WorldWideScience

Sample records for eroded red soil

  1. [Spatiotemporal variation of typical red soil eroded landscape pattern: a case study in Changting County of Fujian Province].

    Science.gov (United States)

    Wu, Guo-sheng; Lin, Hui-hua; Zhu, He-jian; Sha, Jin-ming; Dai, Wen-yuan

    2011-07-01

    Based on the 1988, 2000, and 2007 remote sensing images of a typical red soil eroded region (Changting County, Fujian Province) and the digital elevation model (DEM), the eroded landscape types were worked out, and the changes of the eroded landscape pattern in the region from 1988 to 2007 were analyzed with the spatial mathematics model. In 1988-2007, different eroded landscape types in the region had the characteristics of inter-transfer, mainly manifested in the transfer from seriously eroded to lightly eroded types but still existed small amount of the transference from lightly eroded to seriously eroded types. Little change was observed in the controid of the eroded landscape. In the County, Hetian Town was all along the eroded center. During the study period, the landscape pattern index showed a tendency of low heterogeneity, low fragmentation, and high regularization at landscape level, but an overall improvement and expansion of lightly eroded and easy-to-tackle patches as well as the partial improvement and fragmentation of seriously eroded and difficult-to-tackle patches at patch level.

  2. Experimental Study of Factors Affecting Soil Erodibility

    Science.gov (United States)

    Larionov, G. A.; Bushueva, O. G.; Gorobets, A. V.; Dobrovolskaya, N. G.; Kiryukhina, Z. P.; Krasnov, S. F.; Litvin, L. F.; Maksimova, I. A.; Sudnitsyn, I. I.

    2018-03-01

    The effect of different factors and preparation conditions of monofraction samples from the arable horizon of leached chernozem on soil erodibility and its relationship with soil tensile strength (STS) has been studied. The exposure of samples at 38°C reduces their erodibility by two orders of magnitude. The drying of samples, on the contrary, increases their erodibility. It has been shown that erodibility decreases during the experiment. It has been found that the inoculation of soil with yeast cultures ( Naganishia albida, Lipomyces tetrasporus) reliably increases the STS value in 1.5-1.9 times. The sterile soil is eroded more intensively than the unsterile soil: at 4.9 and 0.3 g/(m2 s), respectively. The drying of soil followed by wetting to the initial water content (30%) has no significant effect on the STS value in almost all experimental treatments.

  3. Relationship between soil erodibility and modeled infiltration rate in different soils

    Science.gov (United States)

    Wang, Guoqiang; Fang, Qingqing; Wu, Binbin; Yang, Huicai; Xu, Zongxue

    2015-09-01

    The relationship between soil erodibility, which is hard to measure, and modeled infiltration rate were rarely researched. Here, the soil erodibility factors (K and Ke in the USLE, Ki and K1 in the WEPP) were calculated and the infiltration rates were modeled based on the designed laboratory simulation experiments and proposed infiltration model, in order to build their relationship. The impacts of compost amendment on the soil erosion characteristics and relationship were also studied. Two contrasting agricultural soils (bare and cultivated fluvo-aquic soils) were used, and different poultry compost contents (control, low and high) were applied to both soils. The results indicated that the runoff rate, sediment yield rate and soil erodibility of the bare soil treatments were generally higher than those of the corresponding cultivated soil treatments. The application of composts generally decreased sediment yield and soil erodibility but did not always decrease runoff. The comparison of measured and modeled infiltration rates indicated that the model represented the infiltration processes well with an N-S coefficient of 0.84 for overall treatments. Significant negative logarithmic correlations have been found between final infiltration rate (FIR) and the four soil erodibility factors, and the relationship between USLE-K and FIR demonstrated the best correlation. The application of poultry composts would not influence the logarithmic relationship between FIR and soil erodibility. Our study provided a useful tool to estimate soil erodibility.

  4. Soil erodibility variability in laboratory and field rainfall simulations

    Science.gov (United States)

    Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán

    2017-04-01

    Rainfall simulation experiments are the most common way to observe and to model the soil erosion processes in in situ and ex situ circumstances. During modelling soil erosion, one of the most important factors are the annual soil loss and the soil erodibility which represent the effect of soil properties on soil loss and the soil resistance against water erosion. The amount of runoff and soil loss can differ in case of the same soil type, while it's characteristics determine the soil erodibility factor. This leads to uncertainties regarding soil erodibility. Soil loss and soil erodibility were examined with the investigation of the same soil under laboratory and field conditions with rainfall simulators. The comparative measurement was carried out in a laboratory on 0,5 m2, and in the field (Shower Power-02) on 6 m2 plot size where the applied slope angles were 5% and 12% with 30 and 90 mm/h rainfall intensity. The main idea was to examine and compare the soil erodibility and its variability coming from the same soil, but different rainfall simulator type. The applied model was the USLE, nomograph and other equations which concern single rainfall events. The given results show differences between the field and laboratory experiments and between the different calculations. Concerning for the whole rainfall events runoff and soil loss, were significantly higher at the laboratory experiments, which affected the soil erodibility values too. The given differences can originate from the plot size. The main research questions are that: How should we handle the soil erodibility factors and its significant variability? What is the best solution for soil erodibility determination?

  5. Soil erodibility for water erosion: A perspective and Chinese experiences

    Science.gov (United States)

    Wang, Bin; Zheng, Fenli; Römkens, Mathias J. M.; Darboux, Frédéric

    2013-04-01

    Knowledge of soil erodibility is an essential requirement for erosion prediction, conservation planning, and the assessment of sediment related environmental effects of watershed agricultural practices. This paper reviews the status of soil erodibility evaluations and determinations based on 80 years of upland area erosion research mainly in China and the USA. The review synthesizes the general research progress made by discussing the basic concepts of erodibility and its evaluation, determination, and prediction as well as knowledge of its spatio-temporal variations. The authors found that soil erodibility is often inappropriately or inaccurately applied in describing soil loss caused by different soil erosion component processes and mechanisms. Soil erodibility indicators were related to intrinsic soil properties and exogenic erosional forces, measurements, and calculations. The present review describes major needs including: (1) improved definition of erodibility, (2) modified erodibility determinations in erosion models, especially for specific geographical locations and in the context of different erosion sub-processes, (3) advanced methodologies for quantifying erodibilities of different soil erosion sub-processes, and (4) a better understanding of the mechanism that causes temporal variations in soil erodibility. The review also provides a more rational basis for future research on soil erodibility and supports predictive modeling of soil erosion processes and the development of improved conservation practices.

  6. Puerto Rico Soil Erodibility (Kffact)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Puerto Rico soil erodibility (Kffactor) - low values indicate low vulnerability to erosion, higher values mean higher susceptibility to runoff.

  7. Soil erodibility in Europe: a high-resolution dataset based on LUCAS.

    Science.gov (United States)

    Panagos, Panos; Meusburger, Katrin; Ballabio, Cristiano; Borrelli, Pasqualle; Alewell, Christine

    2014-05-01

    The greatest obstacle to soil erosion modelling at larger spatial scales is the lack of data on soil characteristics. One key parameter for modelling soil erosion is the soil erodibility, expressed as the K-factor in the widely used soil erosion model, the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). The K-factor, which expresses the susceptibility of a soil to erode, is related to soil properties such as organic matter content, soil texture, soil structure and permeability. With the Land Use/Cover Area frame Survey (LUCAS) soil survey in 2009 a pan-European soil dataset is available for the first time, consisting of around 20,000 points across 25 Member States of the European Union. The aim of this study is the generation of a harmonised high-resolution soil erodibility map (with a grid cell size of 500 m) for the 25 EU Member States. Soil erodibility was calculated for the LUCAS survey points using the nomograph of Wischmeier and Smith (1978). A Cubist regression model was applied to correlate spatial data such as latitude, longitude, remotely sensed and terrain features in order to develop a high-resolution soil erodibility map. The mean K-factor for Europe was estimated at 0.032 thahha(-1)MJ(-1)mm(-1) with a standard deviation of 0.009 thahha(-1)MJ(-1)mm(-1). The yielded soil erodibility dataset compared well with the published local and regional soil erodibility data. However, the incorporation of the protective effect of surface stone cover, which is usually not considered for the soil erodibility calculations, resulted in an average 15% decrease of the K-factor. The exclusion of this effect in K-factor calculations is likely to result in an overestimation of soil erosion, particularly for the Mediterranean countries, where highest percentages of surface stone cover were observed. Copyright © 2014. Published by Elsevier B.V.

  8. Dispersive and erodible soils - fundamental differences

    CSIR Research Space (South Africa)

    Paige-Green, P

    2008-11-01

    Full Text Available Dispersive, erodible and slaking soils are prevalent over wide areas of South Africa. Each of these materials increases the cost of construction, but dispersive soils are likely to lead to far more serious problems, particularly in dam construction...

  9. Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility

    Science.gov (United States)

    Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila

    2018-02-01

    The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.

  10. Soil erodibility mapping using three approaches in the Tangiers province –Northern Morocco

    Directory of Open Access Journals (Sweden)

    Hamza Iaaich

    2016-09-01

    Full Text Available Soil erodibility is a key factor in assessing soil loss rates. In fact, soil loss is the most occurring land degradation form in Morocco, affecting rural and urban vulnerable areas. This work deals with large scale mapping of soil erodibility using three mapping approaches: (i the CORINE approach developed for Europe by the JRC; (ii the UNEP/FAO approach developed within the frame of the United Nations Environmental Program for the Mediterranean area; (iii the Universal Soil Loss Equation (USLE K factor. Our study zone is the province of Tangiers, North-West of Morocco. For each approach, we mapped and analyzed different erodibility factors in terms of parent material, topography and soil attributes. The thematic maps were then integrated using a Geographic Information System to elaborate a soil erodibility map for each of the three approaches. Finally, the validity of each approach was checked in the field, focusing on highly eroded areas, by confronting the estimated soil erodibility and the erosion state as observed in the field. We used three statistical indicators for validation: overall accuracy, weighted Kappa factor and omission/commission errors. We found that the UNEP/FAO approach, based principally on lithofacies and topography as mapping inputs, is the most adapted for the case of our study zone, followed by the CORINE approach. The USLE K factor underestimated the soil erodibility, especially for highly eroded areas.

  11. Soil Erodibility for Water Pollution Management of Melaka Watershed in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim Adham

    2015-07-01

    Full Text Available The relationships between surface runoffand soil erodibility are significant in water pollution and watershed management practices. Land use pattern, soil series and slope percentage are also major factors to develop the relationships. Daily rainfall data were collected and analyzed for variations in precipitation for calculating the surface runoff of these watersheds and surface runoff map was produced by GIS tools. Tew equation was utilized to predict soil erodibility of watershed soils.Results indicated that the weighted curve number varies from 82 to 85 and monthly runoff 23% to 30% among the five watersheds. Soil erodibility varies from 0.038 to 0.06 ton/ha (MJ.mm/ha/h. Linau-Telok-Local Alluvium, Malacca-Munchong, Munchong-Malacca-Serdang and Malacca-Munchong-Tavy are the dominant soil series of this region having the average soil erodibility of about 0.042 ton/ha (MJ.mm/ha/h. The main focus of this study is to provide the information of soil erodibility to reduce the water pollution of a watershed.

  12. Wind erodibility of soils from North Darfur State

    International Nuclear Information System (INIS)

    Medani, G. H.; Mustafa, M. A.

    2003-01-01

    Wind erodibility of soils (WE) is a prime factor for the prediction, assessment and mapping of wind erosion. Hence, this study was undertaken to generate WE data and pertinent relationships for North Darfur State. Surface soil samples (0-3 cm) were collected from forty farms scattered all over the state. Non-erodible soil particles (NEP) (>0.84 mm in diameter), WE and various relevant physical and chemical soil properties were determined. Regression analysis showed that NEP significantly (p 2 =0.825), clay (r 2 =0.754), silt (r 2 =0.737) and clay/ (silt + sand) ratio (r 2 =0.663), and decreased with increase in sand (r 2 =0.761), (silt+sand) / clay ratio (r 2 =0.766) and (silt+sand) / (clay+organic matter) ratio (r 2 =0.811). The four basic soil properties and their ratios gave the reverse effects on WE with slightly lower coefficients of determinations. Although organic matter is a slightly better predictor of both NEP and WE than (Si+S)/ (C+OM) ratio, the latter is preferred because it integrates in addition to OM resilient soil properties. A multiple regression equation with a relatively high coefficient of determination (R 2 =0.830) may also be used for predicting NEP from knowledge of the four prime soil properties. These properties accounted for only 62% of the variation of WE, thus it is not recommended for prediction purposes. The determined wind erodibility groups correlated very well with those established else where.(Author)

  13. U.S.V.I. Soil Erodibility (Kffact)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S.V.I. soil erodibility (Kffactor) - low values indicate low vulnerability to erosion, higher values mean higher susceptibility to runoff.

  14. Erodibility of waste (Loess) soils from construction sites under water and wind erosional forces.

    Science.gov (United States)

    Tanner, Smadar; Katra, Itzhak; Argaman, Eli; Ben-Hur, Meni

    2018-03-01

    Excess soils from construction sites (waste soils) become a problem when exposed to soil erosion by water or wind. Understanding waste soil erodibility can contribute to its proper reuse for various surface applications. The general objective of the study was to provide a better understanding of the effects of soil properties on erodibility of waste soils excavated from various depths in a semiarid region under rainfall and wind erosive forces. Soil samples excavated from the topsoil (0-0.3m) and subsoil layers (0.3-0.9 and >1m depths) were subjected to simulated rainfall and wind. Under rainfall erosive forces, the subsoils were more erodible than the topsoil, in contrast to the results obtained under wind erosive forces. Exchangeable sodium percentage was the main factor controlling soil erodibility (K i ) under rainfall, and a significant logarithmic regression line was found between these two parameters. In addition, a significant, linear regression was found between K i and slaking values for the studied soil samples, suggesting that the former can be predicted from the latter. Soil erodibility under wind erosion force was controlled mainly by the dry aggregate characteristics (mean weight diameter and aggregate density): their higher values in the subsoil layers resulted in lower soil erodibility compared to the topsoil. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A Physically—Based Geometry Model for Transport Distance Estimation of Rainfall-Eroded Soil Sediment

    Directory of Open Access Journals (Sweden)

    Qian-Gui Zhang

    2016-01-01

    Full Text Available Estimations of rainfall-induced soil erosion are mostly derived from the weight of sediment measured in natural runoff. The transport distance of eroded soil is important for evaluating landscape evolution but is difficult to estimate, mainly because it cannot be linked directly to the eroded sediment weight. The volume of eroded soil is easier to calculate visually using popular imaging tools, which can aid in estimating the transport distance of eroded soil through geometry relationships. In this study, we present a straightforward geometry model to predict the maximum sediment transport distance incurred by rainfall events of various intensity and duration. In order to verify our geometry prediction model, a series of experiments are reported in the form of a sediment volume. The results show that cumulative rainfall has a linear relationship with the total volume of eroded soil. The geometry model can accurately estimate the maximum transport distance of eroded soil by cumulative rainfall, with a low root-mean-square error (4.7–4.8 and a strong linear correlation (0.74–0.86.

  16. Impact of land use change on soil erodibility

    Directory of Open Access Journals (Sweden)

    F. Taleshian Jeloudar

    2018-01-01

    Full Text Available Vulnerability of soil separates to detachment by water is described as soil erodibility by Universal Soil Loss Equation which can be affected by land use change. In this study it was attempted to quantify the changes of Universal Soil Loss Equation K-factor and its soil driving factors in three land uses including rangeland, rainfed farming, and orchards in Babolrood watershed, northern Iran. Soil composite samples were obtained from two layers in three land uses, and the related soil physico-chemical properties were measured. The rainfed farming land use showed the highest clay contents, but the highest amounts of soil organic matter and sand particles were found in orchard land use. The high intensity of tillage led to the significant decrease of soil aggregate stability and permeability in the rainfed farming land use. The Universal Soil Loss Equation K-factor was negatively correlated with soil permeability (r=-0.77**. In rangeland, the K-factor (0.045 Mg h/MJ/mm was significantly higher and the particle size distribution had a great impact on the K-factor. The orchard land use, converted from the rangeland, did not show any increase of soils erodibility and can potentially be introduced as a good alternative land use in sloping areas. However, more detailed studies on environmental, social and economic aspects of this land use are needed.

  17. Water and dissolved carbon transport in an eroding soil landscape using column experiments

    DEFF Research Database (Denmark)

    Rieckh, Helene; Gerke, Horst; Glæsner, Nadia

    2014-01-01

    In the hummocky ground moraine soil landscape, a spatial continuum of more or less eroded soils developed from till under intensive agricultural cultivation. Water flow and solute transport are affected by the variable soil structural and pedological developments, which are posing a challenge...... for flux estimation. The objective of this study was to investigate transport of water, dissolved organic (DOC), and particulate carbon (PC) through soil profiles of an eroded Haplic Luvisol and a heavily eroded Haplic Regosol. We studied 5 soil horizons in three replicates each: Ap (0-20 cm) and E (20...... boundary. Breakthrough curves for a pre-applied tracer (Br-) on the soil surface and a tracer applied with irrigation water (3H2O) were modeled analytically using CXTFIT. The heterogeneity of the Luvisol horizons was generally higher than that of the Regosol horizons, which relates to the higher...

  18. Dynamic replacement and loss of soil carbon on eroding cropland

    Science.gov (United States)

    Harden, J.W.; Sharpe, J.M.; Parton, W.J.; Ojima, D.S.; Fries, T.L.; Huntington, T.G.; Dabney, S.M.

    1999-01-01

    Links between erosion/sedimentation history and soil carbon cycling were examined in a highly erosive setting in Mississippi loess soils. We sampled soils on (relatively) undisturbed and cropped hillslopes and measured C, N, 14C, and CO2 flux to characterize carbon storage and dynamics and to parameterize Century and spreadsheet 14C models for different erosion and tillage histories. For this site, where 100 years of intensive cotton cropping were followed by fertilization and contour plowing, there was an initial and dramatic decline in soil carbon content from 1870 to 1950, followed by a dramatic increase in soil carbon. Soil erosion amplifies C loss and recovery: About 100% of the original, prehistoric soil carbon was likely lost over 127 years of intensive land use, but about 30% of that carbon was replaced after 1950. The eroded cropland was therefore a local sink for CO2 since the 1950s. However, a net CO2 sink requires a full accounting of eroded carbon, which in turn requires that decomposition rates in lower slopes or wetlands be reduced to about 20% of the upland value. As a result, erosion may induce unaccounted sinks or sources of CO2, depending on the fate of eroded carbon and its protection from decomposition. For erosion rates typical of the United States, the sink terms may be large enough (1 Gt yr-1, back-of-the-envelope) to warrant a careful accounting of site management, cropping, and fertilization histories, as well as burial rates, for a more meaningful global assessment.

  19. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    Science.gov (United States)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  20. Physico-chemical properties and fertility status of water eroded soils of Sharkul area of district Mansehra, Pakistan

    Directory of Open Access Journals (Sweden)

    Farmanullah Khan, A. Iqbal

    2011-11-01

    Full Text Available Soil degradation is the major threat to agricultural sustainability because it affects the soil productivity. Present study was conducted in 2008 to evaluate physico-chemical properties and fertility status of some eroded soil series of Sharkul area district Manshera, Hazara division, Khyber Pakhtunkhwa, Pakistan. Six soil series including slightly eroded (Dosera and Girari, moderately eroded (Nakholi and Sharkul and severely eroded (Ahl and Banser were selected. Soil samples were collected from surface (0-15 cm, subsurface (30-45 cm and substrata soil (60-75cm depths and were analyzed for various soil properties. Due to severity of erosion, bulk density increased, while total porosity, saturation percentage and organic matter decreased significantly. AB-DTPA extractable P, K, Fe, Cu, Zn, and Mn concentrations were decreased due to the severity of erosion in surface and sub surface soils, whereas in the substrata soils (60-75 cm depth, the effect of erosion was almost non significant. Sub-surface and sub-strata soils were found deficient in available P ( Zn > Fe > Mn. The physical and chemical properties of eroded soils varied significantly and the increasing severity of erosion resulted in corresponding deterioration of soil quality.

  1. Erodibility of calcareous soils as influenced by land use and intrinsic soil properties in a semiarid region of central Iran.

    Science.gov (United States)

    Ayoubi, Shamsollah; Mokhtari, Javad; Mosaddeghi, Mohammad Reza; Zeraatpisheh, Mojtaba

    2018-03-06

    The most important properties affecting the soil loss and runoff were investigated, and the effects of land use on the soil properties, together with the erodibility indices in a semiarid zone, central Iran, were evaluated. The locations of 100 positions were acquired by cLHS and 0-5-cm surface soil layer samples were used for laboratory analyses from the Borujen Region, Chaharmahal-Va-Bakhtiari Province, central Iran. To measure in situ runoff and soil erodibility of three different land uses comprising dryland, irrigated farming, and rangeland, a portable rainfall simulator was used. The results showed that the high variations (coefficient of variation, CV) were obtained for electrical conductivity (EC), mean weight diameter (MWD), soil organic carbon (SOC), and soil erodibility indices including runoff volume, soil loss, and sediment concentration (CV ~ 43.6-77.4%). Soil erodibility indices showed positive and significant correlations with bulk density and negative correlations with SOC, MWD, clay content, and soil shear strength in the area under investigation. The values of runoff in the dryland, irrigated farming, and rangeland were found 1.5, 28.9, and 58.7 cm 3 ; soil loss in the dryland, irrigated farming, and rangeland were observed 0.25, 2.96, and 76.8 g; and the amount of sediment concentration in the dryland, irrigated farming, and rangeland were found 0.01, 0.11, and 0.15 g cm -3 . It is suggested that further investigations should be carried out on soil erodibility and the potential of sediment yield in various land uses with varying topography and soil properties in semiarid regions of Iran facing the high risk of soil loss.

  2. Distribution of Shrubland and Grassland Soil Erodibility on the Loess Plateau

    Directory of Open Access Journals (Sweden)

    Xiao Zhang

    2018-06-01

    Full Text Available Soil erosion is one of the most severe problems facing environments and has increased throughout the 20th century. Soil erodibility (K-factor is one of the important indicators of land degradation, and many models have been used to estimate K values. Although soil erodibility has been estimated, the comparison of different models and their usage at a regional scale and, in particular, for different land use types, need more research. Four of the most widely distributed land use types were selected to analyze, including introduced and natural grassland, as well as introduced and natural shrubland. Soil particle size, soil organic matter and other relevant soil properties were measured to estimate soil erodibility in the Loess Plateau. The results show that: (1 the erosion productivity impact calculator (EPIC model and SHIRAZI model are both suitable for the Loess Plateau, while the SHIRAZI model has the advantage of fewer parameters; (2 introduced grassland has better ability to protect both the 0–5 cm soils and 5–20 cm soils, while the differences between introduced and natural shrubland are not obvious at a catchment scale; (3 the K values of introduced grassland, natural grassland, introduced shrubland and natural shrubland in the 0–5 cm layer vary from 0.008 to 0.037, 0.031 to 0.046, 0.012 to 0.041 and 0.008 to 0.045 (t·hm2·h/(MJ·mm·hm2, while the values vary from 0.009 to 0.039, 0.032 to 0.046, 0.012 to 0.042 and 0.008 to 0.048 (t·hm2·h/(MJ·mm·hm2 in the 5–20 cm layer. The areas with a mean multiyear precipitation of 370–440 mm are the most important places for vegetation restoration construction management at a regional scale. A comprehensive balance between water conservation and soil conservation is needed and important when selecting the species used to vegetation restoration. This study provides suggestions for ecological restoration and provides a case study for the estimate of soil erodibility in arid and semiarid

  3. Estimativa da erodibilidade pela desagregação por ultra-som e atributos de solos com horizonte B textural Estimating soil erodibility from sonication indexes and other attributes of textural B horizon soils

    Directory of Open Access Journals (Sweden)

    Marcos Aurélio Carolino de Sá

    2004-07-01

    Full Text Available A erodibilidade de solos é um fator importante na estimativa das perdas por erosão. Este fator é uma expressão da combinação de atributos do solo, os quais possibilitam sua estimativa por meio de equações. O objetivo deste trabalho foi medir atributos químicos e mineralógicos que, combinados com índices de estabilidade de agregados determinados por ultra-som, pudessem ser utilizados como variáveis em modelos na estimativa da erodibilidade de solos com horizonte B textural do Brasil. Estes atributos foram determinados em 22 solos de erodibilidade conhecida, medida diretamente em parcelas no campo. Atributos de 21 dos solos foram utilizados no ajuste dos modelos. Um dos solos (Argissolo Vermelho-Amarelo foi escolhido ao acaso para teste. De 96 variáveis, 15 foram incluídas nos modelos de estimativa da erodibilidade. A maioria delas é representada por índices de desagregação por sonificação de amostras do horizonte A. Foram obtidos quatro modelos para estimar a erodibilidade, com R² variando entre 0,83** e 0,91**. A erodibilidade pode ser estimada com base na estabilidade de agregados por ultra-som.Soil erodibility is an important factor for estimating soil erosion losses. This factor is an expression of combined soil attributes, which make possible its estimation by equations. The objective of this study was to measure some chemical and mineralogical attributes, and to combine them with aggregate stability indexes from sonication analysis, in equations in order to estimate soil erodibility of textural B horizon soils from Brazil. These attributes were measured for 22 soils that had their erodibility measured from field plots. Attributes of 21 soils were used to adjust the equations. One of the soils (Red-Yellow Argisol was used to test the equations. From 96 variables, 15 were significantly correlated to soil erodibility. Most of them are represented by the disruption indexes from sonication analysis of A horizon samples. This

  4. A PEDOTRANSFER FUNCTION FOR ESTIMATING THE SOIL ERODIBILITY FACTOR IN SICILY

    Directory of Open Access Journals (Sweden)

    Vincenzo Bagarello

    2009-09-01

    Full Text Available The soil erodibility factor, K, of the Universal Soil Loss Equation (USLE is a simple descriptor of the soil susceptibility to rill and interrill erosion. The original procedure for determining K needs a knowledge of soil particle size distribution (PSD, soil organic matter, OM, content, and soil structure and permeability characteristics. However, OM data are often missing and soil structure and permeability are not easily evaluated in regional analyses. The objective of this investigation was to develop a pedotransfer function (PTF for estimating the K factor of the USLE in Sicily (south Italy using only soil textural data. The nomograph soil erodibility factor and its associated first approximation, K’, were determined at 471 sampling points distributed throughout the island of Sicily. Two existing relationships for estimating K on the basis of the measured geometric mean particle diameter were initially tested. Then, two alternative PTFs for estimating K’ and K, respectively, on the basis of the measured PSD were derived. Testing analysis showed that the K estimate by the proposed PTF (eq.11, which was characterized by a Nash-Suttcliffe efficiency index, NSEI, varying between 0.68 and 0.76, depending on the considered data set, was appreciably more accurate than the one obtained by other existing equations, yielding NSEI values varying between 0.21 and 0.32.

  5. Testing the effect of a microbial-based soil amendment on aggregate stability and erodibility

    DEFF Research Database (Denmark)

    Malozo, Mponda; Iversen, Bo Vangsø; Heckrath, Goswin Johann

    to the rainfall-runoff experiment where the microbial-based product had a clear effect on soil erodibility. In relation to measurement of aggregate stability as well as clay dispersion, the picture was less clear. Especially for the sandy Tanzania soil with a low content of organic matter, a clear effect was seen...... aggregate stability and erodibility. Two commercial products, gypsum and a microbial-based solution were used for the experiment and were tested on two Danish sandy loamy soils as well on a sandy soil from Tanzania. The carrier of the microbial-based product, a glycerol solution, was tested as well....... In the laboratory, soils were treated with the soil amendments in a two-step procedure at controlled water contents following aerobic incubation in closed containers. Water-aggregate stability and clay dispersion were measured on soil aggregates less than 8 mm in diameter. Aggregate stability was measured...

  6. ASSESSMENT SPATIAL VARIABILITY OF SOIL ERODIBILITY BY USING OF GEOSTATISTIC AND GIS (Case study MEHR watershed of SABZEVAR

    Directory of Open Access Journals (Sweden)

    Ayoubi, S.A

    2005-05-01

    Full Text Available Soil erodibility is one of the key factors on some sediment and soil erosion models such as USLE, MUSLE, RUSLE, AUSLE (USLE modified in LS factor and MMF and represents like K factor and is function of particle distribution, organic mater, soil structure and ermeability. Traditional methods do not take spatial variability and estimate precision of variables in to consideration and amount of them are constant across the whole of soil series .This study was performed to assess spatial variability of soil erodibility and its relevant variables at MEHR watershed from Khorasan province, in northern Iran. Interested network was designed by 110 samples like nested- systematic with distance about 50, 100, 250 and 500 meter across the study area by preparing point map at GIS. Sampling points were identified in field by an Global Positioning system. Soil sampling was done at depth of 0-5cm of ground surface and permeability was studied at depth of 5-30 cm. Some soil properties such as particle distribution and organic mater were measured at laboratory. Particle size distribution was determined by Hydrometer method and Organic matter was measured by wet oxidation approach. Then spatial analysis was done. Variography analysis on soil attributes according to soil erodibility, showed that Gaussian, exponential and spherical models were the most models to predict spatial variability of soil parameters. The range of spatial dependencies was changed from 320 to 3200 m. Soil attribute maps prepared by kriging technique using models parameters. Then soil attributes were composed by Wischmeier (1978 formula in Illwis media to calculate K factor. Amount of soil erodibility changed from 0.13 to 0.91 that it's maximum and minimum was identified in east and southwest of studiedarea. Soil spatial variability pattern, is similar to silt pattern due to high effect of silt on soil rodibility, Also that is partially confirmed with geology map, indicated which soil

  7. Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda

    NARCIS (Netherlands)

    Nzeyimana, I.; Hartemink, A.E.; Ritsema, C.J.; Stroosnijder, L.; Huerta Lwanga, Esperanza; Geissen, V.

    2017-01-01

    In Rwanda, mulch is applied in coffee fields to control soil erosion. The objective of this paper is to quantify the effects of different types of mulch on soil properties and soil erodibility in coffee farming systems in three different agro-ecological zones of the highlands of Rwanda. The

  8. Determination of interrill soil erodibility coefficient based on Fuzzy and Fuzzy-Genetic Systems

    Directory of Open Access Journals (Sweden)

    Habib Palizvan Zand

    2017-02-01

    Full Text Available Introduction: Although the fuzzy logic science has been used successfully in various sudies of hydrology and soil erosion, but in literature review no article was found about its performance for estimating of interrill erodibility. On the other hand, studies indicate that genetic algorithm techniques can be used in fuzzy models and finding the appropriate membership functions for linguistic variables and fuzzy rules. So this study was conducted to develop the fuzzy and fuzzy–genetics models and investigation of their performance in the estimation of soil interrill erodibility factor (Ki. Materials and Methods: For this reason 36 soil samples with different physical and chemical properties were collected from west of Azerbaijan province . soilsamples were also taken from the Ap or A horizon of each soil profile. The samples were air-dried , sieved and Some soil characteristics such as soil texture, organic matter (OM, cation exchange capacity (CEC, sodium adsorption ratio (SAR, EC and pH were determined by the standard laboratory methods. Aggregates size distributions (ASD were determined by the wet-sieving method and fractal dimension of soil aggregates (Dn was also calculated. In order to determination of soil interrill erodibility, the flume experiment performed by packing soil a depth of 0.09-m in 0.5 × 1.0 m. soil was saturated from the base and adjusted to 9% slope and was subjected to at least 90 min rainfall . Rainfall intensity treatments were 20, 37 and 47 mm h-1. During each rainfall event, runoff was collected manually in different time intervals, being less than 60 s at the beginning, up to 15 min near the end of the test. At the end of the experiment, the volumes of runoff samples and the mass of sediment load at each time interval were measured. Finally interrill erodibility values were calculated using Kinnell (11 Equation. Then by statistical analyses Dn and sand percent of the soils were selected as input variables and Ki as

  9. Effects of organic and inorganic amendments on soil erodibility

    Directory of Open Access Journals (Sweden)

    Nutullah Özdemir

    2015-10-01

    Full Text Available The objective of the present investigation is to find out the effect of incorporating of various organic and inorganic matter sources such as lime (L, zeolit (Z, polyacrylamide (PAM and biosolid (BS on the instability index. A bulk surface (0–20 cm depth soil sample was taken from Samsun, in northern part of Turkey. Some soil properties were determined as follows; fine in texture, modarete in organic matter content, low in pH and free of alkaline problem. The soil samples were treated with the inorganic and organic materials at four different levels including the control treatments in a randomized factorial block design. The soil samples were incubated for ten weeks. After the incubation period, corn was grown in all pots. The results can be summarized as organic and inorganic matter treatments increased structure stability and decreased soil erodibility. Effectiveness of the treatments varied depending on the types and levels of organic and inorganic materials.

  10. Deposition of eroded soil on terraced croplands in Minchet catchment, Ethiopian Highlands

    Directory of Open Access Journals (Sweden)

    Alemtsehay Subhatu

    2017-09-01

    Full Text Available In the Ethiopian Highlands, soil and water conservation practices are of utmost importance to conserve eroded soil and combat soil loss. This study provides detailed results on on-site sediment deposition and net soil loss in terraced croplands in a catchment in the sub-humid Ethiopian Highlands. Sediment deposition was measured on horse bean and maize fields during the crop growing seasons of 2014 and 2015. Measurements took place on observation plots on terraced cropland with varying spacing between terraces and varying slope gradients. Net soil loss, in this case the amount leaving the terraced cropland, was calculated by modelling the Universal Soil Loss Equation (USLE for the whole observation field and subtracting the measured sediment deposition. The study result showed about 8–11 t ha−1 sediment was deposited in the deposition zone of the terraced cropland, with greater sediment deposition on terraces with narrow spacing and steeper slope gradients. Sediment deposition was highest in July and August, and relatively low in September. Annual soil loss ranged from 32 to 37 t ha−1 in the terraced cropland of the study area. From the total soil loss in the crop growing season, about 54–74% sediment was deposited on the deposition zone of terraced crop fields. Implementation of soil and water conservation with narrow spacing, especially on the steep slopes of the sub-humid Ethiopian Highlands or other similar area, are thus highly recommended as they enable conservation of the eroded soil in the cropland.

  11. Differential effects of biochar on soils within an eroded field

    Science.gov (United States)

    Schumacher, Thomas; Chintala, Rajesh; Sandhu, Saroop; Kumar, Sandeep; Clay, Dave; Gelderman, Ron; Papiernik, Sharon; Malo, Douglas; Clay, Sharon; Julson, Jim

    2015-04-01

    Future uses of biochar will in part be dependent not only on the effects of biochar on soil processes but also on the availability and economics of biochar production. If pyrolysis for production of bio-oil and syngas becomes wide-spread, biochar as a by-product of bio-oil production will be widely available and relatively inexpensive compared to the production of biochar as primary product. Biochar produced as a by-product of optimized bio-oil production using regionally available feedstocks was examined for properties and for use as an amendment targeted to contrasting soils within an eroded field in an on-farm study initiated in 2013 at Brookings, South Dakota, USA. Three plant based biochar materials produced from carbon optimized gasification of corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were applied at a 1% (w/w) rate to a Maddock soil (Sandy, Mixed, Frigid Entic Hapludolls) located in an eroded upper landscape position and a Brookings soil (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) located in a depositional landscape position. The cropping system within this agricultural landscape was a corn (Zea mays L.) and soybean (Glycine max L.) rotation. Biochar physical and chemical properties for each of the feedstocks were determined including pH, surface area, surface charge potential, C-distribution, ash content, macro and micro nutrient composition. Yields, nutrient content, and carbon isotope ratio measurements were made on the harvested seed. Soil physical properties measured included water retention, bulk density, and water infiltration from a ponded double ring infiltrometer. Laboratory studies were conducted to determine the effects of biochar on partitioning of nitrate and phosphorus at soil surface exchange complex and the extracellular enzymes activity of C and N cycles. Crop yields were increased only in the Maddock soil. Biochar interacted with each

  12. Land degradation assessment by geo-spatially modeling different soil erodibility equations in a semi-arid catchment.

    Science.gov (United States)

    Saygın, Selen Deviren; Basaran, Mustafa; Ozcan, Ali Ugur; Dolarslan, Melda; Timur, Ozgur Burhan; Yilman, F Ebru; Erpul, Gunay

    2011-09-01

    Land degradation by soil erosion is one of the most serious problems and environmental issues in many ecosystems of arid and semi-arid regions. Especially, the disturbed areas have greater soil detachability and transportability capacity. Evaluation of land degradation in terms of soil erodibility, by using geostatistical modeling, is vital to protect and reclaim susceptible areas. Soil erodibility, described as the ability of soils to resist erosion, can be measured either directly under natural or simulated rainfall conditions, or indirectly estimated by empirical regression models. This study compares three empirical equations used to determine the soil erodibility factor of revised universal soil loss equation prediction technology based on their geospatial performances in the semi-arid catchment of the Saraykoy II Irrigation Dam located in Cankiri, Turkey. A total of 311 geo-referenced soil samples were collected with irregular intervals from the top soil layer (0-10 cm). Geostatistical analysis was performed with the point values of each equation to determine its spatial pattern. Results showed that equations that used soil organic matter in combination with the soil particle size better agreed with the variations in land use and topography of the catchment than the one using only the particle size distribution. It is recommended that the equations which dynamically integrate soil intrinsic properties with land use, topography, and its influences on the local microclimates, could be successfully used to geospatially determine sites highly susceptible to water erosion, and therefore, to select the agricultural and bio-engineering control measures needed.

  13. Crop Performance and Soil Properties in Two Artificially-Eroded Soils in North-Central Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, R Cesar C.; Malhi, S. S.; Nyborg, M.; Solberg, E. D.; Quiroga Jakas, Maria C.

    2006-09-01

    Field experiments were conducted from 1991 to 1995 at Josephburg (Orthic Black Chernozem, Typic Cryoboroll) and Cooking Lake (Orthic Gray Luvisol, Typic Cryoboralf), Alberta, to determine impact of topsoil removal on selected soil properties, N-mineralization potential and crop yield, and effectiveness of various amendments for restoring the productivity of eroded soils. The simulated-erosion levels were established in the autumn of 1990 by removing 20 cm topsoil in 5-cm depth increments. The four amendments were: control, addition of 5 cm of topsoil, fertilizers to supply 100 kg N ha-1 and 20 kg P ha-1, and cattle manure at 75 Mg ha-1. Topsoil and manure were applied once in the autumn of 1990, while fertilizers were applied annually from 1991 to 1995. Available N and P, total C, N and P, and N-mineralization potential decreased, while bulk density increased with increasing depth of topsoil removal. Tiller number, plant height, spike density, thousand kernel weight, and leaf area index decreased with simulated erosion. Grain yield reductions due to simulated soil erosion were either linear or curvilinear functions of nutrient removal. Application of N and P fertilizers and manure improved grain yield and reduced the impact of yield loss due to erosion. Return of 5 cm of topsoil also increased grain yield, but to a lesser extent than manure or fertilizers. Grain yields were maximized when fertilizers were also applied to organic amendment treatments. In conclusion, the findings suggest the importance of integrated use of organic amendments and chemical fertilizers for best crop yields on severely-eroded soils.

  14. [Characteristics of Soil Respiration along Eroded Sloping Land with Different SOC Background on the Hilly Loess Plateau].

    Science.gov (United States)

    Chen, Gai; Xu, Ming-xiang; Zhang, Ya-feng; Wang, Chao-hua; Fan, Hui-min; Wang, Shan-shan

    2015-09-01

    This study aimed to characterize soil respiration along eroded sloping land at erosion and deposition area under different soil organic carbon(SOC) levels, and linked the relationship between soil respiration and soil temperature, soil moisture, SOC and slope position. Experiments were carried out in the plots of S type slopes include five different soil organic carbon levels in the Loess Hilly Region. The S type slopes were divided into control area at the top of the slope, erosion area at the middle of the slope and deposition area at the toe of the slope. We found that soil temperature had a greater impact on soil respiration in the deposition area, whereas soil moisture had a greater impact on soil respiration in the erosion area compared among control area, erosion area and deposition area. In addition, SOC was the most important factor affecting soil respiration, which can explain soil respiration variation 54. 72%, followed by soil moisture, slope position and soil temperature, which explain soil respiration variation 18. 86% , 16. 13% and 10. 29%, respectively. Soil respiration response to erosion showed obvious on-site and off-site effects along the eroded sloping land. Soil respiration in the erosion area was reduced by 21. 14% compared with control area, and soil respiration in the deposition area was increased by 21. 93% compared with control area. Erosion effect on source and sink of carbon emission was correlated with SOC content of the eroded sloping land. When SOC content was higher than 6. 82 g.kg-1, the slope. erosion tended to be a carbon sequestration process, and when SOC content was lower than 3.03 g.kg-1, the slope erosion tended to be a process of the carbon emission source. The model could reflect the relationship between soil respiration and independent variables of soil organic carbon content, soil temperature and moisture.

  15. Sensitivity Analysis of the USLE Soil Erodibility Factor to Its Determining Parameters

    Science.gov (United States)

    Mitova, Milena; Rousseva, Svetla

    2014-05-01

    Soil erosion is recognized as one of the most serious soil threats worldwide. Soil erosion prediction is the first step in soil conservation planning. The Universal Soil Loss Equation (USLE) is one of the most widely used models for soil erosion predictions. One of the five USLE predictors is the soil erodibility factor (K-factor), which evaluates the impact of soil characteristics on soil erosion rates. Soil erodibility nomograph defines K-factor depending on soil characteristics, such as: particle size distribution (fractions finer that 0.002 mm and from 0.1 to 0.002 mm), organic matter content, soil structure and soil profile water permeability. Identifying the soil characteristics, which mostly influence the K-factor would give an opportunity to control the soil loss through erosion by controlling the parameters, which reduce the K-factor value. The aim of the report is to present the results of analysis of the relative weight of these soil characteristics in the K-factor values. The relative impact of the soil characteristics on K-factor was studied through a series of statistical analyses of data from the geographic database for soil erosion risk assessments in Bulgaria. Degree of correlation between K-factor values and the parameters that determine it was studied by correlation analysis. The sensitivity of the K-factor was determined by studying the variance of each parameter within the range between minimum and maximum possible values considering average value of the other factors. Normalizing transformation of data sets was applied because of the different dimensions and the orders of variation of the values of the various parameters. The results show that the content of particles finer than 0.002 mm has the most significant relative impact on the soil erodibility, followed by the content of particles with size from 0.1 mm to 0.002 mm, the class of the water permeability of the soil profile, the content of organic matter and the aggregation class. The

  16. A statistical model for horizontal mass flux of erodible soil

    International Nuclear Information System (INIS)

    Babiker, A.G.A.G.; Eltayeb, I.A.; Hassan, M.H.A.

    1986-11-01

    It is shown that the mass flux of erodible soil transported horizontally by a statistically distributed wind flow has a statistical distribution. Explicit expression for the probability density function, p.d.f., of the flux is derived for the case in which the wind speed has a Weibull distribution. The statistical distribution for a mass flux characterized by a generalized Bagnold formula is found to be Weibull for the case of zero threshold speed. Analytic and numerical values for the average horizontal mass flux of soil are obtained for various values of wind parameters, by evaluating the first moment of the flux density function. (author)

  17. Influence of biochar and terra preta substrates on wettability and erodibility of soils

    Science.gov (United States)

    Smetanova, A.; Dotterweich, M.; Diehl, D.; Ulrich, U.; Fohrer, N.

    2012-04-01

    Biochar (BC) and terra preta substrates (TPS) have recently been promoted as soil amendments suitable for soil stabilization, soil amelioration and long-term carbon sequestration. BC is a carbon-enriched substance produced by thermal decomposition of organic material. TPS is composed of liquid and solid organic matter, including BC, altered by acid-lactic fermentation. Their effect on wettability, soil erodibility and nutrient discharge through overland flow was studied by laboratory experiments. At water contents between 0 and 100% BC is water repellent, while TPS changes from a wettable into a repellent state. The 5 and 10 vol % mixtures of BC and 10 and 20 vol% mixtures of TPS with sand remain mainly wettable during drying but repellency maxima are shifted to higher water contents with respect to pure sand and are mainly of subcritical nature. The runoff response was dominated by infiltration properties of the substrates rather than their wettability.Only one mixtures (20% TPS) produced more runoff than sandy-loamy soil on a 15% slope at an intensity of 25 mm•h-1. The 10% BC decreased runoff by up to 40%. At higher rainfall intensities (45 and 55 mm•h-1) the 10% TPS7 was up to 35% less erodible than 10% BC. Despite the TPS containing more nutrients, nutrient discharge varied between types of nutrients, slopes, rainfall intensities and mixtures. The application of a 1 cm layer onto the soil surface instead of 10% mixtures is not recommended due to high nutrient concentrations in the runoff and the wettability of pure substrates. The usage of 10% BC in lowland areas with low frequency and low-intensity precipitation and 10% TPS7 in areas with higher rainfall intensities appears to be appropriate and commendable according to current results. However, together with reversibility of repellency, it needs to undergo further examination in the field under different environmental and land use conditions Key words: biochar, terra preta substrate, wettability

  18. Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes

    Science.gov (United States)

    Emma P. McCorkle; Asmeret Asefaw Berhe; Carolyn T. Hunsaker; Dale W. Johnson; Karis J. McFarlane; Marilyn L. Fogel; Stephen C. Hart

    2016-01-01

    Soil erosion continuously redistributes soil and associated soil organic matter (SOM) on the Earth's surface, with important implications for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). We used natural abundance...

  19. 7 CFR 12.20 - NRCS responsibilities regarding highly erodible land.

    Science.gov (United States)

    2010-01-01

    ... WETLAND CONSERVATION Highly Erodible Land Conservation § 12.20 NRCS responsibilities regarding highly... public lists of highly erodible soil map units; (c) Make soil surveys for purposes of identifying highly erodible land; and (d) Provide technical guidance to conservation districts which approve conservation...

  20. Interrill Erodibility of P and C on conventially and organically farmed Devon soils

    Science.gov (United States)

    Kuhn, N. J.

    2012-04-01

    Soil erosion can have significant off-site effects on water quality and thus human and habitat health. Apart from sedimentation, the transfer of nutrients, both dissolved and particulate, is a major concern. The particulate transfer of nutrients from agricultural land can occur either by rill or interrill erosion. Rill erosion is non-selective and affects only a limited extent of agricultural land. Interrill processes such as crusting, splash and raindrop-impacted wash, on the other hand, act on all cropland and affect the quality of the water from all areas generating runoff. A significant amount of phosphorus (P) is contained in the surface soil layer transformed by interrill processes annually. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes and erosion for regional nutrient cycling requires close attention. Interrill erosion is a complex phenomenon, involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles which are often enriched in clay, P and organic C. Commonly, the risk of erosion associated with organically farmed soils is lower than those farmed in a conventional way. This is attributed to greater aggregate stability and thus greater infiltration and lower erodibility. Erosion of nutrients on organically farmed soils is therefore considered to be reduced by the same order of magnitude than the amount of eroded soil compared to conventionally farmed soils. However, the selective nature of

  1. Effects of land conversion from native shrub to pistachio orchard on soil erodibility in an arid region.

    Science.gov (United States)

    Yakupoglu, Tugrul; Gundogan, Recep; Dindaroglu, Turgay; Kara, Zekeriya

    2017-10-29

    Land-use change through degrading natural vegetation for agricultural production adversely affects many of soil properties particularly organic carbon content of soils. The native shrub land and grassland of Gaziantep-Adiyaman plateau that is an important pistachio growing eco-region have been cleared to convert into pistachio orchard for the last 50 to 60 years. In this study, the effects of conversion of natural vegetation into agricultural uses on soil erodibility have been investigated. Soil samples were collected from surface of agricultural fields and adjacent natural vegetation areas, and samples were analyzed for some soil erodibility indices such as dispersion ratio (DR), erosion ratio (ER), structural stability index (SSI), Henin's instability index (I s ), and aggregate size distribution after wet sieving (AggSD). According to the statistical evaluation, these two areas were found as different from each other in terms of erosion indices except for I s index (P < 0.001 for DR and ER or P < 0.01 for SSI). In addition, native shrub land and converted land to agriculture were found different in terms of AggSD in all aggregate size groups. As a contrary to expectations, correlation tests showed that there were no any interaction between soil organic carbon and measured erodibility indices in two areas. In addition, significant relationships were determined between measured variables and soil textural fractions as statistical. These obtaining findings were attributed to changing of textural component distribution and initial aggregate size distribution results from land-use change in the study area. Study results were explained about hierarchical aggregate formation mechanism.

  2. 7 CFR 12.21 - Identification of highly erodible lands criteria.

    Science.gov (United States)

    2010-01-01

    ... the Universal Soil Loss Equation (USLE): (i) Rainfall and runoff (R); (ii) The degree to which the... and surface soil moisture (C) and the degree to which soil resists wind erosion (I). (3) The USLE is...) Basis for identification as highly erodible. Soil map units and an erodibility index will be used as the...

  3. Soil aggregates, organic matter turnover and carbon balance in a Mediterranean eroded vineyard

    Science.gov (United States)

    Novara, Agata; Lo Papa, Giuseppe; Dazzi, Carmelo; Gristina, Luciano; Cerdà, Artemi

    2014-05-01

    The carbon cycle is being affected by the human impacts (Novara et al., 2011; Yan-Gui et al., 2013), and one of those is the intensification in the soil erosion in agriculture land (Cerdà et al., 2009; García Orenes et al., 2009). Vineyards also are affected by the human activities (Fernández Calviño, 2012). Vineyards in Sicily are cultivated on 110.000 ha, 10% of which on >10% slope. Deficiencies of soil organic matter are typical of the semi arid Mediterranean environment especially where traditional intensive cropping practices are adopted (Novara et al., 2012; 2013). These practices in vineyards could lead soil to intensive erosion processes (Novara et al., 2011). The fate of SOC under erosion processes is difficult to understand because of the influence of the erosion impact on SOC pathway, which depends on the different features of the process involved (detachment, transport and/or deposition). Soil erosion must be considered a net C source (Lal, 2003), as eroded soils have lower net primary productivity (NPP) (Dick and Gregorich, 2004) caused by reduction in the effective rooting depth and all in all determining decline in soil quality. Breakdown of aggregates and soil dispersion expose SOM to microbial/enzymatic processes and chemical soil properties (Dimoyiannis, 2012; Kocyigit and Demirci, 2012). Moreover the light fraction, transported by runoff, is labile and easily mineralized determining CO2 emission in the atmosphere (Jacinthe and Lal, 2004). Therefore, the carbon pool is lower in eroded than in un-eroded soil scapes and the rate of mineralization of soil organic matter is higher in sediments than in original soil. In this survey we show a research conducted on a slope sequence of three soil profiles in an irrigated vineyard located in Sambuca di Sicilia, Italy (UTM33-WGS84: 4169367N; 325011E). The SOC content was measured at depth intervals of 10 cm up to a depth of 60 cm in each pedon. Wet aggregate-size fractions with no prior chemical

  4. Measuring the Amount of Eroded Soil and Surface Runoff Water in the Field

    OpenAIRE

    Abdulfatah Faraj Aboufayed

    2013-01-01

    Water erosion is the most important problems of the soil in the Jabel Nefusa area located in northwest of Libya; therefore, erosion station had been established in the Faculty of Veterinary and dryfarming research Station, University of the Al-japel Al-gharbi in Zentan. The length of the station is 72.6 feet, 6 feet width and the percentage of its slope is 3%. The station were established to measure the amount of soil eroded and amount of surface water produced during the seasons 95/96 and 96...

  5. Erodibility of cement-stabilized tropical soils in highway engineering in Togo

    International Nuclear Information System (INIS)

    Eklu-Natey, T.E.D.

    1992-01-01

    This work contains a methodical study on the suceptibility to weather of cement-stabilized tropical soils of Togo by simulating on the one hand the climatic conditions of the original surroundings and on the other hand the variations occuring in situ of the degree of saturation and compaction. The chosen tests ensure for the first time a simple execution and at the same time reproducible numerical values of the results achieved. From results of the slaking, erosion, adhesion, durability and swelling tests clear parameters and classification criteria were derived which help to forecast the susceptibility to weather of soils in tropical climates. A method for the determination of the reaction to water of soils is proposed consisting of a particular process of derivation and interpretation of the consistency value for a given swelling rate. Moreover a possibility is recommended with which the time-consuming and expensive mineralogical analyses which were frequently used in the past for torpical soils can be avoided. The proposed evaluation criteria provides civil engineers working in permanently moist, arid or intermittently moist tropical regions with practical and theoretical bases for the estimation of the erodibility of soils. (orig./BBR) [de

  6. Comparative study of soil erodibility and critical shear stress between loess and purple soils

    Science.gov (United States)

    Xing, Hang; Huang, Yu-han; Chen, Xiao-yan; Luo, Bang-lin; Mi, Hong-xing

    2018-03-01

    Loess and purple soils are two very important cultivated soils, with the former in the loess region and the latter in southern sub-tropical region of China, featured with high-risks of erosion, considerable differences of soil structures due to differences in mineral and nutrient compositions. Study on soil erodibility (Kr) and critical shear stress (τc) of these two soils is beneficial to predict soil erosion with such models as WEPP. In this study, rill erosion experimental data sets of the two soils are used for estimating their Kr and τc before they are compared to understand their differences of rill erosion behaviors. The maximum detachment rates of the loess and purple soils are calculated under different hydrodynamic conditions (flow rates: 2, 4, 8 L/min; slope gradients: 5°, 10°, 15°, 20°, 25°) through analytical and numerical methods respectively. Analytical method used the derivative of the function between sediment concentration and rill length to estimate potential detachment rates, at the rill beginning. Numerical method estimated potential detachment rates with the experimental data, at the rill beginning and 0.5 m location. The Kr and τc of these two soils are determined by the linear equation based on experimental data. Results show that the methods could well estimate the Kr and τc of these two soils as they remain basically unchanged under different hydrodynamic conditions. The Kr value of loess soil is about twice of the purple soil, whereas the τc is about half of that. The numerical results have good correlations with the analytical values. These results can be useful in modeling rill erosion processes of loess and purple soils.

  7. The fate of eroded soil organic carbon along a European transect – controls after deposition in terrestrial and aquatic systems

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    that the turnover of deposited C is significantly affected by soil and organic matter properties, and whether deposition occurs in terrestrial or aquatic environments. We sampled topsoils from 10 agricultural sites along a European transect, spanning a wide range of SOC and soil characteristics (e.g. texture......The potential fate of eroded soil organic carbon (SOC) after deposition is key to understand carbon cycling in eroding landscapes. Globally, large quantities of sediments and SOC are redistributed by soil erosion on agricul-tural land, particularly after heavy precipitation events. Deposition......, aggregation, C content, etc.). Turnover of SOC was determined for terrestrial and aquatic depositional conditions in a 10-week incubation study. Moreover, we studied the impact of labile carbon inputs (‘priming’) on SOC stability using 13C labelled cellulose. We evaluated potentially important controls...

  8. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    Science.gov (United States)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  9. Highly erodible terrain in agriculture land against chipped pruned branches. Or how to stop the soil erosion with low investment

    Science.gov (United States)

    Cerdà, A.

    2009-04-01

    The session on "Soil erosion and sediment control with vegetation and bioengineering on severely eroded terrain" pays special attention to the severe soil erosion suffered on steep slopes and erodible parent materials and soils. Within the last 20 years, in the Mediterranean lands, the citrus orchards were reallocated on steep slopes due to the urban development and better climatic and management conditions of the new plantations. The lack of vegetation cover on the new slope plantations of citrus resulted in high erosion rates. Those non-sustainable soil losses were measured by means of rainfall simulation experiments, Gerlach collectors, geomorphological transect and topographical measurements. The October 2007 and October 2008 rainy periods resulted in sheet, rill and gully erosion. Some recently planted orchards (2005) had the first pruning season in 2008. The pruned chipped branches reduced the soil losses to 50 % of the expected, although the litter (pruned branches) covered 4.67 % of the soil. This is why a research was developed by means of simulated rainfall experiments to determine the vegetation cover (litter, mainly leaves) to protect the soil to reach a sustainable erosion rate. Rainfall simulation experiments at 43 mm h-1 where performed on 1 m2 plots covered with 0, 3, 7, 15, 30, 45, 60, 80 and 100 % litter cover (pruned chipped branches) to determine the sustainable litter cover to avoid the soil losses. The results show that more that 45 % litter cover almost reduces the soil losses to negligible rates. The results confirm that 4 % of vegetation cover reduces the soil losses to 50 %. Key words: Agriculture land, erodible terrain, land management, citrus, erosion, Spain, Valencia, herbicides. Acknowledgements, We thanks the financial support of the Ministerio de Ciencia e Innovación by means of the project CGL2008-02879/BTE, "PERDIDA DE SUELO EN NUEVAS EXPLOTACIONES CITRICOLAS EN PENDIENTE. ESTRATEGIAS PARA EL CONTROL DE LA EROSION HIDRICA"

  10. Social perception of soil conservation benefits in Kondoa eroded area of Tanzania

    Directory of Open Access Journals (Sweden)

    Rajendra P. Shrestha

    2015-09-01

    Full Text Available A soil conservation project was implemented in Tanzania for over 30 years. This study applied a socio-economic approach to examine and analyse the benefits of soil conservation in the Kondoa eroded area of Tanzania by conducting a household survey of 240 households. The study findings show that 89% and 70% of respondents consider soil conservation activities have increased vegetation and soil fertility, respectively. Decreased soil erosion was perceived by 68% of respondents, increased firewood by 98%, increased fodder by 50%, high crop yields by 56%, and food sufficiency by 68%. These are the outcomes of conservation tillage, integrated farming and use of organic fertilizers, controlled stall feeding, agroforestry, construction of cut off drains, contour bunds and contour ridges cultivation, which are the main land use practices in the area. Access to extension services, household sizes, long term land ownership, crop incomes and awareness of soil conservation project were found to determine the level of participation in soil conservation. Major challenges are the lack of sustainability of those activities because of a recent policy decision to withdraw conservation investment. Despite the challenge, this study concluded that past government efforts on soil conservation activities initiated since the early 1970s through decentralization, institutional collaboration, socioeconomic support to farmers and continuous local community participation in restoring the degraded ecosystem of Kondoa have contributed to ensure environmental and socio-economic sustainability in the area.

  11. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils.

    Science.gov (United States)

    Hemingway, Jordon D; Hilton, Robert G; Hovius, Niels; Eglinton, Timothy I; Haghipour, Negar; Wacker, Lukas; Chen, Meng-Chiang; Galy, Valier V

    2018-04-13

    Lithospheric organic carbon ("petrogenic"; OC petro ) is oxidized during exhumation and subsequent erosion of mountain ranges. This process is a considerable source of carbon dioxide (CO 2 ) to the atmosphere over geologic time scales, but the mechanisms that govern oxidation rates in mountain landscapes are poorly constrained. We demonstrate that, on average, 67 ± 11% of the OC petro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of Taiwan is oxidized in soils, leading to CO 2 emissions of 6.1 to 18.6 metric tons of carbon per square kilometer per year. The molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals that OC petro remineralization is microbially mediated. Rapid oxidation in mountain soils drives CO 2 emission fluxes that increase with erosion rate, thereby counteracting CO 2 drawdown by silicate weathering and biospheric OC burial. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Contaminated soil phytoremediation by Cyperus laxus Lam. cytochrome p450 EROD-activity induced by hydrocarbons in roots.

    Science.gov (United States)

    López-Martínez, S; Gallegos-Martínez, M E; Pérez-Flores, L J; Gutiérrez-Rojas, M

    2008-01-01

    Laboratory and greenhouse experiments with Cyperus laxus Lam were conducted to determine the rate and extent of phytoremediation and the effect of hydrocarbons on the cytochrome P450 EROD (7-ethoxyresorufin-O-deethylase) enzymatic activity in roots. Plants were cultivated on hydrocarbon-contaminated soil (HCS) and spiked perlite. Phytoremediation was evaluated using 6.5 kg HCS (173 +/- 15 mg total petroleum hydrocarbons [TPH] g(-1) of dry soil) pots at different moisture contents; the average removal rate was 3.46-0.25 mg TPH g(-1) dry soil month(-1) and 48% was removed when moisture was kept at 60%. The aromatic hydrocarbon fraction was the mostly removed, 60%; aliphatic, 51%; and polar 24% after 24-month experiments. In unplanted pots, TPH concentration did not exhibit significant differences with respect to the initial concentration. We confirmed that the presence of hydrocarbons induced ERODactivity up to 6.5-fold. Moreover, short-term experiments (up to 13 d) with spiked perlite demonstrated that two EROD activities in roots contributed to the total detected; 60% was found in the cytosolic and 40% in the microsomal fraction. To our knowledge, this is the first work that tries to build links between the hydrocarbon-inducible character of ERODactivity in roots and the phytoremediation ability of C. laxus in highly contaminated soils.

  13. [Soil anti-erodibility of abandoned lands during different succession stages of plant community in hilly-gullied region of the Loess Plateau: Take Fangta small watershed as an example].

    Science.gov (United States)

    Yan, Fang-chen; Jiao, Ju-ying; Cao, Bin-ting; Yu, Wei-jie; Wei, Yan-hong; Kou, Meng; Hu, Shu

    2016-01-01

    Field survey and laboratory experiment were conducted to study the soil anti-erodibility of abandoned croplands during different vegetation succession stages in hilly-gullied region of the Loess Plateau, based on the analysis of soil particle composition, size distribution and group characteristics, soil aggregate fractal dimensions and stability. The results showed that in the earlier stages of succession from annual to perennial herbs in abandoned croplands, soil size distribution changed a little bit, the fractal dimension of soil particle increased, soil structure improved, fractal dimension and damage percent of soil aggregate structure decreased, soil stability increased, thus soil anti-erodibility increased. Therefore, natural restoration of vegetation is of great significance to improve the soil structure, increase soil erosion resistance, reduce soil erosion and promote sustainable development of regional ecological environment.

  14. Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran

    Science.gov (United States)

    Ostovari, Yaser; Ghorbani-Dashtaki, Shoja; Bahrami, Hossein-Ali; Naderi, Mehdi; Dematte, Jose Alexandre M.; Kerry, Ruth

    2016-11-01

    The measurement of soil erodibility (K) in the field is tedious, time-consuming and expensive; therefore, its prediction through pedotransfer functions (PTFs) could be far less costly and time-consuming. The aim of this study was to develop new PTFs to estimate the K factor using multiple linear regression, Mamdani fuzzy inference systems, and artificial neural networks. For this purpose, K was measured in 40 erosion plots with natural rainfall. Various soil properties including the soil particle size distribution, calcium carbonate equivalent, organic matter, permeability, and wet-aggregate stability were measured. The results showed that the mean measured K was 0.014 t h MJ- 1 mm- 1 and 2.08 times less than the estimated mean K (0.030 t h MJ- 1 mm- 1) using the USLE model. Permeability, wet-aggregate stability, very fine sand, and calcium carbonate were selected as independent variables by forward stepwise regression in order to assess the ability of multiple linear regression, Mamdani fuzzy inference systems and artificial neural networks to predict K. The calcium carbonate equivalent, which is not accounted for in the USLE model, had a significant impact on K in multiple linear regression due to its strong influence on the stability of aggregates and soil permeability. Statistical indices in validation and calibration datasets determined that the artificial neural networks method with the highest R2, lowest RMSE, and lowest ME was the best model for estimating the K factor. A strong correlation (R2 = 0.81, n = 40, p soils.

  15. Towards prediction of soil erodibility using hyperspectral information: a case study in a semi-arid region of Iran

    DEFF Research Database (Denmark)

    Ostovari, Yaser; Ghorbani-Dashtaki, Shoja; Bahrami, Hossein-Ali

    2018-01-01

    and develop Spectrotransfer Function (STF) using spectral reflectance information and Pedotransfer Function (PTF) to predict the K-factor, respectively. The derived STF was compared with developed PTF using measurable soil properties by Ostovari et al. (2016) and the Universal Soil Loss Equation (USLE......Soil Visible–Near-Infrared (Vis-NIR) spectroscopy has become an applicable and interesting technique to evaluate a number of soil properties because it is a fast, cost-effective, and non-invasive measurement technique. The main objective of the study to predict soil erodibility (K-factor), soil...... organic matter (SOM), and calcium carbonate equivalent (CaCO3) in calcareous soils of semi-arid regions located in south of Iran using spectral reflectance information in the Vis-NIR range. The K-factor was measured in 40 erosion plots under natural rainfall and the spectral reflectance of soil samples...

  16. Sorption and mechanism of aqueous U(Ⅵ) onto red soil-colloid

    International Nuclear Information System (INIS)

    Xia Liangshu; Huang Xin; Cao Cuncun; Chen Wei; Lu Junwen

    2013-01-01

    By static adsorption experiments, the effects of pH, ionic strength, adsorption time, uranium initial concentration, adsorbent dosage, red soil-colloid size, and organic matters on the biosorption capacity of red soil-colloid extracted from the soil around uranium tailing for uranium were studied. The adsorption process was analyzed by thermodynamics and kinetics, and the adsorption mechanism was characterized by the element analysis, infrared spectroscopy and scanning electron microscopy. The results show that the adsorption capacity for U (Ⅵ) on red soil-colloid increases with the decrease of ionic strength or particle size, increases with the initial concentration of uranium, decreases with the increase of the amount of red soil-colloid; the saturated adsorption capacity q max can be up to 76.76 μg/mg by red soil-colloid which diameter is less than 1 μm at 25 ℃ and pH=3.5, when the ionic strength is 0.001 mol/L. FT-IR micrograph before and after red soil-colloid adsorbed uranyl ions indicates that the red soil-colloid are mainly composed of hydroxyl, carbonyl, Si-O, Si-O-Fe, etc. The adsorption of U (Ⅵ) on red soil-colloid follows Langmuir adsorption isotherm, and the pseudo-second-order equation provides the best correlation for the adsorption process. (authors)

  17. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Soil Erodibility (KFFACT)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the adjusted soil erodibility factor within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the...

  18. Interrill and rill erodibility in the northern andean highlands

    NARCIS (Netherlands)

    Romero, C.; Stroosnijder, L.; Baigorria, G.A.

    2007-01-01

    There is a lack of quantitative information describing the physical processes causing soil erosion in the Andean Highlands, especially those related to interrill and rill erodibility factors. To assess how susceptible are soils to erosion in this region, field measurements of interrill (Ki) and rill

  19. Seasonal change of WEPP erodibility parameters on a fallow plot

    Science.gov (United States)

    D. K. McCool; S. Dun; J. Q. Wu; W. J. Elliot

    2011-01-01

    In cold regions, frozen soil has a significant influence on runoff and water erosion. Frozen soil can reduce infiltration capacity, and the freeze-thaw processes degrade soil cohesive strength and increase soil erodibility. In the Inland Pacific Northwest of the USA, major erosion events typically occur during winter from low-intensity rain, snowmelt, or both as frozen...

  20. Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish

    2016-09-26

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), ion chromatography (IC), scanning electron microscopy (SEM) and laser particle size analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used in climate

  1. Arabian Red Sea coastal soils as potential mineral dust sources

    Directory of Open Access Journals (Sweden)

    P. Jish Prakash

    2016-09-01

    Full Text Available Both Moderate Resolution Imaging Spectroradiometer (MODIS and Spinning Enhanced Visible and InfraRed Imager (SEVIRI satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD, inductively coupled plasma optical emission spectrometry (ICP-OES, ion chromatography (IC, scanning electron microscopy (SEM and laser particle size analysis (LPSA. We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models

  2. SOIL ERODIBILITY IN THE BRAZILIAN COASTAL PLAINS ERODIBILIDADE DO SOLO NOS TABULEIROS COSTEIROS

    Directory of Open Access Journals (Sweden)

    Nilton Curi

    2011-07-01

    Full Text Available

    In order to determine soil losses caused by water erosion, in different situations, erosion prediction models, such as the Universal Soil Loss Equation (USLE, are used. Their application on agricultural and environmental planning depends on the determination of the USLE factors, including erodibility (K factor. The objective of this study was to determine erodibility for the main soil classes of the Brazilian Coastal Plains region, in Aracruz, Espírito Santo State. The experiment was established in the following soils: medium/clayey texture Yellow Argisol (PA1, Haplic Plinthosol (FX, and moderately rocky Yellow Argisol (PA2. For the calculation of soil erodibility, data of erosivity and soil losses, from November 1997 to May 2004, were used. Soil losses samplings were performed for each rainfall event regarded as erosive. The erodibility values were 0.007 Mg h MJ-1 mm-1

  3. Wind-eroded silicate as a source of hydrogen peroxide on Mars

    DEFF Research Database (Denmark)

    Bak, Ebbe Norskov; Merrison, Jonathan P.; Jensen, Svend Knak

    -sists of silicates [4] that due to wind erosion has a very fine grained texture. Based on the composition of the surface material and investigations showing that crushing of silicates can give rise to reactive oxygen species [5], we hypothesized that wind erosion of silicates can explain the reactivity of Martian...... soil. Wind-erosion of silicate could thus be one of several causes of the soil’s reactivity. As our experiments show, the globally distributed wind eroded silicate dust can lead to the production of hydrogen peroxide which might explain the reactivity of the Martian soil. The reactivity of eroded...

  4. ESTABLISHMENT AND EVALUATION OF SWITCHGRASS ON RECLAIMED MINE SOIL [English

    Energy Technology Data Exchange (ETDEWEB)

    Lang, David; Shankle, Brandon; Oswalt, Ernest; Duckworth, Jeremy; Sanborn, Judd; Buell, Rebecca; Roberson, Bill

    2010-06-30

    Switchgrass (Panicum virgatum L.) is a native warm season perennial grass that has productive potential of up to 20 Mg ha-1 of biomass and it persists for decades when harvested once per year. Switchgrass provides excellent ground cover and soil stabilization once established and contributes to soil sequestration of new carbon. Slow establishment on newly reclaimed soil, however, provides for significant erosive opportunities thereby requiring initial soil stabilization with a cover crop. Several planting options were evaluated on two topsoil substitute soils. The planting options included: 1) an existing stand of bermudagrass (Cynodon dactylon L.) that was killed with glyphosate followed by disking in red oxidized topsoil substitute and prime farmland topsoil respread in 2007, 2) red oxidized topsoil substitute was seeded directly with switchgrass, 3) browntop millet (Panicum ramosum) was established with switchgrass, 4) or switchgrass was established in senescing browntop millet or wheat without tillage. Switchgrass was successfully established into a bermudagrass sod that had been killed with herbicides and disked as well as into a senescing stand of browntop millet or wheat. Significant soil erosion occurred on the disked area in 2008 leading to considerable repair work followed by planting wheat. Disked areas that did not erode had an excellent stand of switchgrass with 23.3 plants m-2 in November, 2008. Eroded areas replanted in April, 2009 into senescing wheat had 46 plants m-2 by July, 2009. The area planted directly into newly respread soil in May, 2009 was eroded severely by a 75 mm thunderstorm and was repaired, disked and replanted to switchgrass and browntop millet. Switchgrass seeded with browntop millet had a sparse switchgrass stand and was replanted to switchgrass in August, 2009. Rainfall volumes from August, 2009 to October, 2009 totaled 750 mm, but new erosion damage in areas successfully planted to switchgrass has been minimal.

  5. Studies of red soils as capping the uranium mill tailing impoundments

    International Nuclear Information System (INIS)

    Wen Zhijian; Chen Zhangru; Liu Zhengyi; Chen Guoliang

    2001-01-01

    Capping is one of the important technical engineering measures to assure the long term stabilization and isolation of uranium mill tailings. This paper reports in situ surveys of radon emanations before and after tailings slurries were capped with local red soils at the uranium mill tailings. The data obtained by soil-gas surveys reveal that radon emanation decreased with an increase in capping thickness. The dry density of the capping materials also plays an important role in preventing radon emanation. The measurement results show that utilizing high densities of red soils as capping materials can significantly decrease the required thickness of the capping. The analytical results from borehole red soil samples show that uranium, thorium, and radium contents are consistent with the regional environmental radioactivity level. The studies of the mineralogical composition indicate that the local red soils are rich in clay minerals, e.g. kaolinite, illite and mica vermiculite mixed-layer minerals, which would play an active role in preventing radionuclide release to the surrounding environment. A conceptual model for remediation of south China's uranium mill tailing has been developed

  6. Study of Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish; Stenchikov, Georgiy L.; Tao, Weichun; Yapici, Tahir; Warsama, Bashir H.; Engelbrecht, Johann

    2016-01-01

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content, and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Red Sea Arabian coastal plane, which in turn will help to improve assessment of dust effect on the Red Sea and land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of wind-blown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included Optical Microscopy, X-ray diffraction (XRD), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Ion Chromatography (IC), Scanning Electron Microscopy (SEM), and Laser Particle Size Analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays, and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The wide range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used

  7. Study of Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish

    2016-03-23

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content, and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Red Sea Arabian coastal plane, which in turn will help to improve assessment of dust effect on the Red Sea and land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of wind-blown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included Optical Microscopy, X-ray diffraction (XRD), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Ion Chromatography (IC), Scanning Electron Microscopy (SEM), and Laser Particle Size Analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays, and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The wide range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used

  8. Influence of red mud on soil microbial communities: Application and comprehensive evaluation of the Biolog EcoPlate approach as a tool in soil microbiological studies.

    Science.gov (United States)

    Feigl, Viktória; Ujaczki, Éva; Vaszita, Emese; Molnár, Mónika

    2017-10-01

    Red mud can be applied as soil ameliorant to acidic, sandy and micronutrient deficient soils. There are still knowledge gaps regarding the effects of red mud on the soil microbial community. The Biolog EcoPlate technique is a promising tool for community level physiological profiling. This study presents a detailed evaluation of Biolog EcoPlate data from two case studies. In experiment "A" red mud from Ajka (Hungary) was mixed into acidic sandy soil in soil microcosms at 5-50 w/w%. In experiement "B" red mud soil mixture was mixed into low quality subsoil in a field experiment at 5-50 w/w%. According to average well color development, substrate average well color development and substrate richness 5-20% red mud increased the microbial activity of the acidic sandy soil over the short term, but the effect did not last for 10months. Shannon diversity index showed that red mud at up to 20% did not change microbial diversity over the short term, but the diversity decreased by the 10th month. 30-50% red mud had deteriorating effect on the soil microflora. 5-20% red mud soil mixture in the low quality subsoil had a long lasting enhancing effect on the microbial community based on all Biolog EcoPlate parameters. However, 50% red mud soil mixture caused a decrease in diversity and substrate richness. With the Biolog EcoPlate we were able to monitor the changes of the microbial community in red mud affected soils and to assess the amount of red mud and red mud soil mixture applicable for soil treatment in these cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of Biochar and Lime on Soil Physicochemical Properties and Tobacco Seedling Growth in Red Soil

    Directory of Open Access Journals (Sweden)

    ZHU Pan

    2015-12-01

    Full Text Available Red soil, mainly found in the southern China, is developed in a warm, moist climate. The main property of the soils is strong acidity, aluminum toxicity, and low available nutrients. In this study, different effects of biochar and lime on soil physicochemical properties and tobacco growth were determined in red soil, so as to provide a scientific foundation for soil improvement tobacco field. A pot experiment was designed and conducted at four biochar levels(0, 0.5%, 1%, 2% and normal lime level (0.3% to study effects of two different soil amendments on red soil pH, exchangeable aluminum(Exc-Al and exchangeable manganese(Exc-Mn, available nutrients and organic carbon (SOC. Meanwhile, agronomic traits, biomass and leaves elements of tobacco were also tested. Results showed that the agronomic characters and biomass of tobacco seedling had changed effectively after biochar or lime was added. Under 0.5%, 1% biochar treatment, the content of nitrogen(N, phosphorus(P, potassium(K, calcium(Ca and magnesium(Mg in tobacco leaves substantially raised. However, when 2% biochar was applied, leaves N content declined by 9.3%. Compared with the control, leaves N, P and Ca content increased observably in the lime treatment. However, its K and Mg content decreased by 9.0% and 13.3% respectively. Alkaline nitrogen(SAN, available phosphorus (SAP, available potassium (SAK, and exchangeable calcium (Exc-Ca and exchangeable magnesium (Exc-Mg were improved obviously in soil applied with biochar. Only the content of Exc-Ca was significantly increased in lime treatment. In addition, it was beneficial to improve soil pH and reduce soil Exc-Al when biochar or lime had been used. Thus, both biochar and lime are propitious to increase soil pH value, lessen soil Exc-Al content, and improve the growth of tobacco seedling. Furthermore, biochar application also can raise the content of available nutrient and SOC in red soil.

  10. Comparative mineralogical characteristics of red soils from South Bulgaria

    Directory of Open Access Journals (Sweden)

    Marlena Yaneva

    2015-01-01

    Full Text Available The present study aims to compare mineralogical composition of red soils, formed on marbles in South Bulgaria. We used mineralogical analysis of heavy and light mineral fraction in immersion under polarizing microscope and X-ray diffraction analysis of bulk sample and clay fraction. Three test polygons, located in South Bulgaria were examined: Petrovo, Nova Lovcha and Dobrostan, which are characterized with different latitude, altitude, and exposition. Three or more sites from each polygon were sampled and analyzed. The red soils are formed on white and gray calcite and calcite-dolomite marbles, impure silicate-rich marbles and only in one site – on marble breccias. We determined the following mineral phases in red soils: calcite, dolomite, quarts, and feldspars, mica, illite-type mica, illite, smectite, vermiculite-smectite, and kaolinite. Heavy minerals are represented by amphibole, titanite and epidote, and minor amounts of zircon, garnet, tourmaline, rutile, pyroxene, andalusite, kyanite, sillimanite and apatite. Opaque minerals are predominantly goethite and hematite. Plant tissue is abundant in light fraction from the uppermost soil horizons. Analyses of heavy mineral fraction show presence of metamorphic and igneous minerals which indicate participation of weathering products from other rock types in the nearby area. The types of heavy minerals in soils depend more on composition of parent rocks and geomorphic position than on climate type. Soils from Nova Lovcha show similar composition, but the quantity of goethite and hematite significantly increase in soil from plain. Typical high-metamorphic minerals as andalusite, kyanite and sillimanite present only in Nova Lovcha, while garnet dominates in Petrovo and opaque minerals - in Dobrostan. Red soils, formed on slopes, where erosion prevails over accumulation, contain more illite, smectite and vermiculite-smectite, and very few or no kaolinite, whereas the kaolinite is dominant in soils

  11. Relationship of Soil Properties and Sugarcane Yields to Red Stripe in Louisiana.

    Science.gov (United States)

    Johnson, Richard M; Grisham, Michael P; Warnke, Kathryn Z; Maggio, Jeri R

    2016-07-01

    Symptoms of red stripe disease caused by Acidovorax avenae subsp. avenae in Louisiana between 1985 and 2010 were limited to the leaf stripe form, which caused no apparent yield loss. During 2010, the more severe top rot form was observed, and a study was initiated to investigate the distribution of red stripe in the field and determine its effects on cane and sugar yields. Soil properties data, red stripe incidence, and sugarcane yields were all highly variable and were not randomly distributed in the field. Combined harvest data showed a negative correlation between yield components and red stripe incidence, with the strongest relationship between sucrose per metric ton and disease incidence. Red stripe incidence was positively correlated with several soil properties, including phosphorus, potassium, zinc, and calcium. Red stripe incidence also was found to increase with increasing nitrogen rate, with the greatest effects in heavy soils. Results also indicated that using red-stripe-infected cane as a seed source can significantly decrease shoot emergence, stalk population, and subsequent cane and sugar yields. These combined data suggest that red stripe disease can exhibit a highly variable rate of infection in commercial sugarcane fields and may also significantly decrease sugar yields.

  12. Elastic wave generated by granular impact on rough and erodible surfaces

    Science.gov (United States)

    Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Farin, Maxime

    2018-01-01

    The elastic waves generated by impactors hitting rough and erodible surfaces are studied. For this purpose, beads of variable materials, diameters, and velocities are dropped on (i) a smooth PMMA plate, (ii) stuck glass beads on the PMMA plate to create roughness, and (iii) the rough plate covered with layers of free particles to investigate erodible beds. The Hertz model validity to describe impacts on a smooth surface is confirmed. For rough and erodible surfaces, an empirical scaling law that relates the elastic energy to the radius Rb and normal velocity Vz of the impactor is deduced from experimental data. In addition, the radiated elastic energy is found to decrease exponentially with respect to the bed thickness. Lastly, we show that the variability of the elastic energy among shocks increases from some percents to 70% between smooth and erodible surfaces. This work is a first step to better quantify seismic emissions of rock impacts in natural environment, in particular on unconsolidated soils.

  13. Wind-Eroded Silicate as a Source of Hydrogen Peroxide on Mars

    Science.gov (United States)

    Bak, E. N.; Merrison, J. P.; Jensen, S. K.; Nørnberg, P.; Finster, K.

    2014-07-01

    Laboratory simulations show that wind-eroded silicate can be a source of hydrogen peroxide. The ubiquitous, fine-grained silicate dust might thus explain the oxidizing properties of the martian soil and affect the preservation of organic compounds.

  14. Effect of red clay on diesel bioremediation and soil bacterial community.

    Science.gov (United States)

    Jung, Jaejoon; Choi, Sungjong; Hong, Hyerim; Sung, Jung-Suk; Park, Woojun

    2014-08-01

    Red clay is a type of soil, the red color of which results from the presence of iron oxide. It is considered an eco-friendly material, with many industrial, cosmetic, and architectural uses. A patented method was applied to red clay in order to change its chemical composition and mineral bioavailability. The resulting product was designated processed red clay. This study evaluates the novel use of red clay and processed red clay as biostimulation agents in diesel-contaminated soils. Diesel biodegradation was enhanced in the presence of red clay and processed red clay by 4.9- and 6.7-fold, respectively, and the number of culturable bacterial cells was correlated with the amount of diesel biodegradation. The growth of Acinetobacter oleivorans DR1, Pseudomonas putida KT2440, and Cupriavidus necator was promoted by both types of red clays. Culture-independent community analysis determined via barcoded pyrosequencing indicated that Nocardioidaceae, Xanthomonadaceae, Pseudomonadaceae, and Caulobacteraceae were enriched by diesel contamination. Bacterial strain isolation from naphthalene- and liquid paraffin-amended media was affiliated with enriched taxa based on 16S rRNA gene sequence identity. We suggest that the biostimulating mechanism of red clay and processed red clay is able to support bacterial growth without apparent selection for specific bacterial species.

  15. Erodibilidade e tensão crítica de cisalhamento em solos de estradas não pavimentadas Erodibility and critical shear stress on unpaved road soils

    Directory of Open Access Journals (Sweden)

    João F. de Oliveira

    2009-12-01

    Full Text Available A falta de um sistema adequado para drenagem de águas pluviais em estradas não pavimentadas é um dos principais fatores que causam a sua degradação e, para que referidos sistemas possam ser adequadamente planejados e dimensionados é necessário o conhecimento de parâmetros de resistência dos solos. Com este trabalho se teve, por objetivo, determinar a erodibilidade e a tensão crítica de cisalhamento para diferentes solos de estradas não pavimentadas. Utilizou-se um simulador de escoamento superficial instalado diretamente nos canais das estradas, sob condição natural e se determinou a perda de solo para diferentes lâminas de escoamento. A erodibilidade e a tensão crítica de cisalhamento foram determinadas por meio do ajuste de curvas relacionando-se a perda de solo em função da tensão cisalhante provocada pelo escoamento. Os resultados alcançados mostraram variações nos valores de erodibilidade e de tensão crítica de cisalhamento das estradas avaliadas. Os valores de erodibilidade encontrados mostraram, quando comparados com valores observados na literatura, elevada suscetibilidade à erosão para as condições de estradas, sendo mais elevados nos solos de textura mais arenosa e siltosa. Os valores de tensão crítica se mostraram bastante próximos aos observados em outros trabalhos.The absence of an adequate drainage system in unpaved roads is one of the main factors for their degradation. For adequate planning knowledge of the resistance parameters of soil is necessary. This study had as its objective the determinatiom of the erodibility and critical shear stress of unpaved road soils. For this work, a runoff simulator was directly installed on road channels, under natural conditions. Different flow depths were applied and the soil loss was measured for each depth. The erodibility and the critical shear stress were determined through adjusted curves relating soil disaggregation and flow shear stress. The results

  16. Cleaning the Soil from Zinc Using Red Clovers “Arimaičiai”

    Directory of Open Access Journals (Sweden)

    Audronė Mikalajūnė

    2011-02-01

    Full Text Available Zinc as a nutrition element is required to plants in small quantities to maintain normal functions of metabolism mechanisms. Our work analyses the efficiency of red clovers “Arimaičiai” for cleaning zinc from the soil contaminated with zinc under laboratory conditions. Seeds were sown in three differently polluted soils: clean soil, once contaminated with zinc and periodically contaminated with zinc soil. Zinc concentration in one time contaminated soil was 45 mg/kg. After 6 months of phytoremediation, the remained zinc concentration in the soil was 3 times lower comparing with the initial concentration. It was also determined that under such conditions, the uptake of red clovers made approximately 65% of zinc. Permanent soil contamination with zinc increased concentration before phytoremediation up to 80 mg/kg. After 6 months of phytoremediation, zinc concentration was determined to be 1.9 times lower. Otherwise, the soil was permanently contaminated with larger zinc quantities and after application of which reached 300 mg/kg. In this case, following half a year of phytoremediation, zinc concentration in the soil was 1.7 times lower comparing with the initial concentration after contamination. It was determined that the uptake of red clovers made approximately 17% of zinc.Article in Lithuanian

  17. Progresses on Amelioration of Red Soil Acidity with Crop Straw Biochar: A Review

    OpenAIRE

    XU Ren-kou

    2016-01-01

    The research progresses on amelioration of red soil acidity and immobilization of heavy metals in red soils with the biochars generated from crop straws were summarized in this review paper. The developing trends of the research in these areas in future were also predicted.

  18. Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish; Stenchikov, Georgiy L.; Tao, Weichun; Yapici, Tahir; Warsama, Bashir H.; Engelbrecht, Johann

    2016-01-01

    , because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably

  19. A greenhouse study of northern red oak seedling growth on two forest soils at different stages of acidification

    International Nuclear Information System (INIS)

    Sharpe, W.E.; Swistock, B.R.; Dewalle, D.R.

    1993-01-01

    The objective of this study was to determine whether or not Ca and P in soils from two forested sites at two different stages of acidification were limiting growth of red oak seedlings. The A and E horizons of a Berks soils from Watershed 4 at the Fernow Experimental Forest (cation exchange buffer range) and a Hazelton-Dekalb soil from Pea Vine Hill in Southwestern Pennsylvania (A1 buffer range) were placed in pots and utilized as the growth medium for northern red oak seedlings in a greenhouse environment. Soil water NO 3 -N, Ca, Mg and K concentrations were significantly higher on the Berks soil. Soil exchangeable P and soil solution TP (total phosphorus) were significantly higher on the Hazelton-Dekalb soil. Both soils were amended with bone meal (CaPO 4 ) to determine the effects of Ca and P addition on the growth and nutrient uptake of the seedlings. Height growth of the control red oak seedlings was significantly greater on the Berks soil after 45 d, but amendment of Hazelton-Dekalb soils with bone meal eliminated this difference. Bone meal addition to the Hazelton-Dekalb soil resulted in significantly greater height growth of red oak seedlings when compared to red oak seedings grown on unamended Hazelton-Dekalb soil, but did not have a similar effect for red oak seedlings grown on Berks soil. Bone meal addition to Hazelton-Dekalb soil resulted in greater concentrations of Ca and Mg in red oak leaves. Unfertilized Berks red oak seedling leaves had significantly higher concentrations of Ca and K than their Hazelton-Dekalb counterparts. Al-Ca molar ratios were significantly lower on the Berks soil. Red oak height growth was increased significantly by Ca addition to the Hazelton-Dekalb soil. 24 refs., 2 figs., 8 tabs

  20. Gypsum addition to soils contaminated by red mud: implications for aluminium, arsenic, molybdenum and vanadium solubility.

    Science.gov (United States)

    Lehoux, Alizée P; Lockwood, Cindy L; Mayes, William M; Stewart, Douglas I; Mortimer, Robert J G; Gruiz, Katalin; Burke, Ian T

    2013-10-01

    Red mud is highly alkaline (pH 13), saline and can contain elevated concentrations of several potentially toxic elements (e.g. Al, As, Mo and V). Release of up to 1 million m(3) of bauxite residue (red mud) suspension from the Ajka repository, western Hungary, caused large-scale contamination of downstream rivers and floodplains. There is now concern about the potential leaching of toxic metal(loid)s from the red mud as some have enhanced solubility at high pH. This study investigated the impact of red mud addition to three different Hungarian soils with respect to trace element solubility and soil geochemistry. The effectiveness of gypsum amendment for the rehabilitation of red mud-contaminated soils was also examined. Red mud addition to soils caused a pH increase, proportional to red mud addition, of up to 4 pH units (e.g. pH 7 → 11). Increasing red mud addition also led to significant increases in salinity, dissolved organic carbon and aqueous trace element concentrations. However, the response was highly soil specific and one of the soils tested buffered pH to around pH 8.5 even with the highest red mud loading tested (33 % w/w); experiments using this soil also had much lower aqueous Al, As and V concentrations. Gypsum addition to soil/red mud mixtures, even at relatively low concentrations (1 % w/w), was sufficient to buffer experimental pH to 7.5-8.5. This effect was attributed to the reaction of Ca(2+) supplied by the gypsum with OH(-) and carbonate from the red mud to precipitate calcite. The lowered pH enhanced trace element sorption and largely inhibited the release of Al, As and V. Mo concentrations, however, were largely unaffected by gypsum induced pH buffering due to the greater solubility of Mo (as molybdate) at circumneutral pH. Gypsum addition also leads to significantly higher porewater salinities, and column experiments demonstrated that this increase in total dissolved solids persisted even after 25 pore volume replacements. Gypsum

  1. 'Rosy Red' Soil in Phoenix's Scoop

    Science.gov (United States)

    2008-01-01

    This image shows fine-grained material inside the Robotic Arm scoop as seen by the Robotic Arm Camera (RAC) aboard NASA's Phoenix Mars Lander on June 25, 2008, the 30th Martian day, or sol, of the mission. The image shows fine, fluffy, red soil particles collected in a sample called 'Rosy Red.' The sample was dug from the trench named 'Snow White' in the area called 'Wonderland.' Some of the Rosy Red sample was delivered to Phoenix's Optical Microscope and Wet Chemistry Laboratory for analysis. The RAC provides its own illumination, so the color seen in RAC images is color as seen on Earth, not color as it would appear on Mars. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Correlation of erosion and erodibility assessments using caesium-137

    International Nuclear Information System (INIS)

    Elliott, G.L.; Campbell, B.L.; Loughran, R.J.

    1984-01-01

    Data are presented which show that in soils in which net erosion is occurring, the content of the environmental isotope caesium-137 is highly correlated with soil loss. Other soil characteristics which may be related to the caesium content and therefore to soil loss have also been examined. Of these factors, an improved index of soil aggregate stability explained the most variation in caesium content (52%). Soil organic matter content explained 27% of variation in caesium content and other soil erodibility indices based on quantitative measurement of aggregate stability, explained between 6% and 21% of the variation. Indices based on implied hydrologic characteristics, implied aggregation and clay dispersion explained between 1% and 3% of caesium variation. It is suggested that practical factors of soil protection are relevant to the prediction of erosion hazard and may be more relevant than some indices of soil resistance. It is noted further that caesium-137 content of a soil gives every indication of being a most suitable predictor of soil erosion status

  3. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas

    International Nuclear Information System (INIS)

    Ko, T.-H.; Chu Hsin; Lin, H.-P.; Peng, C.-Y.

    2006-01-01

    In this study, hydrogen sulfide (H 2 S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773 K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H 2 S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl 2 O 4 was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency

  4. Soils and climate: redness and weathering as indicators of mean annual precipitation

    Science.gov (United States)

    Lucke, Bernhard

    2016-04-01

    Paleosols can be used as archives of past changes of climate and landscapes, but their interpretation has to be based on modern analogies such as Budyko's law of soil zonality. These can be very useful if the respective processes of soil formation are sufficiently well understood. However, some soils such as the Terra Rossa or Red Mediterranean Soils, that are widespread at the fringes of the steppes and deserts, are still disputed with regard to their genesis and environmental significance. In particular, there is no agreement whether they resemble current environmental conditions, or are inherited from climates or sediments of the past. In this context, a remarkable change of the color of surface soils can be observed when driving from the city of Irbid in Jordan towards the east. Soil color apparently changes slowly, but steadily from dark red to yellow colors. However, attempting to express these color changes in numerical form is challenging, and it seemed questionable whether color is indeed connected with soil weathering intensity, or an optical illusion. However, a systematic comparison of different approaches of calculating soil redness found that the CIELAB-color system is suited for numerical expressions of soil redness and performs better than the Munsell charts. Along the investigated transect in Jordan, soil color seems strongly connected with weathering intensity, since various weathering indicators point to a steady increase of soil development with moisture. This suggests that such indices can well be used in semi-arid areas of 250-600 mm of mean annual precipitation. A very strong correlation of magnetic enhancement and rainfall indicates that the investigated soils are forming in equilibrium with current climatic conditions, and regressions based on this gradient might be suited for estimating paleorainfalls recorded by buried paelosols. It seems therefore that surface Terra Rossa soils in Jordan can be in equilibrium with current climate

  5. Effects of atmospheric deposition nitrogen flux and its composition on soil solution chemistry from a red soil farmland, southeast China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; Chan, Andrew; Mao, Jingdong

    2015-12-01

    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.

  6. Soil Erodibility under Natural Rainfall Conditions as the K Factor of the Universal Soil Loss Equation and Application of the Nomograph for a Subtropical Ultisol

    Directory of Open Access Journals (Sweden)

    Elemar Antonino Cassol

    2018-05-01

    Full Text Available ABSTRACT: Erodibility represents the intrinsic susceptibility of the soil to the erosion process, represented by the K factor in the Universal Soil Loss Equation (USLE. In Brazil, there are few field experiments determined with a series larger than ten years of data, which are the most reliable for quantifying the K factor. The aim of this study was to determine the K factor of the USLE by the direct method, relating soil losses determined in the field under standard conditions to erosivity of rains, and by the analytic method, applying the Wischmeier nomograph. The data on soil loss by water erosion were obtained in a field experiment under natural rainfall conditions from 1976 to 1989 in an Ultisol at the Agronomic Experimental Station in Eldorado do Sul, RS, Brazil. The value of the K factor by the direct method was 0.0338 Mg ha h ha-1 MJ-1 mm-1, which is high, showing considerable susceptibility of the soil to erosion. From the analytical method, the K factor obtained was 0.0325 Mg ha h ha-1 MJ-1 mm-1, a value very close to that determined experimentally. Thus, the Wischmeier nomograph proved to be valid for determination of the K factor of the Ultisol under study. This method proved to be valid for this type of soil. These results can be used for calibration models based on the USLE.

  7. soil groups relative susceptibility to erosion in parts of south-eastern

    African Journals Online (AJOL)

    Dr Obe

    erosion by water determined based on the amount of soil lost during the various runs. Based on ... knowledge of the many factors of soil erosion .... Table 4: Relative erodibility levels of soil groups in lmo and Abia States under 'wet' conditions. Moderately Erodible. Highly Erodible. Very Highly Erodible. 1. Type Dystropepts.

  8. Long-term manure applications improve soil productivity and sustain high crop yield for acidic red soils

    Science.gov (United States)

    Intensive use of chemical nitrogen (N) fertilizers has resulted in severely reduced productivity of red soils (Ferralic Cambisol) due to accelerated acidification. Manure has been shown to be effective in improving soil productivity by preventing or reversing the acidification process, but little in...

  9. [Characteristics of soil phosphorous loss under different ecological planting patterns in hilly red soil regions of southern Hunan Province, China].

    Science.gov (United States)

    Yuan, Min; Wen, Shi-Lin; Xu, Ming-Gang; Dong, Chun-Hua; Qin, Lin; Zhang, Lu

    2013-11-01

    Taking a large standard runoff plot on a red soil slope in Qiyang County, southern Hunan Province as a case, this paper studied the surface soil phosphorus loss characteristics in the hilly red soil regions of southern Hunan under eight ecological planting patterns. The phosphorus loss from wasteland (T1) was most serious, followed by that from natural sloped cropping patterns (T2 and T3), while the phosphorus loss amount from terrace cropping patterns (T4-T8) was the least, only occupying 9.9%, 37%, 0.7%, 2.3%, and 1.9% of T1, respectively. The ecological planting patterns directly affected the forms of surface-lost soil phosphorus, with the particulate phosphorus (PP) as the main lost form. Under the condition of rainstorm (daily rainfall > 50 mm), rainfall had lesser effects on the phosphorus loss among different planting patterns. However, the phosphorus loss increased with increasing rain intensity. The surface soil phosphorus loss mainly occurred from June to September. Both the rainfall and the rain intensity were the factors directly affected the time distribution of surface soil phosphorus loss in hilly red soil regions of southern Hunan.

  10. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards.

    Science.gov (United States)

    Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Keesstra, Saskia; Novara, Agata; Cerdà, Artemi

    2016-03-15

    Soil and water loss in agriculture is a major problem throughout the world, and especially in Mediterranean areas. Non-conservation agricultural practices have further aggravated the situation, especially in vineyards, which are affected by one of the highest rates of soil loss among cultivated lands. Therefore, it is necessary to find the right soil practices for more sustainable viticulture. In this regard, straw mulching has proven to be effective in other crop and fire affected soils, but, nonetheless, little research has been carried out in vineyards. This research tests the effect of barley straw mulching on soil erosion and surface runoff on vineyards in Eastern Spain where the soil and water losses are non-sustainable. An experiment was setup using rainfall simulation tests at 55 mm h(-1) over 1h on forty paired plots of 0.24 m(2): twenty bare and twenty straw covered. Straw cover varied from 48 to 90% with a median value of 59% as a result of the application of 75 g of straw per m(2). The use of straw mulch resulted in delayed ponding and runoff generation and, as a consequence, the median water loss decreased from 52.59 to 39.27% of the total rainfall. The straw cover reduced the median sediment concentration in runoff from 9.8 to 3.0 g L(-1) and the median total sediment detached from 70.34 to 15.62 g per experiment. The median soil erosion rate decreased from 2.81 to 0.63 Mg ha(-1)h(-1) due to the straw mulch protection. Straw mulch is very effective in reducing soil erodibility and surface runoff, and this benefit was achieved immediately after the application of the straw. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Determination of wind erosion intensity on heavy clay soils

    Directory of Open Access Journals (Sweden)

    Jana Kozlovsky Dufková

    2010-01-01

    Full Text Available Wind erosion, common problem of light-textured soils, was determined on heavy clay soils in the foothills of Bílé Karpaty Mountains, Czech Republic. Soil erodibility by wind was determined from the Map of potential erodibility of soil by wind and from the calculation of potential and real soil loss by wind. All the determinations show underestimation of soil erodibility by wind on heavy clay soils, because methods that are used for this are based above all on the assessment of clay particles content and the presumption the more clay particles soil contains, the less vulnerable to wind erosion is. The potential erodibility of soil by wind is 0,09 t . ha−1 per year. The determined value does not exceed the tolerable soil loss limit 10 t . ha−1 per year for deep soils. The real average erodibility of soil by wind has the highest value 1,47 g . m−2 on November 30th, 2008. Other soil losses that do not exceed the tolerable soil loss limit 1,4 g . m−2, were determined on March 18th and 28th, 2008. Big difficulties come with the assessment of the erodibility of heavy clay soils in the areas, where soil erosion ve­ri­fia­bly exists, but it is not assessable by objective calculating methods. Evident necessity of new know­ledge concerning the determination of wind erosion intensity follows from the results.

  12. Forest floor and mineral soil respiration rates in a northern Minnesota red pine chronosequence

    Science.gov (United States)

    Powers, Matthew; Kolka, Randall; Bradford, John B.; Palik, Brian J.; Jurgensen, Martin

    2018-01-01

    We measured total soil CO2 efflux (RS) and efflux from the forest floor layers (RFF) in red pine (Pinus resinosaAit.) stands of different ages to examine relationships between stand age and belowground C cycling. Soil temperature and RS were often lower in a 31-year-old stand (Y31) than in 9-year-old (Y9), 61-year-old (Y61), or 123-year-old (Y123) stands. This pattern was most apparent during warm summer months, but there were no consistent differences in RFF among different-aged stands. RFF represented an average of 4–13% of total soil respiration, and forest floor removal increased moisture content in the mineral soil. We found no evidence of an age effect on the temperature sensitivity of RS, but respiration rates in Y61 and Y123 were less sensitive to low soil moisture than RS in Y9 and Y31. Our results suggest that soil respiration’s sensitivity to soil moisture may change more over the course of stand development than its sensitivity to soil temperature in red pine, and that management activities that alter landscape-scale age distributions in red pine forests could have significant impacts on rates of soil CO2 efflux from this forest type.

  13. 75 FR 75961 - Notice of Implementation of the Wind Erosion Prediction System for Soil Erodibility System...

    Science.gov (United States)

    2010-12-07

    ... implementation of the WEPS system does not affect the Highly Erodible Map Unit List contained in the NRCS Field Office Technical Guide as of January 1, 1990. This 1990 list will continue to be used for all erodibility... plant damage, and predict PM-10 emissions when wind speeds exceed the erosion threshold. The WEPS model...

  14. Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil

    NARCIS (Netherlands)

    Martins Bento, Celia; Goossens, Dirk; Rezaei, Mahrooz; Riksen, M.J.P.M.; Mol, J.G.J.; Ritsema, C.J.; Geissen, V.

    2017-01-01

    Glyphosate is one of the most used herbicides in agricultural lands worldwide. Wind-eroded sediment and dust, as an environmental transport pathway of glyphosate and of its main metabolite aminomethylphosphonic acid (AMPA), can result in environmental- and human exposure far beyond the agricultural

  15. Frijolito Watershed: Integrated investigations of a rapidly eroding pinyon-juniper hillslope

    International Nuclear Information System (INIS)

    Wilcox, B.P.; Pitlick, J.

    1995-01-01

    The dramatic acceleration of erosion associated with the expansion of pinyon-juniper woodlands over the past 100 years has been widely recognized, but few process-based studies of this phenomenon have been undertaken. In an attempt to identify the underlying causes, and the factors that affect erosion processes, we have initiated an interdisciplinary study of a rapidly eroding pinyon-juniper woodland in northern New Mexico. Since July 1993, we have collected data on runoff, erosion, and weather conditions from a 1-ha catchment study area and have conducted surveys of topography, soils, and vegetation. Our preliminary results indicate that although runoff makes up less than 10% of the annual water budget, runoff events - which are frequent in the summer - are capable of moving large amounts of sediment. We estimate that between July 1993 and October 1994, between 25,000 and 50,000 kg of sediment has eroded and been transported from the catchment. The information gained from such studies is essential to our ability to formulate effective strategies for managing these rapidly eroding woodlands

  16. Cleaning the Soil from Zinc Using Red Clovers “Arimaičiai”

    OpenAIRE

    Audronė Mikalajūnė; Giedrė Jasulaitytė

    2011-01-01

    Zinc as a nutrition element is required to plants in small quantities to maintain normal functions of metabolism mechanisms. Our work analyses the efficiency of red clovers “Arimaičiai” for cleaning zinc from the soil contaminated with zinc under laboratory conditions. Seeds were sown in three differently polluted soils: clean soil, once contaminated with zinc and periodically contaminated with zinc soil. Zinc concentration in one time contaminated soil was 45 mg/kg. After 6 months of phytore...

  17. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud

    Energy Technology Data Exchange (ETDEWEB)

    Gray, C.W. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Dunham, S.J. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Dennis, P.G. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Zhao, F.J. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); McGrath, S.P. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom)]. E-mail: steve.mcgrath@bbsrc.ac.uk

    2006-08-15

    We evaluated the effectiveness of lime and red mud (by-product of aluminium manufacturing) to reduce metal availability to Festuca rubra and to allow re-vegetation on a highly contaminated brown-field site. Application of both lime and red mud (at 3 or 5%) increased soil pH and decreased metal availability. Festuca rubra failed to establish in the control plots, but grew to a near complete vegetative cover on the amended plots. The most effective treatment in decreasing grass metal concentrations in the first year was 5% red mud, but by year two all amendments were equally effective. In an additional pot experiment, P application in combination with red mud or lime decreased the Pb concentration, but not total uptake of Pb in Festuca rubra compared to red mud alone. The results show that both red mud and lime can be used to remediate a heavily contaminated acid soil to allow re-vegetation. - Red mud was effective in immobilising heavy metals in soil.

  18. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud

    International Nuclear Information System (INIS)

    Gray, C.W.; Dunham, S.J.; Dennis, P.G.; Zhao, F.J.; McGrath, S.P.

    2006-01-01

    We evaluated the effectiveness of lime and red mud (by-product of aluminium manufacturing) to reduce metal availability to Festuca rubra and to allow re-vegetation on a highly contaminated brown-field site. Application of both lime and red mud (at 3 or 5%) increased soil pH and decreased metal availability. Festuca rubra failed to establish in the control plots, but grew to a near complete vegetative cover on the amended plots. The most effective treatment in decreasing grass metal concentrations in the first year was 5% red mud, but by year two all amendments were equally effective. In an additional pot experiment, P application in combination with red mud or lime decreased the Pb concentration, but not total uptake of Pb in Festuca rubra compared to red mud alone. The results show that both red mud and lime can be used to remediate a heavily contaminated acid soil to allow re-vegetation. - Red mud was effective in immobilising heavy metals in soil

  19. Sonoran Desert winter annuals affected by density of red brome and soil nitrogen

    Science.gov (United States)

    Salo, L.F.; McPherson, G.R.; Williams, D.G.

    2005-01-01

    Red brome [Bromus madritensis subsp. rubens (L.) Husn.] is a Mediterranean winter annual grass that has invaded Southwestern USA deserts. This study evaluated interactions among 13 Sonoran Desert annual species at four densities of red brome from 0 to the equivalent of 1200 plants ma??2. We examined these interactions at low (3 I?g) and high (537 I?g NO3a?? g soila??1) nitrogen (N) to evaluate the relative effects of soil N level on survival and growth of native annuals and red brome. Red brome did not affect emergence or survival of native annuals, but significantly reduced growth of natives, raising concerns about effects of this exotic grass on the fecundity of these species. Differences in growth of red brome and of the three dominant non nitrogen-fixing native annuals at the two levels of soil N were similar. Total species biomass of red brome was reduced by 83% at low, compared to high, N levels, whereas that of the three native species was reduced by from 42 to 95%. Mean individual biomass of red brome was reduced by 87% at low, compared to high, N levels, whereas that of the three native species was reduced by from 72 to 89%.

  20. Multitemporal analysis of estimated soil loss for the river Mourão watershed, Paraná - Brazil.

    Science.gov (United States)

    Graça, C H; Passig, F H; Kelniar, A R; Piza, M A; Carvalho, K Q; Arantes, E J

    2015-12-01

    The multitemporal behavior of soil loss by surface water erosion in the hydrographic basin of the river Mourão in the center-western region of the Paraná state, Brazil, is analyzed. Forecast was based on the application of the Universal Soil Loss Equation (USLE) with the data integration and estimates within an Geography Information System (GIS) environment. Results had shown high mean annual rain erosivity (10,000 MJ.mm.ha(-1).h(-1).year(-1)), with great concentration in January and December. As a rule, soils have average erodibilities, exception of Dystroferric Red Latisol (low class) and Dystrophic Red Argisol (high class). Although the topographic factor was high (>20), rates lower than 1 were predominant. Main land uses comprise temporal crops and pasture throughout the years. The watershed showed a natural potential for low surface erosion. When related to usage types, yearly soil loss was also low (Soil loss over the years did not provide great distinctions in distribution standards, although it becames rather intensified in some sectors, especially in the center-eastern and southwestern sections of the watershed.

  1. Effect of farmyard manure, mineral fertilizers and mung bean residues on some microbiological properties of eroded soil in district Swat

    Directory of Open Access Journals (Sweden)

    M. Naeem

    2009-05-01

    Full Text Available The present study was conducted to evaluate the efficacy of organic and inorganic fertilizers and mung bean residues on improving microbiological properties of eroded lands of District Swat, North West Frontier Province (NWFP Pakistan under wheat-mung bean-wheat cropping system during 2006 to 2008. The experiment was laid out in RCBD split-plot arrangement. Mung bean was grown and a basal dose of 25-60 kg N-P2O5 ha-1 was applied. After mung bean harvest, three residues management practices, i.e., R+ (mung bean residues incorporated into soil, R- (mung bean residues removed and F (fallow were performed in the main-plots. Sub-plot factor consisted of six fertilizer treatments for wheat crop i.e., T1 (control, T2 (120 kg N ha-1, T3 (120-90-0 kg N-P2O5-K2O ha-1, T4 (120-90-60 kg N-P2O5-K2O ha-1, T5 (90-90-60 kg N-P2O5-K2O + 10 t FYM ha-1 and T6 (60-90-60 kg N-P2O5- K2O + 20 t FYM ha-1. The results showed that microbial activity, microbial biomass-C and-N, mineralizable C and N were highest with T6 as well as with the incorporation of mung bean residues (R+. Compared with control, T6 increased microbial biomass C, N, mineralizable C and N by 33.8, 164.1, 35.5 and 110.6% at surface and 38.4, 237.5, 38.7 and 124.1% at sub-surface soil, respectively, while R+ compared with fallow increased these properties by 33.7, 47.4, 21.4 and 32.2% at surface and 36.8, 51, 21.9 and 35.4% at sub-surface soil, respectively. Inclusion of mung bean with its residues incorporated and application of 20 t FYM ha-1 and reducing inorganic N fertilizer to 60 kg N ha-1 for wheat is recommended for improving microbiological properties of slightly eroded lands

  2. Applying transport-distance specific SOC distribution to calibrate soil erosion model WaTEM

    Science.gov (United States)

    Hu, Yaxian; Heckrath, Goswin J.; Kuhn, Nikolaus J.

    2016-04-01

    Slope-scale soil erosion, transport and deposition fundamentally decide the spatial redistribution of eroded sediments in terrestrial and aquatic systems, which further affect the burial and decomposition of eroded SOC. However, comparisons of SOC contents between upper eroding slope and lower depositional site cannot fully reflect the movement of eroded SOC in-transit along hillslopes. The actual transport distance of eroded SOC is decided by its settling velocity. So far, the settling velocity distribution of eroded SOC is mostly calculated from mineral particle specific SOC distribution. Yet, soil is mostly eroded in form of aggregates, and the movement of aggregates differs significantly from individual mineral particles. This urges a SOC erodibility parameter based on actual transport distance distribution of eroded fractions to better calibrate soil erosion models. Previous field investigation on a freshly seeded cropland in Denmark has shown immediate deposition of fast settling soil fractions and the associated SOC at footslopes, followed by a fining trend at the slope tail. To further quantify the long-term effects of topography on erosional redistribution of eroded SOC, the actual transport-distance specific SOC distribution observed on the field was applied to a soil erosion model WaTEM (based on USLE). After integrating with local DEM, our calibrated model succeeded in locating the hotspots of enrichment/depletion of eroded SOC on different topographic positions, much better corresponding to the real-world field observation. By extrapolating into repeated erosion events, our projected results on the spatial distribution of eroded SOC are also adequately consistent with the SOC properties in the consecutive sample profiles along the slope.

  3. Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, North-West of Algeria.

    Science.gov (United States)

    Toubal, Abderrezak Kamel; Achite, Mohammed; Ouillon, Sylvain; Dehni, Abdelatif

    2018-03-12

    Soil losses must be quantified over watersheds in order to set up protection measures against erosion. The main objective of this paper is to quantify and to map soil losses in the Wadi Sahouat basin (2140 km 2 ) in the north-west of Algeria, using the Revised Universal Soil Loss Equation (RUSLE) model assisted by a Geographic Information System (GIS) and remote sensing. The Model Builder of the GIS allowed the automation of the different operations for establishing thematic layers of the model parameters: the erosivity factor (R), the erodibility factor (K), the topographic factor (LS), the crop management factor (C), and the conservation support practice factor (P). The average annual soil loss rate in the Wadi Sahouat basin ranges from 0 to 255 t ha -1  year -1 , maximum values being observed over steep slopes of more than 25% and between 600 and 1000 m elevations. 3.4% of the basin is classified as highly susceptible to erosion, 4.9% with a medium risk, and 91.6% at a low risk. Google Earth reveals a clear conformity with the degree of zones to erosion sensitivity. Based on the soil loss map, 32 sub-basins were classified into three categories by priority of intervention: high, moderate, and low. This priority is available to sustain a management plan against sediment filling of the Ouizert dam at the basin outlet. The method enhancing the RUSLE model and confrontation with Google Earth can be easily adapted to other watersheds.

  4. Soil Erodibility Parameters Under Various Cropping Systems of Maize

    Science.gov (United States)

    van Dijk, P. M.; van der Zijp, M.; Kwaad, F. J. P. M.

    1996-08-01

    For four years, runoff and soil loss from seven cropping systems of fodder maize have been measured on experimental plots under natural and simulated rainfall. Besides runoff and soil loss, several variables have also been measured, including rainfall kinetic energy, degree of slaking, surface roughness, aggregate stability, soil moisture content, crop cover, shear strength and topsoil porosity. These variables explain a large part of the variance in measured runoff, soil loss and splash erosion under the various cropping systems. The following conclusions were drawn from the erosion measurements on the experimental plots (these conclusions apply to the spatial level at which the measurements were carried out). (1) Soil tillage after maize harvest strongly reduced surface runoff and soil loss during the winter; sowing of winter rye further reduced winter erosion, though the difference with a merely tilled soil is small. (2) During spring and the growing season, soil loss is reduced strongly if the soil surface is partly covered by plant residues; the presence of plant residue on the surface appeared to be essential in achieving erosion reduction in summer. (3) Soil loss reductions were much higher than runoff reductions; significant runoff reduction is only achieved by the straw system having flat-lying, non-fixed plant residue on the soil surface; the other systems, though effective in reducing soil loss, were not effective in reducing runoff.

  5. Improvement of red pepper yield and soil environment by summer catch aquatic crops in greenhouses

    Science.gov (United States)

    Du, X. F.; Wang, L. Z.; Peng, J.; Wang, G. L.; Guo, X. S.; Wen, T. G.; Gu, D. L.; Wang, W. Z.; Wu, C. W.

    2016-08-01

    To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the grown red pepper were enhanced. Summer catch crops, such as rice, water spinach, and cress significantly increased pepper yield in the following growing season by 15.4%, 10.2% and 14.0%, respectively, compared with those grown in fallow treatment. Therefore, the proposed paddy-upland crop rotation could be a useful method to alleviate continuous cropping problems involved in cultivating red pepper in greenhouses.

  6. Climate change and predicting soil loss from rainfall

    Science.gov (United States)

    Kinnell, Peter

    2017-04-01

    Conceptually, rainfall has a certain capacity to cause soil loss from an eroding area while soil surfaces have a certain resistance to being eroded by rainfall. The terms "rainfall erosivity' and "soil erodibility" are frequently used to encapsulate the concept and in the Revised Universal Soil Loss Equation (RUSLE), the most widely used soil loss prediction equation in the world, average annual values of the R "erosivity" factor and the K "erodibility" factor provide a basis for accounting for variation in rainfall erosion associated with geographic variations of climate and soils. In many applications of RUSLE, R and K are considered to be independent but in reality they are not. In RUSLE2, provision has been made to take account of the fact that K values determined using soil physical factors have to be adjusted for variations in climate because runoff is not directly included as a factor in determining R. Also, the USLE event erosivity index EI30 is better related to accounting for event sediment concentration than event soil loss. While the USLE-M, a modification of the USLE which includes runoff as a factor in determining the event erosivity index provides better estimates of event soil loss when event runoff is known, runoff prediction provides a challenge to modelling event soil loss as climate changes

  7. Eroded Layered Material in Southwest Utopia Planitia

    Science.gov (United States)

    1999-01-01

    Images from the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC)dramatically illustrate that many places on the red planet have outcrops of layered geologic materials. The two pictures above show the remains of layered material inside craters in southwestern Utopia Planitia (see inset for detailed view). These remnant layers indicate that the craters--and perhaps the plains that surround them--were once buried beneath a deposit that has since been eroded away. This theme of layered outcrops and exhumed craters appears to be one of the dominant observations that MGS MOC has made--to date--about Mars. The origin and composition of the layered material--and its ultimate fate once it was largely eroded away--are unknown. Each of the two pictures shown here covers an area about 4 kilometers (2.5 miles)by 6.3 kilometers (3.9 miles). Illumination is from the lower right. These are subframes of a single MOC image acquired in July 1998 during the MGS Science Phasing Orbits imaging campaign. This figure was presented at the 30th Lunar and Planetary Science Conference in Houston, Texas, March 1999. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  8. Capping hazardous red mud using acidic soil with an embedded layer of zeolite for plant growth.

    Science.gov (United States)

    Ma, Yingqun; Si, Chunhua; Lin, Chuxia

    2014-01-01

    A nearly three-year microcosm experiment was conducted to test the effectiveness of capping red mud using acidic soil with an embedded layer of zeolite in sustaining the growth of a grass species. This 'sandwich-structured' design allowed self-sustaining growth of the plants under rain-fed conditions no matter whether the underlying red mud was neutralized or not. During the initial stage, the plants grew better when the red mud was not neutralized with MgCl2 probably due to pH rise in the root zone. Neutralization of red mud led to salinization and pH decrease in the root zone. However, the difference in plant growth performance between these scenarios became less remarkable over time due to gradual improvement of soil conditions in the neutralized scenarios. Continuous leaching of soluble salts and alkali by rainwater extended the root zone to the red mud layer. As a result of vegetative production, soil organic matter rapidly accumulated. This, combined with increase in pH and decrease in salinity, markedly facilitated microbial activities and consequently improved the supply of nutrients. This study provides abasis for field-scale experimental design that will have implications for effectively establishing vegetative cover in red mud disposal sites to control dust hazards.

  9. Foliar and soil chemistry at red spruce sites in the Monongahela National Forest

    Science.gov (United States)

    Stephanie J. Connolly

    2010-01-01

    In 2005, soil and foliar chemistry were sampled from 10 sites in the Monongahela National Forest which support red spruce. Soils were sampled from hand-dug pits, by horizon, from the O-horizon to bedrock or 152 cm, and each pit was described fully. Replicate, archived samples also were collected.

  10. Effect of red clover on the microbial transformation of phenanthrene and octadecane in the soil

    Science.gov (United States)

    Nazarov, A. V.; Shestakova, E. A.; Anan'yina, L. N.

    2017-08-01

    The influence of red clover ( Trifolium pratense L.) plants on the decomposition of phenanthrene and octadecane in the soil has been studied. Effect of plant root mass on the abundance of hydrocarbondegrading bacteria, the composition of their communities, and the degradation of hydrocarbons in the soil has been revealed. Changes in the taxonomic composition of hydrocarbon-degrading bacteria under the effect of red clover are characterized by an increase in the abundance of species from the genera Acinetobacter, Kaistia, Novosphingobium, Pseudomonas, and Xanthomonas. A positive effect of the studied microbial-plant association on the degradation of octadecane and especially phenanthrene in the soil has been revealed.

  11. Response of runoff and soil loss to reforestation and rainfall type in red soil region of southern China.

    Science.gov (United States)

    Huang, Zhigang; Ouyang, Zhiyun; Li, Fengrui; Zheng, Hua; Wang, Xiaoke

    2010-01-01

    To evaluate the long-term effects of reforestation types on soil erosion on degraded land, vegetation and soil properties under conventional sloping farmland (CSF) and three different reforestation types including a Pinus massoniana secondary forest (PSF), an Eucommia ulmoides artificial economic forest (EEF) and a natural succession type forest (NST), were investigated at runoff plot scale over a six-year period in a red soil region of southern China. One hundred and thirty erosive rainfall events generating runoff in plots were grouped into four rainfall types by means of K-mean clustering method. Erosive rainfall type I is the dominant rainfall type. The amount of runoff and the soil loss under erosive rainfall type III were the most, followed by rain-fall type II, IV and I. Compared with CSF treatment, reforestation treatments decreased the average annual runoff depth and the soil loss by 25.5%-61.8% and 93.9%-96.2% during the study period respectively. Meanwhile, runoff depth at PSF and EEF treatments was significantly lower than that in NST treatment, but no significant difference existed in soil erosion modulus among the three reforestation treatments. This is mainly due to the improved vegetation properties (i.e., vegetation coverage, biomass of above- and below-ground and litter-fall mass) and soil properties (i.e., bulk density, total porosity, infiltration rate and organic carbon content) in the three reforestation treatments compared to CSF treatment. The PSF and EEF are recommended as the preferred reforestation types to control runoff and soil erosion in the red soil region of southern China, with the NST potentially being used as an important supplement.

  12. Evaluation of the 137Cs technique for estimating wind erosion losses for some sandy Western Australian soils

    International Nuclear Information System (INIS)

    Harper, R.J.; Gilkes, R.J.

    1994-01-01

    The utility of the caesium-137 technique, for estimating the effects of wind erosion, was evaluated on the soils of a semi-arid agricultural area near Jerramungup, Western Australia. The past incidence of wind erosion was estimated from field observations of soil profile morphology and an existing remote sensing study. Erosion was limited to sandy surfaced soils (0-4% clay), with a highly significant difference (P 137 Cs values between eroded and non-eroded sandy soils, with mean values of 243±17 and 386±13 Bq m -2 respectively. Non-eroded soils, with larger clay contents, had a mean 137 Cs content of 421±26 Bq m -2 , however, due to considerable variation between replicate samples, this value was not significantly different from that of the non-eroded sands. Hence, although the technique discriminates between eroded and non-eroded areas, the large variation in 137 Cs values means that from 27 to 96 replicate samples are required to provide statistically valid estimates of 137 Cs loss. The occurrence of around 18% of the total 137 Cs between 10 and 20 cm depth in these soils, despite cultivation being confined to the surface 9 cm, suggests that leaching of 137 Cs occurs in the sandy soils, although there was no relationship between clay content and 137 Cs value for either eroded or non-eroded soils. In a multiple linear regression, organic carbon content and the mean grain size of the eroded soils explained 35% of the variation in 137 Cs content. This relationship suggests that both organic carbon and 137 Cs are removed by erosion, with erosion being more prevalent on soils with a finer sand fraction. Clay and silt contents do not vary with depth in the near-surface horizons of the eroded sandy soils, hence it is likely that wind erosion strips the entire surface horizon with its 137 Cs content, rather than selectively winnowing fine material. 71 refs., 6 tabs., 2 fig

  13. Erodibility of surface-mine spoil banks in southeastern Ohio : an approximation

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, C D; Studlick, J R.J.

    1979-07-01

    Measurements of accumulated sediment in inter-bank basins of unreclaimed strip mines determined the average annual site loss from unvegetated, 18-year-old spoil banks. Assuming that the universal soil loss equation (USLE) can be used to estimate sediment yield from strip mine slopes, the topographic factor in the USLE was determined in 2 ways, and values for erodibility well calculated. The technique is applicable to unreclaimed mines where inter-bank basins trap all slope-derived sediment.

  14. Reduction of the efficacy of biochar as soil amendment by soil erosion

    DEFF Research Database (Denmark)

    Fister, Wolfgang; Heckrath, Goswin Johann; Greenwood, Philip

    Biochar is primarily used as soil amendment to improve soil quality and to sequester more carbon (C) to increase both medium- and long-term soil C stocks. These positive effects are obviously diminished if biochar is eroded and transported out of the field. Due to its low bulk density......, the preferential mobilization and redistribution of biochar in the landscape seems probable. Therefore, the question has been raised in recent years of how vulnerable biochar actually is to soil erosion. This is especially relevant on soils which are regularly cultivated and are vulnerable to soil erosion...... of the financial value of the eroded biochar and its cost-effectiveness were scaled up from plot to field scale. In this investigation, the biochar was applied to the soil surface of three plots on a recently cultivated sandy field near Viborg in northern Jutland, Denmark at concentrations equivalent to 1.5-2.0 kg...

  15. Linking nutrient enrichment, sediment erodibility and biofilms

    Science.gov (United States)

    Conrad, B.; Mahon, R.; Sojka, S. L.

    2014-12-01

    Sediment movement in coastal lagoons affects nutrient flux and primary producer growth. Previous research has shown that sediment erodibility is affected by biofilm concentration and that growth of benthic organisms, which produce biofilm, is affected by nutrient enrichment. However, researchers have not examined possible links between nutrient addition and sediment erodibility. We manipulated nutrient levels in the water column of 16 microcosms filled with homogenized sediment from a shallow coastal lagoon and artificial seawater to determine the effects on biofilm growth, measured through chlorophyll a and colloidal carbohydrate concentrations. Erosion tests using a Gust microcosm were conducted to determine the relationship between sediment erodibility and biofilm concentration. Results show that carbohydrate levels decreased with increasing nutrient enrichment and were unrelated to chlorophyll concentrations and erodibility. The nutrient levels did not predictably affect the chlorophyll levels, with lower chlorophyll concentrations in the control and medium enrichment treatments than the low and high enrichment treatments. Controls on biofilm growth are still unclear and the assumed relationship between carbohydrates and erodibility may be invalid. Understanding how biofilms respond to nutrient enrichment and subsequent effects on sediment erodibility is essential for protecting and restoring shallow coastal systems.

  16. VARIABILITY OF ARABLE AND FOREST SOILS PROPERTIES ON ERODED SLOPES

    Directory of Open Access Journals (Sweden)

    Paweł Wiśniewski

    2014-10-01

    Full Text Available The basic method of reducing soil and land erosion is a change of land use, for example, from arable to forest. Particularly effective as a protective role – according to the Polish law – soil-protecting forests. The thesis presents differences in the deformation of the basic soil properties on moraine slopes, depending on land use. There has been presented the function and the efficiency of the soil-protecting forests in erosion control. The soil cross section transects and soil analysis displayed that soil-protecting forests are making an essential soil cover protection from degradation, inter alia, limiting the decrease of humus content, reduction of upper soil horizons and soil pedons layer. On the afforested slopes it was stated some clear changes of grain size and chemical properties of soils in relation to adjacent slopes agriculturally used.

  17. MAPPING ERODED AREAS ON MOUNTAIN GRASSLAND WITH TERRESTRIAL PHOTOGRAMMETRY AND OBJECT-BASED IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    A. Mayr

    2016-06-01

    Full Text Available In the Alps as well as in other mountain regions steep grassland is frequently affected by shallow erosion. Often small landslides or snow movements displace the vegetation together with soil and/or unconsolidated material. This results in bare earth surface patches within the grass covered slope. Close-range and remote sensing techniques are promising for both mapping and monitoring these eroded areas. This is essential for a better geomorphological process understanding, to assess past and recent developments, and to plan mitigation measures. Recent developments in image matching techniques make it feasible to produce high resolution orthophotos and digital elevation models from terrestrial oblique images. In this paper we propose to delineate the boundary of eroded areas for selected scenes of a study area, using close-range photogrammetric data. Striving for an efficient, objective and reproducible workflow for this task, we developed an approach for automated classification of the scenes into the classes grass and eroded. We propose an object-based image analysis (OBIA workflow which consists of image segmentation and automated threshold selection for classification using the Excess Green Vegetation Index (ExG. The automated workflow is tested with ten different scenes. Compared to a manual classification, grass and eroded areas are classified with an overall accuracy between 90.7% and 95.5%, depending on the scene. The methods proved to be insensitive to differences in illumination of the scenes and greenness of the grass. The proposed workflow reduces user interaction and is transferable to other study areas. We conclude that close-range photogrammetry is a valuable low-cost tool for mapping this type of eroded areas in the field with a high level of detail and quality. In future, the output will be used as ground truth for an area-wide mapping of eroded areas in coarser resolution aerial orthophotos acquired at the same time.

  18. Evaluation of scour potential of cohesive soils : final report, August 2009.

    Science.gov (United States)

    2009-08-01

    Prediction of scour at bridge river crossings is an evolving process. Hydraulic models to estimate water velocity and, therefore, the shear stresses that erode soil are reasonably well developed. The weak link remains methods for estimating soil erod...

  19. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    Science.gov (United States)

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  20. Assessment of nickel bioavailability through chemical extractants and red clover (Trifolium pratense L.) in an amended soil: Related changes in various parameters of red clover.

    Science.gov (United States)

    Shahbaz, Ali Khan; Iqbal, Muhammad; Jabbar, Abdul; Hussain, Sabir; Ibrahim, Muhammad

    2018-03-01

    Application of immobilizing agents may efficiently reduce the bioavailability of nickel (Ni) in the soil. Here we report the effect of biochar (BC), gravel sludge (GS) and zeolite (ZE) as a sole treatment and their combinations on the bioavailability of Ni after their application into a Ni-polluted soil. The bioavailability of Ni after the application of immobilizing agents was assessed through an indicator plant (red clover) and chemical indicators of bioavailability like soil water extract (SWE), DTPA and Ca(NO 3 ) 2 extracts. Additionally, the effects of Ni bioavailability and immobilizing agents on the growth, physiological and biochemical attributes of red clover were also observed. Application of ZE significantly reduced Ni concentrations in all chemical extracts compared to rest of the treatments. Similarly, the combined application of BC and ZE (BC+ ZE) significantly reduced Ni concentrations, reactive oxygen species (ROS) whereas, significant enhancement in the growth, physiological and biochemical attributes along with an improvement in antioxidant defence machinery of red clover plant, compared to rest of the treatments, were observed. Furthermore, BC+ ZE treatment significantly reduced bioconcentration factor (BCF) and bioaccumulation factor (BAF) of Ni in red clover, compared to rest of the treatments. The Ni concentrations in red clover leaves individually reflected a good correlation with Ni concentrations in the extracts (SWE at R 2 =0.79, DTPA extract at R 2 =0.84 and Ca(NO 3 ) 2 extracts at R 2 =0.86). Our results indicate that combined application of ZE and BC can significantly reduce the Ni bioavailability in the soil while in parallel improve the antioxidant defence mechanism in plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Response of Red-Backed Salamanders (Plethodon Cinereus to Changes in Hemlock Forest Soil Driven by Invasive Hemlock Woolly Adelgid (Adelges Tsugae

    Directory of Open Access Journals (Sweden)

    Alison Ochs

    2017-01-01

    Full Text Available Hemlock forests of the northeastern United States are declining due to the invasive hemlock woolly adelgid (HWA (Adelges tsugae. Hardwood species replace these forests, which affects soil properties that may influence other communities, such as red-backed salamanders (red-backs (Plethodon cinereus. This study examined the effects of HWA invasion on soil properties and how this affects red-backs at the Hemlock Removal Experiment at Harvard Forest, which consists of eight 0.8 ha plots treated with girdling to simulate HWA invasion, logging to simulate common management practices, or hemlock- or hardwood-dominated controls. Coverboard surveys were used to determine the relative abundance of red-backs between plots during June and July 2014 and soil cores were collected from which the bulk density, moisture, pH, temperature, leaf litter, and carbon-nitrogen ratio were measured. Ordination provided a soil quality index based on temperature, pH, and carbon-to-nitrogen ratio, which was significantly different between plot treatments (p < 0.05 and showed a significant negative correlation with the red-back relative abundance (p < 0.05. The findings support the hypothesis that red-backs are affected by soil quality, which is affected by plot treatment and thus HWA invasion. Further studies should explore how salamanders react in the long term towards changing environments and consider the use of red-backs as indicator species.

  2. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    Science.gov (United States)

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

    2014-03-01

    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  3. [Soil basal respiration and enzyme activities in the root-layer soil of tea bushes in a red soil].

    Science.gov (United States)

    Yu, Shen; He, Zhenli; Zhang, Rongguang; Chen, Guochao; Huang, Changyong

    2003-02-01

    Soil basal respiration potential, metabolic quotient (qCO2), and activities of urease, invertase and acid phosphomonoesterase were investigated in the root-layer of 10-, 40-, and 90-yr-old tea bushes grown on the same type of red soil. The soil daily basal respiration potential ranged from 36.23 to 58.52 mg.kg-1.d-1, and the potentials in the root-layer of 40- or 90-yr-old were greater than that of 10-yr old tea bushes. The daily qCO2, ranging from 0.30 to 0.68, was in the reverse trend. The activities of test three enzymes changed differently with tea bushes' age. Urease activity in the root-layer of all age tea bushes ranged from 41.48 to 47.72 mg.kg-1.h-1 and slightly decreased with tea bushes' age. Invertase activity was 189.29-363.40 mg.kg-1.h-1 and decreased with tea bushes' age, but its activity in the root-layer of 10-year old tea bushes was significantly greater than that in the root-layer soil of 40- or 90-year old tea bushes. Acid phosphomonoesterase activity (444.22-828.32 mg.kg-1.h-1) increased significantly with tea bushes' age. Soil basal respiration potential, qCO2 and activities of 3 soil enzymes were closely related to soil pH, soil organic carbon, total nitrogen and C/N ratio, total soluble phenol, and microbial biomass carbon, respectively.

  4. Changes of Soil Aggregate Stability as a Result of the Effect of Freeze-thaw Cycles

    Directory of Open Access Journals (Sweden)

    Aneta Žabenská

    2015-01-01

    Full Text Available The objective of the present research was to assess the changes in soil erodibility during the non-vegetation period as one of the factors affecting the snowmelt erosion. The temperature fluctuation was simulated with the use of a climatic chamber ex situ. The soil surface was for simplicity reasons considered without any plant or snow cover. The paper deals with the rate of soil erodibility determination – the soil erodibility should increase due to the decrease of soil aggregate stability depending on the number of freeze-thaw cycles and initial soil moisture. Soil samples (taken from three sites were subjected to freeze-thaw cycles under laboratory conditions. Changes in soil agreggate stability were monitored as one of the main soil characteristics which determine the soil erodibility. Two methods were used to determine the soil macroaggregate stability (soil aggregate fraction 1–2 mm: standard single-sieve method of wet sieving (Kemper and Rosenau, 1986, and dry aggregate analysis using a set of flat sieves with a diameter of 1 mm and 0.5 mm. The results of each method are controversial. Intended hypothesis has not been clearly confirmed.

  5. Effect of Biochar Application on Erodibility of Plow Layer Soil on Loess Slopes%添加生物炭对黄绵土耕层土壤可蚀性的影响

    Institute of Scientific and Technical Information of China (English)

    吴媛媛; 杨明义; 张风宝; 张加琼; 赵恬茵; 刘淼

    2016-01-01

    The Loess Plateau is one of the areas that suffer the most serious soil erosion and the soil in the area is characterized by low soil fertility and high soil erodibility. Thanks to its inherent characteristics and physicochemical properties,biochar has become a novel soil structure amendment. However,so far studies on biochar have mostly focused on its effects of improving soil physical and chemical properties and plant growth conditions,reducing greenhouse gas emission and remedying polluted soil,and demonstrated that its positive effects on soil quality,soil bulk density,soil porosity,quantity and structure of soil aggregate and soil water dynamics. Little has been reported on its effects on soil resistance to erosion. Getting to know the effects of biochar on soil erosion will be of great significance not only to soil and water conservancy,but also to soil building and crop yield. An indoor artificial rainfall experiment was carried out to explore effect of biochar on sheet erosion on loessal soil slope. The experiment was designed to have one rainfall intensity(90 mm h-1),five application rates(0%,1%,3%,5% and 7%)and three particle sizes(<2mm,<1mm and<0.25mm)of biochar of sawdust. Results show that the effect of biochar application on erodibility of loessal soil plow layers is attributed mainly to its effects altering composition and porosity of the soil and the effect of its own properties on water,which were embodied in delayed runoff and reduced runoff and sediment yields and sediment in runoff. Incorporation of biochar,the same in particle size,shortened the duration of runoff and the effect intensified with rising application rate of biochar. However,when the application rate was lower than 3%,it delayed runoff,but when the rate went on rising,it affected runoff reversely. Incorporations of biochar,the same in rate,but different in particle size,did not show much difference in affecting time of runoff yield. Incorporation of biochar of any size at a rate

  6. Erosividade da chuva e erodibilidade de Cambissolo e Latossolo na região de Lavras, sul de Minas Gerais Rainfall erosivity and erodibility of Cambisol (Inceptisol and Latosol (Oxisol in the region of Lavras, Southern Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    Antonio Marcos da Silva

    2009-12-01

    Full Text Available No Brasil, ainda são relativamente poucos os estudos envolvendo erodibilidade do solo, principalmente Cambissolos, dada a morosidade na obtenção dos resultados de experimentos com chuva natural. O conhecimento dos índices de erosividade e de erodibilidade é importante para o planejamento conservacionista, contribuindo para a sustentabilidade dos solos. Este estudo teve como objetivos determinar a erosividade da chuva e a erodibilidade de Cambissolo Háplico Tb distrófico típico e Latossolo Vermelho distroférrico típico, sob chuva natural, em Lavras (MG, no período de 1998 a 2002. Os dados de precipitação pluviométrica foram obtidos na Estação Climatológica Principal de Lavras, localizada no campus da Universidade Federal de Lavras, próxima das unidades experimentais de perdas de solo. A erosividade (EI30 foi determinada a partir do produto da energia cinética da chuva pela sua intensidade máxima em 30 min. Estes dados, correlacionados com as perdas de solo, permitiram obter o índice de erodibilidade dos solos. A precipitação total média anual foi 1.287 mm e a erosividade média foi de 4.865 MJ mm ha-1 h-1 ano-1. A erodibilidade foi 0,0355 Mg h MJ-1 mm-1 para o Cambissolo e 0,0032 Mg h MJ-1 mm-1 para o Latossolo, em consonância com seus atributos mineralógicos, químicos, físicos e morfológicos diferenciais.Relatively few studies in Brazil have investigated soil erodibility, mainly for Cambisols (Inceptisols, due to the tediousness of data collection in natural rainfall experiments. Knowledge about erodibility and erosivity is important for conservation planning, which contributes to soil sustainability. This study aimed at evaluating the rainfall erosivity and erodibility of a typic dystrophic Tb Haplic Cambisol (Inceptisol and a typic dystroferric Red Latosol (Oxisol under natural rainfall, in Lavras, state of Minas Gerais, Brazil, between 1998 and 2002. Pluvial precipitation data were obtained from the main weather

  7. Effects of soil properties and P fertilizers on trace element uptake of red clover in a pot experiment

    International Nuclear Information System (INIS)

    Osztoics, E.; Bujtas, K.

    1999-01-01

    The impacts of superphosphate and Algerian phosphate rock and their various application rates on soil pH and on the availability of trace elements by red clover were studied in a pot experiment on several types of acidic soils from the Carpathian basin. The differences among the soils' original pH and texture, and those differences in soil pH, which resulted from the application of different P forms and rotes were reflected in the Mn, Ni, Al, Co, Sr, Cd and Cr contents of red clover. Plant concentrations of those elements were smaller on the slightly acidic than on the strongly and extremely strongly acidic soils. Elemental concentrations were generally higher when there was less time between two cuts, and decreased in the later cuts. Refs. 11 (author)

  8. Soil and water losses in eucalyptus plantation and natural forest and determination of the USLE factors at a pilot sub-basin in Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Bárbara Pereira Christofaro Silva

    Full Text Available ABSTRACT Monitoring water erosion and the factors that control soil and water loss are essential for soil conservation planning. The objective of this study was to evaluate soil and water losses by water erosion under natural rainfall in eucalyptus plantations established in 2001 (EF2, and 2004 (EF1, native forest (NF and bare soil (BS, during the period of 2007 to 2012; and to determine the USLE factors: rain erosivity (R, erodibility (K of a Red Argisol and the cover-management factor (C for EF1, EF2 and NF at a pilot sub-basin, in Eldorado do Sul, RS, Brazil. The R factor was estimated by the EI30 index, using rainfall data from a gauging station located at the sub-basin. The soil and water losses were monitored in erosion plots, providing consistent data for the estimation of the K and C factors. The sub-basin presented an average erosivity of 4,228.52 MJ mm ha-1 h-1 yr-1. The average annual soil losses em EF1 and EF2 (0.81 e 0.12 Mg ha-1 year-1, respectively were below of the limit of tolerance, 12.9 Mg ha-1 year-1. The percentage values of water loss relating to the total rainfall decreased annually, approaching the values observed at the NF. From the 5th year on after the implantation of the eucalyptus systems, soil losses values were similar to the ones from NF. The erodibility of the Red Argisol was of 0.0026 Mg ha h ha-1 MJ-1mm-1 and the C factor presented values of 0.121, 0.016 and 0.015 for EF1, EF2 and NF, respectively.

  9. The impacts of grazing land management on the wind erodibility of the Mulga Lands of western Queensland, Australia

    Science.gov (United States)

    An estimated 100 Mt of dust is eroded by wind from the Australian land surface each year. Wind erosion may be widespread across the arid and semi-arid rangelands, with impacts on soil nutrients, carbon and ecosystem services, human health, and climate. The susceptibility of landscapes to wind erosio...

  10. Multitemporal analysis of estimated soil loss for the river Mourão watershed, Paraná – Brazil

    Directory of Open Access Journals (Sweden)

    C. H. Graça

    Full Text Available The multitemporal behavior of soil loss by surface water erosion in the hydrographic basin of the river Mourão in the center-western region of the Paraná state, Brazil, is analyzed. Forecast was based on the application of the Universal Soil Loss Equation (USLE with the data integration and estimates within an Geography Information System (GIS environment. Results had shown high mean annual rain erosivity (10,000 MJ.mm.ha–1.h–1.year–1, with great concentration in January and December. As a rule, soils have average erodibilities, exception of Dystroferric Red Latisol (low class and Dystrophic Red Argisol (high class. Although the topographic factor was high (>20, rates lower than 1 were predominant. Main land uses comprise temporal crops and pasture throughout the years. The watershed showed a natural potential for low surface erosion. When related to usage types, yearly soil loss was also low (<50 ton.ha–1.year–1, with more critical scores that reach rates higher than 150 ton.ha–1.year–1. Soil loss over the years did not provide great distinctions in distribution standards, although it becames rather intensified in some sectors, especially in the center-eastern and southwestern sections of the watershed.

  11. [Effects of combined application of biochar and inorganic fertilizers on the available phosphorus content of upland red soil].

    Science.gov (United States)

    Jing, Yan; Chen, Xiao-min; Liu, Zu-xiang; Huang, Qian-ru; LiI, Qiu-xia; Chen, Chen; Lu, Shao-shan

    2013-04-01

    Aiming at the low content of available phosphorus in upland red soil of Southern China, this paper studied the effects of combined application of biochar and inorganic fertilizers on the available phosphorus and organic carbon contents and the pH of this soil. With the combined application of biochar and inorganic fertilizers, the soil physical and chemical properties improved to different degrees. As compared with the control, the soil pH and the soil organic carbon and available phosphorus contents at different growth stages of oil rape after the combined application of biochar and inorganic fertilizers all had an improvement, with the increments at bolting stage, flowering stage, and ripening stage being 16%, 24% and 26%, 23%, 34% and 38%, and 100%, 191% and 317% , respectively. The soil pH and the soil organic carbon and available phosphorus contents were increased with the increasing amount of applied biochar. Under-the application of biochar, the soil available phosphorus had a significant correlation with the soil pH and soil organic carbon content. This study could provide scientific basis to improve the phosphorus deficiency and the physical and chemical properties of upland red soil.

  12. Effect of aging on the bioavailability and fractionation of arsenic in soils derived from five parent materials in a red soil region of Southern China

    International Nuclear Information System (INIS)

    Wang, Yanan; Zeng, Xibai; Lu, Yahai; Su, Shiming; Bai, Lingyu; Li, Lianfang; Wu, Cuixia

    2015-01-01

    The effects of aging time and soil parent materials on the bioavailability and fractionations of arsenic (As) in five red soils were studied. The results indicated that As bioavailability in all soils decreased during aging, especially with a sharp decline occurring in the first 30 days. After aging for 360 days, the highest available As concentration, which accounted for 12.3% of the total, was observed in soils derived from purple sandy shale. While 2.67% was the lowest proportion of the available As in soils derived from quaternary red clay. Furthermore, the best fit of the available As changing with aging time was obtained using the pseudo-second-order model (R"2 = 0.939–0.998, P < 0.05). Notably, Al oxides played a more crucial role (R"2 = 0.89, P<0.05) than did Fe oxides in controlling the rate of As aging. The non-specially and specially absorbed As constituted the primary forms of available As. - Highlights: • The soil derived from purple sandy shale had a relatively higher risk of As toxicity for agricultural production. • The best fit of the variations of available As during the aging time was obtained using the pseudo-second-order model. • Al oxides played a more crucial role than did Fe oxides in controlling the rate of As aging. - Al oxides played a more crucial role than did Fe oxides in controlling the rate of As aging in these red soils.

  13. Soil erosion and causative factors at Vandenberg Air Force Base, California

    Science.gov (United States)

    Butterworth, Joel B.

    1988-01-01

    Areas of significant soil erosion and unvegetated road cuts were identified and mapped for Vandenberg Air Force Base. One hundred forty-two eroded areas (most greater than 1.2 ha) and 51 road cuts were identified from recent color infrared aerial photography and ground truthed to determine the severity and causes of erosion. Comparison of the present eroded condition of soils (as shown in the 1986 photography) with that in historical aerial photography indicates that most erosion on the base took place prior to 1928. However, at several sites accelerated rates of erosion and sedimentation may be occurring as soils and parent materials are eroded vertically. The most conspicuous erosion is in the northern part of the base, where severe gully, sheet, and mass movement erosion have occurred in soils and in various sedimentary rocks. Past cultivation practices, compounded by highly erodible soils prone to subsurface piping, are probably the main causes. Improper range management practices following cultivation may have also increased runoff and erosion. Aerial photography from 1986 shows that no appreciable headward erosion or gully sidewall collapse have occurred in this area since 1928.

  14. Phosphorus isotopic evaluation of a Red Ferralitic soil under various fertilization systems

    International Nuclear Information System (INIS)

    Rodríguez Guzmán, Ricardo M.

    2017-01-01

    Soil samples from a red ferralitic soil from the 'Juan Tomas Roig' Experimental Station, belonging to Ciego de Avila University were analyzed under two crop rotations and four phosphoric fertilization systems. The objective was to evaluate, through the 32 P isotopic dilution, phosphor (P) static parameters in a soil that has received P fertilizer through two placement methods (banding and broadcasting) for several years. A radiochemical laboratory method using a free-carrier solution as a tracer based on isotopic exchange between solid phase and soil solution phosphate ions was used. Soil samples were analyzed at the CEA Department laboratories, in Francia. Quantity (), as isotopic exchangeable P at one minute, intensity (Cp), as P concentration in soil solution, and capacity, as (/Cp), factors were determined. 32 P isotopic evaluation indicated that the soil needs high banding P application to reach adequate and Cp values for crop nutrition. A cumulative P effect in the soil through banding fertilization after three crop rotation cycles was obtained, which allows to increase plant P availability. The capacity factor was very high in all soil samples, indicating that soil maintains a P reserve that is difficult to exchange with the phosphor present in the soil solution. (author)

  15. Impacts of soil redistribution on the transport and fate of organic carbon in loess soils

    NARCIS (Netherlands)

    Wang, X.

    2014-01-01

    Soil erosion is an important environmental process leading to loss of topsoil including carbon (C) and nutrients, reducing soil quality and loss of biomass production. So far, the fate of soil organic carbon (SOC) in eroding landscapes is not yet fully understood and remains an important uncertainty

  16. Effects of soil management techniques on soil water erosion in apricot orchards

    NARCIS (Netherlands)

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C.; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-01-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these

  17. Coupling legacy geomorphic surface facies to riparian vegetation: Assessing red cedar invasion along the Missouri River downstream of Gavins Point dam, South Dakota

    Science.gov (United States)

    Greene, Samantha L.; Knox, James C.

    2014-01-01

    Floods increase fluvial complexity by eroding established surfaces and creating new alluvial surfaces. As dams regulate channel flow, fluvial complexity often decreases and the hydro-eco-geomorphology of the riparian habitat changes. Along the Missouri River, flow regulation resulted in channel incision of 1-3 m within the study area and disconnected the pre-dam floodplain from the channel. Evidence of fluvial complexity along the pre-dam Missouri River floodplain can be observed through the diverse depositional environments represented by areas of varying soil texture. This study evaluates the role of flow regulation and depositional environment along the Missouri River in the riparian invasion of red cedar downstream of Gavins Point dam, the final dam on the Missouri River. We determine whether invasion began before or after flow regulation, determine patterns of invasion using Bayesian t-tests, and construct a Bayesian multivariate linear model of invaded surfaces. We surveyed 59 plots from 14 riparian cottonwood stands for tree age, plot composition, plot stem density, and soil texture. Red cedars existed along the floodplain prior to regulation, but at a much lower density than today. We found 2 out of 565 red cedars established prior to regulation. Our interpretation of depositional environments shows that the coarser, sandy soils reflect higher energy depositional pre-dam surfaces that were geomorphically active islands and point bars prior to flow regulation and channel incision. The finer, clayey soils represent lower energy depositional pre-dam surfaces, such as swales or oxbow depressions. When determining patterns of invasion for use in a predictive statistical model, we found that red cedar primarily establishes on the higher energy depositional pre-dam surfaces. In addition, as cottonwood age and density decrease, red cedar density tends to increase. Our findings indicate that flow regulation caused hydrogeomorphic changes within the study area that

  18. [Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area].

    Science.gov (United States)

    Lü, Mao-Kui; Xie, Jin-Sheng; Zhou, Yan-Xiang; Zeng, Hong-Da; Jiang, Jun; Chen, Xi-Xiang; Xu, Chao; Chen, Tan; Fu, Lin-Chi

    2014-01-01

    By the method of spatiotemporal substitution and taking the bare land and secondary forest as the control, we measured light fraction and particulate organic carbon in the topsoil under the Pinus massoniana woodlands of different ages with similar management histories in a red soil erosion area, to determine their dynamics and evaluate the conversion processes from unprotected to protected organic carbon. The results showed that the content and storage of soil organic carbon increased significantly along with ages in the process of vegetation restoration (P organic carbon content and distribution proportion to the total soil organic carbon increased significantly (P organic carbon mostly accumulated in the form of unprotected soil organic carbon during the initial restoration period, and reached a stable level after long-term vegetation restoration. Positive correlations were found between restoration years and the rate constant for C transferring from the unprotected to the protected soil pool (k) in 0-10 cm and 10-20 cm soil layers, which demonstrated that the unprotected soil organic carbon gradually transferred to the protected soil organic carbon in the process of vegetation restoration.

  19. Effects of soil physical properties on erodibility and infiltration ...

    African Journals Online (AJOL)

    The soil moisture count for plot A ranged between 9.54% to 14.56% while that of plot B range between 10.64% to 11.26%. The particle sizes analysis indicated that the soil type in plot A is mainly medium loam and predominantly sand clay loam in plot B. It is therefore concluded that, the study area is susceptible to erosion ...

  20. Scour in cohesive soils

    Science.gov (United States)

    2015-05-01

    This study of scour in cohesive soils had two objectives. The first was to introduce and demonstrate a new ex situ erosion testing device (ESTD) that can mimic the near-bed flow of open channels to erode cohesive soils within a specified range of she...

  1. Relationships among foliar chemistry, foliar polyamines, and soil chemistry in red spruce trees growing across the northeastern United States

    Science.gov (United States)

    Minocha, R.; Shortle, W.C.; Lawrence, G.B.; David, M.B.; Minocha, S.C.

    1997-01-01

    Forest trees are constantly exposed to various types of natural and anthropogenic stressors. A major long-term goal of our research is to develop a set of early physiological and biochemical markers of stress in trees before the appearance of visual symptoms. Six red spruce (Picea rubens Sarg.) stands from the northeastern United States were selected for collection of soil and foliage samples. All of the chosen sites had soil solution pH values below 4.0 in the Oa horizon but varied in their geochemistry. Some of these sites were apparently under some form of environmental stress as indicated by a large number of dead and dying red spruce trees. Samples of soil and needles (from apparently healthy red spruce trees) were collected from these sites four times during a two-year period. The needles were analyzed for perchloric acid-soluble polyamines and exchangeable inorganic ions. Soil and soil solution samples from the Oa and B horizons were analyzed for their exchange chemistry. The data showed a strong positive correlation between Ca and Mg concentrations in the needles and in the Oa horizon of the soil. However, needles from trees growing on relatively Ca-rich soils with a low exchangeable Al concentration and a low Al:Ca soil solution ratio had significantly lower concentrations of putrescine and spermidine than those growing on Ca-poor soils with a high exchangeable Al concentration and a high Al:Ca soil solution in the Oa horizon. The magnitude of this change was several fold higher for putrescine concentrations than for spermidine concentrations. Neither putrescine nor spermidine were correlated with soil solution Ca, Mg, and Al concentrations in the B horizon. The putrescine concentrations of the needles always correlated significantly with exchangeable Al (r2=0.73, p???0.05) and still solution Al:Ca ratios (r2=0.91, p???0.01) of the Oa horizon. This suggests that in conjunction with soil chemistry, putrescine and/or spermidine may be used as a potential

  2. Mathematical models application for mapping soils spatial distribution on the example of the farm from the North of Udmurt Republic of Russia

    Science.gov (United States)

    Dokuchaev, P. M.; Meshalkina, J. L.; Yaroslavtsev, A. M.

    2018-01-01

    Comparative analysis of soils geospatial modeling using multinomial logistic regression, decision trees, random forest, regression trees and support vector machines algorithms was conducted. The visual interpretation of the digital maps obtained and their comparison with the existing map, as well as the quantitative assessment of the individual soil groups detection overall accuracy and of the models kappa showed that multiple logistic regression, support vector method, and random forest models application with spatial prediction of the conditional soil groups distribution can be reliably used for mapping of the study area. It has shown the most accurate detection for sod-podzolics soils (Phaeozems Albic) lightly eroded and moderately eroded soils. In second place, according to the mean overall accuracy of the prediction, there are sod-podzolics soils - non-eroded and warp one, as well as sod-gley soils (Umbrisols Gleyic) and alluvial soils (Fluvisols Dystric, Umbric). Heavy eroded sod-podzolics and gray forest soils (Phaeozems Albic) were detected by methods of automatic classification worst of all.

  3. [Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil].

    Science.gov (United States)

    Huang, Jing; Zhang, Yang-zhu; Gao, Ju-sheng; Zhang, Wen-ju; Liu, Shu-jun

    2015-11-01

    The objective of this study was to clarify the changes of soil organic carbon (SOC) content, the saturation capacity of soil carbon sequestration and its cooperation with carbon input (crop source and organic fertilizer source carbon) under long-term (1982-2012) different fertilization in red paddy soil. The results showed that fertilization could increase SOC content. The SOC content of all the fertilization treatments demonstrated a trend of stabilization after applying fertilizer for 30 years. The SOC content in the treatments applying organic manure with mineral fertilizers was between 21.02 and 21.24 g · kg(-1), and the increase rate ranged from 0.41 to 0.59 g · kg(-1) · a(-1). The SOC content in the treatments applying mineral fertilizers only was 15.48 g · kg(-1). The average soil carbon sequestration in the treatments that applied organic manure with mineral fertilizers ranged from 43.61 to 48.43 t C · hm(-2), and the average SOC storage over the years in these treatments was significantly greater than those applying mineral fertilizers only. There was an exponentially positive correlation between C sequestration efficiency and annual average organic C input. It must input exogenous organic carbon at least at 0. 12 t C · hm(-2) · a(-1) to maintain the balance of soil organic carbon under the experimental conditions.

  4. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: STATSGO Soil Characteristics

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents estimated soil variables compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  5. Transformation of organic N newly added to red soil treated with different cultural practices

    Institute of Scientific and Technical Information of China (English)

    ZhangQin-Zheng; YeQing-Fu; 等

    1998-01-01

    By using 15N tracer method,transformation of organic N,which wqas newly added to red soil treated with different cultural practices,was studied under thelaboratory incubation condition.The experimental results showed that the transformation of N from newly added organic matter and soil native pool during incubation was influenced by cultural practice treatment beforeincubation.Fallow was favorable to the mineralization of newly added organic N and soil N compared with the planting wheat treatment.Planting wheat greatly increased the loss of soil N.Application of fertilizers stimulated the mineralization of newly added organic N and application of organic matter reduced the mineralization,but stimulated microbialtransformation of newly adde4d organic N.

  6. Erodabilidad de suelos del sur de la Región Semiárida argentina Erodibility of soils in the south of the semiarid region of Argentina

    Directory of Open Access Journals (Sweden)

    Nora E Echeverría

    2006-07-01

    Full Text Available La erodabilidad de los suelos se puede medir a campo mediante simuladores de lluvia o predecir mediante modelos matemáticos como USLE y WEPP. El objetivo del trabajo fue medir la erodabilidad de tres suelos representativos del Sur de la Región semiárida argentina y compararla con la estimada por los modelos WEPP y USLE. En los suelos Bahía Blanca (SBB y Cabildo (SC -Paleustoles Petrocálcicos- y Villarino (SV -Calciustol Petrocálcicose aplicaron, mediante un simulador portátil, dos lluvias consecutivas de 32 mm en 30 minutos. Las pérdidas de suelo debido a la 1° y 2° lluvia indicaron: SV 3,26 y 5,86 Mg ha-1 h-1; SC 2,04 y 5,53 Mg ha-1 h-1; SBB 0,75 y 2,66 Mg ha-1 h-1, respectivamente. La resistencia del suelo a la erosión correlacionó con la relación limo: arcilla (r:0,60, CO (r:0,55 y estabilidad estructural (r:0,56.Las tasas de escurrimiento y sedimentación promedio fueron para SV: 12,4 10-6 m s-1 y 15,6 10-5 kg s-1 m-2; para SC: 9,9 10-6 m s-1 y 13,5 10-5 kg s-1 m-2 y para SBB: 9,6 10-6 m s-1 y 6,1 10-5 kg s-1 m-2, respectivamente. El comportamiento de SV se debió al rápido sellado del horizonte superficial, mientras que el de SBB y el SC se relacionó con la estabilidad estructural. En el modelo WEPP, la erodabilidad medida entre surcos (Ki fue, para SV: 2,5; SC: 1,89 y SBB: 1,39 (10(6 kg s m-4; mientras que la estimada (Kib fue significativamente más alta, SV: 6,26; SC: 10,2 y SBB: 10,2 (10(6 kg s m-4. Los índices de erosión (IE fueron, SV: 0,30; SC: 0,21 y SBB: 0,10 Mg MJ-1 y discreparon significativamente de los valores K estimados a partir del nomograma, confirmando que las predicciones del mismo resultan poco confiables en suelos con el 65% o más de arenas.Water erodibility of soils can be measured in the field using rainfall simulators or be predicted with mathematical models as USLE and WEPP. The objective of our research was to determine water erodibility of three representative soils in the southern semiarid

  7. Erodibility of cemented materials

    CSIR Research Space (South Africa)

    Gass, BG

    1993-03-01

    Full Text Available The use of stabilised layers is cost effective in road construction in South Africa. Some stabilised materials have however been found to be susceptible to erosion. To identify erodible materials the Erosion Test was developed in 1989...

  8. A chromosomally based luminescent bioassay for mercury detection in red soil of China

    Energy Technology Data Exchange (ETDEWEB)

    Wei, He [Chinese Academy of Sciences, Nanking (China). State Key Lab. of Soil and Sustainable Agriculture; Nanjing Normal Univ., Nanking (China). College of Life Science; Cheng, Han; Ting, Mao; Zhong, Wen-Hui [Nanjing Normal Univ., Nanking (China). College of Chemistry and Environmental Science; Lin, Xian-Gui [Chinese Academy of Sciences, Nanking (China). State Key Lab. of Soil and Sustainable Agriculture

    2010-07-15

    A luminescent reporter gene system was constructed by fusing the mercury-inducible promoter, P{sub merT}, and its regulatory gene, merR, with a promoterless reporter gene EGFP. A stable and nonantibiotic whole-cell reporter (BMB-ME) was created by introducing the system cassette into the chromosome of Pseudomonas putida strain and then applied it for mercury detection in the red soil of China. Spiked with 10 and 100 {mu}g g{sup -1} Hg{sup 2+} and after 15 and 30 days incubation, soil samples were extracted and evaluated water soluble, bioavailable, organic matter bound, and residual fractions of mercury by both BMB-ME and chemical way. The expression of EGFP was confirmed in soil extraction, and fluorescence intensity was quantified by luminescence spectrometer. The sensor strain BMB-ME appeared to have a detection range similar to that of reversed-phase high-performance liquid chromatography method. The optimal temperature for EGFP expression was 35 C and the lowest detectable concentration of Hg{sup 2+} 200 nM. Cu{sup 2+}, Fe{sup 2+}, Mn{sup 2+}, Sn{sup 2+}, Zn{sup 2+}, Co{sup 2+}, Ag{sup +}, Ba{sup 2+}, Mg{sup 2+}, and Pb{sup 2+} ions at nanomolar level did not interfere with the measurement. These results showed that the BMB-ME constitute an adaptable system for easy sensing of small amounts of mercury in the red soil of China. (orig.)

  9. Prioritization of Soil Conservation Measures using Erodibility Indices

    Indian Academy of Sciences (India)

    26

    In the present study spatial variation of susceptibility of erosion in East district of Sikkim ..... organic matter is 50% carbon, would in almost all cases be more accurate ..... temperate American soils; with special reference to indicated relations ...

  10. Spatial patterns and controls of soil chemical weathering rates along a transient hillslope

    Science.gov (United States)

    Yoo, K.; Mudd, S.M.; Sanderman, J.; Amundson, Ronald; Blum, A.

    2009-01-01

    Hillslopes have been intensively studied by both geomorphologists and soil scientists. Whereas geomorphologists have focused on the physical soil production and transport on hillslopes, soil scientists have been concerned with the topographic variation of soil geochemical properties. We combined these differing approaches and quantified soil chemical weathering rates along a grass covered hillslope in Coastal California. The hillslope is comprised of both erosional and depositional sections. In the upper eroding section, soil production is balanced by physical erosion and chemical weathering. The hillslope then transitions to a depositional slope where soil accumulates due to a historical reduction of channel incision at the hillslope's base. Measurements of hillslope morphology and soil thickness were combined with the elemental composition of the soil and saprolite, and interpreted through a process-based model that accounts for both chemical weathering and sediment transport. Chemical weathering of the minerals as they moved downslope via sediment transport imparted spatial variation in the geochemical properties of the soil. Inverse modeling of the field and laboratory data revealed that the long-term soil chemical weathering rates peak at 5 g m- 2 yr- 1 at the downslope end of the eroding section and decrease to 1.5 g m- 2 yr- 1 within the depositional section. In the eroding section, soil chemical weathering rates appear to be primarily controlled by the rate of mineral supply via colluvial input from upslope. In the depositional slope, geochemical equilibrium between soil water and minerals appeared to limit the chemical weathering rate. Soil chemical weathering was responsible for removing 6% of the soil production in the eroding section and 5% of colluvial influx in the depositional slope. These were among the lowest weathering rates reported for actively eroding watersheds, which was attributed to the parent material with low amount of weatherable

  11. Sustainable Agriculture Evaluation for Red Soil Hill Region of Southeast China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qi-Guo; XU Meng-Jie

    2004-01-01

    Agricultural sustainability for economic development is important and a complex issue throughout the world; however,it is difficult to synthetically evaluate its use in the policy making process. The objective of this study was to evaluate sustainable agriculture in the red soil hill region of Southeast China through a newly proposed method combining four separate sub-systems: regional population (P), resource (R), environmental (E), and socio-economic (S). This new index system was proposed to appraise synthetically the agricultural sustainability of the red soil hill region from 1988 to 1996 with a two-step method assessing: a) the agricultural sustainability in each province independently and b) the relative sustainability of each province to the whole region. The first step only provided a development trend for each province based on its original situation, while the second step provided additional information on the comparative status of each province in agricultural development to the region as a whole. Higher index scores were found for the economy and resource categories denoting improvement. However, lower scores in the environment category indicated the improvement was achieved at the cost of deteriorating ecological surroundings due to an increasing population that demanded more from the agro-ecosystem and put heavier pressures on it. Results also showed that water and soil losses in this region were the major obstacles encountered in sustainable agriculture development. The assessment results were verified when compared with results from another method. This suggested that the new assessment system was reliable and credible in evaluating agricultural sustainability on a regional scale.

  12. Effects of simulated acid rain on microbial characteristics in a lateritic red soil.

    Science.gov (United States)

    Xu, Hua-qin; Zhang, Jia-en; Ouyang, Ying; Lin, Ling; Quan, Guo-ming; Zhao, Ben-liang; Yu, Jia-yu

    2015-11-01

    A laboratory experiment was performed to examine the impact of simulated acid rain (SAR) on nutrient leaching, microbial biomass, and microbial activities in a lateritic red soil in South China. The soil column leaching experiment was conducted over a 60-day period with the following six SAR pH treatments (levels): 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 and one control treatment (pH = 7). Compared with the control treatment, the concentrations of soil organic matter, total nitrogen, total phosphorus, total potassium, soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN), and average well color density (AWCD) in the Ecoplates were all significantly decreased by leaching with SAR at different pH levels. The decrease in MBC and MBN indicated that acid rain reduced the soil microbial population, while the decrease in AWCD revealed that acid rain had a negative effect on soil bacterial metabolic function. Soil basal respiration increased gradually from pH 4.0 to 7.0 but decreased dramatically from pH 2.5 to 3.0. The decrease in soil nutrient was the major reason for the change of soil microbial functions. A principal component analysis showed that the major carbon sources used by the bacteria were carbohydrates and carboxylic acids.

  13. Effect of different levels of magnesium saturation on the extractability of native and applied zinc in red and alluvial soils

    International Nuclear Information System (INIS)

    Deb, D.L.; Das, S.K.; Sachdev, Pamila

    1978-01-01

    The investigation showed that Mg saturation of soil has a beneficial effect on the extractibility of native and applied zinc in soil. The soils used in the investigation were alluvial soil from Delhi and red soil from Karnataka under upland and waterlogged conditions. Zinc was applied in the form of ZnSO 4 solution labelled with 65 Zn. (M.G.B.)

  14. Soil Organic Matter Erosion by Interrill Processes from Organically and Conventionally farmed Devon Soil

    Science.gov (United States)

    Armstrong, E.; Ling, A.; Kuhn, N. J.

    2012-04-01

    Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes for nutrient cycling and the global carbon cycle requires close attention. Interrill erosion is a complex phenomenon involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles. This leads to the enrichment of clay, phosphorous (P) and carbon (C). Such enrichment in interrill sediment is well documented, however, the role of interrill erosion processes on the enrichment remains unclear. Enrichment of P and C in interrill sediment is attributed to the preferential erosion of the smaller, lighter soil particles. In this study, the P and organic C content of sediment generated from two Devon silts under conventional (CS) and organic (OS) soil management were examined. Artificial rainfall was applied to the soils using two rainfall scenarios of differing intensity and kinetic energy to determine the effects on the P and C enrichment in interrill sediment. Interrill soil erodibility was lower on the OS, irrespective of rainfall intensity. Sediment from both soils showed a significant enrichment in P and C compared to the bulk soil. However, sediment from the OS displayed a much greater degree of P enrichment. This shows

  15. Sustainable Lang Use in Hilly Red Soil Region of Southeastern China

    Institute of Scientific and Technical Information of China (English)

    ZHANGTAO-LIN; ZHAOQI-GUO; 等

    1995-01-01

    In the present work,an integrated analysis of natural and socio-economic conditions in the hilly red soil region of southeastern China is made by means of a Geographic Information System.Particular emphasis lies on soil degradation and other adverse ecological and environmental effects of the prevalent and irrational land-use systems of mono-and valley-agriculture in the region.Moreover,taking into account the simultaneous existence of enormous potentials and serious constraints and the high diversity and complexity of the biophysical and socio-economic environments,a set of strategies and countermeasures are also proposed for appropriate management of environmental resources,in terms of maintaining harmony between utilization and coservation of the natural environment,including 1) adjustment of the agricultural structure and optimization of ecological patterns of stereo-agriculture;2) improvement and integrated exploitation of the low-yield lands and wastelands;3) ehabilitation and conservation of soil and water resources;and 4) establishment of production bases of tropical and subtropical cash crops and fruits.

  16. The Effects of Lime, Fertilizer, and Herbicide on Forest Soil Solution Chemistry and Northern Red Oak Radial Growth Following Shelterwood Harvest

    Science.gov (United States)

    Angela M Happel; William E. Sharpe

    2004-01-01

    Soil acidity, nutrient deficient soils, lack of light penetration, herbivory, and understory competition are the major obstacles encountered in regenerating and sustaining northern red oak. Changes in soils that may occur during soil acidifi- cation include: reduced soil pH, increased availability of aluminum (Al) and manganese (Mn), loss of base cations due to...

  17. [Influences of biochar and nitrogen fertilizer on soil nematode assemblage of upland red soil].

    Science.gov (United States)

    Lu, Yan-yan; Wang, Ming-wei; Chen, Xiao-vun; Liu, Man-qiang; Chen, Xiao-min; Cheng, Yan-hong; Huang, Qian-ru; Hu, Feng

    2016-01-01

    The use of biochar as soil remediation amendment has received more and more concerns, but little attention has been paid to its effect on soil fauna. Based on the field experiment in an upland red soil, we studied the influences of different application rates of biochar (0, 10, 20, 30, 40 t · hm⁻²) and nitrogen fertilizer (60, 90, 120 kg N · hm⁻²) on soil basic properties and nematode assemblages during drought and wet periods. Our results showed that the biochar amendment significantly affect soil moisture and pH regardless of drought or wet period. With the increasing of biochar application, soil pH significantly increased, while soil moisture increased first and then decreased. Soil microbial properties (microbial biomass C, microbial biomass N, microbial biomass C/N, basal respiration) were also significantly affected by the application of biochar and N fertilizer. Low doses of biochar could stimulate the microbial activity, while high doses depressed microbial activity. For example, averaged across different N application rates, biochar amendment at less than 30 t · hm⁻² could increase microbial activity in the drought and wet periods. Besides, the effects of biochar also depended on wet or drought period. When the biochar application rate higher than 30 t · hm⁻², the microbial biomass C was significantly higher in the drought period than the control, but no differences were observed in the wet period. On the contrary, microbial biomass N showed a reverse pattern. Dissolved organic matter and mineral N were affected by biochar and N fertilizer significantly in the drought period, however, in the wet period they were only affected by N fertilizer rather than biochar. There was significant interaction between biochar and N fertilizer on soil nematode abundance and nematode trophic composition independent of sampling period. Combined high doses of both biochar and N fertilization promoted soil nematode abundance. Moreover, the biochar amendment

  18. Hydraulic conductivity of Red-Yellow Podzolic Soil from Zona da Mata in Pernambuco State, Brazil

    International Nuclear Information System (INIS)

    M. Netto, Andre; Antonino, Antonio C.D.; Dall'Olio, Attilio; Carneiro, Clemente J.G.; Audry, Pierre

    1997-01-01

    The determination of the hydraulic conductivity of a Red-Yellow Podzolic Soil was carried out during an experiment in a plot measuring 3,5 m x 3,5 m at the Experimental Station of Itapirema, Goiania, in the State of Pernambuco. The internal drainage method was used to obtain the hydraulic conductivity as a function of soil water content, K (THETA), in there characteristic horizons of the soil. In relation to the methodological aspects, processing of data from internal drainage experiments, including the initial phase of fast drainage, the adjustment of the required parameters, it is necessary to use functions that reproduce the distinct transition between the fast and slow phases of drainage. From all five tested functions, those of power sum of two exponentials and sum of three exponentials, especially this last one, adjusted well to this distinct transition. Three characteristic horizons of the Red-yellow Podzolic Soil were investigated for hydraulic conductivity. The sandy a horizon with large pores, has a high conductivity while the B1t horizon, with massive structure and few visible pores, has a low infiltration rate. The hydraulic dynamics of the B2 horizon is more complex due to its heterogeneity. The precise characterization of the A and B1t, horizons, which are the most important to agriculture and soil conservation makes it possible to elaborate numeric simulation models of the water transference process in the superficial horizons of this type of soil. (author). 11 refs., 3 figs., 1 tab

  19. Multifractal Model of Soil Water Erosion

    Science.gov (United States)

    Oleshko, Klaudia

    2017-04-01

    Breaking of solid surface symmetry during the interaction between the rainfall of high erosivity index and internally unstable volcanic soil/vegetation systems, results in roughness increasing as well as fertile horizon loosing. In these areas, the sustainability of management practices depends on the ability to select and implement the precise indicators of soil erodibility and vegetation capacity to protect the system against the extreme damaging precipitation events. Notwithstanding, the complex, non-linear and scaling nature of the phenomena involved in the interaction among the soil, vegetation and precipitation is still not taken into account by the numerous commonly used empirical, mathematical and computer simulation models: for instance, by the universal soil loss equation (USLE). The soil erodibility factor (K-factor) is still measuring by a set of empirical, dimensionless parameters and indexes, without taking into account the scaling (frequently multifractal) origin of a broad range of heterogeneous, anisotropic and dynamical phenomena involved in hydric erosion. Their mapping is not representative of this complex system spatial variability. In our research, we propose to use the toolbox of fractals and multifractals techniques in vista of its ability to measure the scale invariance and type/degree of soil, vegetation and precipitation symmetry breaking. The hydraulic units are chosen as the precise measure of soil/vegetation stability. These units are measured and modeled for soils with contrasting architecture, based on their porosity/permeability (Poroperm) as well as retention capacity relations. The simple Catalog of the most common Poroperm relations is proposed and the main power law relations among the elements of studied system are established and compared for some representative agricultural and natural Biogeosystems of Mexico. All resulted are related with the Mandelbrot' Baby Theorem in order to construct the universal Phase Diagram which

  20. Evaluation of radiocaesium wash-off by soil erosion from various land uses using USLE plots

    International Nuclear Information System (INIS)

    Yoshimura, Kazuya; Onda, Yuichi; Kato, Hiroaki

    2015-01-01

    Radiocaesium wash-off associated with soil erosion in different land use was monitored using USLE plots in Kawamata, Fukushima Prefecture, Japan after the Fukushima Dai-ichi Nuclear Power Plant accident. Parameters and factors relating to soil erosion and 137 Cs concentration in the eroded soil were evaluated based on the field monitoring and presented. The erosion of fine soil, which is defined as the fraction of soil overflowed along with discharged water from a sediment-trap tank, constituted a large proportion of the discharged radiocaesium. This indicated that the quantitative monitoring of fine soil erosion is greatly important for the accurate evaluation of radiocaesium wash-off. An exponential relationship was found between vegetation cover and the amount of eroded soil. Moreover, the radiocaesium concentrations in the discharged soil were greatly affected by the land use. These results indicate that radiocaesium wash-off related to vegetation cover and land use is crucially important in modelling radiocaesium migration. - Highlights: • Fine soil erosion showed large impact on radiocaesium wash-off. • Exponential relationship was found between vegetation cover and eroded soil. • Radiocaesium concentration in the discharged soil was depending on land use

  1. Characterizing soil erosion potential using electrical resistivity imaging : final report.

    Science.gov (United States)

    2017-04-01

    The erosion rate, or erodibility, of soil depends on many soil characteristics including: plasticity, : water content, grain size, percent clay, compaction, and shear strength. Many of these characteristics also : influence soil in situ bulk electric...

  2. Characterizing soil erosion potential using electrical resistivity imaging : technical summary.

    Science.gov (United States)

    2017-04-01

    The erosion rate, or erodibility, of soil depends on many soil characteristics : including: plasticity, water content, grain size, percent clay, compaction, and shear : strength. Many of these characteristics also influence soil in situ bulk electric...

  3. Influence of low temperatures on aggregate disruption of heavy clay soils

    Directory of Open Access Journals (Sweden)

    Jana Kozlovsky Dufková

    2010-01-01

    Full Text Available Heavy clay soils that are normally resistant to wind erosion, from study site Ostrožská Nová Ves si­tua­ted in the foothills of the Bílé Karpaty Mountains, Czech Republic, were a subject of laboratory analyses. The analyses should found out the influence of overwinter processes on disruption of soil aggregates and thus reason of vulnerability to soil loss by wind. Two overwinter processes were observed – freezing and thawing, and freeze-drying of the soil. Both processes have indicated the increasing of erodible fraction in dependence of water content of analysed soils. Exposed frozen clay soils that freeze-dries during the winter in the foothills of Bílé Karpaty, leaves soils highly erodible in late winter and early spring.

  4. Nitrogen utilization and transformation in red soil fertilized with urea and ryegrass

    International Nuclear Information System (INIS)

    Wu Gang; Zhang Qinzheng; Ye Qingfu; Zhu Zhujun; Xi Haifu; He Zhenli

    1998-01-01

    The influence of fertilization with urea and ryegrass on nitrogen utilization and transformation in red soil has been studied by using 15 N tracer method. When urea and ryegrass were applied alone or in combination, the percentage of N uptaken by ryegrass for labelled urea was 3 and 1.7 times that from labelled ryegrass for the application rate of 200 mgN·kg -1 and 100 mgN·kg -1 , respectively; combining application of ryegrass and urea reduced uptake of urea N and increased uptake of ryegrass N by ryegrass plant, but the percentage of N residue in soil increased for urea and decreased for ryegrass; when urea and ryegrass were applied alone, the percentage of N residue in soil from labelled ryegrass was more than 69% while that from labelled urea was less than 25%, and much more ryegrass N was incorporated into humus than urea N

  5. Investigation of biochar effects as a non-structural BMP on soil erosional properties using a rainfall simulator

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Kuhn, Nikolaus J; Hu, Yaxian

    Recent studies have shown the potential of biochar for improving overall soil quality including soil aggregation and structure. Erodibility is an inherent soil property that amongst others is highly dependent on soil organic matter content which affects aggregate stability and crusting during...... runoff events. We hypothesized that erodibility is reduced in biochar-amended soils and tested this in controlled rainfall-runoff simulations. The specific objectives of our study were (1) to compare runoff and sediment generation between a biochar and an unamended control treatment on an arable sandy...... loam soil and (2) to determine the effect of the biochar treatment on SOC erodibility. A field experiment with eight plots was established at Risø, Denmark, in 2011; four biochar-amended and four unamended control plots. Biochar produced from birch wood at 500 ºC was applied at a rate of 2 kg m-2...

  6. Distribution of ancient carbon in buried soils in an eroding loess landscape

    Science.gov (United States)

    Szymanski, L. M.; Mason, J. A.; De Graaff, M. A.; Berhe, A. A.; Marin-Spiotta, E.

    2017-12-01

    Understanding the processes that contribute to the accumulation and loss of carbon in soils and the implications for land management is vital for mitigating climate change. Buried soils or paleosols that represent former surface horizons can store more organic carbon than mineral horizons at equivalent depths due to burial restricting microbial decomposition. The presence of buried soils defies modeled expectations of exponential declines in carbon concentrations with depth, especially in locations where successive depositional events lead to multiple buried soil layers. Buried soils are found in a diversity of depositional environments across latitudes and without accounting for their presence can lead to underestimates of regional carbon reservoirs. Here we present data on the spatial distribution of carbon in a paleosol loess sequence in Nebraska, focusing on one prominent paleosol, the Brady soil. The Brady soil has been identified throughout the Central Great Plains and began developing at the end of the Pleistocene and was subsequently buried by loess in the early Holocene (Mason et al. 2003). Preliminary analyses of the Brady soil at its deepest, 6-m below the surface, reveal large differences in the composition and degree of decomposition of organic matter from the modern soil. We sampled along burial and erosional transects to characterize spatial variability in the depth of Brady soil from the modern landscape surface and to determine how these differences may alter the amount and composition of organic carbon. A more accurate determination of the spatial extent and heterogeneity of buried soil carbon will improve regional estimates of carbon reservoirs. This assessment of its variability across the landscape will inform future planned work on the vulnerability of ancient carbon to disturbance.

  7. On the origin of some red soils from Sardinia (Italy). A neutron activation analysis investigation

    International Nuclear Information System (INIS)

    Genova, N.; Meloni, S.; Oddone, M.; Pavia Univ.; Melis, P.

    2001-01-01

    In Sardinia, the Italian island in the middle of the Mediterranean Sea, there are many red soils developed on limestone or dolomite. Soil and underlying bedrock samples from 5 different sites have been submitted to chemical and mineralogical characterization, by using standard X-ray diffraction analysis, spectrochemical methods and instrumental neutron activation analysis. Obtained results are presented and discussed in terms of precision and accuracy. Trace element concentration variation with depth is discussed as well as the enrichment/depletion ratios between soils and rocks, and the rare-earth element distribution. Data analysis suggests for some soils a formation process based on the evolution of the underlying bedrock, and for the other soils a formation process partly based on the evolution of the local rock but with meaningful contributions of external sources, both eolian and/or alluvial. (author)

  8. Unsaturated hydraulic conductivity of a red-yellow podzolic soil in the Northern Zona da Mata of Pernambuco State - Brazil

    International Nuclear Information System (INIS)

    Maciel Netto, A.

    1994-08-01

    The determination of the hydraulic conductivity of a Red-Yellow Podzolic Soil was carried out during an experiment in a plot measuring 3.5 m x 3.5 m, at the Experimental Station of Itapirema, Goiania, in Pernambuco State, Brazil. The internal drainage method proposed by Hillel (1972) was used to obtain the hydraulic conductivity as a function of soil water content, K(θ), in the three characteristic horizons of the soil. Three neutron probes were used for measuring the humidity, that was determined by a calibration curve. Three characteristic horizons of the Red-Yellow Podzolic Soil were investigated for hydraulic conductivity. The sandy A horizon, with large pores, has a high conductivity while the B1t horizon, with a massive structure and few visible pores, has a low infiltration rate. The hydraulic dynamics of the B2 horizon is more complex due to its heterogeneity. (author). 79 refs, 17 figs, 11 tabs

  9. Morphodynamic modeling of erodible laminar channels.

    Science.gov (United States)

    Devauchelle, Olivier; Josserand, Christophe; Lagrée, Pierre-Yves; Zaleski, Stéphane

    2007-11-01

    A two-dimensional model for the erosion generated by viscous free-surface flows, based on the shallow-water equations and the lubrication approximation, is presented. It has a family of self-similar solutions for straight erodible channels, with an aspect ratio that increases in time. It is also shown, through a simplified stability analysis, that a laminar river can generate various bar instabilities very similar to those observed in natural rivers. This theoretical similarity reflects the meandering and braiding tendencies of laminar rivers indicated by F. Métivier and P. Meunier [J. Hydrol. 27, 22 (2003)]. Finally, we propose a simple scenario for the transition between patterns observed in experimental erodible channels.

  10. Restoring crop productivity of eroded lands through , integrated plant nutrient management (IPNM) for sustained production

    International Nuclear Information System (INIS)

    Bhatti, A.U.; Ali, S.

    2005-01-01

    Crop productivity of eroded lands is very poor due to removal of top fertile soil losing organic matter and plant nutrients, with consequent exposure of the sub-soil with poor fertility status. Crop productivity of such lands needs to be restored in order to help farmers feed many mouths because of increased population and high land pressure. Three field experiments were laid out at three sites, Thana, Malakand Agency; Kabal and Matta, Swat during 2003-2004 to study the effect of integrated plant nutrient management on the yield of wheat. The fertilizer treatments consisted of farmer's practice (60-45-0 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/), recommended fertilizer rate (120-90-60 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -l/ + 5 kg Zn ha/sup -1), and combined application of organic and inorganic sources of plant nutrients (FYM at the rate of 20 t ha/sup -1/ plus 60-90-60 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/ + 5 kg Zn ha/sup -1/). The results obtained from these field trails showed that the combined application of FYM with NPK Zn increased the grain yield significantly over the other two treatments with an increase of 50-80% over the farmer's practice and 11 to 23 % over the recommended dose. As regards straw yields, T/sub 2/ and T/sub 3/ increased the yields significantly over farmer's practice (T) at all the sites; However, T/sub 2/ and T/sub 3/ at Thana and Kabal were at par with each other. As regards effect of various treatments on soil properties, organic matter content was improved at Thana and Kabal sites while at Matta the results were inconsistent. Similarly soil P and Zn contents were increased considerably in T/sub 2/ and T/sub 3/ at Thana and Kabal being at par with each other. It is apparent from these results that the crop productivity of eroded lands at all the three sties was considerably restored and the soil fertility status was improved by integrated plant nutrient management. (author)

  11. Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)–CO_3/Ca–U(VI)–CO_3 complexes

    International Nuclear Information System (INIS)

    Zhang, Zhibin; Liu, Jun; Cao, Xiaohong; Luo, Xuanping; Hua, Rong; Liu, Yan; Yu, Xiaofeng; He, Likai

    2015-01-01

    Highlights: • NZVI can be used for adsorbing U(VI)–CO_3 complexes. • Use of NZVI is feasible for remediation of uranium-contaminated soils. • The mechanism of U(VI)–CO_3 complexes adsorbing onto NZVI has been explained. - Abstract: The influence of U(VI)–CO_3 and Ca–U(VI)–CO_3 complexes on U(VI) adsorption onto red soil and nanoscale zero-valent iron (NZVI) was investigated using batch adsorption and fixed-bed column experiments to simulate the feasibility of NZVI as the reactive medium in permeable- reactive barriers (PRB) for in situ remediation of uranium-contaminated red soils. The adsorption capacity (q_e) and distribution constant (K_d) of NZVI and red soil decreased with increasing pH, dissolved carbonate and calcium concentrations, but the q_e and K_d values of NZVI were 5–10 times higher than those of red soil. The breakthrough pore volume (PV) values increased with the decrease of pH, dissolved carbonate and calcium concentration; however, the breakthrough PV values of the PRB column filled with 5% NZVI were 2.0–3.5 times higher than the 100% red soil column. The U(VI)–CO_3 complexes adsorbed onto the surface of red soil/NZVI (≡SOH) to form SO–UO_2CO_3"− or SO–UO_2 (CO_3)_2"3"−. XPS and XRD analysis further confirmed the reduction of U(VI) to U(IV) and the formation of FeOOH on NZVI surfaces. The findings of this study are significant to the remediation of uranium-contaminated red soils and the consideration of practical U(VI) species in the natural environment.

  12. Degradation of Red Ferralitic (Rhodic Ferralsol soils grown with tobacco (Nicotiana tabacum L. in the Artemisa province, Cuba

    Directory of Open Access Journals (Sweden)

    Óscar Ricote Jorge

    2017-01-01

    Full Text Available “Partido” is a tobacco growing area which extends for some 3000 hectares among the municipalities of San Antonio de los Baños, Güira de Melena and Alquízar in the Cuban province of Artemisa. Predominant soils are Red Ferralitic (Rhodic Ferralsol according to the World Reference Base, with a strong tendency to alkalinization which has a negative impact on the quality of their agricultural use. The aim of this research was to quantify the geographical extension of the degradation process, to determine how deep it happens along the soil profile and to establish its possible relationship with the quality and quantity of water applied to tobacco fields. The chemical, physical and mineralogical analyses of two test pits carried out in the area were compared: one profile without agricultural use with one characteristic soil profile under continuous production. After being subjected to the same irrigation regime in laboratory conditions, it was concluded that degradation affects to 89.56% of the area of tobacco soils evaluated. This phenomenon occurs very deeply along the soil profile and happens downwards, causing the accumulation of calcium and the loss of sodium and potassium in the superficial horizon, what is shown in pH rises. Such processes, associated to irrigation water and to insufficient rainfall regime which are traditional in the territory, have led to changes in the mineralogical composition of these tobacco soils appearance of minerals such as gibbsite which was absent in uncultivated Red Ferralitic soils, which involve the modification of soil classification at gender level.

  13. CHUVAS, EROSIVIDADE, ERODIBILIDADE, USO DO SOLO E SUAS RELAÇÕES COM FOCOS EROSIVOS LINEARES NA ALTA BACIA DO RIO ARAGUAIA / Rainfall, erosivity, erodibility, land use and their relationships with erosion sites in the upper Araguaia River Basin

    Directory of Open Access Journals (Sweden)

    Silvando Carlos da Silva

    2007-12-01

    Full Text Available The intensive process of land occupation by farmers in the tropical savanna region of MidwestBrazil during the last three decades has promoted several environment impacts, such as theoccurrence of gully erosion processes as a consequence of intensive deforestation. Just in theUpper Araguaia River Basin, it was identified more than 300 large and medium gully features,which are related with the high natural susceptibility of the sandy soils; high erosivity and erodibility; inadequate land-use; lack of soil conservation practices; and a high annual rainfallindex during the rainy season. The objective of this research was to identify spatial relationshipsbetween rainfall distribution, erosivity, erodibility, land-use, and gully erosion distribution,which may support environmental planning actions related to land use conservation.Quantitative results show a high correlation between gully erosion distribution and higherosivity/erodibility and inadequate land-use.

  14. EFFECT OF VEGETATIVE COVER AND SLOPE ON SOIL LOSS BY ...

    African Journals Online (AJOL)

    Toshiba

    and 9.7 % were 1.045, 1.070, 1.100, 2.266 and 3.121 kg, respectively. Vegetative cover soil with grasses reduced the runoff volume and soil loss. Runoff volume and soil loss increased as slope of the land increases. Keywords: erodibility, erosion, erosivity, rainfall simulator, soil loss,. INTRODUCTION. Erosion is a serious ...

  15. Field Evidence of Cadmium Phytoavailability Decreased Effectively by Rape Straw and/or Red Mud with Zinc Sulphate in a Cd-Contaminated Calcareous Soil

    Science.gov (United States)

    Li, Bo; Yang, Junxing; Wei, Dongpu; Chen, Shibao; Li, Jumei; Ma, Yibing

    2014-01-01

    To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg−1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables. The amendments plus Zn fertilization further decreased the Cd concentration in vegetables. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability in soils, and it is potential to be an efficient and cost-effective measure to ensure food safety for vegetable production in mildly Cd-contaminated calcareous soils. PMID:25303439

  16. Field evidence of cadmium phytoavailability decreased effectively by rape straw and/or red mud with zinc sulphate in a Cd-contaminated calcareous soil.

    Directory of Open Access Journals (Sweden)

    Bo Li

    Full Text Available To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg-1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables. The amendments plus Zn fertilization further decreased the Cd concentration in vegetables. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability in soils, and it is potential to be an efficient and cost-effective measure to ensure food safety for vegetable production in mildly Cd-contaminated calcareous soils.

  17. Critical assessment of jet erosion test methodologies for cohesive soil and sediment

    Science.gov (United States)

    Karamigolbaghi, Maliheh; Ghaneeizad, Seyed Mohammad; Atkinson, Joseph F.; Bennett, Sean J.; Wells, Robert R.

    2017-10-01

    The submerged Jet Erosion Test (JET) is a commonly used technique to assess the erodibility of cohesive soil. Employing a linear excess shear stress equation and impinging jet theory, simple numerical methods have been developed to analyze data collected using a JET to determine the critical shear stress and erodibility coefficient of soil. These include the Blaisdell, Iterative, and Scour Depth Methods, and all have been organized into easy to use spreadsheet routines. The analytical framework of the JET and its associated methods, however, are based on many assumptions that may not be satisfied in field and laboratory settings. The main objective of this study is to critically assess this analytical framework and these methodologies. Part of this assessment is to include the effect of flow confinement on the JET. The possible relationship between the derived erodibility coefficient and critical shear stress, a practical tool in soil erosion assessment, is examined, and a review of the deficiencies in the JET methodology also is presented. Using a large database of JET results from the United States and data from literature, it is shown that each method can generate an acceptable curve fit through the scour depth measurements as a function of time. The analysis shows, however, that the Scour Depth and Iterative Methods may result in physically unrealistic values for the erosion parameters. The effect of flow confinement of the impinging jet increases the derived critical shear stress and decreases the erodibility coefficient by a factor of 2.4 relative to unconfined flow assumption. For a given critical shear stress, the length of time over which scour depth data are collected also affects the calculation of erosion parameters. In general, there is a lack of consensus relating the derived soil erodibility coefficient to the derived critical shear stress. Although empirical relationships are statistically significant, the calculated erodibility coefficient for a

  18. The effects of the mineral phase on C stabilization mechanisms and the microbial community along an eroding slope transect

    Science.gov (United States)

    Doetterl, S.; Opfergelt, S.; Cornelis, J.; Boeckx, P. F.; van oost, K.; Six, J.

    2013-12-01

    An increasing number of studies show the importance of including soil redistribution processes in understanding carbon (C) dynamics in eroding landscapes. The quality and quantity of soil organic carbon in sloping cropland differs with topographic position. These differences are commonly more visible in the subsoil, while the size and composition of topsoil C pools are similar along the hillslope. The type (plant- or microbial-derived) and quality (level of degradation) of C found in a specific soil fraction depends on the interplay between the temporal dynamic of the specific mechanism and it's strength to protect C from decomposition. Here, we present an analysis that aims to clarify the bio/geo-chemical and mineralogical components involved in stabilizing C at various depths and slope positions and how they affect the microbial community and the degradation of C. For this we analyzed soil samples from different soil depths along a slope transect applying (i) a sequential extraction of the reactive soil phase using pyrophosphate, oxalate and dithionite-citrate-bicarbonate, (ii) a semi-quantitative and qualitative analysis of the clay mineralogy, (iii) an analysis of the microbial community using amino sugars and (iv) an analysis of the level of degradation of C in different soil fractions focusing on the soil Lignin signature. The results show that the pattern of minerals and their relative importance in stabilizing C varies greatly along the transect. In the investigated soils, pyrophosphate extractable Manganese, and not Iron or Aluminum as often observed, is strongly correlated to C in the bulk soil and in the non-aggregated silt and clay fractions. This suggests a certain role of Manganese for C stabilization where physical protection is absent. In contrast, pyrophosphate extractable Iron and Aluminum components are largely abundant in water-stable soil aggregates but not correlated to C, suggesting importance of these extracts to stabilize aggregates and

  19. Mobility of selected trace elements in Mediterranean red soil amended with phosphogypsum: experimental study.

    Science.gov (United States)

    Kassir, Lina Nafeh; Darwish, Talal; Shaban, Amin; Ouaini, Naim

    2012-07-01

    Soil amendment by phosphogypsum (PG) application becomes of increasing importance in agriculture. This may lead, however, to soil, plant, and groundwater contamination with trace elements (TEs) inherently present in PG. Monitoring of selected TEs (Pb, Zn, Cu, and Cd) distribution and mobility in a Mediterranean red soil profile has been performed in soil parcels applied with PG over a 16-month period. Concentrations were measured in soil and plant samples collected from various depth intervals at different points in time. TEs sequential extraction was performed on soil and PG samples. Results showed soil profile enrichment peaked 5 months after PG application for Cd, and 12 months for Pb, Zn, and Cu. Rainwater, pH, total organic carbon, and cationic exchange capacity were the main controlling factors in TEs accumulation in soils. Cd was transferred to a soil depth of about 20 cm. Zn exhibited mobility towards deeper layers. Pb and Cu were accumulated in around 20-55-cm-deep layers. PG increased the solubility of the studied TEs; PG-applied soils contained TEs bound to exchangeable and acid-soluble fractions in higher percentages than reference soil. Pb, Zn, and Cu were sorbed into mineral soil phases, while Cd was mainly found in the exchangeable (bio-available) form. The order of TEs decreasing mobility was Zn > Cd > Pb > Cu. Roots and leaves of existed plants, Cichorium intybus L., accumulated high concentrations of Cd (1-2.4 mg/kg), exceeding recommended tolerable levels, and thus signifying potential health threats through contaminated crops. It was therefore recommended that PG should be applied in carefully established, monitored, and controlled quantities to agricultural soils.

  20. Nitrite-Oxidizing Bacteria Community Composition and Diversity Are Influenced by Fertilizer Regimes, but Are Independent of the Soil Aggregate in Acidic Subtropical Red Soil.

    Science.gov (United States)

    Han, Shun; Li, Xiang; Luo, Xuesong; Wen, Shilin; Chen, Wenli; Huang, Qiaoyun

    2018-01-01

    Nitrification is the two-step aerobic oxidation of ammonia to nitrate via nitrite in the nitrogen-cycle on earth. However, very limited information is available on how fertilizer regimes affect the distribution of nitrite oxidizers, which are involved in the second step of nitrification, across aggregate size classes in soil. In this study, the community compositions of nitrite oxidizers ( Nitrobacter and Nitrospira ) were characterized from a red soil amended with four types of fertilizer regimes over a 26-year fertilization experiment, including control without fertilizer (CK), swine manure (M), chemical fertilization (NPK), and chemical/organic combined fertilization (MNPK). Our results showed that the addition of M and NPK significantly decreased Nitrobacter Shannon and Chao1 index, while M and MNPK remarkably increased Nitrospira Shannon and Chao1 index, and NPK considerably decreased Nitrospira Shannon and Chao1 index, with the greatest diversity achieved in soils amended with MNPK. However, the soil aggregate fractions had no impact on that alpha-diversity of Nitrobacter and Nitrospira under the fertilizer treatment. Soil carbon, nitrogen and phosphorus in the soil had a significant correlation with Nitrospira Shannon and Chao1 diversity index, while total potassium only had a significant correlation with Nitrospira Shannon diversity index. However, all of them had no significant correlation with Nitrobacter Shannon and Chao1 diversity index. The resistance indices for alpha-diversity indexes (Shannon and Chao1) of Nitrobacter were higher than those of Nitrospira in response to the fertilization regimes. Manure fertilizer is important in enhancing the Nitrospira Shannon and Chao1 index resistance. Principal co-ordinate analysis revealed that Nitrobacter - and Nitrospira -like NOB communities under four fertilizer regimes were differentiated from each other, but soil aggregate fractions had less effect on the nitrite oxidizers community. Redundancy analysis

  1. Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)–CO{sub 3}/Ca–U(VI)–CO{sub 3} complexes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhibin [Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Nanchang 330013 (China); State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); Liu, Jun [State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Cao, Xiaohong, E-mail: xhcao@ecit.cn [Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Nanchang 330013 (China); State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); Luo, Xuanping [Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); Hua, Rong; Liu, Yan [Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Nanchang 330013 (China); State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); Yu, Xiaofeng; He, Likai [Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); and others

    2015-12-30

    Highlights: • NZVI can be used for adsorbing U(VI)–CO{sub 3} complexes. • Use of NZVI is feasible for remediation of uranium-contaminated soils. • The mechanism of U(VI)–CO{sub 3} complexes adsorbing onto NZVI has been explained. - Abstract: The influence of U(VI)–CO{sub 3} and Ca–U(VI)–CO{sub 3} complexes on U(VI) adsorption onto red soil and nanoscale zero-valent iron (NZVI) was investigated using batch adsorption and fixed-bed column experiments to simulate the feasibility of NZVI as the reactive medium in permeable- reactive barriers (PRB) for in situ remediation of uranium-contaminated red soils. The adsorption capacity (q{sub e}) and distribution constant (K{sub d}) of NZVI and red soil decreased with increasing pH, dissolved carbonate and calcium concentrations, but the q{sub e} and K{sub d} values of NZVI were 5–10 times higher than those of red soil. The breakthrough pore volume (PV) values increased with the decrease of pH, dissolved carbonate and calcium concentration; however, the breakthrough PV values of the PRB column filled with 5% NZVI were 2.0–3.5 times higher than the 100% red soil column. The U(VI)–CO{sub 3} complexes adsorbed onto the surface of red soil/NZVI (≡SOH) to form SO–UO{sub 2}CO{sub 3}{sup −} or SO–UO{sub 2} (CO{sub 3}){sub 2}{sup 3−}. XPS and XRD analysis further confirmed the reduction of U(VI) to U(IV) and the formation of FeOOH on NZVI surfaces. The findings of this study are significant to the remediation of uranium-contaminated red soils and the consideration of practical U(VI) species in the natural environment.

  2. Interrill erosion of carbon and phosphorus from conventionally and organically farmed Devon silt soils

    DEFF Research Database (Denmark)

    Kuhn, Nikolaus J; Armstrong, Elizabeth K; Ling, Amy C

    2012-01-01

    particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion...... to conventional soil management. The enrichment of P and C in the interrill sediment was not directly related to SOC, P content of the soil and soil interrill erodibility. A comparison of soil and sediment properties indicates that crusting, P and C content as well as density and size of eroded aggregate......Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm...

  3. Societal Forces That ERODE Creativity

    Science.gov (United States)

    Sternberg, Robert; Kaufman, James C.

    2018-01-01

    Background/Context: Creativity is an indispensable force in intellectual, social, cultural, and economic development. Yet societal forces conspire to erode it. Educators have despaired for many years over how schools often fail to encourage creativity, but society as a whole is just as guilty. But how do schools and society fail to encourage, or…

  4. Value-Eroding Teacher Behaviors Scale: A Validity and Reliability Study

    Science.gov (United States)

    Arseven, Zeynep; Kiliç, Abdurrahman; Sahin, Seyma

    2016-01-01

    In the present study, it is aimed to develop a valid and reliable scale for determining value-eroding behaviors of teachers, hence their values of judgment. The items of the "Value-eroding Teacher Behaviors Scale" were designed in the form of 5-point likert type rating scale. The exploratory factor analysis (EFA) was conducted to…

  5. Relationship between soil 137Cs inventories and chemical properties in a small intensively cropped watershed

    International Nuclear Information System (INIS)

    Mabit, L.

    1998-01-01

    After estimating and spatializing the erosion risks in a small agricultural watershed in northeastern France in a previous study, the authors investigate the quality of eroding soils. Soil erosion is a selective process, exporting the finest particles, and associated chemical elements, in a preferential way. Consequently, the spatial redistribution of soil should translate into the depletion of soil in eroding areas and its enrichment in deposition sectors. Of the fifteen elements considered in this study, only organic matter confirms this hypothesis. A significant correlation was found between the soil 137 Cs (indicative of the severity of erosion) and organic matter contents. This result suggests that erosion is a redistribution process that may influence the productivity of agricultural systems on the mid/long term. (authors)

  6. Environmental impact of Bitumen on soil, water and plant in Lodasa ...

    African Journals Online (AJOL)

    The presence of bitumen in Lodasa soil is fast eroding soil fertility in the area and has contributed immensely to low yield of Agricultural products. The use of organic fertilizer to boost soil fertility, relocation and resettlement of farmers to areas with high soil fertility and appropriate legislation to protect the rights of the native ...

  7. Improved Soil Erosion and Sediment Transport in GSSHA

    Science.gov (United States)

    2010-08-01

    the USLE soil erodibility factor (0-1), soil cropping factor (0-1) and conservation factor (0-1) in the development by Julien (1995). The use of one...factor K represents a departure from Julien (1995), who used all three factors from the Universal Soil Loss Equation ( USLE ). This departure is justi...runoff using a research-quality data set. BACKGROUND: GSSHA simulates overland soil erosion and outputs erosion and deposition for any size class of

  8. Variations in soil-to-red pepper transfer factors of radionuclides with time of their application and fruit harvest

    International Nuclear Information System (INIS)

    Choi, Yong Ho; Lee, Won Yun; Lim, Kwang Muk; Park, Soo Won; Lee, Myung Ho; Lee, Chang Woo; Lee, Hyun Duk; Lee, Jeong Ho

    1997-01-01

    A mixed solution of 54 Mn, 60 Co, 85 Sr and 137 Cs was applied to the soil of culture boxes in a greenhouse 2 days before transplanting red pepper and at 3 different times during its growth for investigating transfer factors (m 2 /kg-dry) for its green and red fruits. Transfer factors varied with radionuclide, application time and harvest time by factors of about 20-100. They decreased mostly radionuclide, application time and harvest time by factors of about 20-100. They decreased mostly in the order of 85 Sr> 54 Mn> 60 Co> 137 Cs while 54 Mn and 60 Co was higher than 85 Sr when time lapse between application and harvest was short. Transfer factors of 85 Sr and 137 Cs at the last application were lower than those at the previous one by factors of 3-20 depending on harvest time. Variations in 54 Mn and 60 Co transfer factors with application time after transplanting were comparatively low. Transfer factors of 54 Mn, 60 Co and 85 Sr mixed with topsoil before transplanting were up to 3-9 times higher than those for the application onto soil surface 2 days after transplanting root-uptake concentrations of the radionuclides in red pepper fruit and taking proper measures for its harvest and consumption at the event of an accidental release during the growing season of red pepper

  9. Bonding stability of adhesive systems to eroded dentin

    Directory of Open Access Journals (Sweden)

    Janaina Barros CRUZ

    2015-01-01

    Full Text Available This in vitro study evaluated the immediate and 6 months microshear bond strength (µSBS of different adhesive systems to sound and eroded dentin. Sixty bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated into two groups: sound dentin (immersion in artificial saliva and eroded dentin (erosive challenge following a pH cycling model comprising 4 ×/day Sprite Light® drink for 10 days. Then, specimens were reassigned according to the adhesive system: etch-and-rinse adhesive (Adper Single Bond, two-step self-etch system (Clearfil SE Bond, or one-step self-etch adhesive (Adper Easy One. Polyethylene tubes with an internal diameter of 0.76 mm were placed over pre-treated dentin and filled with resin composite (Z250. Half of the specimens were evaluated by the µSBS test after 24 h, and the other half 6 months later, after water storage at 37°C. Failure mode was evaluated using a stereomicroscope (400×. Data were analyzed by three-way repeated measures analysis of variance and Tukey’s post hoc tests (α = 0.05. After 6 months of water aging, marked reductions in µSBS values were observed, irrespective of the substrate. The µSBS values for eroded dentin were lower than those obtained for sound dentin. No difference in bonding effectiveness was observed among adhesive systems. For all groups, adhesive/mixed failure was observed. In conclusion, eroded dentin compromises the bonding quality of adhesive systems over time.

  10. Physical-chemical effects of irrigation with treated wastewater on Dusky Red Latosol soil

    Directory of Open Access Journals (Sweden)

    Vanessa Ribeiro Urbano

    2015-11-01

    Full Text Available The current water crisis underlines the importance of improving water management. The use of effluent from secondary treatment in agriculture can reduce the discharge of effluent into natural bodies and provide nutrients to crops. This study evaluated the physical and chemical properties of a Dusky Red Latosol soil that had been irrigated with treated wastewater. Conducted at the Center of Agricultural Sciences (CCA of Federal University of São Carlos (UFSCar, in Araras/São Paulo/Brazil, 18 undisturbed soil samples were collected and deposited on a constant-head permeameter in order to simulate the irrigation of five growth cycles of lettuce (Lactuca sativa L., organized in five different treatments and one control group. For each treatment 0.58 L, 1.16 L, 1.74 L, 2.32 L, and 2.90 L of treated wastewater and distilled water were applied . The treated wastewater came from a domestic waste treatment plant. After the water filtered through the soil, samples of treated wastewater were collected for analyses of electrical conductivity (EC, sodium adsorption ratio (SAR, turbidity, pH, Na, K, Mg, P and Ca and, in the soil the granulometry, complete fertility, exchangeable sodium percentage (ESP and saturated hydraulic conductivity (Ksat. The Ksat decreased, but did not alter the infiltration of water and nutrients in the soil. The concentration of nutrients in the soil increased, including Na, which raises the need for monitoring soil’s salinity. In conclusion, the application of wastewater did not cause damage to the physical properties of the soil, but resulted in a tendency towards salinization.

  11. Low Carbon sink capacity of Red Sea mangroves

    KAUST Repository

    Almahasheer, Hanan

    2017-08-22

    Mangroves forests of Avicennia marina occupy about 135 km2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C-org) stocks, soil accretion rates (SAR; mm y(-1)) and soil C-org sequestration rates (g C-org m(-2) yr(-1)) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C-org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 +/- 0.3 mg Corg cm(-3) and 43 +/- 5 Mg C-org ha(-1) (in 1 m-thick soils), respectively. Sequestration rates of C-org, estimated at 3 +/- 1 and 15 +/- 1 g C-org m(-2) yr(-1) for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C-org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  12. Low Carbon sink capacity of Red Sea mangroves

    KAUST Repository

    Almahasheer, Hanan; Serrano, Oscar; Duarte, Carlos M.; Arias-Ortiz, Ariane; Masque, Pere; Irigoien, Xabier

    2017-01-01

    Mangroves forests of Avicennia marina occupy about 135 km2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C-org) stocks, soil accretion rates (SAR; mm y(-1)) and soil C-org sequestration rates (g C-org m(-2) yr(-1)) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C-org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 +/- 0.3 mg Corg cm(-3) and 43 +/- 5 Mg C-org ha(-1) (in 1 m-thick soils), respectively. Sequestration rates of C-org, estimated at 3 +/- 1 and 15 +/- 1 g C-org m(-2) yr(-1) for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C-org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  13. Isolation of Burkholderia cepacia JB12 from lead- and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover.

    Science.gov (United States)

    Jin, Zhong Min; Sha, Wei; Zhang, Yan Fu; Zhao, Jing; Ji, Hongyang

    2013-07-01

    Phytoremediation combined with suitable microorganisms and biodegradable chelating agents can be a means of reclaiming lands contaminated by toxic heavy metals. We investigated the ability of a lead- and cadmium-resistant bacterial strain (JB12) and the biodegradable chelator ethylenediamine-N,N'-disuccinic acid (EDDS) to improve absorption of these metals from soil by tall fescue and red clover. Strain JB12 was isolated from contaminated soil samples, analysed for lead and cadmium resistance, and identified as Burkholderia cepacia. Tall fescue and red clover were grown in pots to which we added JB12, (S,S)-EDDS, combined JB12 and EDDS, or water only. Compared with untreated plants, the biomass of plants treated with JB12 was significantly increased. Concentrations of lead and cadmium in JB12-treated plants increased significantly, with few exceptions. Plants treated with EDDS responded variably, but in those treated with combined EDDS and JB12, heavy metal concentrations increased significantly in tall fescue and in the aboveground parts of red clover. We conclude that JB12 is resistant to lead and cadmium. Its application to the soil improved the net uptake of these heavy metals by experimental plants. The potential for viable phytoremediation of lead- and cadmium-polluted soils with tall fescue and red clover combined with JB12 was further enhanced by the addition of EDDS.

  14. [Characteristics of water and heat fluxes and its footprint climatology on farmland in low hilly region of red soil].

    Science.gov (United States)

    Li, Yang; Jing, Yuan Shu; Qin, Ben Ben

    2017-01-01

    The analysis of the characteristics and footprint climatology of farmland water and heat fluxes has great significance to strengthen regional climate resource management and improve the hydrothermal resource utilization in the region of red soil. Based on quality controlled data from large aperture scintillometer and automatic meteorological station in hilly region of red soil, this paper analyzed in detail the characteristics of farmland water and heat fluxes at different temporal scales and the corresponding source area distribution of flux measurement in the non-rainy season and crop growth period in hilly region of red soil. The results showed that the diurnal variation of water and heat fluxes showed a unimodal trend, but compared with the sunny day, the diurnal variation curves fluctuated more complicatedly on cloudy day. In the whole, either ten-day periods or month scale, the water and heat fluxes were greater in August than in September, while the net radiation flux was more distributed to latent heat exchange. The proportion of net radiation to latent heat flux decreased in September compared to August, but the sensible heat flux was vice versa. With combined effects of weather conditions (particularly wind), stability, and surface condition, the source areas of flux measurement at different temporal scales showed different distribution characteristics. Combined with the underlying surface crops, the source areas at different temporal scales also had different contribution sources.

  15. Toxicological responses of red-backed salamanders (Plethodon cinereus) to subchronic soil exposures of 2,4-dinitrotoluene

    International Nuclear Information System (INIS)

    Johnson, Mark S.; Suski, Jamie; Bazar, Matthew A.

    2007-01-01

    Dinitrotoluenes are used as propellants and in explosives by the military and as such have been found at relatively high concentrations in the soil. To determine whether concentrations of 2,4-dinitrotoluene (2,4-DNT) in soil are toxic to amphibians, 100 red-backed salamanders (Plethodon cinereus) were exposed to either 1500, 800, 200, 75 or 0 mg 2,4-DNT/kg soil for 28 days and evaluated for indicators of toxicity. Concentrations of 2,4-DNT were less than targets and varied with time. Most salamanders exposed to concentrations exceeding 1050 mg/kg died or were moribund within the first week. Salamanders exposed to soil concentrations exceeding 345 mg/kg lost >6% of their body mass though no mortality occurred. Overt effects included a reduction in feed consumption and an increase in bucco-pharyngeal oscillations in salamanders. These results suggest that only high soil concentrations of 2,4-DNT have the potential to cause overtly toxic effects in terrestrial salamanders. - Exposures of 2,4-dinitrotoluene in soil exceeding 345 mg/kg causes toxicity to P. cinereus

  16. An iso-erodent map Imo state of Nigeria | Madubuike | International ...

    African Journals Online (AJOL)

    Among inputs/resources often needed for erosion risk assessment of a region is the iso-erodent map of the region. This is a map showing areas of equal erosion potentials in the region. As Imo and Abia states of Nigeria lie in a high erosion region of the country, it was decided in this work to produce an iso-erodent map of ...

  17. Threshold friction velocity of soils within the Columbia Plateau

    Science.gov (United States)

    Wind erosion only occurs when the friction velocity exceeds the threshold friction velocity (TFV) of the surface. The TFV of loessial soils commonly found across the Columbia Plateau region of the U.S. Pacific Northwest is virtually unknown even though these soils are highly erodible and a source of...

  18. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available BACKGROUND: Within-field multiple crop species intercropping is well documented and used for disease control, but the underlying mechanisms are still unclear. As roots are the primary organ for perceiving signals in the soil from neighboring plants, root behavior may play an important role in soil-borne disease control. PRINCIPAL FINDINGS: In two years of field experiments, maize/soybean intercropping suppressed the occurrence of soybean red crown rot, a severe soil-borne disease caused by Cylindrocladium parasiticum (C. parasiticum. The suppressive effects decreased with increasing distance between intercropped plants under both low P and high P supply, suggesting that root interactions play a significant role independent of nutrient status. Further detailed quantitative studies revealed that the diversity and intensity of root interactions altered the expression of important soybean PR genes, as well as, the activity of corresponding enzymes in both P treatments. Furthermore, 5 phenolic acids were detected in root exudates of maize/soybean intercropped plants. Among these phenolic acids, cinnamic acid was released in significantly greater concentrations when intercropped maize with soybean compared to either crop grown in monoculture, and this spike in cinnamic acid was found dramatically constrain C. parasiticum growth in vitro. CONCLUSIONS: To the best of our knowledge, this study is the first report to demonstrate that intercropping with maize can promote resistance in soybean to red crown rot in a root-dependent manner. This supports the point that intercropping may be an efficient ecological strategy to control soil-borne plant disease and should be incorporated in sustainable agricultural management practices.

  19. Robotic removal of eroded vaginal mesh into the bladder.

    Science.gov (United States)

    Macedo, Francisco Igor B; O'Connor, Jeffrey; Mittal, Vijay K; Hurley, Patrick

    2013-11-01

    Vaginal mesh erosion into the bladder after midurethral sling procedure or cystocele repair is uncommon, with only a few cases having been reported in the literature. The ideal surgical management is still controversial. Current options for removal of eroded mesh include: endoscopic, transvaginal or abdominal (either open or laparoscopic) approaches. We, herein, present the first case of robotic removal of a large eroded vaginal mesh into the bladder and discuss potential benefits and limitations of the technique. © 2013 The Japanese Urological Association.

  20. Turnover of eroded soil organic carbon after deposition in terrestrial and aquatic environments

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    cycling. However, the net effect on C fluxes between soils, inland waters and atmosphere remains uncertain. In this study, we determined SOC turnover in terrestrial and aquatic environments and indentified its major controls. A European gradient of agricultural sites was sampled, spanning a wide range...... soil properties (e.g. texture, aggregation, etc.), SOC quantity and quality. In a 16-week incubation experiment, SOC turnover was determined for conditions reflecting downslope soils or inland waters. Moreover, we studied the impact of labile C inputs (‘priming’) on SOC stability using 13C labeled...... cellulose. Physical and chemical soil properties and SOC molecular composition were assessed as potential controls on C turnover. SOC deposition in aquatic environments resulted in upto 3.5 times higher C turnover than deposition on downslope soils. Labile C inputs enlarged total CO2 emissions...

  1. Multi-temporal Soil Erosion Modelling over the Mt Kenya Region with Multi-Sensor Earth Observation Data

    Science.gov (United States)

    Symeonakis, Elias; Higginbottom, Thomas

    2015-04-01

    Accelerated soil erosion is the principal cause of soil degradation across the world. In Africa, it is seen as a serious problem creating negative impacts on agricultural production, infrastructure and water quality. Regarding the Mt Kenya region, specifically, soil erosion is a serious threat mainly due to unplanned and unsustainable practices linked to tourism, agriculture and rapid population growth. The soil types roughly correspond with different altitudinal zones and are generally very fertile due to their volcanic origin. Some of them have been created by eroding glaciers while others are due to millions of years of fluvial erosion. The soils on the mountain are easily eroded once exposed: when vegetation is removed, the soil quickly erodes down to bedrock by either animals or humans, as tourists erode paths and local people clear large swaths of forested land for agriculture, mostly illegally. It is imperative, therefore, that a soil erosion monitoring system for the Mt Kenya region is in place in order to understand the magnitude of, and be able to respond to, the increasing number of demands on this renewable resource. In this paper, we employ a simple regional-scale soil erosion modelling framework based on the Thornes model and suggest an operational methodology for quantifying and monitoring water runoff and soil erosion using multi-sensor and multi-temporal remote sensing data in a GIS framework. We compare the estimates of this study with general data on the severity of soil erosion over Kenya and with measured rates of soil loss at different locations over the area of study. The results show that the measured and estimated rates of erosion are generally similar and within the same order of magnitude. They also show that, over the last years, erosion rates are increasing in large parts of the region at an alarming rate, and that mitigation measures are needed to reverse the negative effects of uncontrolled socio-economic practices.

  2. Plant-associated fluorescent Pseudomonas from red lateritic soil: Beneficial characteristics and their impact on lettuce growth.

    Science.gov (United States)

    Maroniche, Guillermo A; Rubio, Esteban J; Consiglio, Adrián; Perticari, Alejandro

    2016-11-25

    Fluorescent Pseudomonas are ubiquitous soil bacteria that usually establish mutualistic associations with plants, promoting their growth and health by several mechanisms. This makes them interesting candidates for the development of crop bio-inoculants. In this work, we isolated phosphate-solubilizing fluorescent Pseudomonas from the rhizosphere and inner tissues of different plant species growing in red soil from Misiones, Argentina. Seven isolates displaying strong phosphate solubilization were selected for further studies. Molecular identification by rpoD genotyping indicated that they belong to different species within the P. fluorescens and P. putida phylogenetic groups. Screening for in vitro traits such as phosphate solubilization, growth regulators synthesis or degradation, motility and antagonism against phytopathogens or other bacteria, revealed a unique profile of characteristics for each strain. Their plant growth-promoting potential was assayed using lettuce as a model for inoculation under controlled and greenhouse conditions. Five of the strains increased the growth of lettuce plants. Overall, the strongest lettuce growth promoter under both conditions was strain ZME4, isolated from inner tissues of maize. No clear association between lettuce growth promotion and in vitro beneficial traits was detected. In conclusion, several phosphate solubilizing pseudomonads from red soil were isolated that display a rich array of plant growth promotion traits, thus showing a potential for the development of new inoculants.

  3. Soil and Rhizosphere Associated Fungi in Grey Mangroves (Avicennia marina) from the Red Sea - A Metagenomic Approach

    KAUST Repository

    Simoes, Marta; Antunes, Andre; Ottoni, Cristiane A.; Amini, Mohammad Shoaib; Alam, Intikhab; Alzubaidy, Hanin S.; Mokhtar, Noor Azlin; Archer, John A.C.; Bajic, Vladimir B.

    2015-01-01

    Covering a quarter of the world’s tropical coastlines and being one of the most threatened ecosystems, mangroves are among the major sources of terrestrial organic matter to oceans and harbor a wide microbial diversity. In order to protect, restore, and better understand these ecosystems, researchers have extensively studied their microbiology, yet few surveys have focused on their fungal communities. Our lack of knowledge is even more pronounced for specific fungal populations, such as the ones associated with the rhizosphere. Likewise, the Red Sea grey mangroves (Avicennia marina) remain poorly characterized, and understanding of their fungal communities still relies on cultivation-dependent methods. In this study, we analyzed metagenomic datasets from grey mangrove rhizosphere and bulk soil samples collected in the Red Sea coast, to obtain a snapshot of their fungal communities. Our data indicated that Ascomycota was the dominant phylum (76%–85%), while Basidiomycota was less abundant (14%–24%), yet present in higher numbers than usually reported for such environments. Fungal communities were more stable within the rhizosphere than within the bulk soil, both at class and genus level. This finding is consistent with the intrinsic patchiness in soil sediments and with the selection of specific microbial communities by plant roots. Our study indicates the presence of several species on this mycobiome that were not previously reported as mangrove-associated. In particular, we detected representatives of several commercially-used fungi, e.g., producers of secreted cellulases and anaerobic producers of cellulosomes. These results represent additional insights into the fungal community of the grey mangroves of the Red Sea, and show that they are significantly richer than previously reported.

  4. Soil and Rhizosphere Associated Fungi in Grey Mangroves (Avicennia marina) from the Red Sea - A Metagenomic Approach

    KAUST Repository

    Simoes, Marta

    2015-11-05

    Covering a quarter of the world’s tropical coastlines and being one of the most threatened ecosystems, mangroves are among the major sources of terrestrial organic matter to oceans and harbor a wide microbial diversity. In order to protect, restore, and better understand these ecosystems, researchers have extensively studied their microbiology, yet few surveys have focused on their fungal communities. Our lack of knowledge is even more pronounced for specific fungal populations, such as the ones associated with the rhizosphere. Likewise, the Red Sea grey mangroves (Avicennia marina) remain poorly characterized, and understanding of their fungal communities still relies on cultivation-dependent methods. In this study, we analyzed metagenomic datasets from grey mangrove rhizosphere and bulk soil samples collected in the Red Sea coast, to obtain a snapshot of their fungal communities. Our data indicated that Ascomycota was the dominant phylum (76%–85%), while Basidiomycota was less abundant (14%–24%), yet present in higher numbers than usually reported for such environments. Fungal communities were more stable within the rhizosphere than within the bulk soil, both at class and genus level. This finding is consistent with the intrinsic patchiness in soil sediments and with the selection of specific microbial communities by plant roots. Our study indicates the presence of several species on this mycobiome that were not previously reported as mangrove-associated. In particular, we detected representatives of several commercially-used fungi, e.g., producers of secreted cellulases and anaerobic producers of cellulosomes. These results represent additional insights into the fungal community of the grey mangroves of the Red Sea, and show that they are significantly richer than previously reported.

  5. Effects of 24 Years of Conservation Tillage Systems on Soil Organic Carbon and Soil Productivity

    Directory of Open Access Journals (Sweden)

    Kenneth R. Olson

    2013-01-01

    Full Text Available The 24-year study was conducted in southern Illinois (USA on land similar to that being removed from Conservation Reserve Program (CRP to evaluate the effects of conservation tillage systems on: (1 amount and rates of soil organic carbon (SOC storage and retention, (2 the long-term corn and soybean yields, and (3 maintenance and restoration of soil productivity of previously eroded soils. The no-till (NT plots did store and retain 7.8 Mg C ha−1 more and chisel plow (CP −1.6 Mg C ha−1 less SOC in the soil than moldboard plow (MP during the 24 years. However, no SOC sequestration occurred in the sloping and eroding NT, CP, and MP plots since the SOC level of the plot area was greater at the start of the experiment than at the end. The NT plots actually lost a total of −1.2 Mg C ha−1, the CP lost −9.9 Mg C ha−1, and the MP lost −8.2 Mg C ha−1 during the 24-year study. The long-term productivity of NT compared favorably with that of MP and CP systems.

  6. Low Carbon sink capacity of Red Sea mangroves.

    Science.gov (United States)

    Almahasheer, Hanan; Serrano, Oscar; Duarte, Carlos M; Arias-Ortiz, Ariane; Masque, Pere; Irigoien, Xabier

    2017-08-29

    Mangroves forests of Avicennia marina occupy about 135 km 2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C org ) stocks, soil accretion rates (SAR; mm y -1 ) and soil C org sequestration rates (g C org m -2 yr -1 ) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 ± 0.3 mg C org cm -3 and 43 ± 5 Mg C org ha -1 (in 1 m-thick soils), respectively. Sequestration rates of C org , estimated at 3 ± 1 and 15 ± 1 g C org m -2 yr -1 for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  7. Evaluation of radiocaesium wash-off by soil erosion from various land uses using USLE plots.

    Science.gov (United States)

    Yoshimura, Kazuya; Onda, Yuichi; Kato, Hiroaki

    2015-01-01

    Radiocaesium wash-off associated with soil erosion in different land use was monitored using USLE plots in Kawamata, Fukushima Prefecture, Japan after the Fukushima Dai-ichi Nuclear Power Plant accident. Parameters and factors relating to soil erosion and (137)Cs concentration in the eroded soil were evaluated based on the field monitoring and presented. The erosion of fine soil, which is defined as the fraction of soil overflowed along with discharged water from a sediment-trap tank, constituted a large proportion of the discharged radiocaesium. This indicated that the quantitative monitoring of fine soil erosion is greatly important for the accurate evaluation of radiocaesium wash-off. An exponential relationship was found between vegetation cover and the amount of eroded soil. Moreover, the radiocaesium concentrations in the discharged soil were greatly affected by the land use. These results indicate that radiocaesium wash-off related to vegetation cover and land use is crucially important in modelling radiocaesium migration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Modification of Roberts' Theory for Rocket Exhaust Plumes Eroding Lunar Soil

    Science.gov (United States)

    Metzger, Philip T.; Lane, John E.; Immer, Christopher D.

    2008-01-01

    Roberts' model of lunar soil erosion beneath a landing rocket has been updated in several ways to predict the effects of future lunar landings. The model predicts, among other things, the number of divots that would result on surrounding hardware due to the impact of high velocity particulates, the amount and depth of surface material removed, the volume of ejected soil, its velocity, and the distance the particles travel on the Moon. The results are compared against measured results from the Apollo program and predictions are made for mitigating the spray around a future lunar outpost.

  9. Soil Erosion from Agriculture and Mining: A Threat to Tropical Stream Ecosystems

    Directory of Open Access Journals (Sweden)

    Jan H. Mol

    2013-09-01

    Full Text Available In tropical countries soil erosion is often increased due to high erodibility of geologically old and weathered soils; intensive rainfall; inappropriate soil management; removal of forest vegetation cover; and mining activities. Stream ecosystems draining agricultural or mining areas are often severely impacted by the high loads of eroded material entering the stream channel; increasing turbidity; covering instream habitat and affecting the riparian zone; and thereby modifying habitat and food web structures. The biodiversity is severely threatened by these negative effects as the aquatic and riparian fauna and flora are not adapted to cope with excessive rates of erosion and sedimentation. Eroded material may also be polluted by pesticides or heavy metals that have an aggravating effect on functions and ecosystem services. Loss of superficial material and deepening of erosion gullies impoverish the nutrient and carbon contents of the soils; and lower the water tables; causing a “lose-lose” situation for agricultural productivity and environmental integrity. Several examples show how to interrupt this vicious cycle by integrated catchment management and by combining “green” and “hard” engineering for habitat restoration. In this review; we summarize current findings on this issue from tropical countries with a focus on case studies from Suriname and Brazil.

  10. Textural characteristics and sedimentary environment of sediment at eroded and deposited regions in the severely eroded coastline of Batu Pahat, Malaysia.

    Science.gov (United States)

    Wan Mohtar, Wan Hanna Melini; Nawang, Siti Aminah Bassa; Abdul Maulud, Khairul Nizam; Benson, Yannie Anak; Azhary, Wan Ahmad Hafiz Wan Mohamed

    2017-11-15

    This study investigates the textural characteristics of sediments collected at eroded and deposited areas of highly severed eroded coastline of Batu Pahat, Malaysia. Samples were taken from systematically selected 23 locations along the 67km stretch of coastline and are extended to the fluvial sediments of the main river of Batu Pahat. Grain size distribution analysis was conducted to identify its textural characteristics and associated sedimentary transport behaviours. Sediments obtained along the coastline were fine-grained material with averaged mean size of 7.25 ϕ, poorly sorted, positively skewed and has wide distributions. Samples from eroded and deposition regions displayed no distinctive characteristics and exhibited similar profiles. The high energy condition transported the sediments as suspension, mostly as pelagic and the sediments were deposited as shallow marine and agitated deposits. The fluvial sediments of up to 3km into the river have particularly similar profile of textural characteristics with the neighbouring marine sediments from the river mouth. Profiles were similar with marine sediments about 3km opposite the main current and can go up to 10km along the current of Malacca Straits. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Influence of metals on essential oil content and composition of lemongrass (Cymbopogon citratus (D.C.) Stapf.) grown under different levels of red mud in sewage sludge amended soil.

    Science.gov (United States)

    Gautam, Meenu; Agrawal, Madhoolika

    2017-05-01

    Lemongrass is a commercially important perennial herb with medicinal value and ability to tolerate high alkaline and saline conditions. Essential oil bearing plants can grow safely in soil contaminated with heavy metals without severe effects on morphology and oil yield. The present study was aimed to assess the essential oil content and composition in lemongrass in response to elevated metals in above-ground plant parts. Pot experiment was conducted for six months using sewage sludge as soil amendment (soil: sludge: 2:1 w/w) followed by red mud treatments (0, 5, 10 and 15% w/w). Garden soil without sludge and red mud was control and there were ten replicates of each treatment. Oil content in leaves was differently affected due to presence of metals in soil under different treatments. Oil content under S RM5 (5% red mud) treatment was raised by 42.9 and 11.5% compared to the control and S RM0 treatment, respectively. Among identified compounds in oil under red mud treatments, 17 compounds contributed more than 90% of total volatiles (citral contributing approximately 70%). Under S RM10 treatment, essential oil showed maximum citral content (75.3%). Contents of Fe, Zn, Cu, Cd, Ni and Pb in above-ground plant parts exceeded, whereas Mn was detected within WHO permissible limits for medicinal plants. However, metal contents in essential oil were well within FSSAI limits for food. The study suggests utilization of 5 and 10% red mud in sludge amended soil for lemongrass cultivation to have better oil yield and quality, without metal contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Response of soil microbial communities to red mud-based stabilizer remediation of cadmium-contaminated farmland.

    Science.gov (United States)

    Li, Hui; Liu, Lemian; Luo, Lin; Liu, Yan; Wei, Jianhong; Zhang, Jiachao; Yang, Yuan; Chen, Anwei; Mao, Qiming; Zhou, Yaoyu

    2018-04-01

    In this work, a field test was conducted to investigate the effects of heavy metal stabilizer addition on brown rice and microbial variables in a cadmium (Cd)-contaminated farmland from April to October in 2016. Compared with the control, red mud-based stabilizer (RMDL) effectively reduced the concentration of Cd in brown rice (with the removal rate of 48.14% in early rice, 20.24 and 47.62% in late rice). The results showed that adding 0.3 kg m -2 RDML in early rice soil or soil for both early and late rice increased the microbial biomass carbon (MBC), the number of culturable heterotrophic bacteria and fungi, and the catalase activity in soil at different stages of paddy rice growth. Furthermore, there was no notable difference in the diversity of the bacterial species, community composition, and relative abundance at phylum (or class) or operational taxonomic unit (OTU) levels between the control and treatment (RMDL addition) groups. In a word, RMDL could be highly recommended as an effective remediation stabilizer for Cd-contaminated farmland, since its continuous application in paddy soil cultivating two seasons rice soil could effectively decrease the Cd content in brown rice and had no negative impact on soil microorganisms.

  13. Soil erosion assessment using the Universal Soil Loss Equation (USLE) in a GIS framework: A case study of Zacatecas, México

    Science.gov (United States)

    Betanzos Arroyo, L. I.; Prol Ledesma, R. M.; da Silva Pinto da Rocha, F. J. P.

    2014-12-01

    The Universal Soil Loss Equation (USLE), which is considered to be a contemporary approach in soil loss assessment, was used to assess soil erosion hazard in the Zacatecas mining district. The purpose of this study is to produce erosion susceptibility maps for an area that is polluted with mining tailings which are susceptible to erosion and can disperse the particles that contain heavy metals and other toxic elements. USLE method is based in the estimation of soil loss per unit area and takes into account specific parameters such as precipitation data, topography, soil erodibility, erosivity and runoff. The R-factor (rainfall erosivity) was calculated from monthly and annual precipitation data. The K-factor (soil erodibility) was estimated using soil maps available from the CONABIO at a scale of 1:250000. The LS-factor (slope length and steepness) was determined from a 30-m digital elevation model. A raster-based Geographic Information System (GIS) was used to interactively calculate soil loss and map erosion hazard. The results show that estimated erosion rates ranged from 0 to 4770.48 t/ha year. Maximum proportion of the total area of the Zacatecas mining district have nil to very extremely slight erosion severity. Small areas in the central and south part of the study area shows the critical condition requiring sustainable land management.

  14. Distributed Modeling of soil erosion and deposition affected by buffer strips

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Heckrath, Goswin Johann; Iversen, Bo Vangsø

    bodies. Buffer zones can be efficient in terms of retaining sediment and phosphorus transported by water erosion. This study aimed at parameterizing a spatial distributed erosion model to evaluate the effect of different buffer zone properties and dimension. It was our hypothesis that the placement...... was surveyed during the runoff season. In addition, organic carbon and phosphorous contents as well as bulk density were determined in soils of eroding and depositional sites. General buffer zone properties were recorded. Here we present results from scenario analyses comparing measured sediment deposition......Soil degradation and environmental impacts due to water erosion are a growing concern globally. Large parts of Denmark are covered by gently rolling moraine landscape with moderately to locally highly erodible soils where water erosion causes off-site problems in the form of eutrophication of water...

  15. Effect of Pseudomonas fluorescens and pyoverdine on the phytoextraction of cesium by red clover in soil pots and hydroponics.

    Science.gov (United States)

    Hazotte, Alice; Péron, Olivier; Gaudin, Pierre; Abdelouas, Abdesselam; Lebeau, Thierry

    2018-05-12

    With the aim of improving the phytoextraction rate of cesium (Cs), the effect of Pseudomonas fluorescens ATCC 17400 and its siderophore pyoverdine (PVD) on the uptake of Cs by red clover was studied in soil pots. This work also provides a mechanistic understanding of the Cs-bacteria (or PVD)-illite-plant interactions by using a simplified experimental design, i.e., hydroponics with either Cs in solution or Cs-spiked illite in suspension. For soil spiked with 11.2 mmol kg -1 (1480 mg kg -1 ) of Cs, 0.43% of total Cs was taken up by red clover in 12 days (119 μmol g -1 (16 mg g -1 ) of Cs dry matter in roots and 40 μmol g -1 (5 mg g -1 ) in shoots). In hydroponics with Cs in solution (0.1 mmol L -1 or 13 mg L -1 ), 75% of Cs was taken up vs. only 0.86% with Cs-spiked illite suspension. P. fluorescens and PVD did not increase Cs concentrations in aboveground parts and roots of red clover and even decreased them. The damaging effect of PVD on red clover growth was demonstrated with the biomass yielding 66% of the control in soil pots (and 100% mortality after 12 days of exposition) and only 56% in hydroponics (78% with illite in suspension). Nonetheless, PVD and, to a lesser extent, P. fluorescens increased the translocation factor up to a factor of 2.8. This study clearly showed a direct damaging effect of PVD and to a lower extent the retention of Cs by biofilm covering both the roots and illite, both resulting in the lower phytoextraction efficiency.

  16. Understanding the Mechanism of Soil Erosion from Outdoor Model ...

    African Journals Online (AJOL)

    A method for obtaining important data on eroded soils, using a one eight experimental slope model is presented. The scope of the investigation herein described encompassed three locations in the south- eastern parts of Nigeria, which are belts of severe erosion, namely Opi-Nsukka, Agulu and Udi, [Fig. 1.] Soil samples ...

  17. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil.

    Science.gov (United States)

    Li, X; Christie, P

    2001-01-01

    Red clover plants inoculated with Glomus mosseae were grown in a sterile pasture soil containing 50 mg Zn kg(-1) in 'Plexiglas' (acrylic) containers with nylon net partitions (30 microm mesh) designed to separate the soil into a central root zone and two outer zones for hyphal growth with no root penetration. Two porous plastic soil moisture samplers were installed in each pot, one in the root compartment and the other in one of the hyphal compartments. The soil in the outer compartments was amended with one of the four application rates of Zn (as ZnSO4) ranging from 0 to 1000 mg kg(-1). Non-mycorrhizal controls were included, and there were five replicates of each treatment in a randomised block in a glasshouse. Uninoculated plants received supplementary P to avoid yield limitation due to low soil P status. Plants grew in the central compartment for nine weeks. Soil moisture samples were collected 4, 24 and 62 days after sowing to monitor changes in the Zn concentration and pH of the soil solution. At harvest, the mean mycorrhizal infection rate of inoculated plants ranged from 29% to 34% of total root length and was little affected by Zn application. Root and shoot yields were not affected by mycorrhizal infection. Plant Zn concentration and uptake were lower in mycorrhizal plants than non-mycorrhizal controls, and this effect was more pronounced with increasing Zn application rate to the soil. Soil solution Zn concentrations were lower and pH values were higher in mycorrhizal treatments than non-mycorrhizal controls and the mycorrhiza effect was more pronounced at higher Zn application rates. The protective effect of mycorrhiza against plant Zn uptake may have been associated with changes in Zn solubility mediated by changes in the soil solution pH, or by immobilisation of Zn in the extraradical mycelium.

  18. Applicability of Different Hydraulic Parameters to Describe Soil Detachment in Eroding Rills

    Science.gov (United States)

    Wirtz, Stefan; Seeger, Manuel; Zell, Andreas; Wagner, Christian; Wagner, Jean-Frank; Ries, Johannes B.

    2013-01-01

    This study presents the comparison of experimental results with assumptions used in numerical models. The aim of the field experiments is to test the linear relationship between different hydraulic parameters and soil detachment. For example correlations between shear stress, unit length shear force, stream power, unit stream power and effective stream power and the detachment rate does not reveal a single parameter which consistently displays the best correlation. More importantly, the best fit does not only vary from one experiment to another, but even between distinct measurement points. Different processes in rill erosion are responsible for the changing correlations. However, not all these procedures are considered in soil erosion models. Hence, hydraulic parameters alone are not sufficient to predict detachment rates. They predict the fluvial incising in the rill's bottom, but the main sediment sources are not considered sufficiently in its equations. The results of this study show that there is still a lack of understanding of the physical processes underlying soil erosion. Exerted forces, soil stability and its expression, the abstraction of the detachment and transport processes in shallow flowing water remain still subject of unclear description and dependence. PMID:23717669

  19. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China

    Science.gov (United States)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei

    2017-12-01

    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  20. Determination of total mercury in aluminium industrial zones and soil contaminated with red mud.

    Science.gov (United States)

    Rasulov, Oqil; Zacharová, Andrea; Schwarz, Marián

    2017-08-01

    This study investigated total mercury contents in areas impacted by aluminium plants in Tajikistan and Slovakia and in one area flooded with red mud in Hungary. We present the first determination of total mercury contents in the near-top soil (0-10 and 10-20 cm) in Tajikistan and the first comparative investigation of Tajikistan-Slovakia-Hungary. The Tajik Aluminium Company (TALCO) is one of the leading producers of primary aluminium in Central Asia. In the past 30 years, the plant has been producing large volumes of industrial waste, resulting in negative impacts on soil, groundwater and air quality of the surrounding region. Mercury concentrations were significant in Slovakia and Hungary, 6 years after the flooding. In studied areas in Slovakia and Hungary, concentrations of total mercury exceeded the threshold limit value (TLV = 0.5 mg Hg kg -1 ). However, in Tajikistan, values were below the TLV (0.006-0.074 mg kg -1 ) and did not significantly vary between depths. Total Hg in Slovakia ranged from 0.057 to 0.668 mg kg -1 and in Hungary from 0.029 to 1.275 mg kg -1 . However, in the plots near to the red mud reservoir and the flooded area, Hg concentrations were higher in the upper layers than in the lower ones.

  1. Soil and Rhizosphere Associated Fungi in Gray Mangroves (Avicennia marina) from the Red Sea--A Metagenomic Approach.

    Science.gov (United States)

    Simões, Marta Filipa; Antunes, André; Ottoni, Cristiane A; Amini, Mohammad Shoaib; Alam, Intikhab; Alzubaidy, Hanin; Mokhtar, Noor-Azlin; Archer, John A C; Bajic, Vladimir B

    2015-10-01

    Covering a quarter of the world's tropical coastlines and being one of the most threatened ecosystems, mangroves are among the major sources of terrestrial organic matter to oceans and harbor a wide microbial diversity. In order to protect, restore, and better understand these ecosystems, researchers have extensively studied their microbiology, yet few surveys have focused on their fungal communities. Our lack of knowledge is even more pronounced for specific fungal populations, such as the ones associated with the rhizosphere. Likewise, the Red Sea gray mangroves (Avicennia marina) remain poorly characterized, and understanding of their fungal communities still relies on cultivation-dependent methods. In this study, we analyzed metagenomic datasets from gray mangrove rhizosphere and bulk soil samples collected in the Red Sea coast, to obtain a snapshot of their fungal communities. Our data indicated that Ascomycota was the dominant phylum (76%-85%), while Basidiomycota was less abundant (14%-24%), yet present in higher numbers than usually reported for such environments. Fungal communities were more stable within the rhizosphere than within the bulk soil, both at class and genus level. This finding is consistent with the intrinsic patchiness in soil sediments and with the selection of specific microbial communities by plant roots. Our study indicates the presence of several species on this mycobiome that were not previously reported as mangrove-associated. In particular, we detected representatives of several commercially-used fungi, e.g., producers of secreted cellulases and anaerobic producers of cellulosomes. These results represent additional insights into the fungal community of the gray mangroves of the Red Sea, and show that they are significantly richer than previously reported. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  2. Soil aggregate stability within the morphologically diverse area

    Science.gov (United States)

    Jaksik, Ondrej; Kodesova, Radka; Kubis, Adam; Klement, Ales; Fer, Miroslav

    2013-04-01

    This study evaluates the effect of soil erosion on properties of topsoil especially on soil aggregate stability. Study was performed on morphologically diverse study site (6 ha area) in loess region of Southern Moravia, Czech Republic. The region has been under uninterrupted agricultural use since the middle of the Holocene. Haplic Chernozem is an original dominant soil unit in the area, nowadays progressively transformed into different soil units along with intensive soil erosion. There are eroded phases of Chernozem, Regosol (the steepest and heavily eroded parts of the study area), colluvial Chernozem and Colluvial soil (base slope). Sampling spots were selected in order to represent diverse soil units and morphological units. Soil samples were taken from the topsoil, carefully transported to the laboratory and consequently air dried. Following soil properties were measured: pH_KCl, pH_CaCl2, soil organic matter content (SOM), carbonate content (CO3), content of iron and manganese (in ammonium oxalate extract, Feo and Mn_o, and dithionite-citrate extract, Fed and Mn_d), and stability of soil aggregates using two different methods. The indexes of water stable aggregates (WSA) were determined using the procedure presented by Nimmo and Perkins (2002). The three methods proposed by Le Bissonnais (1996) were also used to study various destruction mechanisms. The fast wetting test (KV1) was applied to study aggregate slaking due to the compression of the entrapped air (mechanism similar to the WSA test). The slow wetting test (KV2) was used to evaluate aggregate disintegration caused by the micro cracking due to the different swelling, and physico-chemical dispersion due to the osmotic stress. The shaking after prewetting test (KV3) was utilized to study the mechanical aggregate breakdown. Terrain attributes were evaluated from digital terrain model. In general the lowest soil aggregate stability was observed on steep slopes, which were highly impacted by soil erosion

  3. Abundance and Diversity of CO2-Assimilating Bacteria and Algae Within Red Agricultural Soils Are Modulated by Changing Management Practice.

    Science.gov (United States)

    Yuan, Hongzhao; Ge, Tida; Chen, Xiangbi; Liu, Shoulong; Zhu, Zhenke; Wu, Xiaohong; Wei, Wenxue; Whiteley, Andrew Steven; Wu, Jinshui

    2015-11-01

    Elucidating the biodiversity of CO(2)-assimilating bacterial and algal communities in soils is important for obtaining a mechanistic view of terrestrial carbon sinks operating at global scales. "Red" acidic soils (Orthic Acrisols) cover large geographic areas and are subject to a range of management practices, which may alter the balance between carbon dioxide production and assimilation through changes in microbial CO(2)-assimilating populations. Here, we determined the abundance and diversity of CO(2)-assimilating bacteria and algae in acidic soils using quantitative PCR and terminal restriction fragment length polymorphism (T-RFLP) of the cbbL gene, which encodes the key CO(2) assimilation enzyme (ribulose-1,5-bisphosphate carboxylase/oxygenase) in the Calvin cycle. Within the framework of a long-term experiment (Taoyuan Agro-ecosystem, subtropical China), paddy rice fields were converted in 1995 to four alternative land management regimes: natural forest (NF), paddy rice (PR), maize crops (CL), and tea plantations (TP). In 2012 (17 years after land use transformation), we collected and analyzed the soils from fields under the original and converted land management regimes. Our results indicated that fields under the PR soil management system harbored the greatest abundance of cbbL copies (4.33 × 10(8) copies g(-1) soil). More than a decade after converting PR soils to natural, rotation, and perennial management systems, a decline in both the diversity and abundance of cbbL-harboring bacteria and algae was recorded. The lowest abundance of bacteria (0.98 × 10(8) copies g(-1) soil) and algae (0.23 × 10(6) copies g(-1) soil) was observed for TP soils. When converting PR soil management to alternative management systems (i.e., NF, CL, and TP), soil edaphic factors (soil organic carbon and total nitrogen content) were the major determinants of bacterial autotrophic cbbL gene diversity. In contrast, soil phosphorus concentration was the major regulator

  4. Soil and Rhizosphere Associated Fungi in Gray Mangroves (Avicennia marina from the Red Sea — A Metagenomic Approach

    Directory of Open Access Journals (Sweden)

    Marta Filipa Simões

    2015-10-01

    Full Text Available Covering a quarter of the world’s tropical coastlines and being one of the most threatened ecosystems, mangroves are among the major sources of terrestrial organic matter to oceans and harbor a wide microbial diversity. In order to protect, restore, and better understand these ecosystems, researchers have extensively studied their microbiology, yet few surveys have focused on their fungal communities. Our lack of knowledge is even more pronounced for specific fungal populations, such as the ones associated with the rhizosphere. Likewise, the Red Sea gray mangroves (Avicennia marina remain poorly characterized, and understanding of their fungal communities still relies on cultivation-dependent methods. In this study, we analyzed metagenomic datasets from gray mangrove rhizosphere and bulk soil samples collected in the Red Sea coast, to obtain a snapshot of their fungal communities. Our data indicated that Ascomycota was the dominant phylum (76%–85%, while Basidiomycota was less abundant (14%–24%, yet present in higher numbers than usually reported for such environments. Fungal communities were more stable within the rhizosphere than within the bulk soil, both at class and genus level. This finding is consistent with the intrinsic patchiness in soil sediments and with the selection of specific microbial communities by plant roots. Our study indicates the presence of several species on this mycobiome that were not previously reported as mangrove-associated. In particular, we detected representatives of several commercially-used fungi, e.g., producers of secreted cellulases and anaerobic producers of cellulosomes. These results represent additional insights into the fungal community of the gray mangroves of the Red Sea, and show that they are significantly richer than previously reported.

  5. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M.G.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Langevelde, F. van; Kiema, A.; Koppel, J. van de; Andel, J. van; Hearne, J.; Skidmore, A.K.; Ridder, N. de; Stroosnijder, L.; Prins, H.H.T.

    2002-01-01

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  6. A preliminary assessment of the potential for using caesium-137 to estimate rates of soil erosion in the Loess Plateau of China

    International Nuclear Information System (INIS)

    Zhang Xinbao

    1990-01-01

    The potential for using the radionuclide caesium-137 as an environmental tracer to indicate sources of soil erosion in the Chinese Loess Plateau is introduced. The caesium-137 contents of soil profiles have been used to estimate soil erosion losses from different topographic and land use conditions at Lishi, Shanxi Province, and Luochuan, Shaanxi Province. At uncultivated sites the caesium-137 has accumulated in the upper soil profile, whilst it has been mixed within the plough layer of cultivated soils. Eroded soils contain relatively less caesium-137, and simple calibration techniques are applied to quantify soil loss. Preliminary results suggest that caesium-137 may be of considerable value in assembling data on the rates and spatial distribution of soil loss and in identifying the source areas of eroded sediment. (author)

  7. Modelling soil erosion potential in the transboundary (Kenya & Tanzania) catchment of river Umba using remotely sensed data

    NARCIS (Netherlands)

    Koedam, N.; Mutisya, B.; Kairo, J.; Resink-Ndungu, Jane Njeri; Kervyn, M.

    2017-01-01

    Soil erosion is one of the leading forms of soil degradation. Estimating soil erosion from field measurements is expensive hence the extent of soil erosion in many tropical watersheds is unknown. Erosion is a complex process; some of the eroded materials are deposited within the watershed while the

  8. Water-stability of soil aggregates in relation to selected properties

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.; Bazzoffi, P.; Unamba Oparah, I.

    1995-03-01

    The stability of soil aggregates in water is an important soil physical property for evaluating the potential of agricultural soils to erode and elucidating the mechanisms of soil erosion. In this study we used aggregates from 15 surface soil samples in Italy to evaluate the influence of intrinsic soil physical, chemical and mineralogical properties on aggregates stability (AS). The aim was to develop a model for predicting AS from a subset of these soil properties. The index of stability used is the mean-weight diameter of water-stable aggregates (MWD). The model developed with soil physical properties alone explained just 42% of variance in MWD and predicted AS in only 20% of test soils. The model developed with mineralogical properties alone explained 70% of variance in MWD and predicted AS in 60% of the test soils. The chemical properties - based model explained 90% of variance in MWD and predicted AS in 80% of the test soils. The best-fit model was developed with soil properties from the physical, chemical and mineralogical subsets. It explained 98% of variance in MWD and predicted AS in 100% of the test soils. This model shows that the most important soil properties which influence the AS of these soils include ratio of total sand to clay, concentrations of iron oxide, magnesium oxide, organic matter, silica/alumina ratio, chlorite, feldspar and muscovite. This indicates that fairly good estimates of the relative stability of these aggregates in water and hence of their potential to erode, requires a knowledge of the physico-chemical and mineralogical properties. (author). 40 refs, 4 tabs

  9. Geospatial approach in mapping soil erodibility using CartoDEM – A ...

    Indian Academy of Sciences (India)

    unscientific management practices followed in the hilly regions. .... country. In the absence of large scale or detail map, researcher use the small scale of soil map prepared ..... tural development. .... mapping: An introductory perspective; Dev.

  10. Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud: a field experiment.

    Science.gov (United States)

    Wang, Yangyang; Li, Fangfang; Song, Jian; Xiao, Ruiyang; Luo, Lin; Yang, Zhihui; Chai, Liyuan

    2018-04-12

    Red mud (RM) was used to remediate heavy metal-contaminated soils. Experiments with two different dosages of RM added to soils were carried out in this study. It was found that soil pH increased 0.3 and 0.5 unit with the dosage of 3 and 5% (wt%), respectively. At the dosage of 5%, the highest stabilization efficiencies for Cd, Pb, Cu and Zn reached 67.95, 64.21, 43.73 and 63.73%, respectively. The addition of RM obviously transferred Cd from the exchangeable fraction to the residual fraction. Meanwhile, in comparison with the control (no RM added), it reduced 24.38, 49.20, 19.42 and 8.89% of Cd, Pb, Cu and Zn in wheat grains at the RM addition dosage of 5%, respectively. At the same time, the yield of wheat grains increased 17.81 and 24.66% at the RM addition dosage of 3 and 5%, respectively. Finally, the addition of RM did not change the soil bacterial community. These results indicate that RM has a great potential in stabilizing heavy metals in calcareous agricultural soils.

  11. NIR-Red Spectra-Based Disaggregation of SMAP Soil Moisture to 250 m Resolution Based on SMAPEx-4/5 in Southeastern Australia

    Directory of Open Access Journals (Sweden)

    Nengcheng Chen

    2017-01-01

    Full Text Available To meet the demand of regional hydrological and agricultural applications, a new method named near infrared-red (NIR-red spectra-based disaggregation (NRSD was proposed to perform a disaggregation of Soil Moisture Active Passive (SMAP products from 36 km to 250 m resolution. The NRSD combined proposed normalized soil moisture index (NSMI with SMAP data to obtain 250 m resolution soil moisture mapping. The experiment was conducted in southeastern Australia during SMAP Experiments (SMAPEx 4/5 and validated with the in situ SMAPEx network. Results showed that NRSD performed a decent downscaling (root-mean-square error (RMSE = 0.04 m3/m3 and 0.12 m3/m3 during SMAPEx-4 and SMAPEx-5, respectively. Based on the validation, it was found that the proposed NSMI was a new alternative indicator for denoting the heterogeneity of soil moisture at sub-kilometer scales. Attributed to the excellent performance of the NSMI, NRSD has a higher overall accuracy, finer spatial representation within SMAP pixels and wider applicable scope on usability tests for land cover, vegetation density and drought condition than the disaggregation based on physical and theoretical scale change (DISPATCH has at 250 m resolution. This revealed that the NRSD method is expected to provide soil moisture mapping at 250-resolution for large-scale hydrological and agricultural studies.

  12. Soil erosion in the Herschel district of South Africa: changes over ...

    African Journals Online (AJOL)

    Analyses of aerial photographs showed that the extent and severity of erosion increased substantially since 1950, with the area affected by erosion doubling in some areas between 1950 and 1969. Soils derived from alluvium and sedimentary rocks were more eroded than soils derived from basalt and dolerite. Flat or gently ...

  13. Adsorption and desorption of 14C-chlorsulfuron in soils

    International Nuclear Information System (INIS)

    Chen Zuyi; Cheng Wei; Mi Chunyun

    1995-01-01

    The adsorption and desorption of the 4 concentrations of 14 C-chlorsulfuron in 10 soils were studied. As a result the soils had weak adsorptions of chlorsulfuron and the adsorptions varied with different type of soils tested. Adsorption rate of paddy soil (infant red earth) from Hunan and latosol red earth from Hainan was 3%∼4%; Yellow-brown earth from Nanjing and red earth from Jiangxi was 6%∼9%; black soil from Jilin, paddy soil (infant red earth) from Jiangxi and red earth from Anhui was 10%∼14%; Albic bleached soil from Jilin and yellow fluvo-aquatic soil from Jiangsu was 19%∼23%. pH value had an influence on the adsorption and organic matter had not obvious influence on the adsorption. Chlorsulfuron absorbed in soil could be desorbed through water. The relation between the adsorption and desorption was negative. The weak adsorption in soil shows that chlorsulfuron is active movable and diffusible and likely to pollute the ecological environment

  14. Advancing Understanding of Earthquakes by Drilling an Eroding Convergent Margin

    Science.gov (United States)

    von Huene, R.; Vannucchi, P.; Ranero, C. R.

    2010-12-01

    A program of IODP with great societal relevance is sampling and instrumenting the seismogenic zone. The zone generates great earthquakes that trigger tsunamis, and submarine slides thereby endangering coastal communities containing over sixty percent of the earth’s population. To asses and mitigate this endangerment it is urgent to advance understanding of fault dynamics that allows more timely anticipation of hazardous seismicity. Seismogenesis on accreting and eroding convergent plate boundaries apparently differ because of dissimilar materials along the interplate fault. As the history of instrumentally recorded earthquakes expands the difference becomes clearer. The more homogeneous clay, silt and sand subducted at accreting margins is associated with great earthquakes (M 9) whereas the fragmented upper plate rock that can dominate subducted material along an eroding margin plate interface is associated with many tsunamigenic earthquakes (Bilek, 2010). Few areas have been identified where the seismogenic zone can be reached with scientific drilling. In IODP accreting margins are studied on the NanTroSeize drill transect off Japan where the ultimate drilling of the seismogenic interface may occur by the end of IODP. The eroding Costa Rica margin will be studied in CRISP where a drill program will begin in 2011. The Costa Rican geophysical site survey will be complete with acquisition and processing of 3D seismic data in 2011 but the entire drilling will not be accomplished in IODP. It is appropriate that the accreting margin study be accomplished soon considering the indications of a pending great earthquake that will affect a country that has devoted enormous resources to IODP. However, understanding the erosional end-member is scientifically as important to an understanding of fault mechanics. Transoceanic tsunamis affect the entire Pacific rim where most subduction zones are eroding margins. The Costa Rican subduction zone is less complex operationally and

  15. Hydrologic Drivers of Soil Organic Carbon Erosion and Burial: Insights from a Spatially-explicit Model of a Degraded Landscape at the Calhoun Critical Zone Observatory

    Science.gov (United States)

    Dialynas, Y. G.; Bras, R. L.; Richter, D. D., Jr.

    2017-12-01

    Soil erosion and burial of organic material may constitute a substantial sink of atmospheric CO2. Attempts to quantify impacts of soil erosion on the soil-atmosphere C exchange are limited by difficulties in accounting for the fate of eroded soil organic carbon (SOC), a key factor in estimating of the net effect of erosion on the C cycle. Processes that transport SOC are still inadequately represented in terrestrial carbon (C) cycle models. This study investigates hydrologic controls on SOC redistribution across the landscape focusing on dynamic feedbacks between watershed hydrology, soil erosional processes, and SOC burial. We use tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially-explicit model of SOC dynamics coupled with a physically-based hydro-geomorphic model. tRIBS-ECO systematically accounts for the fate of eroded SOC across the watershed: Rainsplash erosion and sheet erosion redistribute SOC from upland sites to depositional environments, altering depth-dependent soil biogeochemical properties in diverse soil profiles. Eroded organic material is transferred with sediment and can be partially oxidized upon transport, or preserved from decomposition by burial. The model was applied in the Calhoun Critical Zone Observatory (CZO), a site that is recovering from some of the most serious agricultural erosion in North America. Soil biogeochemical characteristics at multiple soil horizons were used to initialize the model and test performance. Remotely sensed soil moisture data (NASA SMAP) were used for model calibration. Results show significant rates of hydrologically-induced burial of SOC at the Calhoun CZO. We find that organic material at upland eroding soil profiles is largely mobilized by rainsplash erosion. Sheet erosion mainly drives C transport in lower elevation clayey soils. While SOC erosion and deposition rates declined with recent reforestation at the study site, the

  16. Soil Conservation Unit for the Advanced Crop Production and Marketing Course. Student Reference. AGDEX 570.

    Science.gov (United States)

    Stewart, Bob R.; And Others

    This student reference booklet is designed to accompany lessons outlined in the companion instructor's guide on soil conservation. The soil conservation unit builds on competencies gained in Agricultural Science I and II. Informative material is provided for these eight lessons: benefits of conservation, land utilization, how soils are eroded,…

  17. Misrepresentation of hydro-erosional processes in rainfall simulations using disturbed soil samples

    Science.gov (United States)

    Thomaz, Edivaldo L.; Pereira, Adalberto A.

    2017-06-01

    Interrill erosion is a primary soil erosion process which consists of soil detachment by raindrop impact and particle transport by shallow flow. Interill erosion affects other soil erosion sub-processes, e.g., water infiltration, sealing, crusting, and rill initiation. Interrill erosion has been widely studied in laboratories, and the use of a sieved soil, i.e., disturbed soil, has become a standard method in laboratory experiments. The aims of our study are to evaluate the hydro-erosional response of undisturbed and disturbed soils in a laboratory experiment, and to quantify the extent to which hydraulic variables change during a rainstorm. We used a splash pan of 0.3 m width, 0.45 m length, and 0.1 m depth. A rainfall simulation of 58 mm h- 1 lasting for 30 min was conducted on seven replicates of undisturbed and disturbed soils. During the experiment, several hydro-physical parameters were measured, including splashed sediment, mean particle size, runoff, water infiltration, and soil moisture. We conclude that use of disturbed soil samples results in overestimation of interrill processes. Of the nine assessed parameters, four displayed greater responses in the undisturbed soil: infiltration, topsoil shear strength, mean particle size of eroded particles, and soil moisture. In the disturbed soil, five assessed parameters displayed greater responses: wash sediment, final runoff coefficient, runoff, splash, and sediment yield. Therefore, contextual soil properties are most suitable for understanding soil erosion, as well as for defining soil erodibility.

  18. Long-term atmospheric wet deposition of dissolved organic nitrogen in a typical red-soil agro-ecosystem, Southeastern China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; He, Yuan Q; Yang, Hao; Xu, Liang J; Chan, Andy

    2014-05-01

    Dissolved organic nitrogen (DON) from atmospheric deposition has been a growing concern in the world and atmospheric nitrogen (N) deposition is increasing quickly in China especially Southeastern China. In our study, DON wet deposition was estimated by collecting and analyzing rainwater samples continuously over eight years (2005-2012) in a typical red-soil farmland ecosystem, Southeast China. Results showed that the volume-weighted-average DON concentration varied from 0.2 to 3.3 mg N L(-1) with an average of 1.2 mg N L(-1). DON flux ranged from 5.7 to 71.6 kg N ha(-1) year(-1) and averaged 19.7 kg N ha(-1) year(-1) which accounted for 34.6% of the total dissolved nitrogen (TDN) in wet deposition during the eight-year period. Analysis of DON concentration and flux, contribution of DON to TDN, rainfall, rain frequency, air temperature and wind frequency and the application of pig manure revealed possible pollution sources. Significant positive linear relation of annual DON flux and usage of pig manure (Pcycle in the red-soil agro-ecosystem in the future.

  19. Some heterocyclic aromatic compounds are Ah receptor agonists in the DR-CALUX assay and the EROD assay with RTL-W1 cells.

    Science.gov (United States)

    Hinger, Gunnar; Brinkmann, Markus; Bluhm, Kerstin; Sagner, Anne; Takner, Helena; Eisenträger, Adolf; Braunbeck, Thomas; Engwall, Magnus; Tiehm, Andreas; Hollert, Henner

    2011-09-01

    Heterocyclic aromatic compounds containing nitrogen, sulfur, or oxygen heteroatoms (NSO-HET) have been detected in air, soil, marine, and freshwater systems. However, only few publications are available investigating NSO-HET using in vitro bioassays. To support better characterization of environmental samples, selected NSO-HET were screened for dioxin-like activity in two bioassays. The present study focuses on the identification and quantification of dioxin-like effects of 12 NSO-HET using the DR-CALUX assay, and the 7-ethoxyresorufin-O-deethylase (EROD) assay with the permanent fish liver cell line RTL-W1. Changes of the total medium compound concentrations during the test procedure due to, e.g., sorption or volatilization were quantified using GC/MS. The NSO-HET benzofuran, 2,3-dimethylbenzofuran, dibenzofuran, dibenzothiophen, acridine, xanthene, and carbazole caused a response in the DR-CALUX assay. Only benzofuran and 2,3-dimethylbenzofuran were also positive in the EROD assay. All other compounds were inactive in the EROD assay. Relative potency (REP) values ranged from (2.80 ± 1.32) · 10(-8) to (3.26 ± 2.03) · 10(-6) in the DR-CALUX and from (3.26 ± 0.91) · 10(-7) to (4.87 ± 1.97) · 10(-7) in the EROD assay. The REP values were comparable to those of larger polycyclic aromatic hydrocarbons, e.g., fluoranthene and pyrene. Thus, and because of the ubiquitous distribution of heterocyclic aromatic compounds in the environment, the provided data will further facilitate the bioanalytical and analytical characterization of environmental samples towards these toxicants.

  20. Use of radioactive fallout cesium-137 to estimate soil erosion on three farms in west central Ohio

    International Nuclear Information System (INIS)

    Bajracharya, R.M.; Lal, R.; Kimble, J.M.

    1998-01-01

    Assessment of the impact of soil erosion on productivity and environment quality requires comprehensive and credible estimates of erosion. Measuring concentration of 137 Cs fallout is a relatively simple and rapid technique for determining long-term mean annual rates of soil erosion and deposition. The purpose of this study was to evaluate the potential of the 137 Cs activity-soil depth relationship in estimating soil erosion from arable land in west central Ohio. Thus, soil samples obtained from three to four genetic horizons of four erosion phases at three farms in Clark Co., Ohio, (hereafter called Sites A, B, and C) were analyzed for 137 Cs activity. Relationships between 137 Cs activity and soil depth at undisturbed reference sites were used to calculate the depth of soil eroded and mean annual erosion rates. Cumulative 137 Cs activities ranged from 6.8 mBq g-1 for the severely eroded phase at Site C to 16.6 mBq g-1 for the deposition phase at Site A. These activities corresponded to soil erosion rates of 125.9 Mg ha-1 y-1 for severe to 26.6 Mg ha-1 y-1 for deposition phases. A general trend of increasing soil erosion (by 24 to 85%) from slightly to severely eroded phases was observed although the data were highly variable. Estimated soil erosion rates depended on the regression model used and were more than an order of magnitude higher than those determined using the Revised Universal Soil Loss Equation. Sampling rigorously at small depth increments by means of a core sampler, careful selection of reference sites, and calibration or validation of this technique with other models can improve estimation of soil erosion using 137 Cs. The 137 Cs technique is, however, limited to local scale estimates of erosion because the empirical models are site specific

  1. Effects of Two Kinds of Biochars on Soil Cu Availability in Contaminated Soil

    Directory of Open Access Journals (Sweden)

    WANG Xiao-qi

    2016-07-01

    Full Text Available This paper is aimed to research the impacts of different biochars(0,1%,2%,4%, including maize biochar and phytolacca root biochar, on rape growth and the soil Cu availability in the Cu-contaminated red soil via a series of pot experiments. The results showed that, compared with the control, the addition of two kinds of biochars could increase the biomass of the rape. In low Cu-contaminated red soil, added 4% maize biochar and phytolacca root biochar increased the biomass by 21.2 times and 67.9 times; however, the biomass were increased by 8.6 times and 109.6 times under high Cu-contaminated soil. The addition of phytolacca root biochar could increase the soil pH significantly, which has been increased by 0.4~1.6 units with the addition of phytolacca root biochar in low Cu-contaminated red soil, and it had 0.25~1.35 units more than that with maize biochar; In high Cu-contaminated red soil, with the addition of phytolacca root biochar, soil pH was increased by 0.33~1.52 units, which was 0.3~1.25 units higher than maize biochar. There was a significant effect on reducing the soil Cu availability with the addition of the two biochars. Among them, 4% addition of maize biochar and phytolacca root biochar could reduce soil available Cu content by 21.9% and 45.2% in low Cu-contaminated soil, however, it was decreased by 41.9% and 53.8% in high Cu-contaminated soil. Both of the two biochars were able to reduce the Cu accumulation in rape, where there was a decrease by 21.2% and 67.8% with he addition of 4% maize biochar and phytolacca root biochar under low Cu-contaminated soil, and it was decreased by 19.9% and 66.8% in high Cu-contaminated soil respectively. Both of the biochars could ameliorate the acidity and Cu availability in the red soil, enhance the biomass of the rape and reduce the Cu accumulation in rape, but phytolacca root biochar had more effective influence than maize biochar.

  2. Spectroscopic Evidence of the Improvement of Reactive Iron Mineral Content in Red Soil by Long-Term Application of Swine Manure.

    Directory of Open Access Journals (Sweden)

    Chichao Huang

    Full Text Available Mineral elements in soil solutions are thought to be the precursor of the formation of reactive minerals, which play an important role in global carbon (C cycling. However, information regarding the regulation of mineral elements release in soil is scarce. Here, we examined the long-term (i.e., 23 yrs effects of fertilisation practices on Fe minerals in a red soil in Southern China. The results from chemical analysis and Fourier-transform infrared spectroscopy showed that long-term swine manure (M treatment released greater amounts of minerals into soil solutions than chemical fertilisers (NPK treatment, and Fe played a dominant role in the preservation of dissolved organic C. Furthermore, Fe K-edge X-ray absorption near-edge fine structure spectroscopy demonstrated that reactive Fe minerals were mainly composed of less crystalline ferrihydrite in the M-treated soil and more crystalline goethite in the NPK-treated soil. In conclusion, this study reported spectroscopic evidence of the improvement of reactive Femineral content in the M-treated soil colloids when compared to NPK-treated soil colloids.

  3. An Establishment of Rainfall-induced Soil Erosion Index for the Slope Land in Watershed

    Science.gov (United States)

    Tsai, Kuang-Jung; Chen, Yie-Ruey; Hsieh, Shun-Chieh; Shu, Chia-Chun; Chen, Ying-Hui

    2014-05-01

    With more and more concentrated extreme rainfall events as a result of climate change, in Taiwan, mass cover soil erosion occurred frequently and led to sediment related disasters in high intensity precipiton region during typhoons or torrential rain storms. These disasters cause a severely lost to the property, public construction and even the casualty of the resident in the affected areas. Therefore, we collected soil losses by using field investigation data from the upstream of watershed where near speific rivers to explore the soil erosion caused by heavy rainfall under different natural environment. Soil losses induced by rainfall and runoff were obtained from the long-term soil depth measurement of erosion plots, which were established in the field, used to estimate the total volume of soil erosion. Furthermore, the soil erosion index was obtained by referring to natural environment of erosion test plots and the Universal Soil Loss Equation (USLE). All data collected from field were used to compare with the one obtained from laboratory test recommended by the Technical Regulation for Soil and Water Conservation in Taiwan. With MATLAB as a modeling platform, evaluation model for soil erodibility factors was obtained by golden section search method, considering factors contributing to the soil erosion; such as degree of slope, soil texture, slope aspect, the distance far away from water system, topography elevation, and normalized difference vegetation index (NDVI). The distribution map of soil erosion index was developed by this project and used to estimate the rainfall-induced soil losses from erosion plots have been established in the study area since 2008. All results indicated that soil erodibility increases with accumulated rainfall amount regardless of soil characteristics measured in the field. Under the same accumulated rainfall amount, the volume of soil erosion also increases with the degree of slope and soil permeability, but decreases with the

  4. Process based modelling of soil organic carbon redistribution on landscape scale

    Science.gov (United States)

    Schindewolf, Marcus; Seher, Wiebke; Amorim, Amorim S. S.; Maeso, Daniel L.; Jürgen, Schmidt

    2014-05-01

    Recent studies have pointed out the great importance of erosion processes in global carbon cycling. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon accumulated over long time in the soil humus fraction. Lal (2003) estimates that 20% of the organic carbon eroded with top soils is emitted into atmosphere, due to aggregate breakdown and carbon mineralization during transport by surface runoff. Furthermore soil erosion causes a progressive decrease of natural soil fertility, since cation exchange capacity is associated with organic colloids. As a consequence the ability of soils to accumulate organic carbon is reduced proportionately to the drop in soil productivity. The colluvial organic carbon might be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Some colluvial sites can act as long-term sinks for organic carbon. The erosional transport of organic carbon may have an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. These sediments might be deposited in the riparian zones of river networks. Erosional losses of organic carbon will not pass over into atmosphere for the most part. But soil erosion limits substantially the potential of soils to sequester atmospheric CO2 by generating humus. The present study refers to lateral carbon flux modelling on landscape scale using the process based EROSION 3D soil loss simulation model, using existing parameter values. The selective nature of soil erosion results in a preferentially transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. For this reason it is essential that EROSION 3D provides the

  5. Soil losses from typic cambisols and red latosol as related to three erosive rainfall patterns

    Directory of Open Access Journals (Sweden)

    Regimeire Freitas Aquino

    2013-02-01

    Full Text Available Rainfall erosivity is one of the main factors related to water erosion in the tropics. This work focused on relating soil loss from a typic dystrophic Tb Haplic Cambisol (CXbd and a typic dystrophic Red Latosol (LVdf to different patterns of natural erosive rainfall. The experimental plots of approximately 26 m² (3 x 8.67 m consisted of a CXbd area with a 0.15 m m-1 slope and a LVdf area with 0.12 m m-1 slope, both delimited by galvanized plates. Drainpipes were installed at the lower part of these plots to collect runoff, interconnected with a Geib or multislot divisor. To calculate erosivity (EI30, rainfall data, recorded continuously at a weather station in Lavras, were used. The data of erosive rainfall events were measured (10 mm precipitation intervals, accuracy 0.2 mm, 24 h period, 20 min intervals, characterized as rainfall events with more than 10 mm precipitation, maximum intensity > 24 mm h-1 within 15 min, or kinetic energy > 3.6 MJ, which were used in this study to calculate the rainfall erosivity parameter, were classified according to the moment of peak precipitation intensity in advanced, intermediate and delayed patterns. Among the 139 erosive rainfall events with CXbd soil loss, 60 % were attributed to the advanced pattern, with a loss of 415.9 Mg ha-1, and total losses of 776.0 Mg ha-1. As for the LVdf, of the 93 erosive rainfall events with soil loss, 58 % were listed in the advanced pattern, with 37.8 Mg ha-1 soil loss and 50.9 Mg ha-1 of total soil loss. The greatest soil losses were observed in the advanced rain pattern, especially for the CXbd. From the Cambisol, the soil loss per rainfall event was greatest for the advanced pattern, being influenced by the low soil permeability.

  6. Increasing atmospheric deposition nitrogen and ammonium reduced microbial activity and changed the bacterial community composition of red paddy soil.

    Science.gov (United States)

    Zhou, Fengwu; Cui, Jian; Zhou, Jing; Yang, John; Li, Yong; Leng, Qiangmei; Wang, Yangqing; He, Dongyi; Song, Liyan; Gao, Min; Zeng, Jun; Chan, Andy

    2018-03-27

    Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha -1 when its ratio of NH 4 + /NO 3 - -N (R N ) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha -1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and R N (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha -1 ) had similar reduced effects on microbial activity. Furthermore, both ADN flux and R N significantly reduced soil bacterial alpha diversity (pADN flux and R N were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The contribution of red wood ants to soil C and N pools and CO2 emissions in subalpine forests

    Science.gov (United States)

    Anita C. Risch; Martin F. Jurgensen; Martin Schutz; Deborah S. Page-Dumroese

    2005-01-01

    Little information is available regarding red wood ant (RWA; Formica rufa group) impacts on soil carbon (C) and nitrogen (N) cycling in forest ecosystems. We found that RWA mound density (number per ha) was linked to forest tree species composition, slope aspect, and canopy closure. The size of RWA mounds was positively correlated with successional...

  8. [Responses of rhizosphere nitrogen and phosphorus transformations to different acid rain intensities in a hilly red soil tea plantation].

    Science.gov (United States)

    Chen, Xi; Chen, Fu-sheng; Ye, Su-qiong; Yu, Su-qin; Fang, Xiang-min; Hu, Xiao-fei

    2015-01-01

    Tea (Camellia sinensis) plantation in hilly red soil region has been long impacted by acid deposition, however its effects on nitrogen (N) and phosphorus (P) transformations in rhizosphere soils remain unclear. A 25-year old tea plantation in a typical hilly red soil region was selected for an in situ simulation experiment treated by pH 4.5, pH 3.5, pH 2.5 and control. Rhizosihere and bulk soils were collected in the third year from the simulated acid deposition experiment. Soil mineral N, available P contents and major enzyme activities were analyzed using the chemical extraction and biochemical methods, and N and P mineralization rates were estimated using the indoor aerobic incubation methods. Our results showed that compared to the control, the treatments of pH 4.5, pH 3.5 and pH 2.5, respectively decreased 7.1%, 42.1% and 49.9% NO3(-)-N, 6.4%, 35.9% and 40.3% mineral N, 10.5%, 41.1% and 46.9% available P, 18.7%, 30.1% and 44.7% ammonification rate, 3.6%, 12.7% and 38.8% net N-mineralization rate, and 31.5%, 41.8% and 63.0% P mineralization rate in rhizosphere soils; however, among the 4 treatments, rhizosphere soil nitrification rate was not significantly different, the rhizosphere soil urease and acid phosphatase activities generally increased with the increasing intensity of acid rain (PpH 4.5, pH 3.5 and pH 2.5 did not cause significant changes in NO3(-)-N, mineral N, available P as well as in the rates of nitrification, ammonification, net N-mineralization and P mineralization. With increasing the acid intensity, the rhizosphere effects of NH4+-N, NO3(-)-N, mineral N, ammonification and net N-mineralization rates were altered from positive to negative effects, those of urease and acid phosphatease showed the opposite trends, those of available P and P mineralization were negative and that of nitrification was positive. In sum, prolonged elevated acid rain could reduce N and P transformation rates, decrease their availability, alter their rhizosphere

  9. Biorock Electric Reefs Grow Back Severely Eroded Beaches in Months

    Directory of Open Access Journals (Sweden)

    Thomas J. F. Goreau

    2017-10-01

    Full Text Available Severely eroded beaches on low lying islands in Indonesia were grown back in a few months—believed to be a record—using an innovative method of shore protection, Biorock electric reef technology. Biorock shore protection reefs are growing limestone structures that get stronger with age and repair themselves, are cheaper than concrete or rock sea walls and breakwaters, and are much more effective at shore protection and beach growth. Biorock reefs are permeable, porous, growing, self-repairing structures of any size or shape, which dissipate wave energy by internal refraction, diffraction, and frictional dissipation. They do not cause reflection of waves like hard sea walls and breakwaters, which erodes the sand in front of, and then underneath, such structures, until they collapse. Biorock reefs stimulate settlement, growth, survival, and resistance to the environmental stress of all forms of marine life, restoring coral reefs, sea grasses, biological sand production, and fisheries habitat. Biorock reefs can grow back eroded beaches and islands faster than the rate of sea level rise, and are the most cost-effective method of shore protection and adaptation to global sea level rise for low lying islands and coasts.

  10. [Community traits of soil fauna in forestlands converted from cultivated lands in limestone red soil region of Ruichang, Jiangxi Province of China].

    Science.gov (United States)

    Li, Tao; Liu, Yuan-Qiug; Guo, Sheng-Mao; Ke, Guo-Qing; Zhang, Zhao; Xiao, Xu-Bao; Liu, Wu

    2012-04-01

    This paper studied the variations of the community composition and individuals' number of soil fauna in limestone red soil region of Ruichang, Jiangxi Province after six years of converting cultivated lands into forestlands. Three converted forestlands, including the lands of mixed multiple-species forest, bamboo-broadleaved forest, and tree-seedling integration, were selected as test objects, with cultivated lands as the comparison. A total of 34 orders, 17 classes, and 6 phyla of soil fauna were observed in the converted forestlands. The dominant group was Nematoda, accounting for 86.7% of the total, whereas Acarina, Enchytraeidae, and Collembola were the common groups. In the cultivated lands, soil fauna had 21 orders, 10 classes, and 5 phyla. The dominant group was also Nematoda, accounting 86.7% of the total, and Acarina and Enchytraeidae were the common groups. In the converted forestlands, the group number of rare species was greater than that in the cultivated lands (30 vs. 18), and, except in winter, the group number and average density were significantly higher than those in the cultivated lands (P soil fauna in the soil profiles showed an obvious surface accumulation, which was more apparent in converted forestlands than in cultivated lands, and the individuals' number had significant differences between the surface (0-5 cm) layer and the 5-10 cm and 10-15 cm layers (P soil fauna in the converted forestlands had a seasonal variation ranked in the order of summer > autumn > spring > winter, and there was a significant difference between summer-autumn and spring-winter. The average density of the soil fauna also had a seasonal variation but ranked as autumn > summer > spring > winter, and the differences among the seasons were significant (P soil fauna was significantly higher in converted forestlands than in cultivated lands, and was the highest in mixed multiple-species forestland and the least in tree-seedling integration land.

  11. Red Cedar Invasion Along the Missouri River, South Dakota: Cause and Consequence

    Science.gov (United States)

    Greene, S.; Knox, J. C.

    2012-12-01

    This research evaluates drivers of and ecosystem response to red cedar (Juniperus virginiana) invasion of riparian surfaces downstream of Gavin's Point Dam on the Missouri River. Gavin's Point Dam changed the downstream geomorphology and hydrology of the river and its floodplain by reducing scouring floods and flood-deposited sediment. The native cottonwood species (Populus deltoides) favors cleared surfaces with little to no competitors to establish. Now that there are infrequent erosive floods along the riparian surfaces to remove competitor seeds and seedlings, other vegetation is able to establish. Red cedar is invading the understory of established cottonwood stands and post-dam riparian surfaces. To assess reasons and spatial patterns for the recent invasion of red cedar, a stratified random sampling of soil, tree density and frequency by species, and tree age of 14 forest stands was undertaken along 59 river kilometers of riparian habitat. Soil particle size was determined using laser diffraction and tree ages were estimated from ring counts of tree cores. As an indicator of ecosystem response to invasion, we measured organic matter content in soil collected beneath red cedar and cottonwood trees at three different depths. Of 565 red cedars, only two trees were established before the dam was built. We applied a multiple regression model of red cedar density as a function of cottonwood density and percent sand (63-1000 microns in diameter) in StatPlus© statistical software. Cottonwood density and percent sand are strongly correlated with invasion of red cedar along various riparian surfaces (n = 59, R2 = 0.42, p-values cedar and cottonwood trees (p-value > 0.05 for all depths). These findings suggest that the dam's minimization of downstream high-stage flows opened up new habitat for red cedar to establish. Fluvial geomorphic surfaces reflect soil type and cottonwood density and, in turn, predict susceptibility of a surface to red cedar invasion. Nonetheless

  12. Comparison of Organic Matter Dynamics in Soil between Japanese Cedar (Cryptomeria japonica) Forest and Adjacent Japanese Red Pine (Pinus densiflora) Forest Established on Flatland

    OpenAIRE

    Terumasa, Takahashi; Akiko, Minami; Yoshito, Asano; Tatsuaki, Kobayashi; Faculty of Horticulture, Chiba Universit; Faculty of Horticulture, Chiba University:(Present)Hashikami town office; Faculty of Horticulture, Chiba University; Faculty of Horticulture, Chiba University

    1999-01-01

    In order to clarify the effects of tree species on organic matter dynamics in soil, we investigated the amount of forest floor material, leaf litter decomposition rate, soil chemical characteristics, soil respiration rate and cellulose decomposition rate in a Japanese cedar forest (cedar plot) and an adjacent Japanese red pine forest (pine plot) established on a flatland. The amount of forest floor material in the cedar plot was 34.5 Mg ha^ which was greater than that in the pine plot. Becaus...

  13. Boundary Condition Effects on Hillslope Form and Soil Development Along a Climatic Gradient From Semiarid to Hyperarid in Northern Chile

    Science.gov (United States)

    Owen, J. J.; Dietrich, W. E.; Nishiizumi, K.; Bellugi, D.; Amundson, R.

    2008-12-01

    Modeling the development of hillslopes using mass balance equations has generated many testable hypotheses related to morphology, process rates, and soil properties, however it is only relatively recently that techniques for constraining these models (such as cosmogenic radionuclides) have become commonplace. As such, many hypotheses related to the effects of boundary conditions or climate on process rates and soil properties have been left untested. We selected pairs of hillslopes along a precipitation gradient in northern Chile (24°-30° S) which were either bounded by actively eroding (bedrock-bedded) channels or by stable or aggradational landforms (pediments, colluvial aprons, valley bottoms). For each hillslope we measured soil properties, atmospheric deposition rates, and bedrock denudation rates. We observe significant changes in soil properties with climate: there is a shift from thick, weathered soils in the semiarid south, to the near absence of soil in the arid middle, to salt-rich soils in the hyperarid north. Coincident with these are dramatic changes in the types and rates of processes acting on the soils. We found relatively quick, biotically-driven soil formation and transport in the south, and very slow, salt-driven processes in the north. Additionally, we observe systematic differences between hillslopes of different boundary condition within the same climate zone, such as thicker soils, gentler slopes, and slower erosion rates on hillslopes with a non-eroding boundary versus an eroding boundary. These support general predictions based on hillslope soil mass balance equations and geomorphic transport laws. Using parameters derived from our field data, we attempt to use a mass balance model of hillslope development to explore the effect of changing boundary conditions and/or shifting climate.

  14. The impact of soil redistribution on SOC pools in a Mediterranean agroforestry catchment

    Science.gov (United States)

    Quijano, Laura; Gaspar, Leticia; Lizaga, Iván; Navas, Ana

    2017-04-01

    Soil redistribution processes play an important role influencing the spatial distribution patterns of soil and associated soil organic carbon (SOC) at landscape scale. Information on drivers of SOC dynamics is key for evaluating both soil degradation and SOC stability that can affect soil quality and sustainability. 137Cs measurements provide a very effective tool to infer spatial patterns of soil redistribution and quantify soil redistribution rates in different landscapes, but to date these data are scarce in mountain Mediterranean agroecosystems. We evaluate the effect of soil redistribution on SOC and SOC pools in relation to land use in a Mediterranean mountain catchment (246 ha). To this purpose, two hundred and four soil bulk cores were collected on a 100 m grid in the Estaña lakes catchment located in the central sector of the Spanish Pyrenees (31T 4656250N 295152E). The study area is an agroforestry and endorheic catchment characterized by the presence of evaporite dissolution induced dolines, some of which host permanent lakes. The selected landscape is representative of rainfed areas of Mediterranean continental climate with erodible lithology and shallow soils, and characterized by an intense anthropogenic activity through cultivation and water management. The cultivated and uncultivated areas are heterogeneously distributed. SOC and SOC pools (the active and decomposable fraction, ACF and the stable carbon fraction SCF) were measured by the dry combustion method and soil redistribution rates were derived from 137Cs measurements. The results showed that erosion predominated in the catchment, most of soil samples were identified as eroded sites (n=114) with an average erosion rate of 26.9±51.4 Mg ha-1 y-1 whereas the mean deposition rate was 13.0±24.2 Mg ha-1 y-1. In cultivated soils (n=54) the average of soil erosion rate was significantly higher (78.5±74.4 Mg ha-1 y-1) than in uncultivated soils (6.8±10.4 Mg ha-1 y-1). Similarly, the mean of soil

  15. Can we manipulate root system architecture to control soil erosion?

    Science.gov (United States)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  16. Heavy metals availability and soil fertility after land application of sewage sludge on dystroferric Red Latosol

    Directory of Open Access Journals (Sweden)

    Rodrigo Santos Moreira

    2013-12-01

    Full Text Available Sewage sludge is the solid residue obtained from urban sewage treatment plants. It is possible to use the sludge in a sustainable way as fertilizer and as soil conditioner due to its high levels of organic matter and nutrients. Besides pathogens and volatile organic compounds, the residue may also contain heavy metals which may accumulate and contaminate crops and the food chain. The aim of this study was evaluates the changes in the fertility of dystrophic Red Latosol and in the availability of heavy metals following application of sewage sludge. It was assessed whether organic matter supplied to the soil as large amounts of sewage sludge would decrease availability of heavy metals in the soil due to of insoluble compounds formation. From this, an experiment was carried out in polyethylene pots using lettuce plant for test. Sewage sludge were applied to the soil in concentrations equivalent to 60, 120 and 180 t ha-1, and a control without sludge, in four replicates, in a completely randomized design. The results show that sewage sludge led to an increase of organic matter contents, of the cation exchange capacity (CEC and of nutrients found in the soil. It also improved plant growth up to a concentration of 120 t ha-1. Availability of heavy metals, however, was reduced in sludge concentrations starting with 120 t ha-1.

  17. Nitrogen enrichment in runoff sediments as affected by soil texture in Beijing mountain area.

    Science.gov (United States)

    Yang, Yang; Ye, Zhihan; Liu, Baoyuan; Zeng, Xianqin; Fu, Suhua; Lu, Bingjun

    2014-02-01

    Enrichment ratio (ER) is widely used in nonpoint source pollution models to estimate the nutrient loss associated with soil erosion. The objective of this study was to determine the ER of total nitrogen (ERN) in the sediments eroded from the typical soils with varying soil textures in Beijing mountain area. Each of the four soils was packed into a 40 by 30 by 15 cm soil pan and received 40-min simulated rainfalls at the intensity of 90 mm h(-1) on five slopes. ERN for most sediments were above unity, indicating the common occurrence of nitrogen enrichment accompanied with soil erosion in Beijing mountain area. Soil texture was not the only factor that influenced N enrichment in this experiment since the ERN for the two fine-textured soils were not always lower. Soil properties such as soil structure might exert a more important influence in some circumstances. The selective erosion of clay particles was the main reason for N enrichment, as implied by the significant positive correlation between the ER of total nitrogen and clay fraction in eroded sediments. Significant regression equations between ERN and sediment yield were obtained for two pairs of soils, which were artificially categorized by soil texture. The one for fine-textured soils had greater intercept and more negative slope. Thus, the initially higher ERN would be lower than that for the other two soils with coarser texture once the sediment yield exceeded 629 kg ha(-1).

  18. Effects of erosion in the fate of soil organic carbon and soil aggregation in a burned Mediterranean hill-slope

    Science.gov (United States)

    Campo, Julian; Cammeraat, Erik; Gimeno-García, Eugenia; Andreu, Vicente

    2016-04-01

    The Intergovernmental Panel on Climate Change indicated a higher degree of confidence that meteorological conditions associated to climate change will be propitious to increasing extreme events manifested, among others, in bigger and more frequent wildfires (IPCC, 2014). Wildfires contribute to shaping the landscape, and also the geomorphological and hydrological processes that operate on soil are affected (Bento-Gonçalves et al., 2012). Whereas, it is well documented that wildfires produce significant changes on erosion processes, the associated fate of soil organic carbon (SOC) has received less attention. This research assesses this gap by studying the loss, redistribution, and stabilization of SOC in a Mediterranean forest hill-slope burned the 28-08-2014, with high severity fire, at the Natural Park of Sierra de Espadán, Spain (39°50'45.11"N, 0°22'20.52"W). To this end, soil was sampled (19-9-2014) in the foot's slope (depositional), middle part (transport) and top (eroding) at two depths (test>146 drops). Significant differences (ANOVA, pBS) and soil depths (topsoil>subsoil). However, no significant differences were observed among eroding (58.8+20.8 gC kg-1), transport (67.3+34.4 gC kg-1), and depositional zones (62.0+31.3 gC kg-1), which is not in agreement with other SOC redistribution studies (Wang et al., 2014). Significant differences (Kruskal-Wallis, pBS) but not between soil depths or hill-slope positions. In the first post-fire erosive rains occurred in the area (29-11-14), closest pluviometer (Sot de Ferrer: 4.5 km) registered a total daily rain up to 64.2 l m-2. In this event a total of 12.7 kg of sediment were collected (contributing area ≈0.25 ha), with a content of 252.6 gC kg-1 the total SOC transported or stored in the depositional zone can reach up to 3.2 kg. In the second erosive event (23-3-15: 103.2 l m-2), total sediment in the fences was 143.6 kg, with content of 112.2 gC kg-1, made a total SOC eroded of up to 16.1 kg. It is

  19. SSEM: A model for simulating runoff and erosion of saline-sodic soil slopes under coastal reclamation

    Science.gov (United States)

    Liu, Dongdong; She, Dongli

    2018-06-01

    Current physically based erosion models do not carefully consider the dynamic variations of soil properties during rainfall and are unable to simulate saline-sodic soil slope erosion processes. The aim of this work was to build upon a complete model framework, SSEM, to simulate runoff and erosion processes for saline-sodic soils by coupling dynamic saturated hydraulic conductivity Ks and soil erodibility Kτ. Sixty rainfall simulation rainfall experiments (2 soil textures × 5 sodicity levels × 2 slope gradients × 3 duplicates) provided data for model calibration and validation. SSEM worked very well for simulating the runoff and erosion processes of saline-sodic silty clay. The runoff and erosion processes of saline-sodic silt loam were more complex than those of non-saline soils or soils with higher clay contents; thus, SSEM did not perform very well for some validation events. We further examined the model performances of four concepts: Dynamic Ks and Kτ (Case 1, SSEM), Dynamic Ks and Constant Kτ (Case 2), Constant Ks and Dynamic Kτ (Case 3) and Constant Ks and Constant Kτ (Case 4). The results demonstrated that the model, which considers dynamic variations in soil saturated hydraulic conductivity and soil erodibility, can provide more reasonable runoff and erosion prediction results for saline-sodic soils.

  20. Rate and cost of soil erosion in Monkayo, Compostela Valley Province Philippines

    Directory of Open Access Journals (Sweden)

    Sunshine G. Paulin

    2016-01-01

    Full Text Available Soil erosion is a major agricultural and environmental problem in the Philippines that is primarily caused by rainfall under upland, subsistence rainfed farming. The study sought to compare the degree of erosion as influenced by different upland tillage systems using soil erosion plots and MUSLE model, and estimate the cost of soil erosion in Monkayo, Compostela Valley. The erosion plots were laid on a 31.45 percent slope with a seasonal rainfall intensity of 2,314 mm. Corn (Zea mays L. planted through conventional tillage generated a mean soil loss of 2.64 t/ha/cropping, which is higher than the reduced tillage with a mean of 1.20 t/ha/cropping. The weighted on-site soil loss was 12 percent lower than the obtained soil erosion using the modified Universal Soil Loss Equation that is 2.97 t/ha. The study developed equations to estimate soil loss (t/ha per seasonal rainfall on three tillage systems using linear regression analysis which are: (1 E= -0.0031+0.0003R, (2 E= -0.0406+0.0011R, and (3 E=0.2249+0.0034R in corn grown on undisturbed land with natural vegetation, corn grown on bare soil through dibble method and corn planted through conventional planting system, respectively. On-site cost of erosion ranged from Php 1,473.42/ha/cropping to Php 1,938.81/ha/cropping. The amount of soil eroded can be attributed to the higher erositivity of rains, higher erodibility of the soil surface, and the poor soil cover.

  1. Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.

    Science.gov (United States)

    Jung, Jaejoon; Jang, In-Ae; Ahn, Sungeun; Shin, Bora; Kim, Jisun; Park, Chulwoo; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2015-11-01

    Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated β-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure.

  2. Mississippi Basin Carbon Project: upland soil database for sites in Nishnabotna River basin, Iowa

    Science.gov (United States)

    Harden, J.W.; Fries, T.L.; Haughy, R.; Kramer, L.; Zheng, Shuhui

    2001-01-01

    The conversion of land from its native state to an agricultural use commonly results in a significant loss of soil carbon (Mann, 1985; Davidson and Ackerman, 1993). Globally, this loss is estimated to account for as much as 1/3 of the net CO2 emissions for the period of 1850 to 1980 (Houghton and others, 1983). Roughly 20 to 40 percent of original soil carbon is estimated to be lost as CO2 as a result of agricultural conversion, or "decomposition enhancement". Global models use this estimate along with land conversion data to provide agricultural contributions of CO2 emissions for global carbon budgets (Houghton and others, 1983; Schimel, 1995). Soil erosion rates are significantly (10X) higher on croplands than on their undisturbed equivalents (Dabney and others, 1997). Most of the concern over erosion is related to diminished productivity of the uplands (Stallings, 1957; McGregor and others, 1969; Rhoton, 1990) or to increased hazards and navigability of the lowlands in the late 1800's to early 1900's. Yet because soil carbon is concentrated at the soil surface, with an exponential decline in concentration with depth (Harden et al, 1999), it is clear that changes in erosion rates seen on croplands must also impact soil carbon storage and terrestrial carbon budgets as well. As yet, erosional losses of carbon are not included in global carbon budgets explicitly as a factor in land conversion nor implicitly as a portion of the decomposition enhancement. However, recent work by Lal and others (1995) and by Stallard (1998) suggests that significant amounts of eroded soil may be stored in man-made reservoirs and depositional environments as a result of agricultural conversion. Moreover, Stallard points out that eroding soils have the potential for replacing part of the carbon trapped in man-made reservoirs. If true, then the global carbon budget may grossly underestimate or ignore a significant sink term resulting from the burial of eroded soil.

  3. Mississippi Basin Carbon Project; upland soil database for sites in Yazoo Basin, northern Mississippi

    Science.gov (United States)

    Harden, J.W.; Fries, T.L.; Huntington, T.G.

    1999-01-01

    The conversion of land from its native state to an agricultural use commonly results in a significant loss of soil carbon (Mann, 1985; Davidson and Ackerman, 1993). Globally, this loss is estimated to account for as much as 1/3 of the net CO2 emissions for the period of 1850 to 1980 (Houghton et al, 1983). Roughly 20 to 40 percent of original soil carbon is estimated to be lost as CO2 as a result of agricultural conversion, or 'decomposition enhancement', and global models use this estimate along with land conversion data to provide agricultural contributions of CO2 emissions for global carbon budgets (Houghton and others, 1983; Schimel, 1995). As yet, erosional losses of carbon are not included in global carbon budgets explicitly as a factor in land conversion nor implicitly as a portion of the decomposition enhancement. However, recent work by Lal et al (1995) and by Stallard (1998) suggests that significant amounts of eroded soil may be stored in man-made reservoirs and depositional environments as a result of agricultural conversion. Moreover, Stallard points out that if eroding soils have the potential for replacing part of the carbon trapped in man-made reservoirs, then the global carbon budget may grossly underestimate or ignore a significant sink term resulting from the burial of eroded soil. Soil erosion rates are significantly (10X) higher on croplands than on their undisturbed equivalents (Dabney et al, 1997). Most of the concern over erosion is related to diminished productivity of the uplands (Stallings, 1957; McGregor et al, 1993; Rhoton and Tyler, 1990) or to increased hazards and navigability of the lowlands in the late 1800's to early 1900's. Yet because soil carbon is concentrated at the soil surface, with an exponential decline in concentration with depth, it is clear that changes in erosion rates seen on croplands must also impact soil carbon storage and terrestrial carbon budgets as well.

  4. Soil erosion and its control in Chile - An overview

    International Nuclear Information System (INIS)

    Ellies, A.

    2000-01-01

    Accelerate erosion in Chile is a consequence from land use that degrade soil such as compaction, loss of organic matter and soil structure. The erosion is favored by the very hilly landscape of the country that increases erosivity index and the high erodibility given by an elevated annual rate of rainfall with irregular distribution. Several experiences have demonstrated that adequate crop management and crop rotations can minimize erosion. The most effective control is achieved conserving and improving soil structure with management systems that include regular use of soil-improving crops, return of crop residues and tillage practices, thus avoiding unnecessary breakdown soil or compacted soil structure. Conservation tillage increased organic matter levels improving stabile soil structure, aeration and infiltration. (author) [es

  5. Skeleton decay in red cedar

    Science.gov (United States)

    Kevin T. Smith; Jessie A. Glaeser

    2013-01-01

    Eastern red cedar (Juniperus virginiana) is a common tree species throughout the eastern United States and the Great Plains. Although “cedar” is in the common name, the scientifc name shows a botanical kinship to the juniper species of the American southwest. Red cedar can survive and thrive within a broad range of soil conditions, seasonal...

  6. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands

    Science.gov (United States)

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  7. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands.

    Science.gov (United States)

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  8. Assessment of ground water contamination in Erode District ...

    African Journals Online (AJOL)

    admin

    A systematic study has been carried out to assess the water contamination and the effect of the tanneries and dyeing industries effluents on Erode District, Tamil Nadu. Ten (10) sampling locations were selected in and around industries. The water samples were collected from the selected sampling points. The samples ...

  9. Reduction of soil erosion and mercury losses in agroforestry systems compared to forests and cultivated fields in the Brazilian Amazon.

    Science.gov (United States)

    Béliveau, Annie; Lucotte, Marc; Davidson, Robert; Paquet, Serge; Mertens, Frédéric; Passos, Carlos J; Romana, Christine A

    2017-12-01

    In addition to causing physical degradation and nutrient depletion, erosion of cultivated soils in the Amazon affects aquatic ecosystems through the release of natural soil mercury (Hg) towards lakes and rivers. While traditional agriculture is generally cited as being among the main causes of soil erosion, agroforestry practices are increasingly appreciated for soil conservation. This study was carried out in family farms of the rural Tapajós region (Brazil) and aimed at evaluating soil erosion and associated Hg release for three land uses. Soils, runoff water and eroded sediments were collected at three sites representing a land cover gradient: a recently burnt short-cycle cropping system (SCC), a 2-year-old agroforestry system (AFS) and a mature forest (F). At each site, two PVC soil erosion plots (each composed of three 2 × 5 m isolated subplots) were implemented on steep and moderate slopes respectively. Sampling was done after each of the 20 rain events that occurred during a 1-month study period, in the peak of the 2011 rain season. Runoff volume and rate, as well as eroded soil particles with their Hg and cation concentrations were determined. Total Hg and cation losses were then calculated for each subplot. Erosion processes were dominated by land use type over rainfall or soil slope. Eroded soil particles, as well as the amount of Hg and cations (CaMgK) mobilized at the AFS site were similar to those at the F site, but significantly lower than those at the SCC site (p agroforestry systems, even in their early stages of implementation, are characterized by low erosion levels resembling those of local forest environments, thus contributing to the maintenance of soil integrity and to the reduction of Hg and nutrient mobility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Nitrogen management of switchgrass and miscanthus on marginal soils

    Science.gov (United States)

    Miscanthus × giganteus and switchgrass yield and fertilizer N requirements have been well studied in Europe and parts of the United States, but few reports have investigated their production on eroded claypan soils economically marginal for grain crops. This study was conducted to evaluate yield pot...

  11. Pioneering the red planet; adventures on Martian soil

    NARCIS (Netherlands)

    Van der Peijl, I.; Veraart, M.

    2013-01-01

    Mars has always obsessed humankind - the Red planet, the ‘New Earth’. And with the recent successful landing of NASA’s Curiosity rover, Mars is closer than ever. Ever since 1960, we have actively been sending probes and rovers to observe the planet, but not without defeat. The road to the red planet

  12. Gene-for-gene relationships between strawberry and the causal agent of red stele root rot, Phytophthora fragariae var. fragariae

    NARCIS (Netherlands)

    Weg, van de W.E.

    1997-01-01

    Red stele (red core) root rot is the major soil-borne disease of strawberries (Fragaria spp.) in many areas with cool, moist soil conditions. It is caused by the soil-borne fungus Phytophthora fragariae var. fragariae. Red stele

  13. Long-term modeling of soil C erosion and sequestration at the small watershed scale

    International Nuclear Information System (INIS)

    Izaurralde, R.C.; Thomson, A.M.; Williams, J.R.; Post, W.M.; McGill, W.B.; Owens, L.B.; Lal, R.

    2007-01-01

    The soil C balance is determined by the difference between inputs (e.g., plant litter, organic amendments, depositional C) and outputs (e.g., soil respiration, dissolved organic C leaching, and eroded C). There is a need to improve our understanding of whether soil erosion is a sink or a source of atmospheric CO2. The objective of this paper is to discover the long-term influence of soil erosion on the C cycle of managed watersheds near Coshocton, OH. We hypothesize that the amount of eroded C that is deposited in or out of a watershed compares in magnitude to the soil C changes induced via microbial respiration. We applied the erosion productivity impact calculator (EPIC) model to evaluate the role of erosion-deposition processes on the C balance of three small watersheds (∼1 ha). Experimental records from the USDA North Appalachian Experimental Watershed facility north of Coshocton, OH were used in the study. Soils are predominantly silt loam and have developed from loess-like deposits over residual bedrock. Management practices in the three watersheds have changed over time. Currently, watershed 118 (W118) is under a corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) no till rotation, W128 is under conventional till continuous corn, and W188 is under no till continuous corn. Simulations of a comprehensive set of ecosystem processes including plant growth, runoff, and water erosion were used to quantify sediment C yields. A simulated sediment C yield of 43 ± 22 kg C ha -1 year -1 compared favorably against the observed 31 ± 12 kg C ha -1 year -1 in W118. EPIC overestimated the soil C stock in the top 30-cm soil depth in W118 by 21% of the measured value (36.8 Mg C ha -1 ). Simulations of soil C stocks in the other two watersheds (42.3 Mg C ha -1 in W128 and 50.4 Mg C ha -1 in W188) were off by -1 . Simulated eroded C re-deposited inside (30-212 kg C ha -1 year -1 ) or outside (73 -1 79 kg C ha -1 year -1 ) watershed boundaries compared in magnitude to a

  14. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI.

    Science.gov (United States)

    Lobell, D B; Lesch, S M; Corwin, D L; Ulmer, M G; Anderson, K A; Potts, D J; Doolittle, J A; Matos, M R; Baltes, M J

    2010-01-01

    The ability to inventory and map soil salinity at regional scales remains a significant challenge to scientists concerned with the salinization of agricultural soils throughout the world. Previous attempts to use satellite or aerial imagery to assess soil salinity have found limited success in part because of the inability of methods to isolate the effects of soil salinity on vegetative growth from other factors. This study evaluated the use of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in conjunction with directed soil sampling to assess and map soil salinity at a regional scale (i.e., 10-10(5) km(2)) in a parsimonious manner. Correlations with three soil salinity ground truth datasets differing in scale were made in Kittson County within the Red River Valley (RRV) of North Dakota and Minnesota, an area where soil salinity assessment is a top priority for the Natural Resource Conservation Service (NRCS). Multi-year MODIS imagery was used to mitigate the influence of temporally dynamic factors such as weather, pests, disease, and management influences. The average of the MODIS enhanced vegetation index (EVI) for a 7-yr period exhibited a strong relationship with soil salinity in all three datasets, and outperformed the normalized difference vegetation index (NDVI). One-third to one-half of the spatial variability in soil salinity could be captured by measuring average MODIS EVI and whether the land qualified for the Conservation Reserve Program (a USDA program that sets aside marginally productive land based on conservation principles). The approach has the practical simplicity to allow broad application in areas where limited resources are available for salinity assessment.

  15. Longevity of terrestrial Carbon sinks: effects of soil degradation on greenhouse gas emissions

    Science.gov (United States)

    Kuhn, Nikolaus J.; Berger, Samuel; Kuonen, Samuel

    2013-04-01

    Soil erosion by water is a key process of soil and land degradation. In addition, significant amounts of nutrients and organic Carbon are moved from eroding source areas to landscape sinks. As a consequence, areas affected by erosion suffer a loss of fertility, while sinks experience the development of a stockpile of the deposited sediment, including soil organic matter and nutrients. The deposited nutrients are largely unavailable for the plants growing in these landscape sediment sinks once the thickness of the deposited layer is greater than the rooting depth of the plants. In addition, the deposited organic matter is decomposed slowly through the pack of sediment. At sites of erosion, nutrients have to be replaced and organic matter content of the soil declines due to a destruction of the A horizon. Over time, the risk of a significant reduction in productivity, for example caused by a loss of top soil with a sufficient water storage capacity for maximum plant growth, leads to a decline in CO2 uptake by photosynthesis. Soil organic matter at eroding sites therefore declines and consequently the sediment that is moved to landscape sinks also has a smaller organic matter content than sediment generated from the non-degraded soil. The sediment sinks, on the other hand, emit an increasing amount of greenhouse gases as a consequence of the increasing amount of organic matter deposited while the upslope area is eroded. Over time, the perceived sink effect of soil erosion for greenhouse gases is therefore replaced with a neutral or positive emission balance of erosion in agricultural landscapes. Such a switch from none or a negative emission balance of agricultural landscapes to a positive balance carries the risk of accelerating climate change. In this study, we tried to estimate the risk associated with ongoing soil degradation and closing landscape soil organic matter sinks. Currently observed global erosion rates were linked to known limitations of soil

  16. ADSORPSI CONGO RED PADA HUMIN HASIL ISOLASI DARI TANAH HUTAN DAMAR BATURRADEN PURWOKERTO

    Directory of Open Access Journals (Sweden)

    Roy Andreas

    2008-05-01

    Full Text Available Congo red is one of dyes-stuff in textile industry wastwater. If it is thrown directly without waste management process, the dyes could pollute environtment, especially soil. Humin has OH phenolic and carboxylic functional group which can interacted with congo red. The aim of this study is recognize humin characteristic from the soil of Baturraden resin forest, determine the adsorption capacity and isotherm adsorption pattern of congo red by humin from the soil of Baturraden resin forest. Humin in this study is isolated from the soil of Baturraden resin forest. soil cleared of gravel and dirt, then it extracted by using NaOH of nitrogen atmosphere and purified to applies mixture HCl:HF. Humin that is obtained is used to be interacted with dyes with various contact time, various of pH and concentration of congo red so that the adsorption capacities and isotherm adsorption pattern can be obtained. Result of the study showed that the humin has water content 34.92 %, dust content 8.64 %, total acidity 475 cmol/Kg, carboxylic rate 272.5 cmol/Kg, and OH Phenolic rate 202.5 cmol/Kg. The optimum contact time of congo red adsorption by humin is 40 minutes, with optimum pH is 7, adsorption capacities 57.14 mg/g and isotherm adsorption pattern of congo red by humin is follow the pattern of Langmuir isotherm adsorption.

  17. Eroded dentin does not jeopardize the bond strength of adhesive restorative materials

    Directory of Open Access Journals (Sweden)

    Janaina Barros Cruz

    2012-08-01

    Full Text Available This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva and eroded dentin (pH cycling model - 3× / cola drink for 7 days. Specimens were then reassigned according to restorative material: glass ionomer cement (KetacTM Molar Easy Mix, resin-modified glass ionomer cement (VitremerTM or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250. Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37ºC. The failure mode was evaluated using a stereomicroscope (400×. Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (α = 0.05. Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001. For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

  18. Monitoring and assessment of soil erosion at micro-scale and macro-scale in forests affected by fire damage in northern Iran.

    Science.gov (United States)

    Akbarzadeh, Ali; Ghorbani-Dashtaki, Shoja; Naderi-Khorasgani, Mehdi; Kerry, Ruth; Taghizadeh-Mehrjardi, Ruhollah

    2016-12-01

    Understanding the occurrence of erosion processes at large scales is very difficult without studying them at small scales. In this study, soil erosion parameters were investigated at micro-scale and macro-scale in forests in northern Iran. Surface erosion and some vegetation attributes were measured at the watershed scale in 30 parcels of land which were separated into 15 fire-affected (burned) forests and 15 original (unburned) forests adjacent to the burned sites. The soil erodibility factor and splash erosion were also determined at the micro-plot scale within each burned and unburned site. Furthermore, soil sampling and infiltration studies were carried out at 80 other sites, as well as the 30 burned and unburned sites, (a total of 110 points) to create a map of the soil erodibility factor at the regional scale. Maps of topography, rainfall, and cover-management were also determined for the study area. The maps of erosion risk and erosion risk potential were finally prepared for the study area using the Revised Universal Soil Loss Equation (RUSLE) procedure. Results indicated that destruction of the protective cover of forested areas by fire had significant effects on splash erosion and the soil erodibility factor at the micro-plot scale and also on surface erosion, erosion risk, and erosion risk potential at the watershed scale. Moreover, the results showed that correlation coefficients between different variables at the micro-plot and watershed scales were positive and significant. Finally, assessment and monitoring of the erosion maps at the regional scale showed that the central and western parts of the study area were more susceptible to erosion compared with the western regions due to more intense crop-management, greater soil erodibility, and more rainfall. The relationships between erosion parameters and the most important vegetation attributes were also used to provide models with equations that were specific to the study region. The results of this

  19. Comparative evaluation of geotechnical properties of red tropical ...

    African Journals Online (AJOL)

    Geotechnical tests were carried out on a total of six samples of red tropical soils developed over sedimentary and Basement terrains, made up of three soils and three termite hills samples. The soil samples were subjected to geotechnical analyses which included the Particle size analysis, Specific Gravity, Atterberg Limits ...

  20. Erodibilidade de um nitossolo háplico alumínico determinada em condições de campo Erodibility of a typic hapludox evaluated under field conditions

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2007-06-01

    Full Text Available O termo erodibilidade do solo (fator K na Equação Universal de Perda de Solo - EUPS expressa a suscetibilidade natural do solo à erosão hídrica. O fator K representa a taxa de perda de solo por unidade de erosividade da chuva (fator R na EUPS. O conhecimento do fator K, juntamente com os demais fatores do modelo EUPS, é importante no planejamento conservacionista, pois, por meio desse modelo, estimam-se as perdas médias anuais de solo esperadas para determinadas condições. Dados de perda de solo, obtidos em campo em solo sem cultivo e com preparo convencional, sob condições de chuva simulada, no período de novembro de 2001 a março de 2004, no sul do Planalto Catarinense, foram utilizados para calcular o fator K de um Nitossolo Háplico alumínico típico, com declividade média de 0,15 m m-1. O fator K foi calculado pela razão entre as perdas de solo e a erosividade das chuvas e, ainda, estimado por análise de regressão linear simples entre estas duas variáveis. Foram utilizados valores de erosividade das chuvas (EI30 de 11 testes de chuva simulada e suas respectivas perdas de solo, obtidas em parcelas de 3,5 x 11,0 m, desprovidas de vegetação e de crosta superficial, após terem sido mantidas sem cultivo e sob preparo de solo contínuo por dois anos. O preparo do solo, executado no sentido do declive, duas vezes ao ano, consistiu de uma aração e duas gradagens. A crosta superficial e as plantas espontâneas eram mecanicamente eliminadas por meio de escarificação e de capina manual com enxada. O fator erodibilidade do solo determinado para o Nitossolo Háplico alumínico foi de 0,011 Mg ha h ha-1 MJ-1 mm-1 quando calculado por meio da razão entre os valores anuais de perda de solo e do índice de erosividade das chuvas e de 0,012 Mg ha h ha-1 MJ-1 mm-1 quando estimado por meio de regressão linear simples entre estas duas variáveis.The term soil erodibility (factor K in the Universal Soil Loss Equation - USLE expresses

  1. Evaluation of the rusle and disturbed wepp erosion models for predicting soil loss in the first year after wildfire in NW Spain.

    Science.gov (United States)

    Fernández, Cristina; Vega, José A

    2018-05-04

    Severe fire greatly increases soil erosion rates and overland-flow in forest land. Soil erosion prediction models are essential for estimating fire impacts and planning post-fire emergency responses. We evaluated the performance of a) the Revised Universal Soil Loss Equation (RUSLE), modified by inclusion of an alternative equation for the soil erodibility factor, and b) the Disturbed WEPP model, by comparing the soil loss predicted by the models and the soil loss measured in the first year after wildfire in 44 experimental field plots in NW Spain. The Disturbed WEPP has not previously been validated with field data for use in NW Spain; validation studies are also very scarce in other areas. We found that both models underestimated the erosion rates. The accuracy of the RUSLE model was low, even after inclusion of a modified soil erodibility factor accounting for high contents of soil organic matter. We conclude that neither model is suitable for predicting soil erosion in the first year after fire in NW Spain and suggest that soil burn severity should be given greater weighting in post-fire soil erosion modelling. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    Energy Technology Data Exchange (ETDEWEB)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.

    2009-07-01

    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m{sup -}2 yr{sup -}1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59{+-}0.43 g kg{sup -}1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha{sup -}1 yr{sup -}1. (Author) 20 refs.

  3. Influence of land use changes on soil carbon stock and soil carbon erosion in a Mediterranean catchment

    International Nuclear Information System (INIS)

    Boix-Fayos, C.; Martinez-Mena, M.; Vente, J. de; Albaladejo, J.

    2009-01-01

    The effect of changing land uses on the organic soil carbon (C) stock and the soil C transported by water erosion and buried in depositions wedges behring check-dams was estimated in a Mediterranean catchment in SE Spin. the 57% decrease in agricultural areas and 1.5-fold increase of the total forest cover between 1956 and 1997 induced an accumulation rate of total organic carbon (TOC) in the soil of 10.73 g m - 2 yr - 1. The mineral-associated organic carbon (MOC) represented the 70% of the soil carbon pool, the particulate organic carbon (POC) represented a 30% of the soil carbon pool. The average sediments/soil enrichment ratio at the sub catchment scale (8-125 ha) was 0.59±0.43 g kg - 1. Eroded soil C accounted for between 2% to 78% of the soil c stock in the first 5 cm of the soil in the subcatchments. the C erosion rate varied between 0.008 and 0.2 t ha - 1 yr - 1. (Author) 20 refs.

  4. Surficial geology and soils of the Elmira-Williamsport region, New York and Pennsylvania, with a section on forest regions and great soil groups

    Science.gov (United States)

    Denny, Charles Storrow; Lyford, Walter Henry; Goodlett, J.C.

    1963-01-01

    soils form rapidly. Sols Bruns Acides are the most extensive great soil group occurring throughout the region. Podzols and Gray-Brown Podzolic soils are also widespread, and on long, smooth slopes Low Humic-Gley soils are common. Organic soils are of small extent. South of the Wisconsin drift border, the surficial mantle consists chiefly of alluvial, colluvial, or residual deposits of Wisconsin or of Recent age, but there are many small isolated patches of older, strongly weathered materials of pre-Wisconsin age. Although such older materials are commonly overlain or mixed with less weathered mantle, the yellowish-red color, characteristic of the strongly weathered material, is generally not masked. Some of the older material is drift, presumed to be of Illionian age, that was probably strongly weathered to a considerable depth in Sangamon time and has been greatly eroded since the last interglacial period. No clear-cut exposure of Wisconsin drift resting on older drift or other strongly weathered mantle has been found. The old drift and the other strongly weathered materials apparently acquired their present red color in pre-Wisconsin time. Where exposed at the surface, such strongly weathered mantle is the parent material of modern Red-Yellow Podzolic soils. Sols Bruns Acides and Gray-Brown Podzolic soils, developed on slightly weathered parent materials, are found adjacent to these red soils. This suggests that these Red-Yellow Podzolic soils probably developed from strongly weathered parent materials. No buried soils were found nor were any soils recognized as relics from pre-Wisconsin time. Comparison of a map of the great soil groups with a map of the vegetation of the region, prepared by John C. Goodlett, does not reveal a close relation. Laboratory analyses of samples collected furnish data on textural, mineralogical, and chemical changes caused by weathering and soil formation. The results indicate that the amount of chemical weathering which the Wisconsin

  5. [Effect of different soil types on the remediation of copper-pyrene compound contaminated soils by EK-oxidation process].

    Science.gov (United States)

    Fan, Guang-Ping; Cang, Long; Zhou, Dong-Mei; Zhou, Li-Xiang

    2011-11-01

    The effect of different soil types (red soil,yellow-brown soil and black soil) on the electrokinetic (EK)-oxidation remediation of heavy metals-organic pollutant contaminated soil was studied in laboratory-scale experiments. Copper and pyrene were chosen as model pollutant, and 12% H2O2, 10% hydroxypropyl-beta-cyclodextrin and 0.01 mol x L(-1) NaNO3 solution were added into the anode and cathode cell. The applied voltage was 1 V x cm(-1). After 15 days of EK remediation, the removal rate of pyrene and copper in red soil, yellow-brown soil and black soil were 38.5%, 46.8%, 51.3% for pyrene and 85.0%, 22.6%, 24.1% for Cu, respectively. The high pH of black soil produced high electroosmotic flow and increased the exposure of oxidants and pollutants, meanwhile the low clay content was also conducive to the desorption of pyrene. The low pH and organic matter of red soil affected the chemical species distribution of Cu and increased its removal rate. It is concluded that soil pH, clay content and heavy metal speciation in soil are the dominant factors affecting the migration and removal efficiency of pollutants.

  6. Modelling Soil Erosion in the Densu River Basin Using RUSLE and GIS Tools.

    Science.gov (United States)

    Ashiagbori, G; Forkuo, E K; Laari, P; Aabeyir, R

    2014-07-01

    Soil erosion involves detachment and transport of soil particles from top soil layers, degrading soil quality and reducing the productivity of affected lands. Soil eroded from the upland catchment causes depletion of fertile agricultural land and the resulting sediment deposited at the river networks creates river morphological change and reservoir sedimentation problems. However, land managers and policy makers are more interested in the spatial distribution of soil erosion risk than in absolute values of soil erosion loss. The aim of this paper is to model the spatial distribution of soil erosion in Densu River Basin of Ghana using RUSLE and GIS tools and to use the model to explore the relationship between erosion susceptibility, slope and land use/land cover (LULC) in the Basin. The rainfall map, digital elevation model, soil type map, and land cover map, were input data in the soil erosion model developed. This model was then categorized into four different erosion risk classes. The developed soil erosion map was then overlaid with the slope and LULC maps of the study area to explore their effects on erosion susceptibility of the soil in the Densu River Basin. The Model, predicted 88% of the basin as low erosion risk and 6% as moderate erosion risk, 3% as high erosion risk and 3% as severe risk. The high and severe erosion areas were distributed mainly within the areas of high slope gradient and also sections of the moderate forest LULC class. Also, the areas within the moderate forest LULC class found to have high erosion risk, had an intersecting high erodibility soil group.

  7. Evaluation of a model framework to estimate soil and soil organic carbon redistribution by water and tillage using 137Cs in two U.S. Midwest agricultural fields

    Science.gov (United States)

    Young, Claudia J.; Liu, Shuguang; Schumacher, Joseph A.; Schumacher, Thomas E.; Kaspar, Thomas C.; McCarty, Gregory W.; Napton, Darrell; Jaynes, Dan B.

    2014-01-01

    Cultivated lands in the U.S. Midwest have been affected by soil erosion, causing soil organic carbon (SOC) redistribution in the landscape and other environmental and agricultural problems. The importance of SOC redistribution on soil productivity and crop yield, however, is still uncertain. In this study, we used a model framework, which includes the Unit Stream Power-based Erosion Deposition (USPED) and the Tillage Erosion Prediction (TEP) models, to understand the soil and SOC redistribution caused by water and tillage erosion in two agricultural fields in the U.S. Midwest. This model framework was evaluated for different digital elevation model (DEM) spatial resolutions (10-m, 24-m, 30-m, and 56-m) and topographic exponents (m = 1.0–1.6 and n = 1.0–1.3) using soil redistribution rates from 137Cs measurements. The results showed that the aggregated 24-m DEM, m = 1.4 and n = 1.0 for rill erosion, and m = 1.0 and n = 1.0 for sheet erosion, provided the best fit with the observation data at both sites. Moreover, estimated average SOC redistributions were 1.3 ± 9.8 g C m− 2 yr− 1 in field site 1 and 3.6 ± 14.3 g C m− 2 yr− 1 in field site 2. Spatial distribution patterns showed SOC loss (negative values) in the eroded areas and SOC gain (positive value) in the deposition areas. This study demonstrated the importance of the spatial resolution and the topographic exponents to estimate and map soil redistribution and the SOC dynamics throughout the landscape, helping to identify places where erosion and deposition from water and tillage are occurring at high rates. Additional research is needed to improve the application of the model framework for use in local and regional studies where rainfall erosivity and cover management factors vary. Therefore, using this model framework can help to improve the information about the spatial distribution of soil erosion across agricultural landscapes and to gain a better understanding of SOC

  8. Arbuscular mycorrhiza and their effect on the soil structure in farms with agroecological and intensive management

    Directory of Open Access Journals (Sweden)

    Juan David Lozano Sánchez

    2015-10-01

    Full Text Available Arbuscular mycorrhizal fungi help to reduce the damage caused by erosion and maintain soil structure through the production of mycelium and adhering substances. This study evaluated the structural stability; estimated the diversity and density of mycorrhizal spores present in three systems of soil (eroded, forest and coffee plantations in the rural area of Dagua, Valle del Cauca, Colombia. The systems evaluated were classified as farms with intensive or agroecological management. There were 25 morphospecies of mycorrhiza grouped in 13 genera, being Glomus and Entrophospora the most representative. The mean index values of mean weight (DPM and geometric (DGM diameters and diversity of mycorrhizal spores were statistically higher in farms with agroecological management than in farms with intensive management. The aggregate stability analysis revealed that eroded soils have significantly lower stability than forest and crop soils. A statistically significant correlation was found between diversity (r = 0.579 and spore density (r = 0.66 regarding DGM, and DPM with Shannon diversity (r = 0.54. Differences in practices, use and soil management affect mycorrhizal diversity found on farms and its effect such as particle aggregation agent generates remarkable changes in the stability and soil structure of evaluated areas. It is concluded, that agroecological management tends to favour both mycorrhizae and the structure of soils.

  9. Comparative Evaluation of Geotechnical Properties of Red Tropical ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-09

    Dec 9, 2017 ... Keywords: Red tropical soils, Geotechnical, termite hills, subgrade, suitability, construction. A considerable .... air-free distilled water was added so that the soil in the bottle is just ..... Iron Isotope composition of. Iron oxide as a ...

  10. Meteoric 10Be in soil profiles - A global meta-analysis

    Science.gov (United States)

    Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.

    2010-01-01

    In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.

  11. Contribution of arbuscular mycorrhizal fungus to red kidney and ...

    African Journals Online (AJOL)

    ... fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. ... artificially contaminated with high oncentrations of zinc, copper, lead and cadmium. ... strategies of remediation of highly heavy metal contaminated soils.

  12. Soil Health Management under Hill Agroecosystem of North East India

    Directory of Open Access Journals (Sweden)

    R. Saha

    2012-01-01

    Full Text Available The deterioration of soil quality/health is the combined result of soil fertility, biological degradation (decline of organic matter, biomass C, decrease in activity and diversity of soil fauna, increase in erodibility, acidity, and salinity, and exposure of compact subsoil of poor physicochemical properties. Northeast India is characterized by high soil acidity/Al+3 toxicity, heavy soil, and carbon loss, severe water scarcity during most parts of year though it is known as high rainfall area. The extent of soil and nutrient transfer, causing environmental degradation in North eastern India, has been estimated to be about 601 million tones of soil, and 685.8, 99.8, 511.1, 22.6, 14.0, 57.1, and 43.0 thousand tones of N, P, K, Mn, Zn, Ca, and Mg, respectively. Excessive deforestation coupled with shifting cultivation practices have resulted in tremendous soil loss (200 t/ha/yr, poor soil physical health in this region. Studies on soil erodibility characteristics under various land use systems in Northeastern Hill (NEH Region depicted that shifting cultivation had the highest erosion ratio (12.46 and soil loss (30.2–170.2 t/ha/yr, followed by conventional agriculture system (10.42 and 5.10–68.20 t/ha/yr, resp.. The challenge before us is to maintain equilibrium between resources and their use to have a stable ecosystem. Agroforestry systems like agri-horti-silvi-pastoral system performed better over shifting cultivation in terms of improvement in soil organic carbon; SOC (44.8%, mean weight diameter; MWD (29.4%, dispersion ratio (52.9%, soil loss (99.3%, soil erosion ratio (45.9%, and in-situ soil moisture conservation (20.6% under the high rainfall, moderate to steep slopes, and shallow soil depth conditions. Multipurpose trees (MPTs also played an important role on soil rejuvenation. Michelia oblonga is reported to be a better choice as bioameliorant for these soils as continuous leaf litter and root exudates improved soil physical

  13. sessment of ground water contamination in Erode District, Tamilnadu

    African Journals Online (AJOL)

    A systematic study has been carried out to assess the water contamination and the effect of the tanneries and dyeing industries effluents on Erode District, Tamil Nadu. Ten (10) sampling locations were selected in and around industries. The water samples were collected from the selected sampling points. The samples ...

  14. Soil wind erosion in ecological olive trees in the Tabernas desert (southeastern Spain): a wind tunnel experiment

    Science.gov (United States)

    Asensio, Carlos; Lozano, Francisco Javier; Gallardo, Pedro; Giménez, Antonio

    2016-08-01

    Wind erosion is a key component of the soil degradation processes. The purpose of this study is to find out the influence of material loss from wind on soil properties for different soil types and changes in soil properties in olive groves when they are tilled. The study area is located in the north of the Tabernas Desert, in the province of Almería, southeastern Spain. It is one of the driest areas in Europe, with a semiarid thermo-Mediterranean type of climate. We used a new wind tunnel model over three different soil types (olive-cropped Calcisol, Cambisol and Luvisol) and studied micro-plot losses and deposits detected by an integrated laser scanner. We also studied the image processing possibilities for examining the particles attached to collector plates located at the end of the tunnel to determine their characteristics and whether they were applicable to the setup. Samples collected in the traps at the end of the tunnel were analyzed. We paid special attention to the influence of organic carbon, carbonate and clay contents because of their special impact on soil crusting and the wind-erodible fraction. A principal components analysis (PCA) was carried out to find any relations on generated dust properties and the intensity and behavior of those relationships. Component 1 separated data with high N and OC contents from samples high in fine silt, CO3= and available K content. Component 2 separated data with high coarse silt and clay contents from data with high fine sand content. Component 3 was an indicator of available P2O5 content. Analysis of variance (ANOVA) was carried out to analyze the effect of soil type and sampling height on different properties of trapped dust. Calculations based on tunnel data showed overestimation of erosion in soil types and calculation of the fraction of soil erodible by wind done by other authors for Spanish soils. As the highest loss was found in Cambisols, mainly due to the effect on soil crusting and the wind-erodible

  15. Long-term modeling of soil C erosion and sequestration at the small watershed scale

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, R.C.; Thomson, A.M. [The Joint Global Change Research Institute, 8400 Baltimore Avenue, Suite 201, College Park, MD 20740-2496 (United States); Williams, J.R. [Blacklands Research Center, Texas A and M University, 808 East Blacklands Road, Temple, TX 76502 (United States); Post, W.M. [Oak Ridge National Laboratory, Building 1509, Bethel Valley Road, PO Box 2008 MS6335, Oak Ridge, TN 537831-6335 (United States); McGill, W.B. [College of Science and Management, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9 (Canada); Owens, L.B. [North Appalachian Experimental Watershed, USDA-Agricultural Research Station, 28850 SR 621, Coshocton, OH 43812-0488 (United States); Lal, R. [School of Natural Resources Food, Agricultural and Environmental Sciences, The Ohio State University, 422B Kottman Hall, 2021 Coffey Road, Columbus, OH 43210 (United States)

    2007-01-15

    The soil C balance is determined by the difference between inputs (e.g., plant litter, organic amendments, depositional C) and outputs (e.g., soil respiration, dissolved organic C leaching, and eroded C). There is a need to improve our understanding of whether soil erosion is a sink or a source of atmospheric CO2. The objective of this paper is to discover the long-term influence of soil erosion on the C cycle of managed watersheds near Coshocton, OH. We hypothesize that the amount of eroded C that is deposited in or out of a watershed compares in magnitude to the soil C changes induced via microbial respiration. We applied the erosion productivity impact calculator (EPIC) model to evaluate the role of erosion-deposition processes on the C balance of three small watersheds ({approx}1 ha). Experimental records from the USDA North Appalachian Experimental Watershed facility north of Coshocton, OH were used in the study. Soils are predominantly silt loam and have developed from loess-like deposits over residual bedrock. Management practices in the three watersheds have changed over time. Currently, watershed 118 (W118) is under a corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) no till rotation, W128 is under conventional till continuous corn, and W188 is under no till continuous corn. Simulations of a comprehensive set of ecosystem processes including plant growth, runoff, and water erosion were used to quantify sediment C yields. A simulated sediment C yield of 43 {+-} 22 kg C ha{sup -1} year{sup -1} compared favorably against the observed 31 {+-} 12 kg C ha{sup -1} year{sup -1} in W118. EPIC overestimated the soil C stock in the top 30-cm soil depth in W118 by 21% of the measured value (36.8 Mg C ha{sup -1}). Simulations of soil C stocks in the other two watersheds (42.3 Mg C ha{sup -1} in W128 and 50.4 Mg C ha{sup -1} in W188) were off by <1 Mg C ha{sup -1}. Simulated eroded C re-deposited inside (30-212 kg C ha{sup -1} year{sup -1}) or outside (73{sup -1}79 kg

  16. Persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil.

    Science.gov (United States)

    Mumbo, John; Henkelmann, Bernhard; Abdelaziz, Ahmed; Pfister, Gerd; Nguyen, Nghia; Schroll, Reiner; Munch, Jean Charles; Schramm, Karl-Werner

    2015-01-01

    Halogenated carbazoles have recently been detected in soil and water samples, but their environmental effects and fate are unknown. Eighty-four soil samples obtained from a site with no recorded history of pollution were used to assess the persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil under controlled conditions for 15 months. Soil samples were divided into two temperature conditions, 15 and 20 °C, both under fluctuating soil moisture conditions comprising 19 and 44 drying-rewetting cycles, respectively. This was characterized by natural water loss by evaporation and rewetting to -15 kPa. Accelerated solvent extraction (ASE) and cleanup were performed after incubation. Identification and quantification were done using high-resolution gas chromatogram/mass spectrometer (HRGC/MS), while dioxin-like toxicity was determined by ethoxyresorufin-O-deethylase (EROD) induction in H4IIA rat hepatoma cells assay and multidimensional quantitative structure-activity relationships (mQSAR) modelling. Carbazole, 3-chlorocarbazole and 3,6-dichlorocarbazole were detected including trichlorocarbazole not previously reported in soils. Carbazole and 3-chlorocarbazole showed significant dissipation at 15 °C but not at 20 °C incubating conditions indicating that low temperature could be suitable for dissipation of carbazole and chlorocarbazoles. 3,6-Dichlorocarbazole was resistant at both conditions. Trichlorocarbazole however exhibited a tendency to increase in concentration with time. 3-Chlorocarbazole, 3,6-dibromocarbazole and selected soil extracts exhibited EROD activity. Dioxin-like toxicity did not decrease significantly with time, whereas the sum chlorocarbazole toxic equivalence concentrations (∑TEQ) did not contribute significantly to the soil assay dioxin-like toxicity equivalent concentrations (TCDD-EQ). Carbazole and chlorocarbazoles are persistent with the latter also toxic in natural conditions.

  17. Toxic responses of cytochrome P450 sub-enzyme activities to heavy metals exposure in soil and correlation with their bioaccumulation in Eisenia fetida.

    Science.gov (United States)

    Cao, Xiufeng; Bi, Ran; Song, Yufang

    2017-10-01

    The dose- and time- dependent responses of cytochrome P450 (CYP) sub-enzyme activities to heavy metals in soil, and the relationships between biomarker responses and metal bioaccumulation in Eisenia fetida were evaluated. Earthworms were exposed to soils spiked with increasing doses of Cd, Cu, Pb or Zn for 21 d. Results demonstrated that EROD and CYP3A4 activities responded significantly with increasing dose and exposure duration. EROD activity significantly (P metal burdens had significant correlation with the total metal concentrations in soil (P metal concentration in soil. The order of metal bioavailability to E. fetida was Cd > Zn > Cu > Pb. CYP3A4 activity in Pb-exposed earthworms had a significant correlation with the accumulated metal (P heavy metals exposure, and we also concluded that different biomarkers with multiple durations could be conducted in the eco-toxicological diagnosis of soil pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Effect of Land Use Change on Transformation of Relief and Modification of Soils in Undulating Loess Area of East Poland

    Directory of Open Access Journals (Sweden)

    Jerzy Rejman

    2014-01-01

    Full Text Available The change of primary forest areas into arable land involves the transformation of relief and modification of soils. In this study, we hypothesized that relatively flat loess area was largely transformed after the change of land use due to erosion. The modifications in soil pedons and distribution of soil properties were studied after 185 years of arable land use. Structure of pedons and solum depth were measured in 128 and soil texture and soil organic carbon in 39 points. Results showed that soils of noneroded and eroded profiles occupied 14 and 50%, respectively, and depositional soils 36% of the area. As a consequence, the clay, silt, and SOC concentration varied greatly in the plowed layer and subsoil. The reconstructed profiles of eroded soils and depositional soils without the accumulation were used to develop the map of past relief. The average inclination of slopes decreased from 4.3 to 2.2°, and slopes >5° vanished in the present topography. Total erosion was 23.8 Mg ha−1 year−1. From that amount, 88% was deposited within the study area, and 12% was removed outside. The study confirmed the hypothesis of the significant effect of the land use change on relief and soils in loess areas.

  19. The Influence of Eroded Blades on Wind Turbine Performance Using Numerical Simulations

    Directory of Open Access Journals (Sweden)

    Matthias Schramm

    2017-09-01

    Full Text Available During their operation, wind turbine blades are eroded due to rain and hail, or they are contaminated with insects. Since the relative inflow velocity is higher at the outer than at the inner part of the blades, erosion occurs mostly at the outer blade region. In order to prevent strong erosion, it is possible to install a leading edge protection, which can be applied to the blades after the initial installation, but changes the shape of the initial airfoil sections. It is unclear how this modification influences the aerodynamic performance of the turbine. Hence, it is investigated in this work. The NREL 5 MW turbine is simulated with clean and eroded blades, which are compared to coated blades equipped with leading edge protection. Aerodynamic polars are generated by means of Computational Fluid Dynamics, and load calculations are conducted using the blade element momentum theory. The analysis in this work shows that, compared to clean rotor blades, the worse aerodynamic behaviour of strongly eroded blades can lead to power losses of 9 % . In contrast, coated blades only have a small impact on the turbine power of less than 1 % .

  20. Biology and ecology of red alder.

    Science.gov (United States)

    Constance A. Harrington

    2006-01-01

    Red alder is the most common hardwood in the Pacific Northwest with a range stretching from coastal southeast Alaska to southern California and east to isolated populations in Idaho. Soil moisture during the growing season influences where it grows and its growth rates; it can tolerate poor drainage but not droughty, hot sites. Due to its tolerance of wet soil...

  1. Fallout radionuclide based techniques for assessing the effectiveness of soil conservation measures in different eroded regions of China

    International Nuclear Information System (INIS)

    Yu Hanqing; Li Yong; Liu Guoqiang; Li Junjie; Nguyen, M.L.; Funk, R.

    2012-01-01

    Using fallout radionuclide techniques (FRN), we investigated the extent of soil erosion and to quantify the beneficial effects of soil conservation measures at four sites (Xichang city in the Yangtze upriver, Yan'an in the Loess Plateau, Fengning in the wind erosion region of northern China, and Baiquan in black soil region of north-eastern China) extending from South West (SW) to North East (NE) China. At the Xichang site of SW-China, the combined use of FRN 137 Cs and 210 Pbex measurements demonstrated that the effectiveness of vegetation species in reducing soil erosion decreased in the following order: shrubs > trees with litter layer > grasses > trees without litter layer. At the Yan'an site of Loess Plateau, sediment production estimated by 137 Cs declined by 49% due to terracing and by 80% due to vegetated (with grass forest) compared to the cultivated hillslopes. Vegetated hillslope with grasses and forest increased soil organic matter (SOM) by 255%, soil available N (AN) by 198%, and soil available P (AP) by 18% while terracing increased SOM by 121%, soil AN by 103%, and soil AP by 162% compared with the entire cultivated hillslope. Both terracing and vegetating hillslopes were found to enhance soil porosity as shown by a decrease in soil bulk density (1.6% and 6.4%, respectively). At the Fengning site, data from 7 Be measurements indicated that four years of no tillage with high crop residues (50 ∼ 56 cm depth) reduced soil erosion by 44% and no tillage with low residues (25 cm depth) reduced soil erosion rates by 33% when compared with conventional tillage practices. At the Baiquan site in NE-China, soil loss as measured by 137 Cs tracer, decreased by 14% due to terracing and by 34% due to contoured tillage. Our results suggested that shrub cover and composite structure of forest and grass are the effective practices to control hillslope erosion in SW-China, while terracing forest-grass structure can greatly reduce soil erosion and improve soil quality

  2. Evaluating the Invasion of Red Cedar (Juniperus viriginiana) Downstream of Gavins Point Dam, Missouri National Recreational River

    Science.gov (United States)

    Greene, S.; Knox, J. C.

    2013-12-01

    Gavins Point Dam, the final dam on the main-stem Missouri River, alters downstream river form and function. Throughout a 59-mile downstream reach, the dam reduces overbank flooding and lowers the water surface by 1-3 meters. Under the dam-created hydro-geomorphic conditions, native cottonwood trees are unable to regenerate. The limited regeneration of native riparian cottonwoods, the lowered water surface, and the reduced overbank flooding creates a terrace environment within the riparian habitat. Consequently, red cedars, a native upland tree, are invading this new terrace-like riparian environment. To this end, we apply Bayesian statistical models to investigate patterns of red cedar riparian invasion and assess ecosystem function patterns along this flow-regulated reach. We set up plots within cottonwood stands along a 59-km reach downstream of Gavins Point Dam. Within each plot, we collected soil samples, litter samples, stem densities of trees, and collected cores of the largest cottonwood and largest red cedar in each plot. To assess influences of red cedar on soil indicators of ecosystem function and general patterns of ecosystem function within the study area, we measured organic carbon, nitrogen, pH, electrical conductivity, and hydrophobicity. To determine drivers and patterns of invasion and ecosystem function we conducted Bayesian linear regressions and means comparison tests. Red cedars existed along the floodplain prior to regulation. However, according to our tree age data and stem density data red cedars existed at a lower population than today. We found that 2 out of 565 red cedars established before the dam was completed. Also, we found no significant difference in soil properties between soils with established red cedar and soils with established cottonwood. By studying soil texture data, and interpreting fluvial geomorphic surfaces in the field and via aerial photography, we found soil texture generally reflects the type of fluvial surface

  3. Recent flow regime and sedimentological evolution of a fluvial system as the main factors controlling spatial distribution of arsenic in groundwater (Red River, Vietnam)

    DEFF Research Database (Denmark)

    Kazmierczak, J.; Larsen, F.; Jakobsen, R.

    2016-01-01

    sediments was partially eroded during the Holocene and covered by sand and clay deposited in fluvial environments. Sedimentary processes lead to the development of two flow systems. Shallow groundwater discharges either to the local surface water bodies or, in the areas where low permeable sediments...... isolating Pleistocene and Holocene aquifers were eroded, to the deep groundwater flow system discharging to Red River. Previously reported pattern of arsenic groundwater concentrations decreasing with an increasing sediment age is modified by the observed flow regime. Connection of the younger and older...... river channels resulted in a transport of high arsenic concentrations towards the Pleistocene aquifer, where low arsenic concentrations were expected....

  4. Land degradation of Taleghan drainage basin, Iran from saline and alkaline marly formations

    International Nuclear Information System (INIS)

    Zakikhani, K.; Feiznia, S.; Hosseini, S. H.

    2009-01-01

    In Iran fine-grained, saline, alkaline and erodible Tertiary marly formations are exposed in many geological zones and play important role in the formation of present landforms. They also play important role in degradation of water resources and soils as diffuse sources, they are the main sources of suspension loads of many rivers and are endless sources of sediments for sand dunes. These marly formations are present in Zagros, Central Iran, Alborz and Kopeh Dagh geological Zones and consists of different geological formations such as Gachsaran, Mishan and Razak Formations ( in Zagros), Lower Red and Upper Red Formations ( in Central Iran) and Neogene Red Beds (in Albords and Kopeh Dagh). (Author)

  5. Land degradation of Taleghan drainage basin, Iran from saline and alkaline marly formations

    Energy Technology Data Exchange (ETDEWEB)

    Zakikhani, K.; Feiznia, S.; Hosseini, S. H.

    2009-07-01

    In Iran fine-grained, saline, alkaline and erodible Tertiary marly formations are exposed in many geological zones and play important role in the formation of present landforms. They also play important role in degradation of water resources and soils as diffuse sources, they are the main sources of suspension loads of many rivers and are endless sources of sediments for sand dunes. These marly formations are present in Zagros, Central Iran, Alborz and Kopeh Dagh geological Zones and consists of different geological formations such as Gachsaran, Mishan and Razak Formations ( in Zagros), Lower Red and Upper Red Formations ( in Central Iran) and Neogene Red Beds (in Albords and Kopeh Dagh). (Author)

  6. Interrill soil erosion on flysch soil under different types of land use in Slovenian Istria

    International Nuclear Information System (INIS)

    Zorn, M; Petan, S

    2008-01-01

    In this paper the results of interrill soil erosion measurements from recent years in Slovenian Istria are presented. Eight l-m2 erosion plots were set up on locations with different land use types: on bare soil in a young olive grove (2), in an overgrown meadow (2) and in a forest (4). Surface runoff from each of the erosion plots was collected in reservoirs. As a rule, samples from the reservoirs were taken weekly. The samples were dried in the laboratory, where the concentration of undissolved particles was determined. A tipping bucket rain gauge was located next to the erosion plots for monitoring of precipitation and intensity of erosive events. The results show that only a few major erosive events are responsible for the greater part of the eroded soil. Interrill soil erosion in the first year (May 2005-April 2006) was estimated at 90.1 t/ha on bare soil with a slope of 5.5 0 , and 118.2 t/ha in the second year (August 2006-July 2007), despite the lower cumulative rainfall amount.

  7. Bond strength and interfacial morphology of orthodontic brackets bonded to eroded enamel treated with calcium silicate-sodium phosphate salts or resin infiltration.

    Science.gov (United States)

    Costenoble, Aline; Vennat, Elsa; Attal, Jean-Pierre; Dursun, Elisabeth

    2016-11-01

     To investigate the shear bond strength (SBS) of orthodontic brackets bonded to eroded enamel treated with preventive approaches and to examine the enamel/bracket interfaces.  Ninety-one brackets were bonded to seven groups of enamel samples: sound; eroded; eroded+treated with calcium silicate-sodium phosphate salts (CSP); eroded+infiltrated by ICON ® ; eroded+infiltrated by ICON ® and brackets bonded with 1-month delay; eroded+infiltrated by an experimental resin; and eroded+infiltrated by an experimental resin and brackets bonded with 1-month delay. For each group, 12 samples were tested in SBS and bond failure was assessed with the adhesive remnant index (ARI); one sample was examined using scanning electron microscopy (SEM).  Samples treated with CSP or infiltration showed no significant differences in SBS values with sound samples. Infiltrated samples followed by a delayed bonding showed lower SBS values. All of the values remained acceptable. The ARI scores were significantly higher for sound enamel, eroded, and treated with CSP groups than for all infiltrated samples. SEM examinations corroborated the findings.  Using CSP or resin infiltration before orthodontic bonding does not jeopardize the bonding quality. The orthodontic bonding should be performed shortly after the resin infiltration.

  8. On the role of "internal variability" on soil erosion assessment

    Science.gov (United States)

    Kim, Jongho; Ivanov, Valeriy; Fatichi, Simone

    2017-04-01

    Empirical data demonstrate that soil loss is highly non-unique with respect to meteorological or even runoff forcing and its frequency distributions exhibit heavy tails. However, all current erosion assessments do not describe the large associated uncertainties of temporal erosion variability and make unjustified assumptions by relying on central tendencies. Thus, the predictive skill of prognostic models and reliability of national-scale assessments have been repeatedly questioned. In this study, we attempt to reveal that the high variability in soil losses can be attributed to two sources: (1) 'external variability' referring to the uncertainties originating at macro-scale, such as climate, topography, and land use, which has been extensively studied; (2) 'geomorphic internal variability' referring to the micro-scale variations of pedologic properties (e.g., surface erodibility in soils with multi-sized particles), hydrologic properties (e.g., soil structure and degree of saturation), and hydraulic properties (e.g., surface roughness and surface topography). Using data and a physical hydraulic, hydrologic, and erosion and sediment transport model, we show that the geomorphic internal variability summarized by spatio-temporal variability in surface erodibility properties is a considerable source of uncertainty in erosion estimates and represents an overlooked but vital element of geomorphic response. The conclusion is that predictive frameworks of soil erosion should embed stochastic components together with deterministic assessments, if they do not want to largely underestimate uncertainty. Acknowledgement: This study was supported by the Basic Science Research Program of the National Research Foundation of Korea funded by the Ministry of Education (2016R1D1A1B03931886).

  9. Phases and rates of iron and magnetism changes during paddy soil development on calcareous marine sediment and acid Quaternary red-clay.

    Science.gov (United States)

    Huang, Laiming; Jia, Xiaoxu; Shao, Ming'an; Chen, Liumei; Han, Guangzhong; Zhang, Ganlin

    2018-01-11

    Dynamic changes in Fe oxides and magnetic properties during natural pedogenesis are well documented, but variations and controls of Fe and magnetism changes during anthropedogenesis of paddy soils strongly affected by human activities remain poorly understood. We investigated temporal changes in different Fe pools and magnetic parameters in soil profiles from two contrasting paddy soil chronosequences developed on calcareous marine sediment and acid Quaternary red clay in Southern China to understand the directions, phases and rates of Fe and magnetism evolution in Anthrosols. Results showed that paddy soil evolution under the influence of artificial submergence and drainage caused changes in soil moisture regimes and redox conditions with both time and depth that controlled Fe transport and redistribution, leading to increasing profile differentiation of Fe oxides, rapid decrease of magnetic parameters, and formation of diagnostic horizons and features, irrespective of the different parent materials. However, the initial parent material characteristics (pH, Fe content and composition, weathering degree and landscape positions) exerted a strong influence on the rates and trajectories of Fe oxides evolution as well as the phases and rates of magnetism changes. This influence diminished with time as prolonged rice cultivation drove paddy soil evolving to common pedogenic features.

  10. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments.

    Science.gov (United States)

    Lee, Sang-Hwan; Lee, Jin-Soo; Choi, Youn Jeong; Kim, Jeong-Gyu

    2009-11-01

    Chemical stabilization is an in situ remediation method that uses inexpensive amendments to reduce contaminant availability in polluted soil. We tested the effects of several amendments (limestone, red-mud, and furnace slag) on the extractability of heavy metals, microbial activities, phytoavailability of soil metals (assessed using lettuce, Lactuca sativa L.), and availability of heavy metals in ingested soil to the human gastrointestinal system (assessed using the physiologically based extraction test). The application of soil amendments significantly decreased the amount of soluble and extractable heavy metals in the soil (p<0.05). The decreased extractable metal content of soil was accompanied by increased microbial activity and decreased plant uptake of heavy metals. Soil microbial activities (soil respiration, urease, and dehydrogenase activity) significantly increased in limestone and red-mud-amended soils. Red-mud was the most effective treatment in decreasing heavy-metal concentrations in lettuce. Compared to non-amended control soil, lettuce uptake of Cd, Pb, and Zn was reduced 86%, 58%, and 73%, respectively, by the addition of red-mud.

  11. Concentrations of Ca and Mg in early stages of sapwood decay in red spruce, eastern hemlock, red maple, and paper birch

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle; Jody Jellison; Jon Connolly; Jonathan Schilling

    2007-01-01

    The decay of coarse woody debris is a key component in the formation of forest soil and in the biogeochemical cycles of Ca and Mg. We tracked changes in density and concentration of Ca and Mg in sapwood of red maple (Acer rubrum L.), red spruce (Picea rubens Sarg.), paper birch (Betula papyrifera Marsh.), and...

  12. Adsorption, leaching and persistence of carbendazim in Brazilian soils

    International Nuclear Information System (INIS)

    Musumeci, M.R.; Lord, K.A.; Ruegg, E.F.

    1980-01-01

    Sorption, movement and degradation of carbendazin in gley humic, yellow red latosol and red latosol soils was studied in the laboratory using nuclear techniques. Soils rich in organic matter showed higher sorption and lower mobility. Carbendazin persisted in the three soils, higher degradation occuring in the humic gley soil, richest in organic matter. Recovery of carbendazin diminishes with time being lower in the soil richest in organic matter. After an incubation period of 150 days, 2-aminobenzimidazole a compound without fungitoxic activity was detected as the main degradation product of carbendazin. (Author) [pt

  13. Cover crops impact on excess rainfall and soil erosion rates in orchards and potato fields, Israel

    Science.gov (United States)

    Egozi, Roey; Gil, Eshel

    2015-04-01

    Bare soil and high drainage densities are common characteristics of intensive agriculture land. The couplings of these characteristics lead to high runoff and eroded soil volumes leaving the field or the orchard via the local drainage system into the fluvial system. This process increase flood risk due to massive deposition of the coarse fraction of the eroded soil and therefore reduces channel capacity to discharge the increase volumes of concentrated runoff. As a result drainage basin authorities are forced to invest large amount of money in maintaining and enlarging the drainage network. However this approach is un-sustainable. On the other hand, implementing cover crops (CC) and modification to current agricultural practices over the contributing area of the watershed seems to have more benefits and provide sustainable solution. A multi-disciplinary approach applied in commercial potatoes fields and orchards that utilize the benefit of CC shows great success as means of soil and water conservation and weed disinfestation without reduction in the yield, its quality or its profitability. The results indicate that it is possible to grow potatoes and citrus trees under CC with no reduction in yield or nutrient uptake, with more than 95% reduction in soil loss and more than 60% in runoff volumes and peak discharges.

  14. Effects of Red-mud and Organic Fertilizer on Cadmium and Lead Absorption and Distribution in Rice

    Directory of Open Access Journals (Sweden)

    FANG Ya-yu

    2016-09-01

    Full Text Available Effects of red mud and organic fertilizer on distribution of cadmium(Cd and lead (Pb in soil-rice system were studied in field by orthogonal test. Results showed that after red mud and organic fertilizer added including single and combined, the soil pH value increased 0.36~1.90 units, contents of Cd and Pb in rice rhizosphere soil decreased 2.73%~26.25% and 7.15%~34.26% respectively and contents of Cd and Pb in brown rice decreased 23.24%~55.90% and 11.76%~29.41% respectively. In all treatments, single red mud was best, followed by red mud and organic fertilizer combined, single organic fertilizer was worst. The content of Cd and Pb in different rice organs with addition of red mud and organic fertilizer decreased significantly, the contribution rate of Cd and Pb at different stages changed obviously, and influences of adding quantity and fertilizing method were also significant. Different treatments had different effects on contents of Cd and Pb in brown rice. Compared with CK, red mud (4 000 kg·hm-2 was the best for Cd, combination of red mud (4 000 kg·hm-2 and organic fertilizer (1 000 kg·hm-2was the best for Pb, the contents of which were 55.90% and 29.41% less than the control respectively. Although contents of Cd and Pb in brown rice decreased significantly after red mud and organic fertilizer added, contents of Cd and Pb in brown rice were still higher than national food safety standards (GB 2762-2012 because of high polluted degree of Cd (65 times than standard and Pb(7 times than standard in soil. All results showed it was ineffective to control heavy metal pollution in brown rice only by red mud and organic fertilizer addition in high polluted degree soils.

  15. Quality Uncertainty Erodes Trust in Science

    Directory of Open Access Journals (Sweden)

    Simine Vazire

    2017-02-01

    Full Text Available When consumers of science (readers and reviewers lack relevant details about the study design, data, and analyses, they cannot adequately evaluate the strength of a scientific study. Lack of transparency is common in science, and is encouraged by journals that place more emphasis on the aesthetic appeal of a manuscript than the robustness of its scientific claims. In doing this, journals are implicitly encouraging authors to do whatever it takes to obtain eye-catching results. To achieve this, researchers can use common research practices that beautify results at the expense of the robustness of those results (e.g., p-hacking. The problem is not engaging in these practices, but failing to disclose them. A car whose carburetor is duct-taped to the rest of the car might work perfectly fine, but the buyer has a right to know about the duct-taping. Without high levels of transparency in scientific publications, consumers of scientific manuscripts are in a similar position as buyers of used cars – they cannot reliably tell the difference between lemons and high quality findings. This phenomenon – quality uncertainty – has been shown to erode trust in economic markets, such as the used car market. The same problem threatens to erode trust in science. The solution is to increase transparency and give consumers of scientific research the information they need to accurately evaluate research. Transparency would also encourage researchers to be more careful in how they conduct their studies and write up their results. To make this happen, we must tie journals’ reputations to their practices regarding transparency. Reviewers hold a great deal of power to make this happen, by demanding the transparency needed to rigorously evaluate scientific manuscripts. The public expects transparency from science, and appropriately so – we should be held to a higher standard than used car salespeople.

  16. Incorporation of Fine-Grained Sediment Erodibility Measurements into Sediment Transport Modeling, Capitol Lake, Washington

    Science.gov (United States)

    Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig

    2008-01-01

    Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the

  17. New insights into the sorption mechanism of cadmium on red mud

    International Nuclear Information System (INIS)

    Luo Lei; Ma Chenyan; Ma Yibing; Zhang Shuzhen; Lv Jitao; Cui Mingqi

    2011-01-01

    Effectiveness and mechanism of cadmium (Cd) sorption on original, acidified and ball milling nano-particle red muds were investigated using batch sorption experiments, sequential extraction analysis and X-ray absorption near edge structure (XANES) spectroscopy. The maximum sorption capacity of Cd was 0.16, 0.19, and 0.21 mol/kg for the original, acidified, and nano-particle red muds at pH 6.5, respectively. Both acidification and ball-milling treatments significantly enhanced Cd sorption and facilitated transformation of Cd into less extractable fractions. The Cd L III -edge XANES analysis indicated the formation of inner-sphere complexes of Cd similar to XCdOH (X represents surface groups on red mud) on the red mud surfaces although outer-sphere complexes of Cd were the primary species. This work shed light on the potential application of red mud to remediate Cd-contaminated soils and illustrated the promising tool of XANES spectroscopy for speciation of multicomponent systems of environmental relevance. - Graphical abstract: Display Omitted Highlights: → Red mud has a strong affinity for Cd contaminants. → Ball-milling treatments significantly enhance Cd sorption on red mud. → Cadmium partially formed inner-sphere complexes on the red mud surfaces. → Red mud can be used to remediate Cd contaminated soils effectively. - Cadmium can be strongly sorbed and partially forms inner-sphere complexes on red mud.

  18. Erodibility of a mixed mudflat dominated by microphytobenthos and Cerastoderma edule, East Frisian Wadden Sea, Germany

    DEFF Research Database (Denmark)

    Andersen, Thorbjørn Joest; Lanuru, Mahatma; van Bernem, Carlo

    2010-01-01

    Sediment erodibility and a range of physical and biological parameters were measured at an intertidal site in the German Wadden Sea area in June, September and November 2002 and February and April 2003 in order to examine the influence of macrozoobenthos and microphytobenthos on sediment erodibil......Sediment erodibility and a range of physical and biological parameters were measured at an intertidal site in the German Wadden Sea area in June, September and November 2002 and February and April 2003 in order to examine the influence of macrozoobenthos and microphytobenthos on sediment...... erodibility and the temporal variation. The study site was a mixed mudflat situated in the mesotidal Baltrum-Langeoog tidal basin at the East Frisian barrier coast. The mud content at the site was about 35% and the filter-feeding cockle Cerastoderma edule was the dominating macrozoobenthic species (by biomass...... of C. edule will therefore probably increase the content of fine-grained sediments at the surface compared to an abiotic situation. Increasing the amount of fine-grained material in mixed sediments has previously been shown to reduce the erodibility of the sediments and C. edule will therefore...

  19. Effect of CPP-ACP on the remineralization of acid-eroded human tooth enamel: nanomechanical properties and microtribological behaviour study

    International Nuclear Information System (INIS)

    Zheng, L; Zheng, J; Zhang, Y F; Qian, L M; Zhou, Z R

    2013-01-01

    Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel. (paper)

  20. Effect of CPP-ACP on the remineralization of acid-eroded human tooth enamel: nanomechanical properties and microtribological behaviour study

    Science.gov (United States)

    Zheng, L.; Zheng, J.; Zhang, Y. F.; Qian, L. M.; Zhou, Z. R.

    2013-10-01

    Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel.

  1. A Layered Past: the Transformation and Development of Legacy Sediments as Alluvial Soils

    Science.gov (United States)

    Wade, A.; Richter, D. D., Jr.

    2017-12-01

    Legacy sediments are a widespread consequence of post-colonial upland erosion in the United States. Although these deposits are ubiquitous in valley bottoms of the southeastern Piedmont, mature hardwood forests and collapsed stream banks mask their occurrence. While these deposits have been studied for their fluvial dynamics and water quality impacts, they have received less attention in regards to soil structure and formation. In this study, we characterized legacy sediment mineraology, composition and structure to understand how pedogenic processes are overprinting sediment layering in a 40-hectare Piedmont floodplain. To constrain the timing of deposition, we used Pb-210 and C-14 dating on buried charcoal and tree stumps. Our results show that in 100 years of forest regeneration, vegetation and oscillating floodplain conditions have driven these eroded sediment deposits to evolve as soil profiles both in structure and composition. These textural and nutrient gradients have ramifications for the subsurface flow of nutrients through the floodplain. Given the estimated millennia it will take to erode legacy sediment from Piedmont floodplains, it is important to think of these deposits as new stable environments on their own trajectory of soil evolution.

  2. Degradation of soil fertility can cancel pollination benefits in sunflower.

    Science.gov (United States)

    Tamburini, Giovanni; Berti, Antonio; Morari, Francesco; Marini, Lorenzo

    2016-02-01

    Pollination and soil fertility are important ecosystem services to agriculture but their relative roles and potential interactions are poorly understood. We explored the combined effects of pollination and soil fertility in sunflower using soils from a trial characterized by different long-term input management in order to recreate plausible levels of soil fertility. Pollinator exclusion was used as a proxy for a highly eroded pollination service. Pollination benefits to yield depended on soil fertility, i.e., insect pollination enhanced seed set and yield only under higher soil fertility indicating that limited nutrient availability may constrain pollination benefits. Our study provides evidence for interactions between above- and belowground ecosystem services, highlighting the crucial role of soil fertility in supporting agricultural production not only directly, but also indirectly through pollination. Management strategies aimed at enhancing pollination services might fail in increasing yield in landscapes characterized by high soil service degradation. Comprehensive knowledge about service interactions is therefore essential for the correct management of ecosystem services in agricultural landscapes.

  3. Comparative study on sorption/desorption of radioeuropium on alumina, bentonite and red earth: effects of pH, ionic strength, fulvic acid, and iron oxides in red earth

    International Nuclear Information System (INIS)

    Dong Wenming; Wang Xiangke; Bian Xiaoyan; Wang Aixia; Du Jingzhou; Tao, Z.Y.

    2001-01-01

    The sorption and desorption of Eu(III) as a representative of trivalent lanthanides and actinides on bentonite, alumina, red earth and red earth treated to remove free iron oxides were comparatively investigated by using batch technique and radiotracer 152+154 Eu. The effects of pH, ionic strength, fulvic acid, iron oxides in red earth and the sorption mechanism were also discussed. As compared to alumina and red earth, Eu(III) presents a considerable distribution coefficient (K d ) onto bentonite. It was found that the pH and the presence of clay minerals are the main factors dominating the sorption/desorption characteristic of Eu 3+ in the soil, and that a sorption-desorption hysteresis on bentonite and red earth actually occurs. Furthermore, the main sorption mechanism of lanthanides onto bentonite, alumina and red earth is the formation of bridged hydroxo complexes with the surface, and there are negative effects of fulvic acid and free iron oxides in red earth on the sorption of Eu(III). The results of this paper indicate that the additivity rule on the sorption characteristic of a soil from the individual component's characteristics is not general

  4. [Effects of land use type on the distribution of organic carbon in different sized soil particles effects of land use type on the distribution of organic carbon in different sized soil particles and its relationships to herb biomass in hilly red soil region of South China].

    Science.gov (United States)

    Li, Zhong-Wu; Guo, Wang; Wang, Xiao-Yan; Shen, Wei-Ping; Zhang, Xue; Chen, Xiao-Lin; Zhang, Yue-Nan

    2012-04-01

    The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass.

  5. Neutron probe measurement of soil water content close to soil surface

    International Nuclear Information System (INIS)

    Faleiros, M.C.; Ravelo S, A.; Souza, M.D. de

    1993-01-01

    The problem of neutron probe soil water content measurements close to soil surface is analysed from the spatial variability and also from the slow neutron loss to the atmosphere points of view. Results obtained on a dark red latosol of the county of Piracicaba, SP, indicate the possibility of precisely measuring the neutron sphere of influence when different media are used on soil surface. (author). 7 refs, 5 figs, 1 tab

  6. Effect of Erosion on Productivity in Subtropical Red Soil Hilly Region: A Multi-Scale Spatio-Temporal Study by Simulated Rainfall

    Science.gov (United States)

    Li, Zhongwu; Huang, Jinquan; Zeng, Guangming; Nie, Xiaodong; Ma, Wenming; Yu, Wei; Guo, Wang; Zhang, Jiachao

    2013-01-01

    organic carbon pool should be the preferred option to maintain soil productivity in subtropical red soil hilly region. PMID:24147090

  7. Continuum modeling of ion-beam eroded surfaces under normal incidence: Impact of stochastic fluctuations

    International Nuclear Information System (INIS)

    Dreimann, Karsten; Linz, Stefan J.

    2010-01-01

    Graphical abstract: Deterministic surface pattern (left) and its stochastic counterpart (right) arising in a stochastic damped Kuramoto-Sivashinsky equation that serves as a model equation for ion-beam eroded surfaces and is systematically investigated. - Abstract: Using a recently proposed field equation for the surface evolution of ion-beam eroded semiconductor target materials under normal incidence, we systematically explore the impact of additive stochastic fluctuations that are permanently present during the erosion process. Specifically, we investigate the dependence of the surface roughness, the underlying pattern forming properties and the bifurcation behavior on the strength of the fluctuations.

  8. Soil loss estimation using geographic information system in enfraz watershed for soil conservation planning in highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    Gizachew Tiruneh

    2015-12-01

    Full Text Available Accelerated soil erosion is a worldwide problem because of its economic and environmental impacts. Enfraz watershed is one of the most erosion-prone watersheds in the highlands of Ethiopia, which received little attention. This study was, therefore, carried out to spatially predict the soil loss rate of the watershed with a Geographic Information System (GIS and Remote Sensing (RS. Revised Universal Soil Loss Equation (RUSLE adapted to Ethiopian conditions was used to estimate potential soil losses by utilizing information on rainfall erosivity (R using interpolation of rainfall data, soil erodibility (K using soil map, vegetation cover (C using satellite images, topography (LS using Digital Elevation Model (DEM and conservation practices (P using satellite images. Based on the analysis, about 92.31% (5914.34 ha of the watershed was categorized none to slight class which under soil loss tolerance (SLT values ranging from 5 to 11 tons ha-1 year-1. The remaining 7.68% (492.21 ha of land was classified under moderate to high class about several times the maximum tolerable soil loss. The total and an average amount of soil loss estimated by RUSLE from the watershed was 30,836.41 ton year-1 and 4.81 tons ha-1year-1, respectively.

  9. Soil Loss Prediction on Mobile Platform Using Universal Soil-Loss Equation (USLE Model

    Directory of Open Access Journals (Sweden)

    Effendi Rahim Supli

    2017-01-01

    Full Text Available Indirect method for soil loss predictions are plentiful, one of which is Universal soil-loss equation (USLE model. Available technology in mobile applications prompted the authors to develop a tool for calculating soil loss for many land types by transforming the USLE model into smart mobile application. The application is designed by using simple language for calculating each and every factor and lastly summing up the results. Factors that are involved in the calculation of soil loss are namely erosivity, erodibility, slope steepness, length of slope, land cover and conservation measures. The program will also be able to give its judgment for each of the prediction of soil loss rates for each and every possible land uses ranging from very light to very heavy. The application is believed to be useful for land users, students, farmers, planners, companies and government officers. It is shown by conducting usability testing using usability model, which is designed for mobile application. The results showed from 120 respondents that the usability of the system in this study was in “very good” classification, for three characteristics (ease of use, user satisfaction, and learnability. Only attractiveness characteristic that falls into “good” classification.

  10. Geomorphology and forest management in New Zealand's erodible steeplands: An overview

    Science.gov (United States)

    Phillips, Chris; Marden, Michael; Basher, Les R.

    2018-04-01

    In this paper we outline how geomorphological understanding has underpinned forest management in New Zealand's erodible steeplands, where it contributes to current forest management, and suggest where it will be of value in the future. We focus on the highly erodible soft-rock hill country of the East Coast region of North Island, but cover other parts of New Zealand where appropriate. We conclude that forestry will continue to make a significant contribution to New Zealand's economy, but several issues need to be addressed. The most pressing concerns are the incidence of post-harvest, storm-initiated landslides and debris flows arising from steepland forests following timber harvesting. There are three areas where geomorphological information and understanding are required to support the forest industry - development of an improved national erosion susceptibility classification to support a new national standard for plantation forestry; terrain analysis to support improved hazard and risk assessment at detailed operational scales; and understanding of post-harvest shallow landslide-debris flows, including their prediction and management.

  11. Estimation of Soil loss by USLE Model using GIS and Remote Sensing techniques: A case study of Muhuri River Basin, Tripura, India

    Directory of Open Access Journals (Sweden)

    Amit Bera

    2017-07-01

    Full Text Available Soil erosion is a most severe environmental problem in humid sub-tropical hilly state Tripura. The present study is carried out on Muhuri river basin of Tripura state, North east India having an area of 614.54 Sq.km. In this paper, Universal Soil Loss Equation (USLE model, with Geographic Information System (GIS and Remote Sensing (RS have been used to quantify the soil loss in the Muhuri river basin. Five essential parameters such as Runoff-rainfall erosivity factor (R, soil erodibility Factor (K, slope length and steepness (LS, cropping management factor (C, and support practice factor (P have been used to estimate soil loss amount in the study area. All of these layers have been prepared in GIS and RS platform (Mainly Arc GIS 10.1 using various data sources and data preparation methods. In these study DEM and LISS satellite data have been used. The daily rainfall data (2001-2010 of 6 rain gauge stations have been used to predict the R factor. Soil erodibility (K factor in Basin area ranged from 0.15 to 0.36. The spatial distribution map of soil loss of Muhuri river basin has been generated and classified into six categories according to intensity level of soil loss. The average annual predicted soil loss ranges between 0 to and 650 t/ha/y. Low soil loss areas (70 t/ha/y of soil erosion was found along the main course of Muhuri River.

  12. Determination of rare earth elements in red mud by ICP-MS

    International Nuclear Information System (INIS)

    Kumar, Sanjukta A.; Suvarna, S.; Kiran Kumar, G.

    2017-01-01

    Red mud or red sludge is a highly alkaline waste product composed mainly of iron oxide that is generated in the industrial production of aluminum from bauxite. With about 77 million tons of this hazardous material being produced annually, red mud poses a serious disposal problem in the mining industry. Discharge of red mud is hazardous environmentally because of its alkalinity. Many studies have been conducted to develop uses of red mud. An estimated 2 to 3 million tones are used annually in the production of cement, road construction and as a source for iron. Potential applications include the production of low cost concrete, application to sandy soils to improve phosphorus cycling, amelioration of soil acidity, landfill capping and carbon sequestration. Red mud contains a large amount of iron along with appreciable concentrations of many strategic elements such as rare earth elements and therefore can be a source of valuable secondary raw material. This necessitates the elemental characterization of red mud. This paper presents an effective dissolution procedure using a mixture of phosphoric acid and nitric acid for red mud followed by determination of rare earth elements by ICP-MS. The method was validated by spike recovery experiments. The recoveries were found within 98 to 102 %. The relative standard deviation (RSD) of the method was found to be within 5 %

  13. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China.

    Science.gov (United States)

    Zhang, Di; Wang, Xingxiang; Zhou, Zhigao

    2017-12-06

    Industrialized small-scale pig farming has been rapidly developed in developing regions such as China and Southeast Asia, but the environmental problems accompanying pig farming have not been fully recognized. This study investigated 168 small-scale pig farms and 29 example pig farms in Yujiang County of China to examine current and potential impacts of pig wastes on soil, water and crop qualities in the hilly red soil region, China. The results indicated that the small-scale pig farms produced considerable annual yields of wastes, with medians of 216, 333 and 773 ton yr -1 per pig farm for manure, urine and washing wastewater, respectively, which has had significant impact on surface water quality. Taking NH₄⁺-N, total nitrogen (TN) or total phosphorus (TP) as a criterion to judge water quality, the proportions of Class III and below Class III waters in the local surface waters were 66.2%, 78.7% and 72.5%. The well water (shallow groundwater) quality near these pig farms met the water quality standards by a wide margin. The annual output of pollutants from pig farms was the most important factor correlated with the nutrients and heavy metals in soils, and the relationship can be described by a linear equation. The impact on croplands was marked by the excessive accumulation of available phosphorus and heavy metals such as Cu and Zn. For crop safety, the over-limit ratio of Zn in vegetable samples reached 60%, other heavy metals in vegetable and rice samples tested met the food safety standard at present.

  14. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China

    Directory of Open Access Journals (Sweden)

    Di Zhang

    2017-12-01

    Full Text Available Industrialized small-scale pig farming has been rapidly developed in developing regions such as China and Southeast Asia, but the environmental problems accompanying pig farming have not been fully recognized. This study investigated 168 small-scale pig farms and 29 example pig farms in Yujiang County of China to examine current and potential impacts of pig wastes on soil, water and crop qualities in the hilly red soil region, China. The results indicated that the small-scale pig farms produced considerable annual yields of wastes, with medians of 216, 333 and 773 ton yr−1 per pig farm for manure, urine and washing wastewater, respectively, which has had significant impact on surface water quality. Taking NH4+-N, total nitrogen (TN or total phosphorus (TP as a criterion to judge water quality, the proportions of Class III and below Class III waters in the local surface waters were 66.2%, 78.7% and 72.5%. The well water (shallow groundwater quality near these pig farms met the water quality standards by a wide margin. The annual output of pollutants from pig farms was the most important factor correlated with the nutrients and heavy metals in soils, and the relationship can be described by a linear equation. The impact on croplands was marked by the excessive accumulation of available phosphorus and heavy metals such as Cu and Zn. For crop safety, the over-limit ratio of Zn in vegetable samples reached 60%, other heavy metals in vegetable and rice samples tested met the food safety standard at present.

  15. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  16. Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes

    International Nuclear Information System (INIS)

    Laville, N.; Aiet-Aiessa, S.; Gomez, E.; Casellas, C.; Porcher, J.M.

    2004-01-01

    Pharmaceuticals are found in the aquatic environment but their potential effects on non-target species like fish remain unknown. This in vitro study is a first approach in the toxicity assessment of human drugs on fish. Nine pharmaceuticals were tested on two fish hepatocyte models: primary cultures of rainbow trout hepatocytes (PRTH) and PLHC-1 fish cell line. Cell viability, interaction with cytochrome P450 1A (CYP1A) enzyme and oxidative stress were assessed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrasodium bromide tetrazolium (MTT), 7-ethoxyresorufin-o-deethylase (EROD) and dichlorofluorescein (DCFH-DA) assays, respectively. The tested drugs were clofibrate (CF), fenofibrate (FF), carbamazepine (CBZ), fluoxetine (FX), diclofenac (DiCF), propranolol (POH), sulfamethoxazole (SFX), amoxicillin (AMX) and gadolinium chloride (GdCl 3 ). All substances were cytotoxic, except AMX at concentration up to 500 μM. The calculated MTT EC 50 values ranged from 2 μM (CF) to 651 μM (CBZ) in PLHC-1, and from 53 μM (FF) to 962 μM (GdCl 3 ) in PRTH. CF, FF, and FX were the most cytotoxic drugs and induced oxidative stress before being cytotoxic. Compared to hepatocytes from human and dog, fish hepatocytes seemed to be more susceptible to the peroxisome proliferators (PPs) CF and FF. In PLHC-1 cells none of the tested drugs induced the EROD activity whereas POH appeared as a weak EROD inducer in PRTH. Moreover, in PRTH, SFX, DiCF, CBZ and to a lesser extend, FF and CF inhibited the basal EROD activity at clearly sublethal concentrations which may be of concern at the biological and chemical levels in a multipollution context

  17. Effects of soil management techniques on soil water erosion in apricot orchards.

    Science.gov (United States)

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-05-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide

  18. Microtrophic grade of wax laurel useful for recuperation of eroded soils in Tomine Embalse - Colombia

    International Nuclear Information System (INIS)

    Rivera, Emma L; Campos R; Yunda de, A L; Martinez R

    2000-01-01

    The use of the energy resources in our country should be made in an efficient way; therefore one of the principal objectives is to extend the useful of the reservoirs with reforestation programs. The use of biofertilizers is one of the biotechnological tools that could be useful for the adaptation of trees in degraded soils. Micorrhiza, a common association between roots and fungi, participate in nutrition of almost all plants. In order to study the effect of inoculation of arbuscular mycorrhizal fungus in Myrica pubescens, firstly it was carried out an evaluation of ma formed by the plant in natural conditions, and secondly, an evaluation of the effect of inoculation of the MA fungi Acaulospora longula and Glomus manihotis. Inoculation experiments were carried out in nursery conditions, in two different soils and two different nitrogen and phosphorus fertilization levels. We found structures similar to arbuscules, but the branching and diameter of intracellular hyphas were different to that of the normal arbuscules. Results showed that M. pubescens is a mycotrophic plant, but the capacity of forming mycorrhizal depending of soil conditions. M. pubescens was benefited because of inoculation of MA fungi, especially when low levels of nitrogen and phosphorus fertilization were used

  19. Transport-distance specific SOC distribution: Does it skew erosion induced C fluxes?

    DEFF Research Database (Denmark)

    Hu, Yaxian; Berbe, Asmerat Asefaw; Fogel, Marilyn L.

    2016-01-01

    Abstract The net effect of soil erosion by water, as a sink or source of atmospheric carbon dioxide (CO2), is determined by the spatial (re-)distribution and stability of eroded soil organic carbon (SOC), and the dynamic replacement of eroded C by the production of new photosynthate. The depositi......Abstract The net effect of soil erosion by water, as a sink or source of atmospheric carbon dioxide (CO2), is determined by the spatial (re-)distribution and stability of eroded soil organic carbon (SOC), and the dynamic replacement of eroded C by the production of new photosynthate...... the actual movement of eroded soil fractions along hillslopes, let alone the re-distribution pattern of SOC fractions. Eroding sandy soils and sediment were sampled after a series of rainfall events along a slope on a freshly seeded cropland in Jutland, Denmark. All the soil samples were fractionated...... into five settling classes using a settling tube apparatus. The spatial distribution of soil settling classes shows a coarsening effect immediately below the eroding slope, followed by a fining trend at the slope tail. These findings support the validity of the conceptual model proposed by Starr et al...

  20. Red Fox as Sentinel for Blastomyces dermatitidis, Ontario, Canada.

    Science.gov (United States)

    Nemeth, Nicole M; Campbell, G Douglas; Oesterle, Paul T; Shirose, Lenny; McEwen, Beverly; Jardine, Claire M

    2016-07-01

    Blastomyces dermatitidis, a fungus that can cause fatal infection in humans and other mammals, is not readily recoverable from soil, its environmental reservoir. Because of the red fox's widespread distribution, susceptibility to B. dermatitidis, close association with soil, and well-defined home ranges, this animal has potential utility as a sentinel for this fungus.

  1. Uncovering biological soil crusts: carbon content and structure of intact Arctic, Antarctic and alpine biological soil crusts

    Science.gov (United States)

    Jung, Patrick; Briegel-Williams, Laura; Simon, Anika; Thyssen, Anne; Büdel, Burkhard

    2018-02-01

    Arctic, Antarctic and alpine biological soil crusts (BSCs) are formed by adhesion of soil particles to exopolysaccharides (EPSs) excreted by cyanobacterial and green algal communities, the pioneers and main primary producers in these habitats. These BSCs provide and influence many ecosystem services such as soil erodibility, soil formation and nitrogen (N) and carbon (C) cycles. In cold environments degradation rates are low and BSCs continuously increase soil organic C; therefore, these soils are considered to be CO2 sinks. This work provides a novel, non-destructive and highly comparable method to investigate intact BSCs with a focus on cyanobacteria and green algae and their contribution to soil organic C. A new terminology arose, based on confocal laser scanning microscopy (CLSM) 2-D biomaps, dividing BSCs into a photosynthetic active layer (PAL) made of active photoautotrophic organisms and a photosynthetic inactive layer (PIL) harbouring remnants of cyanobacteria and green algae glued together by their remaining EPSs. By the application of CLSM image analysis (CLSM-IA) to 3-D biomaps, C coming from photosynthetic active organisms could be visualized as depth profiles with C peaks at 0.5 to 2 mm depth. Additionally, the CO2 sink character of these cold soil habitats dominated by BSCs could be highlighted, demonstrating that the first cubic centimetre of soil consists of between 7 and 17 % total organic carbon, identified by loss on ignition.

  2. Phytoremediation of metals using lemongrass (Cymbopogon citratus (D.C.) Stapf.) grown under different levels of red mud in soil amended with biowastes.

    Science.gov (United States)

    Gautam, Meenu; Pandey, Divya; Agrawal, Madhoolika

    2017-06-03

    Due to hostile condition of red mud (RM), its utilization for vegetation is restricted. Therefore, RM with biowastes as soil amendment may offer suitable combination to support plant growth with reduced risk of metal toxicity. To evaluate the effects of RM on soil properties, plant growth performance, and metal accumulation in lemongrass, a study was conducted using different RM concentrations (0, 5, 10, and 15% w/w) in soil amended with biowastes [cow dung manure (CD) or sewage-sludge (SS)]. Application of RM in soil with biowastes improved organic matter and nutrient contents and caused reduction in phytoavailable metal contents. Total plant biomass was increased under all treatments, maximally at 5% RM in soil with SS (91.4%) and CD (51.7%) compared to that in control (no RM and biowastes). Lemongrass acted as a potential metal-tolerant plant as its metal tolerance index is >100%. Based on translocation and bioconcentration factors, lemongrass acted as a potential phytostabilizer of Fe, Mn, and Cu in roots and was found efficient in translocation of Al, Zn, Cd, Pb, Cr, As, and Ni from roots to shoot. The study suggests that 5% RM with biowastes preferably SS may be used to enhance phytoremediation potential of lemongrass.

  3. Insights into tetrabromobisphenol A adsorption onto soils: Effects of soil components and environmental factors.

    Science.gov (United States)

    Tong, Fei; Gu, Xueyuan; Gu, Cheng; Ji, Rong; Tan, Yinyue; Xie, Jinyu

    2015-12-01

    Concerns regarding tetrabromobisphenol A (TBBPA), the most widely utilized brominated flame retardant in the world, are growing because of the wide application and endocrine-disrupting potential of this compound. To properly assess its environmental impacts, it is important to understand the mobility and fate of TBBPA in soil environments. In this study, the effects of soil components, dissolved organic carbon (DOC) and heavy metal cations on TBBPA adsorption onto two Chinese soils (red soil and black soil) were investigated using batch sorption experiments. The desorption behavior of TBBPA when the two soils are irrigated with eutrophicated river water was also investigated. The results showed that pH greatly affects the adsorptive behavior of TBBPA in soils. Iron oxide minerals and phyllosilicate minerals are both active surfaces for TBBPA sorption, in addition to soil organic matter (SOM). DOC (50 mg OC L(-1)) exhibited a limited effect on TBBPA sorption only under neutral conditions. TBBPA sorption was only minimally affected by the heavy metals (Cu2+, Pb2+ and Cd2+) in the studied pH range. Eutrophicated river water significantly enhanced the desorption of TBBPA from red soil due to the change in soil solution pH. These findings indicate that mobility of TBBPA in soils is mainly associated with soil pH, organic matter and clay fractions: it will be retained by soils or sediments with high organic matter and clay fractions under acidic conditions but becomes mobile under alkaline conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The assessment of soil redistribution on agricultural land using the environmental isotope of Caesium-137

    International Nuclear Information System (INIS)

    Zainudin Othman

    2002-01-01

    Environmental radionuclides have the potential to be used to trace sediment movements. Caesium-137 ( 137 Cs), a radionuclide released during nuclear weapon tests from 1950s to 1960s is strongly adsorbed on to clay. It enters the Malaysian environment through cold continental polar (cPk) air mass circulation and Hadley cell effects from the higher latitude regions, converged during Inter-tropical Convergence Zones (ITCZ) oscillation and deposited through precipitation on to the soil as fallouts. Its content in the soil profile has been used to estimate soil loss due to water erosion in agricultural land. Two soil sampling methods, incremental and bulk sampling, were adopted to collect samples from the erosion plot and reference sites to a depth of 40 cm for the determination of 137 Cs inventories. The soil depth-profile of 137 Cs inventory at an undisturbed site exhibits an exponential function with most of the contents are accumulated within the upper 12 cm portion of the soil profile whereas in the disturbed sites the 137 Cs content were partially mixed within the plough layer. The average 137 Cs reference inventory from two different locations was 580.7 Bq/ m 2 while local 137 Cs reference inventory was 551.9 Bq/ m 2 . The USLE, Ritchie equation and three mathematical models were used to estimate the rate of soil loss. The Proportional Model was found suitable to be used in this environment. Net soil loss from the study slope was estimated by the USLE of 4.34 ton/ ha/ yr. The soil redistribution patterns show that the upper and middle slopes had been eroded while deposition was observed at the foot slope. The maximum land form evolutions of the eroded areas was 4.5 mm/ yr and 0.5 mm/ yr for the depositional areas. The long-term erosion rate of the study area was considered low. (author)

  5. Speciation of rare earth elements in different types of soils in China

    International Nuclear Information System (INIS)

    Wang Lijun; Zhang Shen; Gao Xiaojiang; Liu Shujuan

    1997-01-01

    Contents, distribution patterns, physical and chemical speciation of rare earth elements (REEs) in laterite (tropical zone), red earth (middle subtripical earth), yellow brown soil (Northern subtripical earth), cinnamon soil (warm temperature zone), leached chernozem (temperate zone) and albic bleached soil (temperate zone) in China were determined with instrumental neutron activation analysis (INAA). Content and distribution patterns of ERRs are closely related to soil mechanical composition. In laterite, red earth, yellow brown soil and leached chernozem, REEs mainly enrich in fine grain particles or coarser grain partials while in clay particles no such enrichment was found. The distribution patterns of REEs in these soils are consistent with the REE features of their parent rocks. In all the six soils, REEs mainly exist in residual form, and with the increase of atomic number, intermediate REEs (IRRE) have lower proportions of residual form than light REEs (LREE) and heavy REEs (HREE). For the six unstable forms, water soluble form has the lowest proportion. The proportions of exchangeable form, carbonate and specific adsorption form are lower. The proportions of Fe-Min oxides form in different types of soils decrease gradually from Southern China to Northern China following the order: laterite > red earth > yellow brown soil > cinnamon soil, leached chernozem, albic bleached soil. Proportions of bound organic matters are higher and follow the order: Albic bleached soil > leached chernozem > red earth > laterite > yellow brown soil > cinnamon soil. The albic bleached soil has higher proportion of softly bound organic matter form. The leached chernozem has higher proportion of tightly bound organic matter form. Form of bound to organic matter in laterite is almost totally made up of form of softly bound to organic matter

  6. Soil 137Cs activity in a tropical deciduous ecosystem under pasture conversion in Mexico

    International Nuclear Information System (INIS)

    Garcia-Oliva, F.; Maass, J.M.

    1995-01-01

    Soil profiles of 137 Cs were measured in a tropical deciduous ecosystem under pasture conversion on the Pacific Coast of Mexico. Soil samples were taken from unperturbed forest, and from pasture plots following forest conversion. The average total 137 Cs areal activity of non-eroded forest sites indicated a base level of 5 315 ± 427 Bq m -2 . On average, total areal activity on hill-tops was significantly higher (range 10-47%) in the forest than in the pastures. A significant correlation was found between the total 137 Cs areal activity and soil organic matter content (r 2 = 0.16). This correlation can be explained by a soil physical-protection hypothesis. The redistribution of 137 Cs in the landscape is explained by soil erosion processes. (author)

  7. Soil mapping and modelling for evaluation of the effects of historical and present-day soil erosion

    Science.gov (United States)

    Smetanova, Anna; Szwarczewski, Piotr

    2016-04-01

    The loess hilly lands in Danube Lowland are characterized by patchy soil-scape. The soil erosion processes uncover the subsurface, bright loess horizon, while non-eroded and colluvial soils are of the dark colour, in the chernozem area. With the modernisation of agriculture since the 1950's and in the process of collectivization, when small fields were merged into bigger, the soil degradation progressed. However, the analysis of historical sources and sediment archives showed the proofs of historical soil erosion. The objective of this study is to map the soil erosion patterns in connection of both pre- and post-collectivization landscape and to understand the accordingly developed soil erosion patterns. The combined methods of soil mapping and soil erosion modelling were applied in the part of the Trnavska pahorkatina Hilly Land in Danube Lowland. The detailed soil mapping in a zero-order catchment (0.28 km²) uncovered the removal of surface soil horizon of 0.6m or more, while the colluvial soils were about 1.1m deep. The soil properties and dating helped to describe the original soil profile in the valley bottom, and reconstruct the history of soil erosion in the catchment. The soil erosion model was applied using the reconstructed land use patterns in order to understand the effect of recent and historical soil erosion in the lowland landscape. This work was supported by the Slovak Research and Development Agency under the contract ESF-EC-0006-07 and APVV-0625-11; Anna Smetanová has received the support of the AgreenSkills fellowship (under grant agreement n°267196).

  8. Thermal shock and splash effects on burned gypseous soils from the Ebro Basin (NE Spain)

    NARCIS (Netherlands)

    Leon, J.; Seeger, M.; Badia, D.; Peters, P.; Echeverria, M.T.

    2014-01-01

    Fire is a natural factor of landscape evolution in Mediterranean ecosystems. The middle Ebro Valley has extreme aridity, which results in a low plant cover and high soil erodibility, especially on gypseous substrates. The aim of this research is to analyze the effects of moderate heating on physical

  9. Unsaturated hydraulic conductivity of a red-yellow podzolic soil in the Northern Zona da Mata of Pernambuco State - Brazil; Condutividade hidraulica nao saturada de um solo podzolico vermelho amarelo da Zona da Mata, Norte de Pernambuco

    Energy Technology Data Exchange (ETDEWEB)

    Maciel Netto, A

    1994-08-01

    The determination of the hydraulic conductivity of a Red-Yellow Podzolic Soil was carried out during an experiment in a plot measuring 3.5 m x 3.5 m, at the Experimental Station of Itapirema, Goiania, in Pernambuco State, Brazil. The internal drainage method proposed by Hillel (1972) was used to obtain the hydraulic conductivity as a function of soil water content, K({theta}), in the three characteristic horizons of the soil. Three neutron probes were used for measuring the humidity, that was determined by a calibration curve. Three characteristic horizons of the Red-Yellow Podzolic Soil were investigated for hydraulic conductivity. The sandy A horizon, with large pores, has a high conductivity while the B1t horizon, with a massive structure and few visible pores, has a low infiltration rate. The hydraulic dynamics of the B2 horizon is more complex due to its heterogeneity. (author). 79 refs, 17 figs, 11 tabs.

  10. Study on adsorption of 60Co in soils and minerals and transportation of 60Co in bean-soil system

    International Nuclear Information System (INIS)

    Feng Yonghong; Chen Chuanqun; Wang Shouxiang; Zhang Yongxi; Sun Zhiming

    1998-02-01

    The adsorption and desorption of 60 Co in soils and minerals, and the transportation, accumulation, distribution in bean-soil system are studied. The results are as follows: (1) 60 Co was adsorbed rapidly and desorbed difficultly by soils and minerals. The order of the saturated adsorption rate and K d (distribution coefficient) of 60 Co at the balance value was: kieselguhr>paddy soil (loamy clay)>yellowish red soil>kaoline>perlite>silt-loamy soil. The order of D f (desorption factor) value was: yellowish red soil>silt-loamy soil>kaoline>perlite>paddy soil (loamy clay)>kieselguhr. The dynamic behavior of 60 Co in the soils and minerals could be described as a closed two--compartment model. (2) After 60 Co was introduced to the bean-soil system, the concentration of 60 Co in the root is about 10.4∼23.3 times of that in the stalk, and 30 times of that in the bean pod. The negative correlation between the concentration of 60 Co in the soil and depth was detected, over 90 per cent of 60 Co was retained within 6 centimeters of the surface layer, the half residual depth was 2 centimeters. An opened two-compartment model was applied to describe the behavior of 60 Co in the bean-soil system

  11. Phosphate fertilizers with varying water-solubility applied to Amazonian soils: II. Soil P extraction methods

    International Nuclear Information System (INIS)

    Muraoka, T.; Brasil, E.C.; Scivittaro, W.B.

    2002-01-01

    A pot experiment was carried out under greenhouse conditions at the Centro de Energia Nuclear na Agricultura, Piracicaba (SP, Brazil), to evaluate the phosphorus availability of different phosphate sources in five Amazonian soils. The soils utilized were: medium texture Yellow Latosol, clayey Yellow Latosol, very clayey Yellow Latosol, clayey Red-Yellow Podzolic and very clayey Red-Yellow Podzolic. Four phosphate sources were applied: triple superphosphate, ordinary Yoorin thermophosphate, coarse Yoorin termo-phosphate and North Carolina phosphate rock at P rates of 0, 40, 80 and 120 mg kg -1 soil. The dry matter yield and the amount of P taken up by cowpea and rice were correlated with the extractable P by anionic exchangeable resin, Mehlich-1, Mehlich-3 and Bray-I. The results showed that the extractable P by Mehlich-1 was higher in the soils amended with North Carolina rock phosphate. Irrespective of the phosphorus sources used, the Mehlich-3 extractant showed close correlation with plant response. The Mehlich-3 and Bray-I extractants were more sensitive to soil variations. The Mehlich-3 extractant was more suitable in predicting the P availability to plants in the different soils and phosphorus sources studied. (author)

  12. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soil

    NARCIS (Netherlands)

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Residue retention and reduced tillage are both conservation agricultural management options that may enhance soil organic carbon (SOC) stabilization in tropical soils. Therefore, we evaluated the effects of long-term tillage and residue management on SOC dynamics in a Chromic Luvisol (red clay soil)

  13. Mapping Erosion Risk in California's Rangelands Using the Universal Soil Loss Equation (USLE)

    Science.gov (United States)

    Salls, W. B.; O'Geen, T. T.

    2015-12-01

    Soil loss constitutes a multi-faceted problem for agriculture: in addition to reducing soil fertility and crop yield, it compromises downstream water quality. Sediment itself is a major issue for aquatic ecosystems, but also serves as a vector for transporting nutrients, pesticides, and pathogens. Rangelands are thought to be a contributor to water quality degradation in California, particularly in the northern Coast Range. Though total maximum daily loads (TMDLs) have been imposed in some watersheds, and countless rangeland water quality outreach activities have been conducted, the connection between grazing intensity recommendations and changes in water quality is poorly understood at the state level. This disconnect gives rise to poorly informed regulations and discourages adoption of best management practices by ranchers. By applying the Universal Soil Loss Equation (USLE) at a statewide scale, we highlighted areas most prone to erosion. We also investigated how two different grazing intensity scenarios affect modeled soil loss. Geospatial data layers representing the USLE parameters—rainfall erosivity, soil erodibility, slope length and steepness, and cover—were overlaid to model annual soil loss. Monitored suspended sediment data from a small North Coast watershed with grazing as the predominant land use was used to validate the model. Modeled soil loss values were nearly one order of magnitude higher than monitored values; average soil loss feeding the downstream-most site was modeled at 0.329 t ha-1 yr-1, whereas storm-derived sediment passing the site over two years was calculated to be 0.037 t ha-1 yr-1. This discrepancy may stem from the fact that the USLE models detached sediment, whereas stream monitoring reflects sediment detached and subsequently transported to the waterway. Preliminary findings from the statewide map support the concern that the North Coast is particularly at risk given its combination of intense rain, erodible soils, and

  14. Soil color - a window for public and educators to understands soils

    Science.gov (United States)

    Libohova, Zamir; Beaudette, Dylan; Wills, Skye; Monger, Curtis; Lindbo, David

    2017-04-01

    Soil color is one of the most visually striking properties recorded by soil scientists around the world. Soil color is an important characteristic related to soil properties such organic matter, parent materials, drainage. It is a simplified way for the public and educators alike to understand soils and their functions. Soil color is a quick measurement that can be recorded by people using color charts or digital cameras, offering an opportunity for the citizen science projects to contribute to soil science. The US Soil Survey has recorded soil colors using Munsell color system for over 20,000 soil types representing a wide range of conditions throughout the Unites States. The objective of this research was to generate a US soil color map based on color descriptions from the Official Series Descriptions (OSDs). A color calculator developed in R and ArcMap were used to spatially display the soil colors. Soil colors showed vertical trends related to soil depth and horizontal trends related to parent material and climate. Soil colors represent development processes depending upon environment and time that have influenced their appearance and geographic distribution. Dark colors represent soils that are rich in organic matter, such as the soils of the Midwest USA, which are some of the most fertile soils in the world. These soils are relatively "young" in that they developed over the last 20,000 years in materials left behind after continental Glaciers retreated and reflect long- term prairie vegetation that dominated this area prior to European settlements. Dark soils of the Pacific Northwest reflect the influence of forests (and volcanic activity) but are shallower and less fertile than the deep dark Midwest soils. Soils of the eastern and southern Coastal Plains are older and are enriched with iron oxides ('rust') which gives them their red coloring. Soils of flood plains, like the broad Mississippi Valley, have multi-colored soils that reflect the process of

  15. Effects of Red-mud and Organic Fertilizer on Cadmium and Lead Absorption and Distribution in Rice

    OpenAIRE

    FANG Ya-yu; ZOU Hui-ling; YIN Xiao-hui; CHEN Nan; YANG Deng; WEI Xiang-dong

    2016-01-01

    Effects of red mud and organic fertilizer on distribution of cadmium(Cd) and lead (Pb) in soil-rice system were studied in field by orthogonal test. Results showed that after red mud and organic fertilizer added including single and combined, the soil pH value increased 0.36~1.90 units, contents of Cd and Pb in rice rhizosphere soil decreased 2.73%~26.25% and 7.15%~34.26% respectively and contents of Cd and Pb in brown rice decreased 23.24%~55.90% and 11.76%~29.41% respectively. In all treatm...

  16. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards

    NARCIS (Netherlands)

    Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Keesstra, Saskia; Novara, Agata; Cerdà, Artemi

    2016-01-01

    Soil and water loss in agriculture is a major problem throughout the world, and especially in Mediterranean areas. Non-conservation agricultural practices have further aggravated the situation, especially in vineyards, which are affected by one of the highest rates of soil loss among cultivated

  17. Contribution of atmospheric nitrogen deposition to diffuse pollution in a typical hilly red soil catchment in southern China.

    Science.gov (United States)

    Shen, Jianlin; Liu, Jieyun; Li, Yong; Li, Yuyuan; Wang, Yi; Liu, Xuejun; Wu, Jinshui

    2014-09-01

    Atmospheric nitrogen (N) deposition is currently high and meanwhile diffuse N pollution is also serious in China. The correlation between N deposition and riverine N export and the contribution of N deposition to riverine N export were investigated in a typical hilly red soil catchment in southern China over a two-year period. N deposition was as high as 26.1 to 55.8kgN/(ha·yr) across different land uses in the studied catchment, while the riverine N exports ranged from 7.2 to 9.6kgN/(ha·yr) in the forest sub-catchment and 27.4 to 30.3kgN/(ha·yr) in the agricultural sub-catchment. The correlations between both wet N deposition and riverine N export and precipitation were highly positive, and so were the correlations between NH4(+)-N or NO3(-)-N wet deposition and riverine NH4(+)-N or NO3(-)-N exports except for NH4(+)-N in the agricultural sub-catchment, indicating that N deposition contributed to riverine N export. The monthly export coefficients of atmospheric deposited N from land to river in the forest sub-catchment (with a mean of 14%) presented a significant positive correlation with precipitation, while the monthly contributions of atmospheric deposition to riverine N export (with a mean of 18.7% in the agricultural sub-catchment and a mean of 21.0% in the whole catchment) were significantly and negatively correlated with precipitation. The relatively high contribution of N deposition to diffuse N pollution in the catchment suggests that efforts should be done to control anthropogenic reactive N emissions to the atmosphere in hilly red soil regions in southern China. Copyright © 2014. Published by Elsevier B.V.

  18. Morphology of ductile metals eroded by a jet of spherical particles impinging at normal incidence

    Science.gov (United States)

    Veerabhadra Rao, P.; Young, S. G.; Buckley, D. H.

    1983-01-01

    Scanning electron microscopy and energy-dispersive X-ray spectroscopy are used, together with surface profile measurements, in the present morphological study of the erosion of an aluminum alloy and copper by the normal impact of spherical glass erodent particles. The morphology of the damage pattern is a manifestation of the flow pattern of erodent particles, and yields insight into the mechanisms that may be active at different stages of erosion. The simultaneous appearance of radial cracks and concentric rings is reported, together with wave crests which contain an accumulation of metallic flakes. A preliminary analysis is advanced to explain the formation of the various damage patterns observed.

  19. ANTHROPOGENIC EFFECTS ON SOIL MICROMYCETES

    Directory of Open Access Journals (Sweden)

    Dragutin A. Đukić

    2007-09-01

    Full Text Available This paper is a synthesis of long-term investigations based on the effect of different (mineral and organic fertilisers, heavy metals, contaminated irrigation water, nitrification inhibitor and detergents on the dynamics of soil fungi number. The investigations were performed at the Microbiology Department and trial fields of the Faculty of Agronomy in Cacak on smonitza and alluvium soils in field and greenhouse conditions. Maize, wheat, barley and red clover were used as test plants in these studies. The quantitative composition of the fungi in the soils investigated was determined by the Czapek selective agar dilution method. The study results show that the number of soil fungi was dependent on the type and rate of agrochemicals used, on the growing season and the soil zone the samples were taken from for the analysis. Lower nitrogen fertiliser rates (80 and 120 kg?ha-1 and organic fertilisers stimulated the development of soil fungi, unlike the rate of 150 kg?ha- 1. Heavy metals, mercury and cadmium in particular, as well as high rates of the N-serve nitrification inhibitor inhibited the development of this group of soil microorganisms. Generally, the adverse effect of contaminated irrigation water on the soil fungi was recorded in both soil types, and particularly in the smonitza under red clover. Low detergent (Meril concentrations did not have any significant effect on this group of microorganisms. In this respect, it can be concluded that the soil fungi number dynamics can be used in monitoring soils polluted by different toxinogenic substances.

  20. Anthropogenic effects on soil micromycetes

    Directory of Open Access Journals (Sweden)

    Đukić Dragutin A.

    2007-01-01

    Full Text Available This paper is a synthesis of long-term investigations based on the effect of different authropogenic pollutants (mineral and organic fertilizers, heavy metals, contaminated irrigation water, nitrification inhibitor and detergents on the dynamics of soil fungi number. The investigations were performed at the Microbiology Department and trial fields of the Faculty of Agronomy in Čačak on smonitza and alluvium soils in field and under greenhouse conditions. Maize, wheat, barley and red clover were used as test plants in these studies. The quantitative composition of the fungi in the soils investigated was determined by the Čapek selective agar dilution method. The study results show that the number of soil fungi was dependent on the type and rate of agrochemicals used, on the growing season, and the soil zone the samples were taken from for the analysis. Lower nitrogen fertiliser rates (80 and 120 kg x ha-1 and organic fertilizers stimulated the development of soil fungi, unlike the rate of 150 kg x ha-1. Heavy metals, mercury and cadmium in particular, as well as high rates of the N-serve nitrification inhibitor, inhibited the development of this group of soil microorganisms. Generally, the adverse effect of contaminated irrigation water on the soil fungi was recorded in both soil types, and particularly in the smonitza under red clover. Low detergent (Meril concentrations did not have any significant effect on this group of microorganisms. In this respect, it can be concluded that the soil fungi number dynamics can be used in monitoring soils polluted by different toxinogenic substances.

  1. Persistent aryl hydrocarbon receptor inducers increase with altitude, and estrogen-like disrupters are low in soils of the Alps.

    Science.gov (United States)

    Levy, Walkiria; Henkelmann, Bernhard; Bernhöft, Silke; Bovee, Toine; Buegger, Franz; Jakobi, Gert; Kirchner, Manfred; Bassan, Rodolfo; Kräuchi, Norbert; Moche, Wolfgang; Offenthaler, Ivo; Simončič, Primoz; Weiss, Peter; Schramm, Karl-Werner

    2011-01-01

    Soil samples from remote Alpine areas were analyzed for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans and polychlorinated biphenyls by high-resolution gas chromatography/high-resolution gas spectrometry. Additionally, the EROD micro-assay and a genetically modified yeast estrogen bioassay were carried out to determine persistent aryl hydrocarbon receptors (AhR) and estrogen receptors (ER) agonists, respectively. Regarding the AhR agonists, the toxicity equivalents of analytical and EROD determined values were compared, targeting both altitude of samples and their soil organic content. The ratio between bioassay derived equivalents and analytical determinations suggested no significant contribution of unknown AhR inducers in these sampling sites and some antagonism in soils with relatively high PCB loading. More CYP1A1 expression was induced at the highest sites or about 1400-1500 m a.s.l. along the altitude profiles. Surprisingly, no clear tendencies with the soil organic content were found for dioxin-like compounds. Mean values obtained in the present study were for ER agonists, 2: 0.37±0.12ng 17ß-estradiol EQ g-1 dry soil [corrected] and 6.1 ± 4.2 pg TCDD-EQ g⁻¹ dry soil for AhR agonists. Low bioassay responses with a higher relative amount of ER disrupters than AhR inducers were detected,indicating the higher abundance of estrogen-like than persistent dioxin-like compounds in these forested areas [corrected].

  2. Development of a Distributed Source Containment Transport, Transformation, and Fate (CTT&F) Sub-Model for Military Installations

    Science.gov (United States)

    2007-08-01

    includes soil erodibility terms from the Universal Soil Lass Equation ( USLE ) for estimating the overland sediment transport capacity (for both the x and y...q = unit flow rate of water = va h [L2/T] vc = critical velocity for erosion overland [L/T] K = USLE soil erodibility factor C = USLE soil ...cover factor P = USLE soil management practice factor Be = width of eroding surface in flow direction [L]. In channels, sediment particles can be

  3. Effects of sawdust and organo mineral fertilizer and their residual effect on the yield of maize on degrades soil

    International Nuclear Information System (INIS)

    Dania, S.O.; Fagbola, O.; Isitekhale, H.H.E.

    2012-01-01

    Conventional mineral fertilizer alone cannot sustain arable crop production in soil which top layer has been eroded hence it is necessary to employ the application of organic base fertilizer. A greenhouse experiment was conducted to investigate the effects of sawdust, organo mineral fertilizer and their residual effects on the growth and yield of maize. Organo mineral fertilizer is the combination of organic manure and mineral fertilizer. Simulated degraded soil was used and the experimental design was a 2 x 2 x 3 factorial in a completely randomized design with three replicates. The factors investigated were: two levels of organo mineral fertilizer (with and without), two levels of soil amendment (with and without sawdust) and three levels of application methods. The methods of organo mineral fertilizer used were ring, subsurface and mixed methods. The amendment of soil to sawdust was ratio 1:1 by volume. The growth and yield of maize was significantly (p = 0.05) higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust with or without OMF application. Ring method of application of OMF in non-amended soil significantly increased the growth and yield of maize compared to other methods of OMF application. The residual effect of OMF and sawdust on the growth and yield of maize was significantly higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust. Addition of sawdust to soil does not improve the growth and yield of maize with or without OMF and under different application methods. Organo mineral fertilizer using ring and subsurface application methods has a beneficial effect in improving the growth and yield of maize in degraded soil where the top layer has been eroded. (author)

  4. Effects of sawdust and organo mineral fertilizer and their residual effect on the yield of maize on degraded soil

    International Nuclear Information System (INIS)

    Dania, S.O.; Fagbola, O.

    2012-01-01

    Conventional mineral fertilizer alone cannot sustain arable crop production in soil which top layer has been eroded hence it is necessary to employ the application of organic base fertilizer. A greenhouse experiment was conducted to investigate the effects of sawdust, organo mineral fertilizer and their residual effects on the growth and yield of maize. Organo mineral fertilizer is the combination of organic manure and mineral fertilizer. Simulated degraded soil was used and the experimental design was a 2 x 2 x 3 factorial in a completely randomized design with three replicates. The factors investigated were: two levels of organo mineral fertilizer (with and without), two levels of soil amendment (with and without sawdust) and three levels of application methods. The methods of organo mineral fertilizer used were ring, subsurface and mixed methods. The amendment of soil to sawdust was ratio 1: 1 by volume. The growth and yield of maize was significantly (p = 0.05) higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust with or without OMF application. Ring method of application of OMF in non-amended soil significantly increased the growth and yield of maize compared to other methods of OMF application. The residual effect of OMF and sawdust on the growth and yield of maize was significantly higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust. Addition of sawdust to soil does not improve the growth and yield of maize with or without OMF and under different application methods. Organo mineral fertilizer using ring and subsurface application methods has a beneficial effect in improving the growth and yield of maize in degraded soil where the top layer has been eroded. (author)

  5. Soil Organic Carbon and Its interaction with Minerals in Two Hillslopes with Different Climates and Erosion Processes

    Science.gov (United States)

    Wang, X.; Yoo, K.; Wackett, A. A.; Gutknecht, J.; Amundson, R.; Heimsath, A. M.

    2017-12-01

    Climate and topography have been widely recognized as important factors regulating soil organic carbon (SOC) dynamics but their interactive effects on SOC storage and its pools remain poorly constrained. Here we aimed to evaluate SOC storages and carbon-mineral interactions along two hillslope transects with moderately different climates (MAP: 549 mm vs. 816 mm) in Southeastern Australia. We sampled soil along the convex (eroding)-to-convergent (depositional) continuum at each hillslope transect and conducted size and density fractionation of these samples. In responses to the difference in climate factor, SOC inventories of eroding soils were twice as large at the wetter site compared with the drier site but showed little difference between two sites in depositional soils. These trends in SOC inventories were primarily controlled by SOC concentrations and secondarily by soil thicknesses. Similar patterns were observed for mineral associated organic carbon (MOC), and the abundances of MOC were controlled by the two independently operating processes affecting MOC concentration and fine-heavy fraction minerals. The contents and species of secondary clay and iron oxide minerals, abundances of particulate organic carbon, and bioturbation affected MOC concentrations. In contrast, the abundances of fine-heavy fraction minerals were impacted by erosion mechanisms that uniquely responded to regional- and micro- climate conditions. Consequently, topographic influences on SOC inventories and carbon-mineral interactions were more strongly pronounced in the drier climate where vegetation and erosion mechanisms were sensitive to microclimate. Our results highlight the significance of understanding topography and erosional processes in capturing climatic effects on soil carbon dynamics.

  6. Estimation of leaf area index in cereal crops using red-green images

    DEFF Research Database (Denmark)

    Kirk, Kristian; Andersen, Hans Jørgen; Thomsen, Anton G

    2009-01-01

    A new method for estimating the leaf area index (LAI) in cereal crops based on red-green images taken from above the crop canopy is introduced. The proposed method labels pixels into vegetation and soil classes using a combination of greenness and intensity derived from the red and green colour b...

  7. Use of radioactive 32P technique to study phosphate rock dissolution in acid soils

    International Nuclear Information System (INIS)

    Mahisarakul, J.; Mullins, G.L.; Chien, S.H.

    2002-01-01

    A laboratory experiment was conducted to evaluate the dissolution of six sources of phosphate rock in two acid soils (Ultisols): a sandy soil and a red clay soil. Labile P was determined using the radioactive 32 P technique for Pi extractable P and resin extractable P. Incubations were conducted for 0, 1, 2, 3, 4 and 5 weeks for 32 P exchangeable technique, 0 and 5 weeks for Pi technique and 5 weeks for resin technique. Rates of PR were 0 and 400 mgP/ha. The results showed that labile P in the sandy soil decreased from 0-1 weeks for all the PRs except Hahotoe PR and Hazara PR's. Between 1 and 5 weeks labile P remained relatively constant. The ranking of labile P from PRs was: North Carolina = Kouribga > Matam > Hahotoe = Hazara> Patos de Minas. In the red soil, labile P from all PRs appeared to be relatively unchanged during the 0-5 week incubation. Pi extractable P in sandy soil showed no significant differences due to incubation time. In the red clay soil, there was a significant decrease in Pi-P extracted from soil mixtures with PRs after 5 weeks as compared to 0 weeks. Results of the Resin-extractable P in both sandy and red soils were in agreement with labile P as measured by 32 P exchange technique. (author)

  8. Molecular analysis of red maple (Acer rubrum) populations from a reclaimed mining region in Northern Ontario (Canada): soil metal accumulation and translocation in plants.

    Science.gov (United States)

    Kalubi, K N; Mehes-Smith, M; Narendrula, R; Michael, P; Omri, A

    2015-04-01

    Red maple (Acer rubrum) species is one of the most widespread deciduous (hardwood) trees of eastern North America. It is among the dominant tree species in the Northern Ontario after land reclamation. To date, the effects of heavy metal contamination from the mining activities on terrestrial ecosystems are not well understood. The main objectives of the present study are (1) to determine the level of phytoavailable metal in soil and accumulation in A. rubrum, and (2) to compare the levels of genetic variation among and within A. rubrum populations from areas with different metal contents in a Northern Ontario region. The total heavy metal levels were found to be high but the availability of these metals were much lower. We found that red maple does not accumulate heavy metals in their leaves as other hardwood species. The translocation factors were 0.05, 0.21, 0.38, 0.90, and 2.8 for Cu, Ni, Fe, Zn, and Mg, respectively. The levels of genetic variation in red maple populations from reclaimed lands in Northern Ontario were moderate to high since the percentage of polymorphic loci varied between 51 and 67%. The mean values for observed number of alleles (Na), effective number of alleles (Ne), Nei's gene diversity (h), and Shannon's information index (I) were 1.60, 1.24, 0.15 and 0.24, respectively. The population differentiation (GST) among the fragmented populations was high (0.28) despite a high level of gene flow (Nm = 1.28). Nevertheless, all the populations within the targeted region were genetically closely related. A specific ISSR marker that was identified in all the samples from the reference sites was absent in most samples from metal contaminated. This specific band was cloned and sequenced. Overall, the present study confirms that red maple populations in Northern Ontario are genetically sustainable despite the high level of total metal content in soil.

  9. ESTIMATING ANNUAL SOIL LOSS BY WATER EROSION IN THE MIDDLE PRUT PLAIN, REPUBLIC OF MOLDOVA

    Directory of Open Access Journals (Sweden)

    TUDOR CASTRAVEŢ

    2012-11-01

    Full Text Available Estimating annual soil loss by water erosion in the middle Prut Plain, Republic of Moldova. Modern technology has provided efficient tools such as advanced models and Geographic Information Systems to facilitate decision making for environmental management. Studies at this subject are available in literature, ranging from those that use a simple model such as USLE to others of a more sophisticated nature. In this study the model selected (modified Universal Soil Loss Equation – USLE and the case itself is kept simple due to significant limitations in data on land processes. An effective investigation of soil loss by using GIS – USLE integration requires spatially distributed data on several parameters describing the terrain surface. Such parameters include topography, rainfall characteristics, soil types, vegetation, land use, and the similar. In Republic of Moldova data on most of these parameters are collected often on a local or individual basis, and therefore, a well-organized regional or basin-wide database is not available. In the Republic of Moldova soil erosion is often as high as 30 tons/ha/year and more than 1.4*106 ha run a potential risk of erosion (Summer & Diernhof, 2003. The model estimated an annual quantity of soil eroded ranging over the Prut River tributaries watersheds between the mean values of 6.2 and 20.4 t/ha/yr. Much of the areas are within the range 10-20 t/ha/yr. The highest values of the quantity of eroded soil is carried out on strong inclined slopes corresponding to areas with agricultural lands and herbaceous vegetation. The results have shown that GIS can be effectively used to investigate critical regions within a basin with respect to erosion.

  10. Effects of soil type on leaching and runoff transport of rare earth elements and phosphorous in laboratory experiments.

    Science.gov (United States)

    Wang, Lingqing; Liang, Tao; Chong, Zhongyi; Zhang, Chaosheng

    2011-01-01

    Through leaching experiments and simulated rainfall experiments, characteristics of vertical leaching of exogenous rare earth elements (REEs) and phosphorus (P) and their losses with surface runoff during simulated rainfall in different types of soils (terra nera soil, cinnamon soil, red soil, loess soil, and purple soil) were investigated. Results of the leaching experiments showed that vertical transports of REEs and P were relatively low, with transport depths less than 6 cm. The vertical leaching rates of REEs and P in the different soils followed the order of purple soil > terra nera soil > red soil > cinnamon soil > loess soil. Results of the simulated rainfall experiments (83 mm h⁻¹) revealed that more than 92% of REEs and P transported with soil particles in runoff. The loss rates of REEs and P in surface runoff in the different soil types were in the order of loess soil > terra nera soil > cinnamon soil > red soil > purple soil. The total amounts of losses of REEs and P in runoff were significantly correlated.

  11. Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability

    NARCIS (Netherlands)

    Mia, S.; van Groeningen, J.W.; Van de Voorde, T.F.J.; Oram, N.J.; Bezemer, T.M.; Mommer, Liesje; Jeffery, S.

    2014-01-01

    Increased biological nitrogen fixation (BNF) by legumes has been reported following biochar application to soils, but the mechanisms behind this phenomenon remain poorly elucidated. We investigated the effects of different biochar application rates on BNF in red clover (Trifolium pratense L.). Red

  12. Effects of the mosquito larvicide GB-1111 on red-winged blackbird embryos

    International Nuclear Information System (INIS)

    Albers, P.H.; Hoffman, D.J.; Buscemi, D.M.; Melancon, M.J.

    2003-01-01

    Mosquito larvicide GB-1111 poses a minimal risk to red-winged blackbird embryos when applied according to product label guidance. - Golden Bear Oil (GB-1111; legal trade name for GB-1313) is a petroleum distillate that is used in the United States and other countries as a larvicide for mosquito suppression. As part of a multi-species evaluation of the potential effects of GB-1111 on birds, red-winged blackbird eggs were collected, artificially incubated, and treated with one of five amounts of GB-1111 varying from 0 to 10 times the expected exposure from a spray application of the maximum recommended amount (X=47 l/ha, 5 gal/ac). The application of 10 X caused a significant reduction in hatching success. A dose-related reduction of hepatic microsomal monooxygenase activity (EROD) was detected. Among body weights, skeletal measurements, and age at death, only crownrump length was different among experimental groups. Overall, the potential hazard to embryos of a representative wetland passerine appears minimal until the application rate exceeds 3 X

  13. Strength, shrinkage, erodibility and capillary flow characteristics of cement-treated recycled pavement materials

    Directory of Open Access Journals (Sweden)

    William Fedrigo

    2017-09-01

    Full Text Available Full-depth recycling with portland cement (FDR-PC has been widely used for pavement rehabilitation; however, doubts remain regarding factors affecting some properties of the recycled material. Aiming on quantifying the effects of those factors on the strength, drying shrinkage, erodibility, capillary rise and absorption of cement-treated mixtures (CTM of reclaimed asphalt pavement (RAP and graded crushed stone, tests were conducted considering different RAP contents, cement contents, compaction efforts and curing times. Cement addition increased the mixtures strength and reduced their erodibility and capillary flow characteristics, but increased shrinkage. Low cement contents resulted in acceptable strength for CTM, but in high capillary rise and absorption, not being suitable if the layer is exposed to long periods of water soaking. Higher compaction effort led to similar effects as cement addition, counterbalancing low cement contents usage and reducing costs and shrinkage cracking risk. Strength and shrinkage showed higher growth rates at early stages, and then precautions should be taken in order to avoid moisture loss. Increasing RAP content decreased strength; though, RAP effect on the other properties was statistically non-significant, indicating a similar behaviour as CTM without RAP. Considering the studied properties, the mixture with most satisfactory behaviour for field applications was identified. The results highlighted strength is not the only property to be considered when designing FDR-PC mixtures; although presenting acceptable strength, some mixtures may fail due to shrinkage cracking or erosion, when exposed to water content variations. Keywords: Full-depth recycling with cement, Strength, Drying shrinkage, Erodibility, Capillary rise, Absorption

  14. Soil carbon cycling and sequestration in a seasonally saturated wetland receiving agricultural runoff

    Directory of Open Access Journals (Sweden)

    J. J. Maynard

    2011-11-01

    Full Text Available The fate of organic carbon (C lost by erosion is not well understood in agricultural settings. Recent models suggest that wetlands and other small water bodies may serve as important long-term sinks of eroded C, receiving ~30 % of all eroded material in the US. To better understand the role of seasonally-saturated wetlands in sequestering eroded C, we examined the spatial and temporal dynamics of C and sediment accumulation in a 13-year-old constructed wetland used to treat agricultural runoff. The fate of C sequestered within deposited sediment was modeled using point-sampling, remote sensing, and geostatistics. Using a spatially-explicit sampling design, annual net rates of sedimentation and above-ground biomass were measured during two contrasting years (vegetated (2004 vs. non-vegetated (2005, followed by collection of sediment cores to the antecedent soil layer, representing 13 years of sediment and C accumulation. We documented high annual variation in the relative contribution of endogenous and exogenous C sources, as well as absolute rates of sediment and C deposition. This annual variation, however, was muted in the long-term (13 yr sediment record, which showed consistent vertical patterns of uniform C distribution (~14 g kg–1 and δ13C signatures in high depositional environments. This was in contrast to low depositional environments which had high levels of surface C enrichment (20–35 g kg–1 underlain by C depleted (5–10 g kg–1 sediments and an increasing δ13C signature with depth indicating increased decomposition. These results highlight the importance of sedimentation in physically protecting soil organic carbon and its role in controlling the long-term C concentration of seasonally-saturated wetland soils. While significant enrichment of surface sediments with endogenous C occurred in newly deposited sediment (i.e., 125 kg m2 in 2004, fluctuating cycles

  15. Soil carbon cycling and sequestration in a seasonally saturated wetland receiving agricultural runoff

    Science.gov (United States)

    Maynard, J. J.; Dahlgren, R. A.; O'Geen, A. T.

    2011-11-01

    The fate of organic carbon (C) lost by erosion is not well understood in agricultural settings. Recent models suggest that wetlands and other small water bodies may serve as important long-term sinks of eroded C, receiving ~30 % of all eroded material in the US. To better understand the role of seasonally-saturated wetlands in sequestering eroded C, we examined the spatial and temporal dynamics of C and sediment accumulation in a 13-year-old constructed wetland used to treat agricultural runoff. The fate of C sequestered within deposited sediment was modeled using point-sampling, remote sensing, and geostatistics. Using a spatially-explicit sampling design, annual net rates of sedimentation and above-ground biomass were measured during two contrasting years (vegetated (2004) vs. non-vegetated (2005)), followed by collection of sediment cores to the antecedent soil layer, representing 13 years of sediment and C accumulation. We documented high annual variation in the relative contribution of endogenous and exogenous C sources, as well as absolute rates of sediment and C deposition. This annual variation, however, was muted in the long-term (13 yr) sediment record, which showed consistent vertical patterns of uniform C distribution (~14 g kg-1) and δ13C signatures in high depositional environments. This was in contrast to low depositional environments which had high levels of surface C enrichment (20-35 g kg-1) underlain by C depleted (5-10 g kg-1) sediments and an increasing δ13C signature with depth indicating increased decomposition. These results highlight the importance of sedimentation in physically protecting soil organic carbon and its role in controlling the long-term C concentration of seasonally-saturated wetland soils. While significant enrichment of surface sediments with endogenous C occurred in newly deposited sediment (i.e., 125 kg m2 in 2004), fluctuating cycles of flooding and drying maintained the long-term C concentration at the same level as

  16. ENVIRONMENTAL ASSESSMENT OF ERODED SOILS

    Directory of Open Access Journals (Sweden)

    Yolanda Maya

    2010-12-01

    Full Text Available La degradación del suelo causada por erosión hídrica amenaza seriamente la calidad de los recursos de los que depende el hombre para su subsistencia, como el agua, suelos y cultivos. El diagnóstico de los suelos a partir de variables ambientales es indispensable para la planeación e implementación de planes de manejo para el mejoramiento de este recurso. En este trabajo se presenta una revisión de algunas de las herramientas tecnológicas que se utilizan para evaluar la degradación del suelo causada por erosión hídrica a diversas escalas, considerando los factores determinantes en cada nivel. Las escalas analizadas son: agregados superficiales del suelo, parcela o potrero y cuenca hidrológica. Se mencionan en cada caso las variables indicadoras de la erosión, así como los métodos y herramientas que se utilizan para su evaluación. Se presenta un estudio caso.

  17. Influence of soil erosion on CO2 exchange within the CarboZALF manipulation experiment

    Science.gov (United States)

    Hoffmann, Mathias; Augustin, Jürgen; Sommer, Michael

    2014-05-01

    Agriculture in the hummocky ground moraine landscape of NE-Germany is characterized by an increase in energy crop cultivation, like maize or sorghum. Both enhance lateral C fluxes by erosion and induce feedbacks on C dynamics of agroecosystems as a result of the time limited land cover and the vigorous crop growth. However, the actual impact of these phenomena on the CO2-sink/-source function of agricultural landscapes, is still not clear. Therefore we established the interdisciplinary project 'CarboZALF' in 2009. In our field experiment CarboZALF-D we are monitoring CO2 fluxes for soil-plant systems, which cover all landscape relevant soil states in respect to erosion and deposition, like Albic Cutanic Luvisol, Calcic Cutanic Luvisol, Calcaric Regosol and Endogleyic Colluvic Regosol. Furthermore, we induced erosion / deposition in a manipulation experiment. Automated chamber systems (2.5 m, basal area 1 m2, transparent) are placed at the manipulated sites as well as at one site neither influenced by erosion, nor by deposition. CO2 flux modelling of high temporal resolution includes ecosystem respiration (Reco), gross primary productivity (GPP) and net ecosystem exchange (NEE) based on parallel and continuous measurements of the CO2 exchange, soil and air temperatures as well as photosynthetic active radiation (PAR). Modelling includes gap filling which is needed in case of chamber malfunctions and abrupt disturbances by farming practice. In our presentation we would like to show results of the CO2 exchange measurements for one year. Differences are most pronounced between the non-eroded and the colluvial soil: The Endogleyic Colluvic Regosol showed higher flux rates for Reco and NEE compared to the Albic Cutanic Luvisol. The eroded soil (Calcic Cutanic Luvisol) demonstrated CO2fluxes intermediate between the non-affected and depositional site. Site-specific consequences for the soil C stocks will be also discussed in the presentation.

  18. Phosphorus content as a function of soil aggregate size and paddy cultivation in highly weathered soils.

    Science.gov (United States)

    Li, Baozhen; Ge, Tida; Xiao, Heai; Zhu, Zhenke; Li, Yong; Shibistova, Olga; Liu, Shoulong; Wu, Jinshui; Inubushi, Kazuyuki; Guggenberger, Georg

    2016-04-01

    Red soils are the major land resource in subtropical and tropical areas and are characterized by low phosphorus (P) availability. To assess the availability of P for plants and the potential stability of P in soil, two pairs of subtropical red soil samples from a paddy field and an adjacent uncultivated upland were collected from Hunan Province, China. Analysis of total P and Olsen P and sequential extraction was used to determine the inorganic and organic P fractions in different aggregate size classes. Our results showed that the soil under paddy cultivation had lower proportions of small aggregates and higher proportions of large aggregates than those from the uncultivated upland soil. The portion of >2-mm-sized aggregates increased by 31 and 20 % at Taoyuan and Guiyang, respectively. The total P and Olsen P contents were 50-150 and 50-300 % higher, respectively, in the paddy soil than those in the upland soil. Higher inorganic and organic P fractions tended to be enriched in both the smallest and largest aggregate size classes compared to the middle size class (0.02-0.2 mm). Furthermore, the proportion of P fractions was higher in smaller aggregate sizes (2 mm). In conclusion, soils under paddy cultivation displayed improved soil aggregate structure, altered distribution patterns of P fractions in different aggregate size classes, and to some extent had enhanced labile P pools.

  19. Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"

    Science.gov (United States)

    Ilieva, Diliana; Malinov, Ilia

    2014-05-01

    Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.

  20. Attributes for NHDPlus catchments (Version 1.1) for the conterminous United States: STATSGO soil characteristics

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents estimated soil variables compiled for every catchment of NHDPlus for the conterminous United States. The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee

  1. Distribution characteristics of 137Cs in soil profiles under different land uses and its implication

    International Nuclear Information System (INIS)

    Mian Li; Wenyi Yao; Jishan Yang; Zhenzhou Shen; Er Yang

    2016-01-01

    This paper presents a study of the distribution of 137 Cs in soils under three different land uses in a semiarid watershed. The results showed the average inventory of 137 Cs in the cultivated land, woodland and grassland was 888, 1489 and 1650 Bq/m 2 , respectively. The pattern of depth distribution of 137 Cs in the soil profiles with cultivated land, woodland and grassland was disturbed, eroding and aggrading, and normal profiles, respectively. The coefficient of variation of 137 Cs inventory varied from 8.9 to 38.8 % for different land uses. (author)

  2. Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK

    Directory of Open Access Journals (Sweden)

    R. R. Pawson

    2008-03-01

    Full Text Available This study investigates for the first time the relative importance of dissolved organic carbon (DOC and particulate organic carbon (POC in the fluvial carbon flux from an actively eroding peatland catchment in the southern Pennines, UK. Event scale variability in DOC and POC was examined and the annual flux of fluvial organic carbon was estimated for the catchment. At the event scale, both DOC and POC were found to increase with discharge, with event based POC export accounting for 95% of flux in only 8% of the time. On an annual cycle, exports of 35.14 t organic carbon (OC are estimated from the catchment, which represents an areal value of 92.47 g C m−2 a−1. POC was the most significant form of organic carbon export, accounting for 80% of the estimated flux. This suggests that more research is required on both the fate of POC and the rates of POC export in eroding peatland catchments.

  3. Determination of erosion thresholds and aeolian dune stabilization mechanisms via robotic shear strength measurements

    Science.gov (United States)

    Qian, F.; Lee, D. B.; Bodek, S.; Roberts, S.; Topping, T. T.; Robele, Y.; Koditschek, D. E.; Jerolmack, D. J.

    2017-12-01

    Understanding the parameters that control the spatial variation in aeolian soil erodibility is crucial to the development of sediment transport models. Currently, in-situ measurements of erodibility are time consuming and lack robustness. In an attempt to remedy this issue, we perform field and laboratory tests to determine the suitability of a novel mechanical shear strength method to assess soil erodibility. These tests can be performed quickly ( 1 minute) by a semi-autonomous robot using its direct-drive leg, while environmental controls such as soil moisture and grain size are simultaneously characterized. The robot was deployed at White Sands National Monument to delineate and understand erodibility gradients at two different scales: (1) from dry dune crest to moist interdune (distance 10s m), where we determined that shear strength increases by a factor of three with increasing soil moisture; and (2) from barren barchan dunes to vegetated and crusted parabolics downwind (distance 5 km), where we found that shear strength was enhanced by a factor of two relative to loose sand. Interestingly, shear strength varied little from carbonate-crusted dune surfaces to bio-crust covered interdunes in the downwind parabolic region, indicating that varied surface crusts contribute similarly to erosion resistance. To isolate the control of soil moisture on erodibility, we performed laboratory experiments in a sandbox. These results verify that the observed increase in soil erodibility from barchan crest to interdune at White Sands is dominated by soil moisture, and the variation in parabolic dune and barchan interdune areas results from a combination of soil moisture, bio-activity, and crust development. This study highlights that spatial variation of soil erodibility in arid environments is large enough to significantly affect sediment transport, and that probing soil erodibility with a robot has the potential to improve our understanding of this multifaceted problem.

  4. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil

    International Nuclear Information System (INIS)

    Wang Ping; Wang Haizhen; Wu Laosheng; Di Hongjie; He Yan; Xu Jianming

    2012-01-01

    Biodegradation processes and changes in microbial community structure were investigated in black carbon (BC) amended soils in a laboratory experiment using two soils (black soil and red soil). We applied different percentages of charcoal as BC (0%, 0.5% and 1% by weight) with 100 mg kg −1 of phenanthrene. Soil samples were collected at different incubation times (0, 7, 15, 30, 60, 120 d). The amendment with BC caused a marked decrease in the dissipation (ascribed to mainly degradation and/or sequestration) of phenanthrene residues from soil. Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil, 0.5% BC amendments were higher. There were significant changes in the PLFA pattern in phenanthrene-spiked soils with time but BC had little effect on the microbial community structure of phenanthrene-spiked soils, as indicated by principal component analysis (PCA) of the PLFA signatures. - Highlights: ► Extracted phenanthrene increased substantially as the BC amount increased. ► Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil. ► BC caused a marked decrease in the dissipation of phenanthrene from soil. ► PLFA pattern in phenanthrene-spiked soils with time had significant changes. - BC amendments on phenanthrene extraction were different for two soils and time was a more effective factor in microbial community changes.

  5. Decomposition of 14C - malathion in three Brazilian soil samples

    International Nuclear Information System (INIS)

    Helene, C.G.; Ruegg, E.F.

    1982-01-01

    The degradation of 14 C-malathion in soil was examined using gas chromatography and radiotracer techniques. About half of the malathion added was degraded within a day in soil from three regions of Brazil. Almost all the radiolabelled material extracted from the Red Latosol (Londrina, PR) was malathion, but metabolites were extracted from the 'Sandy' cerrado soil (Planaltina, DF) and Dark-Red Latosol (Passo Fundo, RS). The proportion of metabolites in the extracts increased until most of the malathion was degraded, after four days. Radiocarbon dioxide was liberated from all three soils at similar rates. When about half of the label had been recovered as carbon dioxide after eight weeks, the rate of evolution diminished. (Author) [pt

  6. The relative importance of fertilization and soil erosion on C-dynamics in agricultural landscapes of NE Germany

    Science.gov (United States)

    Pohl, Madlen; Hoffmann, Mathias; Hagemann, Ulrike; Jurisch, Nicole; Remus, Rainer; Sommer, Michael; Augustin, Jürgen

    2016-04-01

    The hummocky ground moraine landscape of north-east Germany is characterized by distinct small-scale soil heterogeneity on the one hand, and intensive energy crop cultivation on the other. Both factors are assumed to significantly influence gaseous C exchange, and thus driving the dynamics of soil organic carbon stocks in terrestrial, agricultural ecosystems. However, it is not yet clear to which extent fertilization and soil erosional status influence soil C dynamics and whether one of these factors is more relevant than the other. We present seasonal and dynamic soil C balances of biogas maize for the growing season 2011, recorded at different sites located within the CarboZALF experimental area. The sites differ regarding soils (non-eroded Albic Luvisols (Cutanic), extremely eroded Calcaric Regosol and depositional Endogleyic Colluvic Regosol,) and applied fertilizer (100% mineral N fertilizer, 50% mineral and 50% N organic fertilizer, 100% organic N fertilizer). Fertilization treatments were established on the Albic Luvisol (Cutanic). Net-CO2-exchange (NEE) and ecosystem respiration (Reco) were measured every four weeks using a dynamic flow-through non-steady-state closed manual chamber system. Gap filling was performed based on empirical temperature and PAR dependency functions to derive daily NEE values. At the same time, daily above-ground biomass production (NPP) was estimated based on biomass samples and final harvest, using a sigmoidal growth function. In a next step, dynamic soil C balances were generated as the balance of daily NEE and NPP considering the initial C input due to N fertilizers. The resulted seasonal soil C balances varied from strong C losses at the Endogleyic Colluvic Regosol (602 g C m-2) to C gains at the Calcaric Regosol (-132 g C m-2). In general, soils exerted a stronger impact on seasonal and dynamic C balances compared to differences in applied N fertilizer. There are indications that inter-annual variations in climate conditions

  7. The permeability and loss of potassium in three types of Yunnan soil measured by using 86Rb

    International Nuclear Information System (INIS)

    Liu Dayong; Bie Zhilong; Wan Zhaoliang

    1997-01-01

    The permeability and loss of potassium in three types of soil (purple, paddy and red soil) used for planting tobacco in Yunnan province were studied by using 86 Rb tracer method. The results showed that for the treatment of 0.1 gK 2 O/kg soil, the potassium loss in soils was in order of purple soil>paddy soil>red soil. The loss of potassium in purple soil and paddy soil increased with sampling time. In the same soil, the loss of potassium was fast with the treatment of 0.1 gK 2 O/kg soil, but it was slow with the treatment of 0.2 gK 2 O/kg soil and 0.3 gK 2 O/kg soil. The potassium residues in soil surface was in order of red soil>paddy soil>purple soil. And the amounts of potassium in soil surface was positively correlated with potassium added. With the increase of soil depth, a slight decrease of potassium residue was found for the treatment of 0.2 gK 2 O/kg soil and 0.3 gK 2 O/kg soil, while a slight increase for the treatment of 0.1 gK 2 O/kg soil

  8. Harlequin duck capture and EROD activity data from Prince William Sound, Alaska, 2011, 2013, 2014

    Data.gov (United States)

    Department of the Interior — This data set includes capture information and ethoxyresorufin­O­deethylase (EROD) activity results for harlequin ducks sampled during March 2011, 2013, and 2014 in...

  9. Influence of bleaching agents on surface roughness of sound or eroded dental enamel specimens.

    Science.gov (United States)

    Azrak, Birgül; Callaway, Angelika; Kurth, Petra; Willershausen, Brita

    2010-12-01

    The aim of the present in vitro study was to assess the effect of bleaching agents on eroded and sound enamel specimens. Enamel specimens prepared from human permanent anterior teeth were incubated with different bleaching agents containing active ingredients as 7.5 or 13.5% hydrogen peroxide or 35% carbamide peroxide, ranging in pH from 4.9 to 10.8. The effect of the tooth whitening agents on surface roughness was tested for sound enamel surfaces as well as for eroded enamel specimens. To provoke erosive damage, the enamel specimens were incubated for 10 hours with apple juice (pH = 3.4). Afterwards, pretreated and untreated dental slices were incubated with one of the bleaching agents for 10 hours. The surface roughness (R(a)) of all enamel specimens (N = 80) was measured using an optical profilometric device. A descriptive statistical analysis of the R(a) values was performed. The study demonstrated that exposure to an acidic bleaching agent (pH = 4.9) resulted in a higher surface roughness (p = 0.043) than treatment with a high peroxide concentration (pH = 6.15). If the enamel surface was previously exposed to erosive beverages, subsequent bleaching may enhance damage to the dental hard tissue. Bleaching agents with a high concentration of peroxide or an acidic pH can influence the surface roughness of sound or eroded enamel. © 2010, COPYRIGHT THE AUTHORS. JOURNAL COMPILATION © 2010, WILEY PERIODICALS, INC.

  10. Agricultural induced impacts on soil carbon cycling and sequestration in a seasonally saturated wetland

    Science.gov (United States)

    Maynard, J. J.; O'Geen, A. T.; Dahlgren, R. A.

    2011-06-01

    The fate of organic carbon (C) lost by erosion is not well understood in agricultural settings. Recent models suggest that wetlands and other small water bodies may serve as important long-term sinks of eroded C, receiving ~30 % of all eroded material in the US. To better understand the role of seasonally-saturated wetlands in sequestering eroded C, we examined the spatial and temporal dynamics of C and sediment accumulation in a 13-yr-old constructed wetland used to treat agricultural runoff. The fate of C sequestered within deposited sediment was modeled using point-sampling, remote sensing, and geostatistics. Using a spatially-explicit sampling design, annual net rates of sedimentation and above ground biomass were measured during two contrasting years (vegetated, 2004 vs. non-vegetated, 2005), followed by collection of sediment cores to the antecedent soil layer, representing 13 yr of sediment and C accumulation. We documented high annual variation in the relative contribution of endogenous and exogenous C sources, as well as absolute rates of sediment and C deposition. This annual variation, however, was muted in the long-term (13-yr) sediment record, which showed consistent vertical patterns of uniform C distribution (~14 g kg-1) and δ13C signatures in high depositional environments. This was in contrast to low depositional environments which had high levels of surface C enrichment (20-35 g kg-1) underlain by C depleted (5-10 g kg-1) sediments and an increasing δ13C signature with depth indicating increasing decomposition. These results highlight the importance of sedimentation in physically protecting soil organic carbon and its role in controlling the long-term C concentration of seasonally-saturated wetland soils. While significant enrichment of surface sediments with endogenous C occurred in newly deposited sediment (i.e., 125 kg m2 in 2004), fluctuating cycles of flooding and drying maintained the long-term C concentration at the same level as

  11. A pan-European quantitative assessment of soil loss by wind

    Science.gov (United States)

    Borrelli, Pasqualle; Lugato, Emanuele; Panagos, Panos

    2016-04-01

    Soil erosion by wind is a serious environmental problem often low perceived but resulting in severe soil degradation forms. On the long-term a considerable part of topsoil - rich in nutrient and organic matters - could be removed compromising the agricultural productivity and inducing an increased use of fertilizers. Field scale studies and observations proven that wind erosion is a serious problem in many European sites. The state-of-the-art suggests a scenario where wind erosion locally affects the temperate climate areas of the northern European countries, as well as the semi-arid areas of the Mediterranean region. However, observations, field measurements and modelling assessments are extremely limited and unequally distributed across Europe. It implies a lack of knowledge about where and when wind erosion occurs, limiting policy actions aimed at mitigating land degradation. To gain a better understanding about soil degradation process, the Soil Resource Assessment working group of the Joint Research Centre carried out the first pan-European assessments of wind-erodible fraction of soil (EF) (Geoderma, 232, 471-478, 2014) and land susceptibility to wind erosion (Land Degradation & Development, DOI: 10.1002/ldr.2318). Today's challenge is to integrate the insights archived by these pan-European assessments, local experiments and field-scale models into a new generation of regional-scale wind erosion models. A GIS version of the Revised Wind Erosion Equation (RWEQ) was developed with the aim to i) move a step forward into the aforementioned challenges, and ii) evaluate the soil loss potential due to wind erosion in the agricoltural land of the EU. The model scheme was designed to describe daily soil loss potential, combining spatiotemporal conditions of soil erodibility, crust factor, soil moisture content, vegetation coverage and wind erosivity at 1 km2 resolution. The average soil loss predicted by GIS-RWEQ in the EU arable land ranges from 0 to 39.9 Mg ha-1 yr

  12. Soil deflation analyses from wind erosion events

    Directory of Open Access Journals (Sweden)

    Lenka Lackóová

    2015-09-01

    Full Text Available There are various methods to assess soil erodibility for wind erosion. This paper focuses on aggregate analysis by a laser particle sizer ANALYSETTE 22 (FRITSCH GmbH, made to determine the size distribution of soil particles detached by wind (deflated particles. Ten soil samples, trapped along the same length of the erosion surface (150–155 m but at different wind speeds, were analysed. The soil was sampled from a flat, smooth area without vegetation cover or soil crust, not affected by the impact of windbreaks or other barriers, from a depth of maximum 2.5 cm. Prior to analysis the samples were prepared according to the relevant specifications. An experiment was also conducted using a device that enables characterisation of the vertical movement of the deflated material. The trapped samples showed no differences in particle size and the proportions of size fractions at different hourly average wind speeds. It was observed that most of particles travelling in saltation mode (size 50–500 μm – 58–70% – moved vertically up to 26 cm above the soil surface. At greater heights, particles moving in suspension mode (floating in the air; size < 100 μm accounted for up to 90% of the samples. This result suggests that the boundary between the two modes of the vertical movement of deflated soil particles lies at about 25 cm above the soil surface.

  13. [Impact of biochar amendment on the sorption and dissipation of chlorantraniliprole in soils].

    Science.gov (United States)

    Wang, Ting-Ting; Yu, Xiang-Yang; Shen, Yaen; Zhang, Chao-Lan; Liu, Xian-Jin

    2012-04-01

    The effects of biochar amendment on sorption and dissipation of chlorantraniliprole (CAP) in 5 different agricultural soils were studied. Red gum wood (Eucalyptus spp.) derived biochar was amended into a black soil, a yellow soil, a red soil, a purplish soil, and a fluvo-aquic soil at the rate of 0.5% (by weight). The sorption and dissipation behaviors of CAP in soils with and without biochar amendment were measured by batch equilibration technique and dissipation kinetic experiment, respectively. The objective was to investigate the impact of biochar application on the environmental fate of pesticides in agricultural soils with different physical-chemical properties, and evaluate the potential ecological impacts of field application of biochar materials. The results showed that biochar application in soils could enhance the sorption of CAP, but the magnitudes were varied among soils with different properties. Amendment of 0.5% (by weight) biochar in the black soil, which have high content of organic matter (4.59%), resulted in an increase of sorption coefficient (K(d)) by 2.17%; while for the fluvo-aquic soil with organic matter content of 1.16%, amendment of biochar at the same level led to an increase of 139.13%. The sorption capacity of biochar was partially suppressed when biochar was mixed with soils. The calculated K(Fbiochar) of biochar after mixed in the black soil, yellow soil, red soil, purplish soil, and fluvo-aquic soil were decreased by 96.94%, 90.6%, 91.31%, 68.26%, and 34.59%, respectively, compared to that of the original biochar. The half-lives of CAP in black soil, yellow soil, red soil, purplish soil, and fluvo-aquic soil were 115.52, 133.30, 154.03, 144.41 and 169.06 d, respectively. In soils amended with biochar, the corresponding half-lives of CAP were extended by 20.39, 35.76, 38.51, 79.19, and 119.75 d, respectively. Similar to the effects of biochar on CAP sorption, in soil with higher content of organic matter, the retardation of CAP

  14. Improved USLE-K factor prediction: A case study on water erosion areas in China

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2016-09-01

    Full Text Available Soil erodibility (K-factor is an essential factor in soil erosion prediction and conservation practises. The major obstacles to any accurate, large-scale soil erodibility estimation are the lack of necessary data on soil characteristics and the misuse of variable K-factor calculators. In this study, we assessed the performance of available erodibility estimators Universal Soil Loss Equation (USLE, Revised Universal Soil Loss Equation (RUSLE, Erosion Productivity Impact Calculator (EPIC and the Geometric Mean Diameter based (Dg model for different geographic regions based on the Chinese soil erodibility database (CSED. Results showed that previous estimators overestimated almost all K-values. Furthermore, only the USLE and Dg approaches could be directly and reliably applicable to black and loess soil regions. Based on the nonlinear best fitting techniques, we improved soil erodibility prediction by combining Dg and soil organic matter (SOM. The NSE, R2 and RE values were 0.94, 0.67 and 9.5% after calibrating the results independently; similar model performance was showed for the validation process. The results obtained via the proposed approach were more accurate that the former K-value predictions. Moreover, those improvements allowed us to effectively establish a regional soil erodibility map (1:250,000 scale of water erosion areas in China. The mean K-value of Chinese water erosion regions was 0.0321 (t ha h·(ha MJ mm−1 with a standard deviation of 0.0107 (t ha h·(ha MJ mm−1; K-values present a decreasing trend from North to South in water erosion areas in China. The yield soil erodibility dataset also satisfactorily corresponded to former K-values from different scales (local, regional, and national.

  15. Stability and instability on Maya Lowlands tropical hillslope soils

    Science.gov (United States)

    Beach, Timothy; Luzzadder-Beach, Sheryl; Cook, Duncan; Krause, Samantha; Doyle, Colin; Eshleman, Sara; Wells, Greta; Dunning, Nicholas; Brennan, Michael L.; Brokaw, Nicholas; Cortes-Rincon, Marisol; Hammond, Gail; Terry, Richard; Trein, Debora; Ward, Sheila

    2018-03-01

    Substantial lake core and other evidence shows accelerated soil erosion occurred in the Maya Lowlands of Central America over ancient Maya history from 3000 to 1000 years ago. But we have little evidence of the wider network of the sources and sinks of that eroded sediment cascade. This study begins to solve the mystery of missing soil with new research and a synthesis of existing studies of tropical forest soils along slopes in NW Belize. The research aim is to understand soil formation, long-term human impacts on slopes, and slope stability over time, and explore ecological implications. We studied soils on seven slopes in tropical forest areas that have experienced intensive ancient human impacts and those with little ancient impacts. All of our soil catenas, except for one deforested from old growth two years before, contain evidence for about 1000 years of stable, tropical forest cover since Maya abandonment. We characterized the physical, chemical, and taxonomic characteristics of soils at crest-shoulder, backslopes, footslopes, and depression locations, analyzing typical soil parameters, chemical elements, and carbon isotopes (δ13C) in dated and undated sequences. Four footslopes or depressions in areas of high ancient occupation preserved evidence of buried, clay-textured soils covered by coarser sediment dating from the Maya Classic period. Three footslopes from areas with scant evidence of ancient occupation had little discernable deposition. These findings add to a growing corpus of soil toposequences with similar facies changes in footslopes and depressions that date to the Maya period. Using major elemental concentrations across a range of catenas, we derived a measure (Ca + Mg) / (Al + Fe + Mn) of the relative contributions of autochthonous and allochthonous materials and the relative age of soil catenas. We found very low ratios in clearly older, buried soils in footslopes and depressions and on slopes that had not undergone ancient Maya erosion. We

  16. [Using 137Cs and 210Pb(ex) to trace the impact of soil erosion on soil organic carbon at a slope farmland in the black soil region].

    Science.gov (United States)

    Fang, Hai-Yan; Sheng, Mei-Ling; Sun, Li-Ying; Cai, Qiang-Guo

    2013-07-01

    Soil cores were collected from a 28.5 hm2 slope farmland in the black soil region of Northeast China. Based on the sampled data of 137Cs, 210Pb(ex) and SOC, the potentials of applying 137Cs and 210Pb(ex) for assessing SOC redistribution were evaluated, aimed to approach the impact of soil erosion on soil organic carbon (SOC) in black soil region. At both planar and vertical directions, the 137Cs, 210Pb(ex) and SOC in the farmland had similar distribution patterns. Although there were large planar variations in the 137Cs and 210Pb(ex) areal activities and the SOC stock as affected by soil erosion and deposition, the 137Cs, 210Pb(ex) and SOC had similar changing trends over the landscape. Two depth distribution profiles were also used to study the relations of 137Cs and 210Pb(ex) with SOC. At eroded site, the radioactivities of 137Cs and 210Pb(ex) and the SOC mass fraction did not show large variations in 0-25 cm soil layer, but decreased sharply below 25 cm. For the deposition sample, the radioactivities of 137Cs and 210Pb(ex) in 0-100 cm soil increased firstly and then decreased. The SOC mass fraction also had similar depth distribution pattern in this soil layer. The 137Cs and 210Pb(ex) presented positive linear correlations with the SOC, indicating that 137Cs, 210Pb(ex) and SOC moved with the same physical mechanism in the farmland, and fallout 137Cs and 210Pb(ex) could be used to study spatio-temporal distribution characteristics of SOC in the black soil region under the condition of soil erosion.

  17. Involvement of allelopathy in inhibition of understory growth in red pine forests.

    Science.gov (United States)

    Kato-Noguchi, Hisashi; Kimura, Fukiko; Ohno, Osamu; Suenaga, Kiyotake

    2017-11-01

    Japanese red pine (Pinus densiflora Sieb. et Zucc.) forests are characterized by sparse understory vegetation although sunlight intensity on the forest floor is sufficient for undergrowth. The possible involvement of pine allelopathy in the establishment of the sparse understory vegetation was investigated. The soil of the red pine forest floor had growth inhibitory activity on six test plant species including Lolium multiflorum, which was observed at the edge of the forest but not in the forest. Two growth inhibitory substances were isolated from the soil and characterized to be 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid. Those compounds are probably formed by degradation process of resin acids. Resin acids are produced by pine and delivered into the soil under the pine trees through balsam and defoliation. Threshold concentrations of 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid for the growth inhibition of L. multiflorum were 30 and 10μM, respectively. The concentrations of 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid in the soil were 312 and 397μM, respectively, which are sufficient concentrations to cause the growth inhibition because of the threshold. These results suggest that those compounds are able to work as allelopathic agents and may prevent from the invasion of herbaceous plants into the forests by inhibiting their growth. Therefore, allelopathy of red pine may be involved in the formation of the sparse understory vegetation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. How Welfare Regimes Generate and Erode Social Capital

    DEFF Research Database (Denmark)

    Larsen, Christian Albrekt

    2007-01-01

    in the USA and other liberal welfare regimes, while social capital is stable in the so-called social democratic and conservative welfare regimes. The second puzzle is why the group of social democratic regimes have extremely high levels of social trust. It is argued that both puzzles have to do......Comparative studies of social capital, operationalised as social trust between citizens, have revealed two major puzzles. The first puzzle has to do with the decline in social trust in the USA, which fuelled considerable debate about social capital. The question is why social capital erodes...... with the presence or absence of a poor and culturally distinct underclass. The social democratic welfare regimes hinder – while the liberal welfare regime generate – such underclass phenomena....

  19. Eroding market stability by proliferation of financial instruments

    Science.gov (United States)

    Caccioli, F.; Marsili, M.; Vivo, P.

    2009-10-01

    We contrast Arbitrage Pricing Theory (APT), the theoretical basis for the development of financial instruments, with a dynamical picture of an interacting market, in a simple setting. The proliferation of financial instruments apparently provides more means for risk diversification, making the market more efficient and complete. In the simple market of interacting traders discussed here, the proliferation of financial instruments erodes systemic stability and it drives the market to a critical state characterized by large susceptibility, strong fluctuations and enhanced correlations among risks. This suggests that the hypothesis of APT may not be compatible with a stable market dynamics. In this perspective, market stability acquires the properties of a common good, which suggests that appropriate measures should be introduced in derivative markets, to preserve stability. in here

  20. Nitrogen Fertilizer Sources and Application Timing Affects Wheat and Inter-Seeded Red Clover Yields on Claypan Soils

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2014-11-01

    Full Text Available Controlled-release N fertilizer, such as polymer-coated urea (PCU, may be a fall N management option for wheat (Triticum aestivum L. grown in poorly-drained claypan soils. Field research evaluated (1 urea release from fall-applied PCU in 2006 and 2007; (2 broadcast fall-spring split (25%:75% of N sources; and (3 a single fall (100% application of PCU, urea, urea plus NBPT (N-(n-butyl thiophosphoric triamide] (U + NBPT, ammonium nitrate (AN, or urea ammonium nitrate (UAN at 0, 56, 84, and 112 kg·N·ha−1 on wheat yield, wheat biomass, N uptake by wheat, and frost-seeded red clover (FSC (Trifolium pratense L. forage yield (2004–2007. PCU applied in fall released less than 30% urea by February. Urea released from PCU by harvest was 60% and 85% in 2006 and 2007, respectively. In poorly-drained soils, wheat yields ranked PCU > AN > U + NBPT > urea ≥ UAN over the rates evaluated for fall-only application. PCU was a viable fall-applied N source, with yields similar to or greater than urea or U + NBPT split-applied. Split-N applications of AN, urea, UAN, and U + NBPT generally resulted in greater wheat yields than a fall application. Enhanced efficiency fertilizers provide farmers with flexible options for maintaining high yielding production systems.

  1. Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHs under denitrifying conditions in a red paddy soil

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingming, E-mail: sunmingming@njau.edu.cn [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Key Laboratory of Soil Environmental and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Ye, Mao [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Feng, E-mail: fenghu@njau.edu.cn [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li, Huixin [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Teng, Ying [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Jiang, Xin [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Kengara, Fredrick Orori [Department of Chemistry, Maseno University, Private Bag, Maseno 40105 (Kenya)

    2014-01-15

    Highlights: • Enhanced anaerobic bioremediation of a red paddy soil polluted with PAHs. • 1% (w/w) methyl-β-cyclodextrin (MCD) and 20 mM nitrate addition acted as solubility-enhancing agent and electron acceptor respectively. • Tenax extraction and a first-three-compartment modeling were applicable to explore the rate-limiting factors in the biodegradation. • Lack of PAH-degraders hindered biodegradation in control and MCD addition treatments. • Inadequate bioaccessible PAHs was vital rate-limiting factor in nitrate addition treatments. -- Abstract: The effectiveness of anaerobic bioremediation systems for PAH-contaminated soil may be constrained by low contaminants bioaccessibility due to limited aqueous solubility and lack of suitable electron acceptors. Information on what is the rate-limiting factor in bioremediation process is of vital importance in the decision in what measures can be taken to assist the biodegradation efficacy. In the present study, four different microcosms were set to study the effect of methyl-β-cyclodextrin (MCD) and nitrate addition (N) on PAHs biodegradation under anaerobic conditions in a red paddy soil. Meanwhile, sequential Tenax extraction combined with a first-three-compartment model was employed to evaluate the rate-limiting factors in MCD enhanced anaerobic biodegradation of PAHs. Microcosms with both 1% (w/w) MCD and 20 mM N addition produced maximum biodegradation of total PAHs of up to 61.7%. It appears rate-limiting factors vary with microcosms: low activity of degrading microorganisms is the vital rate-limiting factor for control and MCD addition treatments (CK and M treatments); and lack of bioaccessible PAHs is the main rate-limiting factor for nitrate addition treatments (N and MN treatments). These results have practical implications for site risk assessment and cleanup strategies.

  2. Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHs under denitrifying conditions in a red paddy soil

    International Nuclear Information System (INIS)

    Sun, Mingming; Ye, Mao; Hu, Feng; Li, Huixin; Teng, Ying; Luo, Yongming; Jiang, Xin; Kengara, Fredrick Orori

    2014-01-01

    Highlights: • Enhanced anaerobic bioremediation of a red paddy soil polluted with PAHs. • 1% (w/w) methyl-β-cyclodextrin (MCD) and 20 mM nitrate addition acted as solubility-enhancing agent and electron acceptor respectively. • Tenax extraction and a first-three-compartment modeling were applicable to explore the rate-limiting factors in the biodegradation. • Lack of PAH-degraders hindered biodegradation in control and MCD addition treatments. • Inadequate bioaccessible PAHs was vital rate-limiting factor in nitrate addition treatments. -- Abstract: The effectiveness of anaerobic bioremediation systems for PAH-contaminated soil may be constrained by low contaminants bioaccessibility due to limited aqueous solubility and lack of suitable electron acceptors. Information on what is the rate-limiting factor in bioremediation process is of vital importance in the decision in what measures can be taken to assist the biodegradation efficacy. In the present study, four different microcosms were set to study the effect of methyl-β-cyclodextrin (MCD) and nitrate addition (N) on PAHs biodegradation under anaerobic conditions in a red paddy soil. Meanwhile, sequential Tenax extraction combined with a first-three-compartment model was employed to evaluate the rate-limiting factors in MCD enhanced anaerobic biodegradation of PAHs. Microcosms with both 1% (w/w) MCD and 20 mM N addition produced maximum biodegradation of total PAHs of up to 61.7%. It appears rate-limiting factors vary with microcosms: low activity of degrading microorganisms is the vital rate-limiting factor for control and MCD addition treatments (CK and M treatments); and lack of bioaccessible PAHs is the main rate-limiting factor for nitrate addition treatments (N and MN treatments). These results have practical implications for site risk assessment and cleanup strategies

  3. Effect of Exogenous Phytase Addition on Soil Phosphatase Activities: a Fluorescence Spectroscopy Study.

    Science.gov (United States)

    Yang, Xiao-zhu; Chen, Zhen-hua; Zhang, Yu-lan; Chen, Li-jun

    2015-05-01

    The utilization of organic phosphorus (P) has directly or indirectly improved after exogenous phytase was added to soil. However, the mechanism by which exogenous phytase affected the soil phosphatases (phosphomonoesterase and phosphodiesterase) activities was not clear. The present work was aimed to study red soil, brown soil and cinnamon soil phosphomonoesterase (acid and alkaline) (AcP and AlP) and phosphodiesterase (PD) activities responding to the addition of exogenous phytase (1 g phytase/50 g air dry soil sample) based on the measurements performed via a fluorescence detection method combined with 96 microplates using a TECAN Infinite 200 Multi-Mode Microplate Reader. The results indicated that the acid phosphomonoesterase activity was significantly enhanced in red soil (p≤0. 01), while it was significantly reduced in cinnamon soil; alkaline phosphomonoesterase activity was significantly enhanced in cinnamon soil (p≤ 0. 01), while it was significantly reduced in red soil; phosphodiesterase activity was increased in three soils but it was significantly increased in brown soil (p≤0. 01) after the addition of exogenous phytase. The activities still remained strong after eight days in different soils, which indicated that exogenous phytase addition could be enhance soil phosphatases activities effectively. This effect was not only related to soil properties, such as pH and phosphorus forms, but might also be related to the excreted enzyme amount of the stimulating microorganism. Using fluorescence spectroscopy to study exogenous phytase addition influence on soil phosphatase activities was the first time at home and abroad. Compared with the conventional spectrophotometric method, the fluorescence microplate method is an accurate, fast and simple to use method to determine the relationships among the soil phosphatases activities.

  4. Critical analysis of soil hydraulic conductivity determination using monoenergetic gamma radiation attenuation

    International Nuclear Information System (INIS)

    Portezan Filho, Otavio

    1997-01-01

    Three soil samples of different textures: LVA (red yellow latosol), LVE (dark red latosol) and LRd (dystrophic dark red latosol) were utilized for unsaturated hydraulic conductivity K(θ) measurements. Soil bulk densities and water contents during internal water drainage were measured by monoenergetic gamma radiation attenuation, using homogeneous soil columns assembled in the laboratory. The measurements were made with a collimated gamma beam of 0.003 m in diameter using a Nal(Tl) (3'' x 3 '') detector and a 137 Cs gamma source of 74 X 10 8 Bq and 661.6 KeV. Soil columns were scanned with the gamma beam from 0.01 to 0.20 m depth, in 0.01m steps, for several soil water redistribution times. The results show a great variability of the unsaturated hydraulic conductivity relation K(θ), even though homogeneous soils were used. The variability among methods is significantly smaller in relation to variability in space. The assumption of unit hydraulic gradient during redistribution of soil water utilized in the methods of Hillel, Libardi and Sisson leads to hydraulic conductivity values that increase in depth. The exponential character of the K(θ) relationship, is responsible for the difficulty of estimating soil hydraulic conductivity, which is a consequence of small variations in the porous arrangement, even in samples supposed to be homogeneous. (author)

  5. Combined use of stable isotopes and fallout radionuclides as soil erosion indicators in a forested mountain site, South Korea

    International Nuclear Information System (INIS)

    Meusburger, K.; Mabit, L.; Alewell, C.; Park, J.H.; Sandor, T.

    2013-01-01

    The aim of this study is to assess and to validate the suitability of the stable nitrogen and carbon isotope signature as soil erosion indicators in a mountain forest site in South Korea. Our approach is based on the comparison of the isotope signature of ''stable'' landscape positions (reference sites), which are neither affected by erosion nor deposition, with eroding sites. For undisturbed soils we expect that the enrichment of δ 15 N and δ 13 C with soil depth, due to fractionation during decomposition, goes in parallel with a decrease in nitrogen and carbon content. Soil erosion processes potentially weaken this correlation. The 137 Cs method and the Revised Universal Soil Loss Equation (RUSLE) were applied for the soil erosion quantification. Erosion rates obtained with the 137 Cs method range from 0.9 t ha -1 yr -1 to 7 t ha -1 yr -1 . Considering the steep slopes of up to 40 and the erosive monsoon events (R factor of 6600 MJ mm ha -1 h -1 yr -1 ), the rates are plausible and within the magnitude of the RUSLE-modeled soil erosion rates, varying from 0.02 t ha -1 yr -1 to 5.1 t ha -1 yr -1 . The soil profiles of the reference sites showed significant (p < 0.0001) correlations between nitrogen and carbon content and its corresponding δ 15 N and δ 13 C signatures. In contrast, for the eroding sites this relationship was weaker and for the carbon not significant. These results confirm the usefulness of the stable carbon isotope signature as a qualitative indicator for soil disturbance. We could show further that the δ 15 N isotope signature can be used similarly for uncultivated sites. We thus propose that the stable δ 15 N and δ 13 C signature of soil profiles could serve as additional indicators confirming the accurate choice of the reference site in soil erosion studies using the 137 Cs method.

  6. Soil organic carbon redistribution by water erosion--the role of CO2 emissions for the carbon budget.

    Science.gov (United States)

    Wang, Xiang; Cammeraat, Erik L H; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m(-2) yr(-1)) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m(-2). Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems.

  7. Effect of biosurfactant[0] on the sorption of phenanthrene onto original and H2O2-treated soils

    Institute of Scientific and Technical Information of China (English)

    PEI Xiaohong; ZHAN Xinhua; ZHOU Lixiang

    2009-01-01

    The objective of this study was to examine the effect of biosurfactant on sorption of phenanthrene (PHE) onto the original or H2O2-treated black loamy soil (typic isohumisols) and red sandy soil (typic ferralisols). The sorption isotherms were performed with the original and "soft" carbon-removed soils in the presence and absence of biosurfactant (200 mg/L). The sorption and degradation of biosurfactant were investigated. The result showed that organic matter played an important role in PHE sorption onto the black loamy and red sandy soils, and the PHE sorption isotherms on the "soft" carbon-removed soils exhibited more nonlinearity than those on the original soils. The values of partition coefficient (Kd) on the original black loamy soil with or without 200 mg/L biosurfactant were 181.6 and 494.5 mL/g, respectively. Correspondingly, in the red sandy soil, Kd was 246.4 and 212.8 mL/g in the presence or absence of biosurfactant, respectively. The changes of Kd suggested that biosurfactant inhibited PHE sorption onto the black loamy soil, but facilitated PHE sorption onto the red sandy soil. The nonlinearity of PHE sorption isotherm was decreased in the presence of biosurfactant. Site specific sorption might occur during PHE sorption onto both the original and the "soft" carbon-removed soils in the presence of biosurfactant. It was noted that biosurfactant could also be sorbed onto soils. The maximal sorption capacity of the red sandy soil for biosurfactant was (76.9 ± 0.007) μg/g, which was 1.31 times that of black loamy soil. Biosurfactant was degraded quickly in the two selected soils, and 92% of biosurfactant were mineralized throughout the incubation experiment for 7 d. It implied that biosurfactant should be added frequently when the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils was conducted through PAH desorption approach facilitated by biosurfactant.

  8. Settling-velocity specific SOC distribution on hillslopes

    DEFF Research Database (Denmark)

    Hu, Yaxian; Berhe, Asmeret Asefaw; Fogel, Marilyn L.

    The net effect of soil erosion by water, as a sink or source of atmospheric CO2, is determined by the spatial (re-)distribution and stability of eroded soil organic carbon (SOC). The depositional position of eroded SOC is a function of the transport distances of soil fractions where the SOC...... fractions. Eroding sandy soils and sediment were sampled after a series of rainfall events along a slope on a freshly seeded cropland in Jutland, Denmark. All the soil samples were fractionated into five settling classes using a settling tube apparatus. The spatial distribution of soil settling classes...... shows a coarsening effect immediately below the eroding slope, followed by a fining trend at the slope tail. The 13C values of soil fractions were more positive at the footslope than on the slope shoulder or at the slope tail, suggesting enhanced decomposition rate of fresh SOC input at the footslope...

  9. Enhanced degradation of metalaxyl in Gley Humic and Dark Red Latosol

    Directory of Open Access Journals (Sweden)

    S. Papini

    2000-06-01

    Full Text Available Enhanced degradation of the fungicide metalaxyl was investigated in two soils: a gley humic (GH and a Dark Red Latosol (LE, collected at sites never exposed to the fungicide. The soil samples were treated with successive applications of metalaxyl as a commercial formulation and 14C-metalaxyl in laboratory. Metalaxyl biodegradation was analyzed during 63 days by means of radiometric techniques to verify biomineralization and degradation product formation from the applied 14C-metalaxyl. Although biomineralization (maximum of 14 and 8% in the GH and LE soils, respectively, and partial degradation (about 32 and 48%, respectively were detected in both soils, enhanced degradation was verified only in the GH soil. Results proved that metalaxyl behaves differently in soils.

  10. EROD activity and stable isotopes in seabirds to disentangle marine food web contamination after the Prestige oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Velando, Alberto, E-mail: avelando@uvigo.e [Departamento de Ecoloxia e Bioloxia Animal, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, 36310 Vigo (Spain); Munilla, Ignacio [Departamento de Botanica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Lopez-Alonso, Marta [Departamento de Patoloxia Animal, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo (Spain); Freire, Juan [Grupo de Recursos Marinos y Pesquerias Universidade da Coruna, A Coruna (Spain); Perez, Cristobal [Departamento de Ecoloxia e Bioloxia Animal, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, 36310 Vigo (Spain)

    2010-05-15

    In this study, we measured via surgical sampling hepatic EROD activity in yellow-legged gulls from oiled and unoiled colonies, 17 months after the Prestige oil spill. We also analyzed stable isotope composition in feathers of the biopsied gulls, in an attempt to monitor oil incorporation into marine food web. We found that yellow-legged gulls in oiled colonies were being exposed to remnant oil as shown by hepatic EROD activity levels. EROD activity was related to feeding habits of individual gulls with apparent consequences on delayed lethality. Capture-recapture analysis of biopsied gulls suggests that the surgery technique did not affect gull survival, giving support to this technique as a monitoring tool for oil exposure assessment. Our study highlights the combination of different veterinary, toxicological and ecological methodologies as a useful approach for the monitoring of exposure to remnant oil after a large oil spill. - Two years after Prestige oil spill, seabirds were exposed to remnant oil related to their feeding habits with consequences on delayed lethality.

  11. EROD activity and stable isotopes in seabirds to disentangle marine food web contamination after the Prestige oil spill

    International Nuclear Information System (INIS)

    Velando, Alberto; Munilla, Ignacio; Lopez-Alonso, Marta; Freire, Juan; Perez, Cristobal

    2010-01-01

    In this study, we measured via surgical sampling hepatic EROD activity in yellow-legged gulls from oiled and unoiled colonies, 17 months after the Prestige oil spill. We also analyzed stable isotope composition in feathers of the biopsied gulls, in an attempt to monitor oil incorporation into marine food web. We found that yellow-legged gulls in oiled colonies were being exposed to remnant oil as shown by hepatic EROD activity levels. EROD activity was related to feeding habits of individual gulls with apparent consequences on delayed lethality. Capture-recapture analysis of biopsied gulls suggests that the surgery technique did not affect gull survival, giving support to this technique as a monitoring tool for oil exposure assessment. Our study highlights the combination of different veterinary, toxicological and ecological methodologies as a useful approach for the monitoring of exposure to remnant oil after a large oil spill. - Two years after Prestige oil spill, seabirds were exposed to remnant oil related to their feeding habits with consequences on delayed lethality.

  12. Soil uses during the sugarcane fallow period: influence on soil chemical and physical properties and on sugarcane productivity

    Directory of Open Access Journals (Sweden)

    Roniram Pereira da Silva

    2014-04-01

    Full Text Available The planting of diversified crops during the sugarcane fallow period can improve the chemical and physical properties and increase the production potential of the soil for the next sugarcane cycle. The primary purpose of this study was to assess the influence of various soil uses during the sugarcane fallow period on soil chemical and physical properties and productivity after the first sugarcane harvest. The experiment was conducted in two areas located in Jaboticabal, São Paulo State, Brazil (21º 14' 05'' S, 48º 17' 09'' W with two different soil types, namely: an eutroferric Red Latosol (RLe with high-clay texture (clay content = 680 g kg-1 and an acric Red Latosol (RLa with clayey texture (clay content = 440 g kg-1. A randomized block design with five replications and four treatments (crop sequences was used. The crop sequences during the sugarcane fallow period were soybean/millet/soybean, soybean/sunn hemp/soybean, soybean/fallow/soybean, and soybean. Soil use was found not to affect chemical properties and sugarcane productivity of RLe or RLa. The soybean/millet/soybean sequence improved aggregation in the acric Latosol.

  13. Microbial diversity and structure are drivers of the biological barrier effect against Listeria monocytogenes in soil.

    Science.gov (United States)

    Vivant, Anne-Laure; Garmyn, Dominique; Maron, Pierre-Alain; Nowak, Virginie; Piveteau, Pascal

    2013-01-01

    Understanding the ecology of pathogenic organisms is important in order to monitor their transmission in the environment and the related health hazards. We investigated the relationship between soil microbial diversity and the barrier effect against Listeria monocytogenes invasion. By using a dilution-to-extinction approach, we analysed the consequence of eroding microbial diversity on L. monocytogenes population dynamics under standardised conditions of abiotic parameters and microbial abundance in soil microcosms. We demonstrated that highly diverse soil microbial communities act as a biological barrier against L. monocytogenes invasion and that phylogenetic composition of the community also has to be considered. This suggests that erosion of diversity may have damaging effects regarding circulation of pathogenic microorganisms in the environment.

  14. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils

    Energy Technology Data Exchange (ETDEWEB)

    Rama Krishna, K. [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)], E-mail: ramakrishnaiitm@gmail.com; Philip, Ligy [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)], E-mail: ligy@iitm.ac.in

    2008-12-30

    Adsorption and desorption characteristics of three insecticides on four Indian soils were studied. Insecticides used were representative of organochlorine, organophosphate, and carbomate groups. The order of adsorption of pesticides on soils was: lindane > methyl parathion > carbofuran. Compost soil had shown the maximum adsorption capacity. The order of adsorption capacity of various soils were: compost soil > clayey soil > red soil > sandy soil. Adsorption isotherms were better fitted to Freundlich model and K{sub f} values increased with increase in organic matter content of the soils. Thermodynamic parameters indicated favorable adsorption of all the three pesticides in four different soils. Adsorption was exothermic in nature. Distilled water desorbed 30-60% of adsorbed pesticides whereas; organic solvents were able to affect 50-80% of sorbed pesticides. Clay content and organic matter played a significant role in pesticide adsorption and desorption processes. Hysteresis effect was observed in red, clayey and compost soils. Hysteresis effect increased with increase in organic matter and clay content of the soils.

  15. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils

    International Nuclear Information System (INIS)

    Rama Krishna, K.; Philip, Ligy

    2008-01-01

    Adsorption and desorption characteristics of three insecticides on four Indian soils were studied. Insecticides used were representative of organochlorine, organophosphate, and carbomate groups. The order of adsorption of pesticides on soils was: lindane > methyl parathion > carbofuran. Compost soil had shown the maximum adsorption capacity. The order of adsorption capacity of various soils were: compost soil > clayey soil > red soil > sandy soil. Adsorption isotherms were better fitted to Freundlich model and K f values increased with increase in organic matter content of the soils. Thermodynamic parameters indicated favorable adsorption of all the three pesticides in four different soils. Adsorption was exothermic in nature. Distilled water desorbed 30-60% of adsorbed pesticides whereas; organic solvents were able to affect 50-80% of sorbed pesticides. Clay content and organic matter played a significant role in pesticide adsorption and desorption processes. Hysteresis effect was observed in red, clayey and compost soils. Hysteresis effect increased with increase in organic matter and clay content of the soils

  16. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea

    KAUST Repository

    Alzubaidy, Hanin S.; Essack, Magbubah; Malas, Tareq Majed Yasin; Bokhari, Ameerah; Motwalli, Olaa Amin; Kamanu, Frederick Kinyua; Jamhor, Suhaiza; Mokhtar, Noor Azlin; Antunes, Andre; Simoes, Marta; Alam, Intikhab; Bougouffa, Salim; Lafi, Feras Fawzi; Bajic, Vladimir B.; Archer, John A.C.

    2015-01-01

    To our knowledge, this is the first metagenomic study on the microbiome of mangroves in the Red Sea, and the first application of unbiased 454-pyrosequencing to study the rhizosphere microbiome associated with A. marina. Our results provide the first insights into the range of functions and microbial diversity in the rhizosphere and soil sediments of gray mangrove (A. marina) in the Red Sea.

  17. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils

    OpenAIRE

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Metadata only record The long-term effects of tillage system and residue management on soil organic carbon stabilization are studied in two tropical soils in Zimbabwe, a red clay and a sandy soil. The four tillage systems evaluated were conventional tillage (CT), mulch ripping (MR), clean ripping (CR) and tied ridging (TR). Soil organic carbon (SOC) content was measured for each size fraction as well as total SOC. Based on the findings, the authors conclude that residue management - mainta...

  18. [Changes in bio-availability of immobilized Cu and Zn bound to phosphate in contaminated soils with different nutrient addition].

    Science.gov (United States)

    Xu, Ming-Gang; Zhang, Qian; Sun, Nan; Shen, Hua-Ping; Zhang, Wen-Ju

    2009-07-15

    Bio-availability of Cu and Zn fixed by phosphate in contaminated soils with application of nutrients were measured by pot experiment. It was simulated for the third national standardization of copper and zinc polluted soils by adding copper and zinc nitrate into red and paddy soils, respectively and together. Phosphate amendment was added to the soils to fix Cu and Zn, then added KCl and NH4Cl or K2SO4 and (NH4)2SO4 fertilizers following to plant Ryegrass, which was harvested after 40 d. Available Cu/Zn content in soils and biomass, Cu/Zn content in the shoot of Ryegrass were determined. Results showed that, compared with no nutrient application, adding KCl and NH4 Cl/K2SO4 and (NH4)2SO4 to polluted red and paddy soils increased the available Cu and Zn content in red soil significantly. The increasing order was KCl and NH4 Cl > K2SO4 and (NH4)2SO4. Especially in single Zn polluted red soil, the available Zn content increased by 133.4% in maximum. Although adding K2SO4 and (NH4)2SO4 could promote the growth of Ryegrass on red soil, and the largest increasing was up to 22.2%, it increased Cu and Zn content in the shoot of Ryegrass for 21.5%-112.6% remarkably. These nutrient effects on available Cu and Zn were not significantly in paddy soil. It was suggested that application of nitrogen and potassium fertilizers to soils could change the bioavailability of Cu/Zn. So it is necessary to take full account of the nutrient influence to the heavy metal stability which fixed by phosphate in contaminated soils when consider contaminated soils remediation by fertilization.

  19. Soil Erosion Estimation Using Remote Sensing Techniques in Wadi Yalamlam Basin, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Jarbou A. Bahrawi

    2016-01-01

    Full Text Available Soil erosion is one of the major environmental problems in terms of soil degradation in Saudi Arabia. Soil erosion leads to significant on- and off-site impacts such as significant decrease in the productive capacity of the land and sedimentation. The key aspects influencing the quantity of soil erosion mainly rely on the vegetation cover, topography, soil type, and climate. This research studies the quantification of soil erosion under different levels of data availability in Wadi Yalamlam. Remote Sensing (RS and Geographic Information Systems (GIS techniques have been implemented for the assessment of the data, applying the Revised Universal Soil Loss Equation (RUSLE for the calculation of the risk of erosion. Thirty-four soil samples were randomly selected for the calculation of the erodibility factor, based on calculating the K-factor values derived from soil property surfaces after interpolating soil sampling points. Soil erosion risk map was reclassified into five erosion risk classes and 19.3% of the Wadi Yalamlam is under very severe risk (37,740 ha. GIS and RS proved to be powerful instruments for mapping soil erosion risk, providing sufficient tools for the analytical part of this research. The mapping results certified the role of RUSLE as a decision support tool.

  20. Soil erosion vulnerability in the verde river basin, southern minas gerais

    Directory of Open Access Journals (Sweden)

    Vinícius Augusto de Oliveira

    2014-06-01

    Full Text Available Soil erosion is one of the most significant environmental degradation processes. Mapping and assessment of soil erosion vulnerability is an important tool for planning and management of the natural resources. The objective of the present study was to apply the Revised Universal Soil Loss Equation (RUSLE using GIS tools to the Verde River Basin (VRB, southern Minas Gerais, in order to assess soil erosion vulnerability. A annual rainfall erosivity map was derived from the geographical model adjusted for Southeastern Brazil, calculating an annual value for each pixel. The maps of soil erodibility (K, topographic factor (LS, and use and management of soils (C were developed from soils and their uses map and the digital elevation model (DEM developed for the basin. In a GIS environment, the layers of the factors were combined to create the soil erosion vulnerability map according to RUSLE. The results showed that, in general, the soils of the VRB present a very high vulnerability to water erosion, with 58.68% of soil losses classified as "High" and "Extremely High" classes. In the headwater region of VRB, the predominant classes were "Very High" and "Extremely High" where there is predominance of Cambisols associated with extensive pastures. Furthermore, the integration of RUSLE/GIS showed an efficient tool for spatial characterization of soil erosion vulnerability in this important basin of the Minas Gerais state.

  1. Restoration of eroded soil in the Sonoran Desert with native leguminous trees using plant growth-promoting microorganisms and limited amounts of compost and water.

    Science.gov (United States)

    Bashan, Yoav; Salazar, Bernardo G; Moreno, Manuel; Lopez, Blanca R; Linderman, Robert G

    2012-07-15

    Restoration of highly eroded desert land was attempted in the southern Sonoran Desert that had lost its natural capacity for self-revegetation. In six field experiments, the fields were planted with three native leguminous trees: mesquite amargo Prosopis articulata, and yellow and blue palo verde Parkinsonia microphylla and Parkinsonia florida. Restoration included inoculation with two of plant growth-promoting bacteria (PGPB; Azospirillum brasilense and Bacillus pumilus), native arbuscular mycorrhizal (AM) fungi, and small quantities of compost. Irrigation was applied, when necessary, to reach a rainy year (300 mm) of the area. The plots were maintained for 61 months. Survival of the trees was marginally affected by all supplements after 30 months, in the range of 60-90%. This variation depended on the plant species, where all young trees were established after 3 months. Plant density was a crucial variable and, in general, low plant density enhanced survival. High planting density was detrimental. Survival significantly declined in trees 61 months after planting. No general response of the trees to plant growth-promoting microorganisms and compost was found. Mesquite amargo and yellow palo verde responded well (height, number of branches, and diameter of the main stem) to inoculation with PGPB, AM fungi, and compost supplementation after three months of application. Fewer positive effects were recorded after 30 months. Blue palo verde did not respond to most treatments and had the lowest survival. Specific plant growth parameters were affected to varying degrees to inoculations or amendments, primarily depending on the tree species. Some combinations of tree/inoculant/amendment resulted in small negative effects or no response when measured after extended periods of time. Using native leguminous trees, this study demonstrated that restoration of severely eroded desert lands was possible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Photorefractive keratectomy (PRK) at 193 nm using an erodible mask: new developments and clinical progress

    Science.gov (United States)

    Gordon, Michael; Seiler, Theo; Carey, Joseph P.; Friedman, Marc D.; Johnsson, N. M. F.; King, Michael C.; Muller, David F.

    1993-06-01

    This paper reports on our progress using an erodible mask to perform photorefractive keratectomy (PRK) for the correction of myopic astigmatism. We describe modifications to the mask, the mask eye cup and the surgical microscope aimed at simplifying the procedure and improving the ergonomics of the hardware. We report the clinical results of the post-op exam for 20 patients who have undergone PRK for myopic astigmatism under a Phase IIA study. The results compare favorably with an earlier Phase IIA study for performing PRK with a computer-controlled iris. Most important, the clinical data show the absence of any significant corneal haze and no significant decrease in spectacle corrected visual acuity. Although more long term follow-up is needed, the preliminary results support the safety and effectiveness of using an erodible mask to perform PRK for myopic astigmatism.

  3. Soil Warming: Consequences for Foliar Litter Decay in a Spruce-Fir Forest in Maine, USA

    Science.gov (United States)

    Lindsey E. Rustad; Ivan J. Fernandez

    1998-01-01

    Increased rates of litter decay due to projected global warming could substantially alter the balance between C assimilation and release in forest soils, with consequent feedbacks to climate change. This study was conducted to investigate the effects of soil warming on the decomposition of red spruce (Picea rubens Sarg.) and red maple (...

  4. Current State and Development of Land Degradation Processes Based on Soil Monitoring in Slovakia

    Directory of Open Access Journals (Sweden)

    Kobza Jozef

    2017-08-01

    Full Text Available Current state and development of land degradation processes based on soil monitoring system in Slovakia is evaluated in this contribution. Soil monitoring system in Slovakia is consistently running since 1993 year in 5-years repetitions. Soil monitoring network in Slovakia is constructed using ecological principle, taking into account all main soil types and subtypes, soil organic matter, climatic regions, emission regions, polluted and non-polluted regions as well as various land use. The result of soil monitoring network is 318 sites on agricultural land in Slovakia. Soil properties are evaluated according to the main threats to soil relating to European Commission recommendation for European soil monitoring performance as follows: soil erosion and compaction, soil acidification, decline in soil organic matter and soil contamination. The most significant change has been determined in physical degradation of soils. The physical degradation was especially manifested in compacted and the eroded soils. It was determined that about 39% of agricultural land is potentially affected by soil erosion in Slovakia. In addition, slight decline in soil organic matter indicates the serious facts on evaluation and extension of soil degradation processes during the last period in Slovakia. Soil contamination is without significant change for the time being. It means the soils contaminated before soil monitoring process this unfavourable state lasts also at present.

  5. Crop residue stabilization and application to agricultural and degraded soils: A review.

    Science.gov (United States)

    Medina, Jorge; Monreal, Carlos; Barea, José Miguel; Arriagada, César; Borie, Fernando; Cornejo, Pablo

    2015-08-01

    Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Land susceptibility to soil erosion in Orashi Catchment, Nnewi South, Anambra State, Nigeria

    Science.gov (United States)

    Odunuga, Shakirudeen; Ajijola, Abiodun; Igwetu, Nkechi; Adegun, Olubunmi

    2018-02-01

    Soil erosion is one of the most critical environmental hazards that causes land degradation and water quality challenges. Specifically, this phenomenon has been linked, among other problems, to river sedimentation, groundwater pollution and flooding. This paper assesses the susceptibility of Orashi River Basin (ORB) to soil erosion for the purpose of erosion control measures. Located in the South Eastern part of Nigeria, the ORB which covers approximately 413.61 km2 is currently experiencing one of the fastest population growth rate in the region. Analysis of the soil erosion susceptibility of the basin was based on four factors including; rainfall, Land use/Land cover change (LULC), slope and soil erodibility factor (k). The rainfall was assumed to be a constant and independent variable, slope and soil types were categorised into ten (10) classes each while the landuse was categorised into five classes. Weight was assigned to the classes based on the degree of susceptibility to erosion. An overlay of the four variables in a GIS environment was used to produce the basin susceptibility to soil erosion. This was based on the weight index of each factors. The LULC analysis revealed that built-up land use increased from 26.49 km2 (6.4 %) in year 1980 to 79.24 km2 (19.16 %) in 2015 at an average growth rate of 1.51 km2 per annum while the light forest decreased from 336.41 km2 (81.33 %) in 1980 to 280.82 km2 (67.89 %) in 2015 at an average rate 1.59 km2 per annum. The light forest was adjudged to have the highest land cover soil erosion susceptibility. The steepest slope ranges between 70 and 82° (14.34 % of the total land area) and was adjudged to have the highest soil susceptibility to erosion. The total area covered of the loamy soil is 112.37 km2 (27.07 %) with erodibility of 0.7. In all, the overlay of all the variables revealed that 106.66 km2 (25.70 %) and 164.80 km2 (39.7 %) of the basin has a high and very high susceptibility to soil erosion. The over 50

  7. Soil Organic Carbon Redistribution by Water Erosion – The Role of CO2 Emissions for the Carbon Budget

    Science.gov (United States)

    Wang, Xiang; Cammeraat, Erik L. H.; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m−2 yr−1) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m−2. Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems. PMID:24802350

  8. Predicting risk of rill initiation in a sub-catchment of Lake Balaton, Hungary

    Science.gov (United States)

    Hausner, C.; Sisák, I.

    2009-04-01

    Rill erosion is an accelerated form of soil degradation. It removes much more soil and nutrients from the agricultural land than sheet erosion. Soils in the southern sub-watershed of Lake Balaton are especially prone to rill erosion and they contribute to siltation of ditches, to muddy floods and to eutrofication of the lake. The parent material in this region is mainly (sandy) loess and the soils are already moderately or strongly eroded thus, the low tolerance of loess against erosion determines erodibility. Identification of soils with high risk of rill erosion is crucial to plan mitigation measures. Soil erodibility has been investigated in this study in the catchment of Tetves stream. The USLE soil erodibility factor and soil slaking are widely accepted indicators for soil erosion. Both of them are published for all soil texture classes in handbooks of soil mapping. We have found that erodibility derived from our physical model has a close linear correlation with the product of the USLE soil erodibility factor and soil slaking grade thus, USLE could be directly used to assess parameters for physical based models. Rill erosion is highly probable if the product of KUSLE X slaking grade is above 2. Digital maps were produced to delineate soils with high potential for rill erosion. The basic data for the soil properties were drawn from the 1:10,000 soil map. Soil texture classes were used to assign KUSLE and slaking grade to the soil units. Beyond soil properties, other factors also influence rill formation: slope, surface cover, rainfall intensity. However, identifying soil properties, which make soils prone to rill erosion, is an important initial step for the reduction of diffuse agricultural loads to Lake Balaton. It might be the objective of River Basin Management Plans in the Water Framework Directive to prevent rill erosion and our study provides scientific evidence for targeting this policy.

  9. Turbidity current hydraulics and sediment deposition in erodible sinuous channels: Laboratory experiments and numerical simulations

    NARCIS (Netherlands)

    Janocko, M.; Cartigny, M.J.B.; Nemec, W.; Hansen, E.W.M.

    2013-01-01

    This study explores the relationship between the hydraulics of turbidity currents in erodible sinuous channels and the resulting intra-channel sediment depocentres (channel bars). Four factors are considered to exert critical control on sedimentation in sinuous submarine channels: (1) the

  10. RUSLE2015, GIS-RWEQ and CENTURY: new modelling integration for soil loss and carbon fluxes at European scale

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Lugato, Emanuele

    2016-04-01

    Land degradation through erosion has been identified as major threat to European soils and agriculture. During the last years, the Directorates General for Agriculture and for Environment (plus EUROSTAT) require formal assessments and indicators on the state of soil erosion for the European Union. Moreover, the European Soil Data Centre (ESDAC) is the main data repository for soil threats at European scale. To meet these needs we have worked with recognized research institutes and scientists to develop a series of pan-EU modelling tools that estimate soil erosion by water and wind. Over the past three years, the European Commission Joint Research Centre has worked to develop a modified RUSLE modelling approach, named RUSLE2015 and the necessary input factors. These have all been peer reviewed and published as individual papers in different refereed journals. The published soil erodibility map for Europe has been modelled with the latest state of the art soil data (LUCAS) and a robust geo-statistical model (Science of Total Environment, 479-480: 189-200). Rainfall erosivity has been modelled after an extensive data collection of high temporal resolution rainfall data and the compilation of Rainfall Erosivity Database at European Scale (REDES) (Science of Total Environment, 511: 801-814). Cover-Management factor has been modelled taking into account crop composition, management practices (reduced tillage, plant residues, cover crops) and remote sensing data on vegetation density (Land Use policy, 48C: 38-50). Topography has been modelled with the recently published Digital Elevation Model at 25m resolution (Geosciences, 5: 117-126). Conservation and support practices have included the Good Agricultural Environmental Condition (GAEC database) and the 270,000 earth observations of LUCAS survey (Environmental Science & Policy 51: 23-34). The new assessment of soil erosion by water in Europe has been recently published (Environmental Science & Policy. 54: 438-447) and

  11. Soil Catena Properties of Daher Al- Jabal in South Syria

    Directory of Open Access Journals (Sweden)

    Hussam H. M. Husein

    2017-02-01

    Full Text Available Soil catena concept is a sequence of soils extends across relief positions and is developed from similar parent material. This study highlighted on the important aspects and properties of soil catena of Daher El-Jabal in Jabal Al-Arab mountainous area South eastern of Syria, by implementing pedologic study in 2010-2012. Six soil profiles have been studied along pedo-genetic transect in order to highlight the soil catena prevailing properties. The results reveal that the soil has formed from igneous basaltic parent casts, related to Neogen era, where reliefs had the key role in the developing of soil solum. Consequently, Entisols were dominated on eroded summits, Inceptisols on back slops and mountain flanks, Mollisols on depressions. Both water erosion of soil surface and leaching inside soil solum processes were responsible for variation of soil texture, as such soils showed evident of changing in particles size distribution as well as in clay content. Cation exchange capacity (CEC was less than moderate with domination of Magnesium cation. Soil trace elements were poor to somewhat poor. Soil pH values in general were low; which reflect the pedo-genic character of igneous parent material in which soil drifted from. In some cases, where soil body subjected to continuous leaching of soil bases, in particular calcium cation; soil profiles became totally freed from calcium carbonates. Accordingly soil problems related to downing of soil reaction (pH are more expected to be increasing by time. This is main reason for some physical diseases, which beginning arise on pomes fruits, particularly bitter pit.INTERNATIONAL JOURNAL OF ENVIRONMENT Volume-6, Issue-1, Dec-Feb 2016/17, page: 87-107

  12. Analysis of eroded bovine teeth through laser speckle imaging

    Science.gov (United States)

    Koshoji, Nelson H.; Bussadori, Sandra K.; Bortoletto, Carolina C.; Oliveira, Marcelo T.; Prates, Renato A.; Deana, Alessandro M.

    2015-02-01

    Dental erosion is a non-carious lesion that causes progressive tooth wear of structure through chemical processes that do not involve bacterial action. Its origin is related to eating habits or systemic diseases involving tooth contact with substances that pose a very low pH. This work demonstrates a new methodology to quantify the erosion by coherent light scattering of tooth surface. This technique shows a correlation between acid etch duration and laser speckle contrast map (LASCA). The experimental groups presented a relative contrast between eroded and sound tissue of 17.8(45)%, 23.4 (68)% 39.2 (40)% and 44.3 (30)%, for 10 min, 20 min, 30 min and 40 min of acid etching, respectively.

  13. Soil erosion under multiple time-varying rainfall events

    Science.gov (United States)

    Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.

    2010-05-01

    Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.

  14. The history of soil erosion: Interpreting historical sources, buried soils and colluvial sediments as archives of past soil erosion and human-environment interactions in the Longue Durée

    Science.gov (United States)

    Dotterweich, Markus

    2015-04-01

    Soil erosion threatens the environment and the sustainability of agricultural practices since the earliest societies started modifying their natural environment in the Neolithic. Almost all farming-based cultures in the world, from large civilizations to peasant groups on little islands, have suffered from soil erosion by water. The amounts of soil erosion varied largely through time and space, and extreme events have left a wide variety of imprints on the landscape over millennia. Eroded hillslopes and gullies, deposited sediments in sinks like lakes, footslopes, valleys, floodplains, and river deltas are geomorphic legacies that have been linked to changes in land use and climate by many studies during the last decades. However, a standardized analysis and interpretation of these geomorphic legacies is problematic because of the variety of methodological approaches and the nonlinearity between soil erosion, climate, and land use. Cascading effects, land use structures, soil management, soil conservation strategies, and long-term system changes have produced different signals over time. Historical records are crucial and an invaluable source to provide alternative proxies about soil erosion in the past. Direct observations of individual soil erosion events may restrict the deposition of a distinct sediment package to a certain time span. They also expand the range of alternative interpretations, particularly with respect to the long-term effects of soil erosion to ecosystem services and socioeconomic processes. However, historical records also need critical analyses regarding their origin, intention, and quality. They were often created in the context of personal interests or political issues rather than being based on scientific facts; and it is often unclear if they represent certain events, narratives, or vague assumptions. This presentation will present and discuss examples of geomorphic evidences and historical records of past soil erosion for the deciphering

  15. Predictive model for local scour downstream of hydrokinetic turbines in erodible channels

    Science.gov (United States)

    Musa, Mirko; Heisel, Michael; Guala, Michele

    2018-02-01

    A modeling framework is derived to predict the scour induced by marine hydrokinetic turbines installed on fluvial or tidal erodible bed surfaces. Following recent advances in bridge scour formulation, the phenomenological theory of turbulence is applied to describe the flow structures that dictate the equilibrium scour depth condition at the turbine base. Using scaling arguments, we link the turbine operating conditions to the flow structures and scour depth through the drag force exerted by the device on the flow. The resulting theoretical model predicts scour depth using dimensionless parameters and considers two potential scenarios depending on the proximity of the turbine rotor to the erodible bed. The model is validated at the laboratory scale with experimental data comprising the two sediment mobility regimes (clear water and live bed), different turbine configurations, hydraulic settings, bed material compositions, and migrating bedform types. The present work provides future developers of flow energy conversion technologies with a physics-based predictive formula for local scour depth beneficial to feasibility studies and anchoring system design. A potential prototype-scale deployment in a large sandy river is also considered with our model to quantify how the expected scour depth varies as a function of the flow discharge and rotor diameter.

  16. Degradation and adsorption of tralkoxydim in Chinese soils and water-sediment environments.

    Science.gov (United States)

    Wu, Wen Zhu; Shan, Zheng Jun; Kong, De Yang; He, Jian

    2017-06-01

    Tralkoxydim is a cyclohexanedione herbicide primarily used for gramineous weed control in China. In this paper, we present results of a tralkoxydim laboratory environmental fate study characterizing its degradation, adsorption, and mobility behavior in three different soils and two water-sediment systems (river and lake) in China. Degradation half-life of tralkoxydim in soil under aerobic conditions was 5.1, 7.7, and 7.9 days in Jiangxi red soil, Taihu paddy soil, and Northeast China black soil, respectively. Under anaerobic and flooding conditions, half-life values were 6.2, 15.1, and 19.8 days for the same three soils, respectively. Soil pH was the major factor effecting tralkoxydim degradation. In the aerobic water-sediment experiments, tralkoxydim degraded faster in the river system (total system half-life 43.3 days) than the lake system (total system half-life 99.0 days). Correspondingly, its anaerobic degradation half-life values were 46.2 and 53.3 days for the river and lake systems, respectively. Tralkoxydim adsorption in the three soils was found to follow the empirical Freundlich isotherm. The adsorption coefficient (K d ) was 8.60, 1.00, and 1.57 for Jiangxi red soil, Taihu paddy soil, and Northeast China black soil, respectively. Soil pH was the major factor effecting tralkoxydim adsorption. Adsorption free energy change was less than 40 kJ mol -1 in all three soils, indicating a physical mechanism in the process. Thin-layer chromatography (TLC) tests showed that relative to the solvent transport to 11.5 cm, the travel distance of tralkoxydim was 8-10 cm in the three soils, corresponding Rf values at 0.05, 0.35, and 0.75 for Jiangxi red soil, Taihu paddy soil, and Northeast China black soil, respectively. Results of this work suggest that under alkaline conditions, tralkoxydim adsorption becomes smaller; thus, assessments on its mobility and potential groundwater impact should focus on these soil types.

  17. Assessing soil fluxes using meteoric 10Be: development and application of the Be2D model

    Science.gov (United States)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; Baken, Stijn; Smolders, Erik; Vanderborght, Jan

    2015-04-01

    Meteoric 10Be is a promising and increasingly popular tool to better understand soil fluxes at different timescales. Unlike other, more classical, methods such as the study of sedimentary archives it enables a direct coupling between eroding and deposition sites. However, meteoric 10Be can be mobilized within the soil. Therefore, spatial variations in meteoric 10Be inventories cannot directly be translated into spatial variations in erosion and sedimentation rates: a correct interpretation of measured 10Be inventories requires that both lateral and vertical movement of meteoric 10Be are accounted for. Here, we present a spatially explicit 2D model that allows to simulate the behaviour of meteoric 10Be in the soil system over timescales of up to 1 million year and use the model to investigate the impact of accelerated erosion on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility within the soil profile, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes. Different types of erosion such as creep, water and tillage erosion are supported. Model runs show that natural soil fluxes can be well reconstructed based on meteoric 10Be inventories, and this for a wide range of geomorphological and pedological conditions. However, extracting signals of human impact and distinguishing them from natural soil fluxes is only feasible when the soil has a rather high retention capacity so that meteoric 10Be is retained in the top soil layer. Application of the Be2D model to an existing data set in the Appalachian Mountains [West et al.,2013] using realistic parameter values for the soil retention capacity as well as for vertical advection resulted in a good agreement between simulated and observed 10Be inventories. This confirms the robustness of the model. We

  18. Adsorption and desorption behavior of herbicide diuron on various Chinese cultivated soils.

    Science.gov (United States)

    Liu, Yihua; Xu, Zhenzhen; Wu, Xiaoguang; Gui, Wenjun; Zhu, Guonian

    2010-06-15

    The adsorption-desorption behaviors of diuron were investigated in six cultivated soils of China. The effect of system pH and temperature were also studied. The data fitted the Freundlich equation very well. The adsorption K(F) values indicated the adsorption of diuron in the six soils was in the sequence of black soil (D)>yellow earth (F)>paddy soil (B)>yellow-brown soil (C)>yellow-cinnamon soil (A)>lateritic red earth (E). The adsorption K(F) and Freundlich exponents n were decreased when temperature was increased from 298 K to 318 K. However, the Gibb's free energy values were found less negative with the increasing temperature. Meanwhile, the extent of diuron adsorption on soil was at rather high level under low pH value conditions and decreased with increasing pH value. In addition, the desorption behavior of diuron in the six soils was in the sequence of lateritic red earth (E)>yellow-cinnamon soil (A)>paddy soil (B)>yellow earth (F)>yellow-brown soil (C)>black soil (D). At the same time, desorption hysteresis of diuron were observed in all of the tested soils. And the soil organic matter content may play an important role in the adsorption-desorption behavior. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Intensity of soil loss and sediment transport in Sirocina River basin and their modeling in GIS

    International Nuclear Information System (INIS)

    Kondrlova, E.

    2009-01-01

    The paper is focused on the application of GIS tools in determining the intensity of erosion-sedimentation processes in the basin of water flow Sirocina (Nitra region). Average long-term soil loss was calculated using the generalized use of the universal soil loss equation - USLE. These values were reduced by sediment delivery ratio, since not all of eroded soil particles are transported up to the water recipients. Modelling was performed in ArcView 3.2 and ArcGIS 9.2 (ESRI products) with extensions Spatial Analyst and Hydrotools 1.0. On the basis of these calculations, we have set a benchmark of the total amount of transported sediments for 3 small ponds located in the basin Sirocina (MVN Great Vozokany, Nevidzany MVN and MVN Nemcinany). (author)

  20. Effect of sunlight irradiation on photocatalytic pyrene degradation in contaminated soils by micro-nano size TiO2

    International Nuclear Information System (INIS)

    Chang Chien, S.W.; Chang, C.H.; Chen, S.H.; Wang, M.C.; Madhava Rao, M.; Satya Veni, S.

    2011-01-01

    The enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils by micro-nano size TiO 2 in the presence and absence of sunlight was investigated. The results showed that the synergistic effect of sunlight irradiation and TiO 2 was more efficient on pyrene degradation in quartz sand and red and alluvial soils than the corresponding reaction system without sunlight irradiation. In the presence of sunlight irradiation, the photooxidation (without TiO 2 ) of pyrene was very pronounced in alluvial and red soils and especially in quartz sand. However, in the absence of sunlight irradiation, the catalytic pyrene degradation by TiO 2 and the photooxidation (without TiO 2 ) of pyrene were almost nil. This implicates that ultra-violet (UV) wavelength range of sunlight plays an important role in TiO 2 -enhanced photocatalytic pyrene degradation and in photooxidation (without TiO 2 ) of pyrene. The percentages of photocatalytic pyrene degradation by TiO 2 in quartz sand, alluvial and red soils under sunlight irradiation were 78.3, 23.4, and 31.8%, respectively, at 5 h reaction period with a 5% (w/w) dose of the amended catalyst. The sequence of TiO 2 -enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils was quartz sand > red soil > alluvial soil, due to different texture and total organic carbon (TOC) contents of the quartz sand and other two soils. The differential Fourier transform infrared (FT-IR) spectra of degraded pyrene in alluvial soil corroborate that TiO 2 -enhanced photocatalytic degradation rate of degraded pyrene was much greater than photooxidation (without TiO 2 ) rate of degraded pyrene. Based on the data obtained, the importance for the application of TiO 2 -enhanced photocatalytic pyrene degradation and associated organic contaminants in contaminated soils was elucidated. - Highlights: → Synergistic effect of sunlight irradiation and TiO 2 promoted degradation of pyrene. → Micro-nano size TiO 2 enhanced

  1. Infiltration and Soil Loss Changes during the Growing Season under Ploughing and Conservation Tillage

    Directory of Open Access Journals (Sweden)

    Gergely Jakab

    2017-09-01

    Full Text Available Decreased water retention and increased runoff and soil loss are of special importance concerning soil degradation of hilly crop fields. In this study, plots under ploughing (conventional tillage (PT and conservation tillage (CT; 15 years were compared. Rainfall simulation on 6 m2 plots was applied to determine infiltration and soil loss during the growing season. Results were compared with those measured from 1200 m2 plots exposed to natural rainfalls in 2016. Infiltration was always higher under CT than PT, whereas the highest infiltration was measured under the cover crop condition. Infiltration under seedbed and stubble resulted in uncertainties, which suggests that natural pore formation can be more effective at improving soil drainage potential than can temporary improvements created by soil tillage operations. Soil erodibility was higher under PT for each soil status; however, the seedbed condition triggered the highest values. For CT, soil loss volume was only a function of runoff volume at both scales. Contrarily, on PT plots, some extreme precipitation events triggered extremely high soil loss owing to linear erosion, which meant no direct connection existed between the scales. Improved soil conditions due to conservation practice are more important for decreasing soil loss than the better surface conditions.

  2. N2-fixing red alder indirectly accelerates ecosystem nitrogen cycling

    Science.gov (United States)

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    Symbiotic N2-fixing tree species can accelerate ecosystem N dynamics through decomposition via direct pathways by producing readily decomposed leaf litter and increasing N supply to decomposers, as well as via indirect pathways by increasing tissue and detrital N in non-fixing vegetation. To evaluate the relative importance of these pathways, we compared three-year decomposition and N dynamics of N2-fixing red alder leaf litter (2.34 %N) to both low-N (0.68 %N) and high-N (1.21 %N) litter of non-fixing Douglas-fir, and decomposed each litter source in four forests dominated by either red alder or Douglas-fir. We also used experimental N fertilization of decomposition plots to assess elevated N availability as a potential mechanism of N2-fixer effects on litter mass loss and N dynamics. Direct effects of N2-fixing red alder on decomposition occurred primarily as faster N release from red alder than Douglas-fir litter, but direct increases in N supply to decomposers via fertilization did not stimulate decomposition of any litter. Fixed N indirectly influenced detrital dynamics by increasing Douglas-fir tissue and litter N concentrations, which accelerated litter N release without accelerating mass loss. By increasing soil N, tissue N, and the rate of N release from litter of non-fixers, we conclude that N2-fixing vegetation can indirectly foster plant-soil feedbacks that contribute to the persistence of elevated N availability in terrestrial ecosystems.

  3. Soil chemistry and nutrition of North American spruce-fir stands: Evidence of recent change

    International Nuclear Information System (INIS)

    Joslin, J.D.; Kelly, J.M.; Van Miegroet, H.

    1992-01-01

    One set of hypotheses offered to explain the decline of red spruce (Picea rubens Sarg.) in eastern North America focuses on the effect of acidic deposition on soil chemistry changes that may affect nutrient availability and root function. Long-term soils data suggests that soil acidification has occurred in some spruce stands over the past 50 yr, with plant uptake and cation leaching both contributing to the loss of cations. Studies of tree ring chemistry also have indicated changes in Ca/Al and Mg/Al ratios in red spruce wood, suggesting increases in the ionic strength of soil solution. Irrigation studies using strong acid inputs have demonstrated accelerated displacement of base cations from upper horizons. Spruce-fir (Abies spp.) nutrient budgets indicate that current net Ca and Mg leaching loss rates are of the same order of magnitude as losses to whole tree harvest removals, spread out over a 50-yr rotation. For most cations, red spruce foliar nutrient levels decline with elevation, but it is difficult to assess the contribution of the elevational gradient in atmospheric deposition to this pattern. Compared to northeastern sites, spruce-fir soil solutions in the southern Appalachians have higher nitrate levels and higher Al concentrations, which at times approach the Al toxicity threshold for red spruce seedlings and frequently are at levels known to interfere with cation uptake. There is little evidence that either nutrient deficiencies or Al toxicity are primary causes of red spruce decline in the Northeast, though both may play a role in the Southeast

  4. [Spatiotemporal variation of soil pH in Guangdong Province of China in past 30 years].

    Science.gov (United States)

    Guo, Zhi-Xing; Wang, Jing; Chai, Min; Chen, Ze-Peng; Zhan, Zhen-Shou; Zheng, Wu-Ping; Wei, Xiu-Guo

    2011-02-01

    Based on the 1980s' soil inventory data and the 2002-2007 soil pH data of Guangdong Province, the spatiotemporal variation of soil pH in the Province in past 30 years was studied. In the study period, the spatial distribution pattern of soil pH in the Province had less change (mainly acidic), except that in Pearl River Delta and parts of Qingyuan and Shaoguan (weak alkaline). The overall variation of soil pH was represented as acidification, with the average pH value changed from 5.70 to 5.44. Among the soil types in the Province, alluvial soil had an increased pH, lateritic red soil, paddy soil, and red soil had a large decrement of pH value, and lime soil was most obvious in the decrease of pH value and its area percentage. The soil acidification was mainly induced by soil characteristics, some natural factors such as acid rain, and human factors such as unreasonable fertilization and urbanization. In addition, industrialization and mining increased the soil pH in some areas.

  5. Visible-NIR Spectroscopic Evidence for the Composition of Low-Albedo Altered Soils on Mars

    Science.gov (United States)

    Murchie, S.; Merenyi, E.; Singer, R.; Kirkland, L.

    1996-03-01

    Spectroscopic studies of altered Martian soils at visible and at NIR wavelengths have generally supported the canonical model of the surface layer as consisting mostly of 2 components, bright red hematite-containing dust and dark gray pyroxene-containing sand. However several of the studies have also provided tantalizing evidence for distinct 1 micrometer Fe absorptions in discrete areas, particularly dark red soils which are hypothesized to consist of duricrust. These distinct absorptions have been proposed to originate from one or more non-hematitic ferric phases. We have tested this hypothesis by merging high spatial resolution visible- and NIR-wavelength data to synthesize composite 0.44-3.14 1lm spectra for regions of western Arabia and Margaritifer Terra. The extended wavelength coverage allows more complete assessment of ferric, ferrous, and H2O absorptions in both wavelength ranges. The composite data show that, compared to nearby bright red soil in Arabia, dark red soil in Oxia has a lower albedo, a more negative continuum slope, and a stronger 3 micrometer H2O absorption . However Fe absorptions are closely similar in position and depth. These results suggest that at least some dark red soils may differ from "normal" dust and mafic sand more in texture than in Fe mineralogy, although there appears to be enrichment in a water-containing phase and/or a dark, spectrally neutral phase. In contrast, there is clear evidence for enrichment of a low-albedo ferric mineral in dark gray soils composing Sinus Meridiani. These have visible- and NIR-wavelength absorptions consistent with crystalline hematite with relatively little pyroxene, plus a very weak 3 micrometer H2O absorption. These properties suggest a Ethology richer in crystalline hematite and less hydrated than both dust and mafic-rich sand.

  6. Calcium soil amendment increases resistance of potato to blackleg ...

    African Journals Online (AJOL)

    This study shows that calcium soil amendments reduce blackleg and soft rot diseases under Zimbabwe's growing seasons in red fersiallitic soils. Compound S produces better results in potato production than compound D and farmers should be encouraged to use compound S when growing potatoes. Key words: potato ...

  7. Mineralization of soil organic matter in biochar amended agricultural landscape

    Science.gov (United States)

    Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.

    2015-12-01

    Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.

  8. RUNOFF AND EROSION IN DIFFERENT (AGRO CLIMATOLOGICAL ZONES OF LATIN AMERICA AND PROPOSALS FOR SOIL AND WATER CONSERVATION SCENARIOS

    Directory of Open Access Journals (Sweden)

    Donald Gabriels

    2005-05-01

    Full Text Available Steeplands, when cleared from forests, are susceptible to erosion by rainfall and are prone toland degradation and desertification processes.The dominant factors affecting those erosion processes and hence the resulting runoff and soillosses are the aggressiveness of the rainfall during the successive plant growth stages, the soilcover-management, but also the topography (slope length and slope steepness. Depending onthe type of (agro climatological zone, the runoff water should either be limited and controlled(excess of water or should be enhanced and collected from the slope on the downslopecropping area if water is short (negative soil water balance.Examples are given of practical applications in Ecuador where alternative soil conservationscenarios are proposed in maize cultivation in small fields on steep slopes. Adding peas andbarley in the rotation of maize and beans resulted only in a slight decrease of the soil losses.Subdividing the fields into smaller parcels proved to give the best reduction in soil loss.Because the average slope steepness is high, erosion control measures such as contourploughing and strip cropping have only small effects.Erosion and its effect on productivity of a sorghum -livestock farming system are assessed onfour different areas in Venezuela with different levels of erosion. A Productivity Index (PIand an Erosion Risk Index (ERI were used to classify the lands for soil conservationpriorities and for alternative land uses. Intensive agriculture can be applied on slightly erodedsoil, whereas severely eroded soil can be used with special crops or agro-forestry. Semiintensiveagriculture is possible on moderately eroded soil.Reforestation of drylands in Chili requires understanding of the infiltration/runoff process inorder to determine dimensions of water harvesting systems. Infiltration processes in semi-aridregions of Chile were evaluated, using rainfall experiments and constant-head infiltrationmeasurements

  9. Influence of N,K and CaSO4 on utilisation of sulfur by rice in red sandy loam soil

    International Nuclear Information System (INIS)

    Patnaik, M.C.; Sathe, Arun

    1993-01-01

    A greenhouse study with rice on red sandy loam soil showed that uptake of sulphur increased from both native as well as applied source with increase in the application of sulphur from 20-60 kg S ha -1 through gypsum. The grain yields were influenced by nitrogen application but there was only relative increase with the application of potassium and sulphur. There was positive effect of applied nitrogen and sulphur for the total sulphur removal by the rice crop. The per cent sulphur utilisation decreased with increase in sulphur application from 20-60 kg S ha -1 through gypsum but increased with increase in the application of nitrogen from 0-150 kg N ha -1 . Sulphur utilization by rice crop was more in potassium treated pots compared to that without its application. (author). 7 refs., 3 tabs

  10. Combined use of stable isotopes and fallout radionuclides as soil erosion indicators in a forested mountain site, South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Meusburger, K.; Mabit, L.; Alewell, C. [Basel Univ. (Switzerland). Environmental Geosciences; Park, J.H. [Ewha Womans Univ., Seoul (Korea, Republic of). Dept. of Environmental Science and Engineering; Sandor, T. [Central Agricultural Office Food and Feed Safety Directorate (Hungary). Radioanalytical Reference Lab.

    2013-07-01

    The aim of this study is to assess and to validate the suitability of the stable nitrogen and carbon isotope signature as soil erosion indicators in a mountain forest site in South Korea. Our approach is based on the comparison of the isotope signature of ''stable'' landscape positions (reference sites), which are neither affected by erosion nor deposition, with eroding sites. For undisturbed soils we expect that the enrichment of δ{sup 15}N and δ{sup 13}C with soil depth, due to fractionation during decomposition, goes in parallel with a decrease in nitrogen and carbon content. Soil erosion processes potentially weaken this correlation. The {sup 137}Cs method and the Revised Universal Soil Loss Equation (RUSLE) were applied for the soil erosion quantification. Erosion rates obtained with the {sup 137}Cs method range from 0.9 t ha{sup -1} yr{sup -1} to 7 t ha{sup -1} yr{sup -1}. Considering the steep slopes of up to 40 and the erosive monsoon events (R factor of 6600 MJ mm ha{sup -1} h{sup -1} yr {sup -1}), the rates are plausible and within the magnitude of the RUSLE-modeled soil erosion rates, varying from 0.02 t ha{sup -1} yr{sup -1} to 5.1 t ha{sup -1} yr{sup -1}. The soil profiles of the reference sites showed significant (p < 0.0001) correlations between nitrogen and carbon content and its corresponding δ{sup 15}N and δ{sup 13}C signatures. In contrast, for the eroding sites this relationship was weaker and for the carbon not significant. These results confirm the usefulness of the stable carbon isotope signature as a qualitative indicator for soil disturbance. We could show further that the δ{sup 15}N isotope signature can be used similarly for uncultivated sites. We thus propose that the stable δ{sup 15}N and δ{sup 13}C signature of soil profiles could serve as additional indicators confirming the accurate choice of the reference site in soil erosion studies using the {sup 137}Cs method.

  11. Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture

    Science.gov (United States)

    Gherboudj, Imen; Beegum, S. Naseema; Marticorena, Beatrice; Ghedira, Hosni

    2015-10-01

    The mineral dust emissions from arid/semiarid soils were simulated over the MENA (Middle East and North Africa) region using the dust parameterization scheme proposed by Alfaro and Gomes (2001), to quantify the effect of the soil moisture and clay fraction in the emissions. For this purpose, an extensive data set of Soil Moisture and Ocean Salinity soil moisture, European Centre for Medium-Range Weather Forecasting wind speed at 10 m height, Food Agricultural Organization soil texture maps, MODIS (Moderate Resolution Imaging Spectroradiometer) Normalized Difference Vegetation Index, and erodibility of the soil surface were collected for the a period of 3 years, from 2010 to 2013. Though the considered data sets have different temporal and spatial resolution, efforts have been made to make them consistent in time and space. At first, the simulated sandblasting flux over the region were validated qualitatively using MODIS Deep Blue aerosol optical depth and EUMETSAT MSG (Meteosat Seciond Generation) dust product from SEVIRI (Meteosat Spinning Enhanced Visible and Infrared Imager) and quantitatively based on the available ground-based measurements of near-surface particulate mass concentrations (PM10) collected over four stations in the MENA region. Sensitivity analyses were performed to investigate the effect of soil moisture and clay fraction on the emissions flux. The results showed that soil moisture and soil texture have significant roles in the dust emissions over the MENA region, particularly over the Arabian Peninsula. An inversely proportional dependency is observed between the soil moisture and the sandblasting flux, where a steep reduction in flux is observed at low friction velocity and a gradual reduction is observed at high friction velocity. Conversely, a directly proportional dependency is observed between the soil clay fraction and the sandblasting flux where a steep increase in flux is observed at low friction velocity and a gradual increase is

  12. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) data

    Science.gov (United States)

    Price, Kevin P.

    1993-01-01

    Multispectral measurements collected by Landsat Thematic Mapper (TM) were correlated with field measurements, direct soil loss estimates, and Universal Soil Loss Equation (USLE) estimates to determine the sensitivity of TM data to varying degrees of soil erosion in pinyon-juniper woodland in central Utah. TM data were also evaluated as a predictor of the USLE Crop Management C factor for pinyon-juniper woodlands. TM spectral data were consistently better predictors of soil erosion factors than any combination of field factors. TM data were more sensitive to vegetation variations than the USLE C factor. USLE estimates showed low annual rates of erosion which varied little among the study sites. Direct measurements of rate of soil loss using the SEDIMENT (Soil Erosion DIrect measureMENT) technique, indicated high and varying rates of soil loss among the sites since tree establishment. Erosion estimates from the USLE and SEDIMENT methods suggest that erosion rates have been severe in the past, but because significant amounts of soil have already been eroded, and the surface is now armored by rock debris, present erosion rates are lower. Indicators of accelerated erosion were still present on all sites, however, suggesting that the USLE underestimated erosion within the study area.

  13. Kajian Model Estimasi Volume Limpasan Permukaan, Debit Puncak Aliran, dan Erosi Tanah dengan Model Soil Conservation Service (SCS, Rasional Dan Modified Universal Soil Loss Equation (MUSLE (Studi Kasus di DAS Keduang, Wonogiri

    Directory of Open Access Journals (Sweden)

    Ugro Hari Murtiono

    2008-12-01

    Full Text Available Hydrologic modelling has been developing and it is usefull for basic data in managing water resources. The aim of the reseach is to estimate volume runoff, maximum discharge, and soil erosion with SCS, Rational, and MUSLE models on Keduang Watershed. Explain the data analysis, and flow to get the data. SCS parameters model use are: runoff, rainfall, deferent between rainfall runoff. The deferent rainfall between runoff relationship kurva Runoff Coefisient (Curve Nunmber/CN. This Coefisient connected with Soil Hydrology Group (antecedent moisture content/AMC, landuse, and cultivation method. Rational parameters model use are: runoff coefisient, soil type, slope, land cover, rainfall intensity, and watershed areas. MUSLE parameters model use are: rainfall erosifity (RM, soil erodibility (K, slope length (L, slope (S, land cover (C, and soil conservation practice (P. The result shows that the conservation service models be applied Keduang Watershed, Wonogiri is over estimed abaut 29.54 %, Rational model is over estimed abaut 49.96 %, and MUSLE model is over estimed abaut 48.47 %.

  14. Assessment of Ground Water Quality in and around Gobichettipalayam Town Erode District, Tamilnadu

    OpenAIRE

    P. N. Palanisamy; A. Geetha; M. Sujatha; P. Sivakumar; K. Karunakaran

    2007-01-01

    Ground water samples collected from different localities in and around Gobichettipalayam town, Erode District, Tamil Nadu were analyzed for their physico- chemical characteristics. This analysis result was compared with the WHO & ICMR standards of drinking water quality parameters with the following water quality parameters namely pH, Electrical conductivity, CN-, Cl-, SO42-, Na+, K+, Ca & Mg in CaCO3 equivalents, phenolphthalein alkalinity, hydroxide alkalinity, carbonate alkalinity, bicarbo...

  15. Modeling of SAR returns from a red pine stand

    Science.gov (United States)

    Lang, R. H.; Kilic, O.; Chauhan, N. S.; Ranson, J.

    1992-01-01

    Bright P-band radar returns from red pine forests have been observed on synthetic aperture radar (SAR) images in Bangor, Maine. A plot of red pine trees was selected for the characterization and modeling to understand the cause of the high P-band returns. The red pine stand under study consisted of mature trees. Diameter at breast height (DBH) measurements were made to determine stand density as a function of tree diameter. Soil moisture and bulk density measurements were taken along with ground rough surface profiles. Detailed biomass measurements of the needles, shoots, branches, and trunks were also taken. These site statistics have been used in a distorted Born approximation model of the forest. Computations indicate that the direct-reflected or the double-bounce contributions from the ground are responsible for the high observed P-band returns for HH polarization.

  16. Changes in spectral signatures of red lettuce regards to Zinc uptake

    Science.gov (United States)

    Shin, J.; Yu, J.; Koh, S. M.; Park, G.; Kim, S.

    2017-12-01

    Heavy metal contaminations caused by human activities such as mining and industrial activities caused serious soil contamination. Soil contaminations causes secondary impact on vegetation by uptake processes. Intakes of vegetables harvested from heavy metal contaminated soil may cause serious health problems. It would be very effective if screening tool could be developed before the vegetables are distributed over the market. This study investigated spectral response of red lettuce regards to Zn uptake from the treated soil in a laboratory condition. Zn solutions at different levels of concentration are injected to potted lettuce. The chemical composition and spectral characteristics of the leaves are analyzed every 2 days and the correlation between the Zn concentration and spectral reflectance is investigated. The experiment reveals that Zn uptake of red lettuce is significantly higher for the leaves from treated pot compared to untreated pot showing highly contaminated concentrations beyond the standard Zn concentrations for food. The spectral response regards to Zn is manifested at certain level of concentration threshold. Below the threshold, reflectance at NIR regions increases regards to increase in Zn concentration. On the other hand, above the threshold, IR reflectance decreases and slope of NIR shoulder increases regards to higher Zn concentration. We think this result may contribute for development of screening tools for heavy metal contaminations in vegetables.

  17. Effect of arbuscular mycorrhizal fungal inoculation in combination with different organic fertilizers on maize crop in eroded soils

    International Nuclear Information System (INIS)

    Sharif, M.; Saud, S.; Khan, F.

    2012-01-01

    A pot experiment was conducted to study the effect of inoculating maize (Zea mays L. Azam) with Arbuscular mycorrhizal (AM) fungi in 2 different series of North West Pakistan during the year 2007. Data showed significant increase in shoots and roots yield of maize with the inoculation of AM fungi alone and in combination with farm yard manure (FYM), poultry manure (PM) and humic acid (HA) over control and N-P-K treatments. Accumulation of N by maize shoots increased significantly by the addition of HA, PM and FYM plus N-P-K with or without inoculation of AM fungi over the treatments of N-P-K and control. Plants P accumulation increased significantly over control and N-P-K treatments with the inoculation of AM fungi alone and in combination with FYM, PM and HA in missa soil series. In missa gullied soil series, significantly increased plants P accumulation was noted by the treatments of AM inoculation with PM followed by HA. Accumulation of Mn by maize shoots increased significantly with AM inoculation with HA and PM over all other treatments, Fe increased with PM, HA and FYM. Plants Cu accumulation in missa series increased significantly over control and N-P-K treatments by AM alone and in combination with PM, FYM and HA and by AM fungi with PM, FYM and HA in missa gullied series. Maximum Mycorrhizal root infection rate of 51 % was recorded in the treatment of AM fungal inoculation with HA followed by the treatment inoculated with AM fungi with FYM. In missa gullied soil series, Maximum (59 %) and significantly increased roots infection rates over all treatments were observed in the treatment of AM fungal inoculation with HA followed by PM. Spores concentrations of AM fungi increased significantly with AM inoculation alone and with FYM, PM and HA. Maximum spores numbers of 50 in 20 g soil were recorded by the inoculation of AM fungi alone and with HA. (author)

  18. Use of USLE/GIS methodology for predicting soil loss in a semiarid agricultural watershed.

    Science.gov (United States)

    Erdogan, Emrah H; Erpul, Günay; Bayramin, Ilhami

    2007-08-01

    The Universal Soil Loss Equation (USLE) is an erosion model to estimate average soil loss that would generally result from splash, sheet, and rill erosion from agricultural plots. Recently, use of USLE has been extended as a useful tool predicting soil losses and planning control practices in agricultural watersheds by the effective integration of the GIS-based procedures to estimate the factor values in a grid cell basis. This study was performed in the Kazan Watershed located in the central Anatolia, Turkey, to predict soil erosion risk by the USLE/GIS methodology for planning conservation measures in the site. Rain erosivity (R), soil erodibility (K), and cover management factor (C) values of the model were calculated from erosivity map, soil map, and land use map of Turkey, respectively. R values were site-specifically corrected using DEM and climatic data. The topographical and hydrological effects on the soil loss were characterized by LS factor evaluated by the flow accumulation tool using DEM and watershed delineation techniques. From resulting soil loss map of the watershed, the magnitude of the soil erosion was estimated in terms of the different soil units and land uses and the most erosion-prone areas where irreversible soil losses occurred were reasonably located in the Kazan watershed. This could be very useful for deciding restoration practices to control the soil erosion of the sites to be severely influenced.

  19. Salt tolerance in red clover (Trifolium pratense L.) seedlings

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... This study was conducted to investigate the effect of salt stress on germination of 28 red clover. (Trifolium pratense ... tolerance with the aim of improving crop plants (Zhu,. 2001) or soil .... The interaction of salinity and population in terms of PI ... in shoot growth is probably due to hormonal signals generated ...

  20. Vanadium toxicity in chickpea (Cicer arietinum L.) grown in red soil: Effects on cell death, ROS and antioxidative systems.

    Science.gov (United States)

    Imtiaz, Muhammad; Ashraf, Muhammad; Rizwan, Muhammad Shahid; Nawaz, Muhammad Amjad; Rizwan, Muhammad; Mehmood, Sajid; Yousaf, Balal; Yuan, Yuan; Ditta, Allah; Mumtaz, Muhammad Ali; Ali, Muhammad; Mahmood, Sammina; Tu, Shuxin

    2018-04-17

    The agricultural soil contaminated with heavy metals induces toxic effects on plant growth. The present study was conducted to evaluate the effects of vanadium (V) on growth, H 2 O 2 and enzyme activities, cell death, ion leakage, and at which concentration; V induces the toxic effects in chickpea plants grown in red soil. The obtained results indicated that the biomass (fresh and dry) and lengths of roots and shoots were significantly decreased by V application, and roots accumulated more V than shoots. The enzyme activities (SOD, CAT, and POD) and ion leakage were increased linearly with increasing V concentrations. However, the protein contents, and tolerance indices were significantly declined with the increasing levels of V. The results about the cell death indicated that the cell viability was badly damaged when plants were exposed to higher V, and induction of H 2 O 2 might be involved in this cell death. In conclusion, all the applied V levels affected the enzymatic activities, and induced the cell death of chickpea plants. Furthermore, our results also confirmed that vanadium ≥ 130 mg kg -1 induced detrimental effects on chickpea plants. Additional investigation is needed to clarify the mechanistic explanations of V toxicity at the molecular level and gene expression involved in plant cell death. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Land use, forest density, soil mapping, erosion, drainage, salinity limitations

    Science.gov (United States)

    Yassoglou, N. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The results of analyses show that it is possible to obtain information of practical significance as follows: (1) A quick and accurate estimate of the proper use of the valuable land can be made on the basis of temporal and spectral characteristics of the land features. (2) A rather accurate delineation of the major forest formations in the test areas was achieved on the basis of spatial and spectral characteristics of the studied areas. The forest stands were separated into two density classes; dense forest, and broken forest. On the basis of ERTS-1 data and the existing ground truth information a rather accurate mapping of the major vegetational forms of the mountain ranges can be made. (3) Major soil formations are mapable from ERTS-1 data: recent alluvial soils; soil on quarternary deposits; severely eroded soil and lithosol; and wet soils. (4) An estimation of cost benefits cannot be made accurately at this stage of the investigation. However, a rough estimate of the ratio of the cost for obtaining the same amount information from ERTS-1 data and from conventional operations would be approximately 1:6 to 1:10, in favor of the ERTS-1.

  2. Regional soil erosion assessment based on a sample survey and geostatistics

    Science.gov (United States)

    Yin, Shuiqing; Zhu, Zhengyuan; Wang, Li; Liu, Baoyuan; Xie, Yun; Wang, Guannan; Li, Yishan

    2018-03-01

    Soil erosion is one of the most significant environmental problems in China. From 2010 to 2012, the fourth national census for soil erosion sampled 32 364 PSUs (Primary Sampling Units, small watersheds) with the areas of 0.2-3 km2. Land use and soil erosion controlling factors including rainfall erosivity, soil erodibility, slope length, slope steepness, biological practice, engineering practice, and tillage practice for the PSUs were surveyed, and the soil loss rate for each land use in the PSUs was estimated using an empirical model, the Chinese Soil Loss Equation (CSLE). Though the information collected from the sample units can be aggregated to estimate soil erosion conditions on a large scale; the problem of estimating soil erosion condition on a regional scale has not been addressed well. The aim of this study is to introduce a new model-based regional soil erosion assessment method combining a sample survey and geostatistics. We compared seven spatial interpolation models based on the bivariate penalized spline over triangulation (BPST) method to generate a regional soil erosion assessment from the PSUs. Shaanxi Province (3116 PSUs) in China was selected for the comparison and assessment as it is one of the areas with the most serious erosion problem. Ten-fold cross-validation based on the PSU data showed the model assisted by the land use, rainfall erosivity factor (R), soil erodibility factor (K), slope steepness factor (S), and slope length factor (L) derived from a 1 : 10 000 topography map is the best one, with the model efficiency coefficient (ME) being 0.75 and the MSE being 55.8 % of that for the model assisted by the land use alone. Among four erosion factors as the covariates, the S factor contributed the most information, followed by K and L factors, and R factor made almost no contribution to the spatial estimation of soil loss. The LS factor derived from 30 or 90 m Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data

  3. Effects of Near Soil Surface Characteristics on the Soil Detachment Process in a Chronological Series of Vegetation Restoration

    Science.gov (United States)

    Wang, Bing

    2017-04-01

    correction coefficients of near soil surface characteristics for rill erodibility were provided for the Water Erosion Prediction Project (WEPP) model.

  4. The importance of non-carbonate mineral weathering as a soil formation mechanism within a karst weathering profile in the SPECTRA Critical Zone Observatory, Guizhou Province, China

    Institute of Scientific and Technical Information of China (English)

    Oliver W.Moore; Heather L.Buss; Sophie M.Green; Man Liu; Zhaoliang Song

    2017-01-01

    Soil degradation,including rocky desertification,of the karst regions in China is severe.Karst landscapes are especially sensitive to soil degradation as carbonate rocks are nutrient-poor and easily eroded.Understanding the balance between soil formation and soil erosion is critical for long-term soil sustainability,yet little is known about the initial soil forming processes on karst terrain.Herein we examine the initial weathering processes of several types of carbonate bedrock containing varying amounts of non-carbonate minerals in the SPECTRA Critical Zone Observatory,Guizhou Province,Southwest China.We compared the weathering mechanisms of the bedrock to the mass transfer of mineral nutrients in a soil profile developed on these rocks and found that soil formation and nutrient contents are strongly dependent upon the weathering of interbedded layers of more silicate-rich bedrock (marls).Atmospheric inputs from dust were also detected.

  5. Soil Erosion and Agricultural Sustainability

    Science.gov (United States)

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  6. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  7. CHANGE ANALYSIS ON SOIL EROSION OF FUJIAN PROVINCE FROM 1990 TO 2015

    OpenAIRE

    X. Q. Wang; S. J. Zeng; X. G. Chen; J. L. Lin; S. M. Chen

    2017-01-01

    Soil erosion is one of major environment problems in the world, and China is one of the most serious soil erosion country. In this paper, Fujian province was used as a study area for its typical red soil region. Based on USLE model, the soil erosion modulus in 1990 and 2015 were calculated and turned to soil erosion intensity. The soil erosion distribution trend in Fujian province was decrease from south-east coastal zone to north-west inland region. In soil erosion areas, the main e...

  8. Integrated universal soil loss equation (USLE and Geographical Information System (GIS for soil erosion estimation in A Sap basin: Central Vietnam

    Directory of Open Access Journals (Sweden)

    Tung Gia Pham

    2018-06-01

    Full Text Available Central Vietnam is very susceptible to soil erosion due to its complicated terrain and heavy rainfall. The objective of this study was to quantify soil erosion in the A Sap river basin, A Luoi district, Thua Thien Hue Province, Vietnam, using the Universal Soil Loss Equation (USLE and Geographical Information System (GIS. The results showed that 34% of land area lost accumulated to 10 t ha−1 year−1 while 47% of the total area lost less than 1 t ha−1 year−1. Natural forest land lost the most with an average of about 19 t ha−1 year−1, followed by plantation forest with approximately 7 t ha−1 year−1 and other agricultural lands at 3.70 and 1.45 t ha−1 year−1 for yearly crops and paddy rice, respectively. Soil erosion was most sensitive to the topographic factor (LS, followed by the practice support factor (P, soil erodibility factor (K, cropping management (C, and the rainfall erosivity factor (R. Implications are that changes to the cultivated calendar and implementing intercropping are effective ways to prevent soil erosion in cultivated lands. Furthermore, introducing broad leaves trees for mountainous areas in A Sap basin was the most effective practice in reducing soil erosion. The study also pointed out that the combination of available data sources used with the USLE and GIS technology is a viable option to calculate soil erosion in Central Vietnam, which would allow targeted attention toward a solution is to reduce future soil erosion. Keywords: Central Vietnam, GIS, Soil erosion, USLE

  9. Variabilidade espacial de fatores de erosão em Latossolo Vermelho eutroférrico sob cultivo de cana-de-açúcar Spatial variability of the erosion factors in eutrudox Red Latosol under sugarcane crop

    Directory of Open Access Journals (Sweden)

    Zigomar M. de Souza

    2005-04-01

    Full Text Available Visando a avaliar a variabilidade espacial de fatores de erosão em Latossolo Vermelho eutroférrico, foram obtidas amostras do solo em intervalos regulares de 50 m, em forma de grid, totalizando 206 pontos de amostragem. Foram coletadas amostras nas profundidades de 0,0-0,2 m para a determinação da composição granulométrica e do conteúdo de matéria orgânica. Os fatores de erosão locais, como erosividade (R, erodibilidade (K, relevo (LS, perda de solo (A, potencial natural de erosão (PNE, risco de erosão (RE e expectativa de erosão (EE, foram avaliados. A variabilidade do solo medida pelo coeficiente de variação registrou-se média para K, alta para o RE e EE e muito alta para A, LS e PNE. As variáveis estudadas apresentaram estrutura de dependência espacial com grau moderado para as variáveis K, A, PNE e RE, e forte para o LS e EE. Mapas obtidos por krigagem foram apresentados para descrição dos padrões de distribuição dos fatores de erosão na paisagem.The objective of this work was to evaluate the spatial variability of soil erosion factors on a Dark Red Oxisol under sugarcane conventional tillage. Soil samples were collected in 206 points, in a depth of 0.0-0.2 m, located in a 50 m regular grid for obtaining the soil texture and organic matter content. The local erosion factors were determined: erosivity (R, erodibility (K, relief (LS, soil erosion (A, natural potential of erosion (PNE, erosion risk (RE and erosion expectation (EE. Geostatistical analysis was performed to measure and model the spatial variability of soil erosion factors. The soil variability was moderate with K, A, and PNE while the soil variability was higher with LS, RE, and EE. K, A, and PNE exhibited moderate spatial dependence, but spatial dependence of LS, RE and EE was strong. Kriging maps were presented for understanding of soil erosion factors distribution patterns within the landscape.

  10. Granular flows on erodible layers: type and evolution of flow and deposit structures

    Science.gov (United States)

    Crosta, G.; De Blasio, F.; De Caro, M.; Volpi, G.; Frattini, P.

    2012-04-01

    The interaction of a fast moving landslide mass with the basal layer over which movement takes place has been discussed in previous contributions. Nevertheless, the evolution of the structures within the moving mass and the erodible layer are still to be described in detail (Hungr and Evans, 2004; Crosta et al., 1992, 2006, 2009, 2011; Dufresne et al., 2010; Mangeney et al., 2010) and modeling results (Crosta et al., 2006, 2009, 2011; Mangeney et al., 2010). We present some of the results from a campaign of laboratory experiments aimed at studying the evolution of a granular flow at the impact with and during the successive spreading over a cohesionless erodible layer. We performed these test to study the processes and to collect data and evidences to compare them with the results of numerical simulations and to verify capabilities of numerical codes. The laboratory setup consists of an inclined slope and an horizontal sector where release and transport, and deposition take place, respectively. Materials used for the tests are: a uniform rounded siliceous sand (Hostun sand; 0.125-0.5 mm) commonly adopted in lab tests because free of scale effects, and a gravel made of angular elements (12 mm in ave. size). Both the materials have been tested in dry conditions. Different slope angles have been tested (40, 45, 50, 55, 50, 66°) as well as different thicknesses of the erodible layer (0, 0.5, 1, 2 cm) and volumes of the released material (1.5, 3, 5, 9.6 liters). Tests have been monitored by means of a high speed camera and the pre- and post-failure geometries have been surveyed by means of a laser scanner. Deposit description allowed also the computation of volumes and the characterization of the different structures developed and frozen into the deposit. Experiments allowed us to observe the extreme processes occurring during the movement and the mise en place of the deposits. In particular, we observe the formation of a clear wave-like feature developing during the

  11. Phosphorus (32 P) adsorption kinetics and equilibrium in soils of Pernambuco State, Brazil

    International Nuclear Information System (INIS)

    Machado, Lucivaldo Celestino.

    1996-01-01

    The objective of this work was to determine the relationship between the P fixing capacity of various soils and their hydrous oxide content. The relationship with other soil variables was also analysed. This fixing capacity was evaluated through adsorption isotherms and isotopic exchange kinetics of 32 P in samples with high and low P concentrations. Samples from 11 soils, cultivated with sugar-cane, representing five soil classes (non-humic gley, red-yellow Podzolic, red-yellow latossolic, distrofic quartzitic sand and distrofic organic). The soils were sampled in the southern humid coastal region of the state of Pernambuco. Soil were sampled immediately after harvest of the plant-cane. The results of the basic soil chemical analysis showed that all soils had pH values in the acid range,varying from 3.87 to 6.31. Total organic C was always less than 12 mg C/g, except for the organic soil that had 75 mg C/g soil. In soils with R 1 /R 0 between 0,01 and 0,1 the proportion of resin P oscillated between 10 and 20 of the increase in total inorganic P, while in those with R 1 /R 0 > 0,1 the proportion was larger than 20% with one exception. (author). 44 refs., 9 figs., 6 tabs

  12. Event-based soil loss models for construction sites

    Science.gov (United States)

    Trenouth, William R.; Gharabaghi, Bahram

    2015-05-01

    The elevated rates of soil erosion stemming from land clearing and grading activities during urban development, can result in excessive amounts of eroded sediments entering waterways and causing harm to the biota living therein. However, construction site event-based soil loss simulations - required for reliable design of erosion and sediment controls - are one of the most uncertain types of hydrologic models. This study presents models with improved degree of accuracy to advance the design of erosion and sediment controls for construction sites. The new models are developed using multiple linear regression (MLR) on event-based permutations of the Universal Soil Loss Equation (USLE) and artificial neural networks (ANN). These models were developed using surface runoff monitoring datasets obtained from three sites - Greensborough, Cookstown, and Alcona - in Ontario and datasets mined from the literature for three additional sites - Treynor, Iowa, Coshocton, Ohio and Cordoba, Spain. The predictive MLR and ANN models can serve as both diagnostic and design tools for the effective sizing of erosion and sediment controls on active construction sites, and can be used for dynamic scenario forecasting when considering rapidly changing land use conditions during various phases of construction.

  13. Soil organic carbon loss and selective transportation under field simulated rainfall events.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Zhang, Yan; Ma, Wenming; Hu, Yanbiao; Zeng, Guangming

    2014-01-01

    The study on the lateral movement of soil organic carbon (SOC) during soil erosion can improve the understanding of global carbon budget. Simulated rainfall experiments on small field plots were conducted to investigate the SOC lateral movement under different rainfall intensities and tillage practices. Two rainfall intensities (High intensity (HI) and Low intensity (LI)) and two tillage practices (No tillage (NT) and Conventional tillage (CT)) were maintained on three plots (2 m width × 5 m length): HI-NT, LI-NT and LI-CT. The rainfall lasted 60 minutes after the runoff generated, the sediment yield and runoff volume were measured and sampled at 6-min intervals. SOC concentration of sediment and runoff as well as the sediment particle size distribution were measured. The results showed that most of the eroded organic carbon (OC) was lost in form of sediment-bound organic carbon in all events. The amount of lost SOC in LI-NT event was 12.76 times greater than that in LI-CT event, whereas this measure in HI-NT event was 3.25 times greater than that in LI-NT event. These results suggest that conventional tillage as well as lower rainfall intensity can reduce the amount of lost SOC during short-term soil erosion. Meanwhile, the eroded sediment in all events was enriched in OC, and higher enrichment ratio of OC (ERoc) in sediment was observed in LI events than that in HI event, whereas similar ERoc curves were found in LI-CT and LI-NT events. Furthermore, significant correlations between ERoc and different size sediment particles were only observed in HI-NT event. This indicates that the enrichment of OC is dependent on the erosion process, and the specific enrichment mechanisms with respect to different erosion processes should be studied in future.

  14. IPEC Gels for Remediating Soils Contaminated as Result of Nuclear and Industrial Activities

    International Nuclear Information System (INIS)

    Mikheykin, S.V.; Anciferova, E.Yu.; Simonov, V.P.; Zezin, A.B.; Rogacheva, V.B.; Bolusheva, T.N.

    2006-01-01

    Under International Scientific and Technological Center (ISTC, Moscow) Project no. 1567 the Moscow research team in collaboration with Los Alamos National Laboratory developed and tested new kind of inter-polyelectrolyte complexes with micro-gel (IPECs) for soil surface stabilization, prevention of radioactive contamination distribution with wind and water streams and for site remediation using mixtures of new water-soluble polymers with seeding grasses. Evidently, the most important factor responsible for the effectiveness of a polymeric aggregator is the ratio of the size of poly-complex particles to that of dispersion particles being aggregated. The particle size of IPEC produced of a pair of linear oppositely charged poly-electrolytes is usually fractions of a micron. Such a particle can fix only small aggregates (∼10 μm and less). One of the ways of improving poly-complex aggregators is to use loose cross-linked poly-electrolytic gels as an IPEC component. When generating/dispersing these poly-electrolytic gels, particles of specified sizes can be produced. These poly-electrolytic micro-gels introduced into soil save moisture, what is important for arid sites. Wind erosion was studied as a function of soil physical-chemical properties and the air stream velocity. A laboratory wind tunnel instrumented to follow the process on a real-time basis was used for our study. Polymer-treated samples show a high wind erosion resistance in the wind velocity range up to 40 m/s. The micro-gel dispersion MGD-2 was injected in combination with MLA-1 in the experiments with water flow - water erosion resistance. With an increase in the water-polymer solution application rate from 2.0 to 4.0 l/m 2 the soil resistance to eroding water streams with velocity of 55 cm/s (2.0 l/m 2 ) and at 70.0 cm/s with 4.0 l/m 2 . Based on the classification of soils by erosion resistance, soils eroded with a water stream 1 cm high at a velocity of 50 cm/s are considered to be highly erosion

  15. Molecular mechanisms and ecological function of far-red light signalling.

    Science.gov (United States)

    Sheerin, David J; Hiltbrunner, Andreas

    2017-11-01

    Land plants possess the ability to sense and respond to far-red light (700-760 nm), which serves as an important environmental cue. Due to the nature of far-red light, it is not absorbed by chlorophyll and thus is enriched in canopy shade and will also penetrate deeper into soil than other visible wavelengths. Far-red light responses include regulation of seed germination, suppression of hypocotyl growth, induction of flowering and accumulation of anthocyanins, which depend on one member of the phytochrome photoreceptor family, phytochrome A (phyA). Here, we review the current understanding of the underlying molecular mechanisms of how plants sense far-red light through phyA and the physiological responses to this light quality. Light-activated phytochromes act on two primary pathways within the nucleus; suppression of the E3 ubiquitin ligase complex CUL4/DDB1 COP1/SPA and inactivation of the PHYTOCHROME INTERACTING FACTOR (PIF) family of bHLH transcription factors. These pathways integrate with other signal transduction pathways, including phytohormones, for tissue and developmental stage specific responses. Unlike other phytochromes that mediate red-light responses, phyA is transported from the cytoplasm to the nucleus in far-red light by the shuttle proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). However, additional mechanisms must exist that shift the action of phyA to far-red light; current hypotheses are discussed. © 2017 John Wiley & Sons Ltd.

  16. Effect of cement dust pollution on certain physical parameters of maize crop and soils

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, S; Arunachalam, N; Natarajan, K; Oblisami, G; Rangaswami, G

    1975-04-01

    A study was undertaken in the fields near a cement factory where the cement dust is the prime pollutant to the field crops and soils. Cement dust deposit varied with the distance from the kiln and fourth and fifth leaves of maize had comparatively more dust than the first three leaves from the top. The cement dust deposited plants showed a suppression in most of the characters like leaf size, number and size of cobs and plant height when compared to plants in non-polluted fields. On comparison with the physical characters of the soils from the control field the soil from cement dust polluted field showed a decrease in water holding capacity and pore space while thermal conductivity and specific heat were more. Artificial mixtures of red and black soils with cement dust showed similar trend as those of the field sample, the black soil being affected more seriously than the red soil.

  17. Combining 137Cs and topographic surveys for measuring soil erosion/deposition patterns in a rapidly accreting area

    International Nuclear Information System (INIS)

    Ritchie, J.C.

    2000-01-01

    Narrow, stiff grass hedges are biological barriers designed to slow runoff and capture soils carried in runoff water. This study was designed to measure quantitatively the deposition of soil up slope of a narrow, stiff grass hedge using topographic and 137 Cs surveys. Topographic surveys made in 1991, 1995, and 1998 measured 1 to 2 cm yr -1 of recent sediment deposited up slope of the grass hedge. 137 Cs analyses of soil samples were used to determine the medium-term (45 years) soil redistribution patterns. Erosion rates and patterns determined using 137 Cs measured medium-term erosion near the hedge do not reflect the recent deposition patterns near the grass hedge measured by topographic surveys. Using the combination of topographic and 137 Cs surveys allows a better understanding of the role of grass hedges as barriers for capturing eroding soils and suggest that the recent deposition is associated with the grass hedge but that there is still a net loss of soil near the hedge position over the past 45 years. (author)

  18. Biodegradation of Textile Dyes by Fungi Isolated from North Indian Field Soil

    Directory of Open Access Journals (Sweden)

    Arshi Shahid

    2013-07-01

    Full Text Available In this study one azo dye "Congo red", two triphenymethane dyes "Crystal violet" and "Methylene blue" have been selected for biodegradation using three soil fungal isolates A. niger, F. oxysporum and T. lignorum. These fungal strains were isolated from field soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25°C. The experiment was conducted for 10 days and the results were periodically observed. Aspergillus niger decolorized maximum Congo red (74.07% followed by Crystal violet (33.82% and Methylene blue (22.44% under liquid medium (stationary condition. Whereas, under same conditions, T. lignorum decolorized maximum crystal violet (92.7%, Methylene blue (48.3% and Congo red (35.25%. Use of T. lignorum as dye bio degrader or decolorizer has been done first time in this study. Fusarium oxysporum performed better under shaking conditions compared to stationary and overlay method. It can be concluded that among soil fungus T. lignorum could be used as efficient dye decolorizer especially for crystal violet and A. niger for Congo red. The excellent performance of T. lignorum and F. oxysporum in the biodegradation of textile dyes of different chemical structures reinforces the potential of these fungi for environmental decontamination similar to white rot fungi.

  19. Bioremediation of endosulfan contaminated soil and water-Optimization of operating conditions in laboratory scale reactors

    International Nuclear Information System (INIS)

    Kumar, Mathava; Philip, Ligy

    2006-01-01

    A mixed bacterial culture consisted of Staphylococcus sp., Bacillus circulans-I and -II has been enriched from contaminated soil collected from the vicinity of an endosulfan processing industry. The degradation of endosulfan by mixed bacterial culture was studied in aerobic and facultative anaerobic conditions via batch experiments with an initial endosulfan concentration of 50 mg/L. After 3 weeks of incubation, mixed bacterial culture was able to degrade 71.58 ± 0.2% and 75.88 ± 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively. The addition of external carbon (dextrose) increased the endosulfan degradation in both the conditions. The optimal dextrose concentration and inoculum size was estimated as 1 g/L and 75 mg/L, respectively. The pH of the system has significant effect on endosulfan degradation. The degradation of alpha endosulfan was more compared to beta endosulfan in all the experiments. Endosulfan biodegradation in soil was evaluated by miniature and bench scale soil reactors. The soils used for the biodegradation experiments were identified as clayey soil (CL, lean clay with sand), red soil (GM, silty gravel with sand), sandy soil (SM, silty sand with gravel) and composted soil (PT, peat) as per ASTM (American society for testing and materials) standards. Endosulfan degradation efficiency in miniature soil reactors were in the order of sandy soil followed by red soil, composted soil and clayey soil in both aerobic and anaerobic conditions. In bench scale soil reactors, endosulfan degradation was observed more in the bottom layers. After 4 weeks, maximum endosulfan degradation efficiency of 95.48 ± 0.17% was observed in red soil reactor where as in composted soil-I (moisture 38 ± 1%) and composted soil-II (moisture 45 ± 1%) it was 96.03 ± 0.23% and 94.84 ± 0.19%, respectively. The high moisture content in compost soil reactor-II increased the endosulfan concentration in the leachate. Known intermediate metabolites of

  20. Numerical simulation of evolutionary erodible bedforms using the particle finite element method

    Science.gov (United States)

    Bravo, Rafael; Becker, Pablo; Ortiz, Pablo

    2017-07-01

    This paper presents a numerical strategy for the simulation of flows with evolutionary erodible boundaries. The fluid equations are fully resolved in 3D, while the sediment transport is modelled using the Exner equation and solved with an explicit Lagrangian procedure based on a fixed 2D mesh. Flow and sediment are coupled in geometry by deforming the fluid mesh in the vertical direction and in velocities with the experimental sediment flux computed using the Meyer Peter Müller model. A comparison with real experiments on channels is performed, giving good agreement.

  1. Does Biochar Addition Inlfuence the Change Points of Soil Phosphorus Leaching?

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-rong; LI Dan; KONG Juan; LIN Qi-mei

    2014-01-01

    Phosphorus change point indicating the threshold related to P leaching, largely depends on soil properties. Increasing data have shown that biochar addition can improve soil retention capacity of ions. However, we have known little about weather biochar amendment inlfuence the change point of P leaching. In this study, two soils added with 0, 5, 10, 20, and 50 g biochar kg-1 were incubated at 25°C for 14 d following adjusting the soil moisture to 50%water-holding capacity (WHC). The soils with different available P values were then obtained by adding a series of KH2PO4 solution (ranging from 0 to 600 mg P kg-1 soil), and subjecting to three cycles of drying and rewetting. The results showed that biochar addition signiifcantly lifted the P change points in the tested soils, together with changes in soil pH, organic C, Olen-P and CaCl2-P but little on exchangeable Ca and Mg, oxalate-extractable Fe and Al. The Olsen-P at the change points ranged from 48.65 to 185.07 mg kg-1 in the alluvial soil and 71.25 to 98.65 mg kg-1 in the red soil, corresponding to CaCl2-P of 0.31-6.49 and 0.18-0.45 mg L-1, respectively. The change points of the alluvial soil were readily changed by adding biochar compared with that of the red soil. The enhancement of change points was likely to be explained as the improvement of phosphate retention ability in the biochar-added soils.

  2. Bioengineering Technology to Control River Soil Erosion using Vetiver (Vetiveria Zizaniodes)

    Science.gov (United States)

    Sriwati, M.; Pallu, S.; Selintung, M.; Lopa, R.

    2018-04-01

    Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock or dissolved material from one location on the earth’s crust, and then transport it away to another location. Bioengineering is an attempt to maximise the use of vegetation components along riverbanks to cope with landslides and erosion of river cliffs and another riverbank damage. This study aims to analyze the bioengineering of Vetiver as a surface layer for soil erosion control using slope of 100, 200, and 300. This study is conducted with 3 variations of rain intensity (I), at 103 mm/hour, 107 mm/hour, and 130 mm/hour by using rainfall simulator tool. In addition, the USLE (Universal Soil Loss Equation) method is used in order to measure the rate of soil erosion. In this study, there are few USLE model parameters were used such as rainfall erosivity factor, soil erodibility factor, length-loss slope and stepness factor, cover management factor, and support practise factor. The results demonstrated that average of reduction of erosion rate using Vetiver, under 3 various rainfalls, namely rainfall intensity 103 mm/hr had reduced 84.971%, rainfall intensity 107 mm/hr had reduced 86.583 %, rainfall intensity 130 mm/hr had reduced 65.851%.

  3. Transfer of 137Cs to plants from two types of soil

    International Nuclear Information System (INIS)

    Skowronska-Smolak, M.; Pietrzak-Flis, S.

    1994-01-01

    Transfer of 137 Cs from soil to plants was studied in two types of soil: sandy soil (I) and sandy loam soil (II). The study was performed on an experimental field for of 1991 (soil I) and for 1992-93 (soil II). Transfer of 137 Cs from soil I was examined for spring barley, spring wheat, red beet, lettuce and kale; transfer from soil II was examined for winter barley, grass, alfalfa, potato tubers, red beet, radish, bean, spinach and lettuce. 137 Cs and potassium in plants and soil were determined using gamma spectrometry. The soils were characterized by particle size distribution and such chemical properties as pH H 2 O , pH KCl , content of organic matter, Ca, Mg and exchangeable K. The concentration of 137 Cs in the soil I was over five times lower than in soil II, being equal to 8.84±0.32 Bq kg -1 and 50.38±2.21 Bq kg -1 , respectively. The soils differ in their chemical characteristics and texture. Soil I contains 6.47±0.21 g kg -1 potassium, 0.147±0.015 g kg -1 exchangeable potassium, 2.21±0.32 g kg -1 Ca, 0.055±0.013 g kg -1 Mg and 1.733% organic matter. Soil II contains 10.87±0.22 g kg -1 potassium, 0.082±0.007 g kg -1 exchangeable potassium, 1.62±0.16 g kg -1 Ca, 0.097±0.009 g kg -1 Mg and 2.307% organic matter; pH H2O of soil I was equal to 7.40 and of soil II - 6.56. The lowest concentrations of 137 Cs for both soils were observed in cereals (spring wheat - 0.67±0.06 Bq kg -1 dw and spring barley - 0.33± Bq kg -1 dw for soil I and winter barley - 0.79±0.20 Bq kg -1 dw for soil II). The highest concentrations of this isotope were found in red beet leaves (9.11±1.38 Bq kg -1 dw for soil I and 16.44±1.14 Bq kg -1 dw for soil II). Transfer of 137 Cs to plants from the sandy loam soil was from about 2 up to about 7 times lower than from the sandy soil. The lower transfer of 137 Cs from soil II to plants in comparison to soil I might be associated with the presence of clay which binds Cs strongly. The strong binding of Cs in soil II can also be

  4. Quantifying the eroded volume of mercury-contaminated sediment using terrestrial laser scanning at Stocking Flat, Deer Creek, Nevada County, California, 2010–13

    Science.gov (United States)

    Howle, James F.; Alpers, Charles N.; Bawden, Gerald W.; Bond, Sandra

    2016-07-28

    High-resolution ground-based light detection and ranging (lidar), also known as terrestrial laser scanning, was used to quantify the volume of mercury-contaminated sediment eroded from a stream cutbank at Stocking Flat along Deer Creek in the Sierra Nevada foothills, about 3 kilometers west of Nevada City, California. Terrestrial laser scanning was used to collect sub-centimeter, three-dimensional images of the complex cutbank surface, which could not be mapped non-destructively or in sufficient detail with traditional surveying techniques.The stream cutbank, which is approximately 50 meters long and 8 meters high, was surveyed on four occasions: December 1, 2010; January 20, 2011; May 12, 2011; and February 4, 2013. Volumetric changes were determined between the sequential, three-dimensional lidar surveys. Volume was calculated by two methods, and the average value is reported. Between the first and second surveys (December 1, 2010, to January 20, 2011), a volume of 143 plus or minus 15 cubic meters of sediment was eroded from the cutbank and mobilized by Deer Creek. Between the second and third surveys (January 20, 2011, to May 12, 2011), a volume of 207 plus or minus 24 cubic meters of sediment was eroded from the cutbank and mobilized by the stream. Total volumetric change during the winter and spring of 2010–11 was 350 plus or minus 28 cubic meters. Between the third and fourth surveys (May 12, 2011, to February 4, 2013), the differencing of the three-dimensional lidar data indicated that a volume of 18 plus or minus 10 cubic meters of sediment was eroded from the cutbank. The total volume of sediment eroded from the cutbank between the first and fourth surveys was 368 plus or minus 30 cubic meters.

  5. Arbuscular mycorrhizal fungal communities and soil aggregation as affected by cultivation of various crops during the sugarcane fallow period

    Directory of Open Access Journals (Sweden)

    Priscila Viviane Truber

    2014-04-01

    Full Text Available Management systems involving crop rotation, ground cover species and reduced soil tillage can improve the soil physical and biological properties and reduce degradation. The primary purpose of this study was to assess the effect of various crops grown during the sugarcane fallow period on the production of glomalin and arbuscular mycorrhizal fungi in two Latosols, as well as their influence on soil aggregation. The experiment was conducted on an eutroferric Red Latosol with high-clay texture (680 g clay kg-1 and an acric Red Latosol with clayey texture (440 g kg-1 clay in Jaboticabal (São Paulo State, Brazil. A randomized block design involving five blocks and four crops [soybean (S, soybean/fallow/soybean (SFS, soybean/millet/soybean (SMS and soybean/sunn hemp/soybean (SHS] was used to this end. Soil samples for analysis were collected in June 2011. No significant differences in total glomalin production were detected between the soils after the different crops. However, total external mycelium length was greater in the soils under SMS and SHS. Also, there were differences in easily extractable glomalin, total glomalin and aggregate stability, which were all greater in the eutroferric Red Latosol than in the acric Red Latosol. None of the cover crops planted in the fallow period of sugarcane improved aggregate stability in either Latosol.

  6. Physical and chemical properties of deposited airborne particulates over the Arabian Red Sea coastal plain

    Science.gov (United States)

    Engelbrecht, Johann P.; Stenchikov, Georgiy; Jish Prakash, P.; Lersch, Traci; Anisimov, Anatolii; Shevchenko, Illia

    2017-09-01

    Mineral dust is the most abundant aerosol, having a profound impact on the global energy budget. This research continues our previous studies performed on surface soils in the Arabian Peninsula, focusing on the mineralogical, physical and chemical composition of dust deposits from the atmosphere at the Arabian Red Sea coast. For this purpose, aerosols deposited from the atmosphere are collected during 2015 at six sites on the campus of the King Abdullah University of Science and Technology (KAUST) situated on the Red Sea coastal plain of Saudi Arabia and subjected to the same chemical and mineralogical analysis we conducted on soil samples. Frisbee deposition samplers with foam inserts were used to collect dust and other deposits, for the period December 2014 to December 2015. The average deposition rate measured at KAUST for this period was 14 g m-2 per month, with lowest values in winter and increased deposition rates in August to October. The particle size distributions provide assessments of particle size fractions in the dust deposits.X-ray diffraction (XRD) analysis of a subset of samples confirms variable amounts of quartz, feldspars, micas, and halite, with lesser amounts of gypsum, calcite, dolomite, hematite, and amphibole. Freeze-dried samples were re-suspended onto the Teflon® filters for elemental analysis by X-ray fluorescence (XRF), while splits from each sample were analyzed for water-soluble cations and anions by ion chromatography. The dust deposits along the Red Sea coast are considered to be a mixture of dust emissions from local soils and soils imported from distal dust sources. Airborne mineral concentrations are greatest at or close to dust sources, compared to those through medium- and long-range transport. It is not possible to identify the exact origin of deposition samples from the mineralogical and chemical results alone. These aerosol data are the first of their kind from the Red Sea region. They will help assess their potential

  7. Sub ablative Er: YAG laser irradiation on surface roughness of eroded dental enamel.

    Science.gov (United States)

    Curylofo-Zotti, Fabiana Almeida; Lepri, Taísa Penazzo; Colucci, Vivian; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2015-11-01

    This study evaluated the effects of Er:YAG laser irradiation applied at varying pulse repetition rate on the surface roughness of eroded enamel. Bovine enamel slabs (n = 10) were embedded in polyester resin, ground, and polished. To erosive challenges, specimens were immersed two times per day in 20mL of concentrated orange juice (pH = 3.84) under agitation, during a two-day period. Specimens were randomly assigned to irradiation with the Er:YAG laser (focused mode, pulse energy of 60 mJ and energy density of 3.79 J/cm(2) ) operating at 1, 2, 3, or 4 Hz. The control group was left nonirradiated. Surface roughness measurements were recorded post erosion-like formation and further erosive episodes by a profilometer and observed through atomic force microscopy (AFM). Analysis of variance revealed that the control group showed the lowest surface roughness, while laser-irradiated substrates did not differ from each other following post erosion-like lesion formation. According to analysis of covariance, at further erosive episodes, the control group demonstrated lower surface roughness (P > 0.05), than any of the irradiated groups (P enamel eroded. The AFM images showed that the specimens irradiated by the Er:YAG laser at 1 Hz presented a less rough surface than those irradiated at 2, 3, and 4 Hz. © 2015 Wiley Periodicals, Inc.

  8. The Role of Biological Soil Crusts in Nitrogen Cycling and Soil Deflation in West Greenland

    Science.gov (United States)

    Heindel, R. C.; Governali, F. C.; Spickard, A. M.; Virginia, R. A.

    2017-12-01

    Although shrub expansion has been observed across the Arctic in moist tundra habitat, shrubs may be prevented from expanding in arid Arctic regions due to low soil moisture or soil erosion. This may be the case in Kangerlussuaq, West Greenland, where katabatic winds off the Greenland Ice Sheet have eroded distinct patches of mixed shrub tundra, resulting in nearly barren low productivity areas dominated by biological soil crusts (biocrusts) and graminoids. The future trajectory of these bare patches - persisting in a low biomass state or returning to a shrub-dominated state - depends on the role of the biocrust as either a long-term landscape cover limiting revegetation or as a successional facilitator. Prior to this study, little was known about the physical and ecological development of West Greenland biocrusts and how they may influence future vegetation dynamics. We found that biocrusts took 230 ± 48 years to fully develop, and that later stages of biocrust development were related to increased thickness and penetration resistance and decreased soil moisture, factors limiting shrub seedling establishment. The nitrogen (N) fixing lichen Stereocaulon sp. was found throughout the study region at all stages of biocrust development. Natural 15N abundance suggests that Stereocaulon sp. obtains about half of its N from biological fixation, and that some biologically-fixed N is incorporated into the underlying soils over time. Although soil N and C concentrations increased slightly with biocrust development, their levels under the most developed biocrusts remained low compared to the surrounding shrub and graminoid tundra. Our results suggest that deflation patches, triggered by long-term variations in climate, may remain in a low-productivity ecosystem state for hundreds to thousands of years, if precipitation and temperature regimes do not dramatically alter the vegetation potential of the region. However, if future climate change in the Arctic favors greater

  9. Populations dynamics of red brome (Bromus madritensis subsp. Rubens): Times for concern, opportunities for management

    Science.gov (United States)

    Salo, L.F.

    2004-01-01

    Red brome is a Mediterranean winter annual grass that has invaded south-western USA deserts. Unlike native annuals, it does not maintain a soil seed bank, but exhibits early and uniform germination. Above-average winter precipitation in these regions allows red brome to reach high density and biomass. These are time for concern, as large numbers of easily dispersed seeds increase the likelihood that it may spread into new areas. However, early and uniform germination can also lead to population crashes when drought precludes seed production. Winter droughts dramatically reduce densities of red brome, but provide opportunities for management of this exotic grass.

  10. The mineralization and transformation of both added organic nitrogen and native soil N in red soils from four different ecological conditions

    International Nuclear Information System (INIS)

    Ye Qingfu; Zhang Qinzheng; He Zhenli; Xi Haifu; Wu Gang; Wilson, M.J.

    1998-01-01

    The NH 4 + -N, microbial biomass-N, humus-N, and extractable organic N derived from the added 15 N-labelled ryegrass and soil indigenous pool were measured separately with 15 N tracing techniques. Based on the recovery of NH 4 + - 15 N and lost- 15 N (mainly as NH 3 ), more than 30% of the added ryegrass 15 N was mineralized in 15 d. The amount of mineralized N increased with time up to 90 d for all soils except for the upland soil in which it decreased slightly. The mineralization of ryegrass N and incorporation of ryegrass- 15 N into microbial biomass was greatest in upland soil. The transformation of ryegrass 15 N into humus 15 N occurred rapidly in 15 d, with higher humus 15 N occurring in the upland or tea-garden soil than the paddy and unarable soil. The addition of ryegrass caused additional mineralization of soil indigenous organic N and enhanced the turnover of both microbial biomass N and stable organic N in soils

  11. Aggregate stability and soil degradation in the tropics

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    2004-01-01

    Aggregate stability is a measure of the structural stability of soils. Factors that influence aggregate stability are important in evaluating the ease with which soils erode by water and/or wind, the potential of soils to crust and/or seal, soil permeability, quasi-steady state infiltration rates and seedling emergence and in predicting the capacity of soils to sustain long-term crop production. Aggregate stability of soils can be measured by the wet-sieving or raindrop techniques. A reduction in soil aggregate stability implies an increase in soil degradation. Hence aggregate stability and soil degradation are interwoven. The measures used can either be preventive or remedial. Preventive practices minimize the chances of soil degradation occurring or the magnitude or severity of the damage when the degradation manifests. These include in Nigeria, (i) manuring and mulching, (ii) planted fallows and cover crops, (iii) sustainable farming systems, (iv) adequate rotations, (v) home gardens or compound farms, (vi) alley cropping and related agro forestry systems, and (vii) chemical fertilizers which are mainly remedial measures. Because of alterations in soil properties that affect particular land uses, soils may degrade for one crop (maize rather sorghum). As long as some land use is possible soil degradation is not always an absolute concept. Decline in agricultural productivity should be evaluated in terms of inputs such as fertilizer use, water management and tillage methods. We can alleviate some types of soil degradation by use of micronutrients, inorganic fertilizers and organic residues. Soil that responds to management practices cannot be said to be degraded. Since crop growth depends on weather, degraded soils may be more sensitive to harsh weather (e.g. drought, temperature) than undegraded soils. A soil is degraded if its productivity falls below the economic threshold even under favourable weather conditions or with judicious inputs. All human

  12. Relationship between production, nematodes and "redness" in strawberries

    Directory of Open Access Journals (Sweden)

    Paula Nogueira Curi

    2016-08-01

    Full Text Available ABSTRACT: In recent years "redness" has increasingly appeared in strawberry plants with leaves taking on a reddish color. No causal agent has been associated with plants. Since strawberries presented problems due to the incidence of nematodes, the purpose of this study was to look at the relationship between production, resistance to the Meloidogyne hapla nematode and the "redness" symptom in strawberry cultivars. Two experiments were performed, both with the 'Camino Real', 'Festival', 'Oso Grande', 'Albion' and 'Camarosa' cultivars. The first experiment was performed in the field, where the following were evaluated: strawberry production, fruit quality, macro and micronutrient contents in fruit and leaves, percentage of plant survival, incidence of nematodes, quantity of eggs in the roots and juveniles in the soil, and the incidence of Botrytis cinerea . In the second experiment, the strawberries were transplanted into pots and filled with pinus bark-based commercial substrate. Half the pots were inocculated with Meloidogyne hapla . Cultivars presented differences in fruit production and also in the incidence of "redness". Lowest performance in production was related to the high incidence of the nematode Meloidogyne hapla. 'Oso Grande' and 'Albion' presented nematode-resistant behavior. It was possible find a relationship between the incidence of the Meloidogyne hapla nematode, and the incidence of "redness" only 'Camino Real' cultivar.

  13. Water erosion of dystrophic Red Latosols (Oxisols

    Directory of Open Access Journals (Sweden)

    Joaquim Ernesto Bernardes Ayer

    2015-06-01

    Full Text Available In their natural state, Latosols (Oxisols present great stability and resistance to erosion, being the most abundant and used soils for farming and cattle raising activities in southern Minas Gerais State, Brazil. However, along the last one hundred years, they have been submitted to intensive cultivation and managements which favor water erosion. This study aimed to estimate the water erosion rates of dystrophic Red Latosols from the Revised Universal Soil Loss Equation, compared with the soil loss tolerance limits, and assess the impact on water erosion of the managements more common in the region, by alternative conservation management simulation. Soil loss tolerance limits ranged from 8.94 Mg ha-1 year-1 to 9.99 Mg ha-1 year-1, with the study area presenting a susceptibility of soil loss of 23.86 Mg year-1, with an average rate of 8.40 Mg ha-1 year-1, corresponding to 34.80 % of the area with values above the soil loss tolerance limit. The biggest annual losses occur in areas with use and management of eucalyptus grown downhill (30.67 Mg ha-1 year-1 and pasture under continuous occupancy (11.10 Mg ha-1 year-1. However, when the average loss per type of use is considered, the areas more susceptible to water erosion are those with potato and eucalyptus crops, grown downhill, and those in bare soil. Nevertheless, in the simulated conservation management scenario, the average losses would be drastically reduced (8.40 Mg ha-1 year-1 to 2.84 Mg ha-1 year-1 and only 4.00 % of the area with soil loss would remain above the tolerance limits.

  14. Study on speciation of rare earth elements in soil

    International Nuclear Information System (INIS)

    Wang Yuqi; Sun Jingxin; Chen Hongmin; Guo Fanqing; Wang Lijun; Zhang Shen

    1996-01-01

    The contents of rare earth elements (REE) in red soil, yellow brown soil and leached chernozem are studied. After extracted sequentially, REE in these soils are fractionated into seven forms, i.e., (I) water soluble, (II) exchangeable, (III) loosely bound to organic mater, (IV) bound to carbonate and specifically absorbed, (V) bound to Fe-Mn oxides, (VI) tightly bound to organic matter and (VII) residual forms. The contents of REE in every form are determined by NAA (neutron activation analysis). The results show that REE in soils mainly exist in residual form and REE in soluble forms are very limited (<7%)

  15. Erosion and Soil Contamination Control Using Coconut Flakes And Plantation Of Centella Asiatica And Chrysopogon Zizanioides

    Science.gov (United States)

    Roslan, Rasyikin; Che Omar, Rohayu; Nor Zuliana Baharuddin, Intan; Zulkarnain, M. S.; Hanafiah, M. I. M.

    2016-11-01

    Land degradation in Malaysia due to water erosion and water logging cause of loss of organic matter, biodiversity and slope instability but also land are contaminated with heavy metals. Various alternative such as physical remediation are use but it not showing the sustainability in term of environmental sustainable. Due to that, erosion and soil contamination control using coconut flakes and plantation of Centella asiatica and Chrysopogon zizanioides are use as alternative approach for aid of sophisticated green technology known as phytoremediation and mycoremediation. Soil from cabonaceous phyllite located near to Equine Park, Sri Kembangan are use for monitoring the effect of phytoremediation and mycoremediation in reducing soil contamination and biotechnology for erosion control. Five laboratory scale prototypes were designed to monitor the effect of different proportion of coconut flakes i.e. 10%, 25%, 50% & 100% and plantation of Centella asiatica and Chrysopogon zizanioides to reduce the top soil from eroding and reduce the soil contamination. Prototype have been observe started from first week and ends after 12 weeks. Centella asiatica planted on 10% coconut flakes with 90% soil and Chrysopogon zizanioides planted on 25% coconut flakes with 75% soil are selected proportion to be used as phytoremediation and mycoremediation in reducing soil contamination and biotechnology for erosion control.

  16. Cranium eroding sweat gland carcinoma. A case report

    International Nuclear Information System (INIS)

    Arslan, M.; Karadeniz, A. N.; Aksu, G.; Guveli, M.

    2005-01-01

    Background. Sweat gland carcinomas are rare tumors. Eccrine sweat gland carcinomas are also very rare, with only about 200 cases reported in the world literature and only one of them was eroding the cranium. Treatment modalities of these carcinomas are not well known. Case report. Our patient was 47 years old female. Since 1989, she was operated on six times because of the tumour relapses. After each operation, the pathological results were: sweat gland adenoma, sweat gland tumour, cylindroma, turban tumour, malign cylindiroma. That was her seventh relapse. On examination, a lesion of the size 10 x 6 cm was observed in the left parietal region. Computed tomography showed the lesion had the size of 11 x 5 cm, and was destroying the tabula externa, diploic region and tabula. The tumour was invading the dura and causing periost reaction. Surgery and postoperative radiotherapy treatment was planned because of malign transformation and risk of recurrence. Conclusions. Only one case with cranium erosion was reported in literature. In our case, also intracranial extension of the tumor was observed. (author)

  17. Effect of soil type and forage crops on manganese content in roughage

    Directory of Open Access Journals (Sweden)

    Jakšić Snežana

    2017-01-01

    Full Text Available The aim of this study was to examine the effects of soil type and forage crops on the content of manganese (Mn in roughages, and forage quality regarding Mn content. The trial was carried out on chernozem and humogley under alfalfa and red clover. Samples for determination of Mn content in plant and total Mn content in soil were digested using the apparatus Milestone Ethos 1 and for Mn determination on ICP-OES Vista Pro-Axial Varian. Average total Mn content in soil of the tested sites was 473.1 mg/kg. Total Mn content in chernozem was higher than in humogley. Average Mn content in forage crops was 28.7 mg/kg. Dry matter Mn content was lower in crops grown on humogley. Mn content was significantly higher in red clover. Significant positive correlation was found between total Mn content in soil and Mn content in crops. Mn concentration in crops was below critical and toxic value.

  18. The abrasive effect of commercial whitening toothpastes on eroded enamel.

    Science.gov (United States)

    Mosquim, Victor; Martines Souza, Beatriz; Foratori Junior, Gerson Aparecido; Wang, Linda; Magalhães, Ana Carolina

    2017-06-01

    To evaluate the in vitro abrasive effect of commercial whitening toothpastes on eroded bovine enamel samples in respect to erosive tooth wear. 72 bovine crowns were embedded, polished and subjected to the baseline profile analysis. The samples were then protected in 2/3 of the enamel surface and were randomly assigned to six groups (n= 12/group): G1: Oral-B 3D White, G2: Close-up Diamond Attraction Power White, G3: Sorriso Xtreme White 4D, G4: Colgate Luminous White, G5: Crest (conventional toothpaste), G6:erosion only (control). All samples were submitted to an erosive pH cycling (4 x 90 seconds in 0.1% citric acid, pH 2.5, per day) and abrasive challenges (2 x 15 seconds, per day) for 7 days. After the first and the last daily cycles, the samples were subjected to abrasive challenges, using a toothbrushing machine, soft toothbrushes and slurry of the tested toothpastes (1.5 N). Between the challenges, the samples were immersed in artificial saliva. The final profile was obtained and overlaid to the baseline profile for the calculation of the erosive tooth wear (μm). The data were subjected to Kruskal-Wallis/Dunn tests (Penamel wear (3.68±1.06 μm), similarly to G3 (3.17± 0.80 μm) and G4 (3.44± 1.29 μm). G3 and G4 performed similarly between them and compared with G5 (2.35± 1.44 μm). G2 (1.51± 0.95 μm) and G6 (0.85± 0.36 μm) showed the lowest enamel wear, which did not differ between them and from G5. Oral-B 3D White showed the highest abrasive potential while Close-up Diamond Attraction Power White showed the lowest abrasive potential on eroded enamel in vitro. This study showed that some commercial whitening toothpastes, especially those containing pyrophosphate associated with hydrated silica, enhanced enamel erosive wear.

  19. A Hydrodynamic and Sediment Transport Model for the Waipaoa Shelf, New Zealand: Sensitivity of Fluxes to Spatially-Varying Erodibility and Model Nesting

    Directory of Open Access Journals (Sweden)

    Julia M. Moriarty

    2014-04-01

    Full Text Available Numerical models can complement observations in investigations of marine sediment transport and depositional processes. A coupled hydrodynamic and sediment transport model was implemented for the Waipaoa River continental shelf offshore of the North Island of New Zealand, to complement a 13-month field campaign that collected seabed and hydrodynamic measurements. This paper described the formulations used within the model, and analyzed the sensitivity of sediment flux estimates to model nesting and seabed erodibility. Calculations were based on the Regional Ocean Modeling System—Community Sediment Transport Modeling System (ROMS-CSTMS, a primitive equation model using a finite difference solution to the equations for momentum and water mass conservation, and transport of salinity, temperature, and multiple classes of suspended sediment. The three-dimensional model resolved the complex bathymetry, bottom boundary layer, and river plume that impact sediment dispersal on this shelf, and accounted for processes including fluvial input, winds, waves, tides, and sediment resuspension. Nesting within a larger-scale, lower resolution hydrodynamic model stabilized model behavior during river floods and allowed large-scale shelf currents to impact sediment dispersal. To better represent observations showing that sediment erodibility decreased away from the river mouth, the seabed erosion rate parameter was reduced with water depth. This allowed the model to account for the observed spatial pattern of erodibility, though the model held the critical shear stress for erosion constant. Although the model neglected consolidation and swelling processes, use of a spatially-varying erodibility parameter significantly increased export of fluvial sediment from Poverty Bay to deeper areas of the shelf.

  20. The role of olive trees in rainfall erosivity and runoff and sediment yield in the soil beneath

    Directory of Open Access Journals (Sweden)

    E. de Luna

    2000-01-01

    Full Text Available The modification of raindrops by the canopy of olive trees increases the kinetic energy of the rain per unit area. The kinetic energy computed from the measured drop size distribution under the tree canopy in simulated rainfall experiments is greater than that received in the open, 17.1 J mm-1, as against 15.7 J mm-1 . This causes higher soil detachment and loss than that observed outside the canopy. Tillage treatments of the soil modify its erodibility, accelerate soil detachment and reduce, simultaneously, the velocity of runoff. Both effects reduce the amount of sediment compared to that observed in the non-tilled soil. The average values of soil lost per unit of rain depth and unit area were 5.81 g mm-1 m-2 (conventional tillage and 4.02 g mm-1 m-2 (zero tillage under the canopy compared to 0.89 g mm-1 m-2 (conventional tillage and 0.95 g mm-1 m-2 (zero tillage in the open.