters have been available yet. In the scope of a research project at the high-head HPP Fieschertal, Switzerland, the particle load and the erosion on the buckets of two hard-coated 32 MW-Pelton runners have been measured since 2012. Based on three years of field data, the numerical values of a group of calibration parameters of the IEC erosion model were determined for five application cases: (i) reduction of splitter height, (ii) increase of splitter width and (iii) increase of cut-out depth due to erosion of mainly base material, as well as erosion of coating on (iv) the splitter crests and (v) inside the buckets. Further laboratory and field investigations are recommended to quantify the effects of individual parameters as well as to improve, generalize and validate erosion models for uncoated and coated Pelton turbines.

  19. Airphoto analysis of erosion control practices

    Science.gov (United States)

    Morgan, K. M.; Morris-Jones, D. R.; Lee, G. B.; Kiefer, R. W.

    1980-01-01

    The Universal Soil Loss Equation (USLE) is a widely accepted tool for erosion prediction and conservation planning. In this study, airphoto analysis of color and color infrared 70 mm photography at a scale of 1:60,000 was used to determine the erosion control practice factor in the USLE. Information about contour tillage, contour strip cropping, and grass waterways was obtained from aerial photography for Pheasant Branch Creek watershed in Dane County, Wisconsin.

  20. Rainfall Erosivity Database on the European Scale (REDES): A product of a high temporal resolution rainfall data collection in Europe

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Mediterranean area. This spatio-temporal analysis of rainfall erosivity at European scale is very important for policy makers and farmers for soil conservation, optimization of agricultural land use and natural hazards prediction. REDES is also used in combination with future rainfall data from WorldClim to run climate change scenarios. The projection of REDES combined with climate change scenarios (HADGEM2, RCP4.5) and using a robust geo-statistical model resulted in a 10-20% increase of the R-factor in Europe till 2050.

  1. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  2. Finite element method for one-dimensional rill erosion simulation on a curved slope

    Directory of Open Access Journals (Sweden)

    Lijuan Yan

    2015-03-01

    Full Text Available Rill erosion models are important to hillslope soil erosion prediction and to land use planning. The development of rill erosion models and their use has become increasingly of great concern. The purpose of this research was to develop mathematic models with computer simulation procedures to simulate and predict rill erosion. The finite element method is known as an efficient tool in many other applications than in rill soil erosion. In this study, the hydrodynamic and sediment continuity model equations for a rill erosion system were solved by the Galerkin finite element method and Visual C++ procedures. The simulated results are compared with the data for spatially and temporally measured processes for rill erosion under different conditions. The results indicate that the one-dimensional linear finite element method produced excellent predictions of rill erosion processes. Therefore, this study supplies a tool for further development of a dynamic soil erosion prediction model.

  3. Regionalization of monthly rainfall erosivity patternsin Switzerland

    Science.gov (United States)

    Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin

    2016-10-01

    One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of

  4. Advances in modeling soil erosion after disturbance on rangelands

    Science.gov (United States)

    Research has been undertaken to develop process based models that predict soil erosion rate after disturbance on rangelands. In these models soil detachment is predicted as a combination of multiple erosion processes, rain splash and thin sheet flow (splash and sheet) detachment and concentrated flo...

  5. Protection from erosion following wildfire

    Science.gov (United States)

    Peter R. Robichaud; William J. Elliot

    2006-01-01

    Erosion in the first year after a wildfire can be up to three orders of magnitude greater than the erosion from undisturbed forests. To mitigate potential postfire erosion, various erosion control treatments are applied on highly erodible areas with downstream resources in need of protection. Because postfire erosion rates generally decline by an order of magnitude for...

  6. Erosion and stability of a mine soil

    International Nuclear Information System (INIS)

    Wu, T.H.; Stadler, A.T.; Low, C.

    1996-01-01

    Mine soils developed from mine spoils commonly have a wide range of particle size. The slopes of old spoil piles usually are marked by gullies due to years of uncontrolled erosion. These characteristics raise questions about applicability of available theories and models for estimating runoff and erosion. An investigation was made to determine whether available erosion models can work for mine soils and can account for gully erosion. The investigation at an abandoned surface mine consisted of measurement of soil and sediment properties, measurement of runoff and erosion, observations of armor by rock fragments on gully floor, and calculations with available theories of sediment transport and slope stability. The results at this site suggest that (1) predictions with the ANSWERS model have about the same accuracy as those made for agricultural lands; (2) armor provided by rock fragments are temporary as they are periodically removed by debris flows; (3) detachment by rainfall impact is the primary cause of erosion on short steep slopes; and (4) a simplified method can be used for estimating erosion on such slopes

  7. Saliva and dental erosion

    Directory of Open Access Journals (Sweden)

    Marília Afonso Rabelo Buzalaf

    2012-10-01

    Full Text Available Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective: This review discusses the role of salivary factors on the development of dental erosion. Material and Methods: A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results: Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions: Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  8. Scales and erosion

    Science.gov (United States)

    There is a need to develop scale explicit understanding of erosion to overcome existing conceptual and methodological flaws in our modelling methods currently applied to understand the process of erosion, transport and deposition at the catchment scale. These models need to be based on a sound under...

  9. Saliva and dental erosion.

    Science.gov (United States)

    Buzalaf, Marília Afonso Rabelo; Hannas, Angélicas Reis; Kato, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. This review discusses the role of salivary factors on the development of dental erosion. A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  10. Mapping monthly rainfall erosivity in Europe.

    Science.gov (United States)

    Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos

    2017-02-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha -1 h -1 ) compared to winter (87MJmmha -1 h -1 ). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R 2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be

  11. Recent and future rainfall erosivity on the territory of the Czech Republic

    Science.gov (United States)

    Krasa, Josef; Stredova, Hana; Stepanek, Petr; Hanel, Martin; Dostal, Tomas; Novotny, Ivan

    2015-04-01

    Water erosion is a main factor of degradation of soils used for agriculture in the Czech Republic. For landscape conservation purposes the soil erosion risk is defined here mostly by USLE (Wischmeier and Smith, 1978). Within USLE the precipitation impact on erosion is a function of rainfall kinetic energy and intensity represented by R-factor. In the Czech Republic historically and recently several research teams have analyzed rainfall data to assess R-factor. Till now not many European countries have performed detailed spatially distributed analyses of rain erosivities. Most studies use only simplified methods based on long-term rainfall averages or databases of only several station-datasets. The most recent study on rainfall erosivity spatial distribution over the Czech Republic was based on digital rain gauge data from automatic stations of the Czech Hydrometeorogical Institute. The erosive rains were derived from continuous 1 minute step 10-year rainfall data (2003-2012) from 245 stations. Based on the research recent annual R-factor values in the stations vary from 37 to 239 [N.h-1] (values over 100 are located in mountain regions with minimum of agricultural land). Average value is 69 [N.h-1.year-1]. For the Czech Republic the future prediction is based on 10km resolution ALADIN/CZ regional climate model. Within the EU FP6 project CECILIA it was coupled with GCM ARPEGE to provide a projection of future climate in two time slices, 2021-2050 and 2071-2100, according to the IPCC A1B emission scenario. Daily precipitation volumes and percentiles of maximal events allowed authors to develop R-factor maps of present and future scenarios. Based on the analyses we can conclude that average value for the whole territory of the Czech Republic will remain close to 70 [N.h-1.year-1] or even decrease for 2071-2100, but we can expect significant changes (30-40 % rise or decrease) for several large agricultural regions (eg. Southern Moravia). These changes will have impact

  12. Revisiting EOR Projects in Indonesia through Integrated Study: EOR Screening, Predictive Model, and Optimisation

    KAUST Repository

    Hartono, A. D.; Hakiki, Farizal; Syihab, Z.; Ambia, F.; Yasutra, A.; Sutopo, S.; Efendi, M.; Sitompul, V.; Primasari, I.; Apriandi, R.

    2017-01-01

    EOR preliminary analysis is pivotal to be performed at early stage of assessment in order to elucidate EOR feasibility. This study proposes an in-depth analysis toolkit for EOR preliminary evaluation. The toolkit incorporates EOR screening, predictive, economic, risk analysis and optimisation modules. The screening module introduces algorithms which assimilates statistical and engineering notions into consideration. The United States Department of Energy (U.S. DOE) predictive models were implemented in the predictive module. The economic module is available to assess project attractiveness, while Monte Carlo Simulation is applied to quantify risk and uncertainty of the evaluated project. Optimization scenario of EOR practice can be evaluated using the optimisation module, in which stochastic methods of Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Evolutionary Strategy (ES) were applied in the algorithms. The modules were combined into an integrated package of EOR preliminary assessment. Finally, we utilised the toolkit to evaluate several Indonesian oil fields for EOR evaluation (past projects) and feasibility (future projects). The attempt was able to update the previous consideration regarding EOR attractiveness and open new opportunity for EOR implementation in Indonesia.

  13. Revisiting EOR Projects in Indonesia through Integrated Study: EOR Screening, Predictive Model, and Optimisation

    KAUST Repository

    Hartono, A. D.

    2017-10-17

    EOR preliminary analysis is pivotal to be performed at early stage of assessment in order to elucidate EOR feasibility. This study proposes an in-depth analysis toolkit for EOR preliminary evaluation. The toolkit incorporates EOR screening, predictive, economic, risk analysis and optimisation modules. The screening module introduces algorithms which assimilates statistical and engineering notions into consideration. The United States Department of Energy (U.S. DOE) predictive models were implemented in the predictive module. The economic module is available to assess project attractiveness, while Monte Carlo Simulation is applied to quantify risk and uncertainty of the evaluated project. Optimization scenario of EOR practice can be evaluated using the optimisation module, in which stochastic methods of Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Evolutionary Strategy (ES) were applied in the algorithms. The modules were combined into an integrated package of EOR preliminary assessment. Finally, we utilised the toolkit to evaluate several Indonesian oil fields for EOR evaluation (past projects) and feasibility (future projects). The attempt was able to update the previous consideration regarding EOR attractiveness and open new opportunity for EOR implementation in Indonesia.

  14. Can conservation trump impacts of climate change on soil erosion? An assessment from winter wheat cropland in the Southern Great Plains of the United States

    Directory of Open Access Journals (Sweden)

    Jurgen D. Garbrecht

    2015-12-01

    Full Text Available With the need to increase crop production to meet the needs of a growing population, protecting the productivity of our soil resource is essential. However, conservationists are concerned that conservation practices that were effective in the past may no longer be effective in the future under projected climate change. In winter wheat cropland in the Southern Great Plains of the U.S., increased precipitation intensity and increased aridity associated with warmer temperatures may pose increased risks of soil erosion from vulnerable soils and landscapes. This investigation was undertaken to determine which conservation practices would be necessary and sufficient to hold annual soil erosion by water under a high greenhouse gas emission scenario at or below the present soil erosion levels. Advances in and benefits of agricultural soil and water conservation over the last century in the United States are briefly reviewed, and challenges and climate uncertainties confronting resource conservation in this century are addressed. The Water Erosion Prediction Project (WEPP computer model was used to estimate future soil erosion by water from winter wheat cropland in Central Oklahoma and for 10 projected climates and 7 alternative conservation practices. A comparison with soil erosion values under current climate conditions and conventional tillage operations showed that, on average, a switch from conventional to conservation tillage would be sufficient to offset the average increase in soil erosion by water under most projected climates. More effective conservation practices, such as conservation tillage with a summer cover crop would be required to control soil erosion associated with the most severe climate projections. It was concluded that a broad range of conservation tools are available to agriculture to offset projected future increases in soil erosion by water even under assumed worst case climate change scenarios in Central Oklahoma. The problem

  15. Erosion corrosion in wet steam

    International Nuclear Information System (INIS)

    Tavast, J.

    1988-03-01

    The effect of different remedies against erosion corrosion in wet steam has been studied in Barsebaeck 1. Accessible steam systems were inspected in 1984, 1985 and 1986. The effect of hydrogen peroxide injection of the transport of corrosion products in the condensate and feed water systems has also been followed through chemical analyses. The most important results of the project are: - Low alloy chromium steels with a chromium content of 1-2% have shown excellent resistance to erosion corrosion in wet steam. - A thermally sprayed coating has shown good resistance to erosion corrosion in wet steam. In a few areas with restricted accessibility minor attacks have been found. A thermally sprayed aluminium oxide coating has given poor results. - Large areas in the moisture separator/reheater and in steam extraction no. 3 have been passivated by injection of 20 ppb hydrogen peroxide to the high pressure steam. In other inspected systems no significant effect was found. Measurements of the wall thickness in steam extraction no. 3 showed a reduced rate of attack. - The injection of 20 ppb hydrogen peroxide has not resulted in any significant reduction of the iron level result is contrary to that of earlier tests. An increase to 40 ppb resulted in a slight decrease of the iron level. - None of the feared disadvantages with hydrogen peroxide injection has been observed. The chromium and cobalt levels did not increase during the injection. Neither did the lifetime of the precoat condensate filters decrease. (author)

  16. Genomic Prediction from Whole Genome Sequence in Livestock: The 1000 Bull Genomes Project

    DEFF Research Database (Denmark)

    Hayes, Benjamin J; MacLeod, Iona M; Daetwyler, Hans D

    Advantages of using whole genome sequence data to predict genomic estimated breeding values (GEBV) include better persistence of accuracy of GEBV across generations and more accurate GEBV across breeds. The 1000 Bull Genomes Project provides a database of whole genome sequenced key ancestor bulls....... In a dairy data set, predictions using BayesRC and imputed sequence data from 1000 Bull Genomes were 2% more accurate than with 800k data. We could demonstrate the method identified causal mutations in some cases. Further improvements will come from more accurate imputation of sequence variant genotypes...

  17. Practical aspects of geological prediction

    International Nuclear Information System (INIS)

    Mallio, W.J.; Peck, J.H.

    1981-01-01

    Nuclear waste disposal requires that geology be a predictive science. The prediction of future events rests on (1) recognizing the periodicity of geologic events; (2) defining a critical dimension of effect, such as the area of a drainage basin, the length of a fault trace, etc; and (3) using our understanding of active processes the project the frequency and magnitude of future events in the light of geological principles. Of importance to nuclear waste disposal are longer term processes such as continental denudation and removal of materials by glacial erosion. Constant testing of projections will allow the practical limits of predicting geological events to be defined. 11 refs

  18. GI-POP: a combinational annotation and genomic island prediction pipeline for ongoing microbial genome projects.

    Science.gov (United States)

    Lee, Chi-Ching; Chen, Yi-Ping Phoebe; Yao, Tzu-Jung; Ma, Cheng-Yu; Lo, Wei-Cheng; Lyu, Ping-Chiang; Tang, Chuan Yi

    2013-04-10

    Sequencing of microbial genomes is important because of microbial-carrying antibiotic and pathogenetic activities. However, even with the help of new assembling software, finishing a whole genome is a time-consuming task. In most bacteria, pathogenetic or antibiotic genes are carried in genomic islands. Therefore, a quick genomic island (GI) prediction method is useful for ongoing sequencing genomes. In this work, we built a Web server called GI-POP (http://gipop.life.nthu.edu.tw) which integrates a sequence assembling tool, a functional annotation pipeline, and a high-performance GI predicting module, in a support vector machine (SVM)-based method called genomic island genomic profile scanning (GI-GPS). The draft genomes of the ongoing genome projects in contigs or scaffolds can be submitted to our Web server, and it provides the functional annotation and highly probable GI-predicting results. GI-POP is a comprehensive annotation Web server designed for ongoing genome project analysis. Researchers can perform annotation and obtain pre-analytic information include possible GIs, coding/non-coding sequences and functional analysis from their draft genomes. This pre-analytic system can provide useful information for finishing a genome sequencing project. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Buffer erosion: An overview of concepts and potential safety consequences

    International Nuclear Information System (INIS)

    Apted, Michael J.; Arthur, Randy; Bennett, David; Savage, David; Saellfors, Goeran; Wennerstroem, Haakan

    2010-11-01

    In its safety analysis SR-Can, SKB reported preliminary results and conclusions on the mechanisms of bentonite colloid formation and stability, with a rough estimate of the consequences of loss of bentonite buffer by erosion. With the review of SR-Can the authorities (SKI and SSI) commented that erosion of the buffer had the greatest safety significance, that the understanding of the mechanisms of buffer erosion was inadequate, and that more work would be required to arrive at robust estimates of the extent and impacts of buffer erosion. After the SR-Can report, SKB started a two-year research project on buffer erosion. The results from this two-year project have been reported in several SKB technical reports. SSM started this project to build up its own competence in the related scientific areas by a preliminary evaluation of SKB's research results

  20. Buffer erosion: An overview of concepts and potential safety consequences

    Energy Technology Data Exchange (ETDEWEB)

    Apted, Michael J.; Arthur, Randy (INTERA Incorporated, Denver, CO (United States)); Bennett, David (TerraSalus Limited, Rutland (United Kingdom)); Savage, David (Savage Earth Associates Limited, Bournemouth (United Kingdom)); Saellfors, Goeran (GeoForce AB, Billdal (Sweden)); Wennerstroem, Haakan (Dept. of Chemistry, Lund Univ., Lund (Sweden))

    2010-11-15

    In its safety analysis SR-Can, SKB reported preliminary results and conclusions on the mechanisms of bentonite colloid formation and stability, with a rough estimate of the consequences of loss of bentonite buffer by erosion. With the review of SR-Can the authorities (SKI and SSI) commented that erosion of the buffer had the greatest safety significance, that the understanding of the mechanisms of buffer erosion was inadequate, and that more work would be required to arrive at robust estimates of the extent and impacts of buffer erosion. After the SR-Can report, SKB started a two-year research project on buffer erosion. The results from this two-year project have been reported in several SKB technical reports. SSM started this project to build up its own competence in the related scientific areas by a preliminary evaluation of SKB's research results

  1. Impacts of Climate Change on Soil Erosion in the Great Lakes Region

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-06-01

    Full Text Available Quantifying changes in potential soil erosion under projections of changing climate is important for the sustainable management of land resources, as soil loss estimates will be helpful in identifying areas susceptible to erosion, targeting future erosion control efforts, and/or conservation funding. Therefore, the macro-scale Variable Infiltration Capacity—Water Erosion Prediction Project (VIC-WEPP soil erosion model was utilized to quantify soil losses under three climate change scenarios (A2, A1B, B1 using projections from three general circulation models (GFDL, PCM, HadCM3 for the Great Lakes region from 2000 to 2100. Soil loss was predicted to decrease throughout three future periods (2030s, 2060s, and 2090s by 0.4–0.7 ton ha−1 year−1 (4.99–23.2% relative to the historical period (2000s with predicted air temperature increases of 0.68–4.34 °C and precipitation increases of 1.74–63.7 mm year−1 (0.23–8.6%. In the forested northern study domain erosion kept increasing by 0.01–0.18 ton ha−1 year−1 over three future periods due to increased precipitation of 9.7–68.3 mm year−1. The southern study domain covered by cropland and grassland had predicted soil loss decreases of 0.01–1.43 ton ha−1 year−1 due to air temperature increases of 1.75–4.79 °C and reduced precipitation in the summer. Fall and winter had greater risks of increased soil loss based on predictions for these two seasons under the A2 scenario, with the greatest cropland soil loss increase due to increased fall precipitation, and combined effects of increases in both precipitation and air temperature in the winter. Fall was identified with higher risks under the A1B scenario, while spring and summer were identified with the greatest risk of increased soil losses under the B1 scenario due to the increases in both precipitation and air temperature.

  2. Mizunami Underground Research Laboratory project. A project on research stage of investigating prediction from ground surface. Project report at fiscal year of 2000 to 2004

    International Nuclear Information System (INIS)

    2000-04-01

    This was a detailed plan after fiscal year 2000 on the first stage of the Research stage at investigating prediction from ground surface' in three researches carried out at the Mizunami Underground Research Laboratory (MIU) according to the 'Basic plan on research of underground science at MIU', based on progress of investigation and research before fiscal year 1999. This project contains following three items as its general targets; establishment of general investigating techniques for geological environment, collection of informations on deep underground environment, and development on foundation of engineering technology at super-deep underground. And, targets at investigating prediction stage from ground surface contain acquisition of geological environment data through investigations from ground surface to predict changes of the environment accompanied with underground geological environment and construction of experimental tunnel, to determine evaluating method on prediction results, and to determine plannings of an investigating stage accompanied with excavation of the tunnel by carrying out detail design of the tunnel. Here were introduced about results and problems on the investigation of the first phase, the integration of investigating results, and the investigation and researches on geology/geological structure, hydrology and geochemistry of groundwater, mechanical properties of rocks, and the mass transfer. (G.K.)

  3. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes

    Science.gov (United States)

    Leonardi, Nicoletta; Ganju, Neil K.; Fagherazzi, Sergio

    2016-01-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  4. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes.

    Science.gov (United States)

    Leonardi, Nicoletta; Ganju, Neil K; Fagherazzi, Sergio

    2016-01-05

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  5. Rainfall and Extratropical Transition of Tropical Cyclones: Simulation, Prediction, and Projection

    Science.gov (United States)

    Liu, Maofeng

    Rainfall and associated flood hazards are one of the major threats of tropical cyclones (TCs) to coastal and inland regions. The interaction of TCs with extratropical systems can lead to enhanced precipitation over enlarged areas through extratropical transition (ET). To achieve a comprehensive understanding of rainfall and ET associated with TCs, this thesis conducts weather-scale analyses by focusing on individual storms and climate-scale analyses by focusing on seasonal predictability and changing properties of climatology under global warming. The temporal and spatial rainfall evolution of individual storms, including Hurricane Irene (2011), Hurricane Hanna (2008), and Hurricane Sandy (2012), is explored using the Weather Research and Forecast (WRF) model and a variety of hydrometeorological datasets. ET and Orographic mechanism are two key players in the rainfall distribution of Irene over regions experiencing most severe flooding. The change of TC rainfall under global warming is explored with the Forecast-oriented Low Ocean Resolution (FLOR) climate model under representative concentration pathway (RCP) 4.5 scenario. Despite decreased TC frequency, FLOR projects increased landfalling TC rainfall over most regions of eastern United States, highlighting the risk of increased flood hazards. Increased storm rain rate is an important player of increased landfalling TC rainfall. A higher atmospheric resolution version of FLOR (HiFLOR) model projects increased TC rainfall at global scales. The increase of TC intensity and environmental water vapor content scaled by the Clausius-Clapeyron relation are two key factors that explain the projected increase of TC rainfall. Analyses on the simulation, prediction, and projection of the ET activity with FLOR are conducted in the North Atlantic. FLOR model exhibits good skills in simulating many aspects of present-day ET climatology. The 21st-century-projection under RCP4.5 scenario demonstrates the dominant role of ET

  6. Numerical modelling of concentrated leak erosion during Hole Erosion Tests

    OpenAIRE

    Mercier, F.; Bonelli, S.; Golay, F.; Anselmet, F.; Philippe, P.; Borghi, R.

    2015-01-01

    This study focuses on the numerical modelling of concentrated leak erosion of a cohesive soil by a turbulent flow in axisymmetrical geometry, with application to the Hole Erosion Test (HET). The numerical model is based on adaptive remeshing of the water/soil interface to ensure accurate description of the mechanical phenomena occurring near the soil/water interface. The erosion law governing the interface motion is based on two erosion parameters: the critical shear stress and the erosion co...

  7. COMPARISON OF TREND PROJECTION METHODS AND BACKPROPAGATION PROJECTIONS METHODS TREND IN PREDICTING THE NUMBER OF VICTIMS DIED IN TRAFFIC ACCIDENT IN TIMOR TENGAH REGENCY, NUSA TENGGARA

    Directory of Open Access Journals (Sweden)

    Aleksius Madu

    2016-10-01

    Full Text Available The purpose of this study is to predict the number of traffic accident victims who died in Timor Tengah Regency with Trend Projection method and Backpropagation method, and compare the two methods based on the degree of guilt and predict the number traffic accident victims in the Timor Tengah Regency for the coming year. This research was conducted in Timor Tengah Regency where data used in this study was obtained from Police Unit in Timor Tengah Regency. The data is on the number of traffic accidents in Timor Tengah Regency from 2000 – 2013, which is obtained by a quantitative analysis with Trend Projection and Backpropagation method. The results of the data analysis predicting the number of traffic accidents victims using Trend Projection method obtained the best model which is the quadratic trend model with equation Yk = 39.786 + (3.297 X + (0.13 X2. Whereas by using back propagation method, it is obtained the optimum network that consists of 2 inputs, 3 hidden screens, and 1 output. Based on the error rates obtained, Back propagation method is better than the Trend Projection method which means that the predicting accuracy with Back propagation method is the best method to predict the number of traffic accidents victims in Timor Tengah Regency. Thus obtained predicting the numbers of traffic accident victims for the next 5 years (Years 2014-2018 respectively - are 106 person, 115 person, 115 person, 119 person and 120 person.   Keywords: Trend Projection, Back propagation, Predicting.

  8. Prediction of Protein Hotspots from Whole Protein Sequences by a Random Projection Ensemble System

    Directory of Open Access Journals (Sweden)

    Jinjian Jiang

    2017-07-01

    Full Text Available Hotspot residues are important in the determination of protein-protein interactions, and they always perform specific functions in biological processes. The determination of hotspot residues is by the commonly-used method of alanine scanning mutagenesis experiments, which is always costly and time consuming. To address this issue, computational methods have been developed. Most of them are structure based, i.e., using the information of solved protein structures. However, the number of solved protein structures is extremely less than that of sequences. Moreover, almost all of the predictors identified hotspots from the interfaces of protein complexes, seldom from the whole protein sequences. Therefore, determining hotspots from whole protein sequences by sequence information alone is urgent. To address the issue of hotspot predictions from the whole sequences of proteins, we proposed an ensemble system with random projections using statistical physicochemical properties of amino acids. First, an encoding scheme involving sequence profiles of residues and physicochemical properties from the AAindex1 dataset is developed. Then, the random projection technique was adopted to project the encoding instances into a reduced space. Then, several better random projections were obtained by training an IBk classifier based on the training dataset, which were thus applied to the test dataset. The ensemble of random projection classifiers is therefore obtained. Experimental results showed that although the performance of our method is not good enough for real applications of hotspots, it is very promising in the determination of hotspot residues from whole sequences.

  9. Medium-term erosion simulation of an abandoned mine site using the SIBERIA landscape evolution model

    International Nuclear Information System (INIS)

    Hancock, G.R.; Willgoose, G.R.

    2000-01-01

    This study forms part of a collaborative project designed to validate the long-term erosion predictions of the SIBERIA landform evolution model on rehabilitated mine sites. The SIBERIA catchment evolution model can simulate the evolution of landforms resulting from runoff and erosion over many years. SIBERIA needs to be calibrated before evaluating whether it correctly models the observed evolution of rehabilitated mine landforms. A field study to collect data to calibrate SIBERIA was conducted at the abandoned Scinto 6 uranium mine located in the Kakadu Region, Northern Territory, Australia. The data were used to fit parameter values to a sediment loss model and a rainfall-runoff model. The derived runoff and erosion model parameter values were used in SIBERIA to simulate 50 years of erosion by concentrated flow on the batters of the abandoned site. The SIBERIA runs correctly simulated the geomorphic development of the gullies on the man-made batters of the waste rock dump. The observed gully position, depth, volume, and morphology on the waste rock dump were quantitatively compared with the SIBERIA simulations. The close similarities between the observed and simulated gully features indicate that SIBERIA can accurately predict the rate of gully development on a man-made post-mining landscape over periods of up to 50 years. SIBERIA is an appropriate model for assessment of erosional stability of rehabilitated mine sites over time spans of around 50 years. Copyright (2000) CSIRO Australia

  10. Implications of climate change on wind erosion of agricultural lands in the Columbia plateau

    Directory of Open Access Journals (Sweden)

    B.S. Sharratt

    2015-12-01

    Full Text Available Climate change may impact soil health and productivity as a result of accelerated or decelerated rates of erosion. Previous studies suggest a greater risk of wind erosion on arid and semi-arid lands due to loss of biomass under a future warmer climate. There have been no studies conducted to assess the impact of climate change on wind erosion in the Columbia Plateau of the Pacific Northwest United States where wind erosion of agricultural lands can cause exceedance of national air quality standards. The Wind Erosion Prediction System (WEPS was used to assess wind erosion and PM10 (particulate matter ≤10 µm in aerodynamic diameter emissions under a future climate projected by downscaling 18 Global Climate Models (GCM for a conservative emissions pathway. Wind erosion simulations were conducted at Lacrosse and Lind, WA and Moro, OR on a winter wheat-summer fallow (WW-SF rotation and at Lind on an additional winter wheat-camelina-summer fallow (WW-Cam-SF rotation. Each rotation was subject to conservation or conventional tillage practices for a baseline (1970–1999 and mid-21st century climate (2035–2064. A significant increase in temperature and nominal increases in precipitation were projected by an ensemble of climate models for the Columbia Plateau by the mid-21st century. Soil and PM10 losses were 25–84% lower for a mid-21st century climate, due in part to greater biomass production associated with CO2 fertilization and warmer temperatures. The reduction in soil and PM10 loss is projected to be more apparent for conservation tillage practices in the future. Soil and PM10 losses were greater from a WW-Cam-SF rotation than WW-SF rotation when conservation tillage practices were employed during the fallow phase of the rotations. Despite accounting for differences in the length of each rotation, annual soil and PM10 losses remained higher for the WW-Cam-SF rotation than the WW-SF rotation. Soil and PM10 losses were more variable across

  11. Modeling soil erosion and transport on forest landscape

    Science.gov (United States)

    Ge Sun; Steven G McNulty

    1998-01-01

    Century-long studies on the impacts of forest management in North America suggest sediment can cause major reduction on stream water quality. Soil erosion patterns in forest watersheds are patchy and heterogeneous. Therefore, patterns of soil erosion are difficult to model and predict. The objective of this study is to develop a user friendly management tool for land...

  12. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    Science.gov (United States)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  13. Rainfall erosivity in Europe.

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine

    2015-04-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods

  14. Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"

    Science.gov (United States)

    Ilieva, Diliana; Malinov, Ilia

    2014-05-01

    Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.

  15. Facing the scaling problem: A multi-methodical approach to simulate soil erosion at hillslope and catchment scale

    Science.gov (United States)

    Schmengler, A. C.; Vlek, P. L. G.

    2012-04-01

    Modelling soil erosion requires a holistic understanding of the sediment dynamics in a complex environment. As most erosion models are scale-dependent and their parameterization is spatially limited, their application often requires special care, particularly in data-scarce environments. This study presents a hierarchical approach to overcome the limitations of a single model by using various quantitative methods and soil erosion models to cope with the issues of scale. At hillslope scale, the physically-based Water Erosion Prediction Project (WEPP)-model is used to simulate soil loss and deposition processes. Model simulations of soil loss vary between 5 to 50 t ha-1 yr-1 dependent on the spatial location on the hillslope and have only limited correspondence with the results of the 137Cs technique. These differences in absolute soil loss values could be either due to internal shortcomings of each approach or to external scale-related uncertainties. Pedo-geomorphological soil investigations along a catena confirm that estimations by the 137Cs technique are more appropriate in reflecting both the spatial extent and magnitude of soil erosion at hillslope scale. In order to account for sediment dynamics at a larger scale, the spatially-distributed WaTEM/SEDEM model is used to simulate soil erosion at catchment scale and to predict sediment delivery rates into a small water reservoir. Predicted sediment yield rates are compared with results gained from a bathymetric survey and sediment core analysis. Results show that specific sediment rates of 0.6 t ha-1 yr-1 by the model are in close agreement with observed sediment yield calculated from stratigraphical changes and downcore variations in 137Cs concentrations. Sediment erosion rates averaged over the entire catchment of 1 to 2 t ha-1 yr-1 are significantly lower than results obtained at hillslope scale confirming an inverse correlation between the magnitude of erosion rates and the spatial scale of the model. The

  16. Erosion-Oxidation Response of Boiler Grade Steels: A Mathematical Investigation

    Directory of Open Access Journals (Sweden)

    S. K. Das

    2008-01-01

    Full Text Available A ductile erosion model embodying the mechanisms of erosion involving cutting wear and repeated plastic deformation has been developed to predict erosion rates of boiler grade steels. The issue of erosion-oxidation interaction has also been addressed to further predict the mass loss resulted from this composite mechanism. A deterministic formalism for the kinetics of oxide-scale growth and a probabilistic approach to characterize the material loss are employed to describe simultaneous actions of high-temperature oxidation and mechanical erosion. The model predictions are in good agreement with the published data.

  17. Coastal Erosion Control Methods

    Science.gov (United States)

    Greene, V.

    2016-12-01

    Coastal erosion is bad because the ecosystem there will be washed away and the animals could drown or be displaced and have to adapt to a new ecosystem that they are not prepared for. I'm interested in this problem because if there aren't beaches when I grow up I won't be able to do the things I would really like to do. I would like to be a marine biologist. Secondly, I don't want to see beach houses washed away. I would like to see people live in harmony with their environment. So, to study ways in which to preserve beaches I will make and use models that test different erosion controls. Two different ideas for erosion control I tested are using seaweed or a rock berm. I think the rock berm will work better than the model of seaweed because the seaweed is under water and the waves can carry the sand over the seaweed, and the rock berm will work better because the rocks will help break the waves up before they reach the shore and the waves can not carry the sand over the rocks that are above the water. To investigate this I got a container to use to model the Gulf of Mexico coastline. I performed several test runs using sand and water in the container to mimic the beach and waves from the Gulf of Mexico hitting the shoreline. I did three trials for the control (no erosion control), seaweed and a rock berm. Rock berms are a border of a raised area of rock. The model for seaweed that I used was plastic shopping bags cut into strips and glued to the bottom of my container to mimic seaweed. My results were that the control had the most erosion which ranged from 2.75 - 3 inches over 3 trials. The seaweed was a little better than the control but was very variable and ranged from 1.5 - 3 inches over 3 trials. The rock berm worked the best out of all at controlling erosion with erosion ranging from 1.5 - 2 inches. My hypothesis was correct because the rock berm did best to control erosion compared to the control which had no erosion control and the model with seaweed.

  18. Spatial Resolution Effect on Forest Road Gradient Calculation and Erosion Modelling

    Science.gov (United States)

    Cao, L.; Elliot, W.

    2017-12-01

    Road erosion is one of the main sediment sources in a forest watershed and should be properly evaluated. With the help of GIS technology, road topography can be determined and soil loss can be predicted at a watershed scale. As a vector geographical feature, the road gradient should be calculated following road direction rather than hillslope direction. This calculation might be difficult with a coarse (30-m) DEM which only provides the underlying topography information. This study was designed to explore the effect of road segmentation and DEM resolution on the road gradient calculation and erosion prediction at a watershed scale. The Water Erosion Prediction Project (WEPP) model was run on road segments of 9 lengths ranging from 40m to 200m. Road gradient was calculated from three DEM data sets: 1m LiDAR, and 10m and 30m USGS DEMs. The 1m LiDAR DEM calculated gradients were very close to the field observed road gradients, so we assumed the 1m LiDAR DEM predicted the true road gradient. The results revealed that longer road segments skipped detail topographical undulations and resulted in lower road gradients. Coarser DEMs computed steeper road gradients as larger grid cells covered more adjacent areas outside road resulting in larger elevation differences. Field surveyed results also revealed that coarser DEM might result in more gradient deviation in a curved road segment when it passes through a convex or concave slope. As road segment length increased, the gradient difference between three DEMs was reduced. There were no significant differences between road gradients of different segment lengths and DEM resolution when segments were longer than 100m. For long segments, the 10m DEM calculated road gradient was similar to the 1m LiDAR gradient. When evaluating the effects of road segment length, the predicted erosion rate decreased with increasing length when road gradient was less than 3%. In cases where the road gradients exceed 3% and rill erosion dominates

  19. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    Science.gov (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  20. Effect of mechanical properties on erosion resistance of ductile materials

    Science.gov (United States)

    Levin, Boris Feliksovih

    Solid particle erosion (SPE) resistance of ductile Fe, Ni, and Co-based alloys as well as commercially pure Ni and Cu was studied. A model for SPE behavior of ductile materials is presented. The model incorporates the mechanical properties of the materials at the deformation conditions associated with SPE process, as well as the evolution of these properties during the erosion induced deformation. An erosion parameter was formulated based on consideration of the energy loss during erosion, and incorporates the material's hardness and toughness at high strain rates. The erosion model predicts that materials combining high hardness and toughness can exhibit good erosion resistance. To measure mechanical properties of materials, high strain rate compression tests using Hopkinson bar technique were conducted at strain rates similar to those during erosion. From these tests, failure strength and strain during erosion were estimated and used to calculate toughness of the materials. The proposed erosion parameter shows good correlation with experimentally measured erosion rates for all tested materials. To analyze subsurface deformation during erosion, microhardness and nanoindentation tests were performed on the cross-sections of the eroded materials and the size of the plastically deformed zone and the increase in materials hardness due to erosion were determined. A nanoindentation method was developed to estimate the restitution coefficient within plastically deformed regions of the eroded samples which provides a measure of the rebounding ability of a material during particle impact. An increase in hardness near the eroded surface led to an increase in restitution coefficient. Also, the stress rates imposed below the eroded surface were comparable to those measured during high strain-rate compression tests (10sp3-10sp4 ssp{-1}). A new parameter, "area under the microhardness curve" was developed that represents the ability of a material to absorb impact energy. By

  1. Rainfall erosivity factor estimation in Republic of Moldova

    Science.gov (United States)

    Castraveš, Tudor; Kuhn, Nikolaus

    2017-04-01

    Rainfall erosivity represents a measure of the erosive force of rainfall. Typically, it is expressed as variable such as the R factor in the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1965, 1978) or its derivates. The rainfall erosivity index for a rainfall event (EI30) is calculated from the total kinetic energy and maximum 30 minutes intensity of individual events. However, these data are often unavailable for wide regions and countries. Usually, there are three issues regarding precipitation data: low temporal resolution, low spatial density and limited access to the data. This is especially true for some of postsoviet countries from Eastern Europe, such as Republic of Moldova, where soil erosion is a real and persistent problem (Summer, 2003) and where soils represents the main natural resource of the country. Consequently, researching and managing soil erosion is particularly important. The purpose of this study is to develop a model based on commonly available rainfall data, such as event, daily or monthly amounts, to calculate rainfall erosivity for the territory of Republic of Moldova. Rainfall data collected during 1994-2015 period at 15 meteorological stations in the Republic of Moldova, with 10 minutes temporal resolution, were used to develop and calibrate a model to generate an erosivity map of Moldova. References 1. Summer, W., (2003). Soil erosion in the Republic of Moldova — the importance of institutional arrangements. Erosion Prediction in Ungauged Basins: Integrating Methods and Techniques (Proceedings of symposium HS01 held during IUGG2003 at Sapporo. July 2003). IAHS Publ. no. 279. 2. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agr. Handbook No. 282, U.S. Dept. Agr., Washington, DC 3. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses. Agr. handbook No. 537, U.S. Dept. of Agr., Science and Education Administration.

  2. Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, V.; Kim, D. S.; Vienna, J. D.; Kruger, A. A.

    2018-03-08

    Analyses were performed to evaluate the impacts of using the advanced glass models, constraints (Vienna et al. 2016), and uncertainty descriptions on projected Hanford glass mass. The maximum allowable waste oxide loading (WOL) was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of immobilized high-level waste (IHLW) glass when no uncertainties were taken into account. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increase in estimated glass mass of 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). The immobilized low-activity waste (ILAW) mass was predicted to be 282,350 MT without uncertainty and with waste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MT. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.

  3. Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Vivianaluxa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Dong-Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kruger, Albert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-02-19

    Analyses were performed to evaluate the impacts of using the advanced glass models, constraints (Vienna et al. 2016), and uncertainty descriptions on projected Hanford glass mass. The maximum allowable WOL was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of IHLW glass when no uncertainties were taken into accound. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increase in estimated glass mass 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). ILAW mass was predicted to be 282,350 MT without uncertainty and with weaste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MTG. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.

  4. Development of a statistical model for the determination of the probability of riverbank erosion in a Meditteranean river basin

    Science.gov (United States)

    Varouchakis, Emmanouil; Kourgialas, Nektarios; Karatzas, George; Giannakis, Georgios; Lilli, Maria; Nikolaidis, Nikolaos

    2014-05-01

    Riverbank erosion affects the river morphology and the local habitat and results in riparian land loss, damage to property and infrastructures, ultimately weakening flood defences. An important issue concerning riverbank erosion is the identification of the areas vulnerable to erosion, as it allows for predicting changes and assists with stream management and restoration. One way to predict the vulnerable to erosion areas is to determine the erosion probability by identifying the underlying relations between riverbank erosion and the geomorphological and/or hydrological variables that prevent or stimulate erosion. A statistical model for evaluating the probability of erosion based on a series of independent local variables and by using logistic regression is developed in this work. The main variables affecting erosion are vegetation index (stability), the presence or absence of meanders, bank material (classification), stream power, bank height, river bank slope, riverbed slope, cross section width and water velocities (Luppi et al. 2009). In statistics, logistic regression is a type of regression analysis used for predicting the outcome of a categorical dependent variable, e.g. binary response, based on one or more predictor variables (continuous or categorical). The probabilities of the possible outcomes are modelled as a function of independent variables using a logistic function. Logistic regression measures the relationship between a categorical dependent variable and, usually, one or several continuous independent variables by converting the dependent variable to probability scores. Then, a logistic regression is formed, which predicts success or failure of a given binary variable (e.g. 1 = "presence of erosion" and 0 = "no erosion") for any value of the independent variables. The regression coefficients are estimated by using maximum likelihood estimation. The erosion occurrence probability can be calculated in conjunction with the model deviance regarding

  5. Erosive Lichen Planus.

    Science.gov (United States)

    Mauskar, Melissa

    2017-09-01

    Lichen planus is an inflammatory mucocutaneous condition with a myriad of clinical manifestations. There are 3 forms of lichen planus that effect the vulva: papulosquamous, hypertrophic, and erosive. Erosive lichen planus can progress to vulvar scaring, vaginal stenosis, and squamous cell carcinoma; these long-term sequelae cause sexual distress, depression, and decreased quality of life for patients. Diagnosis is often delayed because of patient embarrassment or clinician misdiagnosis. Early recognition and treatment is essential to decreasing the morbidity of this condition. Multimodal treatment, along with a multidisciplinary approach, will improve outcomes and further clinical advances in studying this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A Hybrid Instance Selection Using Nearest-Neighbor for Cross-Project Defect Prediction

    Institute of Scientific and Technical Information of China (English)

    Duksan Ryu; Jong-In Jang; Jongmoon Baik; Member; ACM; IEEE

    2015-01-01

    Software defect prediction (SDP) is an active research field in software engineering to identify defect-prone modules. Thanks to SDP, limited testing resources can be effectively allocated to defect-prone modules. Although SDP requires suffcient local data within a company, there are cases where local data are not available, e.g., pilot projects. Companies without local data can employ cross-project defect prediction (CPDP) using external data to build classifiers. The major challenge of CPDP is different distributions between training and test data. To tackle this, instances of source data similar to target data are selected to build classifiers. Software datasets have a class imbalance problem meaning the ratio of defective class to clean class is far low. It usually lowers the performance of classifiers. We propose a Hybrid Instance Selection Using Nearest-Neighbor (HISNN) method that performs a hybrid classification selectively learning local knowledge (via k-nearest neighbor) and global knowledge (via na¨ıve Bayes). Instances having strong local knowledge are identified via nearest-neighbors with the same class label. Previous studies showed low PD (probability of detection) or high PF (probability of false alarm) which is impractical to use. The experimental results show that HISNN produces high overall performance as well as high PD and low PF.

  7. On the reliability of predictions of geomechanical response - project Cosa in perspective

    International Nuclear Information System (INIS)

    Knowles, N.C.; Lowe, M.J.S.; Come, B.

    1990-01-01

    Project COSA (Comparison of computer codes for Salt) was set up by the CEC as international benchmark exercise to compare the reliability of predictions of thermo-mechanical response of HLW repositories in salt. The first phase (COSA I) was conducted between 1984-1986 and attention was directed at code verification issues. The second phase (COSA II), carried out in the period 1986-1988, addressed code validation and other issues. Specifically, a series of experimental heat and pressure tests carried out at the Asse Mine in Wast Germany were modelled and predictions of the thermo-mechanical behaviour were compared. Ten European organisations participated. A key feature of this exercise was that, as far as possible, the calculations were performed blind (i.e. without any knowledge of the observed behaviour) using the best information available a priori, to describe the physical situation to be modelled. Interest centred around the various constitutive models (of material behaviour) for rock-salt and the assumptions about the in situ state of stress. The paper gives an overview of the project, presents some broad conclusions and attempts to assess their significance. 17 refs., 6 figs., 2 tabs

  8. Assessment of wind erosion threat for soils in cadastral area of Hajske

    International Nuclear Information System (INIS)

    Muchova, Z.; Stredanska, A.

    2008-01-01

    This contribution illustrates the application of methods of erosion threat assessment in lan adaptation projects. Calculations of the soil erosion index of particular soil blocks are demonstrated for the cadastral area of Hajske. Two methods for assessment of erosion threat have been applied. First the assessment based on the ecological soil-quality units (ESQU) has been performed. Next, the Pasak method for a detailed analysis of the soil erosion threat was applied. Both of the mentioned approaches are recommended for the land adaption projects. Based on the results, the soil blocks have been ranked by their soil erosion threat. (authors)

  9. Mesh erosion after abdominal sacrocolpopexy.

    Science.gov (United States)

    Kohli, N; Walsh, P M; Roat, T W; Karram, M M

    1998-12-01

    To report our experience with erosion of permanent suture or mesh material after abdominal sacrocolpopexy. A retrospective chart review was performed to identify patients who underwent sacrocolpopexy by the same surgeon over 8 years. Demographic data, operative notes, hospital records, and office charts were reviewed after sacrocolpopexy. Patients with erosion of either suture or mesh were treated initially with conservative therapy followed by surgical intervention as required. Fifty-seven patients underwent sacrocolpopexy using synthetic mesh during the study period. The mean (range) postoperative follow-up was 19.9 (1.3-50) months. Seven patients (12%) had erosions after abdominal sacrocolpopexy with two suture erosions and five mesh erosions. Patients with suture erosion were asymptomatic compared with patients with mesh erosion, who presented with vaginal bleeding or discharge. The mean (+/-standard deviation) time to erosion was 14.0+/-7.7 (range 4-24) months. Both patients with suture erosion were treated conservatively with estrogen cream. All five patients with mesh erosion required transvaginal removal of the mesh. Mesh erosion can follow abdominal sacrocolpopexy over a long time, and usually presents as vaginal bleeding or discharge. Although patients with suture erosion can be managed successfully with conservative treatment, patients with mesh erosion require surgical intervention. Transvaginal removal of the mesh with vaginal advancement appears to be an effective treatment in patients failing conservative management.

  10. Predicting outcome following psychological therapy in IAPT (PROMPT): a naturalistic project protocol.

    Science.gov (United States)

    Grant, Nina; Hotopf, Matthew; Breen, Gerome; Cleare, Anthony; Grey, Nick; Hepgul, Nilay; King, Sinead; Moran, Paul; Pariante, Carmine M; Wingrove, Janet; Young, Allan H; Tylee, André

    2014-06-09

    Depression and anxiety are highly prevalent and represent a significant and well described public health burden. Whilst first line psychological treatments are effective for nearly half of attenders, there remain a substantial number of patients who do not benefit. The main objective of the present project is to establish an infrastructure platform for the identification of factors that predict lack of response to psychological treatment for depression and anxiety, in order to better target treatments as well as to support translational and experimental medicine research in mood and anxiety disorders. Predicting outcome following psychological therapy in IAPT (PROMPT) is a naturalistic observational project that began patient recruitment in January 2014. The project is currently taking place in Southwark Psychological Therapies Service, an Improving Access to Psychological Therapies (IAPT) service currently provided by the South London and Maudsley NHS Foundation Trust (SLaM). However, the aim is to roll-out the project across other IAPT services. Participants are approached before beginning treatment and offered a baseline interview whilst they are waiting for therapy to begin. This allows us to test for relationships between predictor variables and patient outcome measures. At the baseline interview, participants complete a diagnostic interview; are asked to give blood and hair samples for relevant biomarkers, and complete psychological and social questionnaire measures. Participants then complete their psychological therapy as offered by Southwark Psychological Therapies Service. Response to psychological therapy will be measured using standard IAPT outcome data, which are routinely collected at each appointment. This project addresses a need to understand treatment response rates in primary care psychological therapy services for those with depression and/or anxiety. Measurement of a range of predictor variables allows for the detection of bio

  11. Estimated erosion rate at the SRP burial ground

    International Nuclear Information System (INIS)

    Horton, J.H.; Wilhite, E.L.

    1978-04-01

    The rate of soil erosion at the Savannah River Plant (SRP) burial ground can be calculated by means of the universal soil loss equation. Erosion rates estimated by the equation are more suitable for long-term prediction than those which could be measured with a reasonable effort in field studies. The predicted erosion rate at the SRP burial ground ranges from 0.0007 cm/year under stable forest cover to 0.38 cm/year if farmed with cultivated crops. These values correspond to 170,000 and 320 years, respectively, to expose waste buried 4 ft deep

  12. Erosion of dust aggregates

    NARCIS (Netherlands)

    Seizinger, A.; Krijt, S.; Kley, W.

    2013-01-01

    Aims: The aim of this work is to gain a deeper insight into how much different aggregate types are affected by erosion. Especially, it is important to study the influence of the velocity of the impacting projectiles. We also want to provide models for dust growth in protoplanetary disks with simple

  13. Hydrology and soil erosion

    Science.gov (United States)

    Leonard J. Lane; Mary R. Kidwell

    2003-01-01

    We review research on surface water hydrology and soil erosion at the Santa Rita Experimental Range (SRER). Almost all of the research was associated with eight small experimental watersheds established from 1974 to 1975 and operated until the present. Analysis of climatic features of the SRER supports extending research findings from the SRER to broad areas of the...

  14. Bentonite erosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Boergesson, Lennart; Hedstroem, Magnus; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2009-12-15

    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  15. Erosion scenarios for Wellenberg

    International Nuclear Information System (INIS)

    Klemenz, W.

    1993-09-01

    The proposed Wellenberg site for a radioactive waste repository is located between Altzellen in the Engelberger valley and the Oberrickenbach valley, in a thick Valanginian marl series. The marl is generally overlaid with unconsolidated rocks but reaches to the surface in some places. In contrast to the situation in the Oberbauenstock region this marl complex is not protected by an overlying erosion resistant series and exhibits a marked relief. The question therefore arises with respect to the Wellenberg site, to what extent will the marl (i.e. the repository host rock formation) be removed by erosion processes during the 100,000 years interval under consideration and what overburden will remain at the end of this period. This report presents the results of an investigation of the longterm behaviour of the proposed site in respect of those processes of erosion and deposition which can lead to changes in the terrain surface and its location relative to the repository. A wide range of possible scenarios encompassing different developments of climatic conditions during the 100,000 year period of interest, was investigated. In addition to the continuation of the present climate and the occurrence of a new ice age on the scale of the Wuerm glaciation the consequences of altered climatic conditions on erosion removal of the repository overburden were considered. Within the 100,000 year period of interest none of the scenarios considered leads to the exposure of the repository. (author) figs., tabs, refs

  16. Dune erosion above revetments

    NARCIS (Netherlands)

    Van Thiel de Vries, J.S.M.

    2012-01-01

    In a situation with a narrow dune, the dune base can be protected with a revetment to reduce dune erosion during extreme events. To quantify the effects of a revetment on storm impact, the functionality of the numerical storm impact model XBeach (Roelvink et al., 2009) is extended to account for the

  17. Bentonite erosion. Final report

    International Nuclear Information System (INIS)

    Birgersson, Martin; Boergesson, Lennart; Hedstroem, Magnus; Karnland, Ola; Nilsson, Ulf

    2009-12-01

    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  18. Can control of soil erosion mitigate water pollution by sediments?

    Science.gov (United States)

    Rickson, R J

    2014-01-15

    The detrimental impact of sediment and associated pollutants on water quality is widely acknowledged, with many watercourses in the UK failing to meet the standard of 'good ecological status'. Catchment sediment budgets show that hill slope erosion processes can be significant sources of waterborne sediment, with rates of erosion likely to increase given predicted future weather patterns. However, linking on-site erosion rates with off-site impacts is complicated because of the limited data on soil erosion rates in the UK and the dynamic nature of the source-pathway-receptor continuum over space and time. Even so, soil erosion control measures are designed to reduce sediment production (source) and mobilisation/transport (pathway) on hill slopes, with consequent mitigation of pollution incidents in watercourses (receptors). The purpose of this paper is to review the scientific evidence of the effectiveness of erosion control measures used in the UK to reduce sediment loads of hill slope origin in watercourses. Although over 73 soil erosion mitigation measures have been identified from the literature, empirical data on erosion control effectiveness are limited. Baseline comparisons for the 18 measures where data do exist reveal erosion control effectiveness is highly variable over time and between study locations. Given the limitations of the evidence base in terms of geographical coverage and duration of monitoring, performance of the different measures cannot be extrapolated to other areas. This uncertainty in effectiveness has implications for implementing erosion/sediment risk reduction policies, where quantified targets are stipulated, as is the case in the EU Freshwater Fish and draft Soil Framework Directives. Also, demonstrating technical effectiveness of erosion control measures alone will not encourage uptake by land managers: quantifying the costs and benefits of adopting erosion mitigation is equally important, but these are uncertain and difficult to

  19. Analysis of C-MOD molybdenum divertor erosion and code/data comparison

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J.N., E-mail: brooksjn@purdue.edu [Purdue University, West Lafayette, IN (United States); Allain, J.P. [Purdue University, West Lafayette, IN (United States); Whyte, D.G.; Ochoukov, R.; Lipschultz, B. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    2011-08-01

    We analyze an important 15 year old Alcator C-MOD study of campaign-integrated molybdenum divertor erosion in which the measured net erosion was significantly higher ({approx}X3) than originally predicted by a simple model . We perform full process sputtering erosion/redeposition computational analysis including the effect of a possible RF induced sheath. The simulations show that most sputtered Mo atoms are ionized close to the surface and strongly redeposited, via Lorentz force motion and collisional friction with the high density incoming plasma. The predicted gross erosion profile is a reasonable match to MoI influx data, however, the critically important net erosion comparison with post-exposure Mo tile analysis is poor, with {approx}X10 higher peak erosion measured than computed. An RF sheath increases predicted erosion by {approx}45%, thus being significant but not fundamental. We plan future analysis.

  20. Using remote sensing data to predict road fill areas and areas affected by fill erosion with planned forest road construction: a case study in Kastamonu Regional Forest Directorate (Turkey).

    Science.gov (United States)

    Aricak, Burak

    2015-07-01

    Forest roads are essential for transport in managed forests, yet road construction causes environmental disturbance, both in the surface area the road covers and in erosion and downslope deposition of road fill material. The factors affecting the deposition distance of eroded road fill are the slope gradient and the density of plant cover. Thus, it is important to take these factors into consideration during road planning to minimize their disturbance. The aim of this study was to use remote sensing and field surveying to predict the locations that would be affected by downslope deposition of eroding road fill and to compile the data into a geographic information system (GIS) database. The construction of 99,500 m of forest roads is proposed for the Kastamonu Regional Forest Directorate in Turkey. Using GeoEye satellite images and a digital elevation model (DEM) for the region, the location and extent of downslope deposition of road fill were determined for the roads as planned. It was found that if the proposed roads were constructed by excavators, the fill material would cover 910,621 m(2) and the affected surface area would be 1,302,740 m(2). Application of the method used here can minimize the adverse effects of forest roads.

  1. Erosion Modeling of the High Contraction Chromium Plated Crusader Gun System

    National Research Council Canada - National Science Library

    Sopok, S

    2003-01-01

    Thermal-chemical- mechanical erosion modeling predictions are given for the high contraction chromium plated Crusader gun system based on extensive cannon firing, inspection, characterization, and experimental data...

  2. Soil erosion evaluation in a small watershed in Brazil through 137Cs fallout redistribution analysis and conventional models

    International Nuclear Information System (INIS)

    Bacchi, O.O.S.; Reichard, K.; Sparovek, G.; Ranieri, S.B.L.

    2000-01-01

    An investigation of rates and patterns of soil erosion on agricultural land cultivated with sugarcane was undertaken using the 137 Cs technique, USLE (Universal Soil Loss Equation) and WEPP (Water Erosion Prediction Project) model. The study was carried out on a representative catchment of a small watershed of the Piracicaba river basin, State of Sao Paulo, Brazil, called Ceveiro watershed, well known for its severe soil degradation caused by erosion. The results from the 137 Cs technique indicate that most part of the studied area (94%) are eroded at erosion rates that go up to 59 Mg ha -1 y -1 , with a weighted average rate of 23 Mg ha -1 y -1 . The weighted average rate of infield deposition and sediment retrieval that occurs in only 6% of the total area was estimated to be around 12 Mg ha -1 y -1 . These values led to very high net soil loss from the field, with rates of the order of 21 Mg ha -1 y -1 , which represents a sediment delivery ratio of 97%. A linear correlation between soil erosion rate estimated by the 137 Cs technique and the amount of available K in the top soil layer (0-20 cm) was observed. Based on this correlation the estimated amounts of net and gross K loss in the grid area due to soil erosion were of 0.2 and 1.52 kg ha -1 y -1 , respectively. The erosion rate estimated by USLE was 39 Mg ha -1 y -1 and by WEPP model 16.5 Mg ha -1 y -1 with a sediment delivery of 12.4 Mg ha -1 y -1 (75%). The results are a confirmation that the soil conservation practices adopted in the area are very poor and can explain the high siltation level of water reservoirs in the watershed. (author) [pt

  3. Soil erodibility for water erosion: A perspective and Chinese experiences

    Science.gov (United States)

    Wang, Bin; Zheng, Fenli; Römkens, Mathias J. M.; Darboux, Frédéric

    2013-04-01

    Knowledge of soil erodibility is an essential requirement for erosion prediction, conservation planning, and the assessment of sediment related environmental effects of watershed agricultural practices. This paper reviews the status of soil erodibility evaluations and determinations based on 80 years of upland area erosion research mainly in China and the USA. The review synthesizes the general research progress made by discussing the basic concepts of erodibility and its evaluation, determination, and prediction as well as knowledge of its spatio-temporal variations. The authors found that soil erodibility is often inappropriately or inaccurately applied in describing soil loss caused by different soil erosion component processes and mechanisms. Soil erodibility indicators were related to intrinsic soil properties and exogenic erosional forces, measurements, and calculations. The present review describes major needs including: (1) improved definition of erodibility, (2) modified erodibility determinations in erosion models, especially for specific geographical locations and in the context of different erosion sub-processes, (3) advanced methodologies for quantifying erodibilities of different soil erosion sub-processes, and (4) a better understanding of the mechanism that causes temporal variations in soil erodibility. The review also provides a more rational basis for future research on soil erodibility and supports predictive modeling of soil erosion processes and the development of improved conservation practices.

  4. Prediction of irradiation damage effects by multi-scale modelling: EURATOM 3 Framework integrated project perfect

    International Nuclear Information System (INIS)

    Massoud, J.P.; Bugat, St.; Marini, B.; Lidbury, D.; Van Dyck, St.; Debarberis, L.

    2008-01-01

    Full text of publication follows. In nuclear PWRs, materials undergo degradation due to severe irradiation conditions that may limit their operational life. Utilities operating these reactors must quantify the aging and the potential degradations of reactor pressure vessels and also of internal structures to ensure safe and reliable plant operation. The EURATOM 6. Framework Integrated Project PERFECT (Prediction of Irradiation Damage Effects in Reactor Components) addresses irradiation damage in RPV materials and components by multi-scale modelling. This state-of-the-art approach offers potential advantages over the conventional empirical methods used in current practice of nuclear plant lifetime management. Launched in January 2004, this 48-month project is focusing on two main components of nuclear power plants which are subject to irradiation damage: the ferritic steel reactor pressure vessel and the austenitic steel internals. This project is also an opportunity to integrate the fragmented research and experience that currently exists within Europe in the field of numerical simulation of radiation damage and creates the links with international organisations involved in similar projects throughout the world. Continuous progress in the physical understanding of the phenomena involved in irradiation damage and continuous progress in computer sciences make possible the development of multi-scale numerical tools able to simulate the effects of irradiation on materials microstructure. The consequences of irradiation on mechanical and corrosion properties of materials are also tentatively modelled using such multi-scale modelling. But it requires to develop different mechanistic models at different levels of physics and engineering and to extend the state of knowledge in several scientific fields. And the links between these different kinds of models are particularly delicate to deal with and need specific works. Practically the main objective of PERFECT is to build

  5. Damage diagnostic of localized impact erosion by measuring acoustic vibration

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Ikeda, Yujiro

    2004-01-01

    High power spallation targets for neutron sources are being developed in the world. Mercury target will be installed at the material and life science facility in J-PARC, which will promote innovative science. The mercury target is subject to the pressure wave caused by the proton bombarding mercury. The pressure wave propagation induces the cavitation in mercury that imposes localized impact erosion damage on the target vessel. The impact erosion is a critical issue to decide the lifetime of the target. The electric Magnetic IMpact Testing Machine, MIMTM, was developed to produce the localized impact erosion damage and evaluate the damage formation. Acoustic vibration measurement was carried out to investigate the correlation between the erosion damage and the damage potential derived from acoustic vibration. It was confirmed that the damage potential related with acoustic vibration is useful to predict the damage due to the localized impact erosion and to diagnose the structural integrity. (author)

  6. Recording A Sunrise: A Citizen Science Project to Enhance Sunrise/set Prediction Times

    Science.gov (United States)

    Wilson, Teresa; Chizek Frouard, Malynda; Bartlett, Jennifer L.

    2017-01-01

    Smartphones, with their ever increasing capabilities, are becoming quite instrumental for data acquisition in a number of fields. Understanding refraction and how it affects what we see on the horizon is no exception. Current algorithms that predict sunrise and sunset times have an error of one to four minutes at mid-latitudes (0° - 55° N/S) due to limitations in the atmospheric models they incorporate. At higher latitudes, slight changes in refraction can cause significant discrepancies, even including difficulties determining when the Sun appears to rise or set. A thorough investigation of the problem requires a substantial data set of observed rise/set times and corresponding meteorological data from around the world, which is currently lacking. We have developed a mobile application so that this data can be taken using smartphones as part of a citizen science project. The app allows the viewer to submit a video of sunrise/set and attaches geographic location along with meteorological data taken from a local weather station. The project will help increase scientific awareness in the public by allowing members of the community to participate in the data-taking process, and give them a greater awareness of the scientific significance of phenomenon they witness every day. The data from the observations will lead to more complete rise/set models that will provide more accurate times to the benefit of astronomers, navigators, and outdoorsmen. The app will be available on the Google Play Store.

  7. The Accumulating Data to Optimally Predict Obesity Treatment (ADOPT) Core Measures Project: Rationale and Approach.

    Science.gov (United States)

    MacLean, Paul S; Rothman, Alexander J; Nicastro, Holly L; Czajkowski, Susan M; Agurs-Collins, Tanya; Rice, Elise L; Courcoulas, Anita P; Ryan, Donna H; Bessesen, Daniel H; Loria, Catherine M

    2018-04-01

    Individual variability in response to multiple modalities of obesity treatment is well documented, yet our understanding of why some individuals respond while others do not is limited. The etiology of this variability is multifactorial; however, at present, we lack a comprehensive evidence base to identify which factors or combination of factors influence treatment response. This paper provides an overview and rationale of the Accumulating Data to Optimally Predict obesity Treatment (ADOPT) Core Measures Project, which aims to advance the understanding of individual variability in response to adult obesity treatment. This project provides an integrated model for how factors in the behavioral, biological, environmental, and psychosocial domains may influence obesity treatment responses and identify a core set of measures to be used consistently across adult weight-loss trials. This paper provides the foundation for four companion papers that describe the core measures in detail. The accumulation of data on factors across the four ADOPT domains can inform the design and delivery of effective, tailored obesity treatments. ADOPT provides a framework for how obesity researchers can collectively generate this evidence base and is a first step in an ongoing process that can be refined as the science advances. © 2018 The Obesity Society.

  8. NERI PROJECT 99-119. TASK 2. DATA-DRIVEN PREDICTION OF PROCESS VARIABLES. FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, B.R.

    2003-04-10

    This report describes the detailed results for task 2 of DOE-NERI project number 99-119 entitled ''Automatic Development of Highly Reliable Control Architecture for Future Nuclear Power Plants''. This project is a collaboration effort between the Oak Ridge National Laboratory (ORNL,) The University of Tennessee, Knoxville (UTK) and the North Carolina State University (NCSU). UTK is the lead organization for Task 2 under contract number DE-FG03-99SF21906. Under task 2 we completed the development of data-driven models for the characterization of sub-system dynamics for predicting state variables, control functions, and expected control actions. We have also developed the ''Principal Component Analysis (PCA)'' approach for mapping system measurements, and a nonlinear system modeling approach called the ''Group Method of Data Handling (GMDH)'' with rational functions, and includes temporal data information for transient characterization. The majority of the results are presented in detailed reports for Phases 1 through 3 of our research, which are attached to this report.

  9. The DLR project Wirbelschleppe. Detecting, characterizing, controlling, attenuating, understanding, and predicting aircraft wake vortices

    Energy Technology Data Exchange (ETDEWEB)

    Holzaepfel, F. (ed.)

    2008-07-01

    This collection of reports presents an excerpt of the investigations that were performed in the framework of the DLR Projekt Wirbelschleppe. A similar sample of reports was presented as part of three dedicated wake vortex sessions accomplished at the 1{sup st} European Air and Space Conference (CEAS 2007) and Deutscher Luft- und Raumfahrtkongress 2007 in Berlin. The Projekt Wirbelschleppe was conducted in two phases in the time frame from 1999 to 2007 with the five contributing DLR Institutes: Institute of Atmospheric Physics, Institute of Aerodynamics and Flow Technology, Institute of Flight Systems, Institute of Flight Guidance, Institute of Robotics and Mechatronics and the Institute of Aeronautics and Astronautics of the University of Technology Berlin. The project unified a multitude of different aspects and disciplines of wake vortex research which can be characterized by four main themes: - minimization of wake vortices by measures at the aircraft; - development and demonstration of a system for wake vortex prediction and observation; - airborne wake vortex detection and active control; - integration of systems into air traffic control. The Projekt Wirbelschleppe greatly benefited from the European projects AWIATOR, ATC-Wake, Credos, C-Wake, Eurowake, FAR-Wake, FLYSAFE, I-Wake, S-Wake, WakeNet, WakeNet2-Europe, WakeNet3-Europe, and Wavenc. DLR's wake vortex activities will be continued in the Projekt Wetter and Fliegen (2008-2011): Because the current compilation represents only a limited extract of the accomplished work, it is completed by a list of references emerging from the project. (orig.)

  10. EKORISK project - an information system for prediction and expert evaluation of environmental impact

    International Nuclear Information System (INIS)

    Zaimov, V.; Antonov, A.

    1993-01-01

    The aim of this project is to create an expert system for prediction, evaluation and decision making support in case of accidents. The system consists of the following modules: 1) A data base containing information about the situation - geographical and demographical data for the region of the accident as well as data about the contaminants. The data about geographic objects (boundaries, rivers, roads, towns, soils, etc.) is managed and visualized by a geographic information system (GIS), which produces multi-layer geographical maps, showing different viewpoints of the region of interest. Information about the pollutants, their use and storage, as well as data about the available resources for action in case of accidents, are stored in relational data bases which guarantee easy access, search, sorting and proper visualisation. 2) Predicting the propagation of contamination by using actual meteorological information and applying mathematical models for propagation of the spilled substances in the air, water and ground. They calculate the concentration of the substance as a function of time and distance from the initial spill location. The choice of the proper model is made by applying expert knowledge for evaluation of situation and comparing the model characteristics. 3) Suggesting actions for minimising the accident's impact. Expert knowledge is used for recommendations concerning deactivating of the region as well as actions for reducing the absorbed radiation doses of population. The modern technologies for knowledge processing and the object-oriented approach ensure flexibility and integration of all subsystems. (author)

  11. EPro Non-contact erosion profiling

    DEFF Research Database (Denmark)

    Meinert, Palle

    Pro is a profiling program build to measure the same surface or work piece multiple times and track changes due to erosion. It was developed during 2001 - 2002 at Aalborg University and was part of a Master of Science project dealing with stability of rubble mound breakwaters. The goal was to aut......Pro is a profiling program build to measure the same surface or work piece multiple times and track changes due to erosion. It was developed during 2001 - 2002 at Aalborg University and was part of a Master of Science project dealing with stability of rubble mound breakwaters. The goal...... was to automate the measuring of profiles in order to save manpower and to increase the number of possible measure points. Additional requirement was that measurements should be done in a non-contact way and that the measuring should not be hindered by the presence of water....

  12. North Fork Feather River Erosion Control Program

    International Nuclear Information System (INIS)

    Harrison, L.

    1991-01-01

    PG and E, an investor owned gas and electric utility serving northern and central California, has been engaged since 1984 in the development and implementation of a regional erosion control program for the 954 square mile northern Sierra Nevada watersheed of the East Branch of the North Fork Feather River in Plumas County, California. PG and E entered into an agreement with 13 governmental agencies and a number of private landowners using Coordinated Resource Management and Planning: to cooperatively develop, fund and implement the program. The group has completed several field projects and has a number of additional projects in various stages of development. This paper reports that the program provides multiple environmental and economic benefits including reduction of soil erosion and sedimentation, improved fisheries, enhancement of riparian habitat, increased land values, improved recreation opportunities, and preservation of watershed resources

  13. Rainfall erosivity map for Ghana

    International Nuclear Information System (INIS)

    Oduro Afriyie, K.

    1995-10-01

    Monthly rainfall data, spanning over a period of more than thirty years, were used to compute rainfall erosivity indices for various stations in Ghana, using the Fournier index, c, defined as p 2 /P, where p is the rainfall amount in the wettest month and P is the annual rainfall amount. Values of the rainfall erosivity indices ranged from 24.5 mm at Sunyani in the mid-portion of Ghana to 180.9 mm at Axim in the south western coastal portion. The indices were used to construct a rainfall erosivity map for the country. The map revealed that Ghana may be broadly divided into five major erosion risk zones. The middle sector of Ghana is generally in the low erosion risk zone; the northern sector is in the moderate to severe erosion risk zone, while the coastal sector is in the severe to extreme severe erosion risk zone. (author). 11 refs, 1 fig., 1 tab

  14. Integrated process-based hydrologic and ephemeral gully modeling for better assessment of soil erosion in small watersheds

    Science.gov (United States)

    Sheshukov, A. Y.; Karimov, V. R.

    2017-12-01

    Excessive soil erosion in agriculturally dominated watersheds causes degradation of arable land and affects agricultural productivity. Structural and soil-quality best management practices can be beneficial in reducing sheet and rill erosion, however, larger rills, ephemeral gullies, and concentrated flow channels still remain to be significant sources of sediment. A better understanding of channelized soil erosion, underlying physical processes, and ways to mitigate the problem is needed to develop innovative approaches for evaluation of soil losses from various sediment sources. The goal of this study was to develop a novel integrated process-based catchment-scale model for sheet, rill, and ephemeral gully erosion and assess soil erosion mitigation practices. Geospatially, a catchment was divided into ephemeral channels and contributing hillslopes. Surface runoff hydrograph and sheet-rill erosion rates from contributing hillslopes were calculated based on the Water Erosion Prediction Project (WEPP) model. For ephemeral channels, a dynamic ephemeral gully erosion model was developed. Each channel was divided into segments, and channel flow was routed according to the kinematic wave equation. Reshaping of the channel profile in each segment (sediment deposition, soil detachment) was simulated at each time-step according to acting shear stress distribution along the channel boundary and excess shear stress equation. The approach assumed physically-consistent channel shape reconfiguration representing channel walls failure and deposition in the bottom of the channel. Soil erodibility and critical shear stress parameters were dynamically adjusted due to seepage/drainage forces based on computed infiltration gradients. The model was validated on the data obtained from the field study by Karimov et al. (2014) yielding agreement with NSE coefficient of 0.72. The developed model allowed to compute ephemeral gully erosion while accounting for antecedent soil moisture

  15. Bentonite erosion. Laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Mats (Div. of Nuclear Chemistry, Royal Inst. of Technology, Stockholm (Sweden), School of Chemical Science and Engineering)

    2009-11-15

    This report covers the laboratory studies that have been performed at Nuclear Chemistry, KTH in the project 'Bentonite Erosion'. Many of the experiments in this report were performed to support the work of the modelling group and were often relatively simple. One of the experiment series was performed to see the impact of gravity and concentration of mono- and di-valent cations. A clay suspension was prepared in a test tube. A net was placed in contact with the suspension, the test tube was filled with solutions of different concentrations and the system was left overnight to settle. The tube was then turned upside down and the behaviour was visually observed. Either the clay suspension fell through the net or stayed on top. By using this method surprisingly sharp determinations of the Critical Coagulation (Flocculation) Concentration (CCC/CFC) could be made. The CCC/CFC of Ca2+ was for sodium montmorillonite determined to be between 1 and 2 mM. An artificial fracture was manufactured in order to simulate the real case scenario. The set-up was two Plexiglas slabs separated by 1 mm thick spacers with a bentonite container at one side of the fracture. Water was pumped with a very low flow rate perpendicular to bentonite container and the water exiting the fracture was sampled and analyzed for colloid content. The bentonite used was treated in different ways. In the first experiment a relatively montmorillonite rich clay was used while in the second bentonite where only the readily soluble minerals had been removed was used. Since Plexiglas was used it was possible to visually observe the bentonite dispersing into the fracture. After the compacted bentonite (1,000 kg/m3) had been water saturated the clay had expanded some 12 mm out into the fracture. As the experiment progressed the clay expanded more out into the fracture and seemed to fractionate in two different phases with less material in the outmost phase. A dark rim which was later analyzed to contain

  16. Bentonite erosion - Laboratory studies

    International Nuclear Information System (INIS)

    Jansson, Mats

    2010-01-01

    Document available in extended abstract form only. Bentonite clay is proposed as buffer material in the KBS-3 concept of storing spent nuclear fuel. Since the clay is plastic it will protect the canisters containing the spent fuel from movements in the rock. Furthermore, the clay will expand when taking up water, become very compact and hence limit the transport of solutes to and from the canister to only diffusion. The chemical stability of the bentonite barrier is of vital importance. If much material would be lost the barrier will lose its functions. As a side effect, lots of colloids will be released which may facilitate radionuclide transport in case of a breach in the canister. There are scenarios where during an ice age fresh melt water may penetrate down to repository depths with relatively high flow rates and not mix with older waters of high salinity. Under such conditions bentonite colloids will be more stable and there is a possibility that the bentonite buffer would start to disperse and bentonite colloids be carried away by the passing water. This work is a part of a larger project called Bentonite Erosion, initiated and supported by SKB. In this work several minor experiments have been performed in order to investigate the influence of for instance di-valent cations, gravity, etc. on the dispersion behaviour of bentonite and/or montmorillonite. A bigger experiment where the real situation was simulated using an artificial fracture was conducted. Two Plexiglas slabs were placed on top of each other, separated by plastic spacers. Bentonite was placed in a container in contact with a fracture. The bentonite was water saturated before deionized water was pumped through the fracture. The evolution of the bentonite profile in the fracture was followed visually. The eluate was collected in five different slots at the outlet side and analyzed for colloid concentration employing Photon Correlation Spectroscopy (PCS) and a Single Particle Counter (SPC). Some

  17. Long-term cliff retreat and erosion hotspots along the central shores of the Monterey Bay National Marine Sanctuary

    Science.gov (United States)

    Moore, Laura J.; Griggs, Gary B.

    2002-01-01

    Quantification of cliff retreat rates for the southern half of Santa Cruz County, CA, USA, located within the Monterey Bay National Marine Sanctuary, using the softcopy/geographic information system (GIS) methodology results in average cliff retreat rates of 7–15 cm/yr between 1953 and 1994. The coastal dunes at the southern end of Santa Cruz County migrate seaward and landward through time and display net accretion between 1953 and 1994, which is partially due to development. In addition, three critically eroding segments of coastline with high average erosion rates ranging from 20 to 63 cm/yr are identified as erosion ‘hotspots’. These locations include: Opal Cliffs, Depot Hill and Manresa. Although cliff retreat is episodic, spatially variable at the scale of meters, and the factors affecting cliff retreat vary along the Santa Cruz County coastline, there is a compensation between factors affecting retreat such that over the long-term the coastline maintains a relatively smooth configuration. The softcopy/GIS methodology significantly reduces errors inherent in the calculation of retreat rates in high-relief areas (e.g. erosion rates generated in this study are generally correct to within 10 cm) by removing errors due to relief displacement. Although the resulting root mean squared error for erosion rates is relatively small, simple projections of past erosion rates are inadequate to provide predictions of future cliff position. Improved predictions can be made for individual coastal segments by using a mean erosion rate and the standard deviation as guides to future cliff behavior in combination with an understanding of processes acting along the coastal segments in question. This methodology can be applied on any high-relief coast where retreat rates can be measured.

  18. A Mechanistic Model of Waterfall Plunge Pool Erosion into Bedrock

    Science.gov (United States)

    Scheingross, Joel S.; Lamb, Michael P.

    2017-11-01

    Landscapes often respond to changes in climate and tectonics through the formation and upstream propagation of knickzones composed of waterfalls. Little work has been done on the mechanics of waterfall erosion, and instead most landscape-scale models neglect waterfalls or use rules for river erosion, such as stream power, that may not be applicable to waterfalls. Here we develop a physically based model to predict waterfall plunge pool erosion into rock by abrasion from particle impacts and test the model against flume experiments. Both the model and experiments show that evolving plunge pools have initially high vertical erosion rates due to energetic particle impacts, and erosion slows and eventually ceases as pools deepen and deposition protects the pool floor from further erosion. Lateral erosion can continue after deposition on the pool floor, but it occurs at slow rates that become negligible as pools widen. Our work points to the importance of vertical drilling of successive plunge pools to drive upstream knickzone propagation in homogenous rock, rather than the classic mechanism of headwall undercutting. For a series of vertically drilling waterfalls, we find that upstream knickzone propagation is faster under higher combined water and sediment fluxes and for knickzones composed of many waterfalls that are closely spaced. Our model differs significantly from stream-power-based erosion rules in that steeper knickzones can retreat faster or more slowly depending on the number and spacing of waterfalls within a knickzone, which has implications for interpreting climatic and tectonic history through analysis of river longitudinal profiles.

  19. Demonstration Erosion Control Project Monitoring Program

    National Research Council Canada - National Science Library

    Biedenharn, David

    2000-01-01

    ...: stream gauging, data collection, hydraulic performance of structures, channel response, hydrology, upland watersheds, reservoir sedimentation, environmental aspects, bank stability, design tools...

  20. Erosion-corrosion synergistics in the low erosion regime

    International Nuclear Information System (INIS)

    Corey, R.G.; Sethi, V.K.

    1986-01-01

    Many engineering alloys display good high temperature corrosion resistance. However, when they are used in corrosive environments where they are subjected to erosion also, the corrosion resistance has been adversely affected. The phenomenon known as erosion-corrosion is complex and requires detailed investigation of how the erosion and corrosion kinetics interact and compete. At the Kentucky Center for Energy Research Laboratory, an erosion-corrosion tester was used to perform erosion-oxidation tests on 2 1/4 Cr-1 Mo steel at 500-600 0 C using alumina abrasive at low velocities. The erosion-oxidation rate data and morphology of exposed surfaces are consistent with oxide chipping and fracturing being the mode of material loss

  1. Evaluation of the effects of land consolidation in the Latyczyn village in terms of land protection against erosion on the slope scale

    Directory of Open Access Journals (Sweden)

    Rybicki Roman

    2017-12-01

    Full Text Available Soil erosion by water is an important economical issue strongly deteriorating environment and requiring remedial actions. The study was designed to evaluate antierosion effect of changes in the layout of plots from along to across slope as an effect of land consolidation. Moreover, rightness of leaving newly set out boundaries of plots without any protection (i.e. sodding was evaluated. For this purpose simulations of use of additional anti-erosive measures were done. The Water Erosion Prediction Project (WEPP model was used. Studies have shown that in addition to the design of transverse layout of parcels during consolidation, further antierosion measures may be necessary to reduce soil loss and sediment yield. In order to minimize soil losses outside the slope, boundaries between the newly designed fields should be sodded already in the post consolidation management. Limitation the amount of erosion over the entire slope requires use of additional protection measures in the upper part of slopes e.g. shelterbelts and antierosion crop rotations. WEPP model can be recommended for Provincial Bureaus of Surveying as a tool to support the development of assumptions for consolidation projects of lands threatened by erosion.

  2. EVALUATION OF SOIL EROSION IN REGHIN HILLS USING THE USLE METHOD

    Directory of Open Access Journals (Sweden)

    J. SZILAGYI

    2016-03-01

    Full Text Available Soil erosion is one of the main causes of degradation of large areas of agricultural land, causing great economic loss by removing fertile soil. The Universal Soil Loss Equation (USLE predicts the long term average annual rate of erosion on a field slope based on rainfall pattern, soil type, topography, crop system and management practices but does not however predict the soil loss resulting from gully erosion.

  3. EU Framework 6 Project: Predictive Toxicology (PredTox)-overview and outcome

    International Nuclear Information System (INIS)

    Suter, Laura; Schroeder, Susanne; Meyer, Kirstin; Gautier, Jean-Charles; Amberg, Alexander; Wendt, Maria; Gmuender, Hans; Mally, Angela; Boitier, Eric; Ellinger-Ziegelbauer, Heidrun; Matheis, Katja; Pfannkuch, Friedlieb

    2011-01-01

    In this publication, we report the outcome of the integrated EU Framework 6 Project: Predictive Toxicology (PredTox), including methodological aspects and overall conclusions. Specific details including data analysis and interpretation are reported in separate articles in this issue. The project, partly funded by the EU, was carried out by a consortium of 15 pharmaceutical companies, 2 SMEs, and 3 universities. The effects of 16 test compounds were characterized using conventional toxicological parameters and 'omics' technologies. The three major observed toxicities, liver hypertrophy, bile duct necrosis and/or cholestasis, and kidney proximal tubular damage were analyzed in detail. The combined approach of 'omics' and conventional toxicology proved a useful tool for mechanistic investigations and the identification of putative biomarkers. In our hands and in combination with histopathological assessment, target organ transcriptomics was the most prolific approach for the generation of mechanistic hypotheses. Proteomics approaches were relatively time-consuming and required careful standardization. NMR-based metabolomics detected metabolite changes accompanying histopathological findings, providing limited additional mechanistic information. Conversely, targeted metabolite profiling with LC/GC-MS was very useful for the investigation of bile duct necrosis/cholestasis. In general, both proteomics and metabolomics were supportive of other findings. Thus, the outcome of this program indicates that 'omics' technologies can help toxicologists to make better informed decisions during exploratory toxicological studies. The data support that hypothesis on mode of action and discovery of putative biomarkers are tangible outcomes of integrated 'omics' analysis. Qualification of biomarkers remains challenging, in particular in terms of identification, mechanistic anchoring, appropriate specificity, and sensitivity.

  4. An Object-Based Approach to Evaluation of Climate Variability Projections and Predictions

    Science.gov (United States)

    Ammann, C. M.; Brown, B.; Kalb, C. P.; Bullock, R.

    2017-12-01

    Evaluations of the performance of earth system model predictions and projections are of critical importance to enhance usefulness of these products. Such evaluations need to address specific concerns depending on the system and decisions of interest; hence, evaluation tools must be tailored to inform about specific issues. Traditional approaches that summarize grid-based comparisons of analyses and models, or between current and future climate, often do not reveal important information about the models' performance (e.g., spatial or temporal displacements; the reason behind a poor score) and are unable to accommodate these specific information needs. For example, summary statistics such as the correlation coefficient or the mean-squared error provide minimal information to developers, users, and decision makers regarding what is "right" and "wrong" with a model. New spatial and temporal-spatial object-based tools from the field of weather forecast verification (where comparisons typically focus on much finer temporal and spatial scales) have been adapted to more completely answer some of the important earth system model evaluation questions. In particular, the Method for Object-based Diagnostic Evaluation (MODE) tool and its temporal (three-dimensional) extension (MODE-TD) have been adapted for these evaluations. More specifically, these tools can be used to address spatial and temporal displacements in projections of El Nino-related precipitation and/or temperature anomalies, ITCZ-associated precipitation areas, atmospheric rivers, seasonal sea-ice extent, and other features of interest. Examples of several applications of these tools in a climate context will be presented, using output of the CESM large ensemble. In general, these tools provide diagnostic information about model performance - accounting for spatial, temporal, and intensity differences - that cannot be achieved using traditional (scalar) model comparison approaches. Thus, they can provide more

  5. A terminological matter: paragenesis, antigravitative erosion or antigravitational erosion ?

    Directory of Open Access Journals (Sweden)

    Pasini G.

    2009-07-01

    Full Text Available In the speleological literature three terms are utilized to designate the “ascending erosion”: paragenesis (= paragénésis, coined in1968, antigravitative erosion (= erosione antigravitativa, coined in 1966 and antigravitational erosion (wrong English translation ofthe Italian term erosione antigravitativa, utilized later on. The term paragenesis should be abandoned because of the priority of theterm erosione antigravitativa - on the ground of the “law of priority” – and because of its ambiguous etimology. On the other hand,the term antigravitational erosion should be forsaken in favour of the term antigravitative erosion, given the meaning that the termsgravitation and gravity have in Physics. Therefore, to designate the phenomenon of the “ascending erosion” there would be nothingleft but the term antigravitative erosion.The antigravitative erosion process and its recognizability are illustrated.Examples of caves with evident antigravitative erosion phenomena, developed in different karstifiable rocks and in several partsof the world, are given.It is recalled that the antigravitative erosion is a phenomenon well-known since 1942 and widely proven and supported, and that it isrelatively easy – in many cases - to recognize the antigravitative origin of karstic passages.It is stressed that the antigravitative erosion is an important phenomenon, exclusive of the karstic caves and unique in nature.

  6. Erosive potential of soft drinks on human enamel: An in vitro study

    Directory of Open Access Journals (Sweden)

    Yin-Lin Wang

    2014-11-01

    Conclusion: All tested soft drinks were found to be erosive. Soft drinks with high calcium contents have significantly lower erosive potential. Low pH value and high citrate content may cause more surface enamel loss. As the erosive time increased, the titratable acidity to pH 7 may be a predictor of the erosive potential for acidic soft drinks. The erosive potential of the soft drinks may be predicted based on the types of acid content, pH value, titratable acidity, and ion concentration.

  7. Aeroheating Testing and Predictions for Project Orion CEV at Turbulent Conditions

    Science.gov (United States)

    Hollis, Brian R.; Berger, Karen T.; Horvath, Thomas J.; Coblish, Joseph J.; Norris, Joseph D.; Lillard, Randolph P.; Kirk, Benjamin S.

    2009-01-01

    An investigation of the aeroheating environment of the Project Orion Crew Exploration Vehicle was performed in the Arnold Engineering Development Center Hypervelocity Wind Tunnel No. 9 Mach 8 and Mach 10 nozzles and in the NASA Langley Research Center 20 - Inch Mach 6 Air Tunnel. Heating data were obtained using a thermocouple-instrumented approx.0.035-scale model (0.1778-m/7-inch diameter) of the flight vehicle. Runs were performed in the Tunnel 9 Mach 10 nozzle at free stream unit Reynolds numbers of 1x10(exp 6)/ft to 20x10(exp 6)/ft, in the Tunnel 9 Mach 8 nozzle at free stream unit Reynolds numbers of 8 x 10(exp 6)/ft to 48x10(exp 6)/ft, and in the 20-Inch Mach 6 Air Tunnel at free stream unit Reynolds numbers of 1x10(exp 6)/ft to 7x10(exp 6)/ft. In both facilities, enthalpy levels were low and the test gas (N2 in Tunnel 9 and air in the 20-Inch Mach 6) behaved as a perfect-gas. These test conditions produced laminar, transitional and turbulent data in the Tunnel 9 Mach 10 nozzle, transitional and turbulent data in the Tunnel 9 Mach 8 nozzle, and laminar and transitional data in the 20- Inch Mach 6 Air Tunnel. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the experimental data to help define the accuracy of computational method. In general, it was found that both laminar data and predictions, and turbulent data and predictions, agreed to within less than the estimated 12% experimental uncertainty estimate. Laminar heating distributions from all three data sets were shown to correlate well and demonstrated Reynolds numbers independence when expressed in terms of the Stanton number based on adiabatic wall-recovery enthalpy. Transition onset locations on the leeside centerline were determined from the data and correlated in terms of boundary-layer parameters. Finally turbulent heating augmentation ratios were determined for several body-point locations and correlated in terms of the

  8. The influence of material hardness on liquid droplet impingement erosion

    International Nuclear Information System (INIS)

    Fujisawa, Nobuyuki; Yamagata, Takayuki; Takano, Shotaro; Saito, Kengo; Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio

    2015-01-01

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5

  9. Headcut erosive regimes influenced by groundwater on disturbed agricultural soils.

    Science.gov (United States)

    Rockwell, D L

    2011-02-01

    A series of simulated rainfall experiments, testing several soils and slope gradients in a 10 m x 0.8m laboratory flume, displayed close correlations between initial development of a water table at a 10 cm depth and highly erosive headcut formation. On some soils and gradients, highly erosive headcuts formed consistently and predictably within minutes or seconds of initial water table rise. However, headcuts alone were not good indicators of increased erosion. In most experiments some headcuts formed early, often when surface hydraulic parameter values reached established rill initiation thresholds, but resulted in little or no erosion increase. Later, at initial water table rise, other headcuts formed coincident with major erosion increase, often with surface hydraulic values then less than rill initiation thresholds. On the four soils tested, highly erosive headcuts never formed without groundwater development, except on steep 9 ° slopes. Common visual indicators such as headcut morphology and headcut advance rates were not effective means of determining either erosion or the existence of groundwater. Only local monitoring of subsurface moisture conditions with micro-standpipes and TDR aided in determining headcut processes and erosive regimes. Groundwater-influenced headcut formation was likely caused by increased soil pore-water pressures and decreased soil shear strengths in surface rainflow, not by sapping or seepage from the soil matrix. Highly erosive headcuts can thus form under common agricultural conditions where reductions in permeability, such as plow pans, exist near the surface--without the need for saturated soils. Headcut erosive regimes were also significantly influenced by soil type and slope gradient, with the greatest effects of groundwater on moderate slopes and fairly permeable soils. Copyright © 2010. Published by Elsevier Ltd.

  10. The influence of material hardness on liquid droplet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki, E-mail: fujisawa@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Yamagata, Takayuki, E-mail: yamagata@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Takano, Shotaro; Saito, Kengo [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio [Central Research Institute of Electric Power Industry, 2-11-1, Iwatokita, Komae, Tokyo 201-8511 (Japan)

    2015-07-15

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5.

  11. Erosion in extruder flow

    Science.gov (United States)

    Kaufman, Miron; Fodor, Petru S.

    A detailed analysis of the fluid flow in Tadmor's unwound channel model of the single screw extruder is performed by combining numerical and analytical methods. Using the analytical solution for the longitudinal velocity field (in the limit of zero Reynolds number) allows us to devote all the computational resources solely for a detailed numerical solution of the transversal velocity field. This high resolution 3D model of the fluid flow in a single-screw extruder allows us to identify the position and extent of Moffatt eddies that impede mixing. We further consider the erosion of particles (e.g. carbon-black agglomerates) advected by the polymeric flow. We assume a particle to be made of primary fragments bound together. In the erosion process a primary fragment breaks out of a given particle. Particles are advected by the laminar flow and they disperse because of the shear stresses imparted by the fluid. The time evolution of the numbers of particles of different sizes is described by the Bateman coupled differential equations used to model radioactivity. Using the particle size distribution we compute an entropic fragmentation index which varies from 0 for a monodisperse system to 1 for an extreme poly-disperse system.

  12. Potential impacts of climate change on rainfall erosivity and water availability in China in the next 100 years

    Science.gov (United States)

    Ge Sun; Steven G. McNulty; Jennifer Moore; Corey Bunch; Jian Ni

    2002-01-01

    Soil erosion and water shortages threaten China’s social and economic development in the 21st century. This paper examines how projected climate change could affect soil erosion and water availability across China. We used both historical climate data (1961-1980) and the UKMO Hadley3 climate scenario (1960-2099) to drive regional hydrology and soil erosivity models....

  13. Coastal erosion and accretion rates in Greece

    Science.gov (United States)

    Foteinis, Spyros; Papadopoulos, Costas; Koutsogiannaki, Irini; Synolakis, Costas

    2010-05-01

    Erosion threatens many coastal regions of Greece. Anthropogenic changes of landforms such as coastal roads built on even narrow beaches, sand mining for construction, poor design of coastal structures that interfere with sediment, and dams without sediment bypasses have significantly reduced beach widths. We present erosion rates for different beaches, some of which are in sensitive ecosystems, otherwise "protected" by local and EU ordinances. By comparing inferences of beach widths in varying intervals from 1933 to 2006, we infer that the construction of dams in Acheloos river in western Greece, built in a faraonic attempt to partially divert its flows to eastern Greece, this is responsible for up to 20m/year erosion rates observed in certain locales in the Acheloos delta. More characteristic erosion rates in the region are ~ 2m/year. By contrast, there appears rapid accretion of up to 4m/year in the beaches around the Nestos delta in northern Greece (Papadopoulos, 2009). In beaches that are not near large river deltas, erosion rates range from 0.5m/year to 1m/year. While we have not done comprehensive comparisons among coastlines with different levels of coastal development, it does appear that rapid coastal development correlates well with erosion rates. The underlying problem is the complete lack of any semblance of coastal zone management in Greece and substandard design of coastal structures, which are often sited without any measurements of waves and currents offshore (Synolakis et al, 2008). Beach maintenance remains an exotic concept for most local authorities, who invariably prefer to build hard coastal structures to "protect" versus nourish, siting lack of experience with nourishment and "environmental" concerns. In certain cases, choices are dictated by costs, the larger the cost the easier the project gets approved by regulatory authorities, hence the preference for concrete or rubble structures. We conclude that, unless urgent salvage measures are

  14. The Monitoring Erosion of Agricultural Land and spatial database of erosion events

    Science.gov (United States)

    Kapicka, Jiri; Zizala, Daniel

    2013-04-01

    In 2011 originated in The Czech Republic The Monitoring Erosion of Agricultural Land as joint project of State Land Office (SLO) and Research Institute for Soil and Water Conservation (RISWC). The aim of the project is collecting and record keeping information about erosion events on agricultural land and their evaluation. The main idea is a creation of a spatial database that will be source of data and information for evaluation and modeling erosion process, for proposal of preventive measures and measures to reduce negative impacts of erosion events. A subject of monitoring is the manifestations of water erosion, wind erosion and slope deformation in which cause damaged agriculture land. A website, available on http://me.vumop.cz, is used as a tool for keeping and browsing information about monitored events. SLO employees carry out record keeping. RISWC is specialist institute in the Monitoring Erosion of Agricultural Land that performs keeping the spatial database, running the website, managing the record keeping of events, analysis the cause of origins events and statistical evaluations of keeping events and proposed measures. Records are inserted into the database using the user interface of the website which has map server as a component. Website is based on database technology PostgreSQL with superstructure PostGIS and MapServer UMN. Each record is in the database spatial localized by a drawing and it contains description information about character of event (data, situation description etc.) then there are recorded information about land cover and about grown crops. A part of database is photodocumentation which is taken in field reconnaissance which is performed within two days after notify of event. Another part of database are information about precipitations from accessible precipitation gauges. Website allows to do simple spatial analysis as are area calculation, slope calculation, percentage representation of GAEC etc.. Database structure was designed

  15. Instrumentation and methods evaluations for shallow land burial of waste materials: water erosion

    International Nuclear Information System (INIS)

    Hostetler, D.D.; Murphy, E.M.; Childs, S.W.

    1981-08-01

    The erosion of geologic materials by water at shallow-land hazardous waste disposal sites can compromise waste containment. Erosion of protective soil from these sites may enhance waste transport to the biosphere through water, air, and biologic pathways. The purpose of this study was to review current methods of evaluating soil erosion and to recommend methods for use at shallow-land, hazardous waste burial sites. The basic principles of erosion control are: minimize raindrop impact on the soil surface; minimize runoff quantity; minimize runoff velocity; and maximize the soil's resistance to erosion. Generally soil erosion can be controlled when these principles are successfully applied at waste disposal sites. However, these erosion control practices may jeopardize waste containment. Typical erosion control practices may enhance waste transport by increasing subsurface moisture movement and biologic uptake of hazardous wastes. A two part monitoring program is recommended for US Department of Energy (DOE) hazardous waste disposal sites. The monitoring programs and associated measurement methods are designed to provide baseline data permitting analysis and prediction of long term erosion hazards at disposal sites. These two monitoring programs are: (1) site reconnaissance and tracking; and (2) site instrumentation. Some potential waste transport problems arising from erosion control practices are identified. This report summarizes current literature regarding water erosion prediction and control

  16. Methodology update for determination of the erosion coefficient(Z

    Directory of Open Access Journals (Sweden)

    Tošić Radislav

    2012-01-01

    Full Text Available The research and mapping the intensity of mechanical water erosion that have begun with the empirical methodology of S. Gavrilović during the mid-twentieth century last, by various intensity, until the present time. A many decades work on the research of these issues pointed to some shortcomings of the existing methodology, and thus the need for its innovation. In this sense, R. Lazarević made certain adjustments of the empirical methodology of S. Gavrilović by changing the tables for determination of the coefficients Φ, X and Y, that is, the tables for determining the mean erosion coefficient (Z. The main objective of this paper is to update the existing methodology for determining the erosion coefficient (Z with the empirical methodology of S. Gavrilović and amendments made by R. Lazarević (1985, but also with better adjustments to the information technologies and the needs of modern society. The proposed procedure, that is, the model to determine the erosion coefficient (Z in this paper is the result of ten years of scientific research and project work in mapping the intensity of mechanical water erosion and its modeling using various models of erosion in the Republic of Srpska and Serbia. By analyzing the correlation of results obtained by regression models and results obtained during the mapping of erosion on the territory of the Republic of Srpska, a high degree of correlation (R² = 0.9963 was established, which is essentially a good assessment of the proposed models.

  17. In situ erosion of cohesive sediment

    International Nuclear Information System (INIS)

    Williamson, H.J.; Ockenden, M.C.

    1993-01-01

    There has been increasing interest in tidal power schemes and the effect of a tidal energy barrage on the environment. A large man-made environmental change, such as a barrage, would be expected to have significant effects on the sediment distribution and stability of an estuary and these effects need to be assessed when considering a tidal barrage project. This report describes the development of apparatus for in-situ measurements of cohesive sediment erosion on inter-tidal mudflats. Development of the prototype field erosion bell and field testing was commissioned on behalf of the Department of Trade and Industry by the Energy Technology Support Unit (ETSU). This later work commenced in August 1991 and was completed in September 1992. (Author)

  18. Soil erosion assessment on hillslope of GCE using RUSLE model

    Science.gov (United States)

    Islam, Md. Rabiul; Jaafar, Wan Zurina Wan; Hin, Lai Sai; Osman, Normaniza; Din, Moktar Aziz Mohd; Zuki, Fathiah Mohamed; Srivastava, Prashant; Islam, Tanvir; Adham, Md. Ibrahim

    2018-06-01

    A new method for obtaining the C factor (i.e., vegetation cover and management factor) of the RUSLE model is proposed. The method focuses on the derivation of the C factor based on the vegetation density to obtain a more reliable erosion prediction. Soil erosion that occurs on the hillslope along the highway is one of the major problems in Malaysia, which is exposed to a relatively high amount of annual rainfall due to the two different monsoon seasons. As vegetation cover is one of the important factors in the RUSLE model, a new method that accounts for a vegetation density is proposed in this study. A hillslope near the Guthrie Corridor Expressway (GCE), Malaysia, is chosen as an experimental site whereby eight square plots with the size of 8× 8 and 5× 5 m are set up. A vegetation density available on these plots is measured by analyzing the taken image followed by linking the C factor with the measured vegetation density using several established formulas. Finally, erosion prediction is computed based on the RUSLE model in the Geographical Information System (GIS) platform. The C factor obtained by the proposed method is compared with that of the soil erosion guideline Malaysia, thereby predicted erosion is determined by both the C values. Result shows that the C value from the proposed method varies from 0.0162 to 0.125, which is lower compared to the C value from the soil erosion guideline, i.e., 0.8. Meanwhile predicted erosion computed from the proposed C value is between 0.410 and 3.925 t ha^{-1 } yr^{-1} compared to 9.367 to 34.496 t ha^{-1} yr^{-1 } range based on the C value of 0.8. It can be concluded that the proposed method of obtaining a reasonable C value is acceptable as the computed predicted erosion is found to be classified as a very low zone, i.e. less than 10 t ha^{-1 } yr^{-1} whereas the predicted erosion based on the guideline has classified the study area as a low zone of erosion, i.e., between 10 and 50 t ha^{-1 } yr^{-1}.

  19. Application of experimental soil erosion models (USLE, RUSLE) in Jordan: A review

    Science.gov (United States)

    Ramzi, A. A.; Ayu, A. W.; Mohm, A. A.; Fahmi, R. M.; Ibrahim, O. M.

    2017-09-01

    required to be utilised essentially as screening devices in coordinated reviews, arrive asset appraisals would request expanded precision in the measurement of disintegration rates in a spatial and fleeting setting. On the off chance, the necessities can be propose, for instance the Water Erosion Prediction Project (WEPP) can be required to discover expanded application in delivering quantitative appraisals of soil erosion and residue yield in Jordan.

  20. Projected climate change impacts and short term predictions on staple crops in Sub-Saharan Africa

    Science.gov (United States)

    Mereu, V.; Spano, D.; Gallo, A.; Carboni, G.

    2013-12-01

    . Multiple combinations of soils and climate conditions, crop management and varieties were considered for the different Agro-Ecological Zones. The climate impact was assessed using future climate prediction, statistically and/or dynamically downscaled, for specific areas. Direct and indirect effects of different CO2 concentrations projected for the future periods were separately explored to estimate their effects on crops. Several adaptation strategies (e.g., introduction of full irrigation, shift of the ordinary sowing/planting date, changes in the ordinary fertilization management) were also evaluated with the aim to reduce the negative impact of climate change on crop production. The results of the study, analyzed at local, AEZ and country level, will be discussed.

  1. The RadGenomics project. Prediction for radio-susceptibility of individuals with genetic predisposition

    International Nuclear Information System (INIS)

    Imai, Takashi

    2003-01-01

    The ultimate goal of our project, named RadGenomics, is to elucidate the heterogeneity of the response to ionizing radiation arising from genetic variation among individuals, for the purpose of developing personalized radiation therapy regimens for cancer patients. Cancer patients exhibit patient-to-patient variability in normal tissue reactions after radiotherapy. Several observations support the hypothesis that the radiosensitivity of normal tissue is influenced by genetic factors. The rapid progression of human genome sequencing and the recent development of new technologies in molecular biology are providing new opportunities for elucidating the genetic basis of individual differences in susceptibility to radiation exposure. The development of a sufficiently robust, predictive assay enabling individual dose adjustment would improve the outcome of radiation therapy in patients. Our strategy for identification of DNA polymorphisms that contribute to the individual radiosensitivity is as follows. First, we have been categorizing DNA samples obtained from cancer patients, who have been kindly introduced to us through many collaborators, according to their clinical characteristics including the method and effect of treatment and side effects as scored by toxicity criteria, and also the result of an in vitro radiosensitivity assay, e.g., the micronuclei assay of their lymphocytes. Second, we have identified candidate genes for genotyping mainly by using our custom-designed oligonucleotide array with RNA samples, in which the probes were obtained from more than 40 cancer and 3 fibroblast cell lines whose radiosensitivity level was quite heterogeneous. We have also been studying the modification of proteins after irradiation of cells which may be caused by mainly phosphorylation or dephosphorylation, using mass spectrometry. Genes encoding the modified proteins and/or other proteins with which they interact such as specific protein kinases and phosphatases are also

  2. Inhibition, Updating Working Memory, and Shifting Predict Reading Disability Symptoms in a Hybrid Model: Project KIDS.

    Science.gov (United States)

    Daucourt, Mia C; Schatschneider, Christopher; Connor, Carol M; Al Otaiba, Stephanie; Hart, Sara A

    2018-01-01

    Recent achievement research suggests that executive function (EF), a set of regulatory processes that control both thought and action necessary for goal-directed behavior, is related to typical and atypical reading performance. This project examines the relation of EF, as measured by its components, Inhibition, Updating Working Memory, and Shifting, with a hybrid model of reading disability (RD). Our sample included 420 children who participated in a broader intervention project when they were in KG-third grade (age M = 6.63 years, SD = 1.04 years, range = 4.79-10.40 years). At the time their EF was assessed, using a parent-report Behavior Rating Inventory of Executive Function (BRIEF), they had a mean age of 13.21 years ( SD = 1.54 years; range = 10.47-16.63 years). The hybrid model of RD was operationalized as a composite consisting of four symptoms, and set so that any child could have any one, any two, any three, any four, or none of the symptoms included in the hybrid model. The four symptoms include low word reading achievement, unexpected low word reading achievement, poorer reading comprehension compared to listening comprehension, and dual-discrepancy response-to-intervention, requiring both low achievement and low growth in word reading. The results of our multilevel ordinal logistic regression analyses showed a significant relation between all three components of EF (Inhibition, Updating Working Memory, and Shifting) and the hybrid model of RD, and that the strength of EF's predictive power for RD classification was the highest when RD was modeled as having at least one or more symptoms. Importantly, the chances of being classified as having RD increased as EF performance worsened and decreased as EF performance improved. The question of whether any one EF component would emerge as a superior predictor was also examined and results showed that Inhibition, Updating Working Memory, and Shifting were equally valuable as predictors of the hybrid model of RD

  3. Inhibition, Updating Working Memory, and Shifting Predict Reading Disability Symptoms in a Hybrid Model: Project KIDS

    Directory of Open Access Journals (Sweden)

    Mia C. Daucourt

    2018-03-01

    Full Text Available Recent achievement research suggests that executive function (EF, a set of regulatory processes that control both thought and action necessary for goal-directed behavior, is related to typical and atypical reading performance. This project examines the relation of EF, as measured by its components, Inhibition, Updating Working Memory, and Shifting, with a hybrid model of reading disability (RD. Our sample included 420 children who participated in a broader intervention project when they were in KG-third grade (age M = 6.63 years, SD = 1.04 years, range = 4.79–10.40 years. At the time their EF was assessed, using a parent-report Behavior Rating Inventory of Executive Function (BRIEF, they had a mean age of 13.21 years (SD = 1.54 years; range = 10.47–16.63 years. The hybrid model of RD was operationalized as a composite consisting of four symptoms, and set so that any child could have any one, any two, any three, any four, or none of the symptoms included in the hybrid model. The four symptoms include low word reading achievement, unexpected low word reading achievement, poorer reading comprehension compared to listening comprehension, and dual-discrepancy response-to-intervention, requiring both low achievement and low growth in word reading. The results of our multilevel ordinal logistic regression analyses showed a significant relation between all three components of EF (Inhibition, Updating Working Memory, and Shifting and the hybrid model of RD, and that the strength of EF’s predictive power for RD classification was the highest when RD was modeled as having at least one or more symptoms. Importantly, the chances of being classified as having RD increased as EF performance worsened and decreased as EF performance improved. The question of whether any one EF component would emerge as a superior predictor was also examined and results showed that Inhibition, Updating Working Memory, and Shifting were equally valuable as predictors of the

  4. Critical Source Area Delineation: The representation of hydrology in effective erosion modeling.

    Science.gov (United States)

    Fowler, A.; Boll, J.; Brooks, E. S.; Boylan, R. D.

    2017-12-01

    Despite decades of conservation and millions of conservation dollars, nonpoint source sediment loading associated with agricultural disturbance continues to be a significant problem in many parts of the world. Local and national conservation organizations are interested in targeting critical source areas for control strategy implementation. Currently, conservation practices are selected and located based on the Revised Universal Soil Loss Equation (RUSLE) hillslope erosion modeling, and the National Resource Conservation Service will soon be transiting to the Watershed Erosion Predict Project (WEPP) model for the same purpose. We present an assessment of critical source areas targeted with RUSLE, WEPP and a regionally validated hydrology model, the Soil Moisture Routing (SMR) model, to compare the location of critical areas for sediment loading and the effectiveness of control strategies. The three models are compared for the Palouse dryland cropping region of the inland northwest, with un-calibrated analyses of the Kamiache watershed using publicly available soils, land-use and long-term simulated climate data. Critical source areas were mapped and the side-by-side comparison exposes the differences in the location and timing of runoff and erosion predictions. RUSLE results appear most sensitive to slope driving processes associated with infiltration excess. SMR captured saturation excess driven runoff events located at the toe slope position, while WEPP was able to capture both infiltration excess and saturation excess processes depending on soil type and management. A methodology is presented for down-scaling basin level screening to the hillslope management scale for local control strategies. Information on the location of runoff and erosion, driven by the runoff mechanism, is critical for effective treatment and conservation.

  5. Evaluation of numerical weather predictions performed in the context of the project DAPHNE

    Science.gov (United States)

    Tegoulias, Ioannis; Pytharoulis, Ioannis; Bampzelis, Dimitris; Karacostas, Theodore

    2014-05-01

    The region of Thessaly in central Greece is one of the main areas of agricultural production in Greece. Severe weather phenomena affect the agricultural production in this region with adverse effects for farmers and the national economy. For this reason the project DAPHNE aims at tackling the problem of drought by means of weather modification through the development of the necessary tools to support the application of a rainfall enhancement program. In the present study the numerical weather prediction system WRF-ARW is used, in order to assess its ability to represent extreme weather phenomena in the region of Thessaly. WRF is integrated in three domains covering Europe, Eastern Mediterranean and Central-Northern Greece (Thessaly and a large part of Macedonia) using telescoping nesting with grid spacing of 15km, 5km and 1.667km, respectively. The cases examined span throughout the transitional and warm period (April to September) of the years 2008 to 2013, including days with thunderstorm activity. Model results are evaluated against all available surface observations and radar products, taking into account the spatial characteristics and intensity of the storms. Preliminary results indicate a good level of agreement between the simulated and observed fields as far as the standard parameters (such as temperature, humidity and precipitation) are concerned. Moreover, the model generally exhibits a potential to represent the occurrence of the convective activity, but not its exact spatiotemporal characteristics. Acknowledgements This research work has been co-financed by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007-2013)

  6. The erosive potential of lollipops

    NARCIS (Netherlands)

    Brand, H.S.; Gambon, D.L.; Paap, A.; Bulthuis, M.S.; Veerman, E.C.I.; Nieuw Amerongen, A.V.

    2009-01-01

    Aim: To determine the erosive potential of several commercially available lollipops and the protective effect of saliva. Methods: The erosive potential of lollipops was determined in vitro by measuring the pH and neutralisable acidity. Subsequently, 10 healthy volunteers tested different types of

  7. Wind erosion processes and control

    Science.gov (United States)

    Wind erosion continues to threaten the sustainability of our nations' soil, air, and water resources. To effectively apply conservation systems to prevent wind driven soil loss, an understanding of the fundamental processes of wind erosion is necessary so that land managers can better recognize the ...

  8. Machine learning in updating predictive models of planning and scheduling transportation projects

    Science.gov (United States)

    1997-01-01

    A method combining machine learning and regression analysis to automatically and intelligently update predictive models used in the Kansas Department of Transportations (KDOTs) internal management system is presented. The predictive models used...

  9. Erosion--corrosion

    International Nuclear Information System (INIS)

    Vyas, B.

    1978-01-01

    The deterioration of materials by corrosion or erosion by itself presents a formidable problem and for this reason investigators have studied these two phenomena independently. In fact, there are very few systematic studies on E-C and the majority of references mention it only in passing. In most real systems, however, the two destructive processes take place simultaneously, hence the purpose of this review is to present the various interactions between the chemical and mechanical agents leading to accelerated degradation of the material. The papers cited in the review are those that lead to a better understanding of the process involved in the accelerated rate of material loss under E-C conditions

  10. Methods for assessing mine site rehabilitation design for erosion impact

    International Nuclear Information System (INIS)

    Evans, K. G.

    2000-01-01

    Erosion of rehabilitated mines may result in landform instability, which in turn may result in exposure of encapsulated contaminants, elevated sediment delivery at catchment outlets, and subsequent degradation of downstream water quality. Rehabilitation design can be assessed using erosion and hydrology models calibrated to mine site conditions. Incision rates in containment structures can be quantified using 3-dimensional landform evolution simulation techniques. Sediment delivery at catchment outlets for various landform amelioration techniques can be predicted using process-based and empirical erosion-prediction models and sediment delivery ratios. The predicted sediment delivery can be used to estimate an average annual stream sediment load that can, in turn, be used to assess water quality impacts. Application of these techniques is demonstrated through a case study applied to a proposed rehabilitation design option for the Energy Resources of Australia Ltd (ERA) Ranger Mine in the Northern Territory of Australia. Copyright (2000) CSIRO Australia

  11. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    Science.gov (United States)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  12. Using REE tracers to measure sheet erosion changing to rill erosion

    International Nuclear Information System (INIS)

    Liu Puling; Xue Yazhou; Song Wei; Wang Mingyi; Ju Tongjun

    2004-01-01

    Rare Earth Elements (REE) tracer method was used to study sheet erosion changing to rill erosion on slope land. By placing different rare earth elements of different soil depth across a slope in an indoor plot, two simulated rainfalls were applied to study the change of erosion type and the rill erosion process. The results indicate that the main erosion type is sheet erosion at the beginning of the rainfalls, and serious erosion happens after rill erosion appears. Accumulated sheet and rill erosion amounts increase with the rainfalls time. The percentage of sheet erosion amount decreases and rill erosion percentage increases with time. At the end of the rainfalls, the total rill erosion amounts are 4-5 times more than sheet erosion. In this paper, a new REE tracer method was used to quantitatively distinguish sheet and rill erosion amounts. The new REE tracer method should be useful to future studying of erosion processes on slope lands. (authors)

  13. Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population: The China-PAR Project (Prediction for ASCVD Risk in China).

    Science.gov (United States)

    Yang, Xueli; Li, Jianxin; Hu, Dongsheng; Chen, Jichun; Li, Ying; Huang, Jianfeng; Liu, Xiaoqing; Liu, Fangchao; Cao, Jie; Shen, Chong; Yu, Ling; Lu, Fanghong; Wu, Xianping; Zhao, Liancheng; Wu, Xigui; Gu, Dongfeng

    2016-11-08

    The accurate assessment of individual risk can be of great value to guiding and facilitating the prevention of atherosclerotic cardiovascular disease (ASCVD). However, prediction models in common use were formulated primarily in white populations. The China-PAR project (Prediction for ASCVD Risk in China) is aimed at developing and validating 10-year risk prediction equations for ASCVD from 4 contemporary Chinese cohorts. Two prospective studies followed up together with a unified protocol were used as the derivation cohort to develop 10-year ASCVD risk equations in 21 320 Chinese participants. The external validation was evaluated in 2 independent Chinese cohorts with 14 123 and 70 838 participants. Furthermore, model performance was compared with the Pooled Cohort Equations reported in the American College of Cardiology/American Heart Association guideline. Over 12 years of follow-up in the derivation cohort with 21 320 Chinese participants, 1048 subjects developed a first ASCVD event. Sex-specific equations had C statistics of 0.794 (95% confidence interval, 0.775-0.814) for men and 0.811 (95% confidence interval, 0.787-0.835) for women. The predicted rates were similar to the observed rates, as indicated by a calibration χ 2 of 13.1 for men (P=0.16) and 12.8 for women (P=0.17). Good internal and external validations of our equations were achieved in subsequent analyses. Compared with the Chinese equations, the Pooled Cohort Equations had lower C statistics and much higher calibration χ 2 values in men. Our project developed effective tools with good performance for 10-year ASCVD risk prediction among a Chinese population that will help to improve the primary prevention and management of cardiovascular disease. © 2016 American Heart Association, Inc.

  14. Differential subsidence and its effect on subsurface infrastructure: predicting probability of pipeline failure (STOOP project)

    Science.gov (United States)

    de Bruijn, Renée; Dabekaussen, Willem; Hijma, Marc; Wiersma, Ane; Abspoel-Bukman, Linda; Boeije, Remco; Courage, Wim; van der Geest, Johan; Hamburg, Marc; Harmsma, Edwin; Helmholt, Kristian; van den Heuvel, Frank; Kruse, Henk; Langius, Erik; Lazovik, Elena

    2017-04-01

    Due to heterogeneity of the subsurface in the delta environment of the Netherlands, differential subsidence over short distances results in tension and subsequent wear of subsurface infrastructure, such as water and gas pipelines. Due to uncertainties in the build-up of the subsurface, however, it is unknown where this problem is the most prominent. This is a problem for asset managers deciding when a pipeline needs replacement: damaged pipelines endanger security of supply and pose a significant threat to safety, yet premature replacement raises needless expenses. In both cases, costs - financial or other - are high. Therefore, an interdisciplinary research team of geotechnicians, geologists and Big Data engineers from research institutes TNO, Deltares and SkyGeo developed a stochastic model to predict differential subsidence and the probability of consequent pipeline failure on a (sub-)street level. In this project pipeline data from company databases is combined with a stochastic geological model and information on (historical) groundwater levels and overburden material. Probability of pipeline failure is modelled by a coupling with a subsidence model and two separate models on pipeline behaviour under stress, using a probabilistic approach. The total length of pipelines (approx. 200.000 km operational in the Netherlands) and the complexity of the model chain that is needed to calculate a chance of failure, results in large computational challenges, as it requires massive evaluation of possible scenarios to reach the required level of confidence. To cope with this, a scalable computational infrastructure has been developed, composing a model workflow in which components have a heterogeneous technological basis. Three pilot areas covering an urban, a rural and a mixed environment, characterised by different groundwater-management strategies and different overburden histories, are used to evaluate the differences in subsidence and uncertainties that come with

  15. Simulation of erosion in drilling tools for oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Arefi, B.; Settari, A. [Calgary Univ., AB (Canada); Angman, P. [Tesco Corp., Calgary, AB (Canada)

    2004-07-01

    Erosion in oil well drilling tools is a form of wear which occurs when fluid containing solid particles impacts a solid surface. The intensity of erosion is generally measured as the rate of material removal from the surface, and is expressed as E{sub r}, the weight of material removed by unit weight of impacting particles. Erosion can also be reduced by tool improvement and modification, thereby extending the life of drilling tools. To date, no attempt has been made to model the erosion phenomenon in drilling tools. This paper presents a newly developed erosion simulator which is the first design tool for the drilling industry. This work demonstrates that erosion can be simulated. A model was developed to calibrate the erosion coefficients for drilling tool conditions. The mechanism of erosion can be controlled by the impact velocity and angle. Algorithms were developed for transient simulation of the erosion of any surface in 2-dimensional geometry. The Erosion Simulator has been validated and calibrated against data provided by TESCO Corporation's casing drilling tools. The model has been shown to successfully predict and minimize erosion by modifying the tool geometry and metallurgy. 21 refs., 1 tab., 15 figs.

  16. Specifying general activity clusters for ERP projects aimed at effort prediction

    NARCIS (Netherlands)

    Janssens, G.; Kusters, R.J.; Heemstra, F.J.; Gunasekaran, A.; Shea, T.

    2010-01-01

    ERP implementation projects affect large parts of an implementing organization and lead to changes in the way an organization performs its tasks. The costs needed for the effort to implement these systems are hard to estimate. Research indicates that the size of an ERP project can be a useful

  17. Predicting and Mapping Potential Whooping Crane Stopover Habitat to Guide Site Selection for Wind Energy Projects

    Science.gov (United States)

    Migration is one of the most poorly understood components of a bird’s life cycle. For that reason, migratory stopover habitats are often not part of conservation planning and may be overlooked when planning new development projects. This project highlights and addresses an overl...

  18. An empirical evaluation of classification algorithms for fault prediction in open source projects

    Directory of Open Access Journals (Sweden)

    Arvinder Kaur

    2018-01-01

    Full Text Available Creating software with high quality has become difficult these days with the fact that size and complexity of the developed software is high. Predicting the quality of software in early phases helps to reduce testing resources. Various statistical and machine learning techniques are used for prediction of the quality of the software. In this paper, six machine learning models have been used for software quality prediction on five open source software. Varieties of metrics have been evaluated for the software including C & K, Henderson & Sellers, McCabe etc. Results show that Random Forest and Bagging produce good results while Naïve Bayes is least preferable for prediction.

  19. Gastric Mucosal Erosions - Radiologic evaluation -

    International Nuclear Information System (INIS)

    Kim, Seung Hyup

    1985-01-01

    70 cases of gastric mucosal erosions were diagnosed by double contrast upper gastrointestinal examinations and endoscopic findings. Analyzing the radiologic findings of these 70 cases of gastric mucosal erosions, the following results were obtained. 1. Among the total 70 cases, 65 cases were typical varioliform erosions showing central depressions and surrounding mucosal elevations. Remaining 5 cases were erosions of acute phase having multiple irregular depressions without surrounding elevations. 2. The gastric antrum was involved alone or in part in all cases. Duodenal bulb was involved with gastric antrum in 4 cases. 3. The majority of the cases had multiple erosions. There were only 2 cases of single erosion. 4. In 65 cases of varioliform erosions; 1) The diameter of the surrounding elevations varied from 3 to 20 mm with the majority (47 cases) between 6 and 10 mm. 2) In general, the surrounding elevations with sharp margin on double contrast films were also clearly demonstrated on compression films but those with faint margin were not. 3) The size of the central barium collections varied from pinpoint to 10 mm with the majority under 5 mm. The shape of the central barium collections in majority of the cases were round with a few cases of linear, triangular or star-shape. 5. In 5 cases of acute phase erosions; 1) All the 5 cases were females. 2) On double contrast radiography, all the cases showed multiple irregular depressed lesions without surrounding elevations. 3) 1 case had the history of hematemesis. 4) In 1 case, there was marked radiological improvement on follow-up study of 2 months interval. 6. In 23 cases, there were coexistent diseases with gastric mucosal erosions. These were 13 cases of duodenal bulb ulcers,7 cases of benign gastric ulcers and 3 others

  20. Dune Erosion Models and Swash Zone Kinematics from Remote Video Observations

    Science.gov (United States)

    2010-12-09

    system. Thus, successful prediction of dune erosion requires knowledge of the expected trajectory of the eroding dune toe . If we describe the... dune toe trajectory as following a slope, βT, two end member retreat trajectories exist. The first would be direct landward erosion so that zb never...changes     0 0   T bb ztz  (2.24) The second end member trajectory is that erosion moves the dune toe directly up the foreshore slope

  1. Simulation and Prediction of Groundwater Pollution from Planned Feed Additive Project in Nanning City Based on GMS Model

    Science.gov (United States)

    Liang, Yimin; Lan, Junkang; Wen, Zhixiong

    2018-01-01

    In order to predict the pollution of underground aquifers and rivers by the proposed project, Specialized hydrogeological investigation was carried out. After hydrogeological surveying and mapping, drilling, and groundwater level monitoring, the scope of the hydrogeological unit and the regional hydrogeological condition were found out. The permeability coefficients of the aquifers were also obtained by borehole water injection tests. In order to predict the impact on groundwater environment by the project, a GMS software was used in numerical simulation. The simulation results show that when unexpected sewage leakage accident happened, the pollutants will be gradually diluted by groundwater, and the diluted contaminants will slowly spread to southeast with groundwater flow, eventually they are discharged into Gantang River. However, the process of the pollutants discharging into the river is very long, the long-term dilution of the river water will keep Gantang River from being polluted.

  2. Soil erosion, sedimentation and the carbon cycle

    Science.gov (United States)

    Cammeraat, L. H.; Kirkels, F.; Kuhn, N. J.

    2012-04-01

    Historically soil erosion focused on the effects of on-site soil quality loss and consequently reduced crop yields, and off-site effects related to deposition of material and water quality issues such as increased sediment loads of rivers. In agricultural landscapes geomorphological processes reallocate considerable amounts of soil and soil organic carbon (SOC). The destiny of SOC is of importance because it constitutes the largest C pool of the fast carbon cycle, and which cannot only be understood by looking at the vertical transfer of C from soil to atmosphere. Therefore studies have been carried out to quantify this possible influence of soil erosion and soil deposition and which was summarized by Quinton et al. (2010) by "We need to consider soils as mobile systems to make accurate predictions about the consequences of global change for terrestrial biogeochemical cycles and climate feedbacks". Currently a debate exists on the actual fate of SOC in relation to the global carbon cycle, represented in a controversy between researchers claiming that erosion is a sink, and those who claim the opposite. This controversy is still continuing as it is not easy to quantify and model the dominating sink and source processes at the landscape scale. Getting insight into the balance of the carbon budget requires a comprehensive research of all relevant processes at broad spatio-temporal scales, from catchment to regional scales and covering the present to the late Holocene. Emphasising the economic and societal benefits, the merits for scientific knowledge of the carbon cycle and the potential to sequester carbon and consequently offset increasing atmospheric CO2 concentrations, make the fate of SOC in agricultural landscapes a high-priority research area. Quinton, J.N., Govers, G., Van Oost, K., Bardgett, R.D., 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci, 3, 311-314.

  3. Projectables

    DEFF Research Database (Denmark)

    Rasmussen, Troels A.; Merritt, Timothy R.

    2017-01-01

    CNC cutting machines have become essential tools for designers and architects enabling rapid prototyping, model-building and production of high quality components. Designers often cut from new materials, discarding the irregularly shaped remains. We introduce ProjecTables, a visual augmented...... reality system for interactive packing of model parts onto sheet materials. ProjecTables enables designers to (re)use scrap materials for CNC cutting that would have been previously thrown away, at the same time supporting aesthetic choices related to wood grain, avoiding surface blemishes, and other...... relevant material properties. We conducted evaluations of ProjecTables with design students from Aarhus School of Architecture, demonstrating that participants could quickly and easily place and orient model parts reducing material waste. Contextual interviews and ideation sessions led to a deeper...

  4. Predicting fatigue service life extension of RC bridges with externally bonded CFRP repairs : [project brief].

    Science.gov (United States)

    2015-12-01

    Externally bonded carbon fiber reinforced polymer composites (CFRPs) are increasingly used to : repair concrete bridges. CFRP design techniques are a proven approach for enhancing the strength : of existing structures. This project investigated the d...

  5. Erosive tooth wear in children

    NARCIS (Netherlands)

    Carvalho, T.S.; Lussi, A.; Jaeggi, T.; Gambon, D.L.; Lussi, A.; Ganss, C.

    2014-01-01

    Erosive tooth wear in children is a common condition. Besides the anatomical differences between deciduous and permanent teeth, additional histological differences may influence their susceptibility to dissolution. Considering laboratory studies alone, it is not clear whether deciduous teeth are

  6. Erosion-resistant composite material

    Science.gov (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  7. Demographic models and IPCC climate projections predict the decline of an emperor penguin population

    Science.gov (United States)

    Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Holland, Marika; Strœve, Julienne; Weimerskirch, Henri

    2009-01-01

    Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962–2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from ≈6,000 to ≈400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth. PMID:19171908

  8. Sand erosion at the toe of a gabion-protected dune face

    NARCIS (Netherlands)

    Chapman, A.

    1992-01-01

    The purpose of this research project was to study the manner in which erosion takes place the the toe of a dune slope protected by gabions, and to examine the response of the gabions to this erosion. A sand slope overlaid by model gabions was subjected to wave attack in a hydraulic flume, and

  9. Soil Erosion and Agricultural Sustainability

    Science.gov (United States)

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  10. A comparison of methods in estimating soil water erosion

    Directory of Open Access Journals (Sweden)

    Marisela Pando Moreno

    2012-02-01

    Full Text Available A comparison between direct field measurements and predictions of soil water erosion using two variant; (FAO and R/2 index of the Revised Universal Soil Loss Equation (RUSLE was carried out in a microcatchment o 22.32 km2 in Northeastern Mexico. Direct field measurements were based on a geomorphologic classification of the area; while environmental units were defined for applying the equation. Environmental units were later grouped withir geomorphologic units to compare results. For the basin as a whole, erosion rates from FAO index were statistical!; equal to those measured on the field, while values obtained from the R/2 index were statistically different from the res and overestimated erosion. However, when comparing among geomorphologic units, erosion appeared overestimate! in steep units and underestimated in more flat areas. The most remarkable differences on erosion rates, between th( direct and FAO methods, were for those units where gullies have developed, fn these cases, erosion was underestimated by FAO index. Hence, it is suggested that a weighted factor for presence of gullies should be developed and included in RUSLE equation.

  11. Modelling Soil Erosion in the Densu River Basin Using RUSLE and GIS Tools.

    Science.gov (United States)

    Ashiagbori, G; Forkuo, E K; Laari, P; Aabeyir, R

    2014-07-01

    Soil erosion involves detachment and transport of soil particles from top soil layers, degrading soil quality and reducing the productivity of affected lands. Soil eroded from the upland catchment causes depletion of fertile agricultural land and the resulting sediment deposited at the river networks creates river morphological change and reservoir sedimentation problems. However, land managers and policy makers are more interested in the spatial distribution of soil erosion risk than in absolute values of soil erosion loss. The aim of this paper is to model the spatial distribution of soil erosion in Densu River Basin of Ghana using RUSLE and GIS tools and to use the model to explore the relationship between erosion susceptibility, slope and land use/land cover (LULC) in the Basin. The rainfall map, digital elevation model, soil type map, and land cover map, were input data in the soil erosion model developed. This model was then categorized into four different erosion risk classes. The developed soil erosion map was then overlaid with the slope and LULC maps of the study area to explore their effects on erosion susceptibility of the soil in the Densu River Basin. The Model, predicted 88% of the basin as low erosion risk and 6% as moderate erosion risk, 3% as high erosion risk and 3% as severe risk. The high and severe erosion areas were distributed mainly within the areas of high slope gradient and also sections of the moderate forest LULC class. Also, the areas within the moderate forest LULC class found to have high erosion risk, had an intersecting high erodibility soil group.

  12. Erosion properties of unipolar arcs

    International Nuclear Information System (INIS)

    Chekalin, Eh.K.

    1982-01-01

    Processes modelling the formation of unipolar arcs on the elements of the first wall in limiters of the vacuum chamber and on active elements of tokamak divertor, are experimentally investigated. Erosion, processes that take place at two types of non-stationary cathode spots are considered. Experimental data prove the possibility of reducing erosion intensity by coating the surface of electrodes by oxide films, reduction of the temperature of electrode and discharge current

  13. Wind erosion of soils burned by wildfire

    Science.gov (United States)

    N. S. Wagenbrenner; M. J. Germino; B. K. Lamb; R. B. Foltz; P. R. Robichaud

    2011-01-01

    Wind erosion and aeolian transport processes are largely unstudied in the post-wildfire environment, but recent studies have shown that wind erosion can play a major role in burned landscapes. A wind erosion monitoring system was installed immediately following a wildfire in southeastern Idaho, USA to measure wind erosion from the burned area (Figure 1). This paper...

  14. Sandstone landforms shaped by negative feedback between stress and erosion

    Czech Academy of Sciences Publication Activity Database

    Bruthans, J.; Soukup, J.; Vaculíková, J.; Filippi, Michal; Schweigstillová, Jana; Mayo, A. L.; Mašín, D.; Kletetschka, Günther; Řihošek, J.

    2014-01-01

    Roč. 7, č. 8 (2014), s. 597-601 ISSN 1752-0894 R&D Projects: GA ČR GA13-28040S Institutional support: RVO:67985831 ; RVO:67985891 Keywords : sandstone * sandstone landsforms * stress * erosion Subject RIV: DB - Geology ; Mineralogy Impact factor: 11.740, year: 2014

  15. Role of Erosion in Shaping Point Bars

    Science.gov (United States)

    Moody, J.; Meade, R.

    2012-04-01

    A powerful metaphor in fluvial geomorphology has been that depositional features such as point bars (and other floodplain features) constitute the river's historical memory in the form of uniformly thick sedimentary deposits waiting for the geomorphologist to dissect and interpret the past. For the past three decades, along the channel of Powder River (Montana USA) we have documented (with annual cross-sectional surveys and pit trenches) the evolution of the shape of three point bars that were created when an extreme flood in 1978 cut new channels across the necks of two former meander bends and radically shifted the location of a third bend. Subsequent erosion has substantially reshaped, at different time scales, the relic sediment deposits of varying age. At the weekly to monthly time scale (i.e., floods from snowmelt or floods from convective or cyclonic storms), the maximum scour depth was computed (by using a numerical model) at locations spaced 1 m apart across the entire point bar for a couple of the largest floods. The maximum predicted scour is about 0.22 m. At the annual time scale, repeated cross-section topographic surveys (25 during 32 years) indicate that net annual erosion at a single location can be as great as 0.5 m, and that the net erosion is greater than net deposition during 8, 16, and 32% of the years for the three point bars. On average, the median annual net erosion was 21, 36, and 51% of the net deposition. At the decadal time scale, an index of point bar preservation often referred to as completeness was defined for each cross section as the percentage of the initial deposit (older than 10 years) that was still remaining in 2011; computations indicate that 19, 41, and 36% of the initial deposits of sediment were eroded. Initial deposits were not uniform in thickness and often represented thicker pods of sediment connected by thin layers of sediment or even isolated pods at different elevations across the point bar in response to multiple

  16. Effect of stone coverage on soil erosion

    Science.gov (United States)

    Jomaa, S.; Barry, D. A.; Heng, B. P.; Brovelli, A.; Sander, G. C.; Parlange, J.

    2010-12-01

    Soil surface coverage has a significant impact on water infiltration, runoff and soil erosion yields. In particular, surface stones protect the soils from raindrop detachment, they retard the overland flow therefore decreasing its sediment transport capacity, and they prevent surface sealing. Several physical and environmental factors control to what extent stones on the soil surface modify the erosion rates and the related hydrological response. Among the most important factors are the moisture content of the topsoil, stone size, emplacement, coverage density and soil texture. Owing to the different inter-related processes, there is ambiguity concerning the quantitative effect of stones, and process-based understanding is limited. Experiments were performed (i) to quantify how stone features affect sediment yields, (ii) to understand the local effect of isolated surface stones, that is, the changes of the soil particle size distribution in the vicinity of a stone and (iii) to determine how stones attenuate the development of surface sealing and in turn how this affects the local infiltration rate. A series of experiments using the EPFL 6-m × 2-m erosion flume were conducted at different rainfall intensities (28 and 74 mm h-1) and stone coverage (20 and 40%). The total sediment concentration, the concentration of the individual size classes and the flow discharge were measured. In order to analyze the measurements, the Hairsine and Rose (HR) erosion model was adapted to account for the shielding effect of the stone cover. This was done by suitably adjusting the parameters based on the area not covered by stones. It was found that the modified HR model predictions agreed well with the measured sediment concentrations especially for the long time behavior. Changes in the bulk density of the topsoil due to raindrop-induced compaction with and without stone protection revealed that the stones protect the upper soil surface against the structural seals resulting in

  17. Taxation of Controlled Foreign Companies in Context of the OECD/G20 Project on Base Erosion and Profit Shifting as well as the EU Proposal for the Anti-Tax Avoidance Directive

    DEFF Research Database (Denmark)

    Schmidt, Peter Koerver

    2016-01-01

    Recently, the controlled foreign company (CFC) rules have gained increased attention; as such, rules play an important role in the ongoing efforts of the OECD/G20 and the European Commission with respect to addressing base erosion and profit shifting (BEPS). In this context, the article revisits...... the CFC regimes of the Nordic countries in order to assess whether these regimes are in line with the recommendations from the OECD/G20 and to determine whether Sweden, Finland, and Denmark, as EU member states, will have to make amendments if the commission’s proposal for an Anti-Tax Avoidance Directive...

  18. Energy Yield Prediction of Offshore Wind Farm Clusters at the EERA-DTOC European Project

    DEFF Research Database (Denmark)

    Cantero, E.; Hasager, Charlotte Bay; Réthoré, Pierre-Elouan

    2014-01-01

    third-party models. Wake models have been benchmarked on the Horns Rev and, currently, on the Lilgrund wind farm test cases. Dedicated experiments from ‘BARD Offshore 1’ wind farm will using scanning lidars will produce new data for the validation of wake models. Furthermore, the project includes power...

  19. Energy yield prediction of offshore wind farm clusters at the EERA-DTOC European project

    DEFF Research Database (Denmark)

    Cantero, E.; Sanz, J.; Lorenzo, S.

    2013-01-01

    third-party models. Wake models have been benchmarked on the Horns Rev and, currently, on the Lilgrund wind farm test cases. Dedicated experiments from ‘BARD Offshore 1’ wind farm will using scanning lidars will produce new data for the validation of wake models. Furthermore, the project includes power...

  20. Spatial regression methods capture prediction uncertainty in species distribution model projections through time

    Science.gov (United States)

    Alan K. Swanson; Solomon Z. Dobrowski; Andrew O. Finley; James H. Thorne; Michael K. Schwartz

    2013-01-01

    The uncertainty associated with species distribution model (SDM) projections is poorly characterized, despite its potential value to decision makers. Error estimates from most modelling techniques have been shown to be biased due to their failure to account for spatial autocorrelation (SAC) of residual error. Generalized linear mixed models (GLMM) have the ability to...

  1. Prediction and optimization methods for electric vehicle charging schedules in the EDISON project

    DEFF Research Database (Denmark)

    Aabrandt, Andreas; Andersen, Peter Bach; Pedersen, Anders Bro

    2012-01-01

    project has been launched to investigate various areas relevant to electric vehicle integration. As part of EDISON an electric vehicle aggregator has been developed to demonstrate smart charging of electric vehicles. The emphasis of this paper is the mathematical methods on which the EDISON aggregator...

  2. Human induced prehistoric and historical soil erosion and landscape development in Southwestern USA

    Science.gov (United States)

    Dotterweich, Markus; Ivester, Andrew H.; Hanson, Paul R.; Daniel, Larsen; Dye, David H.; Foster, Thomas H., II

    2015-04-01

    The significance of soil erosion due to pre-historic land use and possible feedback mechanisms had been hardly recognized in the Southeastern USA. Here, the agricultural practices only began in the second half of the Holocene. Sedentary hunters and gatherers started to domesticate squash and sunflowers. Associated with the expansion of maize cultivation in the Mississippian period between AD 800 and 1100, significant forest clearings took place on the river floodplains. During this time, central settlements with up to 30,000 residences existed and the surrounding ridge and furrow fields extended to up to 30 ha. It is still open to question why these groups already declined in the 14/15th centuries already before the arrival of the Europeans. However, around AD 1540 the conquistador de Soto still reports extended fields with intensive cultivation of maize in the uplands of Northern Mississippi. Despite of this intensive land use by Native Americans, current research gives no indication that these activities had any significant impact on river channel form. Also, no clear evidence exists for distinct channel change occurring in response to any sort of middle Holocene Hypsithermal, Medieval warm period, or the Little Ice Age. We will present results of a project which aims to explore erosion forms, colluvial sediments and buried soils in selected 0-order and 1st-order watersheds in the southeastern USA in order to gain, solidify, and evaluate general data on soil erosion during the Native American land use period and its respective long-term effects on the environment. This will be achieved by 1) recording the stratigraphy of colluvial and alluvial sediments and buried soils, 2) mapping the extent of erosional and colluvial forms, 3) analyzing chemical and physical soil and sediment properties, 4) establishing chronological control using various dating techniques including radiocarbon and OSL dating, and 5) quantifying soil erosion using hillslope sediments. The

  3. Soil erosion assessment on hillslope of GCE using RUSLE model

    Indian Academy of Sciences (India)

    61

    based on the RUSLE model in the Geographical Information System (GIS) platform. ... process of soil erosion happens in two stages; the first stage involves the ..... deep or surface cover of undecayed residue; c) appreciable brush of 2 m height ..... Kanungo D and Sharma S 2014 Rainfall thresholds for prediction of shallow ...

  4. The Future Role of Information Technology in Erosion Modelling

    Science.gov (United States)

    Natural resources management and decision-making is a complex process requiring cooperation and communication among federal, state, and local stakeholders balancing biophysical and socio-economic concerns. Predicting soil erosion is common practice in natural resource management for assessing the e...

  5. Predicción de la erosión eólica potencial con el modelo EWEQ en dos suelos loesicos: efectos de las condiciones climáticas Wind erosion prediction with the EWEQ model in two loess soils: effects of climatic condition

    Directory of Open Access Journals (Sweden)

    Silvia Beatriz Aimar

    2011-12-01

    Full Text Available La erosión eólica potencial del suelo (EEP es un dato básico utilizado en varios modelos de predicción para calcular la erosión eólica de suelos agrícolas. El objetivo de este estudio fue cuantificar la EEP de un Haplustol y un Ustipsammente de la Región Semiárida Pampeana (RSP y compararla con las predicciones del modelo Ecuación de Erosión Eólica en Español (EWEQ, realizadas con diferentes factores climáticos (C. Se efectuaron mediciones de EEP a campo durante un año en ambos suelos, mantenidos sin cobertura y con mínima rugosidad. Los resultados indicaron que la EEP medida a campo fue mayor en el Ustipsammente (270 Mg ha-1 año-1 que en el Haplustol (40 Mg ha-1 año -1 , con una reducción en el espesor del horizonte de 21,3 y 3,1 mm, respectivamente. La erosión del Ustipsammente fue dos veces mayor en primavera-verano que en otoño-invierno. Este efecto no se observó en el Haplustol, debido a su menor desecamiento y mayores contenidos de humedad luego de las lluvias. La erosión del Haplustol, por desecarse más lentamente luego de una lluvia, fue más condicionada por las precipitaciones que la del Ustipsammente. Un 40% de la erosión de ambos suelos fue definida por la duración de las tormentas. Las tasas de erosión (EEP por unidad de tiempo, Qt se correlacionaron positivamente con la velocidad promedio del viento (V, ajustando a una función polinómica en ambos suelos. A la misma V, Qt fue siempre mayor en el Ustipsammente. La EEP calculada con la EWEQ, utilizando el factor C correspondiente al año de muestreo (30,3, fue la más semejante a la erosión medida a campo, aunque el modelo la subestimó en un 43% en el Haplustol y en un 18% en el Ustipsammente. La EWEQ deberá ofrecer al usuario distintos factores C para poder predecir EEP en escenarios climáticos variables.The potential wind erosion of a soil (EEP is a basic data for predicting wind erosion of agricultural soils in most wind erosion prediction models

  6. Oluvil Port Development Project

    DEFF Research Database (Denmark)

    Frigaard, Peter; Margheritini, Lucia

    Oluvil Port Development Project is the first development of a large port infrastructure in the entire eastern coastline of Sri Lanka. The project is supported by the Danish Foreign Ministry. Feasibility studies and detailed design studies were carried out by Lanka Hydraulic Institute Ltd during...... the years 1995 to 2003. The design was reviewed by COWI a/s. Construction of the port was started in 2008. MT Højgaard a/s acted as contractor. The outer breakwaters were constructed as first part of the project. During and after completion of the breakwaters a serious beach erosion and sand accumulation...... has been observed. Severe erosion is seen north of the harbour and some accumulation of sand is seen south of the harbour. On a sandy coastline like the one in Oluvil such erosion problems as observed are very typical. The report: Oluvil Port Development Project: Studies on Beach Erosion written...

  7. On the monitoring and prediction of flash floods in small and medium-sized catchments - the EXTRUSO project

    Science.gov (United States)

    Wiemann, Stefan; Eltner, Anette; Sardemann, Hannes; Spieler, Diana; Singer, Thomas; Thanh Luong, Thi; Janabi, Firas Al; Schütze, Niels; Bernard, Lars; Bernhofer, Christian; Maas, Hans-Gerd

    2017-04-01

    Flash floods regularly cause severe socio-economic damage worldwide. In parallel, climate change is very likely to increase the number of such events, due to an increasing frequency of extreme precipitation events (EASAC 2013). Whereas recent work primarily addresses the resilience of large catchment areas, the major impact of hydro-meteorological extremes caused by heavy precipitation is on small areas. Those are very difficult to observe and predict, due to sparse monitoring networks and only few means for hydro-meteorological modelling, especially in small catchment areas. The objective of the EXTRUSO project is to identify and implement appropriate means to close this gap by an interdisciplinary approach, combining comprehensive research expertise from meteorology, hydrology, photogrammetry and geoinformatics. The project targets innovative techniques for achieving spatio-temporal densified monitoring and simulations for the analysis, prediction and warning of local hydro-meteorological extreme events. The following four aspects are of particular interest: 1. The monitoring, analysis and combination of relevant hydro-meteorological parameters from various sources, including existing monitoring networks, ground radar, specific low-cost sensors and crowdsourcing. 2. The determination of relevant hydro-morphological parameters from different photogrammetric sensors (e.g. camera, laser scanner) and sensor platforms (e.g. UAV (unmanned aerial vehicle) and UWV (unmanned water vehicle)). 3. The continuous hydro-meteorological modelling of precipitation, soil moisture and water flows by means of conceptual and data-driven modelling. 4. The development of a collaborative, web-based service infrastructure as an information and communication point, especially in the case of an extreme event. There are three major applications for the planned information system: First, the warning of local extreme events for the population in potentially affected areas, second, the support

  8. GRECOS project. The use of genetics to predict the vascular recurrence after stroke

    Science.gov (United States)

    Fernández-Cadenas, Israel; Mendióroz, Maite; Giralt, Dolors; Nafria, Cristina; Garcia, Elena; Carrera, Caty; Gallego-Fabrega, Cristina; Domingues-Montanari, Sophie; Delgado, Pilar; Ribó, Marc; Castellanos, Mar; Martínez, Sergi; Freijo, Mari Mar; Jiménez-Conde, Jordi; Rubiera, Marta; Alvarez-Sabín, José; Molina, Carlos A.; Font, Maria Angels; Olivares, Marta Grau; Palomeras, Ernest; de la Ossa, Natalia Perez; Martinez-Zabaleta, Maite; Masjuan, Jaime; Moniche, Francisco; Canovas, David; Piñana, Carlos; Purroy, Francisco; Cocho, Dolores; Navas, Inma; Tejero, Carlos; Aymerich, Nuria; Cullell, Natalia; Muiño, Elena; Serena, Joaquín; Rubio, Francisco; Davalos, Antoni; Roquer, Jaume; Arenillas, Juan Francisco; Martí-Fábregas, Joan; Keene, Keith; Chen, Wei-Min; Worrall, Bradford; Sale, Michele; Arboix, Adrià; Krupinski, Jerzy; Montaner, Joan

    2017-01-01

    Background and Purpose Vascular recurrence occurs in 11% of patients during the first year after ischemic stroke (IS) or transient ischemic attack (TIA). Clinical scores do not predict the whole vascular recurrence risk, therefore we aimed to find genetic variants associated with recurrence that might improve the clinical predictive models in IS. Methods We analyzed 256 polymorphisms from 115 candidate genes in three patient cohorts comprising 4,482 IS or TIA patients. The discovery cohort was prospectively recruited and included 1,494 patients, 6.2% of them developed a new IS during the first year of follow-up. Replication analysis was performed in 2,988 patients using SNPlex or HumanOmni1-Quad technology. We generated a predictive model using Cox regression (GRECOS score), and generated risk groups using a classification tree method. Results The analyses revealed that rs1800801 in the MGP gene (HR: 1.33, p= 9×10−03), a gene related to artery calcification, was associated with new IS during the first year of follow-up. This polymorphism was replicated in a Spanish cohort (n=1.305), however it was not significantly associated in a North American cohort (n=1.683). The GRECOS score predicted new IS (p= 3.2×10−09) and could classify patients, from low risk of stroke recurrence (1.9%) to high risk (12.6%). Moreover, the addition of genetic risk factors to the GRECOS score improves the prediction compared to previous SPI-II score (p=0.03). Conclusions The use of genetics could be useful to estimate vascular recurrence risk after IS. Genetic variability in the MGP gene was associated with vascular recurrence in the Spanish population. PMID:28411264

  9. Effect of hard second-phase particles on the erosion resistance of model alloys

    International Nuclear Information System (INIS)

    Kosel, T.H.; Aptekar, S.S.

    1986-01-01

    The dependence of erosion rate on second phase volume fraction (SPVF) has been studied for Cu/Al/sub 2/O/sub 3/ and Cu/WC(W/sub 2/C) model alloys produced by pressing and sintering. The intention was to investigate the reasons for the poor contribution to erosion resistance made by large hard second phase particles (SPP) in other studies. The results show that for Cu/Al/sub 2/O/sub 3/ alloys, the erosion rate generally increased with SPVF, demonstrating a negative contribution to erosion resistance. This occurred despite the fact that the measured erosion rate of monolithic Al/sub 2/O/sub 3/ was lower by one to two orders of magnitude than that of the pure matrix. Changing from severe erosion with large erodent particles at high velocity to mild conditions with small erodent at low velocity caused a change from depression of the SPPs to protrusion from the surface, with some improvement of the relative erosion resistance compared to the pure matrix. For Cu/WC(W/sub 2/C) alloys, changing from severe to mild erosion conditions caused a change from an increase of erosion with SPVF to a decrease. The results are discussed in terms of the increased microfracture of the unsupported edges of the second phase particles compared to a flat single-phase surface. This edge is consistent with the results, and explains observations not predicted by existing theories for erosion of single-phase materials. A model is introduced which predicts a new averaging law for the erosion rate of a two-phase alloy in terms of erosion rates of its constituent phases

  10. Viewpoint: Sustainability of piñon-juniper ecosystems - A unifying perspective of soil erosion thresholds

    Science.gov (United States)

    Davenport, David W.; Breshears, D.D.; Wilcox, B.P.; Allen, Craig D.

    1998-01-01

    Many pinon-juniper ecosystem in the western U.S. are subject to accelerated erosion while others are undergoing little or no erosion. Controversy has developed over whether invading or encroaching pinon and juniper species are inherently harmful to rangeland ecosystems. We developed a conceptual model of soil erosion in pinon-jumper ecosystems that is consistent with both sides of the controversy and suggests that the diverse perspectives on this issue arise from threshold effects operating under very different site conditions. Soil erosion rate can be viewed as a function of (1) site erosion potential (SEP), determined by climate, geomorphology and soil erodibility; and (2) ground cover. Site erosion potential and cove act synergistically to determine soil erosion rates, as evident even from simple USLE predictions of erosion. In pinon-juniper ecosystem with high SEP, the erosion rate is highly sensitive to ground cover and can cross a threshold so that erosion increases dramatically in response to a small decrease in cover. The sensitivity of erosion rate to SEP and cover can be visualized as a cusp catastrophe surface on which changes may occur rapidly and irreversibly. The mechanisms associated with a rapid shift from low to high erosion rate can be illustrated using percolation theory to incorporate spatial, temporal, and scale-dependent patterns of water storage capacity on a hillslope. Percolation theory demonstrates how hillslope runoff can undergo a threshold response to a minor change in storage capacity. Our conceptual model suggests that pinion and juniper contribute to accelerated erosion only under a limited range of site conditions which, however, may exist over large areas.

  11. Auto consolidated cohesive sediments erosion

    International Nuclear Information System (INIS)

    Ternat, F.

    2007-02-01

    Pollutants and suspended matters of a river can accumulate into the sedimentary column. Once deposited, they are submitted to self-weight consolidation processes, ageing and burying, leading to an increase of their erosion resistance. Pollutant fluxes can be related to sedimentary fluxes, determined by threshold laws. In this work, an erosion threshold model is suggested by introducing a cohesion force into the usual force balance. A model of cohesion is developed on the basis of interactions between argillaceous cohesive particles (clays), particularly the Van der Waals force, whose parameterization is ensured by means of granulometry and porosity. Artificial erosion experiments were performed in a recirculating erosion flume with natural cored sediments where critical shear stress measurements were performed. Other analyses provided granulometry and porosity. The results obtained constitute a good database for the literature. The model is then applied to the experimental conditions and gives good agreement with measurements. An example of the accounting for self-weight consolidation processes is finally suggested, before finishing on a Mohr like diagram dedicated to soft cohesive sediment erosion. (author)

  12. Soil erosion measurement in Abruzzo (Italy): Comparison among different methodologies; Confronto di metodi per la valutazione dell`erosione del suolo: sintesi delle ricerche condotte dall`ENEA in alcune aree sperimentali dell`Abruzzo

    Energy Technology Data Exchange (ETDEWEB)

    Grauso, S [ENEA, Casaccia (Italy). Area Energia Ambiente e Salute

    1994-06-01

    In this report, preliminary results are discussed come out from the researches carried out with the aim to verify the reliability of some theoretical methods for the evaluation of soil erosion. The methods here put in comparision are based on the use of analytical relations and mathematical models, precisely: analytical relations between river suspension load and geomorphic parameters such as drainage density and hierarchical anomaly index; Wischmeyer`s equation (USLE, Universal Soil Loss Equation); CREAMS(Chemical, Runoff and Erosion from Agricultural Management Systems) model; WEEP(Water Erosion Prediction Project) model. The results obtained at the end of the first cycle of observations demonstrate that mathematical models are not yet perfectly got ready and need some adjustments. The best results, nearest to the in-field registered values, were those come out from the application of relations between suspension load and geomorphic parameters.

  13. Advancements in Hydrology and Erosion Process Understanding and Post-Fire Hydrologic and Erosion Model Development for Semi-Arid Landscapes

    Science.gov (United States)

    Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.

    2017-04-01

    Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.

  14. Development of new geoinformation methods for modelling and prediction of sea level change over different timescales - overview of the project

    Science.gov (United States)

    Niedzielski, T.; Włosińska, M.; Miziński, B.; Hewelt, M.; Migoń, P.; Kosek, W.; Priede, I. G.

    2012-04-01

    The poster aims to provide a broad scientific audience with a general overview of a project on sea level change modelling and prediction that has just commenced at the University of Wrocław, Poland. The initiative that the project fits, called the Homing Plus programme, is organised by the Foundation for Polish Science and financially supported by the European Union through the European Regional Development Fund and the Innovative Economy Programme. There are two key research objectives of the project that complement each other. First, emphasis is put on modern satellite altimetric gridded time series from the Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO) repository. Daily sea level anomaly maps, access to which in near-real time is courtesy of AVISO, are being steadily downloaded every day to our local server in Wroclaw, Poland. These data will be processed within a general framework of modelling and prediction of sea level change in short, medium and long term. Secondly, sea level change over geological time is scrutinised in order to cover very long time scales that go far beyond a history of altimetric and tide-gauge measurements. The aforementioned approaches comprise a few tasks that aim to solve the following detailed problems. Within the first one, our objective is to seek spatio-temporal dependencies in the gridded sea level anomaly time series. Subsequently, predictions that make use of such cross-correlations shall be derived, and near-real time service for automatic update with validation will be implemented. Concurrently, (i.e. apart from spatio-temporal dependencies and their use in the process of forecasting variable sea level topography), threshold models shall be utilised for predicting the El Niño/Southern Oscillation (ENSO) signal that is normally present in sea level anomaly time series of the equatorial Pacific. Within the second approach, however, the entirely different methods are proposed. Links between

  15. Soil erosion in a man-made landscape: the Mediterranean

    Science.gov (United States)

    Cerdà, A.; Ruiz Sinoga, J. D.; Cammeraat, L. H.

    2012-04-01

    the Mediterranean lands. The methods applied to measure or estimate the soil erosion should be improved to make them comparable. An agreement is necessary to decide the size of the plots, the material and equipment to be used and the future research topics. This research study is being supported by the the research project CGL2008-02879/BTE

  16. Evaluation of Different Topographic Corrections for Landsat TM Data by Prediction of Foliage Projective Cover (FPC in Topographically Complex Landscapes

    Directory of Open Access Journals (Sweden)

    Sisira Ediriweera

    2013-12-01

    Full Text Available The reflected radiance in topographically complex areas is severely affected by variations in topography; thus, topographic correction is considered a necessary pre-processing step when retrieving biophysical variables from these images. We assessed the performance of five topographic corrections: (i C correction (C, (ii Minnaert, (iii Sun Canopy Sensor (SCS, (iv SCS + C and (v the Processing Scheme for Standardised Surface Reflectance (PSSSR on the Landsat-5 Thematic Mapper (TM reflectance in the context of prediction of Foliage Projective Cover (FPC in hilly landscapes in north-eastern Australia. The performance of topographic corrections on the TM reflectance was assessed by (i visual comparison and (ii statistically comparing TM predicted FPC with ground measured FPC and LiDAR (Light Detection and Ranging-derived FPC estimates. In the majority of cases, the PSSSR method performed best in terms of eliminating topographic effects, providing the best relationship and lowest residual error when comparing ground measured FPC and LiDAR FPC with TM predicted FPC. The Minnaert, C and SCS + C showed the poorest performance. Finally, the use of TM surface reflectance, which includes atmospheric correction and broad Bidirectional Reflectance Distribution Function (BRDF effects, seemed to account for most topographic variation when predicting biophysical variables, such as FPC.

  17. Student nurse selection and predictability of academic success: The Multiple Mini Interview project.

    Science.gov (United States)

    Gale, Julia; Ooms, Ann; Grant, Robert; Paget, Kris; Marks-Maran, Di

    2016-05-01

    With recent reports of public enquiries into failure to care, universities are under pressure to ensure that candidates selected for undergraduate nursing programmes demonstrate academic potential as well as characteristics and values such as compassion, empathy and integrity. The Multiple Mini Interview (MMI) was used in one university as a way of ensuring that candidates had the appropriate numeracy and literacy skills as well as a range of communication, empathy, decision-making and problem-solving skills as well as ethical insights and integrity, initiative and team-work. To ascertain whether there is evidence of bias in MMIs (gender, age, nationality and location of secondary education) and to determine the extent to which the MMI is predictive of academic success in nursing. A longitudinal retrospective analysis of student demographics, MMI data and the assessment marks for years 1, 2 and 3. One university in southwest London. One cohort of students who commenced their programme in September 2011, including students in all four fields of nursing (adult, child, mental health and learning disability). Inferential statistics and a Bayesian Multilevel Model. MMI in conjunction with MMI numeracy test and MMI literacy test shows little or no bias in terms of ages, gender, nationality or location of secondary school education. Although MMI in conjunction with numeracy and literacy testing is predictive of academic success, it is only weakly predictive. The MMI used in conjunction with literacy and numeracy testing appears to be a successful technique for selecting candidates for nursing. However, other selection methods such as psychological profiling or testing of emotional intelligence may add to the extent to which selection methods are predictive of academic success on nursing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Piping and erosion in buffer and backfill materials. Current knowledge

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Sanden, Torbjoern

    2006-09-01

    The water inflow into the deposition holes and tunnels in a repository will mainly take place through fractures in the rock and will lead to that the buffer and backfill will be wetted and homogenised. But in general the buffer and backfill cannot absorb all water that runs through a fracture, which leads to that a water pressure will be generated in the fracture when the inflow is hindered. If the counter pressure and strength of the buffer or backfill is insufficiently high, piping and subsequent erosion may take place. The processes and consequences of piping and erosion have been studied in some projects and several laboratory test series in different scales have been carried through. This brief report describes these tests and the results and conclusions that have emerged. The knowledge of piping and erosion is insufficient today and additional studies are needed and running

  19. Determining long-term regional erosion rates using impact craters

    Science.gov (United States)

    Hergarten, Stefan; Kenkmann, Thomas

    2015-04-01

    More than 300,000 impact craters have been found on Mars, while the surface of Moon's highlands is even saturated with craters. In contrast, only 184 impact craters have been confirmed on Earth so far with only 125 of them exposed at the surface. The spatial distribution of these impact craters is highly inhomogeneous. Beside the large variation in the age of the crust, consumption of craters by erosion and burial by sediments are the main actors being responsible for the quite small and inhomogeneous crater record. In this study we present a novel approach to infer long-term average erosion rates at regional scales from the terrestrial crater inventory. The basic idea behind this approach is a dynamic equilibrium between the production of new craters and their consumption by erosion. It is assumed that each crater remains detectable until the total erosion after the impact exceeds a characteristic depth depending on the crater's diameter. Combining this model with the terrestrial crater production rate, i.e., the number of craters per unit area and time as a function of their diameter, allows for a prediction of the expected number of craters in a given region as a function of the erosion rate. Using the real crater inventory, this relationship can be inverted to determine the regional long-term erosion rate and its statistical uncertainty. A limitation by the finite age of the crust can also be taken into account. Applying the method to the Colorado Plateau and the Deccan Traps, both being regions with a distinct geological history, yields erosion rates in excellent agreement with those obtained by other, more laborious methods. However, these rates are formally exposed to large statistical uncertainties due to the small number of impact craters. As higher crater densities are related to lower erosion rates, smaller statistical errors can be expected when large regions in old parts of the crust are considered. Very low long-term erosion rates of less than 4

  20. Soil erosion in Slovene Istria

    Directory of Open Access Journals (Sweden)

    Matjaž Mikoš

    2009-12-01

    Full Text Available From the end of nineties of the 20th century, intense hydrologic and geomorphologic research is taking place in the Slovene Istria. As a part of this research also studies on soil erosion were undertaken in the period from 2005 to 2008. The field measurements were under taken onclosed 1m2 large erosion plots under three different land uses (on bare soils in an olive grove, on an overgrown meadow, in a forest, placed south of the Marezige village in the Rokava River basin.We show weekly measurements of surface erosion (interrill erosion for the period of 13 months (the end of March 2005 – the end of April 2006, as well as monthly and seasonal averages together with selected linear statistical correlations between soil erosion and weather parameters.From May 2005 to April 2006 the interrill erosion on bare soils in an olive grove with an inclination of 5.5° amounted to 9013 g/m2 (90 t/ha that corresponds to surface lowering rate of 8.5 mm/yr; on an overgrown meadow with an inclination of 9.4° it amounted to 168 g/m2 (1,68 t/ha that corresponds to surface lowering rate of 0.16 mm//yr; and in a forest with an inclination of 7.8° it amounted to 391 g/m2 (3,91 t/ha and in a forest with an inclination of 21.4° it amounted to 415 g/m2 (4,15 t/ha, respectively, that corresponds to surface lowering rate of 0.4 mm/yr.

  1. Estimativa da produção de sedimentos mediante uso de um modelo hidrossedimentológico acoplado a um SIG Sediment yield prediction through the use of a runoff-erosion model coupled to a GIS

    Directory of Open Access Journals (Sweden)

    Richarde M. da Silva

    2008-10-01

    Full Text Available O Kineros é um modelo hidrossedimentológico usado para se estimar a vazão e a produção de sedimentos em bacias urbanas e rurais. No presente trabalho, o modelo foi aplicado à bacia do rio Pirapama, localizada na zona litorânea do Estado de Pernambuco, cujos resultados foram acoplados a um SIG com o objetivo de identificar, temporal e espacialmente, os principais locais em que o processo de erosão foi mais atuante na bacia do rio Pirapama. O modelo foi calibrado com dados diários de 1990 a 2001 de dois postos pluviométricos. Através do acoplamento dos resultados da modelagem no SIG, foi possível a identificação das principais áreas susceptíveis ao processo erosivo. Os resultados da produção de sedimentos na bacia mostraram que os planos com maior produção produziram mais de 200 t ha-1 ano-1, perfazendo o total de 653.079 t, correspondentes a uma área de 67,87 km² (11,3% da área total da bacia revelando, assim, que grande parte da bacia é realmente susceptível ao processo de erosão. Este trabalho mostra que o modelo Kineros é viável para bacias maiores que 100 km² e o seu acoplamento ao SIG é de grande valia para a identificação e análise das principais áreas de produção de sedimentos na bacia deste rio podendo ser, assim, considerado ferramenta promissora para simulação da produção de sedimentos em bacias hidrográficas do nordeste brasileiro.Kineros is a runoff-erosion model used to compute runoff and sediment yield in urban and rural basins. In this paper, the model was applied to the Pirapama river basin, located in the coastal zone of the State of Pernambuco. The obtained results were linked to a GIS in order to temporally and spatially identify the areas susceptible to the erosion process within the Pirapama river basin. The model was calibrated with daily rainfall data from two raingauges for the period from 1990 to 2001. From the coupling of the modeling results into a GIS, it was possible to

  2. Performance of the operational high-resolution numerical weather predictions of the Daphne project

    Science.gov (United States)

    Tegoulias, Ioannis; Pytharoulis, Ioannis; Karacostas, Theodore; Kartsios, Stergios; Kotsopoulos, Stelios; Bampzelis, Dimitrios

    2015-04-01

    In the framework of the DAPHNE project, the Department of Meteorology and Climatology (http://meteo.geo.auth.gr) of the Aristotle University of Thessaloniki, Greece, utilizes the nonhydrostatic Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF-ARW) in order to produce high-resolution weather forecasts over Thessaly in central Greece. The aim of the DAPHNE project is to tackle the problem of drought in this area by means of Weather Modification. Cloud seeding assists the convective clouds to produce rain more efficiently or reduce hailstone size in favour of raindrops. The most favourable conditions for such a weather modification program in Thessaly occur in the period from March to October when convective clouds are triggered more frequently. Three model domains, using 2-way telescoping nesting, cover: i) Europe, the Mediterranean sea and northern Africa (D01), ii) Greece (D02) and iii) the wider region of Thessaly (D03; at selected periods) at horizontal grid-spacings of 15km, 5km and 1km, respectively. This research work intents to describe the atmospheric model setup and analyse its performance during a selected period of the operational phase of the project. The statistical evaluation of the high-resolution operational forecasts is performed using surface observations, gridded fields and radar data. Well established point verification methods combined with novel object based upon these methods, provide in depth analysis of the model skill. Spatial characteristics are adequately captured but a variable time lag between forecast and observation is noted. Acknowledgments: This research work has been co-financed by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness

  3. Uncertainty in soil carbon accounting due to unrecognized soil erosion.

    Science.gov (United States)

    Sanderman, Jonathan; Chappell, Adrian

    2013-01-01

    The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15-50% slower when an erosion rate of 15 t soil ha(-1)  yr(-1) was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3-1.0 t CO2  ha(-1)  yr(-1) . This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities. © 2012 Blackwell Publishing Ltd.

  4. Modelling soil erosion at European scale: towards harmonization and reproducibility

    Science.gov (United States)

    Bosco, C.; de Rigo, D.; Dewitte, O.; Poesen, J.; Panagos, P.

    2015-02-01

    Soil erosion by water is one of the most widespread forms of soil degradation. The loss of soil as a result of erosion can lead to decline in organic matter and nutrient contents, breakdown of soil structure and reduction of the water-holding capacity. Measuring soil loss across the whole landscape is impractical and thus research is needed to improve methods of estimating soil erosion with computational modelling, upon which integrated assessment and mitigation strategies may be based. Despite the efforts, the prediction value of existing models is still limited, especially at regional and continental scale, because a systematic knowledge of local climatological and soil parameters is often unavailable. A new approach for modelling soil erosion at regional scale is here proposed. It is based on the joint use of low-data-demanding models and innovative techniques for better estimating model inputs. The proposed modelling architecture has at its basis the semantic array programming paradigm and a strong effort towards computational reproducibility. An extended version of the Revised Universal Soil Loss Equation (RUSLE) has been implemented merging different empirical rainfall-erosivity equations within a climatic ensemble model and adding a new factor for a better consideration of soil stoniness within the model. Pan-European soil erosion rates by water have been estimated through the use of publicly available data sets and locally reliable empirical relationships. The accuracy of the results is corroborated by a visual plausibility check (63% of a random sample of grid cells are accurate, 83% at least moderately accurate, bootstrap p ≤ 0.05). A comparison with country-level statistics of pre-existing European soil erosion maps is also provided.

  5. EFFECTS OF SLOPE SHAPES ON SOIL EROSION

    Directory of Open Access Journals (Sweden)

    Hüseyin ŞENSOY, Şahin PALTA

    2009-01-01

    Full Text Available Water is one of the most important erosive forces. A great number of factors also play a role in erosion process and slope characteristic is also one of them. The steepness and length of the slope are important factors for runoff and soil erosion. Another slope factor that has an effect on erosion is the shape of the slope. Generally, different erosion and runoff characteristics exist in different slopes which can be classified as uniform, concave, convex and complex shape. In this study, the effects of slope shape on erosion are stated and emphasized by taking similar researches into consideration.

  6. Joint Applications Pilot of the National Climate Predictions and Projections Platform and the North Central Climate Science Center: Delivering climate projections on regional scales to support adaptation planning

    Science.gov (United States)

    Ray, A. J.; Ojima, D. S.; Morisette, J. T.

    2012-12-01

    The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in

  7. Water Erosion Prediction Using the Revised Universal Soil Loss Equation (RUSLE in a GIS Framework, Central Chile Estimación de la Erosión Hídrica Empleando la Ecuación Universal de Pérdida de Suelo Revisada (RUSLE y SIG en Chile Central

    Directory of Open Access Journals (Sweden)

    Carlos A Bonilla

    2010-03-01

    Full Text Available Soil erosion is a growing problem in Central Chile, particularly in coastal dry lands, where it can significantly decrease the productivity of rainfed agriculture and forestry. In this study, the Revised Universal Soil Loss Equation (RUSLE was integrated into a Geographic Information System (GIS, and used to evaluate the effects of different combinations of vegetative cover on soil erosion rates for Santo Domingo County in Central Chile. Implementing RUSLE in the GIS required a complete description of the county’s soils, climate, topography and current land use/land cover. This information was compiled in rasters of 25 x 25 m cells. RUSLE parameter values were assigned to each cell and annual soil loss estimates were generated on a cell by cell basis. Soil losses were estimated for the current and for three alternate scenarios of vegetative cover. Under current conditions, 39.7% of the county is predicted to have low erosion rates ( 1.1 t ha-1 yr-1. The remainder of the surface (10.2% is not subject to erosion. Under the recommended alternate scenario, 89.3% of the county is predicted to have low erosion rates, and no areas are affected by high soil loss, reducing soil erosion to a level that will not affect long term productivity. This paper describes how RUSLE was implemented in the GIS, and the methodology and equations used to evaluate the effects of the land use/land cover changes.La erosión hídrica es un problema creciente en la Zona Central de Chile, especialmente en el Secano Costero, donde reduce la productividad de los suelos agrícolas y forestales. En este trabajo se empleó la Ecuación Universal de Pérdida de Suelo Revisada (RUSLE integrada a un Sistema de Información Geográfica (GIS para evaluar el efecto de distintas combinaciones de cubierta vegetal en las tasas de erosión en la comuna de Santo Domingo, Chile. La implementación de RUSLE en el GIS requirió la caracterización de suelos, clima, relieve y uso actual del

  8. Development of Procedures for Assessing the Impact of Vocational Education Research and Development on Vocational Education (Project IMPACT). Volume 8--A Field Study of Predicting Impact of Research and Development Projects in Vocational and Technical Education.

    Science.gov (United States)

    Malhorta, Man Mohanlal

    As part of Project IMPACT's effort to identify and develop procedures for complying with the impact requirements of Public Law 94-482, a field study was conducted to identify and validate variables and their order of importance in predicting and evaluating impact of research and development (R&D) projects in vocational and technical education.…

  9. Prediction of optimal deployment projection for transcatheter aortic valve replacement: angiographic 3-dimensional reconstruction of the aortic root versus multidetector computed tomography.

    OpenAIRE

    Binder Ronald K; Leipsic Jonathon; Wood David; Moore Teri; Toggweiler Stefan; Willson Alex; Gurvitch Ronen; Freeman Melanie; Webb John G

    2012-01-01

    BACKGROUND Identifying the optimal fluoroscopic projection of the aortic valve is important for successful transcatheter aortic valve replacement (TAVR). Various imaging modalities including multidetector computed tomography (MDCT) have been proposed for prediction of the optimal deployment projection. We evaluated a method that provides 3 dimensional angiographic reconstructions (3DA) of the aortic root for prediction of the optimal deployment angle and compared it with MDCT. METHODS AND RES...

  10. CFD simulations of flow erosion and flow-induced deformation of needle valve: Effects of operation, structure and fluid parameters

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongjun, E-mail: ticky863@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China); State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Pan, Qian; Zhang, Wenli; Feng, Guang; Li, Xue [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China)

    2014-07-01

    Highlights: • A combined FSI–CFD and DPM computational method is used to investigate flow erosion and deformation of needle valve. • The numerical model is validated with the comparison of measured and predicted erosion rate. • Effects of operation, structure and fluid parameters on flow erosion and flow-induced deformation are discussed. • Particle diameter has the most significant effect on flow erosion. • Inlet rate has the most obvious effect on flow-induced deformation. - Abstract: A three-dimensional fluid–structure interaction (FSI) computational model coupling with a combined continuum and discrete model has been used to predict the flow erosion rate and flow-induced deformation of needle valve. Comparisons with measured data demonstrate good agreement with the predictions of erosion rate. The flow field distribution of gas-particle flow and the erosion rate and deformation of valve core are captured under different operating and structural conditions with different fluid parameters. The effects of inlet velocity, valve opening and inlet valve channel size, particle concentration, particle diameter and particle phase components are discussed in detail. The results indicate that valve tip has the most severe erosion and deformation, and flow field, erosion rate and deformation of valve are all sensitive to inlet condition changes, structural changes and fluid properties changes. The effect of particle diameter on erosion is the most significant, while the influence of inlet rate on deformation is the greatest one.

  11. Taxation of Controlled Foreign Companies in Context of the OECD/G20 Project on Base Erosion and Profit Shifting as well as the EU Proposal for the Anti-Tax Avoidance Directive – An Interim Nordic Assessment

    Directory of Open Access Journals (Sweden)

    Schmidt Peter Koerver

    2016-11-01

    Full Text Available Recently, the controlled foreign company (CFC rules have gained increased attention; as such, rules play an important role in the ongoing efforts of the OECD/G20 and the European Commission with respect to addressing base erosion and profit shifting (BEPS. In this context, the article revisits the CFC regimes of the Nordic countries in order to assess whether these regimes are in line with the recommendations from the OECD/G20 and to determine whether Sweden, Finland, and Denmark, as EU member states, will have to make amendments if the commission’s proposal for an Anti-Tax Avoidance Directive is adopted in its current form. It is concluded that the Nordic CFC regimes in many ways already are in line with the recommendations as well as the directive, but also that certain amendments have to be made.

  12. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project.

    Science.gov (United States)

    Alghamdi, Manal; Al-Mallah, Mouaz; Keteyian, Steven; Brawner, Clinton; Ehrman, Jonathan; Sakr, Sherif

    2017-01-01

    Machine learning is becoming a popular and important approach in the field of medical research. In this study, we investigate the relative performance of various machine learning methods such as Decision Tree, Naïve Bayes, Logistic Regression, Logistic Model Tree and Random Forests for predicting incident diabetes using medical records of cardiorespiratory fitness. In addition, we apply different techniques to uncover potential predictors of diabetes. This FIT project study used data of 32,555 patients who are free of any known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 5-year follow-up. At the completion of the fifth year, 5,099 of those patients have developed diabetes. The dataset contained 62 attributes classified into four categories: demographic characteristics, disease history, medication use history, and stress test vital signs. We developed an Ensembling-based predictive model using 13 attributes that were selected based on their clinical importance, Multiple Linear Regression, and Information Gain Ranking methods. The negative effect of the imbalance class of the constructed model was handled by Synthetic Minority Oversampling Technique (SMOTE). The overall performance of the predictive model classifier was improved by the Ensemble machine learning approach using the Vote method with three Decision Trees (Naïve Bayes Tree, Random Forest, and Logistic Model Tree) and achieved high accuracy of prediction (AUC = 0.92). The study shows the potential of ensembling and SMOTE approaches for predicting incident diabetes using cardiorespiratory fitness data.

  13. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT project.

    Directory of Open Access Journals (Sweden)

    Manal Alghamdi

    Full Text Available Machine learning is becoming a popular and important approach in the field of medical research. In this study, we investigate the relative performance of various machine learning methods such as Decision Tree, Naïve Bayes, Logistic Regression, Logistic Model Tree and Random Forests for predicting incident diabetes using medical records of cardiorespiratory fitness. In addition, we apply different techniques to uncover potential predictors of diabetes. This FIT project study used data of 32,555 patients who are free of any known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 5-year follow-up. At the completion of the fifth year, 5,099 of those patients have developed diabetes. The dataset contained 62 attributes classified into four categories: demographic characteristics, disease history, medication use history, and stress test vital signs. We developed an Ensembling-based predictive model using 13 attributes that were selected based on their clinical importance, Multiple Linear Regression, and Information Gain Ranking methods. The negative effect of the imbalance class of the constructed model was handled by Synthetic Minority Oversampling Technique (SMOTE. The overall performance of the predictive model classifier was improved by the Ensemble machine learning approach using the Vote method with three Decision Trees (Naïve Bayes Tree, Random Forest, and Logistic Model Tree and achieved high accuracy of prediction (AUC = 0.92. The study shows the potential of ensembling and SMOTE approaches for predicting incident diabetes using cardiorespiratory fitness data.

  14. Water Erosion in Different Slope Lengths on Bare Soil

    Directory of Open Access Journals (Sweden)

    Bárbara Bagio

    Full Text Available ABSTRACT Water erosion degrades the soil and contaminates the environment, and one influential factor on erosion is slope length. The aim of this study was to quantify losses of soil (SL and water (WL in a Humic Cambisol in a field experiment under natural rainfall conditions from July 4, 2014 to June 18, 2015 in individual events of 41 erosive rains in the Southern Plateau of Santa Catarina and to estimate soil losses through the USLE and RUSLE models. The treatments consisted of slope lengths of 11, 22, 33, and 44 m, with an average degree of slope of 8 %, on bare and uncropped soil that had been cultivated with corn prior to the study. At the end of the corn cycle, the stalk residue was removed from the surface, leaving the roots of the crop in the soil. Soil loss by water erosion is related linearly and positively to the increase in slope length in the span between 11 and 44 m. Soil losses were related to water losses and the Erosivity Index (EI30, while water losses were related to rain depth. Soil losses estimated by the USLE and RUSLE model showed lower values than the values observed experimentally in the field, especially the values estimated by the USLE. The values of factor L calculated for slope length of 11, 22, 33, and 44 m for the two versions (USLE and RUSLE of the soil loss prediction model showed satisfactory results in relation to the values of soil losses observed.

  15. Integrated spatial assessment of wind erosion risk in Hungary

    Directory of Open Access Journals (Sweden)

    L. Pásztor

    2016-11-01

    Full Text Available Wind erosion susceptibility of Hungarian soils was mapped on the national level integrating three factors of the complex phenomenon of deflation (physical soil features, wind characteristics, and land use and land cover. Results of wind tunnel experiments on erodibility of representative soil samples were used for the parametrization of a countrywide map of soil texture compiled for the upper 5 cm layer of soil, which resulted in a map representing threshold wind velocity exceedance. Average wind velocity was spatially estimated with 0.5′ resolution using the Meteorological Interpolation based on Surface Homogenised Data Basis (MISH method elaborated for the spatial interpolation of surface meteorological elements. The probability of threshold wind velocity exceedance was determined based on values predicted by the soil texture map at the grid locations. Ratio values were further interpolated to a finer 1 ha resolution using sand and silt content of the uppermost (0–5 cm layer of soil as spatial co-variables. Land cover was also taken into account, excluding areas that are not relevant to wind erosion (forests, water bodies, settlements, etc., to spatially assess the risk of wind erosion. According to the resulting map of wind erosion susceptibility, about 10 % of the total area of Hungary can be identified as susceptible to wind erosion. The map gives more detailed insight into the spatial distribution of wind-affected areas in Hungary compared to previous studies.

  16. A model for hydrolytic degradation and erosion of biodegradable polymers.

    Science.gov (United States)

    Sevim, Kevser; Pan, Jingzhe

    2018-01-15

    For aliphatic polyesters such as PLAs and PGAs, there is a strong interplay between the hydrolytic degradation and erosion - degradation leads to a critically low molecular weight at which erosion starts. This paper considers the underlying physical and chemical processes of hydrolytic degradation and erosion. Several kinetic mechanisms are incorporated into a mathematical model in an attempt to explain different behaviours of mass loss observed in experiments. In the combined model, autocatalytic hydrolysis, oligomer production and their diffusion are considered together with surface and interior erosion using a set of differential equations and Monte Carlo technique. Oligomer and drug diffusion are modelled using Fick's law with the diffusion coefficients dependent on porosity. The porosity is due to the formation of cavities which are a result of polymer erosion. The model can follow mass loss and drug release up to 100%, which cannot be explained using a simple reaction-diffusion. The model is applied to two case studies from the literature to demonstrate its validity. The case studies show that a critical molecular weight for the onset of polymer erosion and an incubation period for the polymer dissolution are two critical factors that need to be considered when predicting mass loss and drug release. In order to design bioresorbable implants, it is important to have a mathematical model to predict polymer degradation and corresponding drug release. However, very different behaviours of polymer degradation have been observed and there is no single model that can capture all these behaviours. For the first time, the model presented in this paper is capable of capture all these observed behaviours by switching on and off different underlying mechanisms. Unlike the existing reaction-diffusion models, the model presented here can follow the degradation and drug release all the way to the full disappearance of an implant. Crown Copyright © 2017. Published by

  17. Prediction of single-component NAPL behavior for the TEVES Project using T2VOC

    International Nuclear Information System (INIS)

    Webb, S.W.; Phelan, J.M.

    1995-01-01

    Detailed simulations have been performed for the TEVES (Thermal Enhanced Vapor Extraction System) Project using the TOUGH2 code considering air, water, and a single-component NAPL. A critical parameter varied in the simulations is the borehole vacuum which directly affects air flow through the system and indirectly influences soil temperatures and water and NAPL fluid masses. Contaminant migration from the heated zone into the unheated soil can occur if the borehole vacuum, or borehole flow rate, is not sufficient. Under these conditions, evaporation of liquids (water and NAPL) due to the heating can cause flow from the heated zone into the unheated soil. Insufficient air sweep may be indicated by a vapor dominated mass flow rate into the borehole, at least for the present configuration. Sufficient air flow through the heated zone must be provided to contain the contaminants within the heated zone

  18. Numerical Analysis of Soil Settlement Prediction and Its Application In Large-Scale Marine Reclamation Artificial Island Project

    Directory of Open Access Journals (Sweden)

    Zhao Jie

    2017-11-01

    Full Text Available In an artificial island construction project based on the large-scale marine reclamation land, the soil settlement is a key to affect the late safe operation of the whole field. To analyze the factors of the soil settlement in a marine reclamation project, the SEM method in the soil micro-structural analysis method is used to test and study six soil samples such as the representative silt, mucky silty clay, silty clay and clay in the area. The structural characteristics that affect the soil settlement are obtained by observing the SEM charts at different depths. By combining numerical calculation method of Terzaghi’s one-dimensional and Biot’s two-dimensional consolidation theory, the one-dimensional and two-dimensional creep models are established and the numerical calculation results of two consolidation theories are compared in order to predict the maximum settlement of the soils 100 years after completion. The analysis results indicate that the micro-structural characteristics are the essential factor to affect the settlement in this area. Based on numerical analysis of one-dimensional and two-dimensional settlement, the settlement law and trend obtained by two numerical analysis method is similar. The analysis of this paper can provide reference and guidance to the project related to the marine reclamation land.

  19. Preliminary results of 137 Cs activity in a soil erosion toposequence in cuenca (castilla la mancha, central spain)

    International Nuclear Information System (INIS)

    Bienes, R.; Alvarez, A.; Jimenez-Ballesta, R.

    2009-01-01

    The soil redistribution due to the conventional tillage practices represents a very severe process of soil erosion and degradation in Mediterranean agricultural lands. The existing methods for soil erosion assessment can be grouped into two main categories: erosion modelling and prediction methods and erosion measurement methods. The use of environmental radionuclides, in particular 1 37 Cs, overcomes many of the limitations associated with traditional approaches and has been shown as an effective way of studying erosion and deposition. Its determination and the study of the characters of soils in a sequence permits know the control of the erosion. The objective of this study was to determine the soil erosion rates using 1 37 Cs activities concentrations in a typical Mediterranean environment; the Chillaron basin (Cuenca, Castilla La Mancha, Spain). (Author) 9 refs.

  20. AERO: A Decision Support Tool for Wind Erosion Assessment in Rangelands and Croplands

    Science.gov (United States)

    Galloza, M.; Webb, N.; Herrick, J.

    2015-12-01

    Wind erosion is a key driver of global land degradation, with on- and off-site impacts on agricultural production, air quality, ecosystem services and climate. Measuring rates of wind erosion and dust emission across land use and land cover types is important for quantifying the impacts and identifying and testing practical management options. This process can be assisted by the application of predictive models, which can be a powerful tool for land management agencies. The Aeolian EROsion (AERO) model, a wind erosion and dust emission model interface provides access by non-expert land managers to a sophisticated wind erosion decision-support tool. AERO incorporates land surface processes and sediment transport equations from existing wind erosion models and was designed for application with available national long-term monitoring datasets (e.g. USDI BLM Assessment, Inventory and Monitoring, USDA NRCS Natural Resources Inventory) and monitoring protocols. Ongoing AERO model calibration and validation are supported by geographically diverse data on wind erosion rates and land surface conditions collected by the new National Wind Erosion Research Network. Here we present the new AERO interface, describe parameterization of the underpinning wind erosion model, and provide a summary of the model applications across agricultural lands and rangelands in the United States.

  1. Assessment of mercury erosion by surface water in Wanshan mercury mining area.

    Science.gov (United States)

    Dai, ZhiHui; Feng, Xinbin; Zhang, Chao; Shang, Lihai; Qiu, Guangle

    2013-08-01

    Soil erosion is a main cause of land degradation, and in its accelerated form is also one of the most serious ecological environmental problems. Moreover, there are few studies on migration of mercury (Hg) induced by soil erosion in seriously Hg-polluted districts. This paper selected Wanshan Hg mining area, SW China as the study area. Revised universal soil loss equation (RUSLE) and Geographic information system (GIS) methods were applied to calculate soil and Hg erosion and to classify soil erosion intensity. Our results show that the soil erosion rate can reach up to 600,884tkm(-2)yr(-1). Surfaces associated with very slight and extremely severe erosion include 76.6% of the entire land in Wanshan. Furthermore, the cumulative erosion rates in the area impacted by extremely severe erosion make up 90.5% of the total. On an annual basis, Hg surface erosion load was predicted to be 505kgyr(-1) and the corresponding mean migration flux of Hg was estimated to be 3.02kgkm(-2)yr(-1). The erosion loads of Hg resulting from farmland and meadow soil were 175 and 319kgyr(-1) respectively, which were enhanced compared to other landscape types due to the fact that they are generally located in the steep zones associated with significant reclamation. Contributing to establish a mass balance of Hg in Wanshan Hg mining area, this study supplies a dependable scientific basis for controlling soil and water erosion in the local ecosystems. Land use change is the most effective way for reducing Hg erosion load in Wanshan mining area. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Elevated temperature erosive wear of metallic materials

    International Nuclear Information System (INIS)

    Roy, Manish

    2006-01-01

    Solid particle erosion of metals and alloys at elevated temperature is governed by the nature of the interaction between erosion and oxidation, which, in turn, is determined by the thickness, pliability, morphology, adhesion characteristics and toughness of the oxide scale. The main objective of this paper is to critically review the present state of understanding of the elevated temperature erosion behaviour of metals and alloys. First of all, the erosion testing at elevated temperature is reviewed. This is followed by discussion of the essential features of elevated temperature erosion with special emphasis on microscopic observation, giving details of the erosion-oxidation (E-O) interaction mechanisms. The E-O interaction has been elaborated in the subsequent section. The E-O interaction includes E-O maps, analysis of transition criteria from one erosion mechanism to another mechanism and quantification of enhanced oxidation kinetics during erosion. Finally, the relevant areas for future studies are indicated. (topical review)

  3. Understanding Soil Erosion in Irrigated Agriculture

    OpenAIRE

    O' Schwankl, Lawrence J

    2006-01-01

    A soil's physical and chemical properties determine whether it is vulnerable to erosion, which can reduce soil quality and cause other problems besides. Learn the basics of identifying what type of erosion is affecting your land and what's causing it.

  4. Erosion of the first wall of Tokamaks

    International Nuclear Information System (INIS)

    Guseva, M.I.; Ionova, E.S.; Martynenko, Yu.V.

    1980-01-01

    An estimate of the rate of erosion of the wall due to sputtering and blistering requires knowledge of the fluxes and energies of the particles which go from the plasma to the wall, of the sputtering coefficients S, and of the erosion coefficients S* for blistering. The overall erosion coefficient is equal to the sum of the sputtering coefficient and the erosion coefficient for blistering. Here the T-20 Tokamak is examined as an example of a large-scale Tokamak. 18 refs

  5. Prediction of breast cancer risk using a machine learning approach embedded with a locality preserving projection algorithm

    Science.gov (United States)

    Heidari, Morteza; Zargari Khuzani, Abolfazl; Hollingsworth, Alan B.; Danala, Gopichandh; Mirniaharikandehei, Seyedehnafiseh; Qiu, Yuchen; Liu, Hong; Zheng, Bin

    2018-02-01

    In order to automatically identify a set of effective mammographic image features and build an optimal breast cancer risk stratification model, this study aims to investigate advantages of applying a machine learning approach embedded with a locally preserving projection (LPP) based feature combination and regeneration algorithm to predict short-term breast cancer risk. A dataset involving negative mammograms acquired from 500 women was assembled. This dataset was divided into two age-matched classes of 250 high risk cases in which cancer was detected in the next subsequent mammography screening and 250 low risk cases, which remained negative. First, a computer-aided image processing scheme was applied to segment fibro-glandular tissue depicted on mammograms and initially compute 44 features related to the bilateral asymmetry of mammographic tissue density distribution between left and right breasts. Next, a multi-feature fusion based machine learning classifier was built to predict the risk of cancer detection in the next mammography screening. A leave-one-case-out (LOCO) cross-validation method was applied to train and test the machine learning classifier embedded with a LLP algorithm, which generated a new operational vector with 4 features using a maximal variance approach in each LOCO process. Results showed a 9.7% increase in risk prediction accuracy when using this LPP-embedded machine learning approach. An increased trend of adjusted odds ratios was also detected in which odds ratios increased from 1.0 to 11.2. This study demonstrated that applying the LPP algorithm effectively reduced feature dimensionality, and yielded higher and potentially more robust performance in predicting short-term breast cancer risk.

  6. Soil Erosion. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  7. Natural and anthropogenic rates of soil erosion

    Science.gov (United States)

    Regions of land that are brought into crop production from native vegetation typically undergo a period of soil erosion instability, and long term erosion rates are greater than for natural lands as long as the land continues being used for crop production. Average rates of soil erosion under natur...

  8. Soil erosion in humid regions: a review

    Science.gov (United States)

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover

    2015-01-01

    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  9. Contrasting Modern and 10Be- derived erosion rates for the Southern Betic Cordillera, Spain

    Science.gov (United States)

    Bellin, N.; Vanacker, V.; Kubik, P.

    2012-04-01

    In Europe, Southeast Spain was identified as one of the regions with major treat of desertification in the context of future land use and climate change. During the last years, significant progress has been made to understand spatial patterns of modern erosion rates in these semi-arid degraded environments. Numerous European projects have contributed to the collection of modern erosion data at different spatial scales for Southeast Spain. However, these data are rarely analysed in the context of long-term changes in vegetation, climate and human occupation. In this paper, we present Modern and Holocene denudation rates for small river basins (1 to 10 km2) located in the Spanish Betic Cordillera. Long-term erosion data were derived from cosmogenic nuclide analyses of river-borne sediment. Modern erosion data were quantified through analysis of sediment deposition volumes behind check dams, and represent average erosion rates over the last 10 to 40 years. Modern erosion rates are surprisingly low (mean erosion rate = 0.048 mm y-1; n=36). They indicate that the steep, sparsely vegetated hillslopes in the Betic Cordillera cannot directly be associated with high erosion rates. 10Be -derived erosion rates integrate over the last 37500 to 3500 years, and are roughly of the same magnitude. They range from 0.013 to 0.243 mm y-1 (mean denudation rate = 0.062 mm y-1 ± 0.054; n=20). Our data suggest that the modern erosion rates are similar to the long-term erosion rates in this area. This result is in contrast with the numerous reports on human-accelerated modern erosion rates for Southeast Spain. Interestingly, our new data on long-term erosion rates show a clear spatial pattern, with higher erosion rates in the Sierra Cabrera and lower erosion rates in Sierra de las Estancias, and Sierra Torrecilla. Preliminary geomorphometric analyses suggest that the spatial variation that we observe in long-term erosion rates is related to the gradient in uplift rates of the Betic

  10. Soil Erosion Risk Assessment in Uganda

    Directory of Open Access Journals (Sweden)

    Fidele Karamage

    2017-02-01

    Full Text Available Land use without adequate soil erosion control measures is continuously increasing the risk of soil erosion by water mainly in developing tropical countries. These countries are prone to environmental disturbance due to high population growth and high rainfall intensity. The aim of this study is to assess the state of soil erosion by water in Uganda at national and district levels, for various land cover and land use (LCLU types, in protected areas as well to predict the impact of support practices on soil loss reduction. Predictions obtained using the Revised Universal Soil Loss Equation (RUSLE model indicated that the mean rate of soil loss risk in Uganda’s erosion‐prone lands was 3.2 t∙ha−1∙y−1, resulting in a total annual soil loss of about 62 million tons in 2014. About 39% of the country’s erosion‐prone lands were comprised of unsustainable mean soil loss rates >1 t∙ha−1∙y−1. Out of 112 districts in Uganda, 66 districts were found to have unsustainable estimated soil loss rates >1 t∙ha−1∙y−1. Six districts in Uganda were found to have mean annual soil loss rates of >10 t∙ha−1∙y−1: Bududa (46.3 t∙ha−1∙y−1, Kasese (37.5 t∙ha−1∙y−1, Bundibugyo (28.9 t∙ha−1∙y−1, Bulambuli (20.9 t∙ha−1∙y−1, Sironko (14.6 t∙ha−1∙y−1 and Kotido (12.5 t∙ha−1∙y−1. Among the LCLU types, the highest soil loss rates of 11 t∙ha−1∙y−1 and 10.6 t∙ha−1∙y−1 were found in moderate natural forest and dense natural forest, respectively, mainly due to their locations in highland areas characterized by steep slopes ranging between 16% to 21% and their high rainfall intensity, ranging from 1255 mm∙y−1 to 1292 mm∙y−1. Only five protected areas in Uganda were found to have high mean estimated mean soil loss rates >10 t∙ha−1∙y−1: Rwenzori Mountains (142.94 t∙ha−1∙y−1, Mount Elgon (33.81 t∙ha−1∙y−1, Bokora corridor (12.13 t∙ha−1∙y−1

  11. Prediction of optimal deployment projection for transcatheter aortic valve replacement: angiographic 3-dimensional reconstruction of the aortic root versus multidetector computed tomography.

    Science.gov (United States)

    Binder, Ronald K; Leipsic, Jonathon; Wood, David; Moore, Teri; Toggweiler, Stefan; Willson, Alex; Gurvitch, Ronen; Freeman, Melanie; Webb, John G

    2012-04-01

    Identifying the optimal fluoroscopic projection of the aortic valve is important for successful transcatheter aortic valve replacement (TAVR). Various imaging modalities, including multidetector computed tomography (MDCT), have been proposed for prediction of the optimal deployment projection. We evaluated a method that provides 3-dimensional angiographic reconstructions (3DA) of the aortic root for prediction of the optimal deployment angle and compared it with MDCT. Forty patients undergoing transfemoral TAVR at St Paul's Hospital, Vancouver, Canada, were evaluated. All underwent preimplant 3DA and 68% underwent preimplant MDCT. Three-dimensional angiographic reconstructions were generated from images of a C-arm rotational aortic root angiogram during breath-hold, rapid ventricular pacing, and injection of 32 mL contrast medium at 8 mL/s. Two independent operators prospectively predicted perpendicular valve projections. The implant angle was chosen at the discretion of the physician performing TAVR. The angles from 3DA, from MDCT, the implant angle, and the postdeployment perpendicular prosthesis view were compared. The shortest distance from the postdeployment perpendicular prosthesis projection to the regression line of predicted perpendicular projections was calculated. All but 1 patient had adequate image quality for reproducible angle predictions. There was a significant correlation between 3DA and MDCT for prediction of perpendicular valve projections (r=0.682, Pregression line of predicted angles to the postdeployment prosthesis view was 5.1±4.6° for 3DA and 7.9±4.9° for MDCT (P=0.01). Three-dimensional angiographic reconstructions and MDCT are safe, practical, and accurate imaging modalities for identifying the optimal perpendicular valve deployment projection during TAVR.

  12. Longitudinal and postural changes of blood pressure predict dementia: the Malmö Preventive Project.

    Science.gov (United States)

    Holm, Hannes; Nägga, Katarina; Nilsson, Erik D; Melander, Olle; Minthon, Lennart; Bachus, Erasmus; Fedorowski, Artur; Magnusson, Martin

    2017-04-01

    The role of blood pressure (BP) changes in dementia is debatable. We aimed to analyse how resting and postural BP changes relate to incident dementia over a long-term follow-up. In the prospective population-based Malmö Preventive Project, 18,240 study participants (mean age: 45 ± 7 years, 63% male) were examined between 1974 and 1992 with resting and standing BP measurement, and re-examined between 2002 and 2006 at mean age of 68 ± 6 years with resting BP. A total of 428 participants (2.3%) were diagnosed with dementia through Dec 31, 2009. The association of resting and postural BP changes with risk of dementia was studied using multivariable-adjusted Cox regression models controlling for traditional risk factors. Diastolic BP (DBP) decrease on standing indicated higher risk of dementia [Hazard ratio (HR) per 10 mmHg: 1.22; 95% confidence interval (CI) 1.01-1.44, p = 0.036], which was mainly driven by increased risk in normotensive individuals. Higher systolic (SBP) and diastolic BP at re-examination was associated with lower risk of dementia (HR per 10 mmHg: 0.94; 95% CI 0.89-0.99, p = 0.011; and 0.87; 0.78-0.96, p = 0.006, respectively). Extreme decrease in SBP/DBP between baseline and re-examination (4th quartile; -7 ± 12/-15 ± 7 mmHg, respectively) indicated higher risk of dementia (HR 1.46; 95% CI 1.11-1.93, p = 0.008, and 1.54; 95% CI 1.14-2.08, p = 0.005; respectively) compared with reference group characterised by pronounced BP increase over the same period (1st quartile; +44 ± 13/+15 ± 7 mmHg). Diastolic BP decrease on standing in the middle age, decline in BP between middle-and advanced age, and lower BP in advanced age are independent risk factors of developing dementia.

  13. Estimating erosion in a riverine watershed: Bayou Liberty-Tchefuncta River in Louisiana.

    Science.gov (United States)

    Martin, August; Gunter, James T; Regens, James L

    2003-01-01

    GOAL, SCOPE, BACKGROUND: Sheet erosion from agricultural, forest and urban lands may increase stream sediment loads as well as transport other pollutants that adversely affect water quality, reduce agricultural and forest production, and increase infrastructure maintenance costs. This study uses spatial analysis techniques and a numerical modeling approach to predict areas with the greatest sheet erosion potential given different soils disturbance scenarios. A Geographic Information System (GIS) and the Universal Soil Loss Equation (USLE) were used to estimate sheet erosion from 0.64 ha parcels of land within the watershed. The Soil Survey of St. Tammany Parish, Louisiana was digitized, required soil attributes entered into the GIS database, and slope factors determined for each 80 x 80 meter parcel in the watershed. The GIS/USLE model used series-specific erosion K factors, a rainfall factor of 89, and a GIS database of scenario-driven cropping and erosion control practice factors to estimate potential soil loss due to sheet erosion. A general trend of increased potential sheet erosion occurred for all land use categories (urban, agriculture/grasslands, forests) as soil disturbance increases from cropping, logging and construction activities. Modeling indicated that rapidly growing urban areas have the greatest potential for sheet erosion. Evergreen and mixed forests (production forest) had lower sheet erosion potentials; with deciduous forests (mostly riparian) having the least sheet erosion potential. Erosion estimates from construction activities may be overestimated because of the value chosen for the erosion control practice factor. This study illustrates the ease with which GIS can be integrated with the Universal Soil Loss Equation to identify areas with high sheet erosion potential for large scale management and policy decision making. The GIS/USLE modeling approach used in this study offers a quick and inexpensive tool for estimating sheet erosion within

  14. Preventing erosion at pipeline crossings of watercourses

    International Nuclear Information System (INIS)

    Sawatsky, L.; Arnold, G.

    1997-01-01

    Watercourses are naturally vulnerable to erosion but the risk is particularly acute after sub-soil and armour materials have been disturbed by trenching and backfilling during construction. Various types of erosion (river scour, river bed, river channel bed and river bank ) and the progressive removal of pipeline cover resulting from erosion were discussed. Methods of estimating the risk of progressive erosion, river avulsions and beaver dam scour, and methods of mitigating erosion at pipeline crossings such as deep burial, proper siting, conventional armouring, and a combination of bank toe protection, and upper bank vegetation cover, were described

  15. Erosivity factor in the Universal Soil Loss Equation estimated from Finnish rainfall data

    Directory of Open Access Journals (Sweden)

    Maximilian Posch

    1993-07-01

    Full Text Available Continuous rainfall data recorded for many years at 8 stations in Finland were used to estimate rainfall erosivity, a quantity needed for soil loss predictions with the Universal Soil Loss Equation (USLE. The obtained erosivity values were then used to determine the 2 parameters of a power-law function describing the relationship between daily precipitation and erosivity. This function is of importance in erosion modeling at locations where no breakpoint rainfall data are available. The parameters of the power-law were estimated both by linear regression of the log-transformed data and by non-linear least-square fitting of the original data. Results indicate a considerable seasonal (monthly variation of the erosivity, whereas the spatial variation over Finland is rather small.

  16. Constructing Predictive Estimates for Worker Exposure to Radioactivity During Decommissioning: Analysis of Completed Decommissioning Projects - Master Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Dettmers, Dana Lee; Eide, Steven Arvid

    2002-10-01

    An analysis of completed decommissioning projects is used to construct predictive estimates for worker exposure to radioactivity during decommissioning activities. The preferred organizational method for the completed decommissioning project data is to divide the data by type of facility, whether decommissioning was performed on part of the facility or the complete facility, and the level of radiation within the facility prior to decommissioning (low, medium, or high). Additional data analysis shows that there is not a downward trend in worker exposure data over time. Also, the use of a standard estimate for worker exposure to radioactivity may be a best estimate for low complete storage, high partial storage, and medium reactor facilities; a conservative estimate for some low level of facility radiation facilities (reactor complete, research complete, pits/ponds, other), medium partial process facilities, and high complete research facilities; and an underestimate for the remaining facilities. Limited data are available to compare different decommissioning alternatives, so the available data are reported and no conclusions can been drawn. It is recommended that all DOE sites and the NRC use a similar method to document worker hours, worker exposure to radiation (person-rem), and standard industrial accidents, injuries, and deaths for all completed decommissioning activities.

  17. Convergence on the Prediction of Ice Particle Mass and Projected Area in Ice Clouds

    Science.gov (United States)

    Mitchell, D. L.

    2013-12-01

    Ice particle mass- and area-dimensional power law (henceforth m-D and A-D) relationships are building-blocks for formulating microphysical processes and optical properties in cloud and climate models, and they are critical for ice cloud remote sensing algorithms, affecting the retrieval accuracy. They can be estimated by (1) directly measuring the sizes, masses and areas of individual ice particles at ground-level and (2) using aircraft probes to simultaneously measure the ice water content (IWC) and ice particle size distribution. A third indirect method is to use observations from method 1 to develop an m-A relationship representing mean conditions in ice clouds. Owing to a tighter correlation (relative to m-D data), this m-A relationship can be used to estimate m from aircraft probe measurements of A. This has the advantage of estimating m at small sizes, down to 10 μm using the 2D-Sterio probe. In this way, 2D-S measurements of maximum dimension D can be related to corresponding estimates of m to develop ice cloud type and temperature dependent m-D expressions. However, these expressions are no longer linear in log-log space, but are slowly varying curves covering most of the size range of natural ice particles. This work compares all three of the above methods and demonstrates close agreement between them. Regarding (1), 4869 ice particles and corresponding melted hemispheres were measured during a field campaign to obtain D and m. Selecting only those unrimed habits that formed between -20°C and -40°C, the mean mass values for selected size intervals are within 35% of the corresponding masses predicted by the Method 3 curve based on a similar temperature range. Moreover, the most recent m-D expression based on Method 2 differs by no more than 50% with the m-D curve from Method 3. Method 3 appears to be the most accurate over the observed ice particle size range (10-4000 μm). An m-D/A-D scheme was developed by which self-consistent m-D and A-D power laws

  18. Soil Erosion Threatens Food Production

    Directory of Open Access Journals (Sweden)

    Michael Burgess

    2013-08-01

    Full Text Available Since humans worldwide obtain more than 99.7% of their food (calories from the land and less than 0.3% from the oceans and aquatic ecosystems, preserving cropland and maintaining soil fertility should be of the highest importance to human welfare. Soil erosion is one of the most serious threats facing world food production. Each year about 10 million ha of cropland are lost due to soil erosion, thus reducing the cropland available for world food production. The loss of cropland is a serious problem because the World Health Organization and the Food and Agricultural Organization report that two-thirds of the world population is malnourished. Overall, soil is being lost from agricultural areas 10 to 40 times faster than the rate of soil formation imperiling humanity’s food security.

  19. IMPACT OF DIFFERENT TOPOGRAPHIC CORRECTIONS ON PREDICTION ACCURACY OF FOLIAGE PROJECTIVE COVER (FPC IN A TOPOGRAPHICALLY COMPLEX TERRAIN

    Directory of Open Access Journals (Sweden)

    S. Ediriweera

    2012-07-01

    Full Text Available Quantitative retrieval of land surface biological parameters (e.g. foliage projective cover [FPC] and Leaf Area Index is crucial for forest management, ecosystem modelling, and global change monitoring applications. Currently, remote sensing is a widely adopted method for rapid estimation of surface biological parameters in a landscape scale. Topographic correction is a necessary pre-processing step in the remote sensing application for topographically complex terrain. Selection of a suitable topographic correction method on remotely sensed spectral information is still an unresolved problem. The purpose of this study is to assess the impact of topographic corrections on the prediction of FPC in hilly terrain using an established regression model. Five established topographic corrections [C, Minnaert, SCS, SCS+C and processing scheme for standardised surface reflectance (PSSSR] were evaluated on Landsat TM5 acquired under low and high sun angles in closed canopied subtropical rainforest and eucalyptus dominated open canopied forest, north-eastern Australia. The effectiveness of methods at normalizing topographic influence, preserving biophysical spectral information, and internal data variability were assessed by statistical analysis and by comparing field collected FPC data. The results of statistical analyses show that SCS+C and PSSSR perform significantly better than other corrections, which were on less overcorrected areas of faintly illuminated slopes. However, the best relationship between FPC and Landsat spectral responses was obtained with the PSSSR by producing the least residual error. The SCS correction method was poor for correction of topographic effect in predicting FPC in topographically complex terrain.

  20. Applying a machine learning model using a locally preserving projection based feature regeneration algorithm to predict breast cancer risk

    Science.gov (United States)

    Heidari, Morteza; Zargari Khuzani, Abolfazl; Danala, Gopichandh; Mirniaharikandehei, Seyedehnafiseh; Qian, Wei; Zheng, Bin

    2018-03-01

    Both conventional and deep machine learning has been used to develop decision-support tools applied in medical imaging informatics. In order to take advantages of both conventional and deep learning approach, this study aims to investigate feasibility of applying a locally preserving projection (LPP) based feature regeneration algorithm to build a new machine learning classifier model to predict short-term breast cancer risk. First, a computer-aided image processing scheme was used to segment and quantify breast fibro-glandular tissue volume. Next, initially computed 44 image features related to the bilateral mammographic tissue density asymmetry were extracted. Then, an LLP-based feature combination method was applied to regenerate a new operational feature vector using a maximal variance approach. Last, a k-nearest neighborhood (KNN) algorithm based machine learning classifier using the LPP-generated new feature vectors was developed to predict breast cancer risk. A testing dataset involving negative mammograms acquired from 500 women was used. Among them, 250 were positive and 250 remained negative in the next subsequent mammography screening. Applying to this dataset, LLP-generated feature vector reduced the number of features from 44 to 4. Using a leave-onecase-out validation method, area under ROC curve produced by the KNN classifier significantly increased from 0.62 to 0.68 (p breast cancer detected in the next subsequent mammography screening.

  1. On inhibition of dental erosion.

    Science.gov (United States)

    Rölla, Gunnar; Jonski, Grazyna; Saxegaard, Erik

    2013-11-01

    To examine the erosion-inhibiting effect of different concentrations of hydrofluoric acid. Thirty-six human molars were individually treated with 10 ml of 0.1 M citric acid for 30 min (Etch 1), acid was collected and stored until analysis. The teeth were randomly divided into six groups and then individually treated with 10 ml of one of six dilutions (from 0.1-1%) of hydrofluoric acid. The teeth were then again treated with citric acid (Etch 2). The individual acid samples from Etch 1 and 2 were analyzed for calcium by flame atomic absorption spectroscopy and difference in calcium loss was calculated. The highest erosion inhibiting effect was obtained in groups with the highest concentrations of hydrofluoric acid, where the pH was lowest, below pKa of 3.17, thus the hydrofluoric acids being mainly in an undissociated state. Diluted hydrofluoric acid is present in aqueous solution of SnF2 and TiF4 (which are known to inhibit dental erosion): SnF2 + 3H2O = Sn(OH)2 + 2HF + H2O and TiF4 + 5H2O = Ti(OH)4 + 4HF + H2O. It is also known that pure, diluted hydrofluoric acid can inhibit dental erosion. Teeth treated with hydrofluoric acid are covered by a layer of CaF2-like mineral. This mineral is acid resistant at pH acid resistant mineral, initiated by tooth enamel treatment with hydrofluoric acid. Hydrofluoric acid is different in having fluoride as a conjugated base, which provides this acid with unique properties.

  2. Erosive forms in rivers systems

    International Nuclear Information System (INIS)

    Una Alvarez, E. de; Vidal Romani, J. R.; Rodriguez Martinez-Conde, R.

    2009-01-01

    The purpose of this work is to analyze the geomorphological meaning of the concepts of stability/change and to study its influence on a fluvial erosion system. Different cases of fluvial potholes in Galicia (NW of the Iberian Peninsula) are considered. The work conclusions refer to the nature of the process and its morphological evolution in order to advance towards later contributions with respect of this type of systems. (Author) 14 refs.

  3. The eTOX Data-Sharing Project to Advance in Silico Drug-Induced Toxicity Prediction

    Directory of Open Access Journals (Sweden)

    Montserrat Cases

    2014-11-01

    Full Text Available The high-quality in vivo preclinical safety data produced by the pharmaceutical industry during drug development, which follows numerous strict guidelines, are mostly not available in the public domain. These safety data are sometimes published as a condensed summary for the few compounds that reach the market, but the majority of studies are never made public and are often difficult to access in an automated way, even sometimes within the owning company itself. It is evident from many academic and industrial examples, that useful data mining and model development requires large and representative data sets and careful curation of the collected data. In 2010, under the auspices of the Innovative Medicines Initiative, the eTOX project started with the objective of extracting and sharing preclinical study data from paper or pdf archives of toxicology departments of the 13 participating pharmaceutical companies and using such data for establishing a detailed, well-curated database, which could then serve as source for read-across approaches (early assessment of the potential toxicity of a drug candidate by comparison of similar structure and/or effects and training of predictive models. The paper describes the efforts undertaken to allow effective data sharing intellectual property (IP protection and set up of adequate controlled vocabularies and to establish the database (currently with over 4000 studies contributed by the pharma companies corresponding to more than 1400 compounds. In addition, the status of predictive models building and some specific features of the eTOX predictive system (eTOXsys are presented as decision support knowledge-based tools for drug development process at an early stage.

  4. The Impact of Climate Change in Rainfall Erosivity Index on Humid Mudstone Area

    Science.gov (United States)

    Yang, Ci-Jian; Lin, Jiun-Chuan

    2017-04-01

    It has been quite often pointed out in many relevant studies that climate change may result in negative impacts on soil erosion. Then, humid mudstone area is highly susceptible to climate change. Taiwan has extreme erosion in badland area, with annual precipitation over 2000 mm/y which is a considerably 3 times higher than other badland areas around the world, and with around 9-13 cm/y in denudation rate. This is the reason why the Erren River, a badland dominated basin has the highest mean sediment yield in the world, over 105 t km2 y. This study aims to know how the climate change would affect soil erosion from the source in the Erren River catchment. Firstly, the data of hourly precipitation from 1992 to 2016 are used to establish the regression between rainfall erosivity index (R, one of component for USLE) and precipitation. Secondly, using the 10 climate change models (provide form IPCC AR5) simulates the changes of monthly precipitation in different scenario from 2017 to 2216, and then over 200 years prediction R values can be use to describe the tendency of soil erosion in the future. The results show that (1) the relationship between rainfall erosion index and precipitation has high correction (>0.85) during 1992-2016. (2) From 2017 to 2216, 7 scenarios show that annual rainfall erosion index will increase over 2-18%. In contrast, the others will decrease over 7-14%. Overall, the variations of annual rainfall erosion index fall in the range of -14 to 18%, but it is important to pay attention to the variation of annual rainfall erosion index in extreme years. These fall in the range of -34 to 239%. This explains the extremity of soil erosion will occur easily in the future. Keywords: Climate Change, Mudstone, Rainfall Erosivity Index, IPCC AR5

  5. Data Needs for Erosion and Tritium Retention in Beryllium Surfaces

    International Nuclear Information System (INIS)

    Braams, B.J.

    2011-07-01

    A Consultants' Meeting was held at IAEA Headquarters 30-31 May 2011 with the aim to provide advice about the scope and aims of a planned IAEA coordinated research project on erosion and tritium retention in beryllium plasma-facing materials and about other activities of the A+M Data Unit in the area of plasma interaction with beryllium surfaces. The present report contains the proceedings, recommendations and conclusions of that Consultants' Meeting. (author)

  6. Anthropogenic changes and environmental degradation in pre-Hispanic and post-Colonial periods: soil erosion modelled with WEPP during Late Holocene in Teotihuacán Valley (central Mexico)

    Science.gov (United States)

    Lourdes González-Arqueros, M.; Mendoza Cantú, Manuel E.

    2015-04-01

    Land use changes and support practices are a worldwide significant issue in soil erosion and subsequently, land degradation. Anthropogenic changes, along different periods of the history in the last 2000 years in the Valley of Teotihuacan (central Mexico), highlight that soil erosion varies depending on how the management and the intensity of soil use is handled, considering the soils as a main resource. As a part of a broader effort to reconstruct the erosion dynamics in the Teotihuacán Valley through geoarchaeological approaches, this study apply a process-based watershed hydrology and upland erosion model, Water Erosion Prediction Project (WEPP). This research aims to contribute with insights through modelling and to recreate soil erosion and sedimentation dynamics in several historical periods with different environmental and anthropogenic scenarios. The Geo-spatial interface for WEPP (GeoWEPP) was used to characterize location of detachment, depositions and erosion predicted on the profile through time, based on current and hypothetical reconstructed conditions in the watershed. Climate, topography, soil and land use were used as inputs for the WEPP model to estimate runoff fluxes, soil loss rates, and sediment delivery ratio (SDR) for three historical scenarios: current period, reconstructed Teotihuacán period (AD 1-650), and reconstructed Aztec period (AD 1325-1520). Over a simulated and stablished timeframe for those social periods, the runoff, soil loss rate and SDR were estimated to be greater during the Aztec period. We assume that in general the climate conditions for this period were wetter, compared with present, in agreement with several authors that proposed climate reconstructions for the center of Mexico. It is also highlighted that support practices were more effective in this period. The next period with higher values is the current one, and fewer rates are estimated for the Teotihuacán period. This comparison release new arguments in the

  7. An Establishment of Rainfall-induced Soil Erosion Index for the Slope Land in Watershed

    Science.gov (United States)

    Tsai, Kuang-Jung; Chen, Yie-Ruey; Hsieh, Shun-Chieh; Shu, Chia-Chun; Chen, Ying-Hui

    2014-05-01

    With more and more concentrated extreme rainfall events as a result of climate change, in Taiwan, mass cover soil erosion occurred frequently and led to sediment related disasters in high intensity precipiton region during typhoons or torrential rain storms. These disasters cause a severely lost to the property, public construction and even the casualty of the resident in the affected areas. Therefore, we collected soil losses by using field investigation data from the upstream of watershed where near speific rivers to explore the soil erosion caused by heavy rainfall under different natural environment. Soil losses induced by rainfall and runoff were obtained from the long-term soil depth measurement of erosion plots, which were established in the field, used to estimate the total volume of soil erosion. Furthermore, the soil erosion index was obtained by referring to natural environment of erosion test plots and the Universal Soil Loss Equation (USLE). All data collected from field were used to compare with the one obtained from laboratory test recommended by the Technical Regulation for Soil and Water Conservation in Taiwan. With MATLAB as a modeling platform, evaluation model for soil erodibility factors was obtained by golden section search method, considering factors contributing to the soil erosion; such as degree of slope, soil texture, slope aspect, the distance far away from water system, topography elevation, and normalized difference vegetation index (NDVI). The distribution map of soil erosion index was developed by this project and used to estimate the rainfall-induced soil losses from erosion plots have been established in the study area since 2008. All results indicated that soil erodibility increases with accumulated rainfall amount regardless of soil characteristics measured in the field. Under the same accumulated rainfall amount, the volume of soil erosion also increases with the degree of slope and soil permeability, but decreases with the

  8. Erosion estimation of guide vane end clearance in hydraulic turbines with sediment water flow

    Science.gov (United States)

    Han, Wei; Kang, Jingbo; Wang, Jie; Peng, Guoyi; Li, Lianyuan; Su, Min

    2018-04-01

    The end surface of guide vane or head cover is one of the most serious parts of sediment erosion for high-head hydraulic turbines. In order to investigate the relationship between erosion depth of wall surface and the characteristic parameter of erosion, an estimative method including a simplified flow model and a modificatory erosion calculative function is proposed in this paper. The flow between the end surfaces of guide vane and head cover is simplified as a clearance flow around a circular cylinder with a backward facing step. Erosion characteristic parameter of csws3 is calculated with the mixture model for multiphase flow and the renormalization group (RNG) k-𝜀 turbulence model under the actual working conditions, based on which, erosion depths of guide vane and head cover end surfaces are estimated with a modification of erosion coefficient K. The estimation results agree well with the actual situation. It is shown that the estimative method is reasonable for erosion prediction of guide vane and can provide a significant reference to determine the optimal maintenance cycle for hydraulic turbine in the future.

  9. Experimental comparison of cavitation erosion rates of different steels used in hydraulic turbines

    International Nuclear Information System (INIS)

    Ton-That, L

    2010-01-01

    The prediction of cavitation erosion rates has an important role in order to evaluate the exact life of components in fluid machineries. Hydro-Quebec has studied this phenomenon for several years, in particular in hydraulic turbine runners, to try to understand the different degradation mechanisms related to this phenomenon. This paper presents part of this work. In this study, we carried out experimental erosion tests to compare different steels used in actual hydraulic turbine runners (carbon steels, austenitic and martensitic stainless steels) to high strength steels in terms of cavitation erosion resistance. The results for these different classes of steels are presented. The tests have been performed in a cavitating liquid jet apparatus according to the ASTM G134-95 standard to simulate the flow conditions. The mass loss has been followed during the exposure time. The maximum depth of erosion, the mean depth of erosion, and the mean depth erosion rate are determined. As a result we found that ASTM-A514 high strength steels present excellent cavitation erosion resistance properties. The cavitation eroded surface is followed by optical profilometry technique. Determination of mechanical properties and examinations of the eroded surfaces of the samples have also been carried out in order to identify the erosion mechanisms involved in the degradation of these kinds of materials.

  10. Dental erosion prevalence and associated risk indicators among preschool children in Athens, Greece.

    Science.gov (United States)

    Mantonanaki, Magdalini; Koletsi-Kounari, Haroula; Mamai-Homata, Eleni; Papaioannou, William

    2013-03-01

    The aims of the study were to investigate dental erosion prevalence, distribution and severity in Greek preschool children attending public kindergartens in the prefecture of Attica, Greece and to determine the effect of dental caries, oral hygiene level, socio-economic factors, dental behavior, erosion related medication and chronic illness. A random and stratified sample of 605 Greek preschool children was clinically examined for dental erosion using the Basic Erosive Wear Examination Index (ΒΕWE). Dental caries (dmfs) and Simplified Debris Index were also recorded. The data concerning possible risk indicators were derived by a questionnaire. Zero-inflated Poisson regression was generated to test the predictive effects of the independent variables on dental erosion. The prevalence of dental erosion was 78.8 %, and the mean and SE of BEWE index was 3.64 ± 0.15. High monthly family income was positively related to ΒΕWE cumulative scores [RR = 1.204 (1.016-1.427)], while high maternal education level [RR = 0.872 (0.771-0.986)] and poor oral hygiene level [DI-s, RR = 0.584 (0.450-0.756)] showed a negative association. Dental erosion is a common oral disease in Greek preschool children in Attica, related to oral hygiene and socio-economic factors. Programs aimed at erosion prevention should begin at an early age for all children.

  11. Erosion by flowing lava: Geochemical evidence in the Cave Basalt, Mount St. Helens, Washington

    Science.gov (United States)

    Williams, D.A.; Kadel, S.D.; Greeley, R.; Lesher, C.M.; Clynne, M.A.

    2004-01-01

    We sampled basaltic lava flows and underlying dacitic tuff deposits in or near lava tubes of the Cave Basalt, Mount St. Helens, Washington to determine whether the Cave Basalt lavas contain geochemical evidence of substrate contamination by lava erosion. The samples were analyzed using a combination of wavelength-dispersive X-ray fluorescence spectrometry and inductively-coupled plasma mass spectrometry. The results indicate that the oldest, outer lava tube linings in direct contact with the dacitic substrate are contaminated, whereas the younger, inner lava tube linings are uncontaminated and apparently either more evolved or enriched in residual liquid. The most heavily contaminated lavas occur closer to the vent and in steeper parts of the tube system, and the amount of contamination decreases with increasing distance downstream. These results suggest that erosion by lava and contamination were limited to only the initially emplaced flows and that erosion was localized and enhanced by vigorous laminar flow over steeper slopes. After cooling, the initial Cave Basalt lava flows formed an insulating lining within the tubes that prevented further erosion by later flows. This interpretation is consistent with models of lava erosion that predict higher erosion rates closer to sources and over steeper slopes. A greater abundance of xenoliths and xenocrysts relative to xenomelts in hand samples indicates that mechanical erosion rather than thermal erosion was the dominant erosional process in the Cave Basalt, but further sampling and petrographic analyses must be performed to verify this hypothesis. ?? Springer-Verlag 2003.

  12. On the role of "internal variability" on soil erosion assessment

    Science.gov (United States)

    Kim, Jongho; Ivanov, Valeriy; Fatichi, Simone

    2017-04-01

    Empirical data demonstrate that soil loss is highly non-unique with respect to meteorological or even runoff forcing and its frequency distributions exhibit heavy tails. However, all current erosion assessments do not describe the large associated uncertainties of temporal erosion variability and make unjustified assumptions by relying on central tendencies. Thus, the predictive skill of prognostic models and reliability of national-scale assessments have been repeatedly questioned. In this study, we attempt to reveal that the high variability in soil losses can be attributed to two sources: (1) 'external variability' referring to the uncertainties originating at macro-scale, such as climate, topography, and land use, which has been extensively studied; (2) 'geomorphic internal variability' referring to the micro-scale variations of pedologic properties (e.g., surface erodibility in soils with multi-sized particles), hydrologic properties (e.g., soil structure and degree of saturation), and hydraulic properties (e.g., surface roughness and surface topography). Using data and a physical hydraulic, hydrologic, and erosion and sediment transport model, we show that the geomorphic internal variability summarized by spatio-temporal variability in surface erodibility properties is a considerable source of uncertainty in erosion estimates and represents an overlooked but vital element of geomorphic response. The conclusion is that predictive frameworks of soil erosion should embed stochastic components together with deterministic assessments, if they do not want to largely underestimate uncertainty. Acknowledgement: This study was supported by the Basic Science Research Program of the National Research Foundation of Korea funded by the Ministry of Education (2016R1D1A1B03931886).

  13. Using albedo to reform wind erosion modelling, mapping and monitoring

    Science.gov (United States)

    Chappell, Adrian; Webb, Nicholas P.

    2016-12-01

    Wind erosion and dust emission models are used to assess the impacts of dust on radiative forcing in the atmosphere, cloud formation, nutrient fertilisation and human health. The models are underpinned by a two-dimensional geometric property (lateral cover; L) used to characterise the three-dimensional aerodynamic roughness (sheltered area or wakes) of the Earth's surface and calibrate the momentum it extracts from the wind. We reveal a fundamental weakness in L and demonstrate that values are an order of magnitude too small and significant aerodynamic interactions between roughness elements and their sheltered areas have been omitted, particularly under sparse surface roughness. We describe a solution which develops published work to establish a relation between sheltered area and the proportion of shadow over a given area; the inverse of direct beam directional hemispherical reflectance (black sky albedo; BSA). We show direct relations between shadow and wind tunnel measurements and thereby provide direct calibrations of key aerodynamic properties. Estimation of the aerodynamic parameters from albedo enables wind erosion assessments over areas, across platforms from the field to airborne and readily available satellite data. Our new approach demonstrated redundancy in existing wind erosion models and thereby reduced model complexity and improved fidelity. We found that the use of albedo enabled an adequate description of aerodynamic sheltering to characterise fluid dynamics and predict sediment transport without the use of a drag partition scheme (Rt) or threshold friction velocity (u∗t). We applied the calibrations to produce global maps of aerodynamic properties which showed very similar spatial patterns to each other and confirmed the redundancy in the traditional parameters of wind erosion modelling. We evaluated temporal patterns of predicted horizontal mass flux at locations across Australia which revealed variation between land cover types that would not

  14. Comparison of erosion and erosion control works in Macedonia, Serbia and Bulgaria

    Directory of Open Access Journals (Sweden)

    Ivan Blinkov

    2013-12-01

    Natural conditions in the Balkan countries contribute to the appearance of various erosion forms and the intensity of the erosion processes. Over the history of these countries, people who settled this region used the available natural resources to fill their needs (tree cutting, incorrect plugging, overgrazing, which contributed to soil erosion. Organized erosion control works in the Balkans started in the beginning of the 20th century (1905 in Bulgaria. The highest intensity of erosion control works were carried out during the period 1945 – 1990. Various erosion control works were launched. Bulgaria had a large anti-erosion afforestation, almost 1 million ha. Bulgaria's ecological river restoration approach has been in use for almost 50 years. Serbia contributed significant erosion and torrent control works on hilly agricultural areas. Specific screen barrages and afforestation on extremely dry areas are characteristic in Macedonia. A common characteristic for all countries is a high decrease in erosion control works in the last 20 years.

  15. Two case studies in river naturalization: planform migration and bank erosion control

    Science.gov (United States)

    Abad, J. D.; Guneralp, I.; Rhoads, B. L.; Garcia, M. H.

    2005-05-01

    A sound understanding of river planform evolution and bank erosion control, along with integration of expertise from several disciplines is required for the development of predictive models for river naturalization. Over the last few years, several methodologies have been presented for naturalization projects, from purely heuristic to more advanced methods. Since the time and space scales of concern in naturalization vary widely, there is a need for appropriate tools at a variety of time and space scales. This study presents two case studies at different scales. The first case study describes the prediction of river planform evolution for a remeandering project based on a simplified two-dimensional hydrodynamic model. The second case study describes the applicability of a Computational Fluid Dynamics (CFD) model for evaluating the effectiveness of bank-erosion control structures in individual meander bends. Understanding the hydrodynamic influence of control structures on flow through bends allows accurate prediction of depositional and erosional distribution patterns, resulting in better assessment on river planform stability, especially for the case of natural complex systems. The first case study introduces a mathematical model for evolution of meandering rivers that can be used in remeandering projects. In United States in particular, several rivers have been channelized in the past causing environmental and ecological problems. Following Newton's third law, "for every action, there is a reaction", naturalization techniques evolve as natural reactive solutions to channelization. This model (herein referred as RVR Meander) can be used as a stand-alone Windows application or as module in a Geographic Information System. The model was applied to the Poplar Creek re-meanderization project and used to evaluate re-meandering alternatives for an approximately 800-meter long reach of Poplar Creek that was straightened in 1938. The second case study describes a

  16. Sand erosion at the toe of a gabion-protected dune face

    OpenAIRE

    Chapman, A.

    1992-01-01

    The purpose of this research project was to study the manner in which erosion takes place the the toe of a dune slope protected by gabions, and to examine the response of the gabions to this erosion. A sand slope overlaid by model gabions was subjected to wave attack in a hydraulic flume, and periodic measurements of the bottom profile were taken. The results showed that the gabions performed well, and continued to provide protection to the slope even after a considerable amount of erosion an...

  17. Scanning-electron-microscope study of normal-impingement erosion of ductile metals

    Science.gov (United States)

    Brainard, W. A.; Salik, J.

    1980-01-01

    Scanning electron microscopy was used to characterize the erosion of annealed copper and aluminum surfaces produced by both single- and multiple-particle impacts. Macroscopic 3.2 mm diameter steel balls and microscopic, brittle erodant particles were projected by a gas gun system so as to impact at normal incidence at speeds up to 140 m/sec. During the impacts by the brittle erodant particles, at lower speeds the erosion behavior was similar to that observed for the larger steel balls. At higher velocities, particle fragmentation and the subsequent cutting by the radial wash of debris created a marked change in the erosion mechanism.

  18. Cloud forest restoration for erosion control in a Kichwa community of the Ecuadorian central Andes Mountains

    Science.gov (United States)

    Backus, L.; Giordanengo, J.; Sacatoro, I.

    2013-12-01

    The Denver Professional Chapter of Engineers Without Borders (EWB) has begun conducting erosion control projects in the Kichwa communities of Malingua Pamba in the Andes Mountains south of Quito, Ecuador. In many high elevation areas in this region, erosion of volcanic soils on steep hillsides (i.e., food crops. Following a 2011 investigation of over 75 erosion sites, the multidisciplinary Erosion Control team traveled to Malingua Pamba in October 2012 to conduct final design and project implementation at 5 sites. In partnership with the local communities, we installed woody cloud forest species, grass (sig-sig) contour hedges, erosion matting, and rock structures (toe walls, plunge pools, bank armoring, cross vanes, contour infiltration ditches, etc.) to reduce incision rates and risk of slump failures, facilitate aggradation, and hasten revegetation. In keeping with the EWB goal of project sustainability, we used primarily locally available resources. High school students of the community grew 5000 native trees and some naturalized shrubs in a nursery started by the school principal, hand weavers produced jute erosion mats, and rocks were provided by a nearby quarry. Where possible, local rock was harvested from landslide areas and other local erosion features. Based on follow up reports and photographs from the community and EWB travelers, the approach of using locally available materials installed by the community is successful; plants are growing well and erosion control structures have remained in place throughout the November to April rainy season. The community has continued planting native vegetation at several additional erosion sites. Formal monitoring will be conducted in October 2013, followed by analysis of data to determine if induced meandering and other low-maintenance erosion control techniques are working as planned. For comparison of techniques, we will consider installing check dams in comparable gullies. The October 2013 project will also

  19. River Bank Erosion and the Influence of Environmental Flow Management

    Science.gov (United States)

    Vietz, Geoff J.; Lintern, Anna; Webb, J. Angus; Straccione, David

    2018-03-01

    Environmental flows aim to influence river hydrology to provide appropriate physical conditions for ecological functioning within the restrictions of flow regulation. The hydrologic characteristics of flow events, however, may also lead to unintended morphologic effects in rivers, such as increases in riverbank erosion beyond natural rates. This may negatively impact habitat for biota, riparian infrastructure, and land use. Strategic environmental flow delivery linked to monitoring and adaptive management can help mitigate risks. We monitor riverbank condition (erosion and deposition) relative to environmental flows on the Goulburn River, Victoria, Australia. We describe the process of adaptive management aimed at reducing potential impacts of flow management on bank condition. Field measurements (erosion pins) quantify the hydrogeomorphic response of banks to the delivery of planned and natural flow events. Managed flows provide opportunities for monitoring riverbank response to flows, which in turn informs planning. The results demonstrate that environmental flows have little influence on bank erosion and visual perceptions in the absence of monitoring are an unreliable guide. This monitoring project represents a mutually beneficial, science-practice partnership demonstrating that a traditional `know then do' approach can be foreshortened by close collaboration between researchers and managers. To do so requires transparent, often informal lines of communication. The benefits for researchers-a more strategic and targeted approach to monitoring activities; and benefits for the practitioners-reduced time between actions and understanding response; mean that a learn by doing approach is likely to have better outcomes for researchers, stakeholders, the public, and the environment.

  20. River Bank Erosion and the Influence of Environmental Flow Management.

    Science.gov (United States)

    Vietz, Geoff J; Lintern, Anna; Webb, J Angus; Straccione, David

    2018-03-01

    Environmental flows aim to influence river hydrology to provide appropriate physical conditions for ecological functioning within the restrictions of flow regulation. The hydrologic characteristics of flow events, however, may also lead to unintended morphologic effects in rivers, such as increases in riverbank erosion beyond natural rates. This may negatively impact habitat for biota, riparian infrastructure, and land use. Strategic environmental flow delivery linked to monitoring and adaptive management can help mitigate risks. We monitor riverbank condition (erosion and deposition) relative to environmental flows on the Goulburn River, Victoria, Australia. We describe the process of adaptive management aimed at reducing potential impacts of flow management on bank condition. Field measurements (erosion pins) quantify the hydrogeomorphic response of banks to the delivery of planned and natural flow events. Managed flows provide opportunities for monitoring riverbank response to flows, which in turn informs planning. The results demonstrate that environmental flows have little influence on bank erosion and visual perceptions in the absence of monitoring are an unreliable guide. This monitoring project represents a mutually beneficial, science-practice partnership demonstrating that a traditional 'know then do' approach can be foreshortened by close collaboration between researchers and managers. To do so requires transparent, often informal lines of communication. The benefits for researchers-a more strategic and targeted approach to monitoring activities; and benefits for the practitioners-reduced time between actions and understanding response; mean that a learn by doing approach is likely to have better outcomes for researchers, stakeholders, the public, and the environment.

  1. Mercury erosion experiments for spallation target system

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Kaminaga, Masanori; Haga, Katsuhiro; Hino, Ryutaro

    2003-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a plan to construct the spallation neutron source at the Tokai Research Establishment, JAERI, under the High-Intensity Proton Accelerator Project (J-PARC). A mercury circulation system has been designed so as to supply mercury to the target stably under the rated flow rate of 41 m 3 /hr. Then, it was necessary to confirm a mercury pump performance from the viewpoint of making the mercury circulation system feasible, and more, to investigate erosion rate under the mercury flow as well as an amount of mercury remained on the surface after drain from the viewpoints of mechanical strength relating to the lifetime and remote handling of mercury components. The mercury pump performance was tested under the mercury flow conditions by using an experimental gear pump, which had almost the same structure as a practical mercury pump to be expected in the mercury circulation system, and the erosion rates in a mercury pipeline as well as the amount of mercury remained on the surface were also investigated. The discharged flow rates of the experimental gear pump increased linearly with the rotation speed, so that the gear pump would work as the flow meter. Erosion rates obtained under the mercury velocity less than 1.6 m/s was found to be so small that decrease of pipeline wall thickness would be 390 μm after 30-year operation under the rated mercury velocity of 0.7 m/s. For the amount of remaining mercury on the pipeline, remaining rates of weight and volume were estimated at 50.7 g/m 2 and 3.74 Hg-cm 3 /m 2 , respectively. Applying these remaining rates of weight and volume to the mercury target, the remaining mercury was estimated at about 106.5 g and 7.9 cm 3 . Radioactivity of this remaining mercury volume was found to be three-order lower than that of the target casing. (author)

  2. [Assessment of the impacts of soil erosion on water environment based on the integration of soil erosion process and landscape pattern].

    Science.gov (United States)

    Liu, Yu; Wu, Bing-Fang; Zeng, Yuan; Zhang, Lei

    2013-09-01

    The integration of the effects of landscape pattern to the assessment of the impacts of soil erosion on eco-environmental is of practical significance in methodological prospect, being able to provide an approach for identifying water body's sediment source area, assessing the potential risks of sediment export of on-site soil erosion to the target water body, and evaluating the capacity of regional landscape pattern in preventing soil loss. In this paper, the RUSLE model was applied to simulate the on-site soil erosion rate. With the consideration of the soil retention potential of vegetation cover and topography, a quantitative assessment was conducted on the impacts of soil erosion in the water source region of the middle route for South-to-North Water Transfer Project on rivers and reservoirs by delineating landscape pattern at point (or cell) scale and sub-watershed level. At point (or grid cell) scale, the index of soil erosion impact intensity (I) was developed as an indicator of the potential risk of sediment export to the water bodies. At sub-watershed level, the landscape leakiness index (LI) was employed to indicate the sediment retention capacity of a given landscape pattern. The results revealed that integrating the information of landscape pattern and the indices of soil erosion process could spatially effectively reflect the impact intensity of in situ soil erosion on water bodies. The LI was significantly exponentially correlated to the mean sediment retention capacity of landscape and the mean vegetation coverage of watershed, and the sediment yield at sub-watershed scale was significantly correlated to the LI in an exponential regression. It could be concluded that the approach of delineating landscape pattern based on soil erosion process and the integration of the information of landscape pattern with its soil retention potential could provide a new approach for the risk evaluation of soil erosion.

  3. New approaches to the estimation of erosion-corrosion

    International Nuclear Information System (INIS)

    Bakirov, Murat; Ereemin, Alexandr; Levchuck, Vasiliy; Chubarov, Sergey

    2006-09-01

    erosion-corrosion in a double-phase flow is that of moving deaerated liquid in directly contact with metal as a barrier between the metal and main steam-drop flow. Local processes of mass transfer, corrosion properties and water-chemical parameters of this film define intensity of erosion-corrosion and features of its behavior. Erosion-corrosion of metal in a double-phase flow is determined by the gas-dynamics of double-phase flaws, water chemistry, thermodynamic, materials science, etc. The goal of the work: development of theoretical and methodological basis of physical, chemical and mathematical models, as well as the finding of technical solutions and method of diagnostics, forecast and control of the erosion-corrosion processes. It will allow the increase of reliability and safety operation of the power equipment of the secondary circuit in NPP with WWER by use of monitoring of erosion-corrosion wear of pipelines. One concludes by stressing that the described design-experimental approach for solving of FAC problem will enable to carry out the following works: - elaboration and certification of the procedure of design-experimental substantiation of zones, aims and periodicity of the NPP elements operational inspection; - development and certification of a new Regulatory Document of stress calculation for definition of the minimum acceptable wall thickness levels considering real wear shape, FAC rates and inaccuracy of devices for wall thickness measurements; - improving the current Regulatory Documents and correcting of the Typical programs of operational inspection - optimization of zones, aims and periodicity of the inspection; - elaboration of recommendations for operational lifetime prolongation of the WWER secondary circuits elements by means of increasing of erosion-corrosion resistance of the new equipment and of the equipment, exceeding the design lifetime; - improving of safe and uninterrupted work of the power unit due to prediction of the most damaged

  4. Component wall thinning and a corrosion-erosion monitoring system

    International Nuclear Information System (INIS)

    Bogard, T.; Batt, T.; Roarty, D.

    1989-01-01

    Since a 1986 incident involving failure of a piping elbow due to erosion-corrosion, the electric utility industry has been actively developing technology for implementing long term programs to address corrosion-erosion. This paper describes a typical corrosion-erosion monitoring program, the types of non-destructive examinations (NDE) performed on components, and the extensive NDE data obtained when the program is applied to components in a power plant. To facilitate evaluation of the NDE data on components, an automated NDE data manipulation and data display system is advisable and perhaps necessary due to the large amounts of NDE data typically obtained during a program. Such a comprehensive corrosion-erosion monitoring system (CEMS) needs to be integral with methods for selection of inspection locations and perform NDE data analysis to help in replace, repair, or run decisions. The structure for one CEMS is described which uses IBM PC compatible hardware and a set of software addressing most data evaluation and decision making needs. CEMS features include automated input/output for typical NDE devices, database structuring, graphics outputs including color 2-D or 3-D contour plots of components, trending and predictive evaluations for future inspection planning, EC severity determination, integration of piping isometrics and component properties, and desktop publishing capabilities

  5. TILLAGE EROSION: THE PRINCIPLES, CONTROLLING FACTORS AND MAIN IMPLICATIONS FOR FUTURE RESEARCH

    Directory of Open Access Journals (Sweden)

    Agnieszka Wysocka-Czubaszek

    2014-10-01

    Full Text Available Tillage erosion is one of the major contributors to landscape evolution in hummocky agricultural landscapes. This paper summarizes the available data describing tillage erosion caused by hand-held or other simple tillage implements as well as tools used in typical conventional agriculture in Europe and North America. Variations in equipment, tillage speed, depth and direction result in a wide range of soil translocation rates observed all over the world. The variety of tracers both physical and chemical gives a challenge to introduce the reliable model predicting tillage erosion, considering the number and type of tillage operation in the whole tillage sequence.

  6. A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence

    Science.gov (United States)

    Kibbey, Timothy P.

    2014-01-01

    A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.

  7. Rainfall erosivity in subtropical catchments and implications for erosion and particle-bound contaminant transfer: a case-study of the Fukushima region

    Science.gov (United States)

    Laceby, J. P.; Chartin, C.; Evrard, O.; Onda, Y.; Garcia-Sanchez, L.; Cerdan, O.

    2015-07-01

    The Fukushima Dai-ichi nuclear power plant (FDNPP) accident in March 2011 resulted in a significant fallout of radiocesium over the Fukushima region. After reaching the soil surface, radiocesium is almost irreversibly bound to fine soil particles. Thereafter, rainfall and snow melt run-off events transfer particle-bound radiocesium downstream. Erosion models, such as the Universal Soil Loss Equation (USLE), depict a proportional relationship between rainfall and soil erosion. As radiocesium is tightly bound to fine soil and sediment particles, characterizing the rainfall regime of the fallout-impacted region is fundamental to modelling and predicting radiocesium migration. Accordingly, monthly and annual rainfall data from ~ 60 meteorological stations within a 100 km radius of the FDNPP were analysed. Monthly rainfall erosivity maps were developed for the Fukushima coastal catchments illustrating the spatial heterogeneity of rainfall erosivity in the region. The mean average rainfall in the Fukushima region was 1387 mm yr-1 (σ 230) with the mean rainfall erosivity being 2785 MJ mm ha-1 yr-1 (σ 1359). The results indicate that the majority of rainfall (60 %) and rainfall erosivity (86 %) occurs between June and October. During the year, rainfall erosivity evolves positively from northwest to southeast in the eastern part of the prefecture, whereas a positive gradient from north to south occurs in July and August, the most erosive months of the year. During the typhoon season, the coastal plain and eastern mountainous areas of the Fukushima prefecture, including a large part of the contamination plume, are most impacted by erosive events. Understanding these rainfall patterns, particularly their spatial and temporal variation, is fundamental to managing soil and particle-bound radiocesium transfers in the Fukushima region. Moreover, understanding the impact of typhoons is important for managing sediment transfers in subtropical regions impacted by cyclonic activity.

  8. Coastal erosion problem, modelling and protection

    Science.gov (United States)

    Yılmaz, Nihal; Balas, Lale; İnan, Asu

    2015-09-01

    Göksu Delta, located in the south of Silifke County of Mersin on the coastal plain formed by Göksu River, is one of the Specially Protected Areas in Turkey. Along the coastal area of the Delta, coastline changes at significant rates are observed, concentrating especially at four regions; headland of İncekum, coast of Paradeniz Lagoon, river mouth of Göksu and coast of Altınkum. The coast of Paradeniz Lagoon is suffering significantly from erosion and the consequent coastal retreating problem. Therefore, the narrow barrier beach which separates Paradeniz Lagoon from the Mediterranean Sea is getting narrower, creating a risk of uniting with the sea, thus causing the disappearance of the Lagoon. The aim of this study was to understand the coastal transport processes along the coastal area of Göksu Delta to determine the coastal sediment transport rates, and accordingly, to propose solutions to prevent the loss of coastal lands in the Delta. To this end, field measurements of currents and sediment grain sizes were carried out, and wind climate, wave climate, circulation patterns and longshore sediment transport rates were numerically modeled by HYDROTAM-3D, which is a three dimensional hydrodynamic transport model. Finally, considering its special importance as an environmentally protected region, some coastal structures of gabions were proposed as solutions against the coastal erosion problems of the Delta. The effects of proposed structures on future coastline changes were also modeled, and the coastlines predicted for the year 2017 are presented and discussed in the paper.

  9. Slurry Erosion Performance of Ni-Al2O3 Based Thermal-Sprayed Coatings: Effect of Angle of Impingement

    Science.gov (United States)

    Grewal, H. S.; Agrawal, Anupam; Singh, H.; Shollock, B. A.

    2014-02-01

    In this paper, slurry erosion performance of high velocity flame-sprayed Ni-Al2O3 based coatings was evaluated. The coatings were deposited on a hydroturbine steel (CA6NM) by varying the content of Al2O3 in Ni. Using jet-type test rig, erosion behavior of coatings and bare steel was evaluated at different impingement angles. Detailed investigation of the surface morphology of the eroded specimens was undertaken using SEM/EDS to identify potential erosion mechanism. A parameter named "erosion mechanism identifier" (ξ) was used to predict the mode of erosion. It was observed that the coating prepared using 40 wt.% of Al2O3 showed a highest resistance to erosion. This coating enhanced the erosion resistance of the steel by 2 to 4 times. Spalling in the form of splats and chunks of material (formed by interlinking of cracks) along with fracture of Al2O3 splats were identified as primary mechanisms responsible for the loss of coating material. The erosion mechanism of coatings and bare steel predicted by ξ was in good agreement with that observed experimentally. Among different parameters,, a function of fracture toughness ( K IC) and hardness ( H) showed excellent correlation with erosion resistance of coatings at both the impingement angles.

  10. Dynamic Assessment of Soil Erosion Risk Using Landsat TM and HJ Satellite Data in Danjiangkou Reservoir Area, China

    Directory of Open Access Journals (Sweden)

    Pengpeng Han

    2013-08-01

    Full Text Available Danjiangkou reservoir area is the main water source and the submerged area of the Middle Route South-to-North Water Transfer Project of China. Soil erosion is a factor that significantly influences the quality and transfer of water from the Danjiangkou reservoir. The objective of this study is to assess the water erosion (rill and sheet erosion risk and dynamic change trend of spatial distribution in erosion status and intensity between 2004 and 2010 in the Danjiangkou reservoir area using a multicriteria evaluation method.The multicriteria evaluation method synthesizes the vegetation fraction cover, slope gradient, and land use. Based on the rules and erosion risk assessment results of the study area in 2004 and 2010, the research obtained the conservation priority map. This study result shows an improvement in erosion status of the study area, the eroded area decreased from 32.1% in 2004 to 25.43% in 2010. The unchanged regions dominated the study area and that the total area of improvement grade erosion was larger than that of deterioration grade erosion. The severe, more severe, and extremely severe areas decreased by 4.71%, 2.28%, and 0.61% of the total study area, respectively. The percentages of regions where erosion grade transformed from extremely severe to slight, light and moderate were 0.18%, 0.02%, and 0.30%, respectively. However, a deteriorated region with a 2,897.60 km2 area was still observed. This area cannot be ignored in the determination of a general governance scheme. The top two conservation priority levels cover almost all regions with severe erosion and prominent increase in erosion risk, accounting for 7.31% of the study area. The study results can assist government agencies in decision making for determining erosion control areas, starting regulation projects, and making soil conservation measures.

  11. The comparison of various approach to evaluation erosion risks and design control erosion measures

    Science.gov (United States)

    Kapicka, Jiri

    2015-04-01

    In the present is in the Czech Republic one methodology how to compute and compare erosion risks. This methodology contain also method to design erosion control measures. The base of this methodology is Universal Soil Loss Equation (USLE) and their result long-term average annual rate of erosion (G). This methodology is used for landscape planners. Data and statistics from database of erosion events in the Czech Republic shows that many troubles and damages are from local episodes of erosion events. An extent of these events and theirs impact are conditional to local precipitation events, current plant phase and soil conditions. These erosion events can do troubles and damages on agriculture land, municipally property and hydro components and even in a location is from point of view long-term average annual rate of erosion in good conditions. Other way how to compute and compare erosion risks is episodes approach. In this paper is presented the compare of various approach to compute erosion risks. The comparison was computed to locality from database of erosion events on agricultural land in the Czech Republic where have been records two erosion events. The study area is a simple agriculture land without any barriers that can have high influence to water flow and soil sediment transport. The computation of erosion risks (for all methodology) was based on laboratory analysis of soil samples which was sampled on study area. Results of the methodology USLE, MUSLE and results from mathematical model Erosion 3D have been compared. Variances of the results in space distribution of the places with highest soil erosion where compared and discussed. Other part presents variances of design control erosion measures where their design was done on based different methodology. The results shows variance of computed erosion risks which was done by different methodology. These variances can start discussion about different approach how compute and evaluate erosion risks in areas

  12. Comparative evaluation of experimental and theoretical erosion resistance of materials upon electric pulse treatment

    International Nuclear Information System (INIS)

    Karpman, M.G.; Fetisov, G.P.; Bologov, D.V.

    1999-01-01

    Using the Palatnik criterion a comparative analysis is performed of the theoretical and experimental data on comparative electric erosion and erosion resistance of the electrodes and parts made of different materials upon their treatment using electric pulse technique. A reasonable qualitative agreement of the theoretical and experimental data indicates the possibility of using the Palatnik criterion to predict the serviceability of different pairs of the materials in conditions of electroerosion wear [ru

  13. Nonmonotonic and spatial-temporal dynamic slope effects on soil erosion during rainfall-runoff processes

    Science.gov (United States)

    Wu, Songbai; Yu, Minghui; Chen, Li

    2017-02-01

    The slope effect on flow erosivity and soil erosion still remains a controversial issue. This theoretical framework explained and quantified the direct slope effect by coupling the modified Green-Ampt equation accounting for slope effect on infiltration, 1-D kinematic wave overland flow routing model, and WEPP soil erosion model. The flow velocity, runoff rate, shear stress, interrill, and rill erosion were calculated on 0°-60° isotropic slopes with equal horizontal projective length. The results show that, for short-duration rainfall events, the flow erosivity and erosion amounts exhibit a bell-shaped trend which first increase with slope gradient, and then decrease after a critical slope angle. The critical slope angles increase significantly or even vanish with increasing rainfall duration but are nearly independent of the slope projective length. The soil critical shear stress, rainfall intensity, and temporal patterns have great influences on the slope effect trend, while the other soil erosion parameters, soil type, hydraulic conductivity, and antecedent soil moisture have minor impacts. Neglecting the slope effect on infiltration would generate smaller erosion and reduce critical slope angles. The relative slope effect on soil erosion in physically based model WEPP was compared to those in the empirical models USLE and RUSLE. The trends of relative slope effect were found quite different, but the difference may diminish with increasing rainfall duration. Finally, relatively smaller critical slope angles could be obtained with the equal slope length and the range of variation provides a possible explanation for the different critical slope angles reported in previous studies.

  14. Erosion and sedimentation caused by watercourse regulation

    International Nuclear Information System (INIS)

    Dahl, T.E.; Godtland, K.

    1995-01-01

    This report describes the observations made by SINTEF NHL in 1993 - 1994 on the development of erosion in three regulated lakes in Norway: Devdesjavri, Store Maalvatn and Gjevilvatnet. Surveys, profile levelling, water sample analyses, aerial photography etc were all used. Erosion was dramatic in all three magazines the first year of regulation and then slowed down. It has since remained relatively stable. However, there is a risk of further strong erosion connected with flooding tributaries, notably at low water such as usually occurs in spring. This is true in particular of the main river discharging into Devdesjavri, which is subject to landslides, wave and river erosion. In addition, ground water erosion may occur if the magazine is drained too fast. The report is lavishly illustrated with colour pictures of the effects of erosion. 21 refs., 15 figs., 13 tabs

  15. Varioliform erosions in the stomach and duodenum

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, W.; Schulz, D.; Munkel, G.

    1984-04-01

    One thousand five hundred and eighty-three patients who were x-rayed for dyspepsia showed varioliform erosions in 15.3%. Men had an incidence of 9.8%, almost twice as common as in women (5.5%). Mucosal polyps, usually of the hyperplastic type, occurred in 2.4%. 15% of patients with gastric ulcers and 16% of patients with duodenal ulcers had varioliform erosions. On the other hand, amongst patients with erosions, 11% had gastric ulcers and 8.3% duodenal ulcers. The definitions of erosion which have been given in the literature are partly contradictory, and are discussed. Varioliform erosions, also known as complete erosions, may be acute or chronic. They are the third most common cause of bleeding from the upper gastrointestinal tract. With modern radiological methods of examining the stomach, they are no longer a rare finding. 5 figs.

  16. Varioliform erosions in the stomach and duodenum

    International Nuclear Information System (INIS)

    Lotz, W.; Schulz, D.; Munkel, G.

    1984-01-01

    One thousand five hundred and eighty-three patients who were x-rayed for dyspepsia showed varioliform erosions in 15.3%. Men had an incidence of 9.8%, almost twice as common as in women (5.5%). Mucosal polyps, usually of the hyperplastic type, occurred in 2.4%. 15% of patients with gastric ulcers and 16% of patients with duodenal ulcers had varioliform erosions. On the other hand, amongst patients with erosions, 11% had gastric ulcers and 8.3% duodenal ulcers. The definitions of erosion which have been given in the literature are partly contradictory, and are discussed. Varioliform erosions, also known as complete erosions, may be acute or chronic. They are the third most common cause of bleeding from the upper gastrointestinal tract. With modern radiological methods of examining the stomach, they are no longer a rare finding. (orig.) [de

  17. Assessment and management of dental erosion.

    Science.gov (United States)

    Wang, Xiaojie; Lussi, Adrian

    2010-07-01

    Studies have shown a growing trend toward increasing prevalence of dental erosion, associated with the declining prevalence of caries disease in industrialized countries. Erosion is an irreversible chemical process that results in tooth substance loss and leaves teeth susceptible to damage as a result of wear over the course of an individual's lifetime. Therefore, early diagnosis and adequate prevention are essential to minimize the risk of tooth erosion. Clinical appearance is the most important sign to be used to diagnose erosion. The Basic Erosive Wear Examination (BEWE) is a simple method to fulfill this task. The determination of a variety of risk and protective factors (patient-dependent and nutrition-dependent factors) as well as their interplay are necessary to initiate preventive measures tailored to the individual. When tooth loss caused by erosive wear reaches a certain level, oral rehabilitation becomes necessary. Copyright 2010 Elsevier Inc. All rights reserved.

  18. DENTAL EROSION IN PRIMARY DENTITION- A REVIEW

    Directory of Open Access Journals (Sweden)

    Rafi Shaik

    2017-06-01

    Full Text Available BACKGROUND The pattern of oral diseases has been influenced by ever changing human lifestyle. Tooth wear especially dental erosion has drawn increasing attention as risk factor for tooth damage or loss in recent years. It is a common condition in primary dentition compared to permanent dentition due to thinner and less mineralised enamel. However, it is more worrying, when this condition is being found in an alarming proportion among children. The presence of dental erosion in children is likely to be associated with a number of general health and dietary factors, but it is also aggravated by the relatively more rapid progression of erosion in the deciduous teeth. An understanding of the aetiologies and risk factors for erosion is important for early recognition of dental erosion to prevent serious irreversible damage to the dentition. This paper discusses the erosion in children with regard to its epidemiology, prevalence, clinical features, measurement and prevention.

  19. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    International Nuclear Information System (INIS)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository

  20. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.

  1. PROBLEMS OF SOIL PROTECTION FROM EROSION

    OpenAIRE

    M. Voloshuk; Natalia Kiriak

    2007-01-01

    In this article the problems of soil protection from erosion in Moldova are considered. The history (evolution) of erosive processes is generalized, the first items of information on presence washed off soils are marked. Purposeful study of soil erosion, development of measures of struggle with it were begun in Moldova at the end of 40 years. In connection with transition to new economic methods of conducting economy (farmers, rent, privatization of land) before pedologist, the experts of des...

  2. GEOSTATISTICAL BASED SUSCEPTIBILITY MAPPING OF SOIL EROSION AND OPTIMIZATION OF ITS CAUSATIVE FACTORS: A CONCEPTUAL FRAMEWORK

    Directory of Open Access Journals (Sweden)

    ABDULKADIR T. SHOLAGBERU

    2017-11-01

    Full Text Available Soil erosion hazard is the second biggest environmental challenges after population growth causing land degradation, desertification and water deterioration. Its impacts on watersheds include loss of soil nutrients, reduced reservoir capacity through siltation which may lead to flood risk, landslide, high water turbidity, etc. These problems become more pronounced in human altered mountainous areas through intensive agricultural activities, deforestation and increased urbanization among others. However, due to challenging nature of soil erosion management, there is great interest in assessing its spatial distribution and susceptibility levels. This study is thus intend to review the recent literatures and develop a novel framework for soil erosion susceptibility mapping using geostatistical based support vector machine (SVM, remote sensing and GIS techniques. The conceptual framework is to bridge the identified knowledge gaps in the area of causative factors’ (CFs selection. In this research, RUSLE model, field studies and the existing soil erosion maps for the study area will be integrated for the development of inventory map. Spatial data such as Landsat 8, digital soil and geological maps, digital elevation model and hydrological data shall be processed for the extraction of erosion CFs. GISbased SVM techniques will be adopted for the establishment of spatial relationships between soil erosion and its CFs, and subsequently for the development of erosion susceptibility maps. The results of this study include evaluation of predictive capability of GIS-based SVM in soil erosion mapping and identification of the most influential CFs for erosion susceptibility assessment. This study will serve as a guide to watershed planners and to alleviate soil erosion challenges and its related hazards.

  3. Volumetric measurement of river bank erosion from sequential historical aerial photography

    Science.gov (United States)

    Spiekermann, Raphael; Betts, Harley; Dymond, John; Basher, Les

    2017-11-01

    Understanding of the relative contribution of bank erosion to sediment budgets in New Zealand is limited. Few measurements of bank erosion rates exist, and this is a major limitation to the development of a locally calibrated model of bank erosion. The New Zealand sediment budget model, SedNetNZ, predicts bank erosion based on preliminary data, and this study aims to underpin the development of an improved model for bank erosion. Photogrammetric techniques and LiDAR were used to collect data on bank erosion rates for five different river reaches, ranging from 3 to 14 km in length, in the Kaipara Catchment, Northland, New Zealand. Changing river channel planform between the 1950s and 2015 was assessed using four to five well-spaced dates of historical aerial photographs. Changes in planform were combined with bank height, to calculate erosion and accretion volumes which were compared with SedNetNZ modelled estimates. Erosion and accretion is relatively evenly balanced in the study sites. The largest difference in terms of relative proportions of erosion and accretion are found along the Tangowahine River (13.4 km reach length), where 492,000 m3 of sediment eroded between 1956 and 2015 compared to 364,000 m3 of accretion. Lateral migration rates (erosion) for the five river reaches range between 0.14 m yr- 1 and 0.21 m yr- 1 and are comparable with those measured by previous assessments in New Zealand. The migration rates in channel widths per year for the three larger rivers (stream order 5-6) range between 0.4% and 0.8% of channel width per year. In contrast, the smaller streams (stream order 3-4) are retreating more rapidly, with width-averaged rates of 1.7% and 3.0%. Current SedNetNZ modelling tends to underestimate the bank height and greatly overestimates the migration rate.

  4. Experiment of cavitation erosion at the exit of a long orifice

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Yoshinori; Murase, Michio [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    We performed experiments to clarify mechanism of cavitation erosion and to predict cavitation erosion rate at the exit of a long orifice equipped at the chemical and volume control system in a pressurized water reactor (PWR). In order to find this mechanism, we used a high speed video camera. As the result, we observed bubble collapses near the exit of the orifice when flow condition was oscillating. So the bubble collapses due to the oscillation might cause the first stage erosion at the exit of the orifice. Using the orifice which had the cone-shaped exit, we observed that bubbles collapsed near the exit and then they collapsed at the upstream like a chain reaction. So this bubble collapse mechanism could be explained as follows: shock wave was generated by the bubble collapse near the exit, then it propagated upwards, consequently it caused the bubble collapse at the upstream. And we predicted erosion rate by evaluating the effect of the velocity and comparing the erosion resistance between the test speciment (aluminum) and the plant material (stainless steel) by means of vibratory tests. We compared the predicted erosion rate with that of the average value estimated from plant investigation, then we examined the applicability of these method to the plant evaluations. (author)

  5. Rill erosion of mudstone slope-a case study of southern Taiwan

    Science.gov (United States)

    Yang, Ci-Jian; Lin, Jiun-chuan; Cheng, Yuan-Chang

    2014-05-01

    Soil erosion has been studied by many scientists for decades (Zingg, 1940; Meyer & Wischmeier, 1969; Foster, 1982; Luk, 1988) and many soil erosion prediction equations have already been developed, such as USLE, RUSLE. In spite of WEEP is based on hydrological physical model, all of the above models are restricted to predict concentrate flow. On the other hand, rill erosion is not understood completely. The amounts of rill erosion are always underestimated. Rill Erosion correlate closely to gradient (Cerda & Garcia-Fayos, 1997; Fox & Bryan, 1999; Fu,et al., 2011; Clarke & Rendell, 2006), slope length (Gabriel, 1999; Yair, 2004), particle distribution (Gabriel, 1999), proportion of clay (Luk,1977; Bryan2000), rainfall intensity (Römkens et al. 2001), and land use (Dotterweich, 2008). However, the effect of micromorphology of mud rock surface, such as mud-cracks, could be studied in more details. This research aims to simulate rill development by hydraulic flume to observe the morphological change caused by rill/erosion process. Mudstone specimens sampled from the mudstone area of Long-Chi, southern Taiwan. The results show that: (1) The erosion pattern of mudstone slope can be divided into four steps: (a) inter-rill erosion, ( b) rill erosion, (c) rill development, (d) slope failure. (2) Slopes with mud-cracks caused 125% soil loss than smooth slopes. (3) Mud-cracks affect spatial distribution of rill development (4) The sediment concentration decreased sharply in the beginning of experiments, however increased due to rill development. This paper demonstrated such a rill development. 1: Department of Geography, National Taiwan University. E-mail:maxpossibilism0929@gmail.com

  6. Erosion products in disruption simulation experiments

    International Nuclear Information System (INIS)

    Safronov, V.; Arkhipov, N.; Bakhtin, V.; Barsuk, V.; Kurkin, S.; Mironova, E.; Toporkov, D.; Vasenin, S.; Zhitlukhin, A.; Arkhipov, I.; Werle, H.; Wuerz, H.

    1998-01-01

    Erosion of divertor materials under tokamak disruption event presents a serious problem of ITER technology. Erosion restricts the divertor lifetime and leads to production of redeposited layers of the material retaining large amount of tritium, which is a major safety issue for future fusion reactor. Since ITER disruptive heat loads are not achievable in existing tokamaks, material erosion is studied in special simulation experiments. Till now the simulation experiments have focused mainly on investigation of shielding effect and measurement of erosion rate. In the present work the properties of eroded and redeposited graphite are studied under condition typical for hard ITER disruption. (author)

  7. Reduction of surface erosion in fusion reactors

    International Nuclear Information System (INIS)

    Rossing, T.D.; Das, S.K.; Kaminsky, M.

    1976-01-01

    Some of the major processes leading to surface erosion in fusion reactors are reviewed briefly, including blistering by implanted gas, sputtering by ions, atoms, and neutrons, and vaporization by local heating. Surface erosion affects the structural integrity and limits the lifetime of reactor components exposed to plasma radiation. In addition, some of the processes leading to surface erosion also cause the release of plasma contaminants. Methods proposed to reduce surface erosion have included control of surface temperature, selection of materials with a favorable microstructure, chemical and mechanical treatment of surfaces, and employment of protective surface coatings, wall liners, and divertors. The advantages and disadvantages of some of these methods are discussed

  8. Erosive lichen planus: a therapeutic challenge.

    Science.gov (United States)

    Romero, Williams; Giesen, Laura; Navajas-Galimany, Lucas; Gonzalez, Sergio

    2016-01-01

    Erosive lichen planus is an uncommon variant of lichen planus. Chronic erosions of the soles, accompanied by intense and disabling pain, are some of its most characteristic manifestations. We present the case of a woman who developed oral and plantar erosive lichen planus associated with lichen planus pigmentosus and ungueal lichen planus that were diagnosed after several years. The patient failed to respond to multiple therapies requiring longstanding medication but remained refractory. Knowledge of the treatment options for erosive lichen planus is insufficient. Further research is required to clarify their effectiveness, ideally adopting an evidence-based methodology.

  9. Performance-based specifications for temporary erosion and sediment control during construction : a survey of state practice.

    Science.gov (United States)

    2013-03-01

    During construction projects, surrounding soils can be disrupted, causing ecological damage through topsoil erosion and pollution of waterways with sediment. MnDOT currently has requirements and inspection procedures to ensure that contractors take m...

  10. Amplified Erosion above Waterfalls and Oversteepened Bedrock Reaches

    Science.gov (United States)

    Haviv, I.; Enzel, Y.; Whipple, K. X.; Zilberman, E.; Stone, J.; Matmon, A.; Fifield, K. L.

    2005-12-01

    Although waterfalls are abundant along steep bedrock channels, none of the conventional erosion laws can predict incision at the lip of a waterfall where flow is non-uniform and bed slope can be vertical. Considering the expected increase in flow velocity and shear stress at the lip of a vertical waterfall we determine erosion amplification at a waterfall lip as: Elip/Enormal= (1+0.4/Fr2)3n, where Fr is the Froude number and n ranges between 0.5-1.7. This amplification expression suggests that erosion at the lip could be as much as 2-5 times higher than normally expected in a setting with identical hydraulic geometry. It also demonstrates that a freefall is expected to amplify upstream incision rates even when the flow approaching the waterfall is highly supercritical. Utilizing this erosion amplification expression in numerical simulations in conjunction with a standard detachment-limited incision model we demonstrate its impact on reach-scale morphology above waterfalls. These simulations indicate that amplified erosion at the lip of a waterfall can trigger the formation of an oversteepened reach whose length is longer than the flow acceleration zone, provided incision velocity (Vi) at the edge of the flow acceleration zone is higher than the retreat velocity of the waterfall face. Such an oversteepened reach is expected to be more pronounced when Vi increases with increasing slope. The simulations also suggest that oversteepening can eventually lead to quasi steady-state gradients upstream from a waterfall provided Vi decreases with increasing slope. Flow acceleration above waterfalls can thus account, at least partially, for oversteepened bedrock reaches that are prevalent above waterfalls. Such reaches have been reported for the escarpments of southeast Australia, western Dead Sea, and at Niagara Falls. Using the cosmogenic isotope 36Cl we demonstrate that Vi upstream of a waterfall at the Dead Sea western escarpment is high enough for freefall

  11. The influence of rill density on soil erosion against USLE-soil erosion methode

    OpenAIRE

    Rizalihadi, A.M.; Faimah, B.E.; Nazia, C.L.

    2013-01-01

    Land and water is one of the major natural resource which has an important role for human life. Exploitation of land in catchment areas that not correspond to its carrying capacity will cause damage. One of the effect is increassing the soil erosion. Continuous erosion will also lead to increased sediment transport in rivers that disrupt the ship navigation on estuary due sediment accumulation. At present, soil erosion is estimated using USLE method, which is only limited to the erosion in th...

  12. Assessment of erosion hazard after recurrence fires with the RUSLE 3D MODEL

    Science.gov (United States)

    Vecín-Arias, Daniel; Palencia, Covadonga; Fernández Raga, María

    2016-04-01

    the use of inaccurate metadata, since in many cases the downloaded data include scale errors. It was noted that the factors vegetal ground cover and land use were the ones which introduce more error in the model. The low resolution of metadata produces sometimes that into a value zones very heterogeneous were included. Therefore, for this analysis, it has done a very specific and detailed manual labour, qualifying factors of vegetal ground cover and land uses. Also, the slope factor LS has been conducted in great detail. With all of these, the error has been minimized to look for pre- and post-fire differences. At the oral exposition, the process and difficulties of realization of both maps will be explained and how they were resolved and the results of the comparison of the effects of fire recurrence in the study área. Thanks to Gesfire Project Study of multiscale tools for post-fire management of forest ecosystems prone to fire. References IDEE. (2016). Infraestructura de Datos Espaciales de España .El portal de acceso de Información Geográfica de España. Available from Consejo Superior Geográfico http://idee.es Mitasova, H, Brown, WM, Johnston, D and Mitas, L, 1996. GIS Tools for Erosion/Deposition Modeling and Multidimensional Visualization. PART II: Unit Stream Power-Based Erosion/Deposition Modeling and Enahced Dynamic Visualization., In Report for USA CERL. University of Illinois, Urbana-Champaign, IL, vol 38. Renard, KG, R., FG, A., WG and Porter, JP. 1991. RUSLE Revised Universal Soil Loss Equation. J. Soil and Water Cons. 46, 30-33. Renard, KG, R., FG, A., WG, K., MD and C., YD, 1997. Predicting Soil Erosion by Water: A Guide To Conservation Planning With The Revised Universal Soil Loss Equation, US Department of Agriculture, Agricultural Research Services 703 USA Agricultural Handbook Šúri, M, Cebecauer, T, Hofierka, J and Fulajtár, E. 2002. Soil erosion assessment of Slovakia at a regional scale using GIS. Ekológia(Bratislava) 21, 404

  13. Quantifying accelerated soil erosion through ecological site-based assessments of wind and water erosion

    Science.gov (United States)

    This work explores how organising soil erosion assessments using established groupings of similar soils (ecological sites) can inform systems for managing accelerated soil erosion. We evaluated aeolian sediment transport and fluvial erosion rates for five ecological sites in southern New Mexico, USA...

  14. Farmers' identification of erosion indicators and related erosion damage in the Central Highlands of Kenya

    NARCIS (Netherlands)

    Sterk, G.; Okoba, B.O.

    2006-01-01

    Most soil and water conservation planning approaches rely on empirical assessment methods and hardly consider farmers' knowledge of soil erosion processes. Farmers' knowledge of on-site erosion indicators could be useful in assessing the site-specific erosion risk before planning any conservation

  15. Monthly Rainfall Erosivity Assessment for Switzerland

    Science.gov (United States)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation

  16. Seasonality of soil erosion under mediterranean conditions at the Alqueva Dam watershed.

    Science.gov (United States)

    Ferreira, Vera; Panagopoulos, Thomas

    2014-07-01

    The Alqueva reservoir created the largest artificial lake of Western Europe in 2010. Since then, the region has faced challenges due to land-use changes that may increase the risk of erosion and shorten the lifetime of the reservoir, increasing the need to promote land management sustainability. This paper investigates the aspect of seasonality of soil erosion using a comprehensive methodology that integrates the Revised Universal Soil Loss Equation (RUSLE) approach, geographic information systems, geostatistics, and remote-sensing. An experimental agro-silvo pastoral area (typical land-use) was used for the RUSLE factors update. The study confirmed the effect of seasonality on soil erosion rates under Mediterranean conditions. The highest rainfall erosivity values occurred during the autumn season (433.6 MJ mm ha(-1) h(-1)), when vegetation cover is reduced after the long dry season. As a result, the autumn season showed the highest predicted erosion (9.9 t ha(-1)), contributing 65 % of the total annual erosion. The predicted soil erosion for winter was low (1.1 t ha(-1)) despite the high rainfall erosivity during that season (196.6 MJ mm ha(-1) h(-1)). The predicted annual soil loss was 15.1 t ha(-1), and the sediment amount delivery was 4,314 × 10(3) kg. Knowledge of seasonal variation would be essential to outline sustainable land management practices. This model will be integrated with World Overview of Conservation Approaches and Technologies methods to support decision-making in that watershed, and it will involve collaboration with both local people and governmental institutions.

  17. Spatial distribution of water erosion risk in a watershed with eucalyptus and Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Junior Cesar Avanzi

    2013-10-01

    Full Text Available The process of water erosion occurs in watersheds throughout the world and it is strongly affected by anthropogenic influences. Thus, the knowledge of these processes is extremely necessary for planning of conservation efforts. This study was performed in an experimental forested watershed in order to predict the average potential annual soil loss by water erosion using the Universal Soil Loss Equation (USLE and a Geographic Information System (GIS, and then compared with soil loss tolerance. All the USLE factors were generated in a distributed approach employing a GIS tool. The layers were multiplied in the GIS framework in order to predict soil erosion rates. Results showed that the average soil loss was 6.2 Mg ha-1 yr-1. Relative to soil loss tolerance, 83% of the area had an erosion rate lesser than the tolerable value. According to soil loss classes, 49% of the watershed had erosion less than 2.5 Mg ha-1 yr-1. However, about 8.7% of the watershed had erosion rates greater than 15 Mg ha-1 yr-1, being mainly related to Plinthosol soil class and roads, thus requiring special attention for the improvement of sustainable management practices for such areas. Eucalyptus cultivation was found to have soil loss greater than Atlantic Forest. Thus, an effort should be made to bring the erosion rates closer to the native forest. Implementation of the USLE model in a GIS framework was found to be a simple and useful tool for predicting the spatial variation of soil erosion risk and identifying critical areas for conservation efforts.

  18. Evaluation of Mediterranean plants for controlling gully erosion

    International Nuclear Information System (INIS)

    Baets, S. de; Poesen, J.; Muys, B.

    2009-01-01

    In Mediterranean environments, gullies are responsible for large soil losses causing loss of fertile cropland soil, reservoir sedimentation and flooding. To limit soil loss and sediment export it is important to prevent the initiation or rills and to stabilise gullies. This can be done by establishing vegetation at vulnerable places in the landscape. Although in the past, the effects of vegetation on soil erosion rates were predicted using above-ground biomass characteristics only, plant roots also play an important role in protecting the soil against erosion by concentrated runoff. Especially in conditions where the above-ground biomass becomes very scarce (e.g. due to drought, harvest, overgrazing or fire) the effects of vegetation will be underestimated when only above-ground plant characteristics are taken into account. (Author) 6 refs.

  19. Evaluation of Mediterranean plants for controlling gully erosion

    Energy Technology Data Exchange (ETDEWEB)

    Baets, S. de; Poesen, J.; Muys, B.

    2009-07-01

    In Mediterranean environments, gullies are responsible for large soil losses causing loss of fertile cropland soil, reservoir sedimentation and flooding. To limit soil loss and sediment export it is important to prevent the initiation or rills and to stabilise gullies. This can be done by establishing vegetation at vulnerable places in the landscape. Although in the past, the effects of vegetation on soil erosion rates were predicted using above-ground biomass characteristics only, plant roots also play an important role in protecting the soil against erosion by concentrated runoff. Especially in conditions where the above-ground biomass becomes very scarce (e.g. due to drought, harvest, overgrazing or fire) the effects of vegetation will be underestimated when only above-ground plant characteristics are taken into account. (Author) 6 refs.

  20. Net-erosion profile model and simulation experiments

    International Nuclear Information System (INIS)

    Sagara, Akio

    2001-01-01

    Estimation of net-erosion profile is requisite for evaluating the lifetime of divertor plates under high heat and particle fluxes of fusion plasmas. As a reference in benchmark tests of numerical calculation codes, a self-consistent analytical solution is presented for a simplified divertor condition, wherein the magnetic field line is normal to the target plate and the ionization mean free path of sputtered particles is assumed constant. The primary flux profile of hydrogen and impurities are externally given as well as the return ratio of sputtered atoms to the target. In the direction along the divertor trace, all conditions are uniform. The analytical solution is compared with net-erosion experiments carried out using the Compact Helical System (CHS). The deposition profiles of Ti and O impurities are in very good agreement with the analytical predictions. Recent preliminary results observed on divertor plates in the Large Helical Device (LHD) are briefly presented. (author)

  1. Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy)

    Science.gov (United States)

    Angileri, Silvia Eleonora; Conoscenti, Christian; Hochschild, Volker; Märker, Michael; Rotigliano, Edoardo; Agnesi, Valerio

    2016-06-01

    Soil erosion by water constitutes a serious problem affecting various countries. In the last few years, a number of studies have adopted statistical approaches for erosion susceptibility zonation. In this study, the Stochastic Gradient Treeboost (SGT) was tested as a multivariate statistical tool for exploring, analyzing and predicting the spatial occurrence of rill-interrill erosion and gully erosion. This technique implements the stochastic gradient boosting algorithm with a tree-based method. The study area is a 9.5 km2 river catchment located in central-northern Sicily (Italy), where water erosion processes are prevalent, and affect the agricultural productivity of local communities. In order to model soil erosion by water, the spatial distribution of landforms due to rill-interrill and gully erosion was mapped and 12 environmental variables were selected as predictors. Four calibration and four validation subsets were obtained by randomly extracting sets of negative cases, both for rill-interrill erosion and gully erosion models. The results of validation, based on receiving operating characteristic (ROC) curves, showed excellent to outstanding accuracies of the models, and thus a high prediction skill. Moreover, SGT allowed us to explore the relationships between erosion landforms and predictors. A different suite of predictor variables was found to be important for the two models. Elevation, aspect, landform classification and land-use are the main controlling factors for rill-interrill erosion, whilst the stream power index, plan curvature and the topographic wetness index were the most important independent variables for gullies. Finally, an ROC plot analysis made it possible to define a threshold value to classify cells according to the presence/absence of the two erosion processes. Hence, by heuristically combining the resulting rill-interrill erosion and gully erosion susceptibility maps, an integrated water erosion susceptibility map was created. The

  2. Rainfall erosivity in Brazil: A Review

    Science.gov (United States)

    In this paper, we review the erosivity studies conducted in Brazil to verify the quality and representativeness of the results generated and to provide a greater understanding of the rainfall erosivity (R-factor) in Brazil. We searched the ISI Web of Science, Scopus, SciELO, and Google Scholar datab...

  3. Interrill soil erosion processes on steep slopes

    Science.gov (United States)

    To date interrill erosion processes and regimes are not fully understood. The objectives are to 1) identify the erosion regimes and limiting processes between detachment and transport on steep slopes, 2) characterize the interactive effects between rainfall intensity and flow depth on sediment trans...

  4. Soil erosion dynamics response to landscape pattern

    NARCIS (Netherlands)

    Ouyang, W.; Skidmore, A.K.; Hao, F.; Wang, T.

    2010-01-01

    Simulating soil erosion variation with a temporal land use database reveals long-term fluctuations in landscape patterns, as well as priority needs for soil erosion conservation. The application of a multi-year land use database in support of a Soil Water Assessment Tool (SWAT) led to an accurate

  5. Reduction of soil erosion on forest roads

    Science.gov (United States)

    Edward R. Burroughs; John G. King

    1989-01-01

    Presents the expected reduction in surface erosion from selected treatments applied to forest road traveledways, cutslopes, fillslopes, and ditches. Estimated erosion reduction is expressed as functions of ground cover, slope gradient, and soil properties whenever possible. A procedure is provided to select rock riprap size for protection of the road ditch.

  6. Forest road erosion control using multiobjective optimization

    Science.gov (United States)

    Matthew Thompson; John Sessions; Kevin Boston; Arne Skaugset; David Tomberlin

    2010-01-01

    Forest roads are associated with accelerated erosion and can be a major source of sediment delivery to streams, which can degrade aquatic habitat. Controlling road-related erosion therefore remains an important issue for forest stewardship. Managers are faced with the task to develop efficient road management strategies to achieve conflicting environmental and economic...

  7. Past, Present, Future Erosion at Locke Island

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, Bruce N.

    2006-08-08

    This report describes and documents the erosion that has occurred along the northeast side of Locke Island over the last 10 to 20 years. The principal cause of this erosion is the massive Locke Island landslide complex opposite the Columbia River along the White Bluffs, which constricts the flow of the river and deflects the river's thalweg southward against the island.

  8. Tools for Ephemeral Gully Erosion Process Research

    Science.gov (United States)

    Techniques to quantify ephemeral gully erosion have been identified by USDA Natural Resources Conservation Service (NRCS) as one of gaps in current erosion assessment tools. One reason that may have contributed to this technology gap is the difficulty to quantify changes in channel geometry to asses...

  9. Developing empirical relationship between interrill erosion, rainfall ...

    African Journals Online (AJOL)

    In order to develop an empirical relationship for interrill erosion based on rainfall intensity, slope steepness and soil types, an interrill erosion experiment was conducted using laboratory rainfall simulator on three soil types (Vertisols, Cambisols and Leptosols) for the highlands of North Shewa Zone of Oromia Region.

  10. Rethinking erosion on Java: a reaction

    NARCIS (Netherlands)

    Graaff, de J.; Wiersum, K.F.

    1992-01-01

    In a recent article (Diemont et al., 1991) about erosion on Java, it has been postulated that low inputs, not surface erosion, is the main cause of low productivity of upland food crops on this island. In this article it is argued that this hypothesis is too simple. An analysis of empirical field

  11. The erosive potential of candy sprays

    NARCIS (Netherlands)

    Gambon, D.L.; Brand, H.S.; Nieuw Amerongen, A.V.

    2009-01-01

    Objective To determine the erosive potential of seven different commercially available candy sprays in vitro and in vivo. Material and methods The erosive potential was determined in vitro by measuring the pH and neutralisable acidity. The salivary pH and flow rate were measured in healthy

  12. Dental erosion: prevalence, incidence, and distribution

    NARCIS (Netherlands)

    Jager, D.H.J.; Amaechi, B.T.

    2015-01-01

    Dental erosion is one of the most common dental diseases and it is a growing problem. Numerous epidemiological studies have investigated the prevalence of dental erosion. For these studies different cross sections of the population are investigated. Large differences were found between countries,

  13. Backward erosion piping : Initiation and progression

    NARCIS (Netherlands)

    Van Beek, V.M.

    2015-01-01

    Backward erosion piping is an internal erosion mechanism during which shallow pipes are formed in the direction opposite to the flow underneath water-retaining structures as a result of the gradual removal of sandy material by the action of water. It is an important failure mechanism in both dikes

  14. Experiments to study the erosive effect of oxide casting streams on structures

    International Nuclear Information System (INIS)

    Stuka, B.; Knauss, H.; Kammerer, B.; Perinic, D.

    1992-04-01

    The experiments performed under an activity of the Nuclear Safety Project (PSF) make a contribution to the study of the erosive effect of oxide casting streams on structures. As aluminothermically generated oxide casting stream, 20 mm in diameter, was applied from 1.0 m dropping height to 40 mm thick horizontal stainless steel plates in free air atmosphere. The test parameters were different temperatures of preheating of the plates (900 and 1200deg C). By means of thermocouples offset in depth in the plates it was possible to record and represent the temperature distribution in the plate correlated with time. Regarding the direct erosive effect of an oxide casting stream as a function of the temperature of plate preheating it appeared that a high initial temperature of the stainless steel plate (1200deg C) causes an increased erosion area at the surface only, but does not exert a macroscopically visible influence on erosion depth. (orig.) [de

  15. Evaluación del modelo WEPP para predecir la erosión hídrica en pastizales semiáridos del noreste de la Patagonia Evaluation of the WEPP model to predict soil erosion in northeastern Patagonian rangelands

    Directory of Open Access Journals (Sweden)

    Marcelo P Chartier

    2010-07-01

    Full Text Available Los modelos matemáticos son herramientas útiles para la predicción de las pérdidas de suelo por erosión hídrica. El desarrollo reciente del modelo WEPP y su utilización para evaluar los riesgos de erosión en pastizales naturales ha significado un avance interesante en el campo de la erosión y la conservación de suelos de estos ecosistemas. En este trabajo examinamos la eficiencia del modelo WEPP para predecir los procesos hidrológicos y de erosión del suelo en los pastizales naturales semiáridos del noreste de la provincia de Chubut. Se identificaron tres comunidades de plantas ubicadas a lo largo de un gradiente de degradación del suelo: estepa herbácea con arbustos aislados (EH, estepa herbáceo-arbustiva (EHA y estepa arbustiva degradada (EA. En cada una de estas comunidades se aplicó una lluvia simulada (100 mm h-1 durante 30 min sobre parcelas de 1 m² (0,6 x 1,67 m y se colectó el escurrimiento y los sedimentos totales. A partir de los datos de la condición superficial de cada parcela se estimó el escurrimiento y la producción de sedimentos mediante el modelo WEPP. En este trabajo se observó una baja eficiencia del modelo WEPP para predecir el escurrimiento (Eficiencia, E = 0,14 y la erosión del suelo (E = -0,93. La predicción del escurrimiento y pérdida de suelo del modelo WEPP mostró mayor sensibilidad a cambios en los parámetros de lluvia y pendiente del terreno y una sensibilidad moderada a cambios en la cobertura, textura, erodabilidad del suelo y conductividad hidráulica efectiva. El escurrimiento y la producción de sedimentos estimados por WEPP fueron significativamente diferentes en las distintas comunidades de plantas (p Mathematical models are useful tools to predict soil loss by water erosion. The recent development of the WEPP model and its use in assessing the risks of erosion in rangelands has led to significant advances in the field of erosion and soil conservation of these ecosystems. In this

  16. Preliminary results of {sup 1}37 Cs activity in a soil erosion toposequence in cuenca (castilla la mancha, central spain)

    Energy Technology Data Exchange (ETDEWEB)

    Bienes, R.; Alvarez, A.; Jimenez-Ballesta, R.

    2009-07-01

    The soil redistribution due to the conventional tillage practices represents a very severe process of soil erosion and degradation in Mediterranean agricultural lands. The existing methods for soil erosion assessment can be grouped into two main categories: erosion modelling and prediction methods and erosion measurement methods. The use of environmental radionuclides, in particular {sup 1}37 Cs, overcomes many of the limitations associated with traditional approaches and has been shown as an effective way of studying erosion and deposition. Its determination and the study of the characters of soils in a sequence permits know the control of the erosion. The objective of this study was to determine the soil erosion rates using {sup 1}37 Cs activities concentrations in a typical Mediterranean environment; the Chillaron basin (Cuenca, Castilla La Mancha, Spain). (Author) 9 refs.

  17. The use of radionuclide techniques in soil erosion studies

    International Nuclear Information System (INIS)

    Bernard, C.; Mabit, L.

    2006-01-01

    Erosion is of concern since it can reduce soil productivity as a result of exportation of inorganic and organic material and nutrients out of the cultivated fields. These are the so-called 'onsite' impacts of erosion. Some of the exported materials, and the associated elements, find their way to water bodies The result is a degradation of the water quality due to suspended solids, sedimentation, eutrophication and pesticide toxicity, what is currently referred to as off-site impacts. Despite its importance, many countries lack reliable and comprehensive data on the problem, its magnitude and spatial extent. One of the reasons is that producing representative and reliable data on erosion is a long and resource intensive process.Fallout radionuclides (FRNs), such as 137 Cs, 210 Pb and 7 Be, have proven to be very powerful tracers of soil movements, that can complement interestingly more conventional approaches. Starting in the mid-1990's the IAEA has been actively involved in supporting coordinated research activities to further develop several methodological aspects related to the use of these isotopes and in the dissemination of the techniques among Member States, through the joint efforts of the Soil and Water Management and Crop Nutrition Section (SWMCN) of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and the Soil Science Unit (SSU) of the FAO/IAEA Agriculture and Biotechnology Laboratory. A first Coordinated Research Project (CRP), from 1996 to 2001, helped to test and validate the basic assumptions underlying the use of FRN, to accelerate the development of conversion models used to translate FRN data into soil movements and to evaluate the effect of specific land use management on soil erosion. A second CRP, planned for 2003-2007, builds on the results of the first one to assess the efficiency of different soil conservation practices, to continue the validation of conversion models and the development of user-friendly software to

  18. Erosion testing of hard materials and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2005-04-29

    Erosion is the process by which unconstrained particles, usually hard, impact a surface, creating damage that leads to material removal and component failure. These particles are usually very small and entrained in fluid of some type, typically air. The damage that occurs as a result of erosion depends on the size of the particles, their physical characteristics, the velocity of the particle/fluid stream, and their angle of impact on the surface of interest. This talk will discuss the basics of jet erosion testing of hard materials, composites and coatings. The standard test methods will be discussed as well as alternative approaches to determining the erosion rate of materials. The damage that occurs will be characterized in genera1 terms, and examples will be presented for the erosion behavior of hard materials and coatings (both thick and thin).

  19. Erosion Pressure on the Danish Coasts

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Sørensen, Per; Kroon, Aart

    Coastlines around the world are receding due to coastal erosion.With rising sea levels and a potential climatic deterioration due to climate change, erosion rates are likely to increase at many locations in the future.Together with the current preference of people to settle near or directly...... by the ocean, coastal erosion issues become increasingly more important to the human values at risk. Along many Danish coastlines, hard structures already act as coastal protection in the form of groins, breakwaters, revetments etc. These eroding coasts however still lack sand and where the public, in general......, neglects the need for sand replenishment i.e. in the form of repeated sand nourishments. Here we present a conceptual model and method for dividing coastal erosion into acute and chronic erosion pressure, respectively. We focus on the model use for management and climate change adaptation purposes...

  20. Dietary assessment and counseling for dental erosion.

    Science.gov (United States)

    Marshall, Teresa A

    2018-02-01

    Dental erosion occurs after exposure to intrinsic or extrinsic acids. Exposure to intrinsic gastrointestinal acids is associated with anorexia nervosa, bulimia nervosa, rumination syndrome, or gastroesophageal reflux. Extrinsic dietary acids from foods or beverages also can cause erosion, particularly when exposure is prolonged by holding or swishing behaviors. Clinicians should screen patients exhibiting dental erosion for anorexia nervosa, bulimia nervosa, rumination syndrome, and gastroesophageal reflux disease. Clinicians should screen patients without a medical explanation for their erosion for exposure to acidic foods and beverages, particularly for habits that prolong exposure. Identification of intrinsic and extrinsic acid exposures and recommendations to minimize exposures are important to prevent erosion and maintain oral health. Copyright © 2018 American Dental Association. Published by Elsevier Inc. All rights reserved.

  1. Medication-related dental erosion: a review.

    Science.gov (United States)

    Thomas, Manuel S; Vivekananda Pai, A R; Yadav, Amit

    2015-10-01

    Dental erosion has become a major problem that affects the long-term health of the dentition. Among the various potential causes for erosive tooth wear, the different drugs prescribed for patients may be overlooked. Several therapeutic medications can directly or indirectly be associated with dental erosion. It is the responsibility of oral health providers to make both patients and colleagues aware of drugs that may contribute to this condition. Therefore, the purpose of this discussion is to provide an overview of the various therapeutic medications that can be related to tooth erosion. The authors also include precautionary measures-summarized as The 9 Rs-to avoid or at least reduce medication-induced erosion.

  2. Soil erosion processes on sloping land using REE tracer

    International Nuclear Information System (INIS)

    Shen Zhenzhou; Liu Puling; Yang Mingyi; Lian Zhenlong; Ju Tongjun; Yao Wenyi; Li Mian

    2007-01-01

    Sheet erosion is the main performance in the slope soil erosion process at the primary stage of natural rainfall. For three times of rainfall during experiment, the ratios of sheet erosion to total erosion account for 71%, 48% and 49% respectively, which showed that the sloping erosion was still at the primary stage from sheet erosion to rill erosion. With the rainfall going, the rill erosion amount increase. It showed that soil erosion was changing from sheet erosion to rill erosion. The sources of sediment from different sections of the plot were analyzed, and the results indicated that whatever the sheet erosion changed, the ratio erosion of upper part of surface soil was always lower than 10%. Sheet erosion came mainly from the lower section of surface soil. With the ratios to the amount of total rill erosion changes, the rill erosion amount of each section regularly changes too. The general conclusion is that when the rainfall ends, relative erosion of different slope element to the foot of slope is: 1 meter away accounts for 16%, 2-4 meters away is 6% and 5-9 meters away is 3%. The ratio of rill erosion amount of these three slope element is 5:2:1, which shows the rill erosion amount are mainly from the slope element of 4 meters from the foot of slope. (authors)

  3. Assessment of soil erosion and sedimentation through the use of the 137Cs and related techniques

    International Nuclear Information System (INIS)

    Queralt, I.; Zapata, F.; Garcia Agudo, E.

    2000-01-01

    During the last decades the international scientific community has been increasingly aware of both the risk and the effects of soil erosion and sedimentation processes cause to sustainable agricultural activities and the quality of the superficial environment. Soil erosion is a major environmental worldwide concern of our time. Over the past thirty years two main streams of thought have developed about the effects of soil erosion. The first one, mainly based on ecologist and environmentalist criteria, believes that soil