WorldWideScience

Sample records for er stress protein

  1. Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins

    Science.gov (United States)

    Das, Indrajit; Png, Chin Wen; Oancea, Iulia; Hasnain, Sumaira Z.; Lourie, Rohan; Proctor, Martina; Eri, Rajaraman D.; Sheng, Yong; Crane, Denis I.; Florin, Timothy H.

    2013-01-01

    Endoplasmic reticulum (ER) stress in intestinal secretory cells has been linked with colitis in mice and inflammatory bowel disease (IBD). Endogenous intestinal glucocorticoids are important for homeostasis and glucocorticoid drugs are efficacious in IBD. In Winnie mice with intestinal ER stress caused by misfolding of the Muc2 mucin, the glucocorticoid dexamethasone (DEX) suppressed ER stress and activation of the unfolded protein response (UPR), substantially restoring goblet cell Muc2 production. In mice lacking inflammation, a glucocorticoid receptor antagonist increased ER stress, and DEX suppressed ER stress induced by the N-glycosylation inhibitor, tunicamycin (Tm). In cultured human intestinal secretory cells, in a glucocorticoid receptor-dependent manner, DEX suppressed ER stress and UPR activation induced by blocking N-glycosylation, reducing ER Ca2+ or depleting glucose. DEX up-regulated genes encoding chaperones and elements of ER-associated degradation (ERAD), including EDEM1. Silencing EDEM1 partially inhibited DEX’s suppression of misfolding-induced ER stress, showing that DEX enhances ERAD. DEX inhibited Tm-induced MUC2 precursor accumulation, promoted production of mature mucin, and restored ER exit and secretion of Winnie mutant recombinant Muc2 domains, consistent with enhanced protein folding. In IBD, glucocorticoids are likely to ameliorate ER stress by promoting correct folding of secreted proteins and enhancing removal of misfolded proteins from the ER. PMID:23650437

  2. ER Stress and Unfolded Protein Response in Amyotrophic Lateral Sclerosis – A Controversial Role of Protein Disulphide Isomerase

    Directory of Open Access Journals (Sweden)

    Merja eJaronen

    2014-12-01

    Full Text Available Accumulation of proteins in aberrant conformation occurs in many neurodegenerative diseases. Furthermore, dysfunctions in protein handling in endoplasmic reticulum (ER and the following ER stress have been implicated in a vast number of diseases, such as amyotrophic lateral sclerosis (ALS. During excessive ER stress unfolded protein response (UPR is activated to return ER to its normal physiological balance. The exact mechanisms of protein misfolding, accumulation and the following ER stress could lead to neurodegeneration and the question whether UPR is a beneficial compensatory mechanism slowing down the neurodegenerative processes are of interest. Protein disulphide isomerase (PDI is a disulfide bond-modulating ER chaperone, which can also facilitate the ER-associated degradation (ERAD of misfolded proteins. In this review we discuss the recent findings of ER stress, UPR and especially the role of PDI in ALS.

  3. ER stress-induced protein, VIGG, disturbs plant cation homeostasis, which is correlated with growth retardation and robustness to ER stress

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Hironori; Fujita, Keiko; Takuhara, Yuki [Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi 400-0005 (Japan); Ogawa, Atsushi [Department of Biological Production, Akita Prefectural University, Shimosinjyou-nakano 241-438, Akita 010-0195 (Japan); Suzuki, Shunji, E-mail: suzukis@yamanashi.ac.jp [Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi 400-0005 (Japan)

    2011-02-18

    Highlights: {yields} VIGG is an ER stress-induced protein in plant. {yields} We examine the characteristics of VIGG-overexpressing Arabidopsis plants. {yields} VIGG-overexpressing plants reveal growth retardation and robustness to ER stress. {yields} VIGG disturbs cation homeostasis in plant. -- Abstract: VIGG is a putative endoplasmic reticulum (ER) resident protein induced by virus infection and ER stress, and is correlated with fruit quality in grapevine. The present study was undertaken to determine the biological function of VIGG in grapevine. Experiments using fluorescent protein-VIGG fusion protein demonstrated that VIGG is localized in ER and the ER targeting sequence is in the N-terminus. The overexpression of VIGG in Arabidopsis plant led to growth retardation. The rosette leaves of VIGG-overexpressing plants were smaller than those of the control plants and rolled at 42 days after seeding. VIGG-overexpressing plants revealed robustness to ER stress as well as the low expression of ER stress marker proteins, such as the luminal binding proteins. These characteristics of VIGG-overexpressing plants were supported by a microarray experiment that demonstrated the disruption of genes related to ER stress response and flowering, as well as cation mobility, in the plants. Finally, cation homeostasis in the plants was disturbed by the overexpression of VIGG. Taken together, these results suggest that VIGG may disturb cation homeostasis in plant, which is correlated with the robustness to ER stress and growth retardation.

  4. ER stress-induced protein, VIGG, disturbs plant cation homeostasis, which is correlated with growth retardation and robustness to ER stress

    International Nuclear Information System (INIS)

    Katoh, Hironori; Fujita, Keiko; Takuhara, Yuki; Ogawa, Atsushi; Suzuki, Shunji

    2011-01-01

    Highlights: → VIGG is an ER stress-induced protein in plant. → We examine the characteristics of VIGG-overexpressing Arabidopsis plants. → VIGG-overexpressing plants reveal growth retardation and robustness to ER stress. → VIGG disturbs cation homeostasis in plant. -- Abstract: VIGG is a putative endoplasmic reticulum (ER) resident protein induced by virus infection and ER stress, and is correlated with fruit quality in grapevine. The present study was undertaken to determine the biological function of VIGG in grapevine. Experiments using fluorescent protein-VIGG fusion protein demonstrated that VIGG is localized in ER and the ER targeting sequence is in the N-terminus. The overexpression of VIGG in Arabidopsis plant led to growth retardation. The rosette leaves of VIGG-overexpressing plants were smaller than those of the control plants and rolled at 42 days after seeding. VIGG-overexpressing plants revealed robustness to ER stress as well as the low expression of ER stress marker proteins, such as the luminal binding proteins. These characteristics of VIGG-overexpressing plants were supported by a microarray experiment that demonstrated the disruption of genes related to ER stress response and flowering, as well as cation mobility, in the plants. Finally, cation homeostasis in the plants was disturbed by the overexpression of VIGG. Taken together, these results suggest that VIGG may disturb cation homeostasis in plant, which is correlated with the robustness to ER stress and growth retardation.

  5. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia.

    Science.gov (United States)

    Bohnert, Kyle R; Gallot, Yann S; Sato, Shuichi; Xiong, Guangyan; Hindi, Sajedah M; Kumar, Ashok

    2016-09-01

    Cachexia is a devastating syndrome that causes morbidity and mortality in a large number of patients with cancer. However, the mechanisms of cancer cachexia remain poorly understood. Accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes stress. The ER responds to this stress through activating certain pathways commonly known as the unfolding protein response (UPR). The main function of UPR is to restore homeostasis, but excessive or prolonged activation of UPR can lead to pathologic conditions. In this study, we examined the role of ER stress and UPR in regulation of skeletal muscle mass in naïve conditions and during cancer cachexia. Our results demonstrate that multiple markers of ER stress are highly activated in skeletal muscle of Lewis lung carcinoma (LLC) and Apc(Min/+) mouse models of cancer cachexia. Treatment of mice with 4-phenylbutyrate (4-PBA), a chemical chaperon and a potent inhibitor of ER stress, significantly reduced skeletal muscle strength and mass in both control and LLC-bearing mice. Blocking the UPR also increased the proportion of fast-type fibers in soleus muscle of both control and LLC-bearing mice. Inhibition of UPR reduced the activity of Akt/mTOR pathway and increased the expression of the components of the ubiquitin-proteasome system and autophagy in LLC-bearing mice. Moreover, we found that the inhibition of UPR causes severe atrophy in cultured myotubes. Our study provides initial evidence that ER stress and UPR pathways are essential for maintaining skeletal muscle mass and strength and for protection against cancer cachexia.-Bohnert, K. R., Gallot, Y. S., Sato, S., Xiong, G., Hindi, S. M., Kumar, A. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia. © FASEB.

  6. ER Stress Causes Rapid Loss of Intestinal Epithelial Stemness through Activation of the Unfolded Protein Response

    Directory of Open Access Journals (Sweden)

    Jarom Heijmans

    2013-04-01

    Full Text Available Stem cells generate rapidly dividing transit-amplifying cells that have lost the capacity for self-renewal but cycle for a number of times until they exit the cell cycle and undergo terminal differentiation. We know very little of the type of signals that trigger the earliest steps of stem cell differentiation and mediate a stem cell to transit-amplifying cell transition. We show that in normal intestinal epithelium, endoplasmic reticulum (ER stress and activity of the unfolded protein response (UPR are induced at the transition from stem cell to transit-amplifying cell. Induction of ER stress causes loss of stemness in a Perk-eIF2α-dependent manner. Inhibition of Perk-eIF2α signaling results in stem cell accumulation in organoid culture of primary intestinal epithelium. Our findings show that the UPR plays an important role in the regulation of intestinal epithelial stem cell differentiation.

  7. Endoplasmic Reticulum (ER Stress and Endocrine Disorders

    Directory of Open Access Journals (Sweden)

    Daisuke Ariyasu

    2017-02-01

    Full Text Available The endoplasmic reticulum (ER is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR, which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI, Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2 are discussed in this article.

  8. Functional characterization of the ER stress induced X-box-binding protein-1 (Xbp-1 in the porcine system

    Directory of Open Access Journals (Sweden)

    Jin Dong-Il

    2011-05-01

    Full Text Available Abstract Background The unfolded protein response (UPR is an evolutionary conserved adaptive reaction for increasing cell survival under endoplasmic reticulum (ER stress conditions. X-box-binding protein-1 (Xbp1 is a key transcription factor of UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. The UPR induced by ER stress was extensively studied in diseases linked to protein misfolding and aggregations. However, in the porcine system, genes in the UPR pathway were not investigated. In this study, we isolated and characterized the porcine Xbp1 (pXbp1 gene in ER stress using porcine embryonic fibroblast (PEF cells and porcine organs. ER stress was induced by the treatment of tunicamycin and cell viability was investigated by the MTT assay. For cloning and analyzing the expression pattern of pXbp1, RT-PCR analysis and Western blot were used. Knock-down of pXbp1 was performed by the siRNA-mediated gene silencing. Results We found that the pXbp1 mRNA was the subject of the IRE1α-mediated unconventional splicing by ER stress. Knock-down of pXbp1 enhanced ER stress-mediated cell death in PEF cells. In adult organs, pXbp1 mRNA and protein were expressed and the spliced forms were detected. Conclusions It was first found that the UPR mechanisms and the function of pXbp1 in the porcine system. These results indicate that pXbp1 plays an important role during the ER stress response like other animal systems and open a new opportunity for examining the UPR pathway in the porcine model system.

  9. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics

    Science.gov (United States)

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E.; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F.G.; Rothermel, Beverly A.; Lavandero, Sergio

    2014-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER–mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  10. Coronavirus infection, ER stress and Apoptosis

    Directory of Open Access Journals (Sweden)

    TO SING eFUNG

    2014-06-01

    Full Text Available The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER. Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR, a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus-host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP kinases activation, autophagy, apoptosis and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling.

  11. Palmitate-induced ER stress and inhibition of protein synthesis in cultured myotubes does not require Toll-like receptor 4.

    Directory of Open Access Journals (Sweden)

    Ben D Perry

    Full Text Available Saturated fatty acids, such as palmitate, are elevated in metabolically dysfunctional conditions like type 2 diabetes mellitus. Palmitate has been shown to impair insulin sensitivity and suppress protein synthesis while upregulating proteolytic systems in skeletal muscle. Increased sarco/endoplasmic reticulum (ER stress and subsequent activation of the unfolded protein response may contribute to the palmitate-induced impairment of muscle protein synthesis. In some cell types, ER stress occurs through activation of the Toll-like receptor 4 (TLR4. Given the link between ER stress and suppression of protein synthesis, we investigated whether palmitate induces markers of ER stress and protein synthesis by activating TLR4 in cultured mouse C2C12 myotubes. Myotubes were treated with vehicle, a TLR4-specific ligand (lipopolysaccharides, palmitate, or a combination of palmitate plus a TLR4-specific inhibitor (TAK-242. Inflammatory indicators of TLR4 activation (IL-6 and TNFα and markers of ER stress were measured, and protein synthesis was assessed using puromycin incorporation. Palmitate substantially increased the levels of IL-6, TNF-α, CHOP, XBP1s, and ATF 4 mRNAs and augmented the levels of CHOP, XBP1s, phospho-PERK and phospho-eIF2α proteins. The TLR4 antagonist attenuated both acute palmitate and LPS-induced increases in IL-6 and TNFα, but did not reduce ER stress signaling with either 6 h or 24 h palmitate treatment. Similarly, treating myotubes with palmitate for 6 h caused a 43% decline in protein synthesis consistent with an increase in phospho-eIF2α, and the TLR4 antagonist did not alter these responses. These results suggest that palmitate does not induce ER stress through TLR4 in muscle, and that palmitate impairs protein synthesis in skeletal muscle in part by induction of ER stress.

  12. Arctigenin alleviates ER stress via activating AMPK

    Science.gov (United States)

    Gu, Yuan; Sun, Xiao-xiao; Ye, Ji-ming; He, Li; Yan, Shou-sheng; Zhang, Hao-hao; Hu, Li-hong; Yuan, Jun-ying; Yu, Qiang

    2012-01-01

    Aim: To investigate the protective effects of arctigenin (ATG), a phenylpropanoid dibenzylbutyrolactone lignan from Arctium lappa L (Compositae), against ER stress in vitro and the underlying mechanisms. Methods: A cell-based screening assay for ER stress regulators was established. Cell viability was measured using MTT assay. PCR and Western blotting were used to analyze gene and protein expression. Silencing of the CaMKKβ, LKB1, and AMPKα1 genes was achieved by RNA interference (RNAi). An ATP bioluminescent assay kit was employed to measure the intracellular ATP levels. Results: ATG (2.5, 5 and 10 μmol/L) inhibited cell death and unfolded protein response (UPR) in a concentration-dependent manner in cells treated with the ER stress inducer brefeldin A (100 nmol/L). ATG (1, 5 and 10 μmol/L) significantly attenuated protein synthesis in cells through inhibiting mTOR-p70S6K signaling and eEF2 activity, which were partially reversed by silencing AMPKα1 with RNAi. ATG (1-50 μmol/L) reduced intracellular ATP level and activated AMPK through inhibiting complex I-mediated respiration. Pretreatment of cells with the AMPK inhibitor compound C (25 μmol/L) rescued the inhibitory effects of ATG on ER stress. Furthermore, ATG (2.5 and 5 μmol/L) efficiently activated AMPK and reduced the ER stress and cell death induced by palmitate (2 mmol/L) in INS-1 β cells. Conclusion: ATG is an effective ER stress alleviator, which protects cells against ER stress through activating AMPK, thus attenuating protein translation and reducing ER load. PMID:22705729

  13. Sodium-potassium ATPase 1 subunit is a molecular partner of Wolframin, an endoplasmic reticulum protein involved in ER stress.

    Science.gov (United States)

    Zatyka, Malgorzata; Ricketts, Christopher; da Silva Xavier, Gabriela; Minton, Jayne; Fenton, Sarah; Hofmann-Thiel, Sabine; Rutter, Guy A; Barrett, Timothy G

    2008-01-15

    Wolfram syndrome, an autosomal recessive disorder characterized by diabetes mellitus and optic atrophy, is caused by mutations in the WFS1 gene encoding an endoplasmic reticulum (ER) membrane protein, Wolframin. Although its precise functions are unknown, Wolframin deficiency increases ER stress, impairs cell cycle progression and affects calcium homeostasis. To gain further insight into its function and identify molecular partners, we used the WFS1-C-terminal domain as bait in a yeast two-hybrid screen with a human brain cDNA library. Na+/K+ ATPase beta1 subunit was identified as an interacting clone. We mapped the interaction to the WFS1 C-terminal and transmembrane domains, but not the N-terminal domain. Our mapping data suggest that the interaction most likely occurs in the ER. We confirmed the interaction by co-immunoprecipitation in mammalian cells and with endogenous proteins in JEG3 placental cells, neuroblastoma SKNAS and pancreatic MIN6 beta cells. Na+/K+ ATPase beta1 subunit expression was reduced in plasma membrane fractions of human WFS1 mutant fibroblasts and WFS1 knockdown MIN6 pancreatic beta-cells compared with wild-type cells; Na+/K+ ATPase alpha1 subunit expression was also reduced in WFS-depleted MIN6 beta cells. Induction of ER stress in wild-type cells only partly accounted for the reduced Na+/K+ ATPase beta1 subunit expression observed. We conclude that the interaction may be important for Na+/K+ ATPase beta1 subunit maturation; loss of this interaction may contribute to the pathology seen in Wolfram syndrome via reductions in sodium pump alpha1 and beta1 subunit expression in pancreatic beta-cells.

  14. The ER luminal binding protein (BiP) alleviates Cd(2+)-induced programmed cell death through endoplasmic reticulum stress-cell death signaling pathway in tobacco cells.

    Science.gov (United States)

    Xu, Hua; Xu, Wenzhong; Xi, Hongmei; Ma, Wenwen; He, Zhenyan; Ma, Mi

    2013-11-01

    Cadmium (Cd) is very toxic to plant cells and Cd(2+) stress induces programmed cell death (PCD) in Nicotiana tabacum L. cv. bright yellow-2 (BY-2) cells. In plants, PCD can be regulated through the endoplasmic reticulum (ER) stress-cell death signaling pathway. However, the mechanism of Cd(2+)-induced PCD remains unclear. In this study, we found that Cd(2+) treatment induced ER stress in tobacco BY-2 cells. The expression of two ER stress markers NtBLP4 and NtPDI and an unfolded protein response related transcription factor NtbZIP60 were upregulated with Cd(2+) stress. Meanwhile, the PCD triggered by prolonged Cd(2+) stress could be relieved by two ER chemical chaperones, 4-phenylbutyric acid and tauroursodeoxycholic acid. These results demonstrate that the ER stress-cell death signaling pathway participates in the mediation of Cd(2+)-induced PCD. Furthermore, the ER chaperone AtBiP2 protein alleviated Cd(2+)-induced ER stress and PCD in BY-2 cells based on the fact that heterologous expression of AtBiP2 in tobacco BY-2 cells reduced the expression of NtBLP4 and a PCD-related gene NtHsr203J under Cd(2+) stress conditions. In summary, these results suggest that the ER stress-cell death signaling pathway regulates Cd(2+)-induced PCD in tobacco BY-2 cells, and that the AtBiP2 protein act as a negative regulator in this process. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. N-rich protein (NRP)-mediated cell death signaling: a new branch of the ER stress response with implications for plant biotechnology.

    Science.gov (United States)

    Reis, Pedro A B; Fontes, Elizabeth P B

    2012-06-01

    Upon disruption of ER homeostasis, plant cells activate at least two branches of the unfolded protein response (UPR) through IRE1-like and ATAF6-like transducers, resulting in the upregulation of ER-resident molecular chaperones and the activation of the ER-associated degradation protein system. Here, we discuss a new ER stress response pathway in plants that is associated with an osmotic stress response in transducing a cell death signal. Both ER and osmotic stress induce the expression of the novel transcription factor GmERD15, which binds and activates N-rich protein (NRP) promoters to induce NRP expression and cause the upregulation of GmNAC6, an effector of the cell death response. In contrast to this activation mechanism, the ER-resident molecular chaperone binding protein (BiP) attenuates the propagation of the cell death signal by modulating the expression and activity of components of the ER and osmotic stress-induced NRP-mediated cell death signaling. This interaction attenuates dehydration-induced cell death and promotes a better adaptation of BiP-overexpressing transgenic lines to drought.

  16. CCAAT/Enhancer Binding Protein β in relation to ER Stress, Inflammation, and Metabolic Disturbances

    Directory of Open Access Journals (Sweden)

    Sophie E. van der Krieken

    2015-01-01

    Full Text Available The prevalence of the metabolic syndrome and underlying metabolic disturbances increase rapidly in developed countries. Various molecular targets are currently under investigation to unravel the molecular mechanisms that cause these disturbances. This is done in attempt to counter or prevent the negative health consequences of the metabolic disturbances. Here, we reviewed the current knowledge on the role of C/EBP-β in these metabolic disturbances. C/EBP-β deletion in mice resulted in downregulation of hepatic lipogenic genes and increased expression of β-oxidation genes in brown adipose tissue. Furthermore, C/EBP-β is important in the differentiation and maturation of adipocytes and is increased during ER stress and proinflammatory conditions. So far, studies were only conducted in animals and in cell systems. The results found that C/EBP-β is an important transcription factor within the metabolic disturbances of the metabolic system. Therefore, it is interesting to examine the potential role of C/EBP-β at molecular and physiological level in humans.

  17. Development of a fluorescent reporter system for monitoring ER stress in Chinese hamster ovary cells and its application for therapeutic protein production.

    Directory of Open Access Journals (Sweden)

    Gargi Roy

    Full Text Available Mammalian cell expression systems have become a workhorse for the production of biotherapeutic proteins. As such, there is an ever increasing demand for higher productivity from these expression platforms to reduce manufacturing costs. While great advances have been made in the optimization of culture conditions and cell line selection to improve productivity, protein mis-folding remains a common limitation to high levels of production of therapeutic proteins. Accumulation of mis- and unfolded protein in the endoplasmic reticulum (ER causes ER stress and initiates the unfolded protein response (UPR that results in an activation of protein folding machinery, translation attenuation in an effort to proper folding of the newly synthesized peptides or may even lead to apoptosis if the correct folding is not restored. As a result, UPR associated apoptosis often results in lower protein expression. To better understand the molecular mechanisms in these pathways, we developed a reporter construct that detects Inositol-requiring enzyme 1 (IRE1-alpha mediated splicing of X-box binding protein 1 (XBP1 to monitor the course of UPR activation in cell lines expressing monoclonal antibodies. Using this reporter we observed a clear activation of UPR in cells treated with known ER stress causing pharmacological agents, such as Tunicamycin (Tm and Thapsigargin (Tg, as well as in stable IgG expressing cells during fed-batch cultures. Furthermore, we developed a stress metric that we term as ER stress index (ERSI to gauge basal ER stress in cells which we used as a predictive tool for isolation of high IgG expressing cell lines. This reporter system, with its ability to monitor the stress involved in recombinant protein expression, has utility to assist in devising engineering strategies for improved production of biotherapeutic drugs.

  18. Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery.

    Science.gov (United States)

    Song, Shuling; Tan, Jin; Miao, Yuyang; Zhang, Qiang

    2018-05-01

    Endoplasmic reticulum (ER) stress, a common cellular stress response, is closely related to the activation of autophagy that is an important and evolutionarily conserved mechanism for maintaining cellular homeostasis. Autophagy induced by ER stress mainly includes the ER stress-mediated autophagy and ER-phagy. The ER stress-mediated autophagy is characterized by the generation of autophagosomes that include worn-out proteins, protein aggregates, and damaged organelles. While the autophagosomes of ER-phagy selectively include ER membranes, and the double membranes also derive, at least in part, from the ER. The signaling pathways of IRE1α, PERK, ATF6, and Ca 2+ are necessary for the activation of ER stress-mediated autophagy, while the receptor-mediated selective ER-phagy degrades the ER is Atg40/FAM134B. The ER stress-mediated autophagy and ER-phagy not only have differences, but also have connections. The activation of ER-phagy requires the core autophagy machinery, and the ER-phagy may be a branch of ER stress-mediated autophagy that selectively targets the ER. However, the determined factors that control the changeover switch between ER stress-mediated autophagy and ER-phagy are largely obscure, which may be associated with the type of cells and the extent of stimulation. This review summarized the crosstalk between ER stress-mediated autophagy and ER-phagy and their signaling networks. Additionally, we discussed the possible factors that influence the type of autophagy induced by ER stress. © 2017 Wiley Periodicals, Inc.

  19. ER Stress and Lipid Metabolism in Adipocytes

    Directory of Open Access Journals (Sweden)

    Beth S. Zha

    2012-01-01

    Full Text Available The role of endoplasmic reticulum (ER stress is a rapidly emerging field of interest in the pathogenesis of metabolic diseases. Recent studies have shown that chronic activation of ER stress is closely linked to dysregulation of lipid metabolism in several metabolically important cells including hepatocytes, macrophages, β-cells, and adipocytes. Adipocytes are one of the major cell types involved in the pathogenesis of the metabolic syndrome. Recent advances in dissecting the cellular and molecular mechanisms involved in the regulation of adipogenesis and lipid metabolism indicate that activation of ER stress plays a central role in regulating adipocyte function. In this paper, we discuss the current understanding of the potential role of ER stress in lipid metabolism in adipocytes. In addition, we touch upon the interaction of ER stress and autophagy as well as inflammation. Inhibition of ER stress has the potential of decreasing the pathology in adipose tissue that is seen with energy overbalance.

  20. ER stress and cancer: The FOXO forkhead transcription factor link.

    Science.gov (United States)

    Alasiri, Glowi; Fan, Lavender Yuen-Nam; Zona, Stefania; Goldsbrough, Isabella Galeno; Ke, Hui-Ling; Auner, Holger Werner; Lam, Eric Wing-Fai

    2018-02-15

    The endoplasmic reticulum (ER) is a cellular organelle with central roles in maintaining proteostasis due to its involvement in protein synthesis, folding, quality control, distribution and degradation. The accumulation of misfolded proteins in the ER lumen causes 'ER stress' and threatens overall cellular proteostasis. To restore ER homeostasis, cells evoke an evolutionarily conserved adaptive signalling and gene expression network collectively called the 'unfolded protein response (UPR)', a complex biological process which aims to restore proteostasis. When ER stress is overwhelming and beyond rectification, the normally pro-survival UPR can shift to induce cell termination. Emerging evidence from mammalian, fly and nematode worm systems reveals that the FOXO Forkhead proteins integrate upstream ER stress and UPR signals with the transcriptional machinery to decrease translation, promote cell survival/termination and increase the levels of ER-resident chaperones and of ER-associated degradation (ERAD) components to restore ER homeostasis. The high rates of protein synthesis/translation associated with cancer cell proliferation and metabolism, as well as mutations resulting in aberrant proteins, also induce ER stress and the UPR. While the pro-survival side of the UPR underlies its ability to sustain and promote cancers, its apoptotic functions can be exploited for cancer therapies by offering the chance to 'flick the proteostatic switch'. To this end, further studies are required to fully reevaluate the roles and regulation of these UPR signalling molecules, including FOXO proteins and their targets, in cancer initiation and progression as well as the effects on inhibiting their functions in cancer cells. This information will help to establish these UPR signalling molecules as possible therapeutic targets and putative biomarkers in cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. ER stress, autophagy, and RNA viruses

    Directory of Open Access Journals (Sweden)

    Jia-Rong eJheng

    2014-08-01

    Full Text Available Endoplasmic reticulum (ER stress is a general term for representing the pathway by which various stimuli affect ER functions. ER stress induces the evolutionarily conserved signaling pathways, called the unfolded protein response (UPR, which compromises the stimulus and then determines whether the cell survives or dies. In recent years, ongoing research has suggested that these pathways may be linked to the autophagic response, which plays a key role in the cell’s response to various stressors. Autophagy performs a self-digestion function, and its activation protects cells against certain pathogens. However, the link between the UPR and autophagy may be more complicated. These two systems may act dependently, or the induction of one system may interfere with the other. Experimental studies have found that different viruses modulate these mechanisms to allow them to escape the host immune response or, worse, to exploit the host’s defense to their advantage; thus, this topic is a critical area in antiviral research. In this review, we summarize the current knowledge about how RNA viruses, including influenza virus, poliovirus, coxsackievirus, enterovirus 71, Japanese encephalitis virus, hepatitis C virus, and dengue virus, regulate these processes. We also discuss recent discoveries and how these will produce novel strategies for antiviral treatment.

  2. Mechanisms of ER Stress-Mediated Mitochondrial Membrane Permeabilization.

    LENUS (Irish Health Repository)

    Gupta, Sanjeev

    2010-01-01

    During apoptosis, the process of mitochondrial outer membrane permeabilization (MOMP) represents a point-of-no-return as it commits the cell to death. Here we have assessed the role of caspases, Bcl-2 family members and the mitochondrial permeability transition pore on ER stress-induced MOMP and subsequent cell death. Induction of ER stress leads to upregulation of several genes such as Grp78, Edem1, Erp72, Atf4, Wars, Herp, p58ipk, and ERdj4 and leads to caspase activation, release of mitochondrial intermembrane proteins and dissipation of mitochondrial transmembrane potential (DeltaPsim). Mouse embryonic fibroblasts (MEFs) from caspase-9, -2 and, -3 knock-out mice were resistant to ER stress-induced apoptosis which correlated with decreased processing of pro-caspase-3 and -9. Furthermore, pretreatment of cells with caspase inhibitors (Boc-D.fmk and DEVD.fmk) attenuated ER stress-induced loss of DeltaPsim. However, only deficiency of caspase-9 and -2 could prevent ER stress-mediated loss of DeltaPsim. Bcl-2 overexpression or pretreatment of cells with the cell permeable BH4 domain (BH4-Tat) or the mitochondrial permeability transition pore inhibitors, bongkrekic acid or cyclosporine A, attenuated the ER stress-induced loss of DeltaPsim. These data suggest a role for caspase-9 and -2, Bcl-2 family members and the mitochondrial permeability transition pore in loss of mitochondrial membrane potential during ER stress-induced apoptosis.

  3. Unraveling the role of ER stress inhibitors in the context of metabolic diseases.

    Science.gov (United States)

    Sarvani, Chodisetty; Sireesh, Dornadula; Ramkumar, Kunka Mohanram

    2017-05-01

    ER stress is provoked by the accumulation of unfolded and misfolded proteins in the ER lumen leading to perturbations in ER homeostasis. ER stress activates a signaling cascade called the Unfolded Protein Response (UPR) which triggers a set of transcriptional and translational events that restore ER homeostasis, promoting cell survival and adaptation. If this adaptive response fails, a terminal UPR program commits such cells to apoptosis. Existing preclinical and clinical evidence testify that prolonged ER stress escalates the risk of several metabolic disorders including diabetes, obesity and dyslipidemia. There have been considerable efforts to develop small molecules that are capable of ameliorating ER stress. Few naturally occurring and synthetic molecules have already been demonstrated for their efficacy in abrogating ER stress in both in vitro and in vivo models of metabolic disorders. This review provides a broad overview of the molecular mechanisms of inhibition of ER stress and its association with various metabolic diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available BACKGROUND: To investigate if microRNAs (miRNAs play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+ current. RESULTS: H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2, with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. CONCLUSIONS: Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  5. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Science.gov (United States)

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+) current. H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  6. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy.

    Science.gov (United States)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Hippocampal ER stress and learning deficits following repeated pyrethroid exposure.

    Science.gov (United States)

    Hossain, Muhammad M; DiCicco-Bloom, Emanuel; Richardson, Jason R

    2015-01-01

    Endoplasmic reticulum (ER) stress is implicated as a significant contributor to neurodegeneration and cognitive dysfunction. Previously, we reported that the widely used pyrethroid pesticide deltamethrin causes ER stress-mediated apoptosis in SK-N-AS neuroblastoma cells. Whether or not this occurs in vivo remains unknown. Here, we demonstrate that repeated deltamethrin exposure (3 mg/kg every 3 days for 60 days) causes hippocampal ER stress and learning deficits in adult mice. Repeated exposure to deltamethrin caused ER stress in the hippocampus as indicated by increased levels of C/EBP-homologous protein (131%) and glucose-regulated protein 78 (96%). This was accompanied by increased levels of caspase-12 (110%) and activated caspase-3 (50%). To determine whether these effects resulted in learning deficits, hippocampal-dependent learning was evaluated using the Morris water maze. Deltamethrin-treated animals exhibited profound deficits in the acquisition of learning. We also found that deltamethrin exposure resulted in decreased BrdU-positive cells (37%) in the dentate gyrus of the hippocampus, suggesting potential impairment of hippocampal neurogenesis. Collectively, these results demonstrate that repeated deltamethrin exposure leads to ER stress, apoptotic cell death in the hippocampus, and deficits in hippocampal precursor proliferation, which is associated with learning deficits. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Aging induced ER stress alters sleep and sleep homeostasis

    Science.gov (United States)

    Brown, Marishka K.; Chan, May T.; Zimmerman, John E.; Pack, Allan I.; Jackson, Nicholas E.; Naidoo, Nirinjini

    2014-01-01

    Alterations in the quality, quantity and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response (UPR). The effectiveness of the adaptive UPR is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of x-box binding protein 1 (XBP1) and upregulation of phosphorylated elongation initiation factor 2 α (p-eIF2α), in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged/sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep/ sleep debt discharge. PMID:24444805

  9. Gene therapy to target ER stress in brain diseases.

    Science.gov (United States)

    Valenzuela, Vicente; Martínez, Gabriela; Duran-Aniotz, Claudia; Hetz, Claudio

    2016-10-01

    Gene therapy based on the use of Adeno-associated viruses (AAVs) is emerging as a safe and stable strategy to target molecular pathways involved in a variety of brain diseases. Endoplasmic reticulum (ER) stress is proposed as a transversal feature of most animal models and clinical samples from patients affected with neurodegenerative diseases. Manipulation of the unfolded protein response (UPR), a major homeostatic reaction under ER stress conditions, had proved beneficial in diverse models of neurodegeneration. Although increasing number of drugs are available to target ER stress, the use of small molecules to treat chronic brain diseases is challenging because of poor blood brain barrier permeability and undesirable side effects due to the role of the UPR in the physiology of peripheral organs. Gene therapy is currently considered a possible future alternative to circumvent these problems by the delivery of therapeutic agents to selective regions and cell types of the nervous system. Here we discuss current efforts to design gene therapy strategies to alleviate ER stress on a disease context. This article is part of a Special Issue entitled SI:ER stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Herp enhances ER-associated protein degradation by recruiting ubiquilins

    International Nuclear Information System (INIS)

    Kim, Tae-Yeon; Kim, Eunmin; Yoon, Sungjoo Kim; Yoon, Jong-Bok

    2008-01-01

    ER-associated protein degradation (ERAD) is a protein quality control system of ER, which eliminates misfolded proteins by proteasome-dependent degradation and ensures export of only properly folded proteins from ER. Herp, an ER membrane protein upregulated by ER stress, is implicated in regulation of ERAD. In the present study, we show that Herp interacts with members of the ubiquilin family, which function as a shuttle factor to deliver ubiquitinated substrates to the proteasome for degradation. Knockdown of ubiquilin expression by small interfering RNA stabilized the ERAD substrate CD3δ, whereas it did not alter or increased degradation of non-ERAD substrates tested. CD3δ was stabilized by overexpressed Herp mutants which were capable of binding to ubiquilins but were impaired in ER membrane targeting by deletion of the transmembrane domain. Our data suggest that Herp binding to ubiquilin proteins plays an important role in the ERAD pathway and that ubiquilins are specifically involved in degradation of only a subset of ubiquitinated targets, including Herp-dependent ERAD substrates

  11. Stress sensing in plants by the ER stress sensor/transducer, bZIP28

    Directory of Open Access Journals (Sweden)

    Renu eSrivastava

    2014-02-01

    Full Text Available Two classes of ER stress sensors are known in plants, membrane associated bZIP transcription factors and RNA splicing factors. ER stress occurs under adverse environmental conditions and results from the accumulation of misfolded or unfolded proteins in the ER lumen. One of the membrane-associated transcription factors activated by heat and ER stress agents is bZIP28. In its inactive form, bZIP28 is a type II protein with a single pass transmembrane domain, residing in the ER. bZIP28’s N-terminus, containing a transcriptional activation domain, is oriented towards the cytoplasm and its C-terminal tail is inserted into the ER lumen. In response to stress, bZIP28 exits the ER and moves to the Golgi where it is proteolytically processed, liberating its cytosolic component which relocates to the nucleus to upregulate stress-response genes. bZIP28 is thought to sense stress through its interaction with the major ER chaperone, BIP. BiP binds to bZIP28’s lumenal domain under unstressed conditions and retains it in the ER. BIP binds to the intrinsically disordered regions on bZIP28’s lumen-facing tail. A truncated form of bZIP28, without its C-terminal tail is not retained in the ER but migrates constitutively to the nucleus. Upon stress, BiP releases bZIP28 allowing it to exit the ER. One model to account for the release of bZIP28 by BiP is that BiP is competed away from bZIP28 by the accumulation of misfolded proteins in the ER. However, other forces such as changes in energy charge levels, redox conditions or interaction with DNAJ proteins may also promote release of bZIP28 from BiP. Movement of bZIP28 from the ER to the Golgi is assisted by the interaction of elements of the COPII machinery with the cytoplasmic domain of bZIP28. Thus, the mobilization of bZIP28 in response to stress involves the dissociation of factors that retain it in the ER and the association of factors that mediate its further organelle-to-organelle movement.

  12. Induction of ER stress in macrophages of tuberculosis granulomas.

    Directory of Open Access Journals (Sweden)

    Tracie A Seimon

    2010-09-01

    Full Text Available The endoplasmic reticulum (ER stress pathway known as the Unfolded Protein Response (UPR is an adaptive survival pathway that protects cells from the buildup of misfolded proteins, but under certain circumstances it can lead to apoptosis. ER stress has been causally associated with macrophage apoptosis in advanced atherosclerosis of mice and humans. Because atherosclerosis shares certain features with tuberculosis (TB with regard to lesional macrophage accumulation, foam cell formation, and apoptosis, we investigated if the ER stress pathway is activated during TB infection.Here we show that ER stress markers such as C/EBP homologous protein (CHOP; also known as GADD153, phosphorylated inositol-requiring enzyme 1 alpha (Ire1α and eukaryotic initiation factor 2 alpha (eIF2α, and activating transcription factor 3 (ATF3 are expressed in macrophage-rich areas of granulomas in lungs of mice infected with virulent Mycobacterium tuberculosis (Mtb. These areas were also positive for numerous apoptotic cells as assayed by TUNEL. Microarray analysis of human caseous TB granulomas isolated by laser capture microdissection reveal that 73% of genes involved in the UPR are upregulated at the mRNA transcript level. The expression of two ER stress markers, ATF3 and CHOP, were also increased in macrophages of human TB granulomas when assayed by immunohistochemistry. CHOP has been causally associated with ER stress-induced macrophage apoptosis. We found that apoptosis was more abundant in granulomas as compared to non-granulomatous tissue isolated from patients with pulmonary TB, and apoptosis correlated with CHOP expression in areas surrounding the centralized areas of caseation.In summary, ER stress is induced in macrophages of TB granulomas in areas where apoptotic cells accumulate in mice and humans. Although macrophage apoptosis is generally thought to be beneficial in initially protecting the host from Mtb infection, death of infected macrophages in

  13. ER signaling is activated to protect human HaCaT keratinocytes from ER stress induced by environmental doses of UVB

    International Nuclear Information System (INIS)

    Mera, Kentaro; Kawahara, Ko-ichi; Tada, Ko-ichi; Kawai, Kazuhiro; Hashiguchi, Teruto; Maruyama, Ikuro; Kanekura, Takuro

    2010-01-01

    Proteins are folded properly in the endoplasmic reticulum (ER). Various stress such as hypoxia, ischemia and starvation interfere with the ER function, causing ER stress, which is defined by the accumulation of unfolded protein (UP) in the ER. ER stress is prevented by the UP response (UPR) and ER-associated degradation (ERAD). These signaling pathways are activated by three major ER molecules, ATF6, IRE-1 and PERK. Using HaCaT cells, we investigated ER signaling in human keratinocytes irradiated by environmental doses of ultraviolet B (UVB). The expression of Ero1-Lα, an upstream signaling molecule of ER stress, decreased at 1-4 h after 10 mJ/cm 2 irradiation, indicating that the environmental dose of UVB-induced ER stress in HaCaT cells, without growth retardation. Furthermore, expression of intact ATF6 was decreased and it was translocated to the nuclei. The expression of XBP-1, a downstream molecule of IRE-1, which is an ER chaperone whose expression is regulated by XBP-1, and UP ubiquitination were induced by 10 mJ/cm 2 UVB at 4 h. PERK, which regulates apoptosis, was not phosphorylated. Our results demonstrate that UVB irradiation generates UP in HaCaT cells and that the UPR and ERAD systems are activated to protect cells from UVB-induced ER stress. This is the first report to show ER signaling in UVB-irradiated keratinocytes.

  14. Expression profiling on soybean leaves reveals integration of ER- and osmotic-stress pathways

    Directory of Open Access Journals (Sweden)

    Dewey Ralph E

    2007-11-01

    Full Text Available Abstract Background Despite the potential of the endoplasmic reticulum (ER stress response to accommodate adaptive pathways, its integration with other environmental-induced responses is poorly understood in plants. We have previously demonstrated that the ER-stress sensor binding protein (BiP from soybean exhibits an unusual response to drought. The members of the soybean BiP gene family are differentially regulated by osmotic stress and soybean BiP confers tolerance to drought. While these results may reflect crosstalk between the osmotic and ER-stress signaling pathways, the lack of mutants, transcriptional response profiles to stresses and genome sequence information of this relevant crop has limited our attempts to identify integrated networks between osmotic and ER stress-induced adaptive responses. As a fundamental step towards this goal, we performed global expression profiling on soybean leaves exposed to polyethylene glycol treatment (osmotic stress or to ER stress inducers. Results The up-regulated stress-specific changes unmasked the major branches of the ER-stress response, which include enhancing protein folding and degradation in the ER, as well as specific osmotically regulated changes linked to cellular responses induced by dehydration. However, a small proportion (5.5% of total up-regulated genes represented a shared response that seemed to integrate the two signaling pathways. These co-regulated genes were considered downstream targets based on similar induction kinetics and a synergistic response to the combination of osmotic- and ER-stress-inducing treatments. Genes in this integrated pathway with the strongest synergistic induction encoded proteins with diverse roles, such as plant-specific development and cell death (DCD domain-containing proteins, an ubiquitin-associated (UBA protein homolog and NAC domain-containing proteins. This integrated pathway diverged further from characterized specific branches of ER-stress as

  15. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis

    Science.gov (United States)

    Baehr, Leslie M.; West, Daniel W.D.; Marcotte, George; Marshall, Andrea G.; De Sousa, Luis Gustavo; Baar, Keith; Bodine, Sue C.

    2016-01-01

    Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength. PMID:26826670

  16. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    International Nuclear Information System (INIS)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-01-01

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  17. MiR-17-5p Impairs Trafficking of H-ERG K+ Channel Protein by Targeting Multiple ER Stress-Related Chaperones during Chronic Oxidative Stress

    OpenAIRE

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    BACKGROUND: To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Lucifer...

  18. When Supply Does Not Meet Demand-ER Stress and Plant Programmed Cell Death

    Directory of Open Access Journals (Sweden)

    Brett eWilliams

    2014-06-01

    Full Text Available The endoplasmic reticulum (ER is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signalling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility.

  19. ER stress affects processing of MHC class I-associated peptides

    Directory of Open Access Journals (Sweden)

    Meloche Sylvain

    2009-02-01

    Full Text Available Abstract Background Viral infection and neoplastic transformation trigger endoplasmic reticulum (ER stress. Thus, a large proportion of the cells that must be recognized by the immune system are stressed cells. Cells respond to ER stress by launching the unfolded protein response (UPR. The UPR regulates the two key processes that control major histocompatibility complex class I (MHC I-peptide presentation: protein synthesis and degradation. We therefore asked whether and how the UPR impinges on MHC I-peptide presentation. Results We evaluated the impact of the UPR on global MHC I expression and on presentation of the H2Kb-associated SIINFEKL peptide. EL4 cells stably transfected with vectors coding hen egg lysozyme (HEL-SIINFEKL protein variants were stressed with palmitate or exposed to glucose deprivation. UPR decreased surface expression of MHC I but did not affect MHC I mRNA level nor the total amount of intracellular MHC I proteins. Impaired MHC I-peptide presentation was due mainly to reduced supply of peptides owing to an inhibition of overall protein synthesis. Consequently, generation of H2Kb-SIINFEKL complexes was curtailed during ER stress, illustrating how generation of MHC I peptide ligands is tightly coupled to ongoing protein synthesis. Notably, the UPR-induced decline of MHC I-peptide presentation was more severe when the protein source of peptides was localized in the cytosol than in the ER. This difference was not due to changes in the translation rates of the precursor proteins but to increased stability of the cytosolic protein during ER stress. Conclusion Our results demonstrate that ER stress impairs MHC I-peptide presentation, and that it differentially regulates expression of ER- vs. cytosol-derived peptides. Furthermore, this work illustrates how ER stress, a typical feature of infected and malignant cells, can impinge on cues for adaptive immune recognition.

  20. The Rim101 pathway contributes to ER stress adaptation through sensing the state of plasma membrane.

    Science.gov (United States)

    Obara, Keisuke; Kihara, Akio

    2017-01-01

    Yeast cells sense alterations in the plasma membrane (PM) lipid asymmetry and external alkalization by the sensor protein Rim21, which functions in the Rim101 pathway. Rim101 signaling is initiated at the PM by the recruitment of the Rim101 signaling complex. The PM physically associates with the cortical endoplasmic reticulum (ER) to form ER-PM contact sites, where several signaling events, lipid exchange, and ion transport take place. In the present study, we investigated the spatial relationship between ER-PM contact sites and the sites of Rim101 signaling. Rim101 signaling mostly proceeds outside ER-PM contact sites in the PM and did not require intact ER-PM contact for its activation. Rather, the Rim101 pathway was constitutively activated by ER-PM contact site disruption, which is known to cause ER stress. ER stress induced by tunicamycin treatment activated the Rim101 pathway. Furthermore, the sensitivity of cells to tunicamycin without ER-PM contact was considerably elevated by the deletion of RIM21. These results suggest that the Rim101 pathway is important for the adaptation to ER stress by compensating for alterations in PM lipid asymmetry induced by ER stress. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  1. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    Science.gov (United States)

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  2. Hepatitis B Virus Middle Protein Enhances IL-6 Production via p38 MAPK/NF-κB Pathways in an ER Stress-Dependent Manner.

    Directory of Open Access Journals (Sweden)

    Yang-Xia Li

    Full Text Available During hepatitis B virus (HBV infection, three viral envelope proteins of HBV are overexpressed in the endoplasmic reticulum (ER. The large S protein (LHBs and truncated middle S protein (MHBst have been documented to play roles in regulating host gene expression and contribute to hepatic disease development. As a predominant protein at the ultrastructural level in biopsy samples taken from viremic patients, the role of the middle S protein (MHBs remains to be understood despite its high immunogenicity. When we transfected hepatocytes with an enhanced green fluorescent protein (EGFP-tagged MHBs expressing plasmid, the results showed that expression of MHBs cause an upregulation of IL-6 at the message RNA and protein levels through activating the p38 mitogen-activated protein kinase (p38 MAPK and nuclear factor-kappa B (NF-κB pathways. The use of specific inhibitors of the signaling pathways can diminish this upregulation. The use of BAPTA-AM attenuated the stimulation caused by MHBs. We further found that MHBs accumulated in the endoplasmic reticulum and increased the amount of glucose regulated protein 78 (GRP78/BiP. Our results provide a possibility that MHBs could be involved in liver disease progression.

  3. BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response.

    Science.gov (United States)

    Dai, Fangyan; Lee, Hyemin; Zhang, Yilei; Zhuang, Li; Yao, Hui; Xi, Yuanxin; Xiao, Zhen-Dong; You, M James; Li, Wei; Su, Xiaoping; Gan, Boyi

    2017-03-21

    The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer.

  4. Enhanced insulin receptor, but not PI3K, signalling protects podocytes from ER stress.

    Science.gov (United States)

    Garner, Kathryn L; Betin, Virginie M S; Pinto, Vanda; Graham, Mark; Abgueguen, Emmanuelle; Barnes, Matt; Bedford, David C; McArdle, Craig A; Coward, Richard J M

    2018-03-02

    Disruption of the insulin-PI3K-Akt signalling pathway in kidney podocytes causes endoplasmic reticulum (ER) stress, leading to podocyte apoptosis and proteinuria in diabetic nephropathy. We hypothesised that by improving insulin sensitivity we could protect podocytes from ER stress. Here we use established activating transcription factor 6 (ATF6)- and ER stress element (ERSE)-luciferase assays alongside a novel high throughput imaging-based C/EBP homologous protein (CHOP) assay to examine three models of improved insulin sensitivity. We find that by improving insulin sensitivity at the level of the insulin receptor (IR), either by IR over-expression or by knocking down the negative regulator of IR activity, protein tyrosine-phosphatase 1B (PTP1B), podocytes are protected from ER stress caused by fatty acids or diabetic media containing high glucose, high insulin and inflammatory cytokines TNFα and IL-6. However, contrary to this, knockdown of the negative regulator of PI3K-Akt signalling, phosphatase and tensin homolog deleted from chromosome 10 (PTEN), sensitizes podocytes to ER stress and apoptosis, despite increasing Akt phosphorylation. This indicates that protection from ER stress is conferred through not just the PI3K-Akt pathway, and indeed we find that inhibiting the MEK/ERK signalling pathway rescues PTEN knockdown podocytes from ER stress.

  5. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis.

    Science.gov (United States)

    Wang, Yiguo; Vera, Liliana; Fischer, Wolfgang H; Montminy, Marc

    2009-07-23

    In fasted mammals, circulating pancreatic glucagon stimulates hepatic gluconeogenesis in part through the CREB regulated transcription coactivator 2 (CRTC2, also referred to as TORC2). Hepatic glucose production is increased in obesity, reflecting chronic increases in endoplasmic reticulum (ER) stress that promote insulin resistance. Whether ER stress also modulates the gluconeogenic program directly, however, is unclear. Here we show that CRTC2 functions as a dual sensor for ER stress and fasting signals. Acute increases in ER stress triggered the dephosphorylation and nuclear entry of CRTC2, which in turn promoted the expression of ER quality control genes through an association with activating transcription factor 6 alpha (ATF6alpha, also known as ATF6)--an integral branch of the unfolded protein response. In addition to mediating CRTC2 recruitment to ER stress inducible promoters, ATF6alpha also reduced hepatic glucose output by disrupting the CREB-CRTC2 interaction and thereby inhibiting CRTC2 occupancy over gluconeogenic genes. Conversely, hepatic glucose output was upregulated when hepatic ATF6alpha protein amounts were reduced, either by RNA interference (RNAi)-mediated knockdown or as a result of persistent stress in obesity. Because ATF6alpha overexpression in the livers of obese mice reversed CRTC2 effects on the gluconeogenic program and lowered hepatic glucose output, our results demonstrate how cross-talk between ER stress and fasting pathways at the level of a transcriptional coactivator contributes to glucose homeostasis.

  6. PUMA mediates ER stress-induced apoptosis in portal hypertensive gastropathy

    Science.gov (United States)

    Tan, S; Wei, X; Song, M; Tao, J; Yang, Y; Khatoon, S; Liu, H; Jiang, J; Wu, B

    2014-01-01

    Mucosal apoptosis has been demonstrated to be an essential pathological feature in portal hypertensive gastropathy (PHG). p53-upregulated modulator of apoptosis (PUMA) was identified as a BH3-only Bcl-2 family protein that has an essential role in apoptosis induced by a variety of stimuli, including endoplasmic reticulum (ER) stress. However, whether PUMA is involved in mucosal apoptosis in PHG remains unclear, and whether PUMA induces PHG by mediating ER stress remains unknown. The aim of the study is to investigate whether PUMA is involved in PHG by mediating ER stress apoptotic signaling. To identify whether PUMA is involved in PHG by mediating ER stress, gastric mucosal injury and apoptosis were studied in both PHG patients and PHG animal models using PUMA knockout (PUMA-KO) and PUMA wild-type (PUMA-WT) mice. The induction of PUMA expression and ER stress signaling were investigated, and the mechanisms of PUMA-mediated apoptosis were analyzed. GES-1 and SGC7901 cell lines were used to further identify whether PUMA-mediated apoptosis was induced by ER stress in vitro. Epithelial apoptosis and PUMA were markedly induced in the gastric mucosa of PHG patients and mouse PHG models. ER stress had a potent role in the induction of PUMA and apoptosis in PHG models, and the apoptosis was obviously attenuated in PUMA-KO mice. Although the targeted deletion of PUMA did not affect ER stress, mitochondrial apoptotic signaling was downregulated in mice. Meanwhile, PUMA knockdown significantly ameliorated ER stress-induced mitochondria-dependent apoptosis in vitro. These results indicate that PUMA mediates ER stress-induced mucosal epithelial apoptosis through the mitochondrial apoptotic pathway in PHG, and that PUMA is a potentially therapeutic target for PHG. PMID:24625987

  7. ZmbZIP60 mRNA is spliced in maize in response to ER stress

    Directory of Open Access Journals (Sweden)

    Li Yanjie

    2012-03-01

    Full Text Available Abstract Background Adverse environmental conditions produce ER stress and elicit the unfolded protein response (UPR in plants. Plants are reported to have two "arms" of the ER stress signaling pathway-one arm involving membrane-bound transcription factors and the other involving a membrane-associated RNA splicing factor, IRE1. IRE1 in yeast to mammals recognizes a conserved twin loop structure in the target RNA. Results A segment of the mRNA encoding ZmbZIP60 in maize can be folded into a twin loop structure, and in response to ER stress this mRNA is spliced, excising a 20b intron. Splicing converts the predicted protein from a membrane-associated transcription factor to one that is targeted to the nucleus. Splicing of ZmbZIP60 can be elicited in maize seedlings by ER stress agents such as dithiothreitol (DTT or tunicamycin (TM or by heat treatment. Younger, rather than older seedlings display a more robust splicing response as do younger parts of leaf, along a developmental gradient in a leaf. The molecular signature of an ER stress response in plants includes the upregulation of Binding Protein (BIP genes. Maize has numerous BIP-like genes, and ER stress was found to upregulate one of these, ZmBIPb. Conclusions The splicing of ZmbZIP60 mRNA is an indicator of ER stress in maize seedlings resulting from adverse environmental conditions such as heat stress. ZmbZIP60 mRNA splicing in maize leads predictively to the formation of active bZIP transcription factor targeted to the nucleus to upregulate stress response genes. Among the genes upregulated by ER stress in maize is one of 22 BIP-like genes, ZmBIPb.

  8. PUMA mediates ER stress-induced apoptosis in portal hypertensive gastropathy

    OpenAIRE

    Tan, S; Wei, X; Song, M; Tao, J; Yang, Y; Khatoon, S; Liu, H; Jiang, J; Wu, B

    2014-01-01

    Mucosal apoptosis has been demonstrated to be an essential pathological feature in portal hypertensive gastropathy (PHG). p53-upregulated modulator of apoptosis (PUMA) was identified as a BH3-only Bcl-2 family protein that has an essential role in apoptosis induced by a variety of stimuli, including endoplasmic reticulum (ER) stress. However, whether PUMA is involved in mucosal apoptosis in PHG remains unclear, and whether PUMA induces PHG by mediating ER stress remains unknown. The aim of th...

  9. Fine-Tuning ER Stress Signal Transducers to Treat Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Danilo B. Medinas

    2017-07-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease characterized by the progressive loss of motoneurons and paralysis. The mechanisms underlying neuronal degeneration in ALS are starting to be elucidated, highlighting disturbances in motoneuron proteostasis. Endoplasmic reticulum (ER stress has emerged as an early pathogenic event underlying motoneuron vulnerability and denervation in ALS. Maintenance of ER proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR. Inositol-requiring enzyme 1 (IRE1 is an ER-located kinase and endoribonuclease that operates as a major ER stress transducer, mediating the establishment of adaptive and pro-apoptotic programs. Here we discuss current evidence supporting the role of ER stress in motoneuron demise in ALS and build the rational to target IRE1 to ameliorate neurodegeneration.

  10. Fateful music from a talented orchestra with a wicked conductor: Connection between oncogenic BRAF, ER stress, and autophagy in human melanoma.

    Science.gov (United States)

    Giglio, Paola; Fimia, Gian Maria; Lovat, Penny E; Piacentini, Mauro; Corazzari, Marco

    2015-01-01

    Autophagy and endoplasmic reticulum (ER) stress are involved in the development, progression, and chemoresistance of melanoma. We recently reported that oncogenic serine/threonine-protein kinase BRAF induces chronic ER stress, hence increasing baseline autophagy and promoting chemoresistance. The attenuation of ER stress restores basal autophagic activity and resensitizes melanoma cells to apoptosis.

  11. Endoplasmic reticulum (ER) stress and cAMP/PKA pathway mediated Zn-induced hepatic lipolysis.

    Science.gov (United States)

    Song, Yu-Feng; Hogstrand, Christer; Wei, Chuan-Chuan; Wu, Kun; Pan, Ya-Xiong; Luo, Zhi

    2017-09-01

    The present study was performed to determine the effect of Zn exposure influencing endoplasmic reticulum (ER) stress, explore the underlying molecular mechanism of Zn-induced hepatic lipolysis in a fish species of significance for aquaculture, yellow catfish Pelteobagrus fulvidraco. We found that waterborne Zn exposure evoked ER stress and unfolded protein response (UPR), and activated cAMP/PKA pathway, and up-regulated hepatic lipolysis. The increase in ER stress and lipolysis were associated with activation of cAMP/PKA signaling pathway. Zn also induced an increase in intracellular Ca 2+ level, which could be partially prevented by dantrolene (RyR receptor inhibitor) and 2-APB (IP3 receptor inhibitor), demonstrating that the disturbed Ca 2+ homeostasis in ER contributed to ER stress and dysregulation of lipolysis. Inhibition of ER stress by PBA attenuated UPR, inhibited the activation of cAMP/PKA pathway and resulted in down-regulation of lipolysis. Inhibition of protein kinase RNA-activated-like ER kinase (PERK) by GSK2656157 and inositol-requiring enzyme (IRE) by STF-083010 differentially influenced Zn-induced changes of lipid metabolism, indicating that PERK and IRE pathways played different regulatory roles in Zn-induced lipolysis. Inhibition of PKA by H89 blocked the Zn-induced activation of cAMP/PKA pathway with a concomitant inhibition of ER stress-mediated lipolysis. Taken together, our findings highlight the importance of the ER stress-cAMP/PKA axis in Zn-induced lipolysis, which provides new insights into Zn toxicology in fish and probably in other vertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Pre-emptive Quality Control Protects the ER from Protein Overload via the Proximity of ERAD Components and SRP

    Directory of Open Access Journals (Sweden)

    Hisae Kadowaki

    2015-11-01

    Full Text Available Cells possess ER quality control systems to adapt to ER stress and maintain their function. ER-stress-induced pre-emptive quality control (ER pQC selectively degrades ER proteins via translocational attenuation during ER stress. However, the molecular mechanism underlying this process remains unclear. Here, we find that most newly synthesized endogenous transthyretin proteins are rerouted to the cytosol without cleavage of the signal peptide, resulting in proteasomal degradation in hepatocytes during ER stress. Derlin family proteins (Derlins, which are ER-associated degradation components, reroute specific ER proteins, but not ER chaperones, from the translocon to the proteasome through interactions with the signal recognition particle (SRP. Moreover, the cytosolic chaperone Bag6 and the AAA-ATPase p97 contribute to the degradation of ER pQC substrates. These findings demonstrate that Derlins-mediated substrate-specific rerouting and Bag6- and p97-mediated effective degradation contribute to the maintenance of ER homeostasis without the need for translocation.

  13. SIRT7 Represses Myc Activity to Suppress ER Stress and Prevent Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Jiyung Shin

    2013-11-01

    Full Text Available Nonalcoholic fatty liver disease is the most common chronic liver disorder in developed countries. Its pathogenesis is poorly understood, and therapeutic options are limited. Here, we show that SIRT7, an NAD+-dependent H3K18Ac deacetylase, functions at chromatin to suppress ER stress and prevent the development of fatty liver disease. SIRT7 is induced upon ER stress and is stabilized at the promoters of ribosomal proteins through its interaction with the transcription factor Myc to silence gene expression and to relieve ER stress. SIRT7-deficient mice develop chronic hepatosteatosis resembling human fatty liver disease. Myc inactivation or pharmacological suppression of ER stress alleviates fatty liver caused by SIRT7 deficiency. Importantly, SIRT7 suppresses ER stress and reverts the fatty liver disease in diet-induced obese mice. Our study identifies SIRT7 as a cofactor of Myc for transcriptional repression and delineates a druggable regulatory branch of the ER stress response that prevents and reverts fatty liver disease.

  14. Purple perilla extracts allay ER stress in lipid-laden macrophages.

    Directory of Open Access Journals (Sweden)

    Sin-Hye Park

    Full Text Available There is a growing body of evidence that excess lipids, hypoxic stress and other inflammatory signals can stimulate endoplasmic reticulum (ER stress in metabolic diseases. However, the pathophysiological importance and the underlying mechanisms of this phenomenon remain unknown. The current study investigated that 50 ng/ml oxidized LDL promoted unfolded protein response (UPR and ER stress in J774A1 murine macrophages, which was blocked by extracts (PPE of purple Perilla frutescens, a plant of the mint family Lamiaceae. The ER stressor tunicamycin was employed as a positive control. Treating 1-10 µg/ml oxidized LDL for 24 h elicited lipotoxic apoptosis in macrophages with obvious nuclear condensation and DNA fragmentation, which was inhibited by PPE. Tunicamycin and oxidized LDL activated and induced the UPR components of activating transcription factor 6 and ER resident chaperone BiP/Grp78 in temporal manners and such effects were blocked by ≥5 µg/ml PPE. In addition, PPE suppressed the enhanced mRNA transcription and splicing of X-box binding protein 1 (XBP1 by tunicamycin and oxidized LDL. The protein induction and nuclear translocation of XBP1 were deterred in PPE-treated macrophages under ER stress. The induction of ATP-binding cassette transporter A1 (ABCA1, scavenger receptor-B1 (SR-B1 and intracellular adhesion molecule-1 (ICAM-1 was abolished by the ER stressor in activated macrophages. The protein induction of ABCA1 and ICAM1 but not SR-B1 was retrieved by adding 10 µg/ml PPE to cells. These results demonstrate that PPE inhibited lipotoxic apoptosis and demoted the induction and activation of UPR components in macrophages. PPE restored normal proteostasis in activated macrophages oxidized LDL. Therefore, PPE was a potent agent antagonizing macrophage ER stress due to lipotoxic signals associated with atherosclerosis.

  15. Modulation of endothelial cell migration by ER stress and insulin resistance: a role during maternal obesity?

    Directory of Open Access Journals (Sweden)

    Pablo José Sáez

    2014-08-01

    Full Text Available Adverse microenvironmental stimuli can trigger the endoplasmic reticulum (ER stress pathway, which initiates the unfolded protein response (UPR, to restore protein-folding homeostasis. Several studies show induction of ER stress during obesity. Chronic UPR has been linked to different mechanisms of disease in obese and diabetic individuals, including insulin resistance (IR and impaired angiogenesis. Endothelial cell (EC migration is an initial step for angiogenesis, which is associated with remodeling of existing blood vessels. EC migration occurs according to the leader-follower model, involving coordinated processes of chemotaxis, haptotaxis, and mechanotaxis. Thus, a fine-tuning of EC migration is necessary to provide the right timing to form the required vessels during angiogenesis. ER stress modulates EC migration at different levels, usually impairing migration and angiogenesis, although different effects may be observed depending on the tissue and/or microenvironment. In the context of pregnancy, maternal obesity (MO induces IR in the offspring. Interestingly, several proteins associated with obesity-induced IR are also involved in EC migration, providing a potential link with the ER stress-dependent alterations observed in obese individuals. Different signaling cascades that converge on cytoskeleton regulation directly impact EC migration, including the Akt and/or RhoA pathways. In addition, ER is the main intracellular reservoir for Ca2+, which plays a pivotal role during EC migration. Therefore, ER stress-related alterations in Ca2+ signaling or Ca2+ levels might also produce distorted EC migration. However, the above findings have been studied in the context of adult obesity, and no information has been reported regarding the effect of MO on fetal EC migration. Here we summarize the state of knowledge about the possible mechanisms by which ER stress and IR might impact EC migration and angiogenesis in fetal endothelium exposed to MO

  16. ER stress mediates homocysteine-induced endothelial dysfunction: Modulation of IKCa and SKCa channels.

    Science.gov (United States)

    Wang, Xiang-Chong; Sun, Wen-Tao; Yu, Cheuk-Man; Pun, Shun-Hay; Underwood, Malcolm John; He, Guo-Wei; Yang, Qin

    2015-09-01

    It remains incompletely understood how homocysteine impairs endothelial function. Whether mechanisms such as calcium-activated potassium (KCa) channels are involved is uncertain and the significance of endoplasmic reticulum (ER) stress in KCa channel-dependent endothelial function in hyperhomocysteinemia remains unexplored. We investigated the effect of homocysteine on endothelial KCa channels in coronary vasculature with further exploration of the role of ER stress. Vasorelaxation mediated by intermediate- and small-conductance KCa (IKCa and SKCa) channels was studied in porcine coronary arteries in a myograph. IKCa and SKCa channel currents were recorded by whole-cell patch-clamp in coronary endothelial cells. Protein levels of endothelial IKCa and SKCa channels were determined for both whole-cell and surface expressions. Homocysteine impaired bradykinin-induced IKCa and SKCa-dependent EDHF-type relaxation and attenuated the vasorelaxant response to the channel activator. IKCa and SKCa currents were suppressed by homocysteine. Inhibition of ER stress during homocysteine exposure enhanced IKCa and SKCa currents, associated with improved EDHF-type response and channel activator-induced relaxation. Homocysteine did not alter whole-cell protein levels of IKCa and SKCa whereas lowered surface expressions of these channels, which were restored by ER stress inhibition. Homocysteine induces endothelial dysfunction through a mechanism involving ER stress-mediated suppression of IKCa and SKCa channels. Inhibition of cell surface expression of these channels by ER stress is, at least partially, responsible for the suppressive effect of homocysteine on the channel function. This study provides new mechanistic insights into homocysteine-induced endothelial dysfunction and advances our knowledge of the significance of ER stress in vascular disorders. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Developing ER Stress Inhibitors for Treating ALS

    Science.gov (United States)

    2015-11-01

    reflux containing a catalytic amount of p-toluenesulphonic acid produces the nitroketone 3. Reduction of the nitro group in 3 with zinc and ammonium...chloride or hydrochloric acid produces the aminoketone 4. Treatment of the amino ketone 4 with an aldehyde 5 in a solution of acetic acid and...calcium reuptake by the ER. Using calcium mobilization assays we determined that active benzodiazepinone derivatives potentiate store-operated calcium

  18. Zinc homeostasis is involved in unfolded protein response under salt stress

    OpenAIRE

    Wang, Miaoying; Xu, Qiangyi; Yuan, Ming

    2011-01-01

    Accumulation of unfolded protein or misfolded protein causes endoplasmic reticulum (ER) stress. Increased salt concentration activates a stress response pathway in the ER in Arabidopsis thaliana to induce the expression of several salt stress response genes, leading to a more optimal protein folding environment in the ER. In addition, some salt stress-regulated proteins require zinc for their activity, including some zinc-dependent DNA binding proteins and zinc-finger proteins. In a recent st...

  19. ER Stress-Mediated Signaling: Action Potential and Ca(2+) as Key Players.

    Science.gov (United States)

    Bahar, Entaz; Kim, Hyongsuk; Yoon, Hyonok

    2016-09-15

    The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular activities and survival. Disturbances in the normal ER functions lead to the accumulation and aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response (UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination, which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis can lead to the development of various pathological conditions, such as neurodegenerative and autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca(2+)) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions. Ca(2+) regulates cell death both at the early and late stages of apoptosis. Severe Ca(2+) dysregulation can promote cell death through apoptosis. Action potential, an electrical signal transmitted along the neurons and muscle fibers, is important for conveying information to, from, and within the brain. Upon the initiation of the action potential, increased levels of cytosolic Ca(2+) (depolarization) lead to the activation of the ER stress response involved in the initiation of apoptosis. In this review, we discuss the involvement of Ca(2+) and action potential in ER stress-mediated apoptosis.

  20. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation

    Science.gov (United States)

    Plate, Lars; Cooley, Christina B; Chen, John J; Paxman, Ryan J; Gallagher, Ciara M; Madoux, Franck; Genereux, Joseph C; Dobbs, Wesley; Garza, Dan; Spicer, Timothy P; Scampavia, Louis; Brown, Steven J; Rosen, Hugh; Powers, Evan T; Walter, Peter; Hodder, Peter; Wiseman, R Luke; Kelly, Jeffery W

    2016-01-01

    Imbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment. The ER reprogramming afforded by our molecules requires activation of endogenous ATF6 and occurs independent of global ER stress. Furthermore, our molecules phenocopy the ability of genetic ATF6 activation to selectively reduce secretion and extracellular aggregation of amyloidogenic proteins. These results show that small molecule-dependent ER reprogramming, achieved through preferential activation of the ATF6 transcriptional program, is a promising strategy to ameliorate imbalances in ER function associated with degenerative protein aggregation diseases. DOI: http://dx.doi.org/10.7554/eLife.15550.001 PMID:27435961

  1. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis

    DEFF Research Database (Denmark)

    DeZwaan-McCabe, Diane; Sheldon, Ryan D; Gorecki, Michelle C

    2017-01-01

    advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid......The unfolded protein response (UPR), induced by endoplasmic reticulum (ER) stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional...

  2. Acid-induced autophagy protects human lung cancer cells from apoptosis by activating ER stress.

    Science.gov (United States)

    Xie, Wen-Yue; Zhou, Xiang-Dong; Li, Qi; Chen, Ling-Xiu; Ran, Dan-Hua

    2015-12-10

    An acidic tumor microenvironment exists widely in solid tumors. However, the detailed mechanism of cell survival under acidic stress remains unclear. The aim of this study is to clarify whether acid-induced autophagy exists and to determine the function and mechanism of autophagy in lung cancer cells. We have found that acute low pH stimulated autophagy by increasing LC3-positive punctate vesicles, increasing LC3 II expression levels and reducing p62 protein levels. Additionally, autophagy was inhibited by the addition of Baf or knockdown of Beclin 1, and cell apoptosis was increased markedly. In mouse tumors, the expression of cleaved caspase3 and p62 was enhanced by oral treatment with sodium bicarbonate, which can raise the intratumoral pH. Furthermore, the protein levels of ER stress markers, including p-PERK, p-eIF2α, CHOP, XBP-1s and GRP78, were also increased in response to acidic pH. The antioxidant NAC, which reduces ROS accumulation, alleviated acid-mediated ER stress and autophagy, and knocking down GRP78 reduced autophagy activation under acidic conditions, which suggests that autophagy was induced by acidic pH through ER stress. Taken together, these results indicate that the acidic microenvironment in non-small cell lung cancer cells promotes autophagy by increasing ROS-ER stress, which serves as a survival adaption in this setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages

    Directory of Open Access Journals (Sweden)

    Susu M. Zughaier

    2014-01-01

    Full Text Available Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2 protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1 leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.

  4. The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants.

    Science.gov (United States)

    Yang, Zheng-Ting; Wang, Mei-Jing; Sun, Ling; Lu, Sun-Jie; Bi, Dong-Ling; Sun, Le; Song, Ze-Ting; Zhang, Shuang-Shuang; Zhou, Shun-Fan; Liu, Jian-Xiang

    2014-03-01

    The unfolded protein response (UPR) is activated to sustain cell survival by reducing misfolded protein accumulation in the endoplasmic reticulum (ER). The UPR also promotes programmed cell death (PCD) when the ER stress is severe; however, the underlying molecular mechanisms are less understood, especially in plants. Previously, two membrane-associated transcriptions factors (MTFs), bZIP28 and bZIP60, were identified as the key regulators for cell survival in the plant ER stress response. Here, we report the identification of another MTF, NAC089, as an important PCD regulator in Arabidopsis (Arabidopsis thaliana) plants. NAC089 relocates from the ER membrane to the nucleus under ER stress conditions. Inducible expression of a truncated form of NAC089, in which the transmembrane domain is deleted, induces PCD with increased caspase 3/7-like activity and DNA fragmentation. Knock-down NAC089 in Arabidopsis confers ER stress tolerance and impairs ER-stress-induced caspase-like activity. Transcriptional regulation analysis and ChIP-qPCR reveal that NAC089 plays important role in regulating downstream genes involved in PCD, such as NAC094, MC5 and BAG6. Furthermore, NAC089 is up-regulated by ER stress, which is directly controlled by bZIP28 and bZIP60. These results show that nuclear relocation of NAC089 promotes ER-stress-induced PCD, and both pro-survival and pro-death signals are elicited by bZIP28 and bZIP60 during plant ER stress response.

  5. Identification and characterization of GmPDIL7, a soybean ER membrane-bound protein disulfide isomerase family protein.

    Science.gov (United States)

    Okuda, Aya; Matsusaki, Motonori; Masuda, Taro; Urade, Reiko

    2017-02-01

    Most proteins synthesized in the endoplasmic reticulum (ER) possess intramolecular and intermolecular disulfide bonds, which play an important role in the conformational stability and function of proteins. Hence, eukaryotic cells contain protein disulfide bond formation pathways such as the protein disulfide isomerase (PDI)-ER oxidoreductin 1 (Ero1) system in the ER lumen. In this study, we identified soybean PDIL7 (GmPDIL7), a novel soybean ER membrane-bound PDI family protein, and determined its enzymatic properties. GmPDIL7 has a putative N-terminal signal sequence, a thioredoxin domain with an active center motif (CGHC), and a putative C-terminal transmembrane region. Likewise, we demonstrated that GmPDIL7 is ubiquitously expressed in soybean tissues and is localized in the ER membrane. Furthermore, GmPDIL7 associated with other soybean PDI family proteins in vivo and GmPDIL7 mRNA was slightly upregulated under ER stress. The redox potential of recombinant GmPDIL7 expressed in Escherichia coli was -187 mV, indicating that GmPDIL7 could oxidize unfolded proteins. GmPDIL7 exhibited a dithiol oxidase activity level that was similar to other soybean PDI family proteins. However, the oxidative refolding activity of GmPDIL7 was lower than other soybean PDI family proteins. GmPDIL7 was well oxidized by GmERO1. Taken together, our results indicated that GmPDIL7 primarily plays a role as a supplier of disulfide bonds in nascent proteins for oxidative folding on the ER membrane. The nucleotide sequence data for the GmPDIL7 cDNA are available in the DNA Data Bank of Japan (DDBJ) databases under the accession numbers LC158001. Protein disulfide isomerase: EC 5.3.4.1. © 2016 Federation of European Biochemical Societies.

  6. Role of ER stress in ventricular contractile dysfunction in type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Akifumi Takada

    Full Text Available BACKGROUND: Diabetes mellitus (DM is associated with an increased risk of ischemic heart disease and of adverse outcomes following myocardial infarction (MI. Here we assessed the role of endoplasmic reticulum (ER stress in ventricular dysfunction and outcomes after MI in type 2 DM (T2DM. METHODOLOGY AND PRINCIPAL FINDINGS: In hearts of OLETF, a rat model of T2DM, at 25∼30 weeks of age, GRP78 and GRP94, markers of ER stress, were increased and sarcoplasmic reticulum calcium ATPase (SERCA2a protein was reduced by 35% compared with those in LETO, a non-diabetic control. SERCA2a mRNA levels were similar, but SERCA2a protein was more ubiquitinated in OLETF than in LETO. Left ventricular (LV end-diastolic elastance (Eed was higher in OLETF than in LETO (53.9±5.2 vs. 20.2±5.6 mmHg/µl, whereas LV end-systolic elastance and positive inotropic responses to β-adrenergic stimulation were similar in OLETF and LETO. 4-Phenylbutyric acid (4-PBA, an ER stress modulator, suppressed both GRP up-regulation and SERCA2a ubiquitination and normalized SERCA2a protein level and Eed in OLETF. Sodium tauroursodeoxycholic acid, a structurally different ER stress modulator, also restored SERCA2a protein level in OLETF. Though LV dysfunction was modest, mortality within 48 h after coronary occlusion was markedly higher in OLETF than in LETO (61.3% vs. 7.7%. Telemetric recording showed that rapid progression of heart failure was responsible for the high mortality rate in OLETF. ER stress modulators failed to reduce the mortality rate after MI in OLETF. CONCLUSIONS: ER stress reduces SERCA2a protein via its augmented ubiquitination and degradation, leading to LV diastolic dysfunction in T2DM. Even at a stage without systolic LV dysfunction, susceptibility to lethal heart failure after infarction is markedly increased, which cannot be explained by ER stress or change in myocardial response to sympathetic nerve activation.

  7. Insights on the involvement of (-)-epigallocatechin gallate in ER stress-mediated apoptosis in age-related macular degeneration.

    Science.gov (United States)

    Karthikeyan, Bose; Harini, Lakshminarasimhan; Krishnakumar, Vaithilingam; Kannan, Velu Rajesh; Sundar, Krishnan; Kathiresan, Thandavarayan

    2017-01-01

    Endoplasmic reticulum (ER) stress-mediated apoptosis is a well-known factor in the pathogenesis of age-related macular degeneration (AMD). ER stress leads to accumulation of misfolded proteins, which in turn activates unfolded protein response (UPR) of the cell for its survival. The prolonged UPR of ER stress promotes cell death; however, the transition between adaptation and ER stress-induced apoptosis has not been clearly understood. Hence, the present study investigates the regulatory effect of (-)-epigallocatechin gallate (EGCG) on ER stress-induced by hydrogen peroxide (H 2 O 2 ) and disturbance of calcium homeostasis by thapsigargin (TG) in mouse retinal pigment epithelial (MRPE) cells. The oxidant molecules influenced MRPE cells showed an increased level of intracellular calcium [Ca 2+ ] i in ER and transferred to mitochondria through ER-mitochondrial tether site then increased ROS production. EGCG restores [Ca 2+ ] i homeostasis by decreasing ROS production through inhibition of prohibitin1 which regulate ER-mitochondrial tether site and inhibit apoptosis. Effect of EGCG on ER stress-mediated apoptosis was elucidated by exploring the UPR signalling pathways. EGCG downregulated GRP78, CHOP, PERK, ERO1α, IRE1α, cleaved PARP, cleaved caspase 3, caspase 12 and upregulated expression of calnexinin MRPE cells. In addition to this, inhibition of apoptosis by EGCG was also confirmed with expression of proteins Akt, PTEN and GSK3β. MRPE cells with EGCG upregulates phosphorylation of Akt at ser473 and phospho ser380 of PTEN, but phosphorylation at ser9 of GSK3β was inhibited. Further, constitutively active (myristoylated) CA-Akt transfected in MRPE cells had an increased Akt activity in EGCG influenced cells. These findings strongly suggest that antioxidant molecules inhibit cell death through the proper balancing of [Ca 2+ ] i and ROS production in order to maintain UPR of ER in MRPE cells. Thus, modulation of UPR signalling may provide a potential target for

  8. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis

    Directory of Open Access Journals (Sweden)

    Diane DeZwaan-McCabe

    2017-05-01

    Full Text Available The unfolded protein response (UPR, induced by endoplasmic reticulum (ER stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress.

  9. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy

    Science.gov (United States)

    Periyasamy, Palsamy; Guo, Ming-Lei; Buch, Shilpa

    2016-01-01

    ABSTRACT Cocaine is known to induce inflammation, thereby contributing in part, to the pathogenesis of neurodegeneration. A recent study from our lab has revealed a link between macroautophagy/autophagy and microglial activation. The current study was aimed at investigating whether cocaine could also mediate activation of astrocytes and, whether this process involved induction of autophagy. Our findings demonstrated that cocaine mediated the activation of astrocytes by altering the levels of autophagy markers, such as BECN1, ATG5, MAP1LC3B-II, and SQSTM1 in both human A172 astrocytoma cells and primary human astrocytes. Furthermore, cocaine treatment resulted in increased formation of endogenous MAP1LC3B puncta in human astrocytes. Additionally, astrocytes transfected with the GFP-MAP1LC3B plasmid also demonstrated cocaine-mediated upregulation of the green fluorescent MAP1LC3B puncta. Cocaine-mediated induction of autophagy involved upstream activation of ER stress proteins such as EIF2AK3, ERN1, ATF6 since blockage of autophagy using either pharmacological or gene-silencing approaches, had no effect on cocaine-mediated induction of ER stress. Using both pharmacological and gene-silencing approaches to block either ER stress or autophagy, our findings demonstrated that cocaine-induced activation of astrocytes (measured by increased levels of GFAP) involved sequential activation of ER stress and autophagy. Cocaine-mediated-increased upregulation of GFAP correlated with increased expression of proinflammatory mediators such as TNF, IL1B, and IL6. In conclusion, these findings reveal an association between ER stress-mediated autophagy and astrogliosis in cocaine-treated astrocytes. Intervention of ER stress and/or autophagy signaling would thus be promising therapeutic targets for abrogating cocaine-mediated neuroinflammation. PMID:27337297

  10. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy.

    Science.gov (United States)

    Periyasamy, Palsamy; Guo, Ming-Lei; Buch, Shilpa

    2016-08-02

    Cocaine is known to induce inflammation, thereby contributing in part, to the pathogenesis of neurodegeneration. A recent study from our lab has revealed a link between macroautophagy/autophagy and microglial activation. The current study was aimed at investigating whether cocaine could also mediate activation of astrocytes and, whether this process involved induction of autophagy. Our findings demonstrated that cocaine mediated the activation of astrocytes by altering the levels of autophagy markers, such as BECN1, ATG5, MAP1LC3B-II, and SQSTM1 in both human A172 astrocytoma cells and primary human astrocytes. Furthermore, cocaine treatment resulted in increased formation of endogenous MAP1LC3B puncta in human astrocytes. Additionally, astrocytes transfected with the GFP-MAP1LC3B plasmid also demonstrated cocaine-mediated upregulation of the green fluorescent MAP1LC3B puncta. Cocaine-mediated induction of autophagy involved upstream activation of ER stress proteins such as EIF2AK3, ERN1, ATF6 since blockage of autophagy using either pharmacological or gene-silencing approaches, had no effect on cocaine-mediated induction of ER stress. Using both pharmacological and gene-silencing approaches to block either ER stress or autophagy, our findings demonstrated that cocaine-induced activation of astrocytes (measured by increased levels of GFAP) involved sequential activation of ER stress and autophagy. Cocaine-mediated-increased upregulation of GFAP correlated with increased expression of proinflammatory mediators such as TNF, IL1B, and IL6. In conclusion, these findings reveal an association between ER stress-mediated autophagy and astrogliosis in cocaine-treated astrocytes. Intervention of ER stress and/or autophagy signaling would thus be promising therapeutic targets for abrogating cocaine-mediated neuroinflammation.

  11. Persistent ER stress induces the spliced leader RNA silencing pathway (SLS, leading to programmed cell death in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Hanoch Goldshmidt

    2010-01-01

    Full Text Available Trypanosomes are parasites that cycle between the insect host (procyclic form and mammalian host (bloodstream form. These parasites lack conventional transcription regulation, including factors that induce the unfolded protein response (UPR. However, they possess a stress response mechanism, the spliced leader RNA silencing (SLS pathway. SLS elicits shut-off of spliced leader RNA (SL RNA transcription by perturbing the binding of the transcription factor tSNAP42 to its cognate promoter, thus eliminating trans-splicing of all mRNAs. Induction of endoplasmic reticulum (ER stress in procyclic trypanosomes elicits changes in the transcriptome similar to those induced by conventional UPR found in other eukaryotes. The mechanism of up-regulation under ER stress is dependent on differential stabilization of mRNAs. The transcriptome changes are accompanied by ER dilation and elevation in the ER chaperone, BiP. Prolonged ER stress induces SLS pathway. RNAi silencing of SEC63, a factor that participates in protein translocation across the ER membrane, or SEC61, the translocation channel, also induces SLS. Silencing of these genes or prolonged ER stress led to programmed cell death (PCD, evident by exposure of phosphatidyl serine, DNA laddering, increase in reactive oxygen species (ROS production, increase in cytoplasmic Ca(2+, and decrease in mitochondrial membrane potential, as well as typical morphological changes observed by transmission electron microscopy (TEM. ER stress response is also induced in the bloodstream form and if the stress persists it leads to SLS. We propose that prolonged ER stress induces SLS, which serves as a unique death pathway, replacing the conventional caspase-mediated PCD observed in higher eukaryotes.

  12. β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome.

    Science.gov (United States)

    Shang, Linshan; Hua, Haiqing; Foo, Kylie; Martinez, Hector; Watanabe, Kazuhisa; Zimmer, Matthew; Kahler, David J; Freeby, Matthew; Chung, Wendy; LeDuc, Charles; Goland, Robin; Leibel, Rudolph L; Egli, Dieter

    2014-03-01

    Wolfram syndrome is an autosomal recessive disorder caused by mutations in WFS1 and is characterized by insulin-dependent diabetes mellitus, optic atrophy, and deafness. To investigate the cause of β-cell failure, we used induced pluripotent stem cells to create insulin-producing cells from individuals with Wolfram syndrome. WFS1-deficient β-cells showed increased levels of endoplasmic reticulum (ER) stress molecules and decreased insulin content. Upon exposure to experimental ER stress, Wolfram β-cells showed impaired insulin processing and failed to increase insulin secretion in response to glucose and other secretagogues. Importantly, 4-phenyl butyric acid, a chemical protein folding and trafficking chaperone, restored normal insulin synthesis and the ability to upregulate insulin secretion. These studies show that ER stress plays a central role in β-cell failure in Wolfram syndrome and indicate that chemical chaperones might have therapeutic relevance under conditions of ER stress in Wolfram syndrome and other forms of diabetes.

  13. The ER membrane protein complex is a transmembrane domain insertase

    Science.gov (United States)

    Guna, Alina; Volkmar, Norbert; Christianson, John C.; Hegde, Ramanujan S.

    2018-01-01

    Insertion of proteins into membranes is an essential cellular process. The extensive biophysical and topological diversity of membrane proteins necessitates multiple insertion pathways that remain incompletely defined. Here, we found that known membrane insertion pathways fail to effectively engage tail-anchored membrane proteins with moderately hydrophobic transmembrane domains. These proteins are instead shielded in the cytosol by calmodulin. Dynamic release from calmodulin allowed sampling of the endoplasmic reticulum (ER), where the conserved ER membrane protein complex (EMC) was shown to be essential for efficient insertion in vitro and in cells. Purified EMC in synthetic liposomes catalyzed insertion of its substrates in a reconstituted system. Thus, EMC is a transmembrane domain insertase, a function that may explain its widely pleiotropic membrane-associated phenotypes across organisms. PMID:29242231

  14. Co- and post-translational protein folding in the ER

    DEFF Research Database (Denmark)

    Ellgaard, Lars; McCaul, Nicholas; Chatsisvili, Anna

    2016-01-01

    The biophysical rules that govern folding of small, single-domain proteins in dilute solutions are now quite well understood. The mechanisms underlying co-translational folding of multidomain and membrane-spanning proteins in complex cellular environments are often less clear. The endoplasmic...... and the variety of ER-specific protein modifications. Here, we review chaperone-assisted co- and post-translational folding and assembly in the ER and underline the influence of protein modifications on these processes. We emphasize how method development has helped advance the field by allowing researchers...... to monitor the progression of folding as it occurs inside living cells, while at the same time probing the intricate relationship between protein modifications during folding....

  15. DISC1 Modulates Neuronal Stress Responses by Gate-Keeping ER-Mitochondria Ca2+ Transfer through the MAM

    Directory of Open Access Journals (Sweden)

    Sung Jin Park

    2017-12-01

    Full Text Available Summary: A wide range of Ca2+-mediated functions are enabled by the dynamic properties of Ca2+, all of which are dependent on the endoplasmic reticulum (ER and mitochondria. Disrupted-in-schizophrenia 1 (DISC1 is a scaffold protein that is involved in the function of intracellular organelles and is linked to cognitive and emotional deficits. Here, we demonstrate that DISC1 localizes to the mitochondria-associated ER membrane (MAM. At the MAM, DISC1 interacts with IP3R1 and downregulates its ligand binding, modulating ER-mitochondria Ca2+ transfer through the MAM. The disrupted regulation of Ca2+ transfer caused by DISC1 dysfunction leads to abnormal Ca2+ accumulation in mitochondria following oxidative stress, which impairs mitochondrial functions. DISC1 dysfunction alters corticosterone-induced mitochondrial Ca2+ accumulation in an oxidative stress-dependent manner. Together, these findings link stress-associated neural stimuli with intracellular ER-mitochondria Ca2+ crosstalk via DISC1, providing mechanistic insight into how environmental risk factors can be interpreted by intracellular pathways under the control of genetic components in neurons. : Park et al. show that DISC1 regulates ER-mitochondria Ca2+ transfer through mitochondria-associated ER membrane (MAM. DISC1 dysfunction at MAM increases ER-mitochondria Ca2+ transfer during oxidative stress and excessive amounts of corticosterone, which impairs mitochondrial function. Keywords: DISC1, MAM, mitochondria, Ca2+, IP3R1, oxidative stress

  16. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance

    DEFF Research Database (Denmark)

    Schneeberger, Marc; Dietrich, Marcelo O; Sebastián, David

    2013-01-01

    Mitofusin 2 (MFN2) plays critical roles in both mitochondrial fusion and the establishment of mitochondria-endoplasmic reticulum (ER) interactions. Hypothalamic ER stress has emerged as a causative factor for the development of leptin resistance, but the underlying mechanisms are largely unknown....... This previously unrecognized role for MFN2 argues for a crucial involvement in mediating ER stress-induced leptin resistance........ Here, we show that mitochondria-ER contacts in anorexigenic pro-opiomelanocortin (POMC) neurons in the hypothalamus are decreased in diet-induced obesity. POMC-specific ablation of Mfn2 resulted in loss of mitochondria-ER contacts, defective POMC processing, ER stress-induced leptin resistance...

  17. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells.

    Science.gov (United States)

    Kim, Boyun; Kim, Hee Seung; Jung, Eun-Ji; Lee, Jung Yun; K Tsang, Benjamin; Lim, Jeong Mook; Song, Yong Sang

    2016-05-01

    Prolonged accumulation of misfolded or unfolded proteins caused by cellular stress, including oxidative stress, induces endoplasmic reticulum stress, which then activates an unfolded protein response (UPR). ER stress is usually maintained at higher levels in cancer cells as compared to normal cells due to altered metabolism in cancer. Here, we investigated whether curcumin is ER stress-mediated apoptosis in cervical cancer cells, and ROS increased by curcumin are involved in the process as an upstream contributor. Curcumin inhibited proliferation of cervical cancer cells (C33A, CaSki, HeLa, and ME180) and induced apoptotic cell death. Curcumin activated ER-resident UPR sensors, such as PERK, IRE-1α, and ATF6, and their downstream-signaling proteins in cervical cancer cells, but not in normal epithelial cells and peripheral blood mononuclear cells (PBMCs). CHOP, a key factor involved in ER stress-mediated apoptosis, was also activated by curcumin. CHOP decreased the ratio of anti-apoptotic protein Bcl-2 to pro-apoptotic protein Bax expression, and subsequently increased the apoptotic population of cervical cancer cells. Furthermore, curcumin elevated levels of intracellular reactive oxygen species (ROS) in cervical cancer cells, but not in normal epithelial cells. Scavenging ROS resulted in inhibition of ER stress and partially restored cell viability in curcumin-treated cancer cells. Collectively, these observations show that curcumin promotes ER stress-mediated apoptosis in cervical cancer cells through increase of cell type-specific ROS generation. Therefore, modulation of these differential responses to curcumin between normal and cervical cancer cells could be an effective therapeutic strategy without adverse effects on normal cells. © 2015 Wiley Periodicals, Inc.

  18. Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions.

    Science.gov (United States)

    Deegan, Shane; Saveljeva, Svetlana; Logue, Susan E; Pakos-Zebrucka, Karolina; Gupta, Sanjeev; Vandenabeele, Peter; Bertrand, Mathieu J M; Samali, Afshin

    2014-01-01

    Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.

  19. Anarchy in the UPR: A Ca2+-insensitive PKC inhibits SERCA activity to promote ER stress.

    Science.gov (United States)

    Schmitz-Peiffer, Carsten

    2018-02-08

    Nonalcoholic fatty liver disease (NAFLD) is highly prevalent in Western countries, and is linked to the development of liver cancer and Type 2 diabetes (T2D). It is strongly associated with obesity, but the dysregulation of liver lipid storage is not fully understood. Fatty acid oversupply to hepatocytes can establish a vicious cycle involving diminished protein folding, endoplasmic reticulum (ER) stress, insulin resistance and further lipogenesis. This commentary discusses the recent findings of Lai et al. published in Bioscience Reports, that implicate protein kinase C delta (PKCδ) activation by fatty acids in the inhibition of the SERCA Ca 2+ pump, resulting in reduced ER Ca 2+ loading and protein misfolding. PKCδ therefore represents a target for the treatment of both steatosis and insulin resistance, key to the prevention of NAFLD and T2D. ©2018 The Author(s).

  20. High-intensity training reduces intermittent hypoxia-induced ER stress and myocardial infarct size.

    Science.gov (United States)

    Bourdier, Guillaume; Flore, Patrice; Sanchez, Hervé; Pepin, Jean-Louis; Belaidi, Elise; Arnaud, Claire

    2016-01-15

    Chronic intermittent hypoxia (IH) is described as the major detrimental factor leading to cardiovascular morbimortality in obstructive sleep apnea (OSA) patients. OSA patients exhibit increased infarct size after a myocardial event, and previous animal studies have shown that chronic IH could be the main mechanism. Endoplasmic reticulum (ER) stress plays a major role in the pathophysiology of cardiovascular disease. High-intensity training (HIT) exerts beneficial effects on the cardiovascular system. Thus, we hypothesized that HIT could prevent IH-induced ER stress and the increase in infarct size. Male Wistar rats were exposed to 21 days of IH (21-5% fraction of inspired O2, 60-s cycle, 8 h/day) or normoxia. After 1 wk of IH alone, rats were submitted daily to both IH and HIT (2 × 24 min, 15-30m/min). Rat hearts were either rapidly frozen to evaluate ER stress by Western blot analysis or submitted to an ischemia-reperfusion protocol ex vivo (30 min of global ischemia/120 min of reperfusion). IH induced cardiac proapoptotic ER stress, characterized by increased expression of glucose-regulated protein kinase 78, phosphorylated protein kinase-like ER kinase, activating transcription factor 4, and C/EBP homologous protein. IH-induced myocardial apoptosis was confirmed by increased expression of cleaved caspase-3. These IH-associated proapoptotic alterations were associated with a significant increase in infarct size (35.4 ± 3.2% vs. 22.7 ± 1.7% of ventricles in IH + sedenary and normoxia + sedentary groups, respectively, P < 0.05). HIT prevented both the IH-induced proapoptotic ER stress and increased myocardial infarct size (28.8 ± 3.9% and 21.0 ± 5.1% in IH + HIT and normoxia + HIT groups, respectively, P = 0.28). In conclusion, these findings suggest that HIT could represent a preventive strategy to limit IH-induced myocardial ischemia-reperfusion damages in OSA patients. Copyright © 2016 the American Physiological Society.

  1. Dietary gossypol suppressed postprandial TOR signaling and elevated ER stress pathways in turbot (Scophthalmus maximus L.).

    Science.gov (United States)

    Bian, Fuyun; Jiang, Haowen; Man, Mingsan; Mai, Kangsen; Zhou, Huihui; Xu, Wei; He, Gen

    2017-01-01

    Gossypol is known to be a polyphenolic compound toxic to animals. However, its molecular targets are far from fully characterized. To evaluate the physiological and molecular effects of gossypol, we chose turbot (Scophthalmus maximus L.), a carnivorous fish, as our model species. Juvenile turbots (7.83 ± 0.02 g) were fed diets containing gradient levels of gossypol at 0 (G0), 600 (G1), and 1,200 (G2) mg/kg diets for 11 wk. After the feeding trial, fish growth, body protein, and fat contents were significantly reduced in the G2 group compared with those of the G0 group (P TOR) signaling and induced endoplasmic reticulum (ER) stress pathway in both the feeding experiment and cell cultures. Our results demonstrated that gossypol inhibited TOR signaling and elevated ER stress pathways both in vivo and in vitro, thus providing new mechanism of action of gossypol in nutritional physiology. Copyright © 2017 the American Physiological Society.

  2. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jinying Zheng

    2016-01-01

    Full Text Available The increase in fructose consumption is considered to be a risk factor for developing nonalcoholic fatty liver disease (NAFLD. We investigated the effects of docosahexaenoic acid (DHA on hepatic lipid metabolism in fructose-treated primary mouse hepatocytes, and the changes of Endoplasmic reticulum (ER stress pathways in response to DHA treatment. The hepatocytes were treated with fructose, DHA, fructose plus DHA, tunicamycin (TM or fructose plus 4-phenylbutyric acid (PBA for 24 h. Intracellular triglyceride (TG accumulation was assessed by Oil Red O staining. The mRNA expression levels and protein levels related to lipid metabolism and ER stress response were determined by real-time PCR and Western blot. Fructose treatment led to obvious TG accumulation in primary hepatocytes through increasing expression of fatty acid synthase (FAS and acetyl-CoA carboxylase (ACC, two key enzymes in hepatic de novo lipogenesis. DHA ameliorates fructose-induced TG accumulation by upregulating the expression of carnitine palmitoyltransferase 1A (CPT-1α and acyl-CoA oxidase 1 (ACOX1. DHA treatment or pretreatment with the ER stress inhibitor PBA significantly decreased TG accumulation and reduced the expression of glucose-regulated protein 78 (GRP78, total inositol-requiring kinase 1 (IRE1α and p-IRE1α. The present results suggest that DHA protects against high fructose-induced hepatocellular lipid accumulation. The current findings also suggest that alleviating the ER stress response seems to play a role in the prevention of fructose-induced hepatic steatosis by DHA.

  3. Crocin protects human embryonic kidney cells (HEK293) from α- and β-Zearalenol-induced ER stress and apoptosis.

    Science.gov (United States)

    Ben Salem, Intidhar; Boussabbeh, Manel; Prola, Alexandre; Guilbert, Arnaud; Bacha, Hassen; Lemaire, Christophe; Abid-Essefi, Salwa

    2016-08-01

    α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL) are the major metabolites of Zearalenone (ZEN) and are known to induce many toxic effects. In the present study, we investigated the involvement of endoplasmic reticulum (ER) stress in α- and β-ZOL-mediated toxicity in human kidney cells (HEK293) and evaluated the effect of a common dietary compound Crocin (CRO), from saffron. We show that α- and β-ZOL treatment induces ER stress as evidenced by the upregulation of the 78 kDa glucose-regulated protein (GRP78) and the Growth arrest and DNA damage-inducible protein (GADD34). Activation of the ER stress response is associated with activation of the mitochondrial pathway of apoptosis. This apoptotic process is characterized by an increase in ROS generation and lipid peroxidation, a loss of mitochondrial transmembrane potential (ΔΨm) and activation of caspases. We also demonstrate that the antioxidant properties of CRO help to prevent ER stress and reduce α- and β-ZOL-induced apoptosis in HEK293 cells. Our results suggest that saffron consumption might be helpful to prevent α- and β-ZOL-induced ER stress and toxicity.

  4. Complexes of Usher proteins preassemble at the endoplasmic reticulum and are required for trafficking and ER homeostasis

    Directory of Open Access Journals (Sweden)

    Bernardo Blanco-Sánchez

    2014-05-01

    Full Text Available Usher syndrome (USH, the leading cause of hereditary combined hearing and vision loss, is characterized by sensorineural deafness and progressive retinal degeneration. Mutations in several different genes produce USH, but the proximal cause of sensory cell death remains mysterious. We adapted a proximity ligation assay to analyze associations among three of the USH proteins, Cdh23, Harmonin and Myo7aa, and the microtubule-based transporter Ift88 in zebrafish inner ear mechanosensory hair cells. We found that the proteins are in close enough proximity to form complexes and that these complexes preassemble at the endoplasmic reticulum (ER. Defects in any one of the three USH proteins disrupt formation and trafficking of the complex and result in diminished levels of the other proteins, generalized trafficking defects and ER stress that triggers apoptosis. ER stress, thus, contributes to sensory hair cell loss and provides a new target to explore for protective therapies for USH.

  5. Protectin DX suppresses hepatic gluconeogenesis through AMPK-HO-1-mediated inhibition of ER stress.

    Science.gov (United States)

    Jung, Tae Woo; Kim, Hyung-Chun; Abd El-Aty, A M; Jeong, Ji Hoon

    2017-06-01

    Several studies have shown that protectins, which are ω-3 fatty acid-derived proresolution mediators, may improve insulin resistance. Recently, protectin DX (PDX) was documented to attenuate insulin resistance by stimulating IL-6 expression in skeletal muscle, thereby regulating hepatic gluconeogenesis. These findings made us investigate the direct effects of PDX on hepatic glucose metabolism in the context of diabetes. In the current study, we show that PDX regulates hepatic gluconeogenesis in a manner distinct from its indirect glucoregulatory activity via IL-6. We found that PDX stimulated AMP-activated protein kinase (AMPK) phosphorylation, thereby inducing heme oxygenase 1 (HO-1) expression. This induction blocked hepatic gluconeogenesis by suppressing endoplasmic reticulum (ER) stress in hepatocytes under hyperlipidemic conditions. These effects were significantly dampened by silencing AMPK or HO-1 expression with small interfering RNA (siRNA). We also demonstrated that administration of PDX to high fat diet (HFD)-fed mice resulted in increased hepatic AMPK phosphorylation and HO-1 expression, whereas hepatic ER stress was substantially attenuated. Furthermore, PDX treatment suppressed the expression of gluconeogenic genes, thereby decreasing blood glucose levels in HFD-fed mice. In conclusion, our findings suggest that PDX inhibits hepatic gluconeogenesis via AMPK-HO-1-dependent suppression of ER stress. Thus, PDX may be an effective therapeutic target for the treatment of insulin resistance and type 2 diabetes through the regulation of hepatic gluconeogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Temporal clustering of gene expression links the metabolic transcription factor HNF4α to the ER stress-dependent gene regulatory network

    Directory of Open Access Journals (Sweden)

    Angela M Arensdorf

    2013-09-01

    Full Text Available The unfolded protein response (UPR responds to disruption of endoplasmic reticulum (ER function by initiating signaling cascades that ultimately culminate in extensive transcriptional regulation. Classically, this regulation includes genes encoding ER chaperones, ER-associated degradation factors, and others involved in secretory protein folding and processing, and is carried out by the transcriptional activators that are produced as a consequence of UPR activation. However, up to half of the mRNAs regulated by ER stress are downregulated rather than upregulated, and the mechanisms linking ER stress and UPR activation to mRNA suppression are poorly understood. To begin to address this issue, we used a bottom-up approach to study the metabolic gene regulatory network controlled by the UPR in the liver, because ER in the liver stress leads to lipid accumulation, and fatty liver disease is the most common liver disease in the western world. qRT-PCR profiling of mouse liver mRNAs during ER stress revealed that suppression of the transcriptional regulators C/EBPα, PPARα, and PGC-1α preceded lipid accumulation, and was then followed by suppression of mRNAs encoding key enzymes involved in fatty acid oxidation and lipoprotein biogenesis and transport. Mice lacking the ER stress sensor ATF6α, which experience persistent ER stress and profound lipid accumulation during challenge, were then used as the basis for a functional genomics approach that allowed genes to be grouped into distinct expression profiles. This clustering predicted that ER stress would suppress the activity of the metabolic transcriptional regulator HNF4α--a finding subsequently confirmed by chromatin immunopreciptation at the Cebpa and Pgc1a promoters. Our results establish a framework for hepatic gene regulation during ER stress and suggest that HNF4α occupies the apex of that framework. They also provide a unique resource for the community to further explore the temporal

  7. Involvement of TR3/Nur77 translocation to the endoplasmic reticulum in ER stress-induced apoptosis

    International Nuclear Information System (INIS)

    Liang Bin; Song Xuhong; Liu Gefei; Li Rui; Xie Jianping; Xiao Lifeng; Du Mudan; Zhang Qiaoxia; Xu Xiaoyuan; Gan Xueqiong; Huang Dongyang

    2007-01-01

    Nuclear orphan receptor TR3/Nur77/NGFI-B is a novel apoptotic effector protein that initiates apoptosis largely by translocating from the nucleus to the mitochondria, causing the release of cytochrome c. However, it is possible that TR3 translocates to other organelles. The present study was designed to determine the intracellular localization of TR3 following CD437-induced nucleocytoplasmic translocation and the mechanisms involved in TR3-induced apoptosis. In human neuroblastoma SK-N-SH cells and human esophageal squamous carcinoma EC109 and EC9706 cells, 5 μM CD437 induced translocation of TR3 to the endoplasmic reticulum (ER). This distribution was confirmed by immunofluorescence analysis, subcellular fractionation analysis and coimmunoprecipitation analysis. The translocated TR3 interacted with ER-targeting Bcl-2; initiated an early release of Ca 2+ from ER; resulted in ER stress and induced apoptosis through ER-specific caspase-4 activation, together with induction of mitochondrial stress and subsequent activation of caspase-9. Our results identified a novel distribution of TR3 in the ER and defined two parallel mitochondrial- and ER-based pathways that ultimately result in apoptotic cell death

  8. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation.

    Directory of Open Access Journals (Sweden)

    Denise K Gessner

    Full Text Available Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER stress-induced unfolded protein response (UPR, both of which impair animal's health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver.

  9. Lithium Induces ER Stress and N-Glycan Modification in Galactose-Grown Jurkat Cells

    Science.gov (United States)

    Kátai, Emese; Yahiro, Rikki K. K.; Poór, Viktor S.; Montskó, Gergely; Zrínyi, Zita; Kovács, Gábor L.; Miseta, Attila

    2013-01-01

    We previously reported that lithium had a significant impact on Ca2+ regulation and induced unfolded protein response (UPR) in yeast cells grown on galactose due to inhibition of phosphoglucomutase (PGM), however the exact mechanism has not been established yet. In this study, we analysed lithium's effect in galactose-fed cells to clarify whether these ER-related changes are the result of a relative hypoglycemic state. Furthermore, we investigated whether the alterations in galactose metabolism impact protein post-translational modifications. Thus, Jurkat cells were incubated in glucose or galactose containing media with or without lithium treatment. We found that galactose-fed and lithium treated cells showed better survivability than fasting cells. We also found higher UDP-Hexose and glycogen levels in these cells compared to fasting cells. On the other hand, the UPR (X-box binding protein 1 mRNA levels) of galactose-fed and lithium treated cells was even greater than in fasting cells. We also found increased amount of proteins that contained N-linked N-acetyl-glucosamine, similar to what was reported in fasting cells by a recent study. Our results demonstrate that lithium treatment of galactose-fed cells can induce stress responses similar to hypoglycemia, however cell survival is still secured by alternative pathways. We propose that clarifying this process might be an important addition toward the better understanding of the molecular mechanisms that regulate ER-associated stress response. PMID:23894652

  10. Sirt3-Mediated Autophagy Contributes to Resveratrol-Induced Protection against ER Stress in HT22 Cells

    Directory of Open Access Journals (Sweden)

    Wen-Jun Yan

    2018-02-01

    Full Text Available Endoplasmic reticulum (ER stress occurring in stringent conditions is critically involved in neuronal survival and death. Resveratrol is a non-flavonoid polyphenol that has neuroprotective effects against many neurological disorders. Here, we investigated the potential protective effects of resveratrol in an in vitro ER stress model mimicked by tunicamycin (TM treatment in neuronal HT22 cells. We found that TM dose-dependently decreased cell viability and increased apoptosis, which were both significantly attenuated by resveratrol treatment. Resveratrol markedly reduced the expression or activation of ER stress-associated factors, including GRP78, CHOP, and caspase-12. The results of immunocytochemistry and western blot showed that resveratrol promoted autophagy in TM-treated cells, as evidenced by increased LC3II puncta number, bcelin1 expression and LC3II/LC3I ratio. Pretreatment with the autophagy inhibitor chloroquine could reduce the protective effects of resveratrol. In addition, the expression of Sirt3 protein and its downstream enzyme activities were significantly increased in resveratrol-treated HT22 cells. To confirm the involvement of Sirt3-mediated mechanisms, siRNA transfection was used to knockdown Sirt3 expression in vitro. The results showed that downregulation of Sirt3 could partially prevented the autophagy and protection induced by resveratrol after TM treatment. Our study demonstrates a pivotal role of Sirt3-mediated autophagy in mediating resveratrol-induced protection against ER stress in vitro, and suggests the therapeutic values of resveratrol in ER stress-associated neuronal injury conditions.

  11. Stress in recombinant protein producing yeasts.

    Science.gov (United States)

    Mattanovich, Diethard; Gasser, Brigitte; Hohenblum, Hubertus; Sauer, Michael

    2004-09-30

    It is well established today that heterologous overexpression of proteins is connected with different stress reactions. The expression of a foreign protein at a high level may either directly limit other cellular processes by competing for their substrates, or indirectly interfere with metabolism, if their manufacture is blocked, thus inducing a stress reaction of the cell. Especially the unfolded protein response (UPR) in Saccharomyces cerevisiae (as well as some other yeasts) is well documented, and its role for the limitation of expression levels is discussed. One potential consequence of endoplasmatic reticulum folding limitations is the ER associated protein degradation (ERAD) involving retrotranslocation and decay in the cytosol. High cell density fermentation, the typical process design for recombinant yeasts, exerts growth conditions that deviate far from the natural environment of the cells. Thus, different environmental stresses may be exerted on the host. High osmolarity, low pH and low temperature are typical stress factors. Whereas the molecular pathways of stress responses are well characterized, there is a lack of knowledge concerning the impact of stress responses on industrial production processes. Accordingly, most metabolic engineering approaches conducted so far target at the improvement of protein folding and secretion, whereas only few examples of cell engineering against general stress sensitivity were published. Apart from discussing well-documented stress reactions of yeasts in the context of heterologous protein production, some more speculative topics like quorum sensing and apoptosis are addressed.

  12. Homeostatic interplay between FoxO proteins and ER proteostasis in cancer and other diseases.

    Science.gov (United States)

    González-Quiroz, Matías; Urra, Hery; Limia, Celia María; Hetz, Claudio

    2018-01-31

    Cancer cells are exposed to adverse conditions within the tumor microenvironment that challenge cells to adapt and survive. Several of these homeostatic perturbations insults alter the normal function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins. ER stress triggers a conserved signaling pathway known as the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. The UPR has been described as a major driver in the acquisition of malignant characteristics that ultimately lead to cancer progression. Although, several reports describe the relevance of the UPR in tumor growth, the possible crosstalk with other cancer-related pathways is starting to be elucidated. The Forkhead Box O (FoxO) subfamily of proteins has a major role in cancer progression, where chromosomal translocations and deregulated signaling lead to loss-of-function of FoxO proteins, contributing to tumor progression. Here we discuss the homeostatic connection between the UPR and FoxO proteins and its possible implications to tumor progression and the acquisition of several hallmarks of cancer. In addition, studies linking a crosstalk between the UPR and FoxO proteins in other diseases, including neurodegeneration and metabolic disorders is provided. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Arecoline Induces Neurotoxicity to PC12 Cells: Involvement in ER Stress and Disturbance of Endogenous H2S Generation.

    Science.gov (United States)

    Jiang, Jia-Mei; Wang, Li; Gu, Hong-Feng; Wu, Keng; Xiao, Fan; Chen, Ying; Guo, Run-Min; Tang, Xiao-Qing

    2016-08-01

    Arecoline is a major alkaloid of areca nut and has been effect on central nervous system. Although arecoline-induced neurotoxicity has been reported, the possible underlying neurotoxic mechanisms have not yet been elucidated. Increasing evidences have shown that both excessive endoplasmic reticulum (ER) stress and disturbance of hydrogen sulfide (H2S) production are involved in the pathophysiology of numerous neurodegenerative diseases. Here, the purpose of present study was to verify whether ER stress and the disturbance of endogenous H2S generation are also involved in arecoline-caused neurotoxicity. We found that treatment of PC12 cells with arecoline induced the down-regulation of cells viability and up-regulation of apoptosis and the activity of caspase-3, indicating the neurotoxic role of arecoline to PC12 cells. In addition, arecoline also increased the expression of Bax (pro-apoptotic protein) and attenuated the expression of Bcl-2 (anti-apoptotic protein) in PC12 cells. Simultaneously, arecoline caused excessive ER stress in PC12 cells, as evidenced by the up-regulations of Glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein homologous protein (CHOP), and Cleaved caspase-12 expressions. Notably, the level of H2S in the culture supernatant and the expressions of cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase (two major enzymes for endogenous H2S generation in PC12 cells) were also reduced by arecoline treatment. These results indicate that arecoline-caused neurotoxicity to PC12 cells is involved in ER stress and disturbance of endogenous H2S generation and suggest that the modulation of ER stress and endogenous H2S generation may be potential therapeutic approach in treatment of arecoline-caused neurotoxicity.

  14. Spliced leader RNA silencing (SLS - a programmed cell death pathway in Trypanosoma brucei that is induced upon ER stress

    Directory of Open Access Journals (Sweden)

    Michaeli Shulamit

    2012-05-01

    Full Text Available Abstract Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite cycles between its insect (procyclic form and mammalian hosts (bloodstream form. Trypanosomes lack conventional transcription regulation, and their genes are transcribed in polycistronic units that are processed by trans-splicing and polyadenylation. In trans-splicing, which is essential for processing of each mRNA, an exon, the spliced leader (SL is added to all mRNAs from a small RNA, the SL RNA. Trypanosomes lack the machinery for the unfolded protein response (UPR, which in other eukaryotes is induced under endoplasmic reticulum (ER stress. Trypanosomes respond to such stress by changing the stability of mRNAs, which are essential for coping with the stress. However, under severe ER stress that is induced by blocking translocation of proteins to the ER, treatment of cells with chemicals that induce misfolding in the ER, or extreme pH, trypanosomes elicit the spliced leader silencing (SLS pathway. In SLS, the transcription of the SL RNA gene is extinguished, and tSNAP42, a specific SL RNA transcription factor, fails to bind to its cognate promoter. SLS leads to complete shut-off of trans-splicing. In this review, I discuss the UPR in mammals and compare it to the ER stress response in T. brucei leading to SLS. I summarize the evidence supporting the notion that SLS is a programmed cell death (PCD pathway that is utilized by the parasites to substitute for the apoptosis observed in higher eukaryotes under prolonged ER stress. I present the hypothesis that SLS evolved to expedite the death process, and rapidly remove from the population unfit parasites that, by elimination via SLS, cause minimal damage to the parasite population.

  15. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells.

    Science.gov (United States)

    Fonseca, Sonya G; Ishigaki, Shinsuke; Oslowski, Christine M; Lu, Simin; Lipson, Kathryn L; Ghosh, Rajarshi; Hayashi, Emiko; Ishihara, Hisamitsu; Oka, Yoshitomo; Permutt, M Alan; Urano, Fumihiko

    2010-03-01

    Wolfram syndrome is an autosomal-recessive disorder characterized by insulin-dependent diabetes mellitus, caused by nonautoimmune loss of beta cells, and neurological dysfunctions. We have previously shown that mutations in the Wolfram syndrome 1 (WFS1) gene cause Wolfram syndrome and that WFS1 has a protective function against ER stress. However, it remained to be determined how WFS1 mitigates ER stress. Here we have shown in rodent and human cell lines that WFS1 negatively regulates a key transcription factor involved in ER stress signaling, activating transcription factor 6alpha (ATF6alpha), through the ubiquitin-proteasome pathway. WFS1 suppressed expression of ATF6alpha target genes and repressed ATF6alpha-mediated activation of the ER stress response element (ERSE) promoter. Moreover, WFS1 stabilized the E3 ubiquitin ligase HRD1, brought ATF6alpha to the proteasome, and enhanced its ubiquitination and proteasome-mediated degradation, leading to suppression of ER stress signaling. Consistent with these data, beta cells from WFS1-deficient mice and lymphocytes from patients with Wolfram syndrome exhibited dysregulated ER stress signaling through upregulation of ATF6alpha and downregulation of HRD1. These results reveal a role for WFS1 in the negative regulation of ER stress signaling and in the pathogenesis of diseases involving chronic, unresolvable ER stress, such as pancreatic beta cell death in diabetes.

  16. Dual Role of Ancient Ubiquitous Protein 1 (AUP1) in Lipid Droplet Accumulation and Endoplasmic Reticulum (ER) Protein Quality Control

    OpenAIRE

    Klemm, Elizabeth J.; Spooner, Eric; Ploegh, Hidde L.

    2011-01-01

    Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit t...

  17. Altered methylation and expression of ER-associated degradation factors in long-term alcohol and constitutive ER stress-induced murine hepatic tumors

    Directory of Open Access Journals (Sweden)

    Hui eHan

    2013-10-01

    Full Text Available Mortality from liver cancer in humans is increasingly attributable to heavy or long-term alcohol consumption. The mechanisms by which alcohol exerts its carcinogenic effect are not well understood. In this study, the role of alcohol-induced endoplasmic reticulum (ER stress response in liver cancer development was investigated using an animal model with a liver knockout of the chaperone BiP and under constitutive hepatic ER stress. Long-term alcohol and high fat diet (HFD feeding resulted in higher levels of serum alanine aminotransferase (ALT, impaired ER stress response, and higher incidence of liver tumor in older (aged 16 months knockout females than in either middle-aged (6 months knockouts or older (aged 16 months wild type females. In the older knockout females, stronger effects of the alcohol on methylation of CpG islands at promoter regions of genes involved in the ER associated degradation (ERAD were also detected. Altered expression of ERAD factors including derlin 3, Creld2 (cysteine-rich with EGF-like domains 2, Herpud1 (ubiquitin-like domain member, Wfs1 (wolfram syndrome gene, and Yod1 (deubiquinating enzyme 1 was co-present with decreased proteasome activities, increased estrogen receptor alpha variant (ERa36, and enhanced phosphorylations of ERK1/2 (extracellular signal-regulated protein kinases 1 and 2 and STAT3 (the signal transducers and activators of transcription in the older knockout female fed alcohol. Our results suggest that long-term alcohol consumption and ageing may promote liver tumorigenesis in females through interfering with DNA methylation and expression of genes involved in the ER associated degradation.

  18. Endoplasmic reticulum stress activates transglutaminase 2 leading to protein aggregation.

    Science.gov (United States)

    Lee, Jin-Haeng; Jeong, Jaeho; Jeong, Eui Man; Cho, Sung-Yup; Kang, Jeong Wook; Lim, Jisun; Heo, Jinbeom; Kang, Hyunsook; Kim, In-Gyu; Shin, Dong-Myung

    2014-04-01

    Aberrant activation of transglutaminase 2 (TGase2) contributes to a variety of protein conformational disorders such as neurodegenerative diseases and age-related cataracts. The accumulation of improperly folded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), which promotes either repair or degradation of the damaged proteins. Inadequate UPR results in protein aggregation that may contribute to the development of age-related degenerative diseases. TGase2 is a calcium-dependent enzyme that irreversibly modifies proteins by forming cross-linked protein aggregates. Intracellular TGase2 is activated by oxidative stress which generates large quantities of unfolded proteins. However, the relationship between TGase2 activity and UPR has not yet been established. In the present study, we demonstrated that ER stress activated TGase2 in various cell types. TGase2 activation was dependent on the ER stress-induced increase in the intracellular calcium ion concentration but not on the TGase2 protein expression level. Enzyme substrate analysis revealed that TGase2-mediated protein modification promoted protein aggregation concurrently with decreasing water solubility. Moreover, treatment with KCC009, a TGase2 inhibitor, abrogated ER stress-induced TGase2 activation and subsequent protein aggregation. However, TGase2 activation had no effect on ER stress-induced cell death. These results demonstrate that the accumulation of misfolded proteins activates TGase2, which further accelerates the formation of protein aggregates. Therefore, we suggest that inhibition of TGase2 may be a novel strategy by which to prevent the protein aggregation in age-related degenerative diseases.

  19. Morbillivirus glycoprotein expression induces ER stress, alters Ca2+ homeostasis and results in the release of vasostatin.

    Directory of Open Access Journals (Sweden)

    Jean-Marc Brunner

    Full Text Available Although the pathology of Morbillivirus in the central nervous system (CNS is well described, the molecular basis of neurodegenerative events still remains poorly understood. As a model to explore Morbillivirus-mediated CNS dysfunctions, we used canine distemper virus (CDV that we inoculated into two different cell systems: a monkey cell line (Vero and rat primary hippocampal neurons. Importantly, the recombinant CDV used in these studies not only efficiently infects both cell types but recapitulates the uncommon, non-cytolytic cell-to-cell spread mediated by virulent CDVs in brain of dogs. Here, we demonstrated that both CDV surface glycoproteins (F and H markedly accumulated in the endoplasmic reticulum (ER. This accumulation triggered an ER stress, characterized by increased expression of the ER resident chaperon calnexin and the proapoptotic transcription factor CHOP/GADD 153. The expression of calreticulin (CRT, another ER resident chaperon critically involved in the response to misfolded proteins and in Ca(2+ homeostasis, was also upregulated. Transient expression of recombinant CDV F and H surface glycoproteins in Vero cells and primary hippocampal neurons further confirmed a correlation between their accumulation in the ER, CRT upregulation, ER stress and disruption of ER Ca(2+ homeostasis. Furthermore, CDV infection induced CRT fragmentation with re-localisation of a CRT amino-terminal fragment, also known as vasostatin, on the surface of infected and neighbouring non-infected cells. Altogether, these results suggest that ER stress, CRT fragmentation and re-localization on the cell surface may contribute to cytotoxic effects and ensuing cell dysfunctions triggered by Morbillivirus, a mechanism that might potentially be relevant for other neurotropic viruses.

  20. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction.

    Directory of Open Access Journals (Sweden)

    Sanjeev Gupta

    2010-07-01

    Full Text Available Endoplasmic reticulum (ER stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR. Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1alpha, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1alpha or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1alpha. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1alpha in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1alpha enhances IRE1alpha/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.

  1. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction.

    LENUS (Irish Health Repository)

    Gupta, Sanjeev

    2010-01-01

    Endoplasmic reticulum (ER) stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR). Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1alpha, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1alpha or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1alpha. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1alpha in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1alpha enhances IRE1alpha\\/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.

  2. Increased reactive oxygen species levels cause ER stress and cytotoxicity in andrographolide treated colon cancer cells.

    Science.gov (United States)

    Banerjee, Aditi; Banerjee, Vivekjyoti; Czinn, Steven; Blanchard, Thomas

    2017-04-18

    Chemotherapy continues to play an essential role in the management of many cancers including colon cancer, the third leading cause of death due to cancer in the United States. Many naturally occurring plant compounds have been demonstrated to possess anti-cancer cell activity and have the potential to supplement existing chemotherapy strategies. The plant metabolite andrographolide induces cell death in cancer cells and apoptosis is dependent upon the induction of endoplasmic reticulum stress (ER stress) leading to the unfolded protein response (UPR). The goal of the present study was to determine the mechanism by which andrographolide induces ER stress and to further evaluate its role in promoting cell death pathways. The T84 and COLO 205 cancer cell lines were used to demonstrate that andrographolide induces increased ROS levels, corresponding anti-oxidant response molecules, and reduced mitochondrial membrane potential. No increases in ROS levels were detected in control colon fibroblast cells. Andrographolide-induced cell death, UPR signaling, and CHOP, Bax, and caspase 3 apoptosis elements were all inhibited in the presence of the ROS scavenger NAC. Additionally, andrographolide-induced suppression of cyclins B1 and D1 were also reversed in the presence of NAC. Finally, Akt phosphorylation and phospho-mTOR levels that are normally suppressed by andrographolide were also expressed at normal levels in the absence of ROS. These data demonstrate that andrographolide induces ER stress leading to apoptosis through the induction of ROS and that elevated ROS also play an important role in down-regulating cell cycle progression and cell survival pathways as well.

  3. Signaling dynamics of palmitate-induced ER stress responses mediated by ATF4 in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Cho Hyunju

    2013-01-01

    Full Text Available Abstract Background Palmitic acid, the most common saturated free fatty acid, has been implicated in ER (endoplasmic reticulum stress-mediated apoptosis. This lipoapotosis is dependent, in part, on the upregulation of the activating transcription factor-4 (ATF4. To better understand the mechanisms by which palmitate upregulates the expression level of ATF4, we integrated literature information on palmitate-induced ER stress signaling into a discrete dynamic model. The model provides an in silico framework that enables simulations and predictions. The model predictions were confirmed through further experiments in human hepatocellular carcinoma (HepG2 cells and the results were used to update the model and our current understanding of the signaling induced by palmitate. Results The three key things from the in silico simulation and experimental results are: 1 palmitate induces different signaling pathways (PKR (double-stranded RNA-activated protein kinase, PERK (PKR-like ER kinase, PKA (cyclic AMP (cAMP-dependent protein kinase A in a time dependent-manner, 2 both ATF4 and CREB1 (cAMP-responsive element-binding protein 1 interact with the Atf4 promoter to contribute to a prolonged accumulation of ATF4, and 3 CREB1 is involved in ER-stress induced apoptosis upon palmitate treatment, by regulating ATF4 expression and possibly Ca2+ dependent-CaM (calmodulin signaling pathway. Conclusion The in silico model helped to delineate the essential signaling pathways in palmitate-mediated apoptosis.

  4. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis.

    Science.gov (United States)

    DeZwaan-McCabe, Diane; Sheldon, Ryan D; Gorecki, Michelle C; Guo, Deng-Fu; Gansemer, Erica R; Kaufman, Randal J; Rahmouni, Kamal; Gillum, Matthew P; Taylor, Eric B; Teesch, Lynn M; Rutkowski, D Thomas

    2017-05-30

    The unfolded protein response (UPR), induced by endoplasmic reticulum (ER) stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Lysine trimethylation regulates 78-kDa glucose-regulated protein proteostasis during endoplasmic reticulum stress.

    Science.gov (United States)

    Sieber, Jonas; Wieder, Nicolas; Ostrosky-Frid, Mauricio; Dvela-Levitt, Moran; Aygün, Ozan; Udeshi, Namrata D; Carr, Steven A; Greka, Anna

    2017-11-17

    The up-regulation of chaperones such as the 78-kDa glucose-regulated protein (GRP78, also referred to as BiP or HSPA5) is part of the adaptive cellular response to endoplasmic reticulum (ER) stress. GRP78 is widely used as a marker of the unfolded protein response, associated with sustained ER stress. Here we report the discovery of a proteostatic mechanism involving GRP78 trimethylation in the context of ER stress. Using mass spectrometry-based proteomics, we identified two GRP78 fractions, one homeostatic and one induced by ER stress. ER stress leads to de novo biosynthesis of non-trimethylated GRP78, whereas homeostatic, METTL21A-dependent lysine 585-trimethylated GRP78 is reduced. This proteostatic mechanism, dependent on the posttranslational modification of GRP78, allows cells to differentially regulate specific protein abundance during cellular stress. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Paradoxical resistance to myocardial ischemia and age-related cardiomyopathy in NHE1 transgenic mice: a role for ER stress?

    Science.gov (United States)

    Cook, Alexandra R; Bardswell, Sonya C; Pretheshan, Subashini; Dighe, Kushal; Kanaganayagam, Gajen S; Jabr, Rita I; Merkle, Sabine; Marber, Michael S; Engelhardt, Stefan; Avkiran, Metin

    2009-02-01

    Sarcolemmal Na(+)/H(+) exchanger (NHE) activity, which is provided by the NHE isoform 1 (NHE1), has been implicated in ischemia/reperfusion-induced myocardial injury in animal models and humans, on the basis of studies with pharmacological NHE1 inhibitors. We generated a transgenic (TG) mouse model with cardiac-specific over-expression of NHE1 to determine whether this would be sufficient to increase myocardial susceptibility to ischemia/reperfusion-induced injury. TG mouse hearts exhibited increased sarcolemmal NHE activity and normal morphology and function. Surprisingly, they also showed reduced susceptibility to ischemia/reperfusion-induced injury, as reflected by improved functional recovery and smaller infarcts. Such protection was sustained in the presence of NHE1 inhibition with zoniporide, indicating a mechanism that is independent of sarcolemmal NHE activity. Immunoblot analysis revealed accumulation of immature NHE1 protein as well as marked upregulation of both cytoprotective (78/94 kDa glucose-regulated proteins, calreticulin, protein disulfide isomerase) and pro-apoptotic (C/EBP homologous protein) components of the endoplasmic reticulum (ER) stress response in TG myocardium. With increasing age, NHE1 TG mice exhibited increased myocyte apoptosis, developed left ventricular contractile dysfunction, underwent cardiac remodelling and died prematurely. Our findings indicate that: (1) Cardiac-specific NHE1 over-expression induces the ER stress response in mouse myocardium, which may afford protection against ischemia/reperfusion-induced injury despite increased NHE activity; (2) Ageing NHE1 TG mice exhibit myocyte apoptosis, cardiac remodelling and failure, likely as a result of sustained ER stress; (3) The pluripotent effects of the ER stress response may confound studies that are based on the chronic over-expression of complex proteins in myocardium.

  7. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    Directory of Open Access Journals (Sweden)

    Daniel F. Markgraf

    2014-01-01

    Full Text Available Eukaryotic cells store neutral lipids such as triacylglycerol (TAG in lipid droplets (LDs. Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER. We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG. During LD breakdown in early exponential phase, an ER membrane protein (Ice2p facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.

  8. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    International Nuclear Information System (INIS)

    Gao, Jialin; Zhang, Yao; Yu, Cui; Tan, Fengbiao; Wang, Lizhuo

    2016-01-01

    Sidt2 is a newly discovered lysosomal membrane protein that is closely related to glucose metabolism. In the present study, we found that Sidt2 is also closely related to lipid metabolism. Gradual increases in serum triglyceride (TG) and free fatty acid, as well as elevated aspartate transaminase and alanine transaminase levels were observed in Sidt2 −/− mice fed a normal diet from the age of 3 months, suggesting the presence of lipid metabolism disorders and impaired liver function in these mice. In the liver slices of 6-month-old Sidt2 −/− mice, there were obvious fat degeneration and inflammatory changes. Almost all of the liver cells demonstrated different levels of lipid droplet accumulation and cell swelling, and some of the cells demonstrated balloon-like changes. Infiltration of inflammatory cells was observed in the portal area and hepatic lobule. Electron microscopy showed that macrophages tended to be attached to the endothelial cells, and a large number of lipid droplets were present in the liver cells. Oil red O staining showed that there were significantly increased number of deep straining particles in the liver cells of Sidt2 −/− mice, and the TG content in liver tissue was also significantly increased. Detection of key genes and proteins related to fat synthesis showed that mRNA and protein levels of the SREBP1c in the liver of Sidt2 −/− mice were significantly elevated, and the downstream genes acetyl-CoA carboxylase, fatty acid synthase, and mitochondrial glycerol 3-phosphate acyltransferase were significantly upregulated. In addition, there was severe endoplasmic reticulum stress (ERS) in the liver of Sidt2 −/− mice, which had significantly increased levels of markers specific for unfolded protein response activation, Grp78 and CHOP, as well as significant elevation of downstream p-PERK, p-eIF2a, p-IRE1a, along with ER damage. These results suggest that Sidt2 −/− mice had spontaneous nonalcoholic fatty liver disease

  9. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jialin [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Zhang, Yao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Yu, Cui [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Tan, Fengbiao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Wang, Lizhuo, E-mail: 19277924@qq.com [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China)

    2016-08-05

    Sidt2 is a newly discovered lysosomal membrane protein that is closely related to glucose metabolism. In the present study, we found that Sidt2 is also closely related to lipid metabolism. Gradual increases in serum triglyceride (TG) and free fatty acid, as well as elevated aspartate transaminase and alanine transaminase levels were observed in Sidt2{sup −/−} mice fed a normal diet from the age of 3 months, suggesting the presence of lipid metabolism disorders and impaired liver function in these mice. In the liver slices of 6-month-old Sidt2{sup −/−} mice, there were obvious fat degeneration and inflammatory changes. Almost all of the liver cells demonstrated different levels of lipid droplet accumulation and cell swelling, and some of the cells demonstrated balloon-like changes. Infiltration of inflammatory cells was observed in the portal area and hepatic lobule. Electron microscopy showed that macrophages tended to be attached to the endothelial cells, and a large number of lipid droplets were present in the liver cells. Oil red O staining showed that there were significantly increased number of deep straining particles in the liver cells of Sidt2{sup −/−} mice, and the TG content in liver tissue was also significantly increased. Detection of key genes and proteins related to fat synthesis showed that mRNA and protein levels of the SREBP1c in the liver of Sidt2{sup −/−} mice were significantly elevated, and the downstream genes acetyl-CoA carboxylase, fatty acid synthase, and mitochondrial glycerol 3-phosphate acyltransferase were significantly upregulated. In addition, there was severe endoplasmic reticulum stress (ERS) in the liver of Sidt2{sup −/−} mice, which had significantly increased levels of markers specific for unfolded protein response activation, Grp78 and CHOP, as well as significant elevation of downstream p-PERK, p-eIF2a, p-IRE1a, along with ER damage. These results suggest that Sidt2{sup −/−} mice had spontaneous

  10. Cocaine-mediated induction of microglial activation involves the ER stress-TLR2 axis.

    Science.gov (United States)

    Liao, Ke; Guo, Minglei; Niu, Fang; Yang, Lu; Callen, Shannon E; Buch, Shilpa

    2016-02-09

    Neuroinflammation associated with advanced human immunodeficiency virus (HIV)-1 infection is often exacerbated by chronic cocaine abuse. Cocaine exposure has been demonstrated to mediate up-regulation of inflammatory mediators in in vitro cultures of microglia. The molecular mechanisms involved in this process, however, remain poorly understood. In this study, we sought to explore the underlying signaling pathways involved in cocaine-mediated activation of microglial cells. BV2 microglial cells were exposed to cocaine and assessed for toll-like receptor (TLR2) expression by quantitative polymerase chain reaction (qPCR), western blot, flow cytometry, and immunofluorescence staining. The mRNA and protein levels of cytokines (TNFα, IL-6, MCP-1) were detected by qPCR and ELISA, respectively; level of reactive oxygen species (ROS) production was examined by the Image-iT LIVE Green ROS detection kit; activation of endoplasmic reticulum (ER)-stress pathways were detected by western blot. Chromatin immunoprecipitation (ChIP) assay was employed to discern the binding of activating transcription factor 4 (ATF4) with the TLR2 promoter. Immunoprecipitation followed by western blotting with tyrosine antibody was used to determine phosphorylation of TLR2. Cocaine-mediated up-regulation of TLR2 expression and microglial activation was validated in cocaine-injected mice. Exposure of microglial cells to cocaine resulted in increased expression of TLR2 with a concomitant induction of microglial activation. Furthermore, this effect was mediated by NADPH oxidase-mediated rapid accumulation of ROS with downstream activation of the ER-stress pathways as evidenced by the fact that cocaine exposure led to up-regulation of pPERK/peIF2α/ATF4 and TLR2. The novel role of ATF4 in the regulation of TLR2 expression was confirmed using genetic and pharmacological approaches. xThe current study demonstrates that cocaine-mediated activation of microglia involves up-regulation of TLR2 through the

  11. ER Stress Induced by Tunicamycin Triggers α-Synuclein Oligomerization, Dopaminergic Neurons Death and Locomotor Impairment: a New Model of Parkinson's Disease.

    Science.gov (United States)

    Cóppola-Segovia, Valentín; Cavarsan, Clarissa; Maia, Flavia G; Ferraz, Anete C; Nakao, Lia S; Lima, Marcelo Ms; Zanata, Silvio M

    2017-10-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive death of dopaminergic neurons of the substantia nigra pars compacta (SNpc), leading to the major clinical abnormalities that characterize this disease. Although PD's etiology is unknown, α-synuclein aggregation plays a pivotal role in PD pathogenesis, which could be associated to some pathological processes such as oxidative stress, endoplasmic reticulum (ER) stress, impaired protein degradation, and mitochondrial dysfunction. Increasing experimental evidence indicates that ER stress is involved in PD, however most of the described results employed cultured cell lines and genetically modified animal models. In this study, we developed a new ER stress rat model employing the well-known ER stressor tunicamycin (Tm). To evaluate if ER stress was able to induce PD features, we performed an intranigral injection of Tm (0.1 μg/cerebral hemisphere) and animals (male Wistar rats) were analyzed 7 days post injection. The classical 6-OHDA neurotoxin model (1 μg/cerebral hemisphere) was used as an established positive control for PD. We show that Tm injection induced locomotor impairment, dopaminergic neurons death, and activation of astroglia. In addition, we observed an extensive α-synuclein oligomerization in SNpc of Tm-injected animals when compared with DMSO-injected controls. Finally, both Tm and 6-OHDA treated animals presented increased levels of ER stress markers. Taken together, these findings show for the first time that the ER stressor Tm recapitulates some of the phenotypic characteristics observed in rodent models of PD, reinforcing the concept that ER stress could be an important contributor to the pathophysiology of PD. Therefore, we propose the intranigral Tm injection as a new ER stress-based model for the study of PD in vivo.

  12. Programming of Fetal Insulin Resistance in Pregnancies with Maternal Obesity by ER Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Francisco Westermeier

    2014-01-01

    Full Text Available The global epidemics of obesity during pregnancy and excessive gestational weight gain (GWG are major public health problems worldwide. Obesity and excessive GWG are related to several maternal and fetal complications, including diabetes (pregestational and gestational diabetes and intrauterine programming of insulin resistance (IR. Maternal obesity (MO and neonatal IR are associated with long-term development of obesity, diabetes mellitus, and increased global cardiovascular risk in the offspring. Multiple mechanisms of insulin signaling pathway impairment have been described in obese individuals, involving complex interactions of chronically elevated inflammatory mediators, adipokines, and the critical role of the endoplasmic reticulum (ER stress-dependent unfolded protein response (UPR. However, the underlying cellular processes linking MO and IR in the offspring have not been fully elucidated. Here, we summarize the state-of-the-art evidence supporting the possibility that adverse metabolic postnatal outcomes such as IR in the offspring of pregnancies with MO and/or excessive GWG may be related to intrauterine activation of ER stress response.

  13. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    Science.gov (United States)

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  14. Integrative bioinformatics and proteomics-based discovery of an eEF2K inhibitor (cefatrizine) with ER stress modulation in breast cancer cells.

    Science.gov (United States)

    Yao, Zhiqiang; Li, Juntang; Liu, Zhongyu; Zheng, Lu; Fan, Naijun; Zhang, Ying; Jia, Nan; Lv, Jingjing; Liu, Ningning; Zhu, Xiaoshan; Du, Jiangbo; Lv, Ci; Xie, Feng; Liu, Yigang; Wang, Xingke; Fei, Zhou; Gao, Chunfang

    2016-03-01

    Eukaryotic elongation factor-2 kinase (eEF2K), a unique calcium/calmodulin-dependent protein kinase, is well known to regulate apoptosis, autophagy and ER stress in many types of human cancers. Therefore, eEF2K would be regarded as a promising therapeutic target; however, the eEF2K-regulated mechanism and its targeted inhibitor still remain to be discovered in cancer. Herein, we constructed a protein-protein interaction (PPI) network of eEF2K and achieved an eEF2K-regulated ER stress subnetwork by bioinformatics prediction. Then, we found that the differential protein expressions involved in ER stress in the context of si-eEF2K-treated MCF-7 and MDA-MB-436 cells by iTRAQ-based analyses, respectively. Integrated into these aforementioned results, we constructed a core eEF2K-regulated ER stress subnetwork in breast cancer cells. Subsequently, we screened a series of candidate compounds targeting eEF2K and discovered a novel eEF2K inhibitor (cefatrizine) with an anti-proliferative activity toward breast cancer cells. Moreover, we found that cefatrizine induced ER stress in both MCF-7 and MDA-MB-436 cells. Interestingly, we demonstrated that the mechanism of cefatrizine-induced ER stress was in good agreement with our bioinformatics and proteomics-based results. In conclusion, these results demonstrate that a novel eEF2K inhibitor (cefatrizine) induces ER stress in breast cancer cells by integrating bioinformatics prediction, proteomics analyses and experimental validation, which would provide a clue for exploring more mechanisms of eEF2K and its targeted inhibitors in cancer therapy.

  15. Calcineurin Interacts with PERK and Dephosphorylates Calnexin to Relieve ER Stress in Mammals and Frogs

    OpenAIRE

    Bollo, Mariana; Paredes, R. Madelaine; Holstein, Deborah; Zheleznova, Nadezhda; Camacho, Patricia; Lechleiter, James D.

    2010-01-01

    Background The accumulation of misfolded proteins within the endoplasmic reticulum (ER) triggers a cellular process known as the Unfolded Protein Response (UPR). One of the earliest responses is the attenuation of protein translation. Little is known about the role that Ca2+ mobilization plays in the early UPR. Work from our group has shown that cytosolic phosphorylation of calnexin (CLNX) controls Ca2+ uptake into the ER via the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) 2b. Methodology...

  16. Zearalenone altered the cytoskeletal structure via ER stress- autophagy- oxidative stress pathway in mouse TM4 Sertoli cells.

    Science.gov (United States)

    Zheng, Wanglong; Wang, Bingjie; Si, Mengxue; Zou, Hui; Song, Ruilong; Gu, Jianhong; Yuan, Yan; Liu, Xuezhong; Zhu, Guoqiang; Bai, Jianfa; Bian, Jianchun; Liu, ZongPing

    2018-02-20

    The aim of this study was to investigate the molecular mechanisms of the destruction of cytoskeletal structure by Zearalenone (ZEA) in mouse-derived TM4 cells. In order to investigate the role of autophagy, oxidative stress and endoplasmic reticulum(ER) stress in the process of destruction of cytoskeletal structure, the effects of ZEA on the cell viability, cytoskeletal structure, autophagy, oxidative stress, ER stress, MAPK and PI3K- AKT- mTOR signaling pathways were studied. The data demonstrated that ZEA damaged the cytoskeletal structure through the induction of autophagy that leads to the alteration of cytoskeletal structure via elevated oxidative stress. Our results further showed that the autophagy was stimulated by ZEA through PI3K-AKT-mTOR and MAPK signaling pathways in TM4 cells. In addition, ZEA also induced the ER stress which was involved in the induction of the autophagy through inhibiting the ERK signal pathway to suppress the phosphorylation of mTOR. ER stress was involved in the damage of cytoskeletal structure through induction of autophagy by producing ROS. Taken together, this study revealed that ZEA altered the cytoskeletal structure via oxidative stress - autophagy- ER stress pathway in mouse TM4 Sertoli cells.

  17. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    DEFF Research Database (Denmark)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco

    2014-01-01

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary...... phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic...... and explain how cells switch neutral lipid metabolism from storage to consumption....

  18. DISC1 Modulates Neuronal Stress Responses by Gate-Keeping ER-Mitochondria Ca2+ Transfer through the MAM.

    Science.gov (United States)

    Park, Sung Jin; Lee, Su Been; Suh, Yeongjun; Kim, Su-Jeong; Lee, Namgyu; Hong, Ji-Ho; Park, Cana; Woo, Youngsik; Ishizuka, Koko; Kim, Joung-Hun; Berggren, Per-Olof; Sawa, Akira; Park, Sang Ki

    2017-12-05

    A wide range of Ca 2+ -mediated functions are enabled by the dynamic properties of Ca 2+ , all of which are dependent on the endoplasmic reticulum (ER) and mitochondria. Disrupted-in-schizophrenia 1 (DISC1) is a scaffold protein that is involved in the function of intracellular organelles and is linked to cognitive and emotional deficits. Here, we demonstrate that DISC1 localizes to the mitochondria-associated ER membrane (MAM). At the MAM, DISC1 interacts with IP 3 R1 and downregulates its ligand binding, modulating ER-mitochondria Ca 2+ transfer through the MAM. The disrupted regulation of Ca 2+ transfer caused by DISC1 dysfunction leads to abnormal Ca 2+ accumulation in mitochondria following oxidative stress, which impairs mitochondrial functions. DISC1 dysfunction alters corticosterone-induced mitochondrial Ca 2+ accumulation in an oxidative stress-dependent manner. Together, these findings link stress-associated neural stimuli with intracellular ER-mitochondria Ca 2+ crosstalk via DISC1, providing mechanistic insight into how environmental risk factors can be interpreted by intracellular pathways under the control of genetic components in neurons. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response inSaccharomyces cerevisiae.

    Science.gov (United States)

    Kawazoe, Nozomi; Kimata, Yukio; Izawa, Shingo

    2017-01-01

    Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae , it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER) and unfolded protein response (UPR) has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v). Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1 Δ and hac1 Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid) and mild ethanol stress (5% ethanol) induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  20. TUSC3 Loss Alters the ER Stress Response and Accelerates Prostate Cancer Growth in vivo

    Science.gov (United States)

    Horak, Peter; Tomasich, Erwin; Vaňhara, Petr; Kratochvílová, Kateřina; Anees, Mariam; Marhold, Maximilian; Lemberger, Christof E.; Gerschpacher, Marion; Horvat, Reinhard; Sibilia, Maria; Pils, Dietmar; Krainer, Michael

    2014-01-01

    Prostate cancer is the most prevalent cancer in males in developed countries. Tumor suppressor candidate 3 (TUSC3) has been identified as a putative tumor suppressor gene in prostate cancer, though its function has not been characterized. TUSC3 shares homologies with the yeast oligosaccharyltransferase (OST) complex subunit Ost3p, suggesting a role in protein glycosylation. We provide evidence that TUSC3 is part of the OST complex and affects N-linked glycosylation in mammalian cells. Loss of TUSC3 expression in DU145 and PC3 prostate cancer cell lines leads to increased proliferation, migration and invasion as well as accelerated xenograft growth in a PTEN negative background. TUSC3 downregulation also affects endoplasmic reticulum (ER) structure and stress response, which results in increased Akt signaling. Together, our findings provide first mechanistic insight in TUSC3 function in prostate carcinogenesis in general and N-glycosylation in particular.

  1. Yeast Bax inhibitor, Bxi1p, is an ER-localized protein that links the unfolded protein response and programmed cell death in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    James Cebulski

    Full Text Available Bax inhibitor-1 (BI-1 is an anti-apoptotic gene whose expression is upregulated in a wide range of human cancers. Studies in both mammalian and plant cells suggest that the BI-1 protein resides in the endoplasmic reticulum and is involved in the unfolded protein response (UPR that is triggered by ER stress. It is thought to act via a mechanism involving altered calcium dynamics. In this paper, we provide evidence that the Saccharomyces cerevisiae protein encoded by the open reading frame, YNL305C, is a bona fide homolog for BI-1. First, we confirm that yeast cells from two different strain backgrounds lacking YNL305C, which we have renamed BXI1, are more sensitive to heat-shock induced cell death than wildtype controls even though they have indistinguishable growth rates at 30°C. They are also more susceptible both to ethanol-induced and to glucose-induced programmed cell death. Significantly, we show that Bxi1p-GFP colocalizes with the ER localized protein Sec63p-RFP. We have also discovered that Δbxi1 cells are not only more sensitive to drugs that induce ER stress, but also have a decreased unfolded protein response as measured with a UPRE-lacZ reporter. Finally, we have discovered that deleting BXI1 diminishes the calcium signaling response in response to the accumulation of unfolded proteins in the ER as measured by a calcineurin-dependent CDRE-lacZ reporter. In toto, our data suggests that the Bxi1p, like its metazoan homologs, is an ER-localized protein that links the unfolded protein response and programmed cell death.

  2. Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes.

    Science.gov (United States)

    Szpigel, Anaïs; Hainault, Isabelle; Carlier, Aurélie; Venteclef, Nicolas; Batto, Anne-Françoise; Hajduch, Eric; Bernard, Catherine; Ktorza, Alain; Gautier, Jean-François; Ferré, Pascal; Bourron, Olivier; Foufelle, Fabienne

    2018-02-01

    Obesity and type 2 diabetes are concomitant with low-grade inflammation affecting insulin sensitivity and insulin secretion. Recently, the thioredoxin interacting protein (TXNIP) has been implicated in the activation process of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. In this study, we aim to determine whether the expression of TXNIP is altered in the circulating immune cells of individuals with type 2 vs type 1 diabetes and whether this can be related to specific causes and consequences of inflammation. The expression of TXNIP, inflammatory markers, markers of the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress and enzymes involved in sphingolipid metabolism was quantified by quantitative reverse transcription real-time PCR (qRT-PCR) in peripheral blood mononuclear cells (PBMCs) of 13 non-diabetic individuals, 23 individuals with type 1 diabetes and 81 with type 2 diabetes. A lipidomic analysis on the plasma of 13 non-diabetic individuals, 35 individuals with type 1 diabetes and 94 with type 2 diabetes was performed. The effects of ER stress or of specific lipids on TXNIP and inflammatory marker expression were analysed in human monocyte-derived macrophages (HMDMs) and THP-1 cells. The expression of TXNIP and inflammatory and UPR markers was increased in the PBMCs of individuals with type 2 diabetes when compared with non-diabetic individuals or individuals with type 1 diabetes. TXNIP expression was significantly correlated with plasma fasting glucose, plasma triacylglycerol concentrations and specific UPR markers. Induction of ER stress in THP-1 cells or cultured HMDMs led to increased expression of UPR markers, TXNIP, NLRP3 and IL-1β. Conversely, a chemical chaperone reduced the expression of UPR markers and TXNIP in PBMCs of individuals with type 2 diabetes. The lipidomic plasma analysis revealed an increased concentration of saturated dihydroceramide and sphingomyelin in individuals with type 2

  3. Intra-ER sorting of the peroxisomal membrane protein Pex3 relies on its luminal domain

    Directory of Open Access Journals (Sweden)

    Mohammad H. Fakieh

    2013-06-01

    Pex3 is an evolutionarily conserved type III peroxisomal membrane protein required for peroxisome formation. It is inserted into the ER membrane and sorted via an ER subdomain (the peroxisomal ER, or pER to peroxisomes. By constructing chimeras between Pex3 and the type III ER membrane protein Sec66, we have been able to separate the signals that mediate insertion of Pex3 into the ER from those that mediate sorting within the ER to the pER subdomain. The N-terminal 17-amino acid segment of Pex3 contains two signals that are each sufficient for sorting to the pER: a chimeric protein containing the N-terminal domain of Pex3 fused to the transmembrane and cytoplasmic segments of Sec66 sorts to the pER in wild type cells, and does not colocalise with peroxisomes. Subsequent transport to existing peroxisomes requires the Pex3 transmembrane segment. When expressed in Drosophila S2R+ cells, ScPex3 targeting to peroxisomes is dependent on the intra-ER sorting signals in the N-terminal segment. The N-terminal segments of both human and Drosophila Pex3 contain intra-ER sorting information and can replace that of ScPex3. Our analysis has uncovered the signals within Pex3 required for the various steps of its transport to peroxisomes. Our generation of versions of Pex3 that are blocked at each stage along its transport pathway provides a tool to dissect the mechanism, as well as the molecular machinery required at each step of the pathway.

  4. Functional and regulatory conservation of the soybean ER stress-induced DCD/NRP-mediated cell death signaling in plants.

    Science.gov (United States)

    Reis, Pedro A B; Carpinetti, Paola A; Freitas, Paula P J; Santos, Eulálio G D; Camargos, Luiz F; Oliveira, Igor H T; Silva, José Cleydson F; Carvalho, Humberto H; Dal-Bianco, Maximiller; Soares-Ramos, Juliana R L; Fontes, Elizabeth P B

    2016-07-12

    The developmental and cell death domain (DCD)-containing asparagine-rich proteins (NRPs) were first identified in soybean (Glycine max) as transducers of a cell death signal derived from prolonged endoplasmic reticulum (ER) stress, osmotic stress, drought or developmentally-programmed leaf senescence via the GmNAC81/GmNAC30/GmVPE signaling module. In spite of the relevance of the DCD/NRP-mediated signaling as a versatile adaptive response to multiple stresses, mechanistic knowledge of the pathway is lacking and the extent to which this pathway may operate in the plant kingdom has not been investigated. Here, we demonstrated that the DCD/NRP-mediated signaling also propagates a stress-induced cell death signal in other plant species with features of a programmed cell death (PCD) response. In silico analysis revealed that several plant genomes harbor conserved sequences of the pathway components, which share functional analogy with their soybean counterparts. We showed that GmNRPs, GmNAC81and VPE orthologs from Arabidopsis, designated as AtNRP-1, AtNRP-2, ANAC036 and gVPE, respectively, induced cell death when transiently expressed in N. benthamiana leaves. In addition, loss of AtNRP1 and AtNRP2 function attenuated ER stress-induced cell death in Arabidopsis, which was in marked contrast with the enhanced cell death phenotype displayed by overexpressing lines as compared to Col-0. Furthermore, atnrp-1 knockout mutants displayed enhanced sensitivity to PEG-induced osmotic stress, a phenotype that could be complemented with ectopic expression of either GmNRP-A or GmNRP-B. In addition, AtNRPs, ANAC036 and gVPE were induced by osmotic and ER stress to an extent that was modulated by the ER-resident molecular chaperone binding protein (BiP) similarly as in soybean. Finally, as putative downstream components of the NRP-mediated cell death signaling, the stress induction of AtNRP2, ANAC036 and gVPE was dependent on the AtNRP1 function. BiP overexpression also conferred

  5. Transcription regulator TRIP-Br2 mediates ER stress-induced brown adipocytes dysfunction.

    Science.gov (United States)

    Qiang, Guifen; Whang Kong, Hyerim; Gil, Victoria; Liew, Chong Wee

    2017-01-09

    In contrast to white adipose tissue, brown adipose tissue (BAT) is known to play critical roles for both basal and inducible energy expenditure. Obesity is associated with reduction of BAT function; however, it is not well understood how obesity promotes BAT dysfunction, especially at the molecular level. Here we show that the transcription regulator TRIP-Br2 mediates ER stress-induced inhibition of lipolysis and thermogenesis in BAT. Using in vitro, ex vivo, and in vivo approaches, we demonstrate that obesity-induced inflammation upregulates brown adipocytes TRIP-Br2 expression via the ER stress pathway and amelioration of ER stress in mice completely abolishes high fat diet-induced upregulation of TRIP-Br2 in BAT. We find that increased TRIP-Br2 significantly inhibits brown adipocytes thermogenesis. Finally, we show that ablation of TRIP-Br2 ameliorates ER stress-induced inhibition on lipolysis, fatty acid oxidation, oxidative metabolism, and thermogenesis in brown adipocytes. Taken together, our current study demonstrates a role for TRIP-Br2 in ER stress-induced BAT dysfunction, and inhibiting TRIP-Br2 could be a potential approach for counteracting obesity-induced BAT dysfunction.

  6. Taurine Pretreatment Prevents Isoflurane-Induced Cognitive Impairment by Inhibiting ER Stress-Mediated Activation of Apoptosis Pathways in the Hippocampus in Aged Rats.

    Science.gov (United States)

    Zhang, Yanan; Li, Dongliang; Li, Haiou; Hou, Dailiang; Hou, Jingdong

    2016-10-01

    Isoflurane, a commonly used inhalation anesthetic, may induce neurocognitive deficits, especially in elderly patients after surgery. Recent study demonstrated that isoflurane caused endoplasmic reticulum (ER) stress and subsequent neuronal apoptosis in the brain, contributing to cognitive deficits. Taurine, a major intracellular free amino acid, has been shown to inhibit ER stress and neuronal apoptosis in several neurological disorders. Here, we examined whether taurine can prevent isoflurane-induced ER stress and cognitive impairment in aged rats. Thirty minutes prior to a 4-h 1.3 % isoflurane exposure, aged rats were treated with vehicle or taurine at low, middle and high doses. Aged rats without any treatment served as control. The brains were harvested 6 h after isoflurane exposure for molecular measurements, and behavioral study was performed 2 weeks later. Compared with control, isoflurane increased expression of hippocampal ER stress biomarkers including glucose-regulated protein 78, phosphorylated (P-) inositol-requiring enzyme 1, P-eukaryotic initiation factor 2-α (EIF2α), activating transcription factor 4 (ATF-4), cleaved ATF-6 and C/EBP homologous protein, along with activation of apoptosis pathways as indicated by decreased B cell lymphoma 2 (BCL-2)/BCL2-associated X protein, increased expressions of cytochrome-c and cleaved caspase-3. Taurine pretreatment dose-dependently inhibited isoflurane-induced increase in expression of ER stress biomarkers except for P-EIF2α and ATF-4, and reversed isoflurane-induced changes in apoptosis-related proteins. Moreover, isoflurane caused spatial working memory deficits in aged rats, which were prevented by taurine pretreatment. The results indicate that taurine pretreatment prevents anesthetic isoflurane-induced cognitive impairment by inhibiting ER stress-mediated activation of apoptosis pathways in the hippocampus in aged rats.

  7. ER Stress Signaling Promotes the Survival of Cancer "Persister Cells" Tolerant to EGFR Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Terai, Hideki; Kitajima, Shunsuke; Potter, Danielle S; Matsui, Yusuke; Quiceno, Laura Gutierrez; Chen, Ting; Kim, Tae-Jung; Rusan, Maria; Thai, Tran C; Piccioni, Federica; Donovan, Katherine A; Kwiatkowski, Nicholas; Hinohara, Kunihiko; Wei, Guo; Gray, Nathanael S; Fischer, Eric S; Wong, Kwok-Kin; Shimamura, Teppei; Letai, Anthony; Hammerman, Peter S; Barbie, David A

    2018-02-15

    An increasingly recognized component of resistance to tyrosine kinase inhibitors (TKI) involves persistence of a drug-tolerant subpopulation of cancer cells that survive despite effective eradication of the majority of the cell population. Multiple groups have demonstrated that these drug-tolerant persister cells undergo transcriptional adaptation via an epigenetic state change that promotes cell survival. Because this mode of TKI drug tolerance appears to involve transcriptional addiction to specific genes and pathways, we hypothesized that systematic functional screening of EGFR TKI/transcriptional inhibitor combination therapy would yield important mechanistic insights and alternative drug escape pathways. We therefore performed a genome-wide CRISPR/Cas9 enhancer/suppressor screen in EGFR-dependent lung cancer PC9 cells treated with erlotinib + THZ1 (CDK7/12 inhibitor) combination therapy, a combination previously shown to suppress drug-tolerant cells in this setting. As expected, suppression of multiple genes associated with transcriptional complexes (EP300, CREBBP, and MED1) enhanced erlotinib/THZ1 synergy. Unexpectedly, we uncovered nearly every component of the recently described ufmylation pathway in the synergy suppressor group. Loss of ufmylation did not affect canonical downstream EGFR signaling. Instead, absence of this pathway triggered a protective unfolded protein response associated with STING upregulation, promoting protumorigenic inflammatory signaling but also unique dependence on Bcl-xL. These data reveal that dysregulation of ufmylation and ER stress comprise a previously unrecognized TKI drug tolerance pathway that engages survival signaling, with potentially important therapeutic implications. Significance: These findings reveal a novel function of the recently described ufmylation pathway, an ER stress survival signaling in drug-tolerant persister cells, which has important biological and therapeutic implications. Cancer Res; 78(4); 1044

  8. A Conserved Endoplasmic Reticulum Membrane Protein Complex (EMC) Facilitates Phospholipid Transfer from the ER to Mitochondria

    Science.gov (United States)

    Tavassoli, Shabnam; Wong, Andrew K. O.; Choudhary, Vineet; Young, Barry P.; Loewen, Christopher J. R.; Prinz, William A.

    2014-01-01

    Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC) has decreased phosphatidylserine (PS) transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE). Cells lacking EMC proteins and the ER–mitochondria tethering complex called ERMES (the ER–mitochondria encounter structure) are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER–mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth. PMID:25313861

  9. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity.

    Science.gov (United States)

    Shan, Bo; Wang, Xiaoxia; Wu, Ying; Xu, Chi; Xia, Zhixiong; Dai, Jianli; Shao, Mengle; Zhao, Feng; He, Shengqi; Yang, Liu; Zhang, Mingliang; Nan, Fajun; Li, Jia; Liu, Jianmiao; Liu, Jianfeng; Jia, Weiping; Qiu, Yifu; Song, Baoliang; Han, Jing-Dong J; Rui, Liangyou; Duan, Sheng-Zhong; Liu, Yong

    2017-05-01

    Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1 f/f ; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1 f/f ; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.

  10. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate

    Directory of Open Access Journals (Sweden)

    Marco Corazzari

    2017-04-01

    Full Text Available Perturbation of endoplasmic reticulum (ER homeostasis results in a stress condition termed “ER stress” determining the activation of a finely regulated program defined as unfolded protein response (UPR and whose primary aim is to restore this organelle’s physiological activity. Several physiological and pathological stimuli deregulate normal ER activity causing UPR activation, such as hypoxia, glucose shortage, genome instability, and cytotoxic compounds administration. Some of these stimuli are frequently observed during uncontrolled proliferation of transformed cells, resulting in tumor core formation and stage progression. Therefore, it is not surprising that ER stress is usually induced during solid tumor development and stage progression, becoming an hallmark of such malignancies. Several UPR components are in fact deregulated in different tumor types, and accumulating data indicate their active involvement in tumor development/progression. However, although the UPR program is primarily a pro-survival process, sustained and/or prolonged stress may result in cell death induction. Therefore, understanding the mechanism(s regulating the cell survival/death decision under ER stress condition may be crucial in order to specifically target tumor cells and possibly circumvent or overcome tumor resistance to therapies. In this review, we discuss the role played by the UPR program in tumor initiation, progression and resistance to therapy, highlighting the recent advances that have improved our understanding of the molecular mechanisms that regulate the survival/death switch.

  11. Gliadin peptides induce tissue transglutaminase activation and ER-stress through Ca2+ mobilization in Caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Ivana Caputo

    Full Text Available BACKGROUND: Celiac disease (CD is an intestinal inflammatory condition that develops in genetically susceptible individuals after exposure to dietary wheat gliadin. The role of post-translational modifications of gliadin catalyzed by tissue transglutaminase (tTG seems to play a crucial role in CD. However, it remains to be established how and where tTG is activated in vivo. We have investigated whether gliadin peptides modulate intracellular Ca(2+ homeostasis and tTG activity. METHODS/PRINCIPAL FINDINGS: We studied Ca(2+ homeostasis in Caco-2 cells by single cell microfluorimetry. Under our conditions, A-gliadin peptides 31-43 and 57-68 rapidly mobilized Ca(2+ from intracellular stores. Specifically, peptide 31-43 mobilized Ca(2+ from the endoplasmic reticulum (ER and mitochondria, whereas peptide 57-68 mobilized Ca(2+ only from mitochondria. We also found that gliadin peptide-induced Ca(2+ mobilization activates the enzymatic function of intracellular tTG as revealed by in situ tTG activity using the tTG substrate pentylamine-biotin. Moreover, we demonstrate that peptide 31-43, but not peptide 57-68, induces an increase of tTG expression. Finally, we monitored the expression of glucose-regulated protein-78 and of CCAAT/enhancer binding protein-homologous protein, which are two biochemical markers of ER-stress, by real-time RT-PCR and western blot. We found that chronic administration of peptide 31-43, but not of peptide 57-68, induces the expression of both genes. CONCLUSIONS: By inducing Ca(2+ mobilization from the ER, peptide 31-43 could promote an ER-stress pathway that may be relevant in CD pathogenesis. Furthermore, peptides 31-43 and 57-68, by activating intracellular tTG, could alter inflammatory key regulators, and induce deamidation of immunogenic peptides and gliadin-tTG crosslinking in enterocytes and specialized antigen-presenting cells.

  12. Effects of Heat Stress Treatment on Age-dependent Unfolded Protein Response in Different Types of Skeletal Muscle.

    Science.gov (United States)

    Tamura, Yuki; Matsunaga, Yutaka; Kitaoka, Yu; Hatta, Hideo

    2017-03-01

    Mitochondrial and endoplasmic reticulum (ER) stress, and subsequently activated responses (mitochondrial/ER unfolded protein responses; UPRmt/UPRER), are involved in the pathogenesis of sarcopenia. To extend both basic and translational knowledge, we examined (i) whether age-induced mitochondrial and ER stress depend on skeletal muscle type in mice and (ii) whether heat stress treatment, a suggested strategy for sarcopenia, improves age-induced mitochondrial and ER stress. Aged (21-month-old) mice showed more severe mitochondrial stress and UPRmt than young (12-week-old) mice, based on increased oxidative stress, mitochondrial proteases, and mitochondrial E3 ubiquitin ligase. The aged mice also showed ER stress and UPRER, based on decreased ER enzymes and increased ER stress-related cell death. These changes were much more evident in soleus muscle than in gastrocnemius and plantaris muscles. After daily heat stress treatment (40 °C chamber for 30 minutes per day) for 4 weeks, mice showed remarkable improvements in age-related changes in soleus muscle. Heat stress had only minor effects in gastrocnemius and plantaris muscles. Based on these findings, age-associated mitochondrial stress, ER stress, and UPRmt/ER vary qualitatively with skeletal muscle type. Our results suggest a molecular basis for the beneficial effects of heat stress on muscle atrophy with age in soleus muscle. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. CHIP, a carboxy terminus HSP-70 interacting protein, prevents cell death induced by endoplasmic reticulum stress in the central nervous system

    Directory of Open Access Journals (Sweden)

    Felipe eCabral Miranda

    2015-01-01

    Full Text Available Endoplasmic reticulum (ER stress and protein misfolding are associated with various neurodegenerative diseases. ER stress activates Unfolded Protein Response (UPR, an adaptative response. However, severe ER stress can induce cell death. Here we show that the E3 ubiquitin ligase and co-chaperone Carboxyl Terminus HSP70/90 Interacting Protein (CHIP prevents neuron death in the hippocampus induced by severe ER stress. Organotypic hippocampal slice cultures (OHSCs were exposed to Tunicamycin, a pharmacological ER stress inducer, to trigger cell death. Overexpression of CHIP was achieved with a recombinant adeno-associated viral vector (rAAV and significantly diminished ER stress-induced cell death, as shown by analysis of propidium iodide (PI uptake, condensed chromatin, TUNEL and cleaved caspase 3 in the CA1 region of OHSCs. In addition, overexpression of CHIP prevented upregulation of both CHOP and p53 both pro-apoptotic pathways induced by ER stress. We also detected an attenuation of eIF2a phosphorylation promoted by ER stress. However, CHIP did not prevent upregulation of BiP/GRP78 induced by UPR. These data indicate that overexpression of CHIP attenuates ER-stress death response while maintain ER stress adaptative response in the central nervous system. These results indicate a neuroprotective role for CHIP upon UPR signalling. CHIP emerge as a candidate for clinical intervention in neurodegenerative diseases associated with ER stress.

  14. Dual Role of Ancient Ubiquitous Protein 1 (AUP1) in Lipid Droplet Accumulation and Endoplasmic Reticulum (ER) Protein Quality Control

    Science.gov (United States)

    Klemm, Elizabeth J.; Spooner, Eric; Ploegh, Hidde L.

    2011-01-01

    Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit the soluble E2 ubiquitin-conjugating enzyme UBE2G2. We further show that the CUE domain of AUP1 regulates polyubiquitylation and facilitates the interaction of AUP1 with the HRD1 complex and with dislocation substrates. AUP1 localizes both to the ER and to lipid droplets. The AUP1 expression level affects the abundance of cellular lipid droplets and as such represents the first protein with lipid droplet regulatory activity to be linked to ER quality control. These findings indicate a possible connection between ER protein quality control and lipid droplets. PMID:21857022

  15. Discovery, Synthesis, and Evaluation of 2,4-Diaminoquinazolines as a Novel Class of Pancreatic β-Cell-Protective Agents against Endoplasmic Reticulum (ER) Stress.

    Science.gov (United States)

    Duan, Hongliang; Lee, Jae Wook; Moon, Sung Won; Arora, Daleep; Li, Yu; Lim, Hui-Ying; Wang, Weidong

    2016-09-08

    Pancreatic insulin-producing β-cell dysfunction and death plays central roles in the onset and progression of both type 1 and type 2 diabetes. Current antidiabetic drugs cannot halt the ongoing progression of β-cell dysfunction and death. In diabetes, a major cause for the decline in β-cell function and survival is endoplasmic reticulum (ER) stress. Here, we identified quinazoline derivatives as a novel class of β-cell protective agents against ER stress-induced dysfunction and death. A series of quinazoline derivatives were synthesized from dichloroquiazoline utilizing a sequence of nucleophilic reactions. Through SAR optimization, 2,4-diaminoquinazoline compound 9c markedly protects β-cells against ER stress-induced dysfunction and death with 80% maximum rescue activity and an EC50 value of 0.56 μM. Importantly, 9c restores the ER stress-impaired glucose-stimulated insulin secretion response and survival in primary human islet β-cells. We showed that 9c protects β-cells by alleviating ER stress through the suppression of the induction of key genes of the unfolded protein response and apoptosis.

  16. Feedback regulation on PTEN/AKT pathway by the ER stress kinase PERK mediated by interaction with the Vault complex

    DEFF Research Database (Denmark)

    Zhang, Wei; Neo, Suat Peng; Gunaratne, Jayantha

    2015-01-01

    inhibition of PERK has been reported to limit tumor growth in xenograft models. Here we provide evidence that inactive PERK interacts with the nuclear pore-associated Vault complex protein and that this compromises Vault-mediated nuclear transport of PTEN. Pharmacological inhibition of PERK under ER stress...... results is abnormal sequestration of the Vault complex, leading to increased cytoplasmic PTEN activity and lower AKT activation. As the PI3K/PTEN/AKT pathway is crucial for many aspects of cell growth and survival, this unexpected effect of PERK inhibitors on AKT activity may have implications...

  17. REEPs are membrane shaping adapter proteins that modulate specific g protein-coupled receptor trafficking by affecting ER cargo capacity.

    Directory of Open Access Journals (Sweden)

    Susann Björk

    Full Text Available Receptor expression enhancing proteins (REEPs were identified by their ability to enhance cell surface expression of a subset of G protein-coupled receptors (GPCRs, specifically GPCRs that have proven difficult to express in heterologous cell systems. Further analysis revealed that they belong to the Yip (Ypt-interacting protein family and that some REEP subtypes affect ER structure. Yip family comparisons have established other potential roles for REEPs, including regulation of ER-Golgi transport and processing/neuronal localization of cargo proteins. However, these other potential REEP functions and the mechanism by which they selectively enhance GPCR cell surface expression have not been clarified. By utilizing several REEP family members (REEP1, REEP2, and REEP6 and model GPCRs (α2A and α2C adrenergic receptors, we examined REEP regulation of GPCR plasma membrane expression, intracellular processing, and trafficking. Using a combination of immunolocalization and biochemical methods, we demonstrated that this REEP subset is localized primarily to ER, but not plasma membranes. Single cell analysis demonstrated that these REEPs do not specifically enhance surface expression of all GPCRs, but affect ER cargo capacity of specific GPCRs and thus their surface expression. REEP co-expression with α2 adrenergic receptors (ARs revealed that this REEP subset interacts with and alter glycosidic processing of α2C, but not α2A ARs, demonstrating selective interaction with cargo proteins. Specifically, these REEPs enhanced expression of and interacted with minimally/non-glycosylated forms of α2C ARs. Most importantly, expression of a mutant REEP1 allele (hereditary spastic paraplegia SPG31 lacking the carboxyl terminus led to loss of this interaction. Thus specific REEP isoforms have additional intracellular functions besides altering ER structure, such as enhancing ER cargo capacity, regulating ER-Golgi processing, and interacting with select cargo

  18. Takotsubo-kardiomyopati er akut hjertesvigt induceret af stress

    DEFF Research Database (Denmark)

    Fuchs, Annette Maria; Bang, Lia Evi; Holmvang, Lene

    2016-01-01

    Takotsubo cardiomyopathy (TTC) is an acute cardiac syndrome, characterized by transient left ventricular dysfunction often following a stressful event in post-menopausal women. Symptoms are indistinguishable from myocardial infarction. However, TTC patients do not have a culprit lesion on acute...

  19. Calcium Homeostasis and ER Stress in Control of Autophagy in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elżbieta Kania

    2015-01-01

    Full Text Available Autophagy is a basic catabolic process, serving as an internal engine during responses to various cellular stresses. As regards cancer, autophagy may play a tumor suppressive role by preserving cellular integrity during tumor development and by possible contribution to cell death. However, autophagy may also exert oncogenic effects by promoting tumor cell survival and preventing cell death, for example, upon anticancer treatment. The major factors influencing autophagy are Ca2+ homeostasis perturbation and starvation. Several Ca2+ channels like voltage-gated T- and L-type channels, IP3 receptors, or CRAC are involved in autophagy regulation. Glucose transporters, mainly from GLUT family, which are often upregulated in cancer, are also prominent targets for autophagy induction. Signals from both Ca2+ perturbations and glucose transport blockage might be integrated at UPR and ER stress activation. Molecular pathways such as IRE 1-JNK-Bcl-2, PERK-eIF2α-ATF4, or ATF6-XBP 1-ATG are related to autophagy induced through ER stress. Moreover ER molecular chaperones such as GRP78/BiP and transcription factors like CHOP participate in regulation of ER stress-mediated autophagy. Autophagy modulation might be promising in anticancer therapies; however, it is a context-dependent matter whether inhibition or activation of autophagy leads to tumor cell death.

  20. Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by iPSC-Derived Oligodendrocytes

    Directory of Open Access Journals (Sweden)

    Yuko Numasawa-Kuroiwa

    2014-05-01

    Full Text Available Pelizaeus-Merzbacher disease (PMD is a form of X-linked leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1 gene. Although PLP1 proteins with missense mutations have been shown to accumulate in the rough endoplasmic reticulum (ER in disease model animals and cell lines transfected with mutant PLP1 genes, the exact pathogenetic mechanism of PMD has not previously been clarified. In this study, we established induced pluripotent stem cells (iPSCs from two PMD patients carrying missense mutation and differentiated them into oligodendrocytes in vitro. In the PMD iPSC-derived oligodendrocytes, mislocalization of mutant PLP1 proteins to the ER and an association between increased susceptibility to ER stress and increased numbers of apoptotic oligodendrocytes were observed. Moreover, electron microscopic analysis demonstrated drastically reduced myelin formation accompanied by abnormal ER morphology. Thus, this study demonstrates the involvement of ER stress in pathogenic dysmyelination in the oligodendrocytes of PMD patients with the PLP1 missense mutation.

  1. The PERK Arm of the Unfolded Protein Response Regulates Mitochondrial Morphology during Acute Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Lebeau, Justine; Saunders, Jaclyn M; Moraes, Vivian W R; Madhavan, Aparajita; Madrazo, Nicole; Anthony, Mary C; Wiseman, R Luke

    2018-03-13

    Endoplasmic reticulum (ER) stress is transmitted to mitochondria and is associated with pathologic mitochondrial dysfunction in diverse diseases. The PERK arm of the unfolded protein response (UPR) protects mitochondria during ER stress through the transcriptional and translational remodeling of mitochondrial molecular quality control pathways. Here, we show that ER stress also induces dynamic remodeling of mitochondrial morphology by promoting protective stress-induced mitochondrial hyperfusion (SIMH). ER-stress-associated SIMH is regulated by the PERK arm of the UPR and activated by eIF2α phosphorylation-dependent translation attenuation. We show that PERK-regulated SIMH is a protective mechanism to prevent pathologic mitochondrial fragmentation and promote mitochondrial metabolism in response to ER stress. These results identify PERK-dependent SIMH as a protective stress-responsive mechanism that regulates mitochondrial morphology during ER stress. Furthermore, our results show that PERK integrates transcriptional and translational signaling to coordinate mitochondrial molecular and organellar quality control in response to pathologic ER insults. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α.

    Science.gov (United States)

    Sepulveda, Denisse; Rojas-Rivera, Diego; Rodríguez, Diego A; Groenendyk, Jody; Köhler, Andres; Lebeaupin, Cynthia; Ito, Shinya; Urra, Hery; Carreras-Sureda, Amado; Hazari, Younis; Vasseur-Cognet, Mireille; Ali, Maruf M U; Chevet, Eric; Campos, Gisela; Godoy, Patricio; Vaisar, Tomas; Bailly-Maitre, Béatrice; Nagata, Kazuhiro; Michalak, Marek; Sierralta, Jimena; Hetz, Claudio

    2018-01-18

    Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Cadmium toxicity induces ER stress and apoptosis via impairing energy homoeostasis in cardiomyocytes

    Science.gov (United States)

    Chen, Chun-yan; Zhang, Shao-li; Liu, Zhi-yong; Tian, Yong; Sun, Qian

    2015-01-01

    Cadmium, a highly toxic environmental pollutant, is reported to induce toxicity and apoptosis in multiple organs and cells, all possibly contributing to apoptosis in certain pathophysiologic situations. Previous studies have described that cadmium toxicity induces biochemical and physiological changes in the heart and finally leads to cardiac dysfunctions, such as decreasing contractile tension, rate of tension development, heart rate, coronary flow rate and atrioventricular node conductivity. Although many progresses have been made, the mechanism responsible for cadmium-induced cellular alternations and cardiac toxicity is still not fully understood. In the present study, we demonstrated that cadmium toxicity induced dramatic endoplasmic reticulum (ER) stress and impaired energy homoeostasis in cultured cardiomyocytes. Moreover, cadmium toxicity may inhibit protein kinase B (AKT)/mTOR (mammalian target of rapamycin) pathway to reduce energy productions, by either disrupting the glucose metabolism or inhibiting mitochondrial respiratory gene expressions. Our work will help to reveal a novel mechanism to clarify the role of cadmium toxicity to cardiomyocytes and provide new possibilities for the treatment of cardiovascular diseases related to cadmium toxicity. PMID:26182376

  4. Succination of Protein Disulfide Isomerase Links Mitochondrial Stress and Endoplasmic Reticulum Stress in the Adipocyte During Diabetes.

    Science.gov (United States)

    Manuel, Allison M; Walla, Michael D; Faccenda, Adam; Martin, Stephanie L; Tanis, Ross M; Piroli, Gerardo G; Adam, Julie; Kantor, Boris; Mutus, Bulent; Townsend, Danyelle M; Frizzell, Norma

    2017-12-01

    Protein succination by fumarate increases in the adipose tissue of diabetic mice and in adipocytes matured in high glucose as a result of glucotoxicity-driven mitochondrial stress. The endoplasmic reticulum (ER) oxidoreductase protein disulfide isomerase (PDI) is succinated in adipocytes that are matured in high glucose, and in this study we investigated whether succination would alter PDI oxidoreductase activity, directly linking mitochondrial stress and ER stress. Protein succination and the ER stress marker C/EBP homologous protein (CHOP) were diminished after pharmaceutical targeting of mitochondrial stress with the chemical uncoupler niclosamide in adipocytes matured in high-glucose concentrations. PDI was succinated by fumarate on both CXXC-containing active sites, contributing to reduced enzymatic activity. Succinated PDI decreased reductase activity in adipocytes matured in high glucose, and in db/db epididymal adipose tissue, in association with increased levels of CHOP. PDI succination was increased in fumarase knockdown adipocytes, leading to reduced PDI oxidoreductase activity, increased CHOP levels, and pro-inflammatory cytokine secretion, confirming the specific role of elevated fumarate levels in contributing to ER stress. In addition, PDI succination and ER stress were decreased, and PDI reductase activity was restored when exposure to chronic high glucose was limited, highlighting the importance of calorie restriction in the improvement of adipocyte metabolic function. These experiments identify PDI succination as a novel biochemical mechanism linking altered mitochondrial metabolism to ER stress in the adipocyte during diabetes. The current study demonstrates that early biochemical changes in mitochondrial metabolism have important implications for the development of adipocyte stress. Antioxid. Redox Signal. 27, 1281-1296.

  5. Measurement of Hepatic Protein Fractional Synthetic Rate with Stable Isotope Labeling Technique in Thapsigargin Stressed HepG2 Cells

    Science.gov (United States)

    Song, Juquan; Zhang, Xiao-jun; Boehning, Darren; Brooks, Natasha C.; Herndon, David N.; Jeschke, Marc G.

    2012-01-01

    Severe burn-induced liver damage and dysfunction is associated with endoplasmic reticulum (ER) stress. ER stress has been shown to regulate global protein synthesis. In the current study, we induced ER stress in vitro and estimated the effect of ER stress on hepatic protein synthesis. The aim was two-fold: (1) to establish an in vitro model to isotopically measure hepatic protein synthesis and (2) to evaluate protein fractional synthetic rate (FSR) in response to ER stress. Human hepatocellular carcinoma cells (HepG2) were cultured in medium supplemented with stable isotopes 1,2-13C2-glycine and L-[ring-13C6]phenylalanine. ER stress was induced by exposing the cells to 100 nM of thapsigargin (TG). Cell content was collected from day 0 to 14. Alterations in cytosolic calcium were measured by calcium imaging and ER stress markers were confirmed by Western blotting. The precursor and product enrichments were detected by GC-MS analysis for FSR calculation. We found that the hepatic protein FSR were 0.97±0.02 and 0.99±0.05%/hr calculated from 1,2-13C2-glycine and L-[ring-13C6]phenylalanine, respectively. TG depleted ER calcium stores and induced ER stress by upregulating p-IRE-1 and Bip. FSR dramatically decreased to 0.68±0.03 and 0.60±0.06%/hr in the TG treatment group (pisotope tracer incorporation technique is a useful method for studying the effects of ER stress on hepatic protein synthesis. PMID:22298954

  6. Activation of ER stress and apoptosis by α- and β-zearalenol in HCT116 cells, protective role of Quercetin.

    Science.gov (United States)

    Ben Salem, Intidhar; Prola, Alexandre; Boussabbeh, Manel; Guilbert, Arnaud; Bacha, Hassen; Lemaire, Christophe; Abid-Essefi, Salwa

    2016-03-01

    Zearalenone (ZEN) and its metabolites are found in many food products and are known to induce many toxic effects. The major ZEN metabolites are α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). The mechanisms by which they mediate their cytotoxic effects are not well known and seem to differ depending on the type of cells. We investigated the possible underlying mechanism in α-ZOL and β-ZOL-induced toxicity in HCT116 cells. We showed that cell treatment with α-ZOL/β-ZOL generated endoplasmic reticulum (ER) stress and activated the Unfolded Protein Response (UPR) as evidenced by XBP1 mRNA splicing and up-regulation of GADD34, GRP78, ATF4 and CHOP. Apoptosis was triggered by ZEN metabolites-induced ER stress, and executed through a mitochondria-dependent pathway, characterized by a loss of mitochondrial transmembrane potential (ΔΨm), a downstream generation of O2•(-) and caspase 3 activation. Cellular deficiency of the pro-apoptotic proteins Bax and Bak protected cells against α/β-ZOL-induced toxicity. However, treatment with α-ZOL or β-ZOL combined with Quercetin (QUER), a common dietary flavonoid with well-known antioxidant activity, significantly reduced damage induced by α and β-ZOL in all tested markers. We concluded that QUER protects against the cellular toxicity of α and β-ZOL.×. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Protein transport into the human ER and related diseases, Sec61-channelopathies.

    Science.gov (United States)

    Haßdenteufel, Sarah; Klein, Marie-Christine; Melnyk, Armin; Zimmermann, Richard

    2014-12-01

    Protein transport into the human endoplasmic reticulum (ER) is relevant to the biogenesis of most soluble and membrane proteins of organelles, which are involved in endo- or exo-cytsosis. It involves amino-terminal signal peptides in the precursor polypeptides and various transport components in the cytosol plus the ER, and can occur co- or post-translationally. The two mechanisms merge at the level of the ER membrane, specifically at the level of the heterotrimeric Sec61 complex, which forms a dynamic polypeptide-conducting channel in the ER membrane. Since the mammalian ER is also the main intracellular calcium storage organelle, and the Sec61 complex is calcium permeable, the Sec61 complex is tightly regulated in its equilibrium between the closed and open conformations, or "gated", by ligands, such as signal peptides of the transport substrates and the ER lumenal Hsp70-type molecular chaperone BiP. Furthermore, BiP binding to the incoming polypeptide contributes to the efficiency and unidirectionality of transport. Recent insights into the structure and dynamic equilibrium of the Sec61 complex have various mechanistic as well as medical implications.

  8. Role of ER stress response in photodynamic therapy: ROS generated in different subcellular compartments trigger diverse cell death pathways.

    Directory of Open Access Journals (Sweden)

    Irena Moserova

    Full Text Available We have analyzed the molecular mechanisms of photoinduced cell death using porphyrins with similar structure differing only in the position of the ethylene glycol (EG chain on the phenyl ring. Meta- and para-positioned EG chains targeted porphyrins to different subcellular compartments. After photoactivation, both types of derivatives induced death of tumor cells via reactive oxygen species (ROS. Para derivatives pTPP(EG4 and pTPPF(EG4 primarily accumulated in lysosomes activated the p38 MAP kinase cascade, which in turn induced the mitochondrial apoptotic pathway. In contrast, meta porphyrin derivative mTPP(EG4 localized in the endoplasmic reticulum (ER induced dramatic changes in Ca(2+ homeostasis manifested by Ca(2+ rise in the cytoplasm, activation of calpains and stress caspase-12 or caspase-4. ER stress developed into unfolded protein response. Immediately after irradiation the PERK pathway was activated through phosphorylation of PERK, eIF2α and induction of transcription factors ATF4 and CHOP, which regulate stress response genes. PERK knockdown and PERK deficiency protected cells against mTPP(EG4-mediated apoptosis, confirming the causative role of the PERK pathway.

  9. Endoplasmic reticulum stress and N-glycosylation modulate expression of WFS1 protein

    International Nuclear Information System (INIS)

    Yamaguchi, Suguru; Ishihara, Hisamitsu; Tamura, Akira; Yamada, Takahiro; Takahashi, Rui; Takei, Daisuke; Katagiri, Hideki; Oka, Yoshitomo

    2004-01-01

    Mutations of the WFS1 gene are responsible for two hereditary diseases, Wolfram syndrome and low frequency sensorineural hearing loss. The WFS1 protein is a glycoprotein located in the endoplasmic reticulum (ER) membrane but its function is poorly understood. Herein we show WFS1 mRNA and protein levels in pancreatic islets to be increased with ER-stress inducers, thapsigargin and dithiothreitol. Another ER-stress inducer, the N-glycosylation inhibitor tunicamycin, also raised WFS1 mRNA but not protein levels. Site-directed mutagenesis showed both Asn-663 and Asn-748 to be N-glycosylated in mouse WFS1 protein. The glycosylation-defective WFS1 protein, in which Asn-663 and Asn-748 had been substituted with aspartate, exhibited an increased protein turnover rate. Consistent with this, the WFS1 protein was more rapidly degraded in the presence of tunicamycin. These data indicate that ER-stress and N-glycosylation play important roles in WFS1 expression and stability, and also suggest regulatory roles for this protein in ER-stress induced cell death

  10. The SAT Protein of Porcine Parvovirus Accelerates Viral Spreading through Induction of Irreversible Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Mészáros, István; Tóth, Renáta; Olasz, Ferenc; Tijssen, Peter; Zádori, Zoltán

    2017-08-15

    The SAT protein (SATp) of porcine parvovirus (PPV) accumulates in the endoplasmic reticulum (ER), and SAT deletion induces the slow-spreading phenotype. The in vitro comparison of the wild-type Kresse strain and its SAT knockout (SAT - ) mutant revealed that prolonged cell integrity and late viral release are responsible for the slower spreading of the SAT - virus. During PPV infection, regardless of the presence or absence of SATp, the expression of downstream ER stress response proteins (Xbp1 and CHOP) was induced. However, in the absence of SATp, significant differences in the quantity and the localization of CHOP were detected, suggesting a role of SATp in the induction of irreversible ER stress in infected cells. The involvement of the induction of irreversible ER stress in porcine testis (PT) cell necrosis and viral egress was confirmed by treatment of infected cells by ER stress-inducing chemicals (MG132, dithiothreitol, and thapsigargin), which accelerated the egress and spreading of both the wild-type and the SAT - viruses. UV stress induction had no beneficial effect on PPV infection, underscoring the specificity of ER stress pathways in the process. However, induction of CHOP and its nuclear translocation cannot alone be responsible for the biological effect of SAT, since nuclear CHOP could not complement the lack of SAT in a coexpression experiment. IMPORTANCE SATp is encoded by an alternative open reading frame of the PPV genome. Earlier we showed that SATp of the attenuated PPV NADL-2 strain accumulates in the ER and accelerates virus release and spreading. Our present work revealed that slow spreading is a general feature of SAT - PPVs and is the consequence of prolonged cell integrity. PPV infection induced ER stress in infected cells regardless of the presence of SATp, as demonstrated by the morphological changes of the ER and expression of the stress response proteins Xbp1 and CHOP. However, the presence of SATp made the ER stress more severe and

  11. The PERK-eIF2α signaling pathway is involved in TCDD-induced ER stress in PC12 cells.

    Science.gov (United States)

    Duan, Zhiqing; Zhao, Jianya; Fan, Xikang; Tang, Cuiying; Liang, Lingwei; Nie, Xiaoke; Liu, Jiao; Wu, Qiyun; Xu, Guangfei

    2014-09-01

    Studies have shown that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces apoptotic cell death in neuronal cells. However, whether this is the result of endoplasmic reticulum (ER) stress-mediated apoptosis remains unknown. In this study, we determined whether ER stress plays a role in the TCDD-induced apoptosis of pheochromocytoma (PC12) cells and primary neurons. PC12 cells were exposed to different TCDD concentrations (1, 10, 100, 200, or 500nM) for varying lengths of time (1, 3, 6, 12, or 24h). TCDD concentrations much higher than 10nM (100, 200, or 500nM) markedly increased glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) levels, which are hallmarks of ER stress. We also evaluated the effects of TCDD on ER morphology in PC12 cells and primary neurons that were treated with different TCDD concentrations (1, 10, 50, or 200nM) for 24h. Ultrastructural ER alterations were observed with transmission electron microscopy in PC12 cells and primary neurons treated with high concentrations of TCDD. Furthermore, TCDD-induced ER stress significantly promoted the activation of the PKR-like ER kinase (PERK), a sensor for the unfolded protein response (UPR), and its downstream target eukaryotic translation initiation factor 2 α (eIF2α); in contrast, TCDD did not appear to affect inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6), two other UPR sensors. Importantly, TCDD significantly inhibited eIF2α phosphorylation and triggered apoptosis in PC12 cells after 6-24h of treatment. Salubrinal, which activates the PERK-eIF2α pathway, significantly enhanced eIF2α phosphorylation in PC12 cells and attenuated the TCDD-induced cell death. In contrast, knocking down eIF2α using small interfering RNA markedly enhanced TCDD-induced cell death. Together, these results indicate that the PERK-eIF2α pathway plays an important role in TCDD-induced ER stress and apoptosis in PC12 cells. Copyright © 2014 Elsevier Inc. All rights

  12. Mitofusin-Dependent ER Stress Triggers Glial Dysfunction and Nervous System Degeneration in a Drosophila Model of Friedreich’s Ataxia

    Directory of Open Access Journals (Sweden)

    Oliver Edenharter

    2018-03-01

    Full Text Available Friedreich’s ataxia (FRDA is the most important recessive ataxia in the Caucasian population. It is caused by a deficit of the mitochondrial protein frataxin. Despite its pivotal effect on biosynthesis of iron-sulfur clusters and mitochondrial energy production, little is known about the influence of frataxin depletion on homeostasis of the cellular mitochondrial network. We have carried out a forward genetic screen to analyze genetic interactions between genes controlling mitochondrial homeostasis and Drosophila frataxin. Our screen has identified silencing of Drosophila mitofusin (Marf as a suppressor of FRDA phenotypes in glia. Drosophila Marf is known to play crucial roles in mitochondrial fusion, mitochondrial degradation and in the interface between mitochondria and endoplasmic reticulum (ER. Thus, we have analyzed the effects of frataxin knockdown on mitochondrial morphology, mitophagy and ER function in our fly FRDA model using different histological and molecular markers such as tetramethylrhodamine, ethyl ester (TMRE, mitochondria-targeted GFP (mitoGFP, p62, ATG8a, LAMP1, Xbp1 and BiP/GRP78. Furthermore, we have generated the first Drosophila transgenic line containing the mtRosella construct under the UAS control to study the progression of the mitophagy process in vivo. Our results indicated that frataxin-deficiency had a small impact on mitochondrial morphology but enhanced mitochondrial clearance and altered the ER stress response in Drosophila. Remarkably, we demonstrate that downregulation of Marf suppresses ER stress in frataxin-deficient cells and this is sufficient to improve locomotor dysfunction, brain degeneration and lipid dyshomeostasis in our FRDA model. In agreement, chemical reduction of ER stress by means of two different compounds was sufficient to ameliorate the effects of frataxin deficiency in three different fly FRDA models. Altogether, our results strongly suggest that the protection mediated by Marf knockdown

  13. Proteomic analysis of INS-1 rat insulinoma cells: ER stress effects and the protective role of exenatide, a GLP-1 receptor agonist.

    Directory of Open Access Journals (Sweden)

    Mi-Kyung Kim

    Full Text Available Beta cell death caused by endoplasmic reticulum (ER stress is a key factor aggravating type 2 diabetes. Exenatide, a glucagon-like peptide (GLP-1 receptor agonist, prevents beta cell death induced by thapsigargin, a selective inhibitor of ER calcium storage. Here, we report on our proteomic studies designed to elucidate the underlying mechanisms. We conducted comparative proteomic analyses of cellular protein profiles during thapsigargin-induced cell death in the absence and presence of exenatide in INS-1 rat insulinoma cells. Thapsigargin altered cellular proteins involved in metabolic processes and protein folding, whose alterations were variably modified by exenatide treatment. We categorized the proteins with thapsigargin initiated alterations into three groups: those whose alterations were 1 reversed by exenatide, 2 exaggerated by exenatide, and 3 unchanged by exenatide. The most significant effect of thapsigargin on INS-1 cells relevant to their apoptosis was the appearance of newly modified spots of heat shock proteins, thimet oligopeptidase and 14-3-3β, ε, and θ, and the prevention of their appearance by exenatide, suggesting that these proteins play major roles. We also found that various modifications in 14-3-3 isoforms, which precede their appearance and promote INS-1 cell death. This study provides insights into the mechanisms in ER stress-caused INS-1 cell death and its prevention by exenatide.

  14. Oleate protects beta-cells from the toxic effect of palmitate by activating pro-survival pathways of the ER stress response.

    Science.gov (United States)

    Sargsyan, Ernest; Artemenko, Konstantin; Manukyan, Levon; Bergquist, Jonas; Bergsten, Peter

    2016-09-01

    Long-term exposure of beta cells to saturated fatty acids impairs insulin secretion and increases apoptosis. In contrast, unsaturated fatty acids protect beta-cells from the long-term negative effects of saturated fatty acids. We aimed to identify the mechanisms underlying this protective action of unsaturated fatty acids. To address the aim, insulin-secreting MIN6 cells were exposed to palmitate in the absence or presence of oleate and analyzed by using nano-LC MS/MS based proteomic approach. Important findings were validated by using alternative approaches. Proteomic analysis identified 34 proteins differentially expressed in the presence of palmitate compared to control samples. These proteins play a role in insulin processing, mitochondrial function, metabolism of biomolecules, calcium homeostasis, exocytosis, receptor signaling, ER protein folding, antioxidant activity and anti-apoptotic function. When oleate was also present during culture, expression of 15 proteins was different from the expression in the presence of palmitate alone. Most of the proteins affected by oleate are targets of the ER stress response and play a pro-survival role in beta cells such as protein folding and antioxidative defence. We conclude that restoration of pro-survival pathways of the ER stress response is a major mechanism underlying the protective effect of unsaturated fatty acids in beta-cells treated with saturated fatty acids. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. ER stress response plays an important role in aggregation of α-synuclein

    Directory of Open Access Journals (Sweden)

    Melrose Heather L

    2010-12-01

    Full Text Available Abstract Background Accumulation of filamentous α-synuclein as Lewy bodies is a hallmark of Parkinson's disease. To identify the mechanisms involved in α-synuclein assembly and determine whether the assemblies are cytotoxic, we developed a cell model (3D5 that inducibly expresses wild-type human α-synuclein and forms inclusions that reproduce many morphological and biochemical characteristics of Lewy bodies. In the present study, we evaluated the effects of several histone deacetylase inhibitors on α-synuclein aggregation in 3D5 cells and primary neuronal cultures. These drugs have been demonstrated to protect cells transiently overexpressing α-synuclein from its toxicity. Results Contrary to transient transfectants, the drug treatment did not benefit 3D5 cells and primary cultures. The treated were less viable and contained more α-synuclein oligomers, active caspases 3 and 9, as well as ER stress markers than non-treated counterparts. The drug-treated, induced-3D5 cells, or primary cultures from transgenic mice overexpressing ( Conclusions Our results indicate that an increase of wild-type α-synuclein can elicit ER stress response and sensitize cells to further insults. Most importantly, an increase of ER stress response can promote the aggregation of wild type α-synuclein.

  16. Ultraviolet (UV and Hydrogen Peroxide Activate Ceramide-ER Stress-AMPK Signaling Axis to Promote Retinal Pigment Epithelium (RPE Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Jin Yao

    2013-05-01

    Full Text Available Ultraviolet (UV radiation and reactive oxygen species (ROS impair the physiological functions of retinal pigment epithelium (RPE cells by inducing cell apoptosis, which is the main cause of age-related macular degeneration (AMD. The mechanism by which UV/ROS induces RPE cell death is not fully addressed. Here, we observed the activation of a ceramide-endoplasmic reticulum (ER stress-AMP activated protein kinase (AMPK signaling axis in UV and hydrogen peroxide (H2O2-treated RPE cells. UV and H2O2 induced an early ceramide production, profound ER stress and AMPK activation. Pharmacological inhibitors against ER stress (salubrinal, ceramide production (fumonisin B1 and AMPK activation (compound C suppressed UV- and H2O2-induced RPE cell apoptosis. Conversely, cell permeable short-chain C6 ceramide and AMPK activator AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide mimicked UV and H2O2’s effects and promoted RPE cell apoptosis. Together, these results suggest that UV/H2O2 activates the ceramide-ER stress-AMPK signaling axis to promote RPE cell apoptosis.

  17. An ER-directed fusion protein comprising a bacterial subtilisin ...

    African Journals Online (AJOL)

    nausch

    Many recombinant therapeutic proteins have been expressed in transgenic plants to demonstrate proof-of- concept and there have been significant improvements in yields (Sharma and Sharma, 2009). However, downstream processing costs remain a major constraint for the commercial development of plant-derived.

  18. Analysis of the key elements of FFAT-like motifs identifies new proteins that potentially bind VAP on the ER, including two AKAPs and FAPP2.

    Directory of Open Access Journals (Sweden)

    Veronika Mikitova

    Full Text Available BACKGROUND: Two phenylalanines (FF in an acidic tract (FFAT-motifs were originally described as having seven elements: an acidic flanking region followed by 6 residues (EFFDA-E. Such motifs are found in several lipid transfer protein (LTP families, and they interact with a protein on the cytosolic face of the ER called vesicle-associated membrane protein-associated protein (VAP. Mutation of which causes ER stress and motor neuron disease, making it important to determine which proteins bind VAP. Among other proteins that bind VAP, some contain FFAT-like motifs that are missing one or more of the seven elements. Defining how much variation is tolerated in FFAT-like motifs is a preliminary step prior to the identification of the full range of VAP interactors. RESULTS: We used a quantifiable in vivo system that measured ER targeting in a reporter yeast strain that over-expressed VAP to study the effect of substituting different elements of FFAT-like motifs in turn. By defining FFAT-like motifs more widely than before, we found them in novel proteins the functions of which had not previously been directly linked to the ER, including: two PKA anchoring proteins, AKAP220 and AKAP110; a family of plant LTPs; and the glycolipid LTP phosphatidylinositol-four-phosphate adaptor-protein-2 (FAPP-2. CONCLUSION: All of the seven essential elements of a FFAT motif tolerate variation, and weak targeting to the ER via VAP is still detected if two elements are substituted. In addition to the strong FFAT motifs already known, there are additional proteins with weaker FFAT-like motifs, which might be functionally important VAP interactors.

  19. Inhibition of HSP90 by AUY922 Preferentially Kills Mutant KRAS Colon Cancer Cells by Activating Bim through ER Stress.

    Science.gov (United States)

    Wang, Chun Yan; Guo, Su Tang; Wang, Jia Yu; Liu, Fen; Zhang, Yuan Yuan; Yari, Hamed; Yan, Xu Guang; Jin, Lei; Zhang, Xu Dong; Jiang, Chen Chen

    2016-03-01

    Oncogenic mutations of KRAS pose a great challenge in the treatment of colorectal cancer. Here we report that mutant KRAS colon cancer cells are nevertheless more susceptible to apoptosis induced by the HSP90 inhibitor AUY922 than those carrying wild-type KRAS. Although AUY922 inhibited HSP90 activity with comparable potency in colon cancer cells irrespective of their KRAS mutational statuses, those with mutant KRAS were markedly more sensitive to AUY922-induced apoptosis. This was associated with upregulation of the BH3-only proteins Bim, Bik, and PUMA. However, only Bim appeared essential, in that knockdown of Bim abolished, whereas knockdown of Bik or PUMA only moderately attenuated apoptosis induced by AUY922. Mechanistic investigations revealed that endoplasmic reticulum (ER) stress was responsible for AUY922-induced upregulation of Bim, which was inhibited by a chemical chaperone or overexpression of GRP78. Conversely, siRNA knockdown of GRP78 or XBP-1 enhanced AUY922-induced apoptosis. Remarkably, AUY922 inhibited the growth of mutant KRAS colon cancer xenografts through activation of Bim that was similarly associated with ER stress. Taken together, these results suggest that AUY922 is a promising drug in the treatment of mutant KRAS colon cancers, and the agents that enhance the apoptosis-inducing potential of Bim may be useful to improve the therapeutic efficacy. ©2016 American Association for Cancer Research.

  20. ER stress in retinal degeneration in S334ter Rho rats.

    Directory of Open Access Journals (Sweden)

    Vishal M Shinde

    Full Text Available The S334ter rhodopsin (Rho rat (line 4 bears the rhodopsin gene with an early termination codon at residue 334 that is a model for several such mutations found in human patients with autosomal dominant retinitis pigmentosa (ADRP. The Unfolded Protein Response (UPR is implicated in the pathophysiology of several retinal disorders including ADRP in P23H Rho rats. The aim of this study was to examine the onset of UPR gene expression in S334ter Rho retinas to determine if UPR is activated in ADRP animal models and to investigate how the activation of UPR molecules leads to the final demise of S334ter Rho photoreceptors. RT-PCR was performed to evaluate the gene expression profiles for the P10, P12, P15, and P21 stages of the development and progression of ADRP in S334ter Rho photoreceptors. We determined that during the P12-P15 period, ER stress-related genes are strongly upregulated in transgenic retinas, resulting in the activation of the UPR that was confirmed using western blot analysis and RT-PCR. The activation of UPR was associated with the increased expression of JNK, Bik, Bim, Bid, Noxa, and Puma genes and cleavage of caspase-12 that together with activated calpains presumably compromise the integrity of the mitochondrial MPTP, leading to the release of pro-apoptotic AIF1 into the cytosol of S334ter Rho photoreceptor cells. Therefore, two major cross-talking pathways, the UPR and mitochondrial MPTP occur in S334ter-4 Rho retina concomitantly and eventually promote the death of the photoreceptor cells.

  1. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  2. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration

    OpenAIRE

    Rao, Rammohan V; Bredesen, Dale E

    2004-01-01

    The accumulation of misfolded proteins (e.g. mutant or damaged proteins) triggers cellular stress responses that protect cells against the toxic buildup of such proteins. However, prolonged stress due to the buildup of these toxic proteins induces specific death pathways. Dissecting these pathways should be valuable in understanding the pathogenesis of, and ultimately in designing therapy for, neurodegenerative diseases that feature misfolded proteins.

  3. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration.

    Science.gov (United States)

    Rao, Rammohan V; Bredesen, Dale E

    2004-12-01

    The accumulation of misfolded proteins (e.g. mutant or damaged proteins) triggers cellular stress responses that protect cells against the toxic buildup of such proteins. However, prolonged stress due to the buildup of these toxic proteins induces specific death pathways. Dissecting these pathways should be valuable in understanding the pathogenesis of, and ultimately in designing therapy for, neurodegenerative diseases that feature misfolded proteins.

  4. Endoplasmic reticulum turnover: ER-phagy and other flavors in selective and non-selective ER clearance [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Ilaria Fregno

    2018-04-01

    Full Text Available The endoplasmic reticulum (ER is a highly dynamic organelle in eukaryotic cells. It is deputed to lipid and protein biosynthesis, calcium storage, and the detoxification of various exogenous and endogenous harmful compounds. ER activity and size must be adapted rapidly to environmental and developmental conditions or biosynthetic demand. This is achieved on induction of thoroughly studied transcriptional/translational programs defined as “unfolded protein responses” that increase the ER volume and the expression of ER-resident proteins regulating the numerous ER functions. Less understood are the lysosomal catabolic processes that maintain ER size at steady state, that prevent excessive ER expansion during ER stresses, or that ensure return to physiologic ER size during recovery from ER stresses. These catabolic processes may also be activated to remove ER subdomains where proteasome-resistant misfolded proteins or damaged lipids have been segregated. Insights into these catabolic mechanisms have only recently emerged with the identification of so-called ER-phagy receptors, which label specific ER subdomains for selective lysosomal delivery for clearance. Here, in eight chapters and one addendum, we comment on recent advances in ER turnover pathways induced by ER stress, nutrient deprivation, misfolded proteins, and live bacteria. We highlight the role of yeast (Atg39 and Atg40 and mammalian (FAM134B, SEC62, RTN3, and CCPG1 ER-phagy receptors and of autophagy genes in selective and non-selective catabolic processes that regulate cellular proteostasis by controlling ER size, turnover, and function.

  5. XBP1-Independent UPR Pathways Suppress C/EBP-β Mediated Chondrocyte Differentiation in ER-Stress Related Skeletal Disease.

    Directory of Open Access Journals (Sweden)

    Trevor L Cameron

    2015-09-01

    Full Text Available Schmid metaphyseal chondrodysplasia (MCDS involves dwarfism and growth plate cartilage hypertrophic zone expansion resulting from dominant mutations in the hypertrophic zone collagen, Col10a1. Mouse models phenocopying MCDS through the expression of an exogenous misfolding protein in the endoplasmic reticulum (ER in hypertrophic chondrocytes have demonstrated the central importance of ER stress in the pathology of MCDS. The resultant unfolded protein response (UPR in affected chondrocytes involved activation of canonical ER stress sensors, IRE1, ATF6, and PERK with the downstream effect of disrupted chondrocyte differentiation. Here, we investigated the role of the highly conserved IRE1/XBP1 pathway in the pathology of MCDS. Mice with a MCDS collagen X p.N617K knock-in mutation (ColXN617K were crossed with mice in which Xbp1 was inactivated specifically in cartilage (Xbp1CartΔEx2, generating the compound mutant, C/X. The severity of dwarfism and hypertrophic zone expansion in C/X did not differ significantly from ColXN617K, revealing surprising redundancy for the IRE1/XBP1 UPR pathway in the pathology of MCDS. Transcriptomic analyses of hypertrophic zone cartilage identified differentially expressed gene cohorts in MCDS that are pathologically relevant (XBP1-independent or pathologically redundant (XBP1-dependent. XBP1-independent gene expression changes included large-scale transcriptional attenuation of genes encoding secreted proteins and disrupted differentiation from proliferative to hypertrophic chondrocytes. Moreover, these changes were consistent with disruption of C/EBP-β, a master regulator of chondrocyte differentiation, by CHOP, a transcription factor downstream of PERK that inhibits C/EBP proteins, and down-regulation of C/EBP-β transcriptional co-factors, GADD45-β and RUNX2. Thus we propose that the pathology of MCDS is underpinned by XBP1 independent UPR-induced dysregulation of C/EBP-β-mediated chondrocyte differentiation

  6. Endoplasmic reticulum stress and the unfolded protein response in disorders of myelinating glia.

    Science.gov (United States)

    Clayton, Benjamin L L; Popko, Brian

    2016-10-01

    Myelin is vital to the proper function of the nervous system. Oligodendrocytes in the CNS and Schwann cells in the PNS are the glial cells responsible for generating the myelin sheath. Myelination requires the production of a vast amount of proteins and lipid-rich membrane, which puts a heavy load on the secretory pathway of myelinating glia and leaves them susceptible to endoplasmic reticulum (ER) stress. Cells respond to ER stress by activating the unfolded protein response (UPR). The UPR is initially protective but in situations of prolonged unresolved stress the UPR can lead to the apoptotic death of the stressed cell. There is strong evidence that ER stress and the UPR play a role in a number of disorders of myelin and myelinating glia, including multiple sclerosis, Pelizaeus-Merzbacher disease, Vanishing White Matter Disease, and Charcot-Marie-Tooth disease. In this review we discuss the role that ER stress and the UPR play in these disorders of myelin. In addition, we discuss the progress that has been made in our understanding of the effect genetic and pharmacological manipulation of the UPR has in mouse models of these disorders and the novel therapeutic potential of targeting the UPR that these studies support. This article is part of a Special Issue entitled SI:ER stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Raman characterization and stress analysis of AlN:Er{sup 3+} epilayers grown on sapphire and silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kallel, T., E-mail: kaltarak@yahoo.fr [Groupe des Matériaux Luminescents, Laboratoire de Physique Appliquées, Département de Physique, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Dammak, M. [Groupe des Matériaux Luminescents, Laboratoire de Physique Appliquées, Département de Physique, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Wang, J.; Jadwisienczak, W.M. [School of Electrical Engineering and Computer Science, Ohio University, OH 4570 (United States)

    2014-09-15

    Highlights: • The wurtzite structure of AlN:Er{sup 3+} was confirmed. • A Raman spectra comparison of AlN:Er{sup 3+} grown on different substrates was performed. • AlN:Er{sup 3+} grown on silicon substrate exhibits a high structural quality. • The biaxial stress in AlN:Er{sup 3+} thin films was studied. • Temperature variation of E{sub 2}(high) Raman frequency and linewidth was established using a theoretical model. - Abstract: Raman spectra and resulting stress analyses were performed for two sets of erbium implanted aluminum nitride (AlN:Er{sup 3+}) epilayers deposited by molecular-beam epitaxy (MBE) on (0 0 0 1) sapphire and (1 1 1) silicon substrates. The AlN:Er{sup 3+} epilayers were examined using Raman scattering at different temperatures revealing the presence of the allowed E{sub 2}(high) and A{sub 1}(LO) phonon modes. The E{sub 2}(high) mode linewidths reflect the best qualities of the implanted and thermally annealed epilayers grown on silicon substrates compared with those grown on sapphire substrates. It was observed that relatively tensile stress existed in AlN:Er{sup 3+} epilayer grown on sapphire in contrast to a compressive stress present in the AlN:Er{sup 3+} epilayer grown on silicon as indicated by the observed E{sub 2}(high) mode frequency shift and the broadening of the vibrational mode linewidth. The stress value was calculated. The temperature dependence of the E{sub 2}(high) frequency and linewidth for the AlN:Er{sup 3+} epilayer grown on sapphire were theoretically modeled.

  8. ER/K linked GPCR-G protein fusions systematically modulate second messenger response in cells.

    Science.gov (United States)

    Malik, Rabia U; Dysthe, Matthew; Ritt, Michael; Sunahara, Roger K; Sivaramakrishnan, Sivaraj

    2017-08-10

    FRET and BRET approaches are well established for detecting ligand induced GPCR-G protein interactions in cells. Currently, FRET/BRET assays rely on co-expression of GPCR and G protein, and hence depend on the stoichiometry and expression levels of the donor and acceptor probes. On the other hand, GPCR-G protein fusions have been used extensively to understand the selectivity of GPCR signaling pathways. However, the signaling properties of fusion proteins are not consistent across GPCRs. In this study, we describe and characterize novel sensors based on the Systematic Protein Affinity Strength Modulation (SPASM) technique. Sensors consist of a GPCR and G protein tethered by an ER/K linker flanked by FRET probes. SPASM sensors are tested for the β2-, α1-, and α2- adrenergic receptors, and adenosine type 1 receptor (A 1 R), tethered to Gαs-XL, Gαi 2 , or Gαq subunits. Agonist stimulation of β2-AR and α2-AR increases FRET signal comparable to co-expressed FRET/BRET sensors. SPASM sensors also retain signaling through the endogenous G protein milieu. Importantly, ER/K linker length systematically tunes the GPCR-G protein interaction, with consequent modulation of second messenger signaling for cognate interactions. SPASM GPCR sensors serve the dual purpose of detecting agonist-induced changes in GPCR-G protein interactions, and linking these changes to downstream signaling.

  9. Balanced trafficking between the ER and the Golgi apparatus increases protein secretion in yeast

    DEFF Research Database (Denmark)

    Bao, Jichen; Huang, Mingtao; Petranovic, Dina

    2018-01-01

    of ADP-ribosylation factor GTP activating proteins, Gcs1p and Glo3p, which are involved in the process of COPI-coated vesicle formation. Engineering the retrograde trafficking increased the secretion of alpha-amylase but did not induce production of reactive oxygen species. An expanded ER membrane......The yeast Saccharomyces cerevisiae is widely used as a cell factory to produce recombinant proteins. However, S. cerevisiae naturally secretes only a few proteins, such as invertase and the mating alpha factor, and its secretory capacity is limited. It has been reported that engineering protein...... recombinant proteins, endoglucanase I from Trichoderma reesei and glucan-1,4-alpha-glucosidase from Rhizopus oryzae, indicating overexpression of GLO3 in a SEC16 moderate overexpression strain might be a general strategy for improving production of secreted proteins by yeast....

  10. Role of cysteine-protease CGHC motifs of ER-60, a protein disulfide isomerase, in hepatic apolipoprotein B100 degradation.

    Science.gov (United States)

    Rutledge, Angela C; Qiu, Wei; Zhang, Rianna; Urade, Reiko; Adeli, Khosrow

    2013-09-01

    Apolipoprotein B100 (apoB), the structural component of very low density lipoproteins (VLDL), is susceptible to misfolding and subsequent degradation by several intracellular pathways. ER-60, which has been implicated in apoB degradation, is a protein disulfide isomerase (PDI) that forms or rearranges disulfide bonds in substrate proteins and also possesses cysteine protease activity. To determine which ER-60 function is important for apoB degradation, adenoviruses encoding wild-type human ER-60 or a mutant form of human ER-60 (C60A, C409A) that lacked cysteine protease activity were overexpressed in HepG2 cells. Overexpression of wild-type ER-60 in HepG2 cells promoted apoB degradation and impaired apoB secretion, but mutant ER-60 overexpression did not. In McArdle RH-7777 cells, VLDL secretion was markedly inhibited following overexpression of wild-type but not mutant ER-60, an effect that could be blocked by oleate treatment. Mutant ER-60 was not trapped on apoB as it was with the control substrate tapasin, suggesting that ER-60's role in apoB degradation is likely unrelated to its protein disulfide isomerase activity. Thus, ER-60 may participate in apoB degradation by acting as a cysteine protease. We postulate that apoB cleavage by ER-60 within the ER lumen could facilitate proteasomal degradation of the C-terminus of translocationally-arrested apoB. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Epstein-Barr virus-kodet BILF1 er en konstitutivt aktiv G-protein-koblede receptor

    DEFF Research Database (Denmark)

    Paulsen, Sarah J; Rosenkilde, Mette M; Eugen-Olsen, Jesper

    2005-01-01

    Både beta-og gammaherpesviruses kode G-protein-koblede receptorer (GPCRs) med unikke farmakologiske fænotyper og vigtige biologiske funktioner. Et eksempel er ORF74, den gamma2-herpesvirus Kaposis sarkom-associated herpesvirus (KSHV)-kodet GPCR, som er meget konstitutivt aktiv og betragtes som de...

  12. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  13. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress.

    Science.gov (United States)

    van Galen, Peter; Kreso, Antonija; Mbong, Nathan; Kent, David G; Fitzmaurice, Timothy; Chambers, Joseph E; Xie, Stephanie; Laurenti, Elisa; Hermans, Karin; Eppert, Kolja; Marciniak, Stefan J; Goodall, Jane C; Green, Anthony R; Wouters, Bradly G; Wienholds, Erno; Dick, John E

    2014-06-12

    The blood system is sustained by a pool of haematopoietic stem cells (HSCs) that are long-lived due to their capacity for self-renewal. A consequence of longevity is exposure to stress stimuli including reactive oxygen species (ROS), nutrient fluctuation and DNA damage. Damage that occurs within stressed HSCs must be tightly controlled to prevent either loss of function or the clonal persistence of oncogenic mutations that increase the risk of leukaemogenesis. Despite the importance of maintaining cell integrity throughout life, how the HSC pool achieves this and how individual HSCs respond to stress remain poorly understood. Many sources of stress cause misfolded protein accumulation in the endoplasmic reticulum (ER), and subsequent activation of the unfolded protein response (UPR) enables the cell to either resolve stress or initiate apoptosis. Here we show that human HSCs are predisposed to apoptosis through strong activation of the PERK branch of the UPR after ER stress, whereas closely related progenitors exhibit an adaptive response leading to their survival. Enhanced ER protein folding by overexpression of the co-chaperone ERDJ4 (also called DNAJB9) increases HSC repopulation capacity in xenograft assays, linking the UPR to HSC function. Because the UPR is a focal point where different sources of stress converge, our study provides a framework for understanding how stress signalling is coordinated within tissue hierarchies and integrated with stemness. Broadly, these findings reveal that the HSC pool maintains clonal integrity by clearance of individual HSCs after stress to prevent propagation of damaged stem cells.

  14. Neuroprotective Functions Through Inhibition of ER Stress by Taurine or Taurine Combination Treatments in a Rat Stroke Model.

    Science.gov (United States)

    Prentice, Howard; Gharibani, Payam M; Ma, Zhiyuan; Alexandrescu, Anamaria; Genova, Rafaella; Chen, Po-Chih; Modi, Jigar; Menzie, Janet; Pan, Chunliu; Tao, Rui; Wu, Jang-Yen

    2017-01-01

    Taurine, as a free amino acid, is found at high levels in many tissues including brain, heart and skeletal muscle and is known to demonstrate neuroprotective effects in a range of disease conditions including stroke and neurodegenerative disease. Using in vitro culture systems we have demonstrated that taurine can elicit protection against endoplasmic reticulum stress (ER stress) from glutamate excitotoxicity or from excessive reactive oxygen species in PC12 cells or rat neuronal cultures. In our current investigation we hypothesized that taurine treatment after stroke in the rat middle cerebral artery occlusion (MCAO) model would render protection against ER stress processes as reflected in decreased levels of expression of ER stress pathway components. We demonstrated that taurine elicited high level protection and inhibited both ATF-6 and IRE-1 ER stress pathway components. As ischemic stroke has a complex pathology it is likely that certain combination treatment approaches targeting multiple disease mechanisms may have excellent potential for efficacy. We have previously employed the partial NMDA antagonist DETC-MeSO to render protection against in vivo ischemic stroke using a rat cerebral ischemia model. Here we tested administration of subcutaneous administration of 0.56 mg/kg DETC-MeSO or 40 mg/kg of taurine separately or as combined treatment after a 120 min cerebral ischemia in the rat MCAO model. Neither drug alone demonstrated protection at the low doses employed. Remarkably however the combination of low dose DETC-MeSO plus low dose taurine conferred a diminished infarct size and an enhanced Neuroscore (reflecting decreased neurological deficit). Analysis of ER stress markers pPERK, peIF-2-alpha and cleaved ATF-6 all showed decreased expression demonstrating that all 3 ER stress pathways were inhibited concurrent with a synergistic protective effect by the post-stroke administration of this DETC-MeSO-taurine combination treatment.

  15. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition.

    Directory of Open Access Journals (Sweden)

    Eduardo R Ropelle

    2010-08-01

    Full Text Available Overnutrition caused by overeating is associated with insulin and leptin resistance through IKKbeta activation and endoplasmic reticulum (ER stress in the hypothalamus. Here we show that physical exercise suppresses hyperphagia and associated hypothalamic IKKbeta/NF-kappaB activation by a mechanism dependent upon the pro-inflammatory cytokine interleukin (IL-6. The disruption of hypothalamic-specific IL-6 action blocked the beneficial effects of exercise on the re-balance of food intake and insulin and leptin resistance. This molecular mechanism, mediated by physical activity, involves the anti-inflammatory protein IL-10, a core inhibitor of IKKbeta/NF-kappaB signaling and ER stress. We report that exercise and recombinant IL-6 requires IL-10 expression to suppress hyperphagia-related obesity. Moreover, in contrast to control mice, exercise failed to reverse the pharmacological activation of IKKbeta and ER stress in C3H/HeJ mice deficient in hypothalamic IL-6 and IL-10 signaling. Hence, inflammatory signaling in the hypothalamus links beneficial physiological effects of exercise to the central action of insulin and leptin.

  16. ER stress upregulated PGE2/IFNγ-induced IL-6 expression and down-regulated iNOS expression in glial cells

    Science.gov (United States)

    Hosoi, Toru; Honda, Miya; Oba, Tatsuya; Ozawa, Koichiro

    2013-12-01

    The disruption of endoplasmic reticulum (ER) function can lead to neurodegenerative disorders, in which inflammation has also been implicated. We investigated the possible correlation between ER stress and immune function using glial cells. We demonstrated that ER stress synergistically enhanced prostaglandin (PG) E2 + interferon (IFN) γ-induced interleukin (IL)-6 production. This effect was mediated through cAMP. Immune-activated glial cells produced inducible nitric oxide synthase (iNOS). Interestingly, ER stress inhibited PGE2 + IFNγ-induced iNOS expression. Similar results were obtained when cells were treated with dbcAMP + IFNγ. Thus, cAMP has a dual effect on immune reactions; cAMP up-regulated IL-6 expression, but down-regulated iNOS expression under ER stress. Therefore, our results suggest a link between ER stress and immune reactions in neurodegenerative diseases.

  17. ALS Patient Stem Cells for Unveiling Disease Signatures of Motoneuron Susceptibility: Perspectives on the Deadly Mitochondria, ER Stress and Calcium Triad

    Science.gov (United States)

    Kaus, Anjoscha; Sareen, Dhruv

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a largely sporadic progressive neurodegenerative disease affecting upper and lower motoneurons (MNs) whose specific etiology is incompletely understood. Mutations in superoxide dismutase-1 (SOD1), TAR DNA-binding protein 43 (TARDBP/TDP-43) and C9orf72, have been identified in subsets of familial and sporadic patients. Key associated molecular and neuropathological features include ubiquitinated TDP-43 inclusions, stress granules, aggregated dipeptide proteins from mutant C9orf72 transcripts, altered mitochondrial ultrastructure, dysregulated calcium homeostasis, oxidative and endoplasmic reticulum (ER) stress, and an unfolded protein response (UPR). Such impairments have been documented in ALS animal models; however, whether these mechanisms are initiating factors or later consequential events leading to MN vulnerability in ALS patients is debatable. Human induced pluripotent stem cells (iPSCs) are a valuable tool that could resolve this “chicken or egg” causality dilemma. Relevant systems for probing pathophysiologically affected cells from large numbers of ALS patients and discovering phenotypic disease signatures of early MN susceptibility are described. Performing unbiased ‘OMICS and high-throughput screening in relevant neural cells from a cohort of ALS patient iPSCs, and rescuing mitochondrial and ER stress impairments, can identify targeted therapeutics for increasing MN longevity in ALS. PMID:26635528

  18. Stress proteins, autoimmunity, and autoimmune disease.

    Science.gov (United States)

    Winfield, J B; Jarjour, W N

    1991-01-01

    At birth, the immune system is biased toward recognition of microbial antigens in order to protect the host from infection. Recent data suggest that an important initial line of defense in this regard involves autologous stress proteins, especially conserved peptides of hsp60, which are presented to T cells bearing gamma delta receptors by relatively nonpolymorphic class lb molecules. Natural antibodies may represent a parallel B cell mechanism. Through an evolving process of "physiological" autoreactivity and selection by immunodominant stress proteins common to all prokaryotes, B and T cell repertoires expand during life to meet the continuing challenge of infection. Because stress proteins of bacteria are homologous with stress proteins of the host, there exists in genetically susceptible individuals a constant risk of autoimmune disease due to failure of mechanisms for self-nonself discrimination. That stress proteins actually play a role in autoimmune processes is supported by a growing body of evidence which, collectively, suggests that autoreactivity in chronic inflammatory arthritis involves, at least initially, gamma delta cells which recognize epitopes of the stress protein hsp60. Alternate mechanisms for T cell stimulation by stress proteins undoubtedly also exist, e.g., molecular mimicry of the DR beta third hypervariable region susceptibility locus for rheumatoid arthritis by a DnaJ stress protein epitope in gram-negative bacteria. While there still is confusion with respect to the most relevant stress protein epitopes, a central role for stress proteins in the etiology of arthritis appears likely. Furthermore, insight derived from the work thus far in adjuvant-induced arthritis already is stimulating analyses of related phenomena in autoimmune diseases other than those involving joints. Only limited data are available in the area of humoral autoimmunity to stress proteins. Autoantibodies to a number of stress proteins have been identified in SLE and

  19. Compounds Triggering ER Stress Exert Anti-Melanoma Effects and Overcome BRAF Inhibitor Resistance.

    Science.gov (United States)

    Cerezo, Michaël; Lehraiki, Abdelali; Millet, Antoine; Rouaud, Florian; Plaisant, Magali; Jaune, Emilie; Botton, Thomas; Ronco, Cyril; Abbe, Patricia; Amdouni, Hella; Passeron, Thierry; Hofman, Veronique; Mograbi, Baharia; Dabert-Gay, Anne-Sophie; Debayle, Delphine; Alcor, Damien; Rabhi, Nabil; Annicotte, Jean-Sébastien; Héliot, Laurent; Gonzalez-Pisfil, Mariano; Robert, Caroline; Moréra, Solange; Vigouroux, Armelle; Gual, Philippe; Ali, Maruf M U; Bertolotto, Corine; Hofman, Paul; Ballotti, Robert; Benhida, Rachid; Rocchi, Stéphane

    2016-06-13

    We have discovered and developed a series of molecules (thiazole benzenesulfonamides). HA15, the lead compound of this series, displayed anti-cancerous activity on all melanoma cells tested, including cells isolated from patients and cells that developed resistance to BRAF inhibitors. Our molecule displayed activity against other liquid and solid tumors. HA15 also exhibited strong efficacy in xenograft mouse models with melanoma cells either sensitive or resistant to BRAF inhibitors. Transcriptomic, proteomic, and biochemical studies identified the chaperone BiP/GRP78/HSPA5 as the specific target of HA15 and demonstrated that the interaction increases ER stress, leading to melanoma cell death by concomitant induction of autophagic and apoptotic mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Caspase 2 activation and ER stress drive rapid Jurkat cell apoptosis by clofibrate.

    Directory of Open Access Journals (Sweden)

    Fabio Penna

    Full Text Available Differently from the antiapoptotic action most commonly assigned to peroxisome proliferators (PPs, we demonstrated that some of them, clofibrate (CF in particular, display clearcut apoptogenic properties on rat hepatoma cell lines. We and others could confirm that CF as well as various other PPs can induce apoptosis in a variety of cells, including human liver, breast and lung cancer cell lines. The present study was aimed at investigating the cytotoxic action of CF on a neoplastic line of different origin, the human T leukemia Jurkat cells. We observed that CF rapidly triggers an extensive and morphologically typical apoptotic process on Jurkat cells, though not in primary T cells, which is completely prevented by the polycaspase inhibitor zVADfmk. Gene silencing studies demonstrated that CF-induced apoptosis in Jurkat cells is partially dependent on activation of caspase 2. Looking for a possible trigger of caspase 2 activation, we observed increased levels of phosphorylated eIF2α and JNK in CF-treated cells. Moreover, intracellular Ca(2+ homeostasis was perturbed. Together, these findings are suggestive for the occurrence of ER stress, an event that is known to have the potential to activate caspase 2. The present observations demonstrate that CF induces in Jurkat cells a very fast and extensive apoptosis, that involves induction of ER stress and activation of caspases 2 and 3. Since apoptosis in Jurkat cells occurs at pharmacologically relevant concentrations of CF, the present findings encourage further in depth analysis in order to work out the potential implications of CF cytotoxcity on leukemic cells.

  1. Methods for monitoring endoplasmic reticulum stress and the unfolded protein response.

    LENUS (Irish Health Repository)

    Samali, Afshin

    2010-01-01

    The endoplasmic reticulum (ER) is the site of folding of membrane and secreted proteins in the cell. Physiological or pathological processes that disturb protein folding in the endoplasmic reticulum cause ER stress and activate a set of signaling pathways termed the Unfolded Protein Response (UPR). The UPR can promote cellular repair and sustained survival by reducing the load of unfolded proteins through upregulation of chaperones and global attenuation of protein synthesis. Research into ER stress and the UPR continues to grow at a rapid rate as many new investigators are entering the field. There are also many researchers not working directly on ER stress, but who wish to determine whether this response is activated in the system they are studying: thus, it is important to list a standard set of criteria for monitoring UPR in different model systems. Here, we discuss approaches that can be used by researchers to plan and interpret experiments aimed at evaluating whether the UPR and related processes are activated. We would like to emphasize that no individual assay is guaranteed to be the most appropriate one in every situation and strongly recommend the use of multiple assays to verify UPR activation.

  2. Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Mauricio Torres

    2010-12-01

    Full Text Available Prion-related disorders (PrDs are fatal neurodegenerative disorders characterized by progressive neuronal impairment as well as the accumulation of an abnormally folded and protease resistant form of the cellular prion protein, termed PrP(RES. Altered endoplasmic reticulum (ER homeostasis is associated with the occurrence of neurodegeneration in sporadic, infectious and familial forms of PrDs. The ER operates as a major intracellular calcium store, playing a crucial role in pathological events related to neuronal dysfunction and death. Here we investigated the possible impact of PrP misfolding on ER calcium homeostasis in infectious and familial models of PrDs. Neuro2A cells chronically infected with scrapie prions showed decreased ER-calcium content that correlated with a stronger upregulation of UPR-inducible chaperones, and a higher sensitivity to ER stress-induced cell death. Overexpression of the calcium pump SERCA stimulated calcium release and increased the neurotoxicity observed after exposure of cells to brain-derived infectious PrP(RES. Furthermore, expression of PrP mutants that cause hereditary Creutzfeldt-Jakob disease or fatal familial insomnia led to accumulation of PrP(RES and their partial retention at the ER, associated with a drastic decrease of ER calcium content and higher susceptibility to ER stress. Finally, similar results were observed when a transmembrane form of PrP was expressed, which is proposed as a neurotoxic intermediate. Our results suggest that alterations in calcium homeostasis and increased susceptibility to ER stress are common pathological features of both infectious and familial PrD models.

  3. Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Emily F A van 't Wout

    2015-06-01

    Full Text Available Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA. Efficient functioning of the endoplasmic reticulum (ER is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to "ER stress" and activation of the "unfolded protein response" (UPR. Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host.

  4. Bcl-2 antagonists interact synergistically with bortezomib in DLBCL cells in association with JNK activation and induction of ER stress.

    Science.gov (United States)

    Dasmahapatra, Girija; Lembersky, Dmitry; Rahmani, Mohamed; Kramer, Lora; Friedberg, Jonathan; Fisher, Richard I; Dent, Paul; Grant, Steven

    2009-05-01

    Mechanisms underlying interactions between the proteasome inhibitor bortezomib and small molecule Bcl-2 antagonists were examined in GC- and ABC-type human DLBCL (diffuse lymphocytic B-cell lymphoma) cells. Concomitant or sequential exposure to non- or minimally toxic concentrations of bortezomib or other proteasome inhibitors and either HA14-1 or gossypol resulted in a striking increase in Bax/Bak conformational change/translocation, cytochrome c release, caspase activation and synergistic induction of apoptosis in both GC- and ABC-type cells. These events were associated with a sharp increase in activation of the stress kinase JNK and evidence of ER stress induction (e.g., eIF2alpha phosphorylation, activation of caspases-2 and -4, and Grp78 upregulation). Pharmacologic or genetic (e.g., shRNA knockdown) interruption of JNK signaling attenuated HA14-1/bortezomib lethality and ER stress induction. Genetic disruption of the ER stress pathway (e.g., in cells expressing caspase-4 shRNA or DN-eIF2alpha) significantly attenuated lethality. The toxicity of this regimen was independent of ROS generation. Finally, HA14-1 significantly increased bortezomib-mediated JNK activation, ER stress induction, and lethality in bortezomib-resistant cells. Collectively these findings indicate that small molecule Bcl-2 antagonists promote bortezomib-mediated mitochondrial injury and lethality in DLBCL cells in association with enhanced JNK activation and ER stress induction. They also raise the possibility that such a strategy may be effective in different DLBCL sub-types (e.g., GC- or ABC), and in bortezomib-resistant disease.

  5. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Hugo J.R. Fernandes

    2016-03-01

    Full Text Available Heterozygous mutations in the glucocerebrosidase gene (GBA represent the strongest common genetic risk factor for Parkinson's disease (PD, the second most common neurodegenerative disorder. However, the molecular mechanisms underlying this association are still poorly understood. Here, we have analyzed ten independent induced pluripotent stem cell (iPSC lines from three controls and three unrelated PD patients heterozygous for the GBA-N370S mutation, and identified relevant disease mechanisms. After differentiation into dopaminergic neurons, we observed misprocessing of mutant glucocerebrosidase protein in the ER, associated with activation of ER stress and abnormal cellular lipid profiles. Furthermore, we observed autophagic perturbations and an enlargement of the lysosomal compartment specifically in dopamine neurons. Finally, we found increased extracellular α-synuclein in patient-derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets.

  6. On the Origin of Prostate Cancer Stem Cells through Transmissible ER Stress-Mediated Epithelial to Mesenchymal Transition

    Science.gov (United States)

    2013-10-01

    elucidate if in fact this ressitance to secondary UPR induction (“fitness”) plays a role in more physiologically-relevant stressful conditions. To...transmissible ER Stress (TERS), exhibit many key characteristics of an epithelial-to-mesenchymal transition.  TERS-treated prostate cancer cells also...treated cells exhibit an activation of the Wnt-signaling pathway  Twist expression is directly linked with the presence of TERS  TERS induces

  7. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

    KAUST Repository

    Knodel, Markus

    2018-01-08

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  8. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

    Directory of Open Access Journals (Sweden)

    Markus M. Knodel

    2018-01-01

    Full Text Available Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  9. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface.

    Science.gov (United States)

    Knodel, Markus M; Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; Targett-Adams, Paul; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-08

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  10. MicroRNAs meet calcium: joint venture in ER proteostasis.

    Science.gov (United States)

    Finger, Fabian; Hoppe, Thorsten

    2014-11-04

    The endoplasmic reticulum (ER) is a cellular compartment that has a key function in protein translation and folding. Maintaining its integrity is of fundamental importance for organism's physiology and viability. The dynamic regulation of intraluminal ER Ca(2+) concentration directly influences the activity of ER-resident chaperones and stress response pathways that balance protein load and folding capacity. We review the emerging evidence that microRNAs play important roles in adjusting these processes to frequently changing intracellular and environmental conditions to modify ER Ca(2+) handling and storage and maintain ER homeostasis. Copyright © 2014, American Association for the Advancement of Science.

  11. Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells

    Science.gov (United States)

    van ‘t Wout, Emily F. A.; van Schadewijk, Annemarie; van Boxtel, Ria; Dalton, Lucy E.; Clarke, Hanna J.; Tommassen, Jan; Marciniak, Stefan J.; Hiemstra, Pieter S.

    2015-01-01

    Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA). Efficient functioning of the endoplasmic reticulum (ER) is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to “ER stress” and activation of the “unfolded protein response” (UPR). Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR) which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host. PMID:26083346

  12. The pathogenic mechanism of the Mycobacterium ulcerans virulence factor, mycolactone, depends on blockade of protein translocation into the ER.

    Directory of Open Access Journals (Sweden)

    Belinda S Hall

    2014-04-01

    Full Text Available Infection with Mycobacterium ulcerans is characterised by tissue necrosis and immunosuppression due to mycolactone, the necessary and sufficient virulence factor for Buruli ulcer disease pathology. Many of its effects are known to involve down-regulation of specific proteins implicated in important cellular processes, such as immune responses and cell adhesion. We have previously shown mycolactone completely blocks the production of LPS-dependent proinflammatory mediators post-transcriptionally. Using polysome profiling we now demonstrate conclusively that mycolactone does not prevent translation of TNF, IL-6 and Cox-2 mRNAs in macrophages. Instead, it inhibits the production of these, along with nearly all other (induced and constitutive proteins that transit through the ER. This is due to a blockade of protein translocation and subsequent degradation of aberrantly located protein. Several lines of evidence support this transformative explanation of mycolactone function. First, cellular TNF and Cox-2 can be once more detected if the action of the 26S proteasome is inhibited concurrently. Second, restored protein is found in the cytosol, indicating an inability to translocate. Third, in vitro translation assays show mycolactone prevents the translocation of TNF and other proteins into the ER. This is specific as the insertion of tail-anchored proteins into the ER is unaffected showing that the ER remains structurally intact. Fourth, metabolic labelling reveals a near-complete loss of glycosylated and secreted proteins from treated cells, whereas cytosolic proteins are unaffected. Notably, the profound lack of glycosylated and secreted protein production is apparent in a range of different disease-relevant cell types. These studies provide a new mechanism underlying mycolactone's observed pathological activities both in vitro and in vivo. Mycolactone-dependent inhibition of protein translocation into the ER not only explains the deficit of innate

  13. Adiporedoxin, an upstream regulator of ER oxidative folding and protein secretion in adipocytes.

    Science.gov (United States)

    Jedrychowski, Mark P; Liu, Libin; Laflamme, Collette J; Karastergiou, Kalypso; Meshulam, Tova; Ding, Shi-Ying; Wu, Yuanyuan; Lee, Mi-Jeong; Gygi, Steven P; Fried, Susan K; Pilch, Paul F

    2015-11-01

    Adipocytes are robust protein secretors, most notably of adipokines, hormone-like polypeptides, which act in an endocrine and paracrine fashion to affect numerous physiological processes such as energy balance and insulin sensitivity. To understand how such proteins are assembled for secretion we describe the function of a novel endoplasmic reticulum oxidoreductase, adiporedoxin (Adrx). Adrx knockdown and overexpressing 3T3-L1 murine adipocyte cell lines and a knockout mouse model were used to assess the influence of Adrx on secreted proteins as well as the redox state of ER resident chaperones. The metabolic phenotypes of Adrx null mice were characterized and compared to WT mice. The correlation of Adrx levels BMI, adiponectin levels, and other inflammatory markers from adipose tissue of human subjects was also studied. Adiporedoxin functions via a CXXC active site, and is upstream of protein disulfide isomerase whose direct function is disulfide bond formation, and ultimately protein secretion. Over and under expression of Adrx in vitro enhances and reduces, respectively, the secretion of the disulfide-bonded proteins including adiponectin and collagen isoforms. On a chow diet, Adrx null mice have normal body weights, and glucose tolerance, are moderately hyperinsulinemic, have reduced levels of circulating adiponectin and are virtually free of adipocyte fibrosis resulting in a complex phenotype tending towards insulin resistance. Adrx protein levels in human adipose tissue correlate positively with adiponectin levels and negatively with the inflammatory marker phospho-Jun kinase. These data support the notion that Adrx plays a critical role in adipocyte biology and in the regulation of mouse and human metabolism via its modulation of adipocyte protein secretion.

  14. Inhibition of constitutive NF-κB activity induces platelet apoptosis via ER stress.

    Science.gov (United States)

    Paul, Manoj; Kemparaju, Kempaiah; Girish, Kesturu S

    2017-12-02

    Platelets are anucleate cells, known for their pivotal roles in hemostasis, inflammation, immunity, and disease progression. Being anuclear, platelets are known to express several transcriptional factors which exert nongenomic functions, including the positive and negative regulation of platelet activation. NF-κB is one such transcriptional factor involved in the regulation of genes for survival, proliferation, inflammation and immunity. Although, the role NF-κB in platelet activation and aggregation is partially known, its function in management of platelet survival and apoptosis remain unexplored. Therefore, two unrelated inhibitors of NF-κB activation, BAY 11-7082 and MLN4924 were used to determine the role of NF-κB in platelets. Inhibition of NF-κB caused decreased SERCA activity and increased cytosolic Ca 2+ level causing ER stress which was determined by the phosphorylation of eIF2-α. Further, there was increased BAX and decreased BCl-2 levels, incidence of mitochondrial membrane potential depolarization, release of cytochrome c into cytosol, caspase activation, PS externalization and cell death in BAY 11-7082 and MLN4924 treated platelets. The obtained results demonstrate the critical role played by NF-κB in Ca 2+ homeostasis and survival of platelets. In addition, the study demonstrates the potential side effects associated with NF-κB inhibitors employed during inflammation and cancer therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Simian Virus 40 depends on ER protein folding and quality control factors for entry into host cells

    DEFF Research Database (Denmark)

    Schelhaas, Mario; Malmström, Johan; Pelkmans, Lucas

    2007-01-01

    Cell entry of Simian Virus 40 (SV40) involves caveolar/lipid raft-mediated endocytosis, vesicular transport to the endoplasmic reticulum (ER), translocation into the cytosol, and import into the nucleus. We analyzed the effects of ER-associated processes and factors on infection and on isolated...... viruses and found that SV40 makes use of the thiol-disulfide oxidoreductases, ERp57 and PDI, as well as the retrotranslocation proteins Derlin-1 and Sel1L. ERp57 isomerizes specific interchain disulfides connecting the major capsid protein, VP1, to a crosslinked network of neighbors, thus uncoupling about...

  16. Protein stress and stress proteins: implications in aging and disease

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-04-02

    Apr 2, 2007 ... age-related disease by DAF-16 and heat-shock factor; Science. 300 1142–1145. Macario A J and Conway de Macario E 2005 Sick chaperones, cellular stress, and disease; N. Engl. J. Med. 353 1489–1501. Massey A C, Kaushik S, Sovak G, Kiffin R and Cuervo A M 2006. Consequences of the selective ...

  17. Induction of endoplasmic reticulum-induced stress genes in Panc-1 pancreatic cancer cells is dependent on Sp proteins.

    Science.gov (United States)

    Abdelrahim, Maen; Liu, Shengxi; Safe, Stephen

    2005-04-22

    Endoplasmic reticulum (ER) stress plays a critical role in multiple diseases, and pharmacologically active drugs can induce cell death through ER stress pathways. Stress-induced genes are activated through assembly of transcription factors on ER stress response elements (ERSEs) in target gene promoters. Gel mobility shift and chromatin immunoprecipitation assays have confirmed interactions of NF-Y and YY1 with the distal motifs of the tripartite ERSE from the glucose-related protein 78 (GRP78) gene promoter. The GC-rich nonanucleotide (N(9)) sequence, which forms the ER stress response binding factor (ERSF) complex binds TFII-I and ATF6; however, we have now shown that in Panc-1 pancreatic cancer cells, this complex also binds Sp1, Sp3, and Sp4 proteins. Sp proteins are constitutively bound to the ERSE; however, activation of GRP78 protein (or reporter gene) by thapsigargin or tunicamycin is inhibited after cotransfection with small inhibitory RNAs for Sp1, Sp3, and Sp4. This study demonstrates that Sp transcription factors are important for stress-induced responses through their binding to ERSEs.

  18. HIV-1 Tat Induces Unfolded Protein Response and Endoplasmic Reticulum Stress in Astrocytes and Causes Neurotoxicity through Glial Fibrillary Acidic Protein (GFAP) Activation and Aggregation.

    Science.gov (United States)

    Fan, Yan; He, Johnny J

    2016-10-21

    HIV-1 Tat is a major culprit for HIV/neuroAIDS. One of the consistent hallmarks of HIV/neuroAIDS is reactive astrocytes or astrocytosis, characterized by increased cytoplasmic accumulation of the intermediate filament glial fibrillary acidic protein (GFAP). We have shown that that Tat induces GFAP expression in astrocytes and that GFAP activation is indispensable for astrocyte-mediated Tat neurotoxicity. However, the underlying molecular mechanisms are not known. In this study, we showed that Tat expression or GFAP expression led to formation of GFAP aggregates and induction of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress in astrocytes. In addition, we demonstrated that GFAP up-regulation and aggregation in astrocytes were necessary but also sufficient for UPR/ER stress induction in Tat-expressing astrocytes and for astrocyte-mediated Tat neurotoxicity. Importantly, we demonstrated that inhibition of Tat- or GFAP-induced UPR/ER stress by the chemical chaperone 4-phenylbutyrate significantly alleviated astrocyte-mediated Tat neurotoxicity in vitro and in the brain of Tat-expressing mice. Taken together, these results show that HIV-1 Tat expression leads to UPR/ER stress in astrocytes, which in turn contributes to astrocyte-mediated Tat neurotoxicity, and raise the possibility of developing HIV/neuroAIDS therapeutics targeted at UPR/ER stress. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Valsartan reduces AT1-AA-induced apoptosis through suppression oxidative stress mediated ER stress in endothelial progenitor cells.

    Science.gov (United States)

    Wang, Z-C; Qi, J; Liu, L-M; Li, J; Xu, H-Y; Liang, B; Li, B

    2017-03-01

    Valsartan has been reported to have the function of treating hypertension and improving the prognosis of patients. Many studies indicated that valsartan can also increase angiotensin II, andosterone and plasma renin activity (PRA). Autoantibodies against the angiotensin II type 1 receptor (AT1-AA) have been showed to increase reactive oxygen species (ROS) and calcium (Ca2+) and result in apoptosis in vascular smooth muscle cells. In this study, we attempted to explore the effect of valsartan on AT1-AA-induced apoptosis in endothelial progenitor cells. Endothelial progenitor cells (EPCs) were cultured. The cytotoxicity was determined by MTT assay. EPCs apoptosis was determined by DAPI staining and flow cytometry. Reactive oxygen species, intracellular calcium concentration and calpain activity were measured using Fluostar Omega Spectrofluorimeter. The expression of p-ERK, p-eIF-2a, CHOP, Bcl-2 and caspase-3 were detected by Western blot. MTT assays showed valsartan significantly inhibited AT1-AA- induced decline of the viability of EPCs. DAPI staining and flow cytometry results indicated valsartan inhibited AT1-AA-induced decline of the viability of EPCs via inhibiting AT1-AA-induced apoptosis. Furthermore, the increasing of reactive oxygen species, intracellular calcium and calpain activity induced by AT1-AA in EPCs were also recovered after pre-treated with valsartan. Meanwhile, the upregulation of p-ERK, p-eIF-2a and CHOP, downregulation of Bcl-2, and activation of Caspase-3 caused by AT1-AA were reversed after pre-incubated with valsartan. Valsartan could inhibit AT1-AA-induced apoptosis through inhibiting oxidative stress mediated ER stress in EPCs.

  20. Protein stress and stress proteins: implications in aging and disease

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-04-02

    Apr 2, 2007 ... Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation; Genetics 161 1101–1112. Gidalevitz T, Ben-Zvi A, Ho K H, Brignull H R and Morimoto. R I 2006 Progressive disruption of cellular protein folding in models of polyglutamine diseases; Science 311 1471–1474. Goldberg A L 2003 ...

  1. Impairment of visual function and retinal ER stress activation in Wfs1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Delphine Bonnet Wersinger

    Full Text Available Wolfram syndrome is an early onset genetic disease (1/180,000 featuring diabetes mellitus and optic neuropathy, associated to mutations in the WFS1 gene. Wfs1-/- mouse model shows pancreatic beta cell atrophy, but its visual performance has not been investigated, prompting us to study its visual function and histopathology of the retina and optic nerve. Electroretinogram and visual evoked potentials (VEPs were performed in Wfs1-/- and Wfs1+/+ mice at 3, 6, 9 and 12 months of age. Fundi were pictured with Micron III apparatus. Retinal ganglion cell (RGC abundance was determined from Brn3a immunolabeling of retinal sections. RGC axonal loss was quantified by electron microscopy in transversal optic nerve sections. Endoplasmic reticulum stress was assessed using immunoglobulin binding protein (BiP, protein disulfide isomerase (PDI and inositol-requiring enzyme 1 alpha (Ire1α markers. Electroretinograms amplitudes were slightly reduced and latencies increased with time in Wfs1-/- mice. Similarly, VEPs showed decreased N+P amplitudes and increased N-wave latency. Analysis of unfolded protein response signaling revealed an activation of endoplasmic reticulum stress in Wfs1-/- mutant mouse retinas. Altogether, progressive VEPs alterations with minimal neuronal cell loss suggest functional alteration of the action potential in the Wfs1-/- optic pathways.

  2. Stress-associated endoplasmic reticulum protein 1 (SERP1) and Atg8 synergistically regulate unfolded protein response (UPR) that is independent on autophagy in Candida albicans.

    Science.gov (United States)

    Li, Jianrong; Yu, Qilin; Zhang, Bing; Xiao, Chenpeng; Ma, Tianyu; Yi, Xiao; Liang, Chao; Li, Mingchun

    2018-03-06

    Cellular stresses could activate several response processes, such as the unfolded protein response (UPR), autophagy and oxidative stress response to restore cellular homeostasis or render cell death. Herein, we identified the Candida albicans stress-associated endoplasmic reticulum protein 1 (SERP1), also known as Ysy6, which was involved in endoplasmic reticulum (ER) stress response. We found that deletion of both SERP1/YSY6 and ATG8 led to hypersensitivity to tunicamycin (TN), and resulted in severe mitochondrial dysfunction under this stress. UPR reporting systems illustrated that the double mutation attenuated splicing of HAC1 mRNA, followed by decreased level of UPR activation. In addition, the atg8Δ/Δ ysy6Δ/Δ double mutant had normal autophagic degradation of the ER component Sec63 under ER stress, suggesting that SERP1/Ysy6 and Atg8 synergistically regulated UPR that is independent on autophagy. We also found that deletion of both SERP1/YSY6 and ATG8 caused the loss of virulence. This study reveals the important role of SERP1/Ysy6 and Atg8 in ER stress response and virulence in C. albicans. Copyright © 2018. Published by Elsevier GmbH.

  3. Role of ER stress response in photodynamic therapy: ROS generated in different subcellular compartments trigger diverse cell death pathways

    Czech Academy of Sciences Publication Activity Database

    Moserová, Irena; Králová, Jarmila

    2012-01-01

    Roč. 7, č. 3 (2012), e32972 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LC06077; GA ČR GA203/09/1311; GA ČR(CZ) GAP303/11/1291 Institutional research plan: CEZ:AV0Z50520514 Keywords : photodynamic therapy * porphyrin derivatives * cell death * ER stress Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  4. Induction of Apoptosis by 11-Dehydrosinulariolide via Mitochondrial Dysregulation and ER Stress Pathways in Human Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Jeff Yi-Fu Chen

    2012-08-01

    Full Text Available In this study the isolated compound 11-dehydrosinulariolide from soft coral Sinularia leptoclados possessed anti-proliferative, anti-migratory and apoptosis-inducing activities against A2058 melanoma cells. Anti-tumor effects of 11-dehydrosinulariolide were determined by MTT assay, cell migration assay and flow cytometry. Growth and migration of melanoma cells were dose-dependently inhibited by 2–8 μg/mL 11-dehydrosinulariolide. Flow cytometric data indicated that 11-dehydrosinulariolide induces both early and late apoptosis in melanoma cells. It was found that the apoptosis induced by 11-dehydrosinulariolide is relevant to mitochondrial-mediated apoptosis via caspase-dependent pathways, elucidated by loss of mitochondrial membrane potential (∆Ym, release of cytochrome C, activation of caspase-3/-9 and Bax as well as suppression of Bcl-2/Bcl-xL. The cleavage of PARP-1 suggested partial involvement of caspase-independent pathways. Immunoblotting data displayed up-regulations of PERK/eIF2α/ATF4/CHOP and ATF6/CHOP coupling with elevation of ER stress chaperones GRP78, GRP94, calnexin, calreticulin and PDI, implicating the involvement of these factors in ER stress-mediated apoptosis induced by 11-dehydrosinulariolide. The abolishment of apoptotic events after pre-treatment with salubrinal indicated that ER stress-mediated apoptosis is also induced by 11-dehydrosinulariolide against melanoma cells. The data in this study suggest that 11-dehydrosinulariolide potentially induces apoptosis against melanoma cells via mitochondrial dysregulation and ER stress pathways.

  5. Induction of Apoptosis by 11-Dehydrosinulariolide via Mitochondrial Dysregulation and ER Stress Pathways in Human Melanoma Cells

    Science.gov (United States)

    Su, Tzu-Rong; Tsai, Feng-Jen; Lin, Jen-Jie; Huang, Han Hsiang; Chiu, Chien-Chih; Su, Jui-Hsin; Yang, Ya-Ting; Chen, Jeff Yi-Fu; Wong, Bing-Sang; Wu, Yu-Jen

    2012-01-01

    In this study the isolated compound 11-dehydrosinulariolide from soft coral Sinularia leptoclados possessed anti-proliferative, anti-migratory and apoptosis-inducing activities against A2058 melanoma cells. Anti-tumor effects of 11-dehydrosinulariolide were determined by MTT assay, cell migration assay and flow cytometry. Growth and migration of melanoma cells were dose-dependently inhibited by 2–8 μg/mL 11-dehydrosinulariolide. Flow cytometric data indicated that 11-dehydrosinulariolide induces both early and late apoptosis in melanoma cells. It was found that the apoptosis induced by 11-dehydrosinulariolide is relevant to mitochondrial-mediated apoptosis via caspase-dependent pathways, elucidated by loss of mitochondrial membrane potential (∆Ψm), release of cytochrome C, activation of caspase-3/-9 and Bax as well as suppression of Bcl-2/Bcl-xL. The cleavage of PARP-1 suggested partial involvement of caspase-independent pathways. Immunoblotting data displayed up-regulations of PERK/eIF2α/ATF4/CHOP and ATF6/CHOP coupling with elevation of ER stress chaperones GRP78, GRP94, calnexin, calreticulin and PDI, implicating the involvement of these factors in ER stress-mediated apoptosis induced by 11-dehydrosinulariolide. The abolishment of apoptotic events after pre-treatment with salubrinal indicated that ER stress-mediated apoptosis is also induced by 11-dehydrosinulariolide against melanoma cells. The data in this study suggest that 11-dehydrosinulariolide potentially induces apoptosis against melanoma cells via mitochondrial dysregulation and ER stress pathways. PMID:23015779

  6. Calpain inhibitor attenuates ER stress-induced apoptosis in injured spinal cord after bone mesenchymal stem cells transplantation.

    Science.gov (United States)

    Wang, Chao; Shi, Dongling; Song, Xinghui; Chen, Yingying; Wang, Linlin; Zhang, Xiaoming

    2016-07-01

    Bone marrow mesenchymal stem cells (BMSCs) therapy for tissue repair is limited by low survival of cells transplanted in the recipient sites after spinal cord injury (SCI). Here, we investigated the effects of a calpain inhibitor (MDL28170) on BMSCs survival by a rat model of spinal cord injury in vitro and in vivo. Conditioned medium from hypoxia injured VSC4.1 motor neurons (Hypoxia-CM) were collected to mimic the micro-environment of injured spinal cord. Tunicamycin was also applied to induce endoplasmic reticulum (ER) stress in BMSCs. The CCK-8 assay, LDH leakage assay and flow cytometer assay demonstrated that MDL28170 could enhance BMSCs survival in response to Hypoxia-CM and tunicamycin. Moreover, MDL28170 significantly enhanced GFP-positive BMSCs survival in vivo after transplantation into the contused spinal cord of SCI rats. The protective effects of MDL28170 on BMSCs survival may inhibit the activation of calpain and the downstream ER stress-induced apoptosis. The present results suggested for the first time that MDL28170 with BMSCs transplant helped to rescue cells in injured spinal cord by modulating the ER stress-induced apoptosis. The calpain inhibitor, MDL28170 may have the promising new strategies for promoting the survival of transplanted BMSCs on cell-based regenerative medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Arabidopsis senescence-associated protein DMP1 is involved in membrane remodeling of the ER and tonoplast

    Directory of Open Access Journals (Sweden)

    Kasaras Alexis

    2012-04-01

    Full Text Available Abstract Background Arabidopsis DMP1 was discovered in a genome-wide screen for senescence-associated membrane proteins. DMP1 is a member of a novel plant-specific membrane protein family of unknown function. In rosette leaves DMP1 expression increases from very low background level several 100fold during senescence progression. Results Expression of AtDMP1 fused to eGFP in Nicotiana benthamiana triggers a complex process of succeeding membrane remodeling events affecting the structure of the endoplasmic reticulum (ER and the vacuole. Induction of spherical structures (“bulbs”, changes in the architecture of the ER from tubular to cisternal elements, expansion of smooth ER, formation of crystalloid ER, and emergence of vacuolar membrane sheets and foamy membrane structures inside the vacuole are proceeding in this order. In some cells it can be observed that the process culminates in cell death after breakdown of the entire ER network and the vacuole. The integrity of the plasma membrane, nucleus and Golgi vesicles are retained until this stage. In Arabidopsis thaliana plants expressing AtDMP1-eGFP by the 35S promoter massive ER and vacuole vesiculation is observed during the latest steps of leaf senescence, whereas earlier in development ER and vacuole morphology are not perturbed. Expression by the native DMP1 promoter visualizes formation of aggregates termed “boluses” in the ER membranes and vesiculation of the entire ER network, which precedes disintegration of the central vacuole during the latest stage of senescence in siliques, rosette and cauline leaves and in darkened rosette leaves. In roots tips, DMP1 is strongly expressed in the cortex undergoing vacuole biogenesis. Conclusions Our data suggest that DMP1 is directly or indirectly involved in membrane fission during breakdown of the ER and the tonoplast during leaf senescence and in membrane fusion during vacuole biogenesis in roots. We propose that these properties of DMP1

  8. The Effect of Boric Acid and Borax on Oxidative Stress, Inflammation, ER Stress and Apoptosis in Cisplatin Toxication and Nephrotoxicity Developing as a Result of Toxication.

    Science.gov (United States)

    Hazman, Ömer; Bozkurt, Mehmet Fatih; Fidan, Abdurrahman Fatih; Uysal, Fadime Erkan; Çelik, Sefa

    2018-03-02

    The development of treatment protocols that can reduce side effects in chemotherapy applications is extremely important in terms of cancer treatment. In this context, it was aimed to investigate the effects of boric acid and borax on cisplatin toxicity (nephrotoxicity) in rats. In the experimental phase, eight groups were formed from rats. Boric acid and borax were given to the treatment groups with three different doses using gavage. On the fifth day of the study, cisplatin (10 mg/kg) was administered to all rats except the control group. At the end of the study, oxidative stress-related (GSH, MDA, PCO, GPx, 8-OHdG), inflammation-related (TNF-α, IL-1β, IL-18, MCP-1, ICAM, TGF-β), apoptosis-related (p53, caspase 1, 3, 8, 12, bcl-2, bcl-xL, NFkB), and ER stress-related (GRP78, ATF-6, PERK) basic parameters were analyzed in serum, erythrocyte, and kidney tissues. Kidney tissues were also examined by histopathological and immunohistochemical methods. Borax and boric acid at different doses decreased inflammation and oxidative stress caused by cisplatin toxicity and increased ER stress. As a result of the treatments applied to experimental animals, it was determined that boric acid and borax reduced apoptotic damage in kidney tissue, but the decrease was statistically significant only in 200 mg/kg boric acid-administered group. In the study, low anti-apoptotic effects of borate doses with the anti-inflammatory and antioxidant effect may be due to increased ER stress at the relevant doses. Further studies on the effects of boron compounds on ER stress and apoptotic mechanisms may clarify this issue. Thus, possible side effects or if there are new usage areas of borone compounds which have many usage areas in clinics can be detected.

  9. Fanconi anemia proteins and endogenous stresses

    International Nuclear Information System (INIS)

    Pang Qishen; Andreassen, Paul R.

    2009-01-01

    Each of the thirteen identified Fanconi anemia (FA) genes is required for resistance to DNA interstrand crosslinking agents, such as mitomycin C, cisplatin, and melphalan. While these agents are excellent tools for understanding the function of FA proteins in DNA repair, it is uncertain whether a defect in the removal of DNA interstrand crosslinks (ICLs) is the basis for the pathophysiology of FA. For example, DNA interstrand crosslinking agents induce other types of DNA damage, in addition to ICLs. Further, other DNA-damaging agents, such as ionizing or ultraviolet radiation, activate the FA pathway, leading to monoubiquitination of FANCD2 and FANCI. Also, FA patients display congenital abnormalities, hematologic deficiencies, and a predisposition to cancer in the absence of an environmental source of ICLs that is external to cells. Here we consider potential sources of endogenous DNA damage, or endogenous stresses, to which FA proteins may respond. These include ICLs formed by products of lipid peroxidation, and other forms of oxidative DNA damage. FA proteins may also potentially respond to telomere shortening or replication stress. Defining these endogenous sources of DNA damage or stresses is critical for understanding the pathogenesis of deficiencies for FA proteins. We propose that FA proteins are centrally involved in the response to replication stress, including replication stress arising from oxidative DNA damage.

  10. Fanconi anemia proteins and endogenous stresses

    Energy Technology Data Exchange (ETDEWEB)

    Pang Qishen [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Research Foundation, Cincinnati, OH (United States); Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH (United States); Andreassen, Paul R., E-mail: Paul.Andreassen@cchmc.org [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Research Foundation, Cincinnati, OH (United States); Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2009-07-31

    Each of the thirteen identified Fanconi anemia (FA) genes is required for resistance to DNA interstrand crosslinking agents, such as mitomycin C, cisplatin, and melphalan. While these agents are excellent tools for understanding the function of FA proteins in DNA repair, it is uncertain whether a defect in the removal of DNA interstrand crosslinks (ICLs) is the basis for the pathophysiology of FA. For example, DNA interstrand crosslinking agents induce other types of DNA damage, in addition to ICLs. Further, other DNA-damaging agents, such as ionizing or ultraviolet radiation, activate the FA pathway, leading to monoubiquitination of FANCD2 and FANCI. Also, FA patients display congenital abnormalities, hematologic deficiencies, and a predisposition to cancer in the absence of an environmental source of ICLs that is external to cells. Here we consider potential sources of endogenous DNA damage, or endogenous stresses, to which FA proteins may respond. These include ICLs formed by products of lipid peroxidation, and other forms of oxidative DNA damage. FA proteins may also potentially respond to telomere shortening or replication stress. Defining these endogenous sources of DNA damage or stresses is critical for understanding the pathogenesis of deficiencies for FA proteins. We propose that FA proteins are centrally involved in the response to replication stress, including replication stress arising from oxidative DNA damage.

  11. Expression of endoplasmic reticulum stress protein in rabbit condyle cartilage following anterior disc displacement.

    Science.gov (United States)

    Xu, Ting; Gu, Zhiyuan; Wu, Huiling; Yao, Hua; Wang, Guohua

    2018-04-16

    Anterior disc displacement (ADD) is a most common subtype of temporomandibular disorders (TMD), which is promoted by chondrocytes apoptosis. However, the signaling pathways that trigger apoptosis are still unknown. The aim of this study was to investigate the expression of endoplasmic reticulum (ER) stress related proteins in the condylar cartilage of rabbits following ADD. Sixty healthy adult rabbits were randomly assigned to the experimental and sham-operated control groups (n=12). The experimental rabbits were subjected to surgical ADD in the right temporomandibular joints. The production of ER stress related proteins C/EBP homologous protein (CHOP), glucose-regulated protein 78 (GRP78), cleaved-caspase-3 and caspase-12 in cartilage was evaluated by immunohistochemistry, quantitative real-time PCR and western blot analysis. Our results showed that the expression of CHOP, GRP78, cleaved-caspase-3 and caspase-12 increased significantly along with degenerative changes of cartilage after ADD. These results indicate that the ER stress pathway is activated in ADD cartilage and might promote the development of TMD. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Thomas S Lisse

    2008-02-01

    Full Text Available Osteogenesis imperfecta is an inherited disorder characterized by increased bone fragility, fractures, and osteoporosis, and most cases are caused by mutations affecting the type I collagen genes. Here, we describe a new mouse model for Osteogenesis imperfecta termed Aga2 (abnormal gait 2 that was isolated from the Munich N-ethyl-N-nitrosourea mutagenesis program and exhibited phenotypic variability, including reduced bone mass, multiple fractures, and early lethality. The causal gene was mapped to Chromosome 11 by linkage analysis, and a C-terminal frameshift mutation was identified in the Col1a1 (procollagen type I, alpha 1 gene as the cause of the disorder. Aga2 heterozygous animals had markedly increased bone turnover and a disrupted native collagen network. Further studies showed that abnormal proalpha1(I chains accumulated intracellularly in Aga2/+ dermal fibroblasts and were poorly secreted extracellularly. This was associated with the induction of an endoplasmic reticulum stress-specific unfolded protein response involving upregulation of BiP, Hsp47, and Gadd153 with caspases-12 and -3 activation and apoptosis of osteoblasts both in vitro and in vivo. These studies resulted in the identification of a new model for Osteogenesis imperfecta, and identified a role for intracellular modulation of the endoplasmic reticulum stress-associated unfolded protein response machinery toward osteoblast apoptosis during the pathogenesis of disease.

  13. The Protein Disulfide Isomerase of Botrytis cinerea: An ER Protein Involved in Protein Folding and Redox Homeostasis Influences NADPH Oxidase Signaling Processes

    Directory of Open Access Journals (Sweden)

    Robert Marschall

    2017-05-01

    Full Text Available Botrytis cinerea is a filamentous plant pathogen, which infects hundreds of plant species; within its lifestyle, the production of reactive oxygen species (ROS and a balanced redox homeostasis are essential parameters. The pathogen is capable of coping with the plant’s oxidative burst and even produces its own ROS to enhance the plant’s oxidative burst. Highly conserved NADPH oxidase (Nox complexes produce the reactive molecules. The membrane-associated complexes regulate a large variety of vegetative and pathogenic processes. Besides their commonly accepted function at the plasma membrane, recent studies reveal that Nox complexes are also active at the membrane of the endoplasmic reticulum. In this study, we identified the essential ER protein BcPdi1 as new interaction partner of the NoxA complex in B. cinerea. Mutants that lack this ER chaperone display overlapping phenotypes to mutants of the NoxA signaling pathway. The protein appears to be involved in all major developmental processes, such as the formation of sclerotia, conidial anastomosis tubes and infection cushions (IC’s and is needed for full virulence. Moreover, expression analyses and reporter gene studies indicate that BcPdi1 affects the redox homeostasis and unfolded protein response (UPR-related genes. Besides the close association between BcPdi1 and BcNoxA, interaction studies provide evidence that the ER protein might likewise be involved in Ca2+ regulated processes. Finally, we were able to show that the potential key functions of the protein BcPdi1 might be affected by its phosphorylation state.

  14. Propofol attenuates H2O2-induced oxidative stress and apoptosis via the mitochondria- and ER-medicated pathways in neonatal rat cardiomyocytes.

    Science.gov (United States)

    Liu, Xue-Ru; Cao, Lu; Li, Tao; Chen, Lin-Lin; Yu, Yi-Yan; Huang, Wen-Jun; Liu, Li; Tan, Xiao-Qiu

    2017-05-01

    Previous studies have shown that propofol, an intravenous anesthetic commonly used in clinical practice, protects the myocardium from injury. Mitochondria- and endoplasmic reticulum (ER)-mediated oxidative stress and apoptosis are two important signaling pathways involved in myocardial injury and protection. The present study aimed to test the hypothesis that propofol could exert a cardio-protective effect via the above two pathways. Cultured neonatal rat cardiomyocytes were treated with culture medium (control group), H 2 O 2 at 500 μM (H 2 O 2 group), propofol at 50 μM (propofol group), and H 2 O 2 plus propofol (H 2 O 2  + propofol group), respectively. The oxidative stress, mitochondrial membrane potential (ΔΨm) and apoptosis of the cardiomyocytes were evaluated by a series of assays including ELISA, flow cytometry, immunofluorescence microscopy and Western blotting. Propofol significantly suppressed the H 2 O 2 -induced elevations in the activities of caspases 3, 8, 9 and 12, the ratio of Bax/Bcl-2, and cell apoptosis. Propofol also inhibited the H 2 O 2 -induced reactive oxygen species (ROS) generation, lactic dehydrogenase (LDH) release and mitochondrial transmembrane potential (ΔΨm) depolarization, and restored the H 2 O 2 -induced reductions of glutathione (GSH) and superoxide dismutase (SOD). In addition, propofol decreased the expressions of glucose-regulated protein 78 kDa (Grp78) and inositol-requiring enzyme 1α (IRE1α), two important signaling molecules in the ER-mediated apoptosis pathway. Propofol protects cardiomyocytes from H 2 O 2 -induced injury by inhibiting the mitochondria- and ER-mediated apoptosis signaling pathways.

  15. The capacity to retrieve escaped ER proteins extends to the trans-most cisterna of the Golgi stack.

    Science.gov (United States)

    Miesenböck, G; Rothman, J E

    1995-04-01

    To explore how far into the Golgi stack the capacity to retrieve KDEL proteins extends, we have introduced an exogenous probe (the peptide YHPNSTCSEKDEL) into the TGN of living cells. For this purpose, a CHO cell line expressing a c-myc-tagged version of the transmembrane protein TGN38--which cycles between the TGN and the cell surface--was generated. The cells internalized peptides that were disulfide bonded to anti-myc antibodies and accumulated the peptide-antibody complexes in the TGN. Peptides released from these complexes underwent retrograde transport to the ER, as evidenced by the transfer of N-linked carbohydrate to their acceptor site. The KDEL-tagged glycopeptides (approximately 10% of the endocytosed load) behaved like endogenous ER residents: they stayed intracellular, and their oligosaccharide side chains remained sensitive to endoglycosidase H. An option thus exists to extract ER residents even at the most distant pole of the Golgi stack, suggesting that sorting of resident from exported ER proteins may occur in a multistage process akin to fractional distillation.

  16. Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network.

    Science.gov (United States)

    Wang, Songyu; Tukachinsky, Hanna; Romano, Fabian B; Rapoport, Tom A

    2016-09-13

    In higher eukaryotes, the endoplasmic reticulum (ER) contains a network of membrane tubules, which transitions into sheets during mitosis. Network formation involves curvature-stabilizing proteins, including the reticulons (Rtns), as well as the membrane-fusing GTPase atlastin (ATL) and the lunapark protein (Lnp). Here, we have analyzed how these proteins cooperate. ATL is needed to not only form, but also maintain, the ER network. Maintenance requires a balance between ATL and Rtn, as too little ATL activity or too high Rtn4a concentrations cause ER fragmentation. Lnp only affects the abundance of three-way junctions and tubules. We suggest a model in which ATL-mediated fusion counteracts the instability of free tubule ends. ATL tethers and fuses tubules stabilized by the Rtns, and transiently sits in newly formed three-way junctions. Lnp subsequently moves into the junctional sheets and forms oligomers. Lnp is inactivated by mitotic phosphorylation, which contributes to the tubule-to-sheet conversion of the ER.

  17. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Namrata eChaudhari

    2014-07-01

    Full Text Available Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded protein response (UPR through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS. Toxic accumulation of ROS within ER and mitochondria disturb fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways has been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease and others. In this review we have discussed the UPR signaling pathways, and networking between ER stress induced inflammatory pathways, oxidative stress and mitochondrial signaling events which further induce or exacerbate ER stress.

  18. PPARγ Ligand-Induced Unfolded Protein Responses in Monocytes

    African Journals Online (AJOL)

    High levels of oxLDL lead to cell dysfunction and apoptosis, a phenomenon known as lipotoxicity. Disturbing endoplasmic reticulum (ER) function results in ER stress and unfolded protein response (UPR), which tends to restore ER homeostasis but switches to apoptosis when ER stress is prolonged. In the present study the ...

  19. Loss of Oca2 disrupts the unfolded protein response and increases resistance to endoplasmic reticulum stress in melanocytes.

    Science.gov (United States)

    Cheng, Tsing; Orlow, Seth J; Manga, Prashiela

    2013-11-01

    Accumulation of proteins in the endoplasmic reticulum (ER) typically induces stress and initiates the unfolded protein response (UPR) to facilitate recovery. If homeostasis is not restored, apoptosis is induced. However, adaptation to chronic UPR activation can increase resistance to subsequent acute ER stress. We therefore investigated adaptive mechanisms in Oculocutaneous albinism type 2 (Oca2)-null melanocytes where UPR signaling is arrested despite continued tyrosinase accumulation leading to resistance to the chemical ER stressor thapsigargin. Although thapsigargin triggers UPR activation, instead of Perk-mediated phosphorylation of eIF2α, in Oca2-null melanocytes, eIF2α was rapidly dephosphorylated upon treatment. Dephosphorylation was mediated by the Gadd34-PP1α phosphatase complex. Gadd34-complex inhibition blocked eIF2α dephosphorylation and significantly increased Oca2-null melanocyte sensitivity to thapsigargin. Thus, Oca2-null melanocytes adapt to acute ER stress by disruption of pro-apoptotic Perk signaling, which promotes cell survival. This is the first study to demonstrate rapid eIF2α dephosphorylation as an adaptive mechanism to ER stress. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Palmitate-induced ER stress increases trastuzumab sensitivity in HER2/neu-positive breast cancer cells

    International Nuclear Information System (INIS)

    Baumann, Jan; Wong, Jason; Sun, Yan; Conklin, Douglas S.

    2016-01-01

    CHOP-dependent apoptosis as well as a partial activation of the ER stress response network via XBP1 and ATF6. This response appears to be a general feature of HER2/neu-positive breast cancer cells but not cells that overexpress only HER2/neu. Exogenous palmitate reduces HER2 and HER3 protein levels without changes in phosphorylation and sensitizes HER2/neu-positive breast cancer cells to treatment with the HER2-targeted therapy trastuzumab. Several studies have shown that HER2, FASN and fatty acid synthesis are functionally linked. Exogenous palmitate exerts its toxic effects in part through inducing ER stress, reducing HER2 expression and thereby sensitizing cells to trastuzumab. These data provide further evidence that HER2 signaling and fatty acid metabolism are highly integrated processes that may be important for disease development and progression. The online version of this article (doi:10.1186/s12885-016-2611-8) contains supplementary material, which is available to authorized users

  1. Palmitate-induced ER stress increases trastuzumab sensitivity in HER2/neu-positive breast cancer cells.

    Science.gov (United States)

    Baumann, Jan; Wong, Jason; Sun, Yan; Conklin, Douglas S

    2016-07-27

    CHOP-dependent apoptosis as well as a partial activation of the ER stress response network via XBP1 and ATF6. This response appears to be a general feature of HER2/neu-positive breast cancer cells but not cells that overexpress only HER2/neu. Exogenous palmitate reduces HER2 and HER3 protein levels without changes in phosphorylation and sensitizes HER2/neu-positive breast cancer cells to treatment with the HER2-targeted therapy trastuzumab. Several studies have shown that HER2, FASN and fatty acid synthesis are functionally linked. Exogenous palmitate exerts its toxic effects in part through inducing ER stress, reducing HER2 expression and thereby sensitizing cells to trastuzumab. These data provide further evidence that HER2 signaling and fatty acid metabolism are highly integrated processes that may be important for disease development and progression.

  2. Chromatin proteins: key responders to stress.

    Directory of Open Access Journals (Sweden)

    Karen T Smith

    Full Text Available Environments can be ever-changing and stresses are commonplace. In order for organisms to survive, they need to be able to respond to change and adapt to new conditions. Fortunately, many organisms have systems in place that enable dynamic adaptation to immediate stresses and changes within the environment. Much of this cellular response is coordinated by modulating the structure and accessibility of the genome. In eukaryotic cells, the genome is packaged and rolled up by histone proteins to create a series of DNA/histone core structures known as nucleosomes; these are further condensed into chromatin. The degree and nature of the condensation can in turn determine which genes are transcribed. Histones can be modified chemically by a large number of proteins that are thereby responsible for dynamic changes in gene expression. In this Primer we discuss findings from a study published in this issue of PLoS Biology by Weiner et al. that highlight how chromatin structure and chromatin binding proteins alter transcription in response to environmental changes and stresses. Their study reveals the importance of chromatin in mediating the speed and amplitude of stress responses in cells and suggests that chromatin is a critically important component of the cellular response to stress.

  3. Fluoride Intensifies Hypercaloric Diet-Induced ER Oxidative Stress and Alters Lipid Metabolism.

    Directory of Open Access Journals (Sweden)

    Heloisa Aparecida Barbosa Silva Pereira

    Full Text Available Here, we evaluated the relationship of diet and F-induced oxidative stress to lipid metabolism in the liver of rats eating normocaloric or hypercaloric diets for two time periods (20 or 60 days.Seventy-two 21-day-old Wistar rats were divided into 2 groups (n = 36 based on the type of diet they were eating; each of these groups was then further divided into another two groups (n = 18 based on the time periods of either 20 or 60 days, for a total of four groups. Each of these was divided into 3 subgroups (n = 6 animals/subgroup, dependent on the dose of F administered in the drinking water (0 mg/L(control, 15 mg/L or 50 mg/L. After the experimental period, blood samples and the liver were collected. Plasma samples were analyzed for HDL, cholesterol and triglycerides. Western blots were performed to probe for GRP78, Erp29, SOD2, Apo-E and SREBP in hepatic tissues.As expected,the expression of target proteins involved in oxidative stress increased in the F-treated groups, especially in liver tissue obtained from animals eating a hypercaloric diet. Most changes in the lipid levels and pathological conditions were seen earlier in the time period, at day 20. The morphometric analyses showed a reduction in steatosis in groups on ahypercaloric diet and treated with 50 mg F/L compared to the control, while no changes were obtained in normocaloric-fed rats. Accordingly, plasma TG was reduced in the F-treated group. The reduced expression of Apo-E in a time- and diet-dependent pattern may account for the particular decrease in steatosis in hypercaloric-fed F-treated rats.These results suggest that F changes liver lipid homeostasis, possibly because of the induction of oxidative stress, which seems to be higher in animals fed hypercaloric diets.

  4. COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis.

    Science.gov (United States)

    Fang, Jingye; Liu, Ming; Zhang, Xuebao; Sakamoto, Takeshi; Taatjes, Douglas J; Jena, Bhanu P; Sun, Fei; Woods, James; Bryson, Tim; Kowluru, Anjaneyulu; Zhang, Kezhong; Chen, Xuequn

    2015-08-01

    Pancreatic β-cells possess a highly active protein synthetic and export machinery in the endoplasmic reticulum (ER) to accommodate the massive production of proinsulin. ER homeostasis is vital for β-cell functions and is maintained by the delicate balance between protein synthesis, folding, export, and degradation. Disruption of ER homeostasis by diabetes-causing factors leads to β-cell death. Among the 4 components to maintain ER homeostasis in β-cells, the role of ER export in insulin biogenesis is the least understood. To address this knowledge gap, the present study investigated the molecular mechanism of proinsulin ER export in MIN6 cells and primary islets. Two inhibitory mutants of the secretion-associated RAS-related protein (Sar)1 small GTPase, known to specifically block coat protein complex II (COPII)-dependent ER export, were overexpressed in β-cells using recombinant adenoviruses. Results from this approach, as well as small interfering RNA-mediated Sar1 knockdown, demonstrated that defective Sar1 function blocked proinsulin ER export and abolished its conversion to mature insulin in MIN6 cells, isolated mouse, and human islets. It is further revealed, using an in vitro vesicle formation assay, that proinsulin was packaged into COPII vesicles in a GTP- and Sar1-dependent manner. Blockage of COPII-dependent ER exit by Sar1 mutants strongly induced ER morphology change, ER stress response, and β-cell apoptosis. These responses were mediated by the PKR (double-stranded RNA-dependent kinase)-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (p-eIF2α) and inositol-requiring protein 1 (IRE1)/x-box binding protein 1 (Xbp1) pathways but not via activating transcription factor 6 (ATF6). Collectively, results from the study demonstrate that COPII-dependent ER export plays a vital role in insulin biogenesis, ER homeostasis, and β-cell survival.

  5. The contribution of columnar structure to the stress in ER polymeric blends in a shear flow

    Czech Academy of Sciences Publication Activity Database

    Říha, Pavel; Takimoto, J.; Masubuchi, Y.; Koyama, K.

    2002-01-01

    Roč. 16, 17-18 (2002), s. 2542-2547 ISSN 0217-9792 R&D Projects: GA AV ČR IAA2060003 Keywords : ER liquid polymeric blends * shear flow * contribution Subject RIV: BK - Fluid Dynamics Impact factor: 0.604, year: 2002

  6. Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response.

    Science.gov (United States)

    Gao, Xing-Huang; Krokowski, Dawid; Guan, Bo-Jhih; Bederman, Ilya; Majumder, Mithu; Parisien, Marc; Diatchenko, Luda; Kabil, Omer; Willard, Belinda; Banerjee, Ruma; Wang, Benlian; Bebek, Gurkan; Evans, Charles R; Fox, Paul L; Gerson, Stanton L; Hoppel, Charles L; Liu, Ming; Arvan, Peter; Hatzoglou, Maria

    2015-11-23

    The sulfhydration of cysteine residues in proteins is an important mechanism involved in diverse biological processes. We have developed a proteomics approach to quantitatively profile the changes of sulfhydrated cysteines in biological systems. Bioinformatics analysis revealed that sulfhydrated cysteines are part of a wide range of biological functions. In pancreatic β cells exposed to endoplasmic reticulum (ER) stress, elevated H2S promotes the sulfhydration of enzymes in energy metabolism and stimulates glycolytic flux. We propose that transcriptional and translational reprogramming by the integrated stress response (ISR) in pancreatic β cells is coupled to metabolic alternations triggered by sulfhydration of key enzymes in intermediary metabolism.

  7. Deubiquitinase inhibitor b-AP15 activates endoplasmic reticulum (ER) stress and inhibits Wnt/Notch1 signaling pathway leading to the reduction of cell survival in hepatocellular carcinoma cells.

    Science.gov (United States)

    Ding, Youming; Chen, Xiaoyan; Wang, Bin; Yu, Bin; Ge, Jianhui

    2018-04-15

    b-AP15, a potent and selective inhibitor of the ubiquitin-specific peptidase 14 (USP14), displays in vitro and in vivo antitumor abilities on some types of cancer cells. However, the mechanism underlying its action is not well elucidated. The purposes of the present study are to observe the potential impacts of b-AP15 on cell survival of hepatocellular carcinoma cells and to investigate whether and how this compound inhibits some survival-promoting signaling pathways. We found that b-AP15 significantly decreased cell viability and increased cell apoptosis in a dose-dependent manner in hepatocellular carcinoma cells, along with the perturbation of cell cycle and the decreased expressions of cell cycle-related proteins. We also demonstrated that the endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) were enhanced by b-AP15 supplementation. The inhibition of ER stress/UPR only partly attenuated the cytotoxicity of b-AP15 on hepatocellular carcinoma cells. In addition, b-AP15 treatment inhibited Wnt/β-catenin and Notch1 signaling pathways, and suppressed phosphorylation of STAT3, Akt, and Erk1/2, which were not restored by the inhibition of ER stress/UPR. Furthermore, the expression levels of signaling molecules in Notch1 were reduced by specific inhibitor of Wnt/β-catenin pathway. Notably, either Wnt or Notch1 signaling inhibitor mitigated phosphorylation of STAT3, Akt, and Erk1/2, and mimicked the cytotoxicity of b-AP15 on hepatocellular carcinoma cells. These results clearly indicate that b-AP15 induced cytotoxic response to hepatocellular carcinoma cells by augmenting ER stress/UPR and inhibiting Wnt/Notch1 signaling pathways. This new finding provides a novel mechanism by which b-AP15 produces its antitumor therapeutic effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Stress i børnefamilier: er børnene årsagen?

    DEFF Research Database (Denmark)

    Engell, Rikke; Nielsen, Naja Rod; Andersen, Anne-Marie Nybo

    2007-01-01

    INTRODUCTION: Stress may affect health negatively. Therefore, it is important to identify risks factors for high levels of stress. Previous studies indicate that parents report higher levels of stress than adults without children. Whether this it due to having children or due to other circumstances...

  9. Polyphenolic Extract of Euphorbia supina Attenuates Manganese-Induced Neurotoxicity by Enhancing Antioxidant Activity through Regulation of ER Stress and ER Stress-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Entaz Bahar

    2017-01-01

    Full Text Available Manganese (Mn is an important trace element present in human body, which acts as an enzyme co-factor or activator in various metabolic reactions. While essential in trace amounts, excess levels of Mn in human brain can produce neurotoxicity, including idiopathic Parkinson’s disease (PD-like extrapyramidal manganism symptoms. This study aimed to investigate the protective role of polyphenolic extract of Euphorbia supina (PPEES on Mn-induced neurotoxicity and the underlying mechanism in human neuroblastoma SKNMC cells and Sprague-Dawley (SD male rat brain. PPEES possessed significant amount of total phenolic and flavonoid contents. PPEES also showed significant antioxidant activity in 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and reducing power capacity (RPC assays. Our results showed that Mn treatment significantly reduced cell viability and increased lactate dehydrogenase (LDH level, which was attenuated by PPEES pretreatment at 100 and 200 µg/mL. Additionally, PPEES pretreatment markedly attenuated Mn-induced antioxidant status alteration by resolving the ROS, MDA and GSH levels and SOD and CAT activities. PPEES pretreatment also significantly attenuated Mn-induced mitochondrial membrane potential (ΔΨm and apoptosis. Meanwhile, PPEES pretreatment significantly reversed the Mn-induced alteration in the GRP78, GADD34, XBP-1, CHOP, Bcl-2, Bax and caspase-3 activities. Furthermore, administration of PPEES (100 and 200 mg/kg to Mn exposed rats showed improvement of histopathological alteration in comparison to Mn-treated rats. Moreover, administration of PPEES to Mn exposed rats showed significant reduction of 8-OHdG and Bax immunoreactivity. The results suggest that PPEES treatment reduces Mn-induced oxidative stress and neuronal cell loss in SKNMC cells and in the rat brain. Therefore, PPEES may be considered as potential treat-ment in Mn-intoxicated patients.

  10. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2+

    DEFF Research Database (Denmark)

    Venco, Paola; Bonora, Massimo; Giorgi, Carlotta

    2015-01-01

    19orf12 protein was not exclusively present in mitochondria, but also in the Endoplasmic Reticulum (ER) and MAM (Mitochondria Associated Membrane), while mutant C19orf12 variants presented a different localization. Moreover, after induction of oxidative stress, a GFP-tagged C19orf12 wild-type protein...

  11. Novel CHOP activator LGH00168 induces necroptosis in A549 human lung cancer cells via ROS-mediated ER stress and NF-κB inhibition.

    Science.gov (United States)

    Ma, Yi-Ming; Peng, Yan-Min; Zhu, Qiong-Hua; Gao, An-Hui; Chao, Bo; He, Qiao-Jun; Li, Jia; Hu, You-Hong; Zhou, Yu-Bo

    2016-09-01

    C/EBP homologous protein (CHOP) is a transcription factor that is activated at multiple levels during ER stress and plays an important role in ER stress-induced apoptosis. In this study we identified a novel CHOP activator, and further investigated its potential to be a therapeutic agent for human lung cancer. HEK293-CHOP-luc reporter cells were used in high-throughput screening (HTS) to identify CHOP activators. The cytotoxicity against cancer cells in vitro was measured with MTT assay. The anticancer effects were further examined in A549 human non-small cell lung cancer xenograft mice. The mechanisms underlying CHOP activation were analyzed using luciferase assays, and the anticancer mechanisms were elucidated in A549 cells. From chemical libraries of 50 000 compounds, LGH00168 was identified as a CHOP activator, which showed cytotoxic activities against a panel of 9 cancer cell lines with an average IC 50 value of 3.26 μmol/L. Moreover, administration of LGH00168 significantly suppressed tumor growth in A549 xenograft bearing mice. LGH00168 activated CHOP promoter via AARE1 and AP1 elements, increased DR5 expression, decreased Bcl-2 expression, and inhibited the NF-κB pathway. Treatment of A549 cells with LGH00168 (10 μmol/L) did not induce apoptosis, but lead to RIP1-dependent necroptosis, accompanied by cell swelling, plasma membrane rupture, lysosomal membrane permeabilization, MMP collapse and caspase 8 inhibition. Furthermore, LGH00168 (10 and 20 μmol/L) dose-dependently induced mito-ROS production in A549 cells, which was reversed by the ROS scavenger N-acetyl-L-cysteine (NAC, 10 mmol/L). Moreover, NAC significantly diminished LGH00168-induced CHOP activation, NF-κB inhibition and necroptosis in A549 cells. LGH00168 is a CHOP activator that inhibits A549 cell growth in vitro and lung tumor growth in vivo.

  12. KAT2B Is Required for Pancreatic Beta Cell Adaptation to Metabolic Stress by Controlling the Unfolded Protein Response.

    Science.gov (United States)

    Rabhi, Nabil; Denechaud, Pierre-Damien; Gromada, Xavier; Hannou, Sarah Anissa; Zhang, Hongbo; Rashid, Talha; Salas, Elisabet; Durand, Emmanuelle; Sand, Olivier; Bonnefond, Amélie; Yengo, Loic; Chavey, Carine; Bonner, Caroline; Kerr-Conte, Julie; Abderrahmani, Amar; Auwerx, Johan; Fajas, Lluis; Froguel, Philippe; Annicotte, Jean-Sébastien

    2016-05-03

    The endoplasmic reticulum (ER) unfolded protein response (UPR(er)) pathway plays an important role in helping pancreatic β cells to adapt their cellular responses to environmental cues and metabolic stress. Although altered UPR(er) gene expression appears in rodent and human type 2 diabetic (T2D) islets, the underlying molecular mechanisms remain unknown. We show here that germline and β cell-specific disruption of the lysine acetyltransferase 2B (Kat2b) gene in mice leads to impaired insulin secretion and glucose intolerance. Genome-wide analysis of Kat2b-regulated genes and functional assays reveal a critical role for Kat2b in maintaining UPR(er) gene expression and subsequent β cell function. Importantly, Kat2b expression is decreased in mouse and human diabetic β cells and correlates with UPR(er) gene expression in normal human islets. In conclusion, Kat2b is a crucial transcriptional regulator for adaptive β cell function during metabolic stress by controlling UPR(er) and represents a promising target for T2D prevention and treatment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Macoilin, a conserved nervous system-specific ER membrane protein that regulates neuronal excitability.

    Directory of Open Access Journals (Sweden)

    Fausto Arellano-Carbajal

    2011-03-01

    Full Text Available Genome sequence comparisons have highlighted many novel gene families that are conserved across animal phyla but whose biological function is unknown. Here, we functionally characterize a member of one such family, the macoilins. Macoilins are characterized by several highly conserved predicted transmembrane domains towards the N-terminus and by coiled-coil regions C-terminally. They are found throughout Eumetazoa but not in other organisms. Mutants for the single Caenorhabditis elegans macoilin, maco-1, exhibit a constellation of behavioral phenotypes, including defects in aggregation, O₂ responses, and swimming. MACO-1 protein is expressed broadly and specifically in the nervous system and localizes to the rough endoplasmic reticulum; it is excluded from dendrites and axons. Apart from subtle synapse defects, nervous system development appears wild-type in maco-1 mutants. However, maco-1 animals are resistant to the cholinesterase inhibitor aldicarb and sensitive to levamisole, suggesting pre-synaptic defects. Using in vivo imaging, we show that macoilin is required to evoke Ca²(+ transients, at least in some neurons: in maco-1 mutants the O₂-sensing neuron PQR is unable to generate a Ca²(+ response to a rise in O₂. By genetically disrupting neurotransmission, we show that pre-synaptic input is not necessary for PQR to respond to O₂, indicating that the response is mediated by cell-intrinsic sensory transduction and amplification. Disrupting the sodium leak channels NCA-1/NCA-2, or the N-,P/Q,R-type voltage-gated Ca²(+ channels, also fails to disrupt Ca²(+ responses in the PQR cell body to O₂ stimuli. By contrast, mutations in egl-19, which encodes the only Caenorhabditis elegans L-type voltage-gated Ca²(+ channel α1 subunit, recapitulate the Ca²(+ response defect we see in maco-1 mutants, although we do not see defects in localization of EGL-19. Together, our data suggest that macoilin acts in the ER to regulate assembly or

  14. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    Science.gov (United States)

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. TGP attenuates endoplasmic reticulum stress and regulates the expression of thioredoxin-interacting protein in the kidneys of diabetic rats.

    Science.gov (United States)

    Shao, Yunxia; Qi, Xiangming; Xu, Xinxing; Wang, Kun; Wu, Yonggui; Xia, Lingling

    2017-01-16

    Recent evidence suggests that the endoplasmic reticulum stress (ERS)-thioredoxin-interacting protein (TXNIP)-inflammation chain contributes to diabetic renal injury. The aim of the current study was to investigate whether total glucosides of peony (TGP) could inhibit ERS and attenuate up-regulation of TXNIP in the kidneys of rats with streptozotocin-induced diabetes. TGP was orally administered daily at a dose of 50, 100, or 200 mg/kg for 8 weeks. The expression of glucose-regulated protein 78 (GRP78), phospho-protein kinase RNA-like ER kinase (p-PERK), phosphor- eukaryotic translation initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), and TXNIP was assessed. Results indicated that TGP significantly decreased diabetes-induced albuminuria and it acted by down-regulating activation of the ERS-TXNIP-inflammation chain in the kidneys of diabetic rats. These findings indicate that renoprotection from TGP in diabetic rats possibly contributed to inhibition of ERS and decreased expression of TXNIP. These findings also offer a new perspective from which to study the molecular mechanisms of diabetic nephropathy and prevent its progression.

  16. SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150

    Science.gov (United States)

    Jung, T.W.; Lee, K.T.; Lee, M.W.; Ka, K.H.

    2012-01-01

    Endoplasmic reticulum (ER) stress has been implicated in the pathology of type 2 diabetes mellitus (T2DM). Although SIRT1 has a therapeutic effect on T2DM, the mechanisms by which SIRT1 ameliorates insulin resistance (IR) remain unclear. In this study, we investigated the impact of SIRT1 on palmitate-induced ER stress in HepG2 cells and its underlying signal pathway. Treatment with resveratrol, a SIRT1 activator significantly inhibited palmitate-induced ER stress, leading to the protection against palmitate-induced ER stress and insulin resistance. Resveratrol and SIRT1 overexpression induced the expression of oxygen-regulated protein (ORP) 150 in HepG2 cells. Forkhead box O1 (FOXO1) was involved in the regulation of ORP150 expression because suppression of FOXO1 inhibited the induction of ORP150 by SIRT1. Our results indicate a novel mechanism by which SIRT1 regulates ER stress by overexpression of ORP150, and suggest that SIRT1 ameliorates palmitate-induced insulin resistance in HepG2 cells via regulation of ER stress.

  17. Time lapse imaging analysis of the effect of ER stress modulators on apoptotic cell assessed by caspase3/7 activation in NG108-15 cells

    Directory of Open Access Journals (Sweden)

    Ayako Saito

    2016-03-01

    Full Text Available This paper reports the data from the long term time lapse imaging of neuronal cell line NG108-15 that were treated with apoptosis inducer or various ER stress inducers. Use of the fluorescent reporter for activated caspase3/7 in combination with the conventional light microscope allowed us to investigate the time course of apoptosis induction at the single cell level. Quantitative as well as qualitative data are presented here to show the effect of two different ER stress modulating chemical compounds on caspase3/7-dependent apoptosis in neuronal cell line NG108-15 cells. Additional results and interpretation of our data concerning ER stress and apoptosis in NG108-15 cells can be found in Suga et al. (2015 [1] and in Suga et al. (2015 [2].

  18. Evaluation of a curcumin analog as an anti-cancer agent inducing ER stress-mediated apoptosis in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Liu, Zhiguo; Wang, Yi; Sun, Yusheng; Ren, Luqing; Huang, Yi; Cai, Yuepiao; Weng, Qiaoyou; Shen, Xueqian; Li, Xiaokun; Liang, Guang

    2013-01-01

    Recent advances have highlighted the importance of the endoplasmic reticulum (ER) in cell death processes. Pharmacological interventions that effectively enhance tumor cell death through activating ER stress have attracted a great deal of attention for anti-cancer therapy. A bio-evaluation on 113 curcumin analogs against four cancer cell lines was performed through MTT assay. Furthermore, real time cell assay and flow cytometer were used to evaluate the apoptotic induction of (1E,4E)-1,5-bis(5-bromo-2-ethoxyphenyl)penta-1,4-dien-3-one (B82). Western blot, RT-qPCR, and siRNA were then utilized to confirm whether B82-induced apoptosis is mediated through activating ER stress pathway. Finally, the in vivo anti-tumor effect of B82 was evaluated. B82 exhibited strong anti-tumor activity in non-small cell lung cancer (NSCLC) H460 cells. Treatment with B82 significantly induced apoptosis in H460 cells in vitro and inhibited H460 tumor growth in vivo. Further studies demonstrated that the B82-induced apoptosis is mediated by activating ER stress both in vitro and in vivo. A new monocarbonyl analog of curcumin, B82, exhibited anti-tumor effects on H460 cells via an ER stress-mediated mechanism. B82 could be further explored as a potential anticancer agent for the treatment of NSCLC

  19. E2/ER β Enhances Calcineurin Protein Degradation and PI3K/Akt/MDM2 Signal Transduction to Inhibit ISO-Induced Myocardial Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Kuan-Ho Lin

    2017-04-01

    Full Text Available Secretion of multifunctional estrogen and its receptor has been widely considered as the reason for markedly higher frequency of heart disease in men than in women. 17β-Estradiol (E2, for instance, has been reported to prevent development of cardiac apoptosis via activation of estrogen receptors (ERs. In addition, protein phosphatase such as protein phosphatase 1 (PP1 and calcineurin (PP2B are also involved in cardiac hypertrophy and cell apoptosis signaling. However, the mechanism by which E2/ERβ suppresses apoptosis is not fully understood, and the role of protein phosphatase in E2/ERβ action also needs further investigation. In this study, we observed that E2/ERβ inhibited isoproterenol (ISO-induced myocardial cell apoptosis, cytochrome c release and downstream apoptotic markers. Moreover, we found that E2/ERβ blocks ISO-induced apoptosis in H9c2 cells through the enhancement of calcineurin protein degradation through PI3K/Akt/MDM2 signaling pathway. Our results suggest that supplementation with estrogen and/or overexpression of estrogen receptor β gene may prove to be effective means to treat stress-induced myocardial damage.

  20. Prostaglandin E1 protects hepatocytes against endoplasmic reticulum stress-induced apoptosis via protein kinase A-dependent induction of glucose-regulated protein 78 expression.

    Science.gov (United States)

    Yang, Fang-Wan; Fu, Yu; Li, Ying; He, Yi-Huai; Mu, Mao-Yuan; Liu, Qi-Chuan; Long, Jun; Lin, Shi-De

    2017-10-28

    To investigate the protective effect of prostaglandin E1 (PGE1) against endoplasmic reticulum (ER) stress-induced hepatocyte apoptosis, and to explore its underlying mechanisms. Thapsigargin (TG) was used to induce ER stress in the human hepatic cell line L02 and hepatocarcinoma-derived cell line HepG2. To evaluate the effects of PGE1 on TG-induced apoptosis, PGE1 was used an hour prior to TG treatment. Activation of unfolded protein response signaling pathways were detected by western blotting and quantitative real-time RT-PCR. Apoptotic index and cell viability of L02 cells and HepG2 cells were determined with flow cytometry and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. Pretreatment with 1 μmol/L PGE1 protected against TG-induced apoptosis in both L02 cells and HepG2 cells. PGE1 enhanced the TG-induced expression of C/EBP homologous protein (CHOP), glucose-regulated protein (GRP) 78 and spliced X box-binding protein 1 at 6 h. However, it attenuated their expressions after 24 h. PGE1 alone induced protein and mRNA expressions of GRP78; PGE1 also induced protein expression of DNA damage-inducible gene 34 and inhibited the expressions of phospho-PKR-like ER kinase, phospho-eukaryotic initiation factor 2α and CHOP. Treatment with protein kinase A (PKA)-inhibitor H89 or KT5720 blocked PGE1-induced up-regulation of GRP78. Further, the cytoprotective effect of PGE1 on hepatocytes was not observed after blockade of GRP78 expression by H89 or small interfering RNA specifically targeted against human GRP78. Our study demonstrates that PGE1 protects against ER stress-induced hepatocyte apoptosis via PKA pathway-dependent induction of GRP78 expression.

  1. Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis

    Science.gov (United States)

    Ze, LIU; Guogang, YU; Anping, HE; Ling, WANG

    2017-09-01

    The physical vapor deposition method is an effective way to deposit Al2O3 and Er2O3 on 316L stainless steel substrates acting as tritium permeation barriers in a fusion reactor. The distribution of residual thermal stress is calculated both in Al2O3 and Er2O3 coating systems with planar and rough substrates using finite element analysis. The parameters influencing the thermal stress in the sputter process are analyzed, such as coating and substrate properties, temperature and Young’s modulus. This work shows that the thermal stress in Al2O3 and Er2O3 coating systems exhibit a linear relationship with substrate thickness, temperature and Young’s modulus. However, this relationship is inversed with coating thickness. In addition, the rough substrate surface can increase the thermal stress in the process of coating deposition. The adhesive strength between the coating and the substrate is evaluated by the shear stress. Due to the higher compressive shear stress, the Al2O3 coating has a better adhesive strength with a 316L stainless steel substrate than the Er2O3 coating. Furthermore, the analysis shows that it is a useful way to improve adhesive strength with increasing interface roughness.

  2. Oxidative stress, free radicals and protein peroxides.

    Science.gov (United States)

    Gebicki, Janusz M

    2016-04-01

    Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Stress i børnefamilier: er børnene årsagen?

    DEFF Research Database (Denmark)

    Engell, Rikke; Nielsen, Naja Rod; Andersen, Anne-Marie Nybo

    2007-01-01

    is unknown. The purpose of this study is to investigate whether parents have higher levels of stress than adults without children after controlling for possible confounders. A possible interaction between being a parent and working time on perceived stress will be examined. METHODS: Cross-sectional data from...... Danish Health and Morbidity Survey 2000 were used. 3,083 men and 2,813 women aged 25-49 years answered one question on perceived stress. All analyses were stratified on sex and marital status and adjusted for age, socio-economic level, income and work hours/week. RESULTS: No differences in perceived...... in the household did not appear to be the cause of a high level of perceived stress. Single mothers with long working hours were an exception to this conclusion. Udgivelsesdato: 2007-Jan-22...

  4. Role of PY Motif Containing Protein, WBP-2 in ER, PR Signaling and Breast Tumorigenesis

    Science.gov (United States)

    2009-03-01

    interacting with proline-rich sequence that contains arginines or lysines . WW-domains binding phosphoserine or phosphothreonine followed by a proline...functions of WBP-2 and YAP1 are suppressed by WWOX1, suggesting that WWOX1 may regulates the transactivation functions of ER and PR by antagonizing ...p300 family [50], coactivator- associated arginine methyltransferase (CARM-1) [51, 52], and E6-AP [10]. We have previously reported the cloning and

  5. Free fatty acids induce ER stress and block antiviral activity of interferon alpha against hepatitis C virus in cell culture

    Directory of Open Access Journals (Sweden)

    Gunduz Feyza

    2012-08-01

    Full Text Available Abstract Background Hepatic steatosis is recognized as a major risk factor for liver disease progression and impaired response to interferon based therapy in chronic hepatitis C (CHC patients. The mechanism of response to interferon-alpha (IFN-α therapy under the condition of hepatic steatosis is unexplored. We investigated the effect of hepatocellular steatosis on hepatitis C virus (HCV replication and IFN-α antiviral response in a cell culture model. Methods Sub-genomic replicon (S3-GFP and HCV infected Huh-7.5 cells were cultured with a mixture of saturated (palmitate and unsaturated (oleate long-chain free fatty acids (FFA. Intracytoplasmic fat accumulation in these cells was visualized by Nile red staining and electron microscopy then quantified by microfluorometry. The effect of FFA treatment on HCV replication and IFN-α antiviral response was measured by flow cytometric analysis, Renilla luciferase activity, and real-time RT-PCR. Results FFA treatment induced dose dependent hepatocellular steatosis and lipid droplet accumulation in the HCV replicon cells was confirmed by Nile red staining, microfluorometry, and by electron microscopy. Intracellular fat accumulation supports replication more in the persistently HCV infected culture than in the sub-genomic replicon (S3-GFP cell line. FFA treatment also partially blocked IFN-α response and viral clearance by reducing the phosphorylation of Stat1 and Stat2 dependent IFN-β promoter activation. We show that FFA treatment induces endoplasmic reticulum (ER stress response and down regulates the IFNAR1 chain of the type I IFN receptor leading to defective Jak-Stat signaling and impaired antiviral response. Conclusion These results suggest that intracellular fat accumulation in HCV cell culture induces ER stress, defective Jak-Stat signaling, and attenuates the antiviral response, thus providing an explanation to the clinical observation regarding how hepatocellular steatosis influences IFN

  6. Secretion of novel SEL1L endogenous variants is promoted by ER stress/UPR via endosomes and shed vesicles in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Monica Cattaneo

    Full Text Available We describe here two novel endogenous variants of the human endoplasmic reticulum (ER cargo receptor SEL1LA, designated p38 and p28. Biochemical and RNA interference studies in tumorigenic and non-tumorigenic cells indicate that p38 and p28 are N-terminal, ER-anchorless and more stable relative to the canonical transmembrane SEL1LA. P38 is expressed and constitutively secreted, with increase after ER stress, in the KMS11 myeloma line and in the breast cancer lines MCF7 and SKBr3, but not in the non-tumorigenic breast epithelial MCF10A line. P28 is detected only in the poorly differentiated SKBr3 cell line, where it is secreted after ER stress. Consistently with the presence of p38 and p28 in culture media, morphological studies of SKBr3 and KMS11 cells detect N-terminal SEL1L immunolabeling in secretory/degradative compartments and extracellularly-released membrane vesicles. Our findings suggest that the two new SEL1L variants are engaged in endosomal trafficking and secretion via vesicles, which could contribute to relieve ER stress in tumorigenic cells. P38 and p28 could therefore be relevant as diagnostic markers and/or therapeutic targets in cancer.

  7. Are stress proteins induced during PUVA therapy?

    International Nuclear Information System (INIS)

    Al-Masaud, A.S.; Cunliffe, W.J.; Holland, D.B.

    1996-01-01

    Heat shock or stress proteins are produced in practically all cell types when they are exposed to temperatures a few degrees above normal. Measurement of the skin temperature of patients undergoing psoralen and ultraviolet A (PUVA) cabinet treatment for psoriasis revealed that the outer layers of the skin experience a mean temperature rise of 5.3 o C. However, this did not produce a detectable stress response in epidermal samples taken after PUVA treatment. In vitro exposure of epidermis from biopsies or of cultured keratinocytes to a 5-7 o C temperature rise produced a heat shock response, as measured by an increase in the production of proteins of the HSP90 and HSP70 families. These results were confirmed by the use of specific monoclonal antibodies. The corresponding mRNAs were also analysed using labelled probes. In an in vitro system, following simulated PUVA treatment of cultured keratinocytes, increases in the synthesis of HSP90 and HSP70 were detected but these increases did not correlate with changes in mRNA levels. (author)

  8. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying; Li, Jia; Li, Shanshan; Li, Yi; Wang, Xiangxiang; Liu, Baolin [Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 639, Longmian Road, Nanjing 211198 (China); Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639, Longmian Road, Nanjing 211198 (China); Fu, Qiang, E-mail: fuqiang@cpu.edu.cn [Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 639, Longmian Road, Nanjing 211198 (China); Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639, Longmian Road, Nanjing 211198 (China); Ma, Shiping, E-mail: spma@cpu.edu.cn [Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 639, Longmian Road, Nanjing 211198 (China); Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639, Longmian Road, Nanjing 211198 (China)

    2015-07-01

    Curcumin is a natural polyphenolic compound in Curcuma longa with beneficial effects on neuronal protection. This study aims to investigate the action of curcumin in the hippocampus subjected to glutamate neurotoxicity. Glutamate stimulation induced reactive oxygen species (ROS), endoplasmic reticulum stress (ER stress) and TXNIP/NLRP3 inflammasome activation, leading to damage in the hippocampus. Curcumin treatment in the hippocampus or SH-SY5Y cells inhibited IRE1α and PERK phosphorylation with suppression of intracellular ROS production. Curcumin increased AMPK activity and knockdown of AMPKα with specific siRNA abrogated its inhibitory effects on IRE1α and PERK phosphorylation, indicating that AMPK activity was essential for the suppression of ER stress. As a result, curcumin reduced TXNIP expression and inhibited NLRP3 inflammasome activation by downregulation of NLRP3 and cleaved caspase-1 induction, and thus reduced IL-1β secretion. Specific fluorescent probe and flow cytometry analysis showed that curcumin prevented mitochondrial malfunction and protected cell survival from glutamate neurotoxicity. Moreover, oral administration of curcumin reduced brain infarct volume and attenuated neuronal damage in rats subjected to middle cerebral artery occlusion. Immunohistochemistry showed that curcumin inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region. Together, these results showed that curcumin attenuated glutamate neurotoxicity by inhibiting ER stress-associated TXNIP/NLRP3 inflammasome activation via the regulation of AMPK, and thereby protected the hippocampus from ischemic insult. - Highlights: • Curcumin attenuates glutamate neurotoxicity in the hippocampus. • Curcumin suppresses ER stress in glutamate-induced hippocampus slices. • Curcumin inhibits TXNIP/NLRP3 inflammasome activation. • Regulation of AMPK by curcumin contributes to suppressing ER stress.

  9. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK

    International Nuclear Information System (INIS)

    Li, Ying; Li, Jia; Li, Shanshan; Li, Yi; Wang, Xiangxiang; Liu, Baolin; Fu, Qiang; Ma, Shiping

    2015-01-01

    Curcumin is a natural polyphenolic compound in Curcuma longa with beneficial effects on neuronal protection. This study aims to investigate the action of curcumin in the hippocampus subjected to glutamate neurotoxicity. Glutamate stimulation induced reactive oxygen species (ROS), endoplasmic reticulum stress (ER stress) and TXNIP/NLRP3 inflammasome activation, leading to damage in the hippocampus. Curcumin treatment in the hippocampus or SH-SY5Y cells inhibited IRE1α and PERK phosphorylation with suppression of intracellular ROS production. Curcumin increased AMPK activity and knockdown of AMPKα with specific siRNA abrogated its inhibitory effects on IRE1α and PERK phosphorylation, indicating that AMPK activity was essential for the suppression of ER stress. As a result, curcumin reduced TXNIP expression and inhibited NLRP3 inflammasome activation by downregulation of NLRP3 and cleaved caspase-1 induction, and thus reduced IL-1β secretion. Specific fluorescent probe and flow cytometry analysis showed that curcumin prevented mitochondrial malfunction and protected cell survival from glutamate neurotoxicity. Moreover, oral administration of curcumin reduced brain infarct volume and attenuated neuronal damage in rats subjected to middle cerebral artery occlusion. Immunohistochemistry showed that curcumin inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region. Together, these results showed that curcumin attenuated glutamate neurotoxicity by inhibiting ER stress-associated TXNIP/NLRP3 inflammasome activation via the regulation of AMPK, and thereby protected the hippocampus from ischemic insult. - Highlights: • Curcumin attenuates glutamate neurotoxicity in the hippocampus. • Curcumin suppresses ER stress in glutamate-induced hippocampus slices. • Curcumin inhibits TXNIP/NLRP3 inflammasome activation. • Regulation of AMPK by curcumin contributes to suppressing ER stress

  10. Adipocyte Fatty Acid Binding Protein Potentiates Toxic Lipids-Induced Endoplasmic Reticulum Stress in Macrophages via Inhibition of Janus Kinase 2-dependent Autophagy.

    Science.gov (United States)

    Hoo, Ruby L C; Shu, Lingling; Cheng, Kenneth K Y; Wu, Xiaoping; Liao, Boya; Wu, Donghai; Zhou, Zhiguang; Xu, Aimin

    2017-01-17

    Lipotoxicity is implicated in the pathogenesis of obesity-related inflammatory complications by promoting macrophage infiltration and activation. Endoplasmic reticulum (ER) stress and adipocyte fatty acid binding protein (A-FABP) play key roles in obesity and mediate inflammatory activity through similar signaling pathways. However, little is known about their interplay in lipid-induced inflammatory responses. Here, we showed that prolonged treatment of palmitic acid (PA) increased ER stress and expression of A-FABP, which was accompanied by reduced autophagic flux in macrophages. Over-expression of A-FABP impaired PA-induced autophagy associating with enhanced ER stress and pro-inflammatory cytokine production, while genetic ablation or pharmacological inhibition of A-FABP reversed the conditions. PA-induced expression of autophagy-related protein (Atg)7 was attenuated in A-FABP over-expressed macrophages, but was elevated in A-FABP-deficient macrophages. Mechanistically, A-FABP potentiated the effects of PA by inhibition of Janus Kinase (JAK)2 activity, thus diminished PA-induced Atg7 expression contributing to impaired autophagy and further augmentation of ER stress. These findings suggest that A-FABP acts as autophagy inhibitor to instigate toxic lipids-induced ER stress through inhibition of JAK2-dependent autophagy, which in turn triggers inflammatory responses in macrophages. A-FABP-JAK2 axis may represent an important pathological pathway contributing to obesity-related inflammatory diseases.

  11. Proteomic screening of glucose-responsive and glucose non-reponsive MIN-6 beta cells reveals differential expression of protein involved in protein folding, secretion and oxidative stress

    DEFF Research Database (Denmark)

    Dowling, P.; O´Driscoll, L.; O´Sullivan, F.

    2006-01-01

    The glucose-sensitive insulin-secretion (GSIS) phenotype is relatively unstable in long-term culture of beta cells. The purpose of this study was to investigate relative changes in the proteome between glucose-responsive (low passage) and glucose non-responsive (high passage) murine MIN-6.......8%). From the differentially expressed proteins identified in this study, groups of proteins associated with the endoplasmic reticulum (ER) and proteins involved in oxidative stress were found to be significantly decreased in the high-passage (H passage) cells. These proteins included endoplasmic reticulum...... protein 29 (ERp29); 78-kDa glucose-related protein, (GRP78); 94-kDa glucose-related protein (GRP94); protein disulphide isomerase; carbonyl reductase 3; peroxidoxin 4 and superoxide dismutase 1. These results suggest that non-GSIS MIN-6 cells do not have the same ability/capacity of glucose-responsive MIN...

  12. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor.

    Directory of Open Access Journals (Sweden)

    Rinki Minakshi

    2009-12-01

    Full Text Available The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV is reported to cause apoptosis of infected cells and several of its proteins including the 3a accessory protein, are pro-apoptotic. Since the 3a protein localizes to the endoplasmic reticulum (ER-Golgi compartment, its role in causing ER stress was investigated in transiently transfected cells. Cells expressing the 3a proteins showed ER stress based on activation of genes for the ER chaperones GRP78 and GRP94. Since ER stress can cause differential modulation of the unfolded protein response (UPR, which includes the inositol-requiring enzyme 1 (IRE-1, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK pathways, these were individually tested in 3a-expressing cells. Only the PERK pathway was found to be activated in 3a-expressing cells based on (1 increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2alpha and inhibitory effects of a dominant-negative form of eIF2alpha on GRP78 promoter activity, (2 increased translation of activating transcription factor 4 (ATF4 mRNA, and (3 ATF4-dependent activation of the C/EBP homologous protein (CHOP gene promoter. Activation of PERK affects innate immunity by suppression of type 1 interferon (IFN signaling. The 3a protein was found to induce serine phosphorylation within the IFN alpha-receptor subunit 1 (IFNAR1 degradation motif and to increase IFNAR1 ubiquitination. Confocal microscopic analysis showed increased translocation of IFNAR1 into the lysosomal compartment and flow cytometry showed reduced levels of IFNAR1 in 3a-expressing cells. These results provide further mechanistic details of the pro-apoptotic effects of the SARS-CoV 3a protein, and suggest a potential role for it in attenuating interferon responses and innate immunity.

  13. Protein phosphorylation on tyrosine restores expression and glycosylation of cyclooxygenase-2 by 2-deoxy-D-glucose-caused endoplasmic reticulum stress in rabbit articular chondrocyte

    Directory of Open Access Journals (Sweden)

    Seon-Mi Yu

    2012-05-01

    Full Text Available 2-deoxy-D-glucose(2DG-caused endoplasmic reticulum (ERstress inhibits protein phosphorylation at tyrosine residues.However, the accurate regulatory mechanisms, which determinethe inflammatory response of chondrocytes to ER stress via proteintyrosine phosphorylation, have not been systematicallyevaluated. Thus, in this study, we examined whether proteinphosphorylation at tyrosine residues can modulate the expressionand glycosylation of COX-2, which is reduced by 2DG-inducedER stress. We observed that protein tyrosine phosphatase (PTP inhibitors,sodium orthovanadate (SOV, and phenylarsine oxide(PAO significantly decreased expression of ER stress inducibleproteins, glucose-regulated protein 94 (GRP94, and CCAAT/ enhancer-binding-protein- related gene (GADD153, which was inducedby 2DG. In addition, we demonstrated that SOV and PAOnoticeably restored the expression and glycosylation of COX-2 aftertreatment with 2DG. These results suggest that protein phosphorylationof tyrosine residues plays an important role in theregulation of expression and glycosylation during 2DG-inducedER stress in rabbit articular chondrocytes. [BMB reports 2012;45(5: 317-322

  14. The stress response system of proteins: Implications for bioreactor scaleup

    Science.gov (United States)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  15. The protein pheromone Er-1 of the ciliate Euplotes raikovi stimulates human T-cell activity: Involvement of interleukin-2 system

    Energy Technology Data Exchange (ETDEWEB)

    Cervia, Davide, E-mail: d.cervia@unitus.it [Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo (Italy); Department of Biomedical and Clinical Sciences, “Luigi Sacco” University Hospital, University of Milan, Milano (Italy); Catalani, Elisabetta; Belardinelli, Maria Cristina [Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo (Italy); Perrotta, Cristiana [Department of Biomedical and Clinical Sciences, “Luigi Sacco” University Hospital, University of Milan, Milano (Italy); Picchietti, Simona [Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo (Italy); Alimenti, Claudio [Department of Environmental and Natural Sciences, University of Camerino, Camerino (Italy); Casini, Giovanni; Fausto, Anna Maria [Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo (Italy); Vallesi, Adriana [Department of Environmental and Natural Sciences, University of Camerino, Camerino (Italy)

    2013-02-01

    Water-soluble protein signals (pheromones) of the ciliate Euplotes have been supposed to be functional precursors of growth factors and cytokines that regulate cell–cell interaction in multi-cellular eukaryotes. This work provides evidence that native preparations of the Euplotes raikovi pheromone Er-1 (a helical protein of 40 amino acids) specifically increases viability, DNA synthesis, proliferation, and the production of interferon-γ, tumor necrosis factor-α, interleukin (IL)-1β, IL-2, and IL-13 in human Jurkat T-cells. Also, Er-1 significantly decreases the mRNA levels of the β and γ subunits of IL-2 receptor (IL-2R), while the mRNA levels of the α subunit appeared to be not affected. Jurkat T-cell treatments with Er-1 induced the down-regulation of the IL-2Rα subunit by a reversible and time-dependent endocytosis, and increased the levels of phosphorylation of the extracellular signal-regulated kinases (ERK). The cell-type specificity of these effects was supported by the finding that Er-1, although unable to directly influence the growth of human glioma U-373 cells, induced Jurkat cells to synthesize and release factors that, in turn, inhibited the U-373 cell proliferation. Overall, these findings imply that Er-1 coupling to IL-2R and ERK immuno-enhances T-cell activity, and that this effect likely translates to an inhibition of glioma cell growth. -- Highlights: ► Euplotes pheromone Er-1 increases the growth of human Jurkat T-cells. ► Er-1 increases the T-cell production of specific cytokines. ► Er-1 activates interleukin-2 receptor and extracellular signal-regulated kinases. ► The immuno-enhancing effect of Er-1 on Jurkat cells translates to an inhibition of human glioma cell growth.

  16. Increased reactive oxygen species levels cause ER stress and cytotoxicity in andrographolide treated colon cancer cells

    OpenAIRE

    Banerjee, Aditi; Banerjee, Vivekjyoti; Czinn, Steven; Blanchard, Thomas

    2017-01-01

    Chemotherapy continues to play an essential role in the management of many cancers including colon cancer, the third leading cause of death due to cancer in the United States. Many naturally occurring plant compounds have been demonstrated to possess anti-cancer cell activity and have the potential to supplement existing chemotherapy strategies. The plant metabolite andrographolide induces cell death in cancer cells and apoptosis is dependent upon the induction of endoplasmic reticulum stress...

  17. Periodontal disease level-butyric acid amounts locally administered in the rat gingival mucosa induce ER stress in the systemic blood.

    Science.gov (United States)

    Cueno, Marni E; Saito, Yuko; Ochiai, Kuniyasu

    2016-05-01

    Periodontal diseases have long been postulated to contribute to systemic diseases and, likewise, it has been proposed that periodontal disease treatment may ameliorate certain systemic diseases. Short-chain fatty acids (SCFA) are major secondary metabolites produced by oral anaerobic bacteria and, among the SCFAs, butyric acid (BA) in high amounts contribute to periodontal disease development. Periodontal disease level-butyric acid (PDL-BA) is found among patients suffering from periodontal disease and has previously shown to induce oxidative stress, whereas, oxidative stress is correlated to endoplasmic reticulum (ER) stress. This would imply that PDL-BA may likewise stimulate ER stress, however, this was never elucidated. A better understanding of the correlation between PDL-BA and systemic ER stress stimulation could shed light on the possible systemic effects of PDL-BA-related periodontal diseases. Here, PDL-BA was injected into the gingival mucosa and the systemic blood obtained from the rat jugular was collected at 0, 15, 60, and 180 min post-injection. Collected blood samples were purified and only the blood cytosol was used throughout this study. Subsequently, we measured blood cytosolic GADD153, Ca(2+), representative apoptotic and inflammatory caspases, and NF-κB amounts. We found that PDL-BA presence increased blood cytosolic GADD153 and Ca(2+) amounts. Moreover, we observed that blood cytosolic caspases and NF-κB were activated only at 60 and 180 min post-injection in the rat gingival mucosa. This suggests that PDL-BA administered through the gingival mucosa may influence the systemic blood via ER stress stimulation and, moreover, prolonged PDL-BA retention in the gingival mucosa may play a significant role in ER stress-related caspase and NF-κB activation. In a periodontal disease scenario, we propose that PDL-BA-related ER stress stimulation leading to the simultaneous activation of apoptosis and inflammation may contribute to periodontal disease

  18. OASIS/CREB3L1 is induced by endoplasmic reticulum stress in human glioma cell lines and contributes to the unfolded protein response, extracellular matrix production and cell migration.

    Directory of Open Access Journals (Sweden)

    Ravi N Vellanki

    Full Text Available OASIS is a transcription factor similar to ATF6 that is activated by endoplasmic reticulum stress. In this study we investigated the expression of OASIS in human glioma cell lines and the effect of OASIS knock-down on the ER stress response and cell migration. OASIS mRNA was detected in three distinct glioma cell lines (U373, A172 and U87 and expression levels were increased upon treatment with ER stress-inducing compounds in the U373 and U87 lines. OASIS protein, which is glycosylated on Asn-513, was detected in the U373 and U87 glioma lines at low levels in control cells and protein expression was induced by ER stress. Knock-down of OASIS in human glioma cell lines resulted in an attenuated unfolded protein response to ER stress (reduced GRP78/BiP and GRP94 induction and decreased expression of chondroitin sulfate proteoglycan extracellular matrix proteins, but induction of the collagen gene Col1a1 was unaffected. Cells in which OASIS was knocked-down exhibited altered cell morphology and reduced cell migration. These results suggest that OASIS is important for the ER stress response and maintenance of some extracellular matrix proteins in human glioma cells.

  19. Prolonged endoplasmic reticulum stress promotes mislocalization of immunoglobulins to the cytoplasm.

    Science.gov (United States)

    Drori, Adi; Misaghi, Shahram; Haimovich, Joseph; Messerle, Martin; Tirosh, Boaz

    2010-05-01

    Signal peptide-dependent insertion of newly synthesized proteins into the endoplasmic reticulum (ER) is a multi-step process, whose fidelity varies with the identity of the protein and the cell type. ER translocation of prions is sensitive to conditions of acute ER stress in a manner that pre-emptively prevents their aggregation and proteo-toxicity. While this has been documented for extreme ER stress conditions and for a special type of proteins, the impact of chronic ER stress on protein translocation in general has not been well characterized. The unfolded protein response (UPR) is a cytoprotective signaling pathway activated by ER stress. The transcription factor X-box-binding protein 1 (XBP-1) is a key element of the mammalian UPR, which is activated in response to ER stress. Deletion of XBP-1 generates constitutive chronic ER stress conditions. Chronic ER stress can also be produced pharmacologically, for example by prolonged treatment with proteasome inhibitors, which abrogates XBP-1 activation. We tested the impact of chronic ER stress on protein insertion into the ER with special emphasis on antibody secreting cells (ASCs), as these cells cope physiologically with prolonged stress conditions. We show that XBP-1 in plasmablasts and fibroblasts controls the ER translocation of US2, a viral-encoded protein with a priori poor insertion efficiency. Using monoclonal antibodies that preferentially recognize ER-mis-inserted micro Ig chains we demonstrate that prolonged treatment of plasmablasts with proteasome inhibitors, as well as deletion of XBP-1, impaired the translocation of mu chains to the ER. Our data suggest that ASCs under prolonged ER stress conditions endure cytoplasmic mislocalization of Ig proteins. This mislocalization may further explain the exquisite sensitivity of multiple myeloma to proteasome inhibitors. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Proteomic analysis of mitochondrial-associated ER membranes (MAM) during RNA virus infection reveals dynamic changes in protein and organelle trafficking.

    Science.gov (United States)

    Horner, Stacy M; Wilkins, Courtney; Badil, Samantha; Iskarpatyoti, Jason; Gale, Michael

    2015-01-01

    RIG-I pathway signaling of innate immunity against RNA virus infection is organized between the ER and mitochondria on a subdomain of the ER called the mitochondrial-associated ER membrane (MAM). The RIG-I adaptor protein MAVS transmits downstream signaling of antiviral immunity, with signaling complexes assembling on the MAM in association with mitochondria and peroxisomes. To identify components that regulate MAVS signalosome assembly on the MAM, we characterized the proteome of MAM, ER, and cytosol from cells infected with either chronic (hepatitis C) or acute (Sendai) RNA virus infections, as well as mock-infected cells. Comparative analysis of protein trafficking dynamics during both chronic and acute viral infection reveals differential protein profiles in the MAM during RIG-I pathway activation. We identified proteins and biochemical pathways recruited into and out of the MAM in both chronic and acute RNA viral infections, representing proteins that drive immunity and/or regulate viral replication. In addition, by using this comparative proteomics approach, we identified 3 new MAVS-interacting proteins, RAB1B, VTN, and LONP1, and defined LONP1 as a positive regulator of the RIG-I pathway. Our proteomic analysis also reveals a dynamic cross-talk between subcellular compartments during both acute and chronic RNA virus infection, and demonstrates the importance of the MAM as a central platform that coordinates innate immune signaling to initiate immunity against RNA virus infection.

  1. Role of PY Motif Containing Protein, WBP-2 in ER, PR Signaling and Breast Tumorigenesis

    Science.gov (United States)

    2009-09-01

    of Runx2 family (24) and TEAD /TEF family (25), the proapoptotic protein p73 (26, 27), and is involved in ErbB4 signaling (28). In the present study...A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML 2001 TEAD /TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein

  2. Araloside C Prevents Hypoxia/Reoxygenation-Induced Endoplasmic Reticulum Stress via Increasing Heat Shock Protein 90 in H9c2 Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yuyang Du

    2018-04-01

    Full Text Available Araloside C (AsC is a cardioprotective triterpenoid compound that is mainly isolated from Aralia elata. This study aims to determine the effects of AsC on hypoxia-reoxygenation (H/R-induced apoptosis in H9c2 cardiomyocytes and its underlying mechanisms. Results demonstrated that pretreatment with AsC (12.5 μM for 12 h significantly suppressed the H/R injury in H9c2 cardiomyocytes, including improving cell viability, attenuating the LDH leakage and preventing cardiomyocyte apoptosis. AsC also inhibited H/R-induced ER stress by reducing the activation of ER stress pathways (PERK/eIF2α and ATF6, and decreasing the expression of ER stress-related apoptotic proteins (CHOP and caspase-12. Moreover, AsC greatly improved the expression level of HSP90 compared with that in the H/R group. The use of HSP90 inhibitor 17-AAG and HSP90 siRNA blocked the above suppression effect of AsC on ER stress-related apoptosis caused by H/R. Taken together, AsC could reduce H/R-induced apoptosis possibly because it attenuates ER stress-dependent apoptotic pathways by increasing HSP90 expression.

  3. Microsomal Triglyceride Transfer Protein Inhibition Induces Endoplasmic Reticulum Stress and Increases Gene Transcription via Ire1α/cJun to Enhance Plasma ALT/AST*

    Science.gov (United States)

    Josekutty, Joby; Iqbal, Jahangir; Iwawaki, Takao; Kohno, Kenji; Hussain, M. Mahmood

    2013-01-01

    Microsomal triglyceride transfer protein (MTP) is a target to reduce plasma lipids because of its indispensable role in triglyceride-rich lipoprotein biosynthesis. MTP inhibition in Western diet fed mice decreased plasma triglycerides/cholesterol, whereas increasing plasma alanine/aspartate aminotransferases (ALT/AST) and hepatic triglycerides/free cholesterol. Free cholesterol accumulated in the endoplasmic reticulum (ER) and mitochondria resulting in ER and oxidative stresses. Mechanistic studies revealed that MTP inhibition increased transcription of the GPT/GOT1 genes through up-regulation of the IRE1α/cJun pathway leading to increased synthesis and release of ALT1/AST1. Thus, transcriptional up-regulation of GPT/GOT1 genes is a major mechanism, in response to ER stress, elevating plasma transaminases. Increases in plasma and tissue transaminases might represent a normal response to stress for survival. PMID:23532846

  4. Microsomal triglyceride transfer protein inhibition induces endoplasmic reticulum stress and increases gene transcription via Ire1α/cJun to enhance plasma ALT/AST.

    Science.gov (United States)

    Josekutty, Joby; Iqbal, Jahangir; Iwawaki, Takao; Kohno, Kenji; Hussain, M Mahmood

    2013-05-17

    Microsomal triglyceride transfer protein (MTP) is a target to reduce plasma lipids because of its indispensable role in triglyceride-rich lipoprotein biosynthesis. MTP inhibition in Western diet fed mice decreased plasma triglycerides/cholesterol, whereas increasing plasma alanine/aspartate aminotransferases (ALT/AST) and hepatic triglycerides/free cholesterol. Free cholesterol accumulated in the endoplasmic reticulum (ER) and mitochondria resulting in ER and oxidative stresses. Mechanistic studies revealed that MTP inhibition increased transcription of the GPT/GOT1 genes through up-regulation of the IRE1α/cJun pathway leading to increased synthesis and release of ALT1/AST1. Thus, transcriptional up-regulation of GPT/GOT1 genes is a major mechanism, in response to ER stress, elevating plasma transaminases. Increases in plasma and tissue transaminases might represent a normal response to stress for survival.

  5. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells.

    Science.gov (United States)

    Salazar, María; Carracedo, Arkaitz; Salanueva, Iñigo J; Hernández-Tiedra, Sonia; Lorente, Mar; Egia, Ainara; Vázquez, Patricia; Blázquez, Cristina; Torres, Sofía; García, Stephane; Nowak, Jonathan; Fimia, Gian María; Piacentini, Mauro; Cecconi, Francesco; Pandolfi, Pier Paolo; González-Feria, Luis; Iovanna, Juan L; Guzmán, Manuel; Boya, Patricia; Velasco, Guillermo

    2009-05-01

    Autophagy can promote cell survival or cell death, but the molecular basis underlying its dual role in cancer remains obscure. Here we demonstrate that delta(9)-tetrahydrocannabinol (THC), the main active component of marijuana, induces human glioma cell death through stimulation of autophagy. Our data indicate that THC induced ceramide accumulation and eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation and thereby activated an ER stress response that promoted autophagy via tribbles homolog 3-dependent (TRB3-dependent) inhibition of the Akt/mammalian target of rapamycin complex 1 (mTORC1) axis. We also showed that autophagy is upstream of apoptosis in cannabinoid-induced human and mouse cancer cell death and that activation of this pathway was necessary for the antitumor action of cannabinoids in vivo. These findings describe a mechanism by which THC can promote the autophagic death of human and mouse cancer cells and provide evidence that cannabinoid administration may be an effective therapeutic strategy for targeting human cancers.

  6. BRAF- and MEK-Targeted Small Molecule Inhibitors Exert Enhanced Antimelanoma Effects in Combination With Oncolytic Reovirus Through ER Stress

    Science.gov (United States)

    Roulstone, Victoria; Pedersen, Malin; Kyula, Joan; Mansfield, David; Khan, Aadil A; McEntee, Grainne; Wilkinson, Michelle; Karapanagiotou, Eleni; Coffey, Matt; Marais, Richard; Jebar, Adel; Errington-Mais, Fiona; Melcher, Alan; Vile, Richard; Pandha, Hardev; McLaughlin, Martin; Harrington, Kevin J

    2015-01-01

    Reovirus type 3 (Dearing) (RT3D) infection is selective for cells harboring a mutated/activated RAS pathway. Therefore, in a panel of melanoma cell lines (including RAS mutant, BRAF mutant and RAS/BRAF wild-type), we assessed therapeutic combinations that enhance/suppress ERK1/2 signaling through use of BRAF/MEK inhibitors. In RAS mutant cells, the combination of RT3D with the BRAF inhibitor PLX4720 (paradoxically increasing ERK1/2 signaling in this context) did not enhance reoviral cytotoxicity. Instead, and somewhat surprisingly, RT3D and BRAF inhibition led to enhanced cell kill in BRAF mutated cell lines. Likewise, ERK1/2 inhibition, using the MEK inhibitor PD184352, in combination with RT3D resulted in enhanced cell kill in the entire panel. Interestingly, TCID50 assays showed that BRAF and MEK inhibitors did not affect viral replication. Instead, enhanced efficacy was mediated through ER stress-induced apoptosis, induced by the combination of ERK1/2 inhibition and reovirus infection. In vivo, combined treatments of RT3D and PLX4720 showed significantly increased activity in BRAF mutant tumors in both immune-deficient and immune-competent models. These data provide a strong rationale for clinical translation of strategies in which RT3D is combined with BRAF inhibitors (in BRAF mutant melanoma) and/or MEK inhibitors (in BRAF and RAS mutant melanoma). PMID:25619724

  7. Dissection of Molecular Mechanisms Regulating Protein Body Formation in Maize Endosperm - DE-FG03-95-ER20183

    International Nuclear Information System (INIS)

    Larkins, Brian A.

    2003-01-01

    Dissection of Molecular Mechanisms Regulating Protein Body Formation in Maize Endosperm - DE-FG03-95-ER20183 Final Technical Report and Patent Summary Dr. Brian A. Larkins, Department of Plant Sciences, University of Arizona, Tucson, AZ 85721 Endosperm texture is an important quality trait in maize, as it influences the shipping characteristics of the grain, its susceptibility to insects, the yield of grits from dry milling, energy costs during wet milling, and the baking and digestibility properties of the flour. There appears to be a causal relationship between kernel hardness and the formation of zein-containing protein bodies, as mutations affecting protein body number and structure are associated with a soft, starchy kernel. In this project we used a variety of approaches to better understand this relationship and investigate the molecular and biochemical changes associated with starchy endosperm mutants. We characterized the distribution of zein mRNAs on endosperm rough endoplasmic reticulum (RER) membranes and the interactions between zein proteins, as each of these could influence the structure of protein bodies. Based on in situ hybridization, mRNAs encoding the 22-kD alpha- and 27-kD gamma-zeins are randomly distributed on RER; hence, mRNA targeting does not appear to influence the formation of protein bodies. Investigation of the interactions between zein proteins (alpha, beta, gamma, delta) with the yeast two-hybrid system showed that interactions between the 19- and 22-alpha-zeins are relatively weak, although each of them interacted strongly with the 10-kD delta-zein. Strong interactions were detected between the alpha- and delta-zeins and the 16-kD gamma- and 15-kD beta-zeins; however, the 50-kD and 27-kD gamma-zeins did not interact detectably with the alpha- and delta-zein proteins. The NH2- and COOH-terminal domains of the 22-kD alpha-zein were found to interact most strongly with the 15-kD beta- and 16-kD gamma-zeins, suggesting the 16-kD and 15

  8. The unfolded protein response in neurodegenerative diseases: a neuropathological perspective

    NARCIS (Netherlands)

    Scheper, Wiep; Hoozemans, Jeroen J. M.

    2015-01-01

    The unfolded protein response (UPR) is a stress response of the endoplasmic reticulum (ER) to a disturbance in protein folding. The so-called ER stress sensors PERK, IRE1 and ATF6 play a central role in the initiation and regulation of the UPR. The accumulation of misfolded and aggregated proteins

  9. Diversion at the ER: How Plasmodium falciparum exports proteins into host erythrocytes.

    Science.gov (United States)

    Römisch, Karin

    2012-01-01

    Malaria is caused by parasites which live in host erythrocytes and remodel these cells to provide optimally for the parasites' needs by exporting effector proteins into the host cells. Eight years ago the discovery of a host cell targeting sequence present in both soluble and transmembrane  P. falciparum exported proteins generated a starting point for investigating the mechanism of parasite protein transport into infected erythrocytes. Since then many confusing facts about this targeting signal have emerged. In this paper, I try to make sense of them.

  10. Hyperlipidemia-induced hepatic and small intestine ER stress and decreased paraoxonase 1 expression and activity is associated with HDL dysfunction in Syrian hamsters.

    Science.gov (United States)

    Stancu, Camelia S; Carnuta, Mihaela G; Sanda, Gabriela M; Toma, Laura; Deleanu, Mariana; Niculescu, Loredan S; Sasson, Shlomo; Simionescu, Maya; Sima, Anca V

    2015-11-01

    We aimed at investigating the mechanisms linking hyperlipidemia (HL) with dysfunctional HDL and its main antioxidant enzyme, paraoxonase1 (PON1). PON1 expression and activity was determined in the small intestine, liver, and sera of normal and HL hamsters and associated with the ER stress (ERS) and the development of aortic valve lesions. Male Golden Syrian hamsters were fed standard chow (N) or standard diet with 3% cholesterol and 15% butter for 16 weeks. All hamsters on fat diet developed HL, 50% also hyperglycemia (HLHG) and a fourfold increased homeostasis model assessment of insuline resistance. PON1 expression was reduced in the small intestine and liver (N > HL > HLHG) along with the increased extent of ERS, oxidized lipids, and decreased expression of liver X receptors beta (LXRβ) in the small intestine, peroxisome proliferator-activated receptor-γ (PPARγ) in the liver, and of the glucose transporter 4 in the myocardium. Serum PON1 levels decreased along with the increase of oxidized LDL and lesion areas of the aortic valves (N > HL > HLHG). The fat diet activates the ERS and oxidative stress, decreases LXRβ, PPARγ, and PON1 in the small intestine, liver, and sera of all HL animals, in parallel with the appearance of atherosclerotic lesions in the aortic valves. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  12. Regulated Erlin-dependent release of the B12 transmembrane J-protein promotes ER membrane penetration of a non-enveloped virus.

    Directory of Open Access Journals (Sweden)

    Takamasa Inoue

    2017-06-01

    Full Text Available The molecular mechanism by which non-enveloped viruses penetrate biological membranes remains enigmatic. The non-enveloped polyomavirus SV40 penetrates the endoplasmic reticulum (ER membrane to reach the cytosol and cause infection. We previously demonstrated that SV40 creates its own membrane penetration structure by mobilizing select transmembrane proteins to distinct puncta in the ER membrane called foci that likely function as the cytosol entry sites. How these ER membrane proteins reorganize into the foci is unknown. B12 is a transmembrane J-protein that mobilizes into the foci to promote cytosol entry of SV40. Here we identify two closely related ER membrane proteins Erlin1 and Erlin2 (Erlin1/2 as B12-interaction partners. Strikingly, SV40 recruits B12 to the foci by inducing release of this J-protein from Erlin1/2. Our data thus reveal how a non-enveloped virus promotes its own membrane translocation by triggering the release and recruitment of a critical transport factor to the membrane penetration site.

  13. HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells

    Science.gov (United States)

    Ivanov, Alexander V.; Smirnova, Olga A.; Petrushanko, Irina Y.; Ivanova, Olga N.; Karpenko, Inna L.; Alekseeva, Ekaterina; Sominskaya, Irina; Makarov, Alexander A.; Bartosch, Birke; Kochetkov, Sergey N.; Isaguliants, Maria G.

    2015-01-01

    Hepatitis C virus (HCV) infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core). Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGFβ1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS). The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37–191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1α. The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein. PMID:26035647

  14. HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells

    Directory of Open Access Journals (Sweden)

    Alexander V. Ivanov

    2015-05-01

    Full Text Available Hepatitis C virus (HCV infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core. Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGF\\(\\upbeta\\1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS. The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37–191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1\\(\\upalpha\\. The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein.

  15. Proteomic analysis of endoplasmic reticulum stress responses in rice seeds.

    Science.gov (United States)

    Qian, Dandan; Tian, Lihong; Qu, Leqing

    2015-09-23

    The defects in storage proteins secretion in the endosperm of transgenic rice seeds often leads to endoplasmic reticulum (ER) stress, which produces floury and shrunken seeds, but the mechanism of this response remains unclear. We used an iTRAQ-based proteomics analysis of ER-stressed rice seeds due to the endosperm-specific suppression of OsSar1 to identify changes in the protein levels in response to ER stress. ER stress changed the expression of 405 proteins in rice seed by >2.0- fold compared with the wild-type control. Of these proteins, 140 were upregulated and 265 were downregulated. The upregulated proteins were mainly involved in protein modification, transport and degradation, and the downregulated proteins were mainly involved in metabolism and stress/defense responses. A KOBAS analysis revealed that protein-processing in the ER and degradation-related proteasome were the predominant upregulated pathways in the rice endosperm in response to ER stress. Trans-Golgi protein transport was also involved in the ER stress response. Combined with bioinformatic and molecular biology analyses, our proteomic data will facilitate our understanding of the systemic responses to ER stress in rice seeds.

  16. Inhibition of the sarco/endoplasmic reticulum (ER) Ca2+-ATPase by thapsigargin analogs induces cell death via ER Ca2+ depletion and the unfolded protein response

    DEFF Research Database (Denmark)

    Sehgal, Pankaj; Szalai, Paula; Olesen, Claus

    2017-01-01

    understood. Here, we report that low (0.1 μM) concentrations of Tg and Tg analogs with various long-chain substitutions at the O(8) position extensively inhibit SERCA1a-mediated Ca2+ transport. We also found that in both prostate and breast cancer cells, exposure to Tg or Tg analogs for 1 day caused......Calcium (Ca2+) is a fundamental regulator of cell signaling and function. Thapsigargin (Tg) blocks the sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA), disrupts Ca2+ homeostasis, and causes cell death. However, the exact mechanisms whereby SERCA-inhibition induces cell death are incompletely...

  17. Initiation and developmental dynamics of Wfs1 expression in the context of neural differentiation and ER stress in mouse forebrain.

    Science.gov (United States)

    Tekko, Triin; Lilleväli, Kersti; Luuk, Hendrik; Sütt, Silva; Truu, Laura; Örd, Tiit; Möls, Märt; Vasar, Eero

    2014-06-01

    Wolframin (Wfs1) is a membrane glycoprotein that resides in the endoplasmic reticulum (ER) and regulates cellular Ca(2+) homeostasis. In pancreas Wfs1 attenuates unfolded protein response (UPR) and protects cells from apoptosis. Loss of Wfs1 function results in Wolfram syndrome (OMIM 222300) characterized by early-onset diabetes mellitus, progressive optic atrophy, diabetes insipidus, deafness, and psychiatric disorders. Similarly, Wfs1-/- mice exhibit diabetes and increased basal anxiety. In the adult central nervous system Wfs1 is prominent in central extended amygdala, striatum and hippocampus, brain structures largely involved in behavioral adaptation of the organism. Here, we describe the initiation pattern of Wfs1 expression in mouse forebrain using mRNA in situ hybridization and compare it with Synaptophysin (Syp1), a gene encoding synaptic vesicle protein widely used as neuronal differentiation marker. We show that the expression of Wfs1 starts during late embryonic development in the dorsal striatum and amygdala, then expands broadly at birth, possessing several transitory regions during maturation. Syp1 expression precedes Wfs1 and it is remarkably upregulated during the period of Wfs1 expression initiation and maturation, suggesting relationship between neural activation and Wfs1 expression. Using in situ hybridization and quantitative real-time PCR we show that UPR-related genes (Grp78, Grp94, and Chop) display dynamic expression in the perinatal brain when Wfs1 is initiated and their expression pattern is not altered in the brain lacking functional Wfs1. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  18. Role of the PY Motif Containing Protein, WBP-2 in ER, PR Signaling and Breast Tumorigenesis

    Science.gov (United States)

    2007-03-01

    that YAP may regulate transcription (23) by acting as a coactivator for several transcription factors including members of Runx2 family (24) and TEAD ...DePamphilis ML 2001 TEAD /TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein local- ized in the cytoplasm

  19. Endoplasmic Reticulum Stress in Reproductive Function

    Directory of Open Access Journals (Sweden)

    Kang-sheng LIU

    2016-09-01

    Full Text Available Normal folding requires that unique conditions should be maintained within the endoplasmic reticulum (ER lumen, and nascent proteins are initially bound to Ca2+dependent chaperone proteins. Proteins synthesized in the ER are properly folded with the assistance of ER chaperones. misfolded proteins are disposed by ER-associated protein degradation. Accumulation of misfolded proteins in the ER triggers an adaptive ER stress response, which leads to activation of the unfolded protein response (UPR, a conserved pathway that transmits signals to restore homeostasis or eliminate the irreparably damaged cells. It has been shown that ER stress involves in pathophysiological development of many diseases, including neurological diseases. However, nowadays, a few studies have begun to focus on the possibility that the accumulation of misfolded proteins can also contribute to reproductive diseases. In this article, we mainly introduced the involvement of ER stress response in preimplantation embryos, placental development, intrauterine growth restriction (IUGR and testicular germ cells so as to provide important insights for the molecular mechanisms of ER stress-induced apoptosis in reproductive diseases.

  20. Proteomics-based dissection of biotic stress responsive proteins in ...

    African Journals Online (AJOL)

    hope&shola

    2010-10-25

    Oct 25, 2010 ... digestion, MALDI-TOF/MS analysis and database searching of some of the identified proteins indicated that the proteins are ... identified as biotic stress responses proteins directly coupled to disease and pathogen infection on wheat. Nevertheless ... and animals (McMullen et al., 1997). Host resistance is.

  1. ERK1/2 signalling protects against apoptosis following endoplasmic reticulum stress but cannot provide long-term protection against BAX/BAK-independent cell death.

    Directory of Open Access Journals (Sweden)

    Nicola J Darling

    Full Text Available Disruption of protein folding in the endoplasmic reticulum (ER causes ER stress. Activation of the unfolded protein response (UPR acts to restore protein homeostasis or, if ER stress is severe or persistent, drive apoptosis, which is thought to proceed through the cell intrinsic, mitochondrial pathway. Indeed, cells that lack the key executioner proteins BAX and BAK are protected from ER stress-induced apoptosis. Here we show that chronic ER stress causes the progressive inhibition of the extracellular signal-regulated kinase (ERK1/2 signalling pathway. This is causally related to ER stress since reactivation of ERK1/2 can protect cells from ER stress-induced apoptosis whilst ERK1/2 pathway inhibition sensitises cells to ER stress. Furthermore, cancer cell lines harbouring constitutively active BRAFV600E are addicted to ERK1/2 signalling for protection against ER stress-induced cell death. ERK1/2 signalling normally represses the pro-death proteins BIM, BMF and PUMA and it has been proposed that ER stress induces BIM-dependent cell death. We found no evidence that ER stress increased the expression of these proteins; furthermore, BIM was not required for ER stress-induced death. Rather, ER stress caused the PERK-dependent inhibition of cap-dependent mRNA translation and the progressive loss of pro-survival proteins including BCL2, BCLXL and MCL1. Despite these observations, neither ERK1/2 activation nor loss of BAX/BAK could confer long-term clonogenic survival to cells exposed to ER stress. Thus, ER stress induces cell death by at least two biochemically and genetically distinct pathways: a classical BAX/BAK-dependent apoptotic response that can be inhibited by ERK1/2 signalling and an alternative ERK1/2- and BAX/BAK-independent cell death pathway.

  2. Antemortem stress regulates protein acetylation and glycolysis in postmortem muscle.

    Science.gov (United States)

    Li, Zhongwen; Li, Xin; Wang, Zhenyu; Shen, Qingwu W; Zhang, Dequan

    2016-07-01

    Although exhaustive research has established that preslaughter stress is a major factor contributing to pale, soft, exudative (PSE) meat, questions remain regarding the biochemistry of postmortem glycolysis. In this study, the influence of preslaughter stress on protein acetylation in relationship to glycolysis was studied. The data show that antemortem swimming significantly enhanced glycolysis and the total acetylated proteins in postmortem longissimus dorsi (LD) muscle of mice. Inhibition of protein acetylation by histone acetyltransferase (HAT) inhibitors eliminated stress induced increase in glycolysis. Inversely, antemortem injection of histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and nicotinamide (NAM), further increased protein acetylation early postmortem and the glycolysis. These data provide new insight into the biochemistry of postmortem glycolysis by showing that protein acetylation regulates glycolysis, which may participate in the regulation of preslaughter stress on glycolysis in postmortem muscle. Copyright © 2016. Published by Elsevier Ltd.

  3. The B7-1 cytoplasmic tail enhances intracellular transport and mammalian cell surface display of chimeric proteins in the absence of a linear ER export motif.

    Directory of Open Access Journals (Sweden)

    Yi-Chieh Lin

    Full Text Available Membrane-tethered proteins (mammalian surface display are increasingly being used for novel therapeutic and biotechnology applications. Maximizing surface expression of chimeric proteins on mammalian cells is important for these applications. We show that the cytoplasmic domain from the B7-1 antigen, a commonly used element for mammalian surface display, can enhance the intracellular transport and surface display of chimeric proteins in a Sar1 and Rab1 dependent fashion. However, mutational, alanine scanning and deletion analysis demonstrate the absence of linear ER export motifs in the B7 cytoplasmic domain. Rather, efficient intracellular transport correlated with the presence of predicted secondary structure in the cytoplasmic tail. Examination of the cytoplasmic domains of 984 human and 782 mouse type I transmembrane proteins revealed that many previously identified ER export motifs are rarely found in the cytoplasmic tail of type I transmembrane proteins. Our results suggest that efficient intracellular transport of B7 chimeric proteins is associated with the structure rather than to the presence of a linear ER export motif in the cytoplasmic tail, and indicate that short (less than ~ 10-20 amino acids and unstructured cytoplasmic tails should be avoided to express high levels of chimeric proteins on mammalian cells.

  4. Role of the PY Motif Containing Protein, WBP-2 in ER, PR Signaling and Breast Tumorigenesis

    Science.gov (United States)

    2008-03-01

    Class III includes WW- domains interacting with proline-rich sequence that contains arginines or lysines . WW-domains binding phosphoserine or...by antagonizing the functions of WBP-2 and YAP1. Taken together our data estab-lished the role of WBP-2 and YAP1 as coactivators and WWOX1 as a...the CBP (CREB-binding protein)/p300 family [50], coactivator- associated arginine methyltransferase (CARM-1) [51, 52], and E6-AP [10]. We have

  5. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress

    DEFF Research Database (Denmark)

    Kästle, Marc; Reeg, Sandra; Rogowska-Wrzesinska, Adelina

    2012-01-01

    After oxidative stress proteins which are oxidatively modified are degraded by the 20S proteasome. However, several studies documented an enhanced ubiquitination of yet unknown proteins. Since ubiqutination is a prerequisite for degradation by the 26S proteasome in an ATP-dependent manner...... this raises the question whether these proteins are also oxidized and, if not, what proteins need to be ubiquitinated and degraded after oxidative conditions. By determination of oxidized- and ubiquitinated proteins we demonstrate here that most oxidized proteins are not preferentially ubiquitinated. However......, we were able to confirm an increase of ubiquitinated proteins 16h upon oxidative stress. Therefore, we isolated ubiquitinated proteins from hydrogen peroxide treated cells, as well as from control and lactacystin, an irreversible proteasome inhibitor, treated cells, and identified some...

  6. Role of an ER stress response element in regulating the bidirectional promoter of the mouse CRELD2 - ALG12 gene pair

    Directory of Open Access Journals (Sweden)

    Hirata Yoko

    2010-11-01

    Full Text Available Abstract Background Recently, we identified cysteine-rich with EGF-like domains 2 (CRELD2 as a novel endoplasmic reticulum (ER stress-inducible gene and characterized its transcriptional regulation by ATF6 under ER stress conditions. Interestingly, the CRELD2 and asparagine-linked glycosylation 12 homolog (ALG12 genes are arranged as a bidirectional (head-to-head gene pair and are separated by less than 400 bp. In this study, we characterized the transcriptional regulation of the mouse CRELD2 and ALG12 genes that is mediated by a common bidirectional promoter. Results This short intergenic region contains an ER stress response element (ERSE sequence and is well conserved among the human, rat and mouse genomes. Microarray analysis revealed that CRELD2 and ALG12 mRNAs were induced in Neuro2a cells by treatment with thapsigargin (Tg, an ER stress inducer, in a time-dependent manner. Other ER stress inducers, tunicamycin and brefeldin A, also increased the expression of these two mRNAs in Neuro2a cells. We then tested for the possible involvement of the ERSE motif and other regulatory sites of the intergenic region in the transcriptional regulation of the mouse CRELD2 and ALG12 genes by using variants of the bidirectional reporter construct. With regards to the promoter activities of the CRELD2-ALG12 gene pair, the entire intergenic region hardly responded to Tg, whereas the CRELD2 promoter constructs of the proximal region containing the ERSE motif showed a marked responsiveness to Tg. The same ERSE motif of ALG12 gene in the opposite direction was less responsive to Tg. The direction and the distance of this motif from each transcriptional start site, however, has no impact on the responsiveness of either gene to Tg treatment. Additionally, we found three putative sequences in the intergenic region that antagonize the ERSE-mediated transcriptional activation. Conclusions These results show that the mouse CRELD2 and ALG12 genes are arranged as a

  7. Excessive L-cysteine induces vacuole-like cell death by activating endoplasmic reticulum stress and mitogen-activated protein kinase signaling in intestinal porcine epithelial cells.

    Science.gov (United States)

    Ji, Yun; Wu, Zhenlong; Dai, Zhaolai; Sun, Kaiji; Zhang, Qing; Wu, Guoyao

    2016-01-01

    High intake of dietary cysteine is extremely toxic to animals and the underlying mechanism remains largely unknown. This study was conducted to test the hypothesis that excessive L-cysteine induces cell death by activating endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) signaling in intestinal porcine epithelial cells. Jejunal enterocytes were cultured in the presence of 0-10 mmol/L L-cysteine. Cell viability, morphologic alterations, mRNA levels for genes involved in ER stress, protein abundances for glucose-regulated protein 78, C/EBP homologous protein (CHOP), alpha subunit of eukaryotic initiation factor-2 (eIF2α), extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal protein kinase (JNK1/2) were determined. The results showed that L-cysteine (5-10 mmol/L) reduced cell viability (P cysteine were not affected by the autophagy inhibitor 3-methyladenine. The protein abundances for CHOP, phosphorylated (p)-eIF2α, p-JNK1/2, p-p38 MAPK, and the spliced form of XBP-1 mRNA were enhanced (P cysteine induces vacuole-like cell death via the activation of ER stress and MAPK signaling in small intestinal epithelial cells. These signaling pathways may be potential targets for developing effective strategies to prevent the toxicity of dietary cysteine.

  8. Endoplasmic reticulum stress in pulmonary fibrosis.

    Science.gov (United States)

    Burman, Ankita; Tanjore, Harikrishna; Blackwell, Timothy S

    2018-03-19

    Endoplasmic reticulum (ER) stress is associated with development and progression of fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). ER stress was first implicated in the pathogenesis of IPF >15 years ago with the discovery of disease-causing mutations in surfactant protein C, which result in a misfolded gene product in type II alveolar epithelial cells (AECs). ER stress and the unfolded protein response (UPR) have been linked to lung fibrosis through regulation of AEC apoptosis, epithelial-mesenchymal transition, myofibroblast differentiation, and M2 macrophage polarization. Although progress has been made in understanding the causes and consequences of ER stress in IPF and a number of chronic fibrotic disorders, further studies are needed to identify key factors that induce ER stress in important cell types and define critical down-stream processes and effector molecules that mediate ER stress-related phenotypes. This review discusses potential causes of ER stress induction in the lungs and current evidence linking ER stress to fibrosis in the context of individual cell types: AECs, fibroblasts, and macrophages. As our understanding of the relationship between ER stress and lung fibrosis continues to evolve, future studies will examine new strategies to modulate UPR pathways for therapeutic benefit. Copyright © 2017. Published by Elsevier B.V.

  9. Trans10,cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src.

    Directory of Open Access Journals (Sweden)

    Mian M K Shahzad

    Full Text Available The goal of this study was to investigate the anti-cancer effects of Trans10,cis12 conjugated linoleic acid (t10,c12 CLA. MTT assays and QCM™ chemotaxis 96-wells were used to test the effect of t10,c12 CLA on the proliferation and migration and invasion of cancer cells. qPCR and Western Blotting were used to determine the expression of specific factors. RNA sequencing was conducted using the Illumina platform and apoptosis was measured using a flow cytometry assay. t10,c12 CLA (IC50, 7 μM inhibited proliferation of ovarian cancer cell lines SKOV-3 and A2780. c9,t11 CLA did not attenuate the proliferation of these cells. Transcription of 165 genes was significantly repressed and 28 genes were elevated. Genes related to ER stress, ATF4, CHOP, and GADD34 were overexpressed whereas EDEM2 and Hsp90, genes required for proteasomal degradation of misfolded proteins, were downregulated upon treatment. While apoptosis was not detected, t10,c12 CLA treatment led to 9-fold increase in autophagolysosomes and higher levels of LC3-II. G1 cell cycle arrest in treated cells was correlated with phosphorylation of GSK3β and loss of β-catenin. microRNA miR184 and miR215 were upregulated. miR184 likely contributed to G1 arrest by downregulating E2F1. miR215 upregulation was correlated with increased expression of p27/Kip-1. t10,c12 CLA-mediated inhibition of invasion and migration correlated with decreased expression of PTP1b and decreased Src activation by inhibiting phosphorylation at Tyr416. Due to its ability to inhibit proliferation and migration, t10,c12 CLA should be considered for treatment of ovarian cancer.

  10. Trans10,cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src.

    Science.gov (United States)

    Shahzad, Mian M K; Felder, Mildred; Ludwig, Kai; Van Galder, Hannah R; Anderson, Matthew L; Kim, Jong; Cook, Mark E; Kapur, Arvinder K; Patankar, Manish S

    2018-01-01

    The goal of this study was to investigate the anti-cancer effects of Trans10,cis12 conjugated linoleic acid (t10,c12 CLA). MTT assays and QCM™ chemotaxis 96-wells were used to test the effect of t10,c12 CLA on the proliferation and migration and invasion of cancer cells. qPCR and Western Blotting were used to determine the expression of specific factors. RNA sequencing was conducted using the Illumina platform and apoptosis was measured using a flow cytometry assay. t10,c12 CLA (IC50, 7 μM) inhibited proliferation of ovarian cancer cell lines SKOV-3 and A2780. c9,t11 CLA did not attenuate the proliferation of these cells. Transcription of 165 genes was significantly repressed and 28 genes were elevated. Genes related to ER stress, ATF4, CHOP, and GADD34 were overexpressed whereas EDEM2 and Hsp90, genes required for proteasomal degradation of misfolded proteins, were downregulated upon treatment. While apoptosis was not detected, t10,c12 CLA treatment led to 9-fold increase in autophagolysosomes and higher levels of LC3-II. G1 cell cycle arrest in treated cells was correlated with phosphorylation of GSK3β and loss of β-catenin. microRNA miR184 and miR215 were upregulated. miR184 likely contributed to G1 arrest by downregulating E2F1. miR215 upregulation was correlated with increased expression of p27/Kip-1. t10,c12 CLA-mediated inhibition of invasion and migration correlated with decreased expression of PTP1b and decreased Src activation by inhibiting phosphorylation at Tyr416. Due to its ability to inhibit proliferation and migration, t10,c12 CLA should be considered for treatment of ovarian cancer.

  11. Hypoxic-induced stress protein expression in rat cardiac myocytes

    International Nuclear Information System (INIS)

    Howard, G.; Geoghegan, T.E.

    1986-01-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O 2 supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with [ 35 S]methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins

  12. Novel approaches to quantify estradiol-induced loss of ERβ1 protein in older mouse ovarian surface epithelium: new tools to assess the role of ER protein subtypes in predisposing to ovarian epithelial cancer?

    Science.gov (United States)

    Gulliver, Linda S M; Hurst, Peter R

    2011-08-01

    Loss of estrogen receptor-beta (ERβ) occurs in ovarian epithelial cancer (OEC), a cancer of mainly older women. OEC is linked epidemiologically to hormone replacement therapy, predominantly with estrogen-only formulations. This study introduces a novel, non-biased method to quantify levels of estradiol-induced loss of ERβ1 protein, and defines, for the first time, normal OSE expression patterns for ERα and ERβ1 with advancing age. Older (7-10 months) Swiss Webster mice were injected with estradiol valerate (EV) while age-matched diestrous controls received oil. Mice were culled after 48 h, and blood and one ovary were frozen for estradiol RIA. Contralateral ovaries were paraffin-embedded for immunohistochemistry. Subsets of serial sections, triple-labeled with immunofluroescent tags, were imaged with confocal microscopy to provide optimal visualization of ER protein subtype expression in OSE. Immunofluorescence emission profiles distinct to ERβ1 in OSE were standardized and quantified in control mice then compared to profiles from EV-exposed mice. Estradiol levels were significantly elevated in EV-treated mice, both in blood (p < 0.0001) and ovarian tissue (p < 0.001), resulting in 11-fold reduction in OSE expression of ERβ1 protein (p < 0.0001). In aging OSE, expression patterns of both ER subtypes varied within cells and with cell shape. ER co-localization appeared predominantly cytoplasmic and was infrequent in columnar compared to cuboidal-shaped OSE cells. Immunofluorescence emission profiling and multiple-label immunofluorescent tagging of ER using confocal microscopy, provides sharp definition of ER locus enabling concurrent qualitative and quantitative analysis of ER protein. It offers significant potential for assessing ER protein subtype status in predisposition to OEC.

  13. Chitin and stress induced protein kinase activation

    DEFF Research Database (Denmark)

    Kenchappa, Chandra Shekar; Azevedo da Silva, Raquel; Bressendorff, Simon

    2017-01-01

    The assays described here are pertinent to protein kinase studies in any plant. They include an immunoblot phosphorylation/activation assay and an in-gel activity assay for MAP kinases (MPKs) using the general protein kinase substrate myelin basic protein. They also include a novel in-gel peptide...... substrate assay for Snf1-related kinase family 2 members (SnRK2s). This kinase family-specific assay overcomes some limitations of in-gel assays and permits the identification of different types of kinase activities in total protein extracts....

  14. Cellular stress response cross talk maintains protein and energy homeostasis

    OpenAIRE

    Swan, Cynthia L; Sistonen, Lea

    2015-01-01

    Maintenance of cellular homeostasis depends upon several pathways that allow a cell to respond and adapt to both environmental stress and changes in metabolic status. New work in this issue of The EMBO Journal reveals a mechanism of cross talk between heat shock factor 1 (HSF1), the primary regulator of the proteotoxic stress response, and AMP-activated protein kinase (AMPK), the primary sensor in the metabolic stress response.

  15. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Fanmuyi Yang

    2015-10-01

    Full Text Available Ethanol abuse affects virtually all organ systems and the central nervous system (CNS is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK, inositol-requiring enzyme 1 (IRE1, and activating transcription factor 6 (ATF6. UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer’s disease (AD, Huntington’s disease (HD, Amyotrophic lateral sclerosis (ALS, and Parkinson’s disease (PD. However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity.

  16. Serum levels of RBP4 and adipose tissue levels of PTP1B are increased in obese men resident in northeast Scotland without associated changes in ER stress response genes

    Directory of Open Access Journals (Sweden)

    Hoggard N

    2012-05-01

    Full Text Available Nigel Hoggard1, Abdelali Agouni2, Nimesh Mody2, Mirela Delibegovic21Rowett Institute of Nutrition and Health, 2Integrative Physiology, University of Aberdeen, Aberdeen, UKBackground: Retinol-binding protein 4 (RBP4 is an adipokine identified as a marker of insulin resistance in mice and humans. Protein tyrosine phosphatase 1B (PTP1B expression levels as well as other genes involved in the endoplasmic reticulum (ER stress response are increased in adipose tissue of obese, high-fat-diet-fed mice. In this study we investigated if serum and/or adipose tissue RBP4 protein levels and expression levels of PTP1B and other ER stress-response genes are altered in obese and obese/diabetic men resident in northeast Scotland.Methods: We studied three groups of male volunteers: (1 normal/overweight (body mass index [BMI] < 30, (2 obese (BMI > 30, and (3 obese/diabetic (BMI > 30 controlling their diabetes either by diet or the antidiabetic drug metformin. We analyzed their serum and adipose tissue RBP4 protein levels as well as adipose tissue mRNA expression of PTP1B, binding immunoglobulin protein (BIP, activated transcription factor 4 (ATF4, and glucose-regulated protein 94 (GRP94 alongside other markers of adiposity (percentage body fat, leptin, cholesterol, triglycerides and insulin resistance (oral glucose tolerance tests, insulin, homeostatic model assessment–insulin resistance, C-reactive protein, and adiponectin.Results: We found that obese Scottish subjects had significantly higher serum RBP4 protein levels in comparison to the normal/overweight subjects (P < 0.01. Serum RBP4 levels were normalized in obese/diabetic subjects treated with diet or metformin (P < 0.05. Adipose tissue RBP4 protein levels were comparable between all three groups of subjects as were serum and adipose transthyretin levels. Adipose tissue PTP1B mRNA levels were increased in obese subjects in comparison to normal/overweight subjects (P < 0.05; however diet and/or metformin

  17. The unfolded protein response and the role of protein disulphide isomerase in neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Emma ePerri

    2016-01-01

    Full Text Available The maintenance and regulation of proteostasis is a critical function for post-mitotic neurons and dysregulation of proteostasis is increasingly implicated in neurodegenerative diseases. Despite having different clinical manifestations, these disorders share similar pathology; an accumulation of misfolded proteins in neurons and subsequent disruption to cellular proteostasis. The endoplasmic reticulum (ER is an important component of proteostasis, and when the accumulation of misfolded proteins occurs within the ER, this disturbs ER homeostasis, giving rise to ER stress. This triggers the unfolded protein response (UPR, distinct signalling pathways that whilst initially protective, are pro-apoptotic if ER stress is prolonged. ER stress is increasingly implicated in neurodegenerative diseases, and emerging evidence highlights the complexity of the UPR in these disorders, with both protective and detrimental components being described. Protein Disulphide Isomerase (PDI is an ER chaperone induced during ER stress that is responsible for the formation of disulphide bonds in proteins. Whilst initially considered to be protective, recent studies have revealed unconventional roles for PDI in neurodegenerative diseases, distinct from its normal function in the UPR and the ER, although these mechanisms remain poorly defined. However specific aspects of PDI function may offer the potential to be exploited therapeutically in the future. This review will focus on the evidence linking ER stress and the UPR to neurodegenerative diseases, with particular emphasis on the emerging functions ascribed to PDI in these conditions.

  18. How do membrane proteins sense water stress?

    NARCIS (Netherlands)

    Poolman, Bert; Blount, Paul; Folgering, Joost H.A.; Friesen, Robert H.E.; Moe, Paul C.; Heide, Tiemen van der

    2002-01-01

    Maintenance of cell turgor is a prerequisite for almost any form of life as it provides a mechanical force for the expansion of the cell envelope. As changes in extracellular osmolality will have similar physicochemical effects on cells from all biological kingdoms, the responses to osmotic stress

  19. Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration.

    Science.gov (United States)

    Goh, Catherine Wenhui; Lee, Irene Chengjie; Sundaram, Jeyapriya Rajameenakshi; George, Simi Elizabeth; Yusoff, Permeen; Brush, Matthew Hayden; Sze, Newman Siu Kwan; Shenolikar, Shirish

    2018-01-05

    Oxidative and endoplasmic reticulum (ER) stresses are hallmarks of the pathophysiology of ALS and other neurodegenerative diseases. In these stresses, different kinases phosphorylate eukaryotic initiation factor eIF2α, enabling the translation of stress response genes; among these is GADD34 , the protein product of which recruits the α-isoform of protein phosphatase 1 catalytic subunit (PP1α) and eIF2α to assemble a phosphatase complex catalyzing eIF2α dephosphorylation and resumption of protein synthesis. Aberrations in this pathway underlie the aforementioned disorders. Previous observations indicating that GADD34 is induced by arsenite, a thiol-directed oxidative stressor, in the absence of eIF2α phosphorylation suggest other roles for GADD34. Here, we report that arsenite-induced oxidative stress differs from thapsigargin- or tunicamycin-induced ER stress in promoting GADD34 transcription and the preferential translation of its mRNA in the absence of eIF2α phosphorylation. Arsenite also stabilized GADD34 protein, slowing its degradation. In response to oxidative stress, but not ER stress, GADD34 recruited TDP-43, and enhanced cytoplasmic distribution and cysteine modifications of TDP-43 promoted its binding to GADD34. Arsenite also recruited a TDP-43 kinase, casein kinase-1ϵ (CK1ϵ), to GADD34. Concomitant with TDP-43 aggregation and proteolysis after prolonged arsenite exposure, GADD34-bound CK1ϵ catalyzed TDP-43 phosphorylations at serines 409/410, which were diminished or absent in GADD34 -/- cells. Our findings highlight that the phosphatase regulator, GADD34, also functions as a kinase scaffold in response to chronic oxidative stress and recruits CK1ϵ and oxidized TDP-43 to facilitate its phosphorylation, as seen in TDP-43 proteinopathies. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Compensatory rebalancing of rice prolamins by production of recombinant prolamin/bioactive peptide fusion proteins within ER-derived protein bodies.

    Science.gov (United States)

    Takaiwa, Fumio; Yang, Lijun; Wakasa, Yuhya; Ozawa, Kenjiro

    2018-02-01

    Bioactive peptide was produced by fusion to rice prolamins in transgenic rice seeds. Their accumulation levels were affected by their deposition sites and by compensatory rebalancing between prolamins within PB-Is. Peptide immunotherapy using analogue peptide ligands (APLs) is one of promising treatments against autoimmune diseases. Use of seed storage protein as a fusion carrier is reasonable strategy for production of such small size bioactive peptides. In this study, to examine the efficacy of various rice prolamins deposited in ER-derived protein bodies (PB-Is), the APL12 from the Glucose-6-phosphate isomerase (GPI325-339) was expressed by fusion to four types of representative prolamins under the control of the individual native promoters. When the 14 and 16 kDa Cys-rich prolamins, which were localized in middle layer of PB-Is, were used for production of the APL12, they highly accumulated in transgenic rice seeds (~ 200 µg/grain). By contrast, fusion to the 10 and 13 kDa prolamins, which were localized in the core and outermost layer of PB-Is, resulted in lower levels of accumulation (~ 40 µg/grain). These results suggest that accumulation levels were highly affected by their deposition sites. Next, when different prolamin/APL12 fusion proteins were co-expressed to increase accumulation levels, they could not be increased so much as their expected additive levels. High accumulation of one type prolamin/APL12 led to reduction of other type(s) prolamin/APL12 to maintain the limited amounts of prolamins that can be deposited in PB-Is. Moreover, suppression of endogenous seed proteins by RNA interference also did not significantly enhance the accumulation levels of prolamin/APL12. These findings suggest that there may be compensatory rebalancing mechanism that controls the accumulation levels of prolamins deposited within PB-Is.

  1. Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells

    International Nuclear Information System (INIS)

    Zhang, Xiuhua; Chen, Minxiao; Zou, Peng; Kanchana, Karvannan; Weng, Qiaoyou; Chen, Wenbo; Zhong, Peng; Ji, Jiansong; Zhou, Huiping; He, Langchong; Liang, Guang

    2015-01-01

    Prostate cancer is the most commonly diagnosed malignancy among men. The Discovery of new agents for the treatment of prostate cancer is urgently needed. Compound WZ35, a novel analog of the natural product curcumin, exhibited good anti-prostate cancer activity, with an IC 50 of 2.2 μM in PC-3 cells. However, the underlying mechanism of WZ35 against prostate cancer cells is still unclear. Human prostate cancer PC-3 cells and DU145 cells were treated with WZ35 for further proliferation, apoptosis, cell cycle, and mechanism analyses. NAC and CHOP siRNA were used to validate the role of ROS and ER stress, respectively, in the anti-cancer actions of WZ35. Our results show that WZ35 exhibited much higher cell growth inhibition than curcumin by inducing ER stress-dependent cell apoptosis in human prostate cells. The reduction of CHOP expression by siRNA partially abrogated WZ35-induced cell apoptosis. WZ35 also dose-dependently induced cell cycle arrest in the G2/M phase. Furthermore, we found that WZ35 treatment for 30 min significantly induced reactive oxygen species (ROS) production in PC-3 cells. Co-treatment with the ROS scavenger NAC completely abrogated the induction of WZ35 on cell apoptosis, ER stress activation, and cell cycle arrest, indicating an upstream role of ROS generation in mediating the anti-cancer effect of WZ35. Taken together, this work presents the novel anticancer candidate WZ35 for the treatment of prostate cancer, and importantly, reveals that increased ROS generation might be an effective strategy in human prostate cancer treatment. The online version of this article (doi:10.1186/s12885-015-1851-3) contains supplementary material, which is available to authorized users

  2. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin [Department of Neurological Disease, Xi' an Central Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710000 (China); Bie, Xiao-Hua, E-mail: biexiaohua_xjtu@126.com [Department of Functional Neurosurgery, Xi' an Red Cross Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710054 (China)

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  3. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    International Nuclear Information System (INIS)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin; Bie, Xiao-Hua

    2015-01-01

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation

  4. Chronic Insulin Exposure Induces ER Stress and Lipid Body Accumulation in Mast Cells at the Expense of Their Secretory Degranulation Response.

    Directory of Open Access Journals (Sweden)

    William E Greineisen

    Full Text Available Lipid bodies (LB are reservoirs of precursors to inflammatory lipid mediators in immunocytes, including mast cells. LB numbers are dynamic, increasing dramatically under conditions of immunological challenge. We have previously shown in vitro that insulin-influenced lipogenic pathways induce LB biogenesis in mast cells, with their numbers attaining steatosis-like levels. Here, we demonstrate that in vivo hyperinsulinemia resulting from high fat diet is associated with LB accumulation in murine mast cells and basophils. We characterize the lipidome of purified insulin-induced LB, and the shifts in the whole cell lipid landscape in LB that are associated with their accumulation, in both model (RBL2H3 and primary mast cells. Lipidomic analysis suggests a gain of function associated with LB accumulation, in terms of elevated levels of eicosanoid precursors that translate to enhanced antigen-induced LTC4 release. Loss-of-function in terms of a suppressed degranulation response was also associated with LB accumulation, as were ER reprogramming and ER stress, analogous to observations in the obese hepatocyte and adipocyte. Taken together, these data suggest that chronic insulin elevation drives mast cell LB enrichment in vitro and in vivo, with associated effects on the cellular lipidome, ER status and pro-inflammatory responses.

  5. Agrobacterium-delivered virulence protein VirE2 is trafficked inside host cells via a myosin XI-K-powered ER/actin network.

    Science.gov (United States)

    Yang, Qinghua; Li, Xiaoyang; Tu, Haitao; Pan, Shen Q

    2017-03-14

    Agrobacterium tumefaciens causes crown gall tumors on various plants by delivering transferred DNA (T-DNA) and virulence proteins into host plant cells. Under laboratory conditions, the bacterium is widely used as a vector to genetically modify a wide range of organisms, including plants, yeasts, fungi, and algae. Various studies suggest that T-DNA is protected inside host cells by VirE2, one of the virulence proteins. However, it is not clear how Agrobacterium -delivered factors are trafficked through the cytoplasm. In this study, we monitored the movement of Agrobacterium -delivered VirE2 inside plant cells by using a split-GFP approach in real time. Agrobacterium -delivered VirE2 trafficked via the endoplasmic reticulum (ER) and F-actin network inside plant cells. During this process, VirE2 was aggregated as filamentous structures and was present on the cytosolic side of the ER. VirE2 movement was powered by myosin XI-K. Thus, exogenously produced and delivered VirE2 protein can use the endogenous host ER/actin network for movement inside host cells. The A. tumefaciens pathogen hijacks the conserved host infrastructure for virulence trafficking. Well-conserved infrastructure may be useful for Agrobacterium to target a wide range of recipient cells and achieve a high efficiency of transformation.

  6. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells

    Directory of Open Access Journals (Sweden)

    Yang Jin

    2008-08-01

    Full Text Available Abstract Background Although lung cancer is among the few malignancies for which we know the primary etiological agent (i.e., cigarette smoke, a precise understanding of the temporal sequence of events that drive tumor progression remains elusive. In addition to finding that cigarette smoke (CS impacts the functioning of key pathways with significant roles in redox homeostasis, xenobiotic detoxification, cell cycle control, and endoplasmic reticulum (ER functioning, our data highlighted a defensive role for the unfolded protein response (UPR program. The UPR promotes cell survival by reducing the accumulation of aberrantly folded proteins through translation arrest, production of chaperone proteins, and increased degradation. Importance of the UPR in maintaining tissue health is evidenced by the fact that a chronic increase in defective protein structures plays a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer. Methods Gene and protein expression changes in CS exposed human cell cultures were monitored by high-density microarrays and Western blot analysis. Tissue arrays containing samples from 110 lung cancers were probed with antibodies to proteins of interest using immunohistochemistry. Results We show that: 1 CS induces ER stress and activates components of the UPR; 2 reactive species in CS that promote oxidative stress are primarily responsible for UPR activation; 3 CS exposure results in increased expression of several genes with significant roles in attenuating oxidative stress; and 4 several major UPR regulators are increased either in expression (i.e., BiP and eIF2α or phosphorylation (i.e., phospho-eIF2α in a majority of human lung cancers. Conclusion These data indicate that chronic ER stress and recruitment of one or more UPR effector arms upon exposure to CS may play a pivotal role in the etiology or progression of lung cancers, and that phospho-eIF2α and BiP may have

  7. Endoplasmic reticulum (ER Chaperones and Oxidoreductases: Critical Regulators of Tumor Cell Survival and Immunorecognition

    Directory of Open Access Journals (Sweden)

    Thomas eSimmen

    2014-10-01

    Full Text Available Endoplasmic reticulum (ER chaperones and oxidoreductases are abundant enzymes that mediate the production of fully folded secretory and transmembrane proteins. Resisting the Golgi and plasma membrane-directed bulk flow, ER chaperones and oxidoreductases enter retrograde trafficking whenever they are pulled outside of the ER. However, solid tumors are characterized by the increased production of reactive oxygen species (ROS, combined with reduced blood flow that leads to low oxygen supply and ER stress. Under these conditions, hypoxia and the unfolded protein response (UPR upregulate ER chaperones and oxidoreductases. When this occurs, ER oxidoreductases and chaperones become important regulators of tumor growth. However, under these conditions, these proteins not only promote the production of proteins, but also alter the properties of the plasma membrane and hence modulate tumor immune recognition. For instance, high levels of calreticulin serve as an eat-me signal on the surface of tumor cells. Conversely, both intracellular and surface BiP/GRP78 promotes tumor growth. Other ER folding assistants able to modulate the properties of tumor tissue include protein disulfide isomerase (PDI, Ero1α and GRP94. Understanding the roles and mechanisms of ER chaperones in regulating tumor cell functions and immunorecognition will lead to important insight for the development of novel cancer therapies.

  8. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis.

    Directory of Open Access Journals (Sweden)

    Marta L DeDiego

    2011-10-01

    Full Text Available Severe acute respiratory syndrome virus (SARS-CoV that lacks the envelope (E gene (rSARS-CoV-ΔE is attenuated in vivo. To identify factors that contribute to rSARS-CoV-ΔE attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, apoptosis and cell cycle and differentiation were differentially regulated in cells infected with rSARS-CoV with or without the E gene. Administration of E protein in trans reduced the stress response in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, or treated with drugs, such as tunicamycin and thapsigargin that elicit cell stress by different mechanisms. In addition, SARS-CoV E protein down-regulated the signaling pathway inositol-requiring enzyme 1 (IRE-1 of the unfolded protein response, but not the PKR-like ER kinase (PERK or activating transcription factor 6 (ATF-6 pathways, and reduced cell apoptosis. Overall, the activation of the IRE-1 pathway was not able to restore cell homeostasis, and apoptosis was induced probably as a measure to protect the host by limiting virus production and dissemination. The expression of proinflammatory cytokines was reduced in rSARS-CoV-ΔE-infected cells compared to rSARS-CoV-infected cells, suggesting that the increase in stress responses and the reduction of inflammation in the absence of the E gene contributed to the attenuation of rSARS-CoV-ΔE.

  9. Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation.

    Science.gov (United States)

    Torres-Odio, Sylvia; Key, Jana; Hoepken, Hans-Hermann; Canet-Pons, Júlia; Valek, Lucie; Roller, Bastian; Walter, Michael; Morales-Gordo, Blas; Meierhofer, David; Harter, Patrick N; Mittelbronn, Michel; Tegeder, Irmgard; Gispert, Suzana; Auburger, Georg

    2017-08-02

    PINK1 deficiency causes the autosomal recessive PARK6 variant of Parkinson's disease. PINK1 activates ubiquitin by phosphorylation and cooperates with the downstream ubiquitin ligase PARKIN, to exert quality control and control autophagic degradation of mitochondria and of misfolded proteins in all cell types. Global transcriptome profiling of mouse brain and neuron cultures were assessed in protein-protein interaction diagrams and by pathway enrichment algorithms. Validation by quantitative reverse transcriptase polymerase chain reaction and immunoblots was performed, including human neuroblastoma cells and patient primary skin fibroblasts. In a first approach, we documented Pink1-deleted mice across the lifespan regarding brain mRNAs. The expression changes were always subtle, consistently affecting "intracellular membrane-bounded organelles". Significant anomalies involved about 250 factors at age 6 weeks, 1300 at 6 months, and more than 3500 at age 18 months in the cerebellar tissue, including Srsf10, Ube3a, Mapk8, Creb3, and Nfkbia. Initially, mildly significant pathway enrichment for the spliceosome was apparent. Later, highly significant networks of ubiquitin-mediated proteolysis and endoplasmic reticulum protein processing occurred. Finally, an enrichment of neuroinflammation factors appeared, together with profiles of bacterial invasion and MAPK signaling changes-while mitophagy had minor significance. Immunohistochemistry showed pronounced cellular response of Iba1-positive microglia and GFAP-positive astrocytes; brain lipidomics observed increases of ceramides as neuroinflammatory signs at old age. In a second approach, we assessed PINK1 deficiency in the presence of a stressor. Marked dysregulations of microbial defense factors Ifit3 and Rsad2 were consistently observed upon five analyses: (1) Pink1 -/- primary neurons in the first weeks after brain dissociation, (2) aged Pink1 -/- midbrain with transgenic A53T-alpha-synuclein overexpression, (3

  10. Endoplasmic reticulum redox state is not perturbed by pharmacological or pathological endoplasmic reticulum stress in live pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Irmgard Schuiki

    Full Text Available Accumulation of unfolded, misfolded and aggregated proteins in the endoplasmic reticulum (ER causes ER stress. ER stress can result from physiological situations such as acute increases in secretory protein biosynthesis or pathological conditions that perturb ER homeostasis such as alterations in the ER redox state. Here we monitored ER redox together with transcriptional output of the Unfolded Protein Response (UPR in INS-1 insulinoma cells stably expressing eroGFP (ER-redox-sensor and mCherry protein driven by a GRP78 promoter (UPR-sensor. Live cell imaging, flow cytometry and biochemical characterization were used to examine these parameters in response to various conditions known to induce ER stress. As expected, treatment of the cells with the reducing agent dithiothreitol caused a decrease in the oxidation state of the ER accompanied by an increase in XBP-1 splicing. Unexpectedly however, other treatments including tunicamycin, thapsigargin, DL-homocysteine, elevated free fatty acids or high glucose had essentially no influence on the ER redox state, despite inducing ER stress. Comparable results were obtained with dispersed rat islet cells expressing eroGFP. Thus, unlike in yeast cells, ER stress in pancreatic β-cells is not associated with a more reducing ER environment.

  11. Production of functional proteins: balance of shear stress and gravity

    Science.gov (United States)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2011-01-01

    A method for the production of functional proteins including hormones by renal cells in a three dimensional culturing process responsive to shear stress uses a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-.alpha.-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D.sub.3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating an in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  12. Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain.

    Science.gov (United States)

    Pavlovsky, A A; Boehning, D; Li, D; Zhang, Y; Fan, X; Green, T A

    2013-08-29

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors activating transcription factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated is unknown. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative polymerase chain reaction (PCR) and RNA sequencing. Restraint stress and cocaine-induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components x-box binding protein 1 (XBP1) and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Computational protein structure modeling and analysis of UV-B stress protein in Synechocystis PCC 6803.

    Science.gov (United States)

    Rahman, Md Akhlaqur; Chaturvedi, Navaneet; Sinha, Sukrat; Pandey, Paras Nath; Gupta, Dwijendra Kumar; Sundaram, Shanthy; Tripathi, Ashutosh

    2013-01-01

    This study focuses on Ultra Violet stress (UVS) gene product which is a UV stress induced protein from cyanobacteria, Synechocystis PCC 6803. Three dimensional structural modeling of target UVS protein was carried out by homology modeling method. 3F2I pdb from Nostoc sp. PCC 7120 was selected as a suitable template protein structure. Ultimately, the detection of active binding regions was carried out for characterization of functional sites in modeled UV-B stress protein. The top five probable ligand binding sites were predicted and the common binding residues between target and template protein was analyzed. It has been validated for the first time that modeled UVS protein structure from Synechocystis PCC 6803 was structurally and functionally similar to well characterized UVS protein of another cyanobacterial species, Nostoc sp PCC 7120 because of having same structural motif and fold with similar protein topology and function. Investigations revealed that UVS protein from Synechocystis sp. might play significant role during ultraviolet resistance. Thus, it could be a potential biological source for remediation for UV induced stress.

  14. Tang-Luo-Ning, a Traditional Chinese Medicine, Inhibits Endoplasmic Reticulum Stress-Induced Apoptosis of Schwann Cells under High Glucose Environment

    Directory of Open Access Journals (Sweden)

    Weijie Yao

    2017-01-01

    Full Text Available Tang-Luo-Ning (TLN has a definite effect in the clinical treatment of diabetic peripheral neuropathy (DPN. Schwann cells (SCs apoptosis induced by endoplasmic reticulum stress (ER stress is one of the main pathogeneses of DPN. This study investigates whether TLN can inhibit SCs apoptosis by inhibiting ER stress-induced apoptosis. Our previous researches have demonstrated that TLN could increase the expression of ER stress marker protein GRP78 and inhibited the expression of apoptosis marker protein CHOP in ER stress. In this study, the results showed that TLN attenuated apoptosis by decreasing Ca2+ level in SCs and maintaining ER morphology. TLN could decrease downstream proteins of CHOP including GADD34 and Ero1α, while it increased P-eIF2α and decreased the upstream proteins of CHOP including P-IRE1α/IRE1α and XBP-1, thereby reducing ER stress-induced apoptosis.

  15. Endoplasmic reticulum stress in the pathogenesis of hypertension.

    Science.gov (United States)

    Young, Colin N

    2017-08-01

    What is the topic of this review? This review highlights the emerging role of disruptions in endoplasmic reticulum (ER) function, namely ER stress, as a contributor to hypertension. What advances does it highlight? This review presents an integrative view of ER stress in cardiovascular control systems, including systems within the brain, kidney and peripheral vasculature, as related to development of hypertension. The endoplasmic reticulum (ER) is a cellular organelle specialized in the synthesis, folding, assembly and modification of proteins. In situations of increased protein demand, complex signalling pathways, termed the unfolded protein response, influence a series of cellular feedback loops to control ER function strictly. Although this is initially a compensatory attempt to maintain cellular homeostasis, chronic activation of the unfolded protein response, known as ER stress, leads to sustained changes in cellular function. A growing body of literature points to ER stress in diverse cardioregulatory systems, including the brain, kidney and vasculature, as central to the development of hypertension. Here, these recent findings from essential and obesity-related forms of hypertension are highlighted in an integrative manner, with discussion of the potential upstream causes and downstream consequences of ER stress. Given that hypertension is a leading medical and socio-economic global challenge, emerging findings suggest that targeting ER stress might represent a viable strategy for the treatment of hypertensive disease. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  16. Oxidative stress, protein damage and repair in bacteria.

    Science.gov (United States)

    Ezraty, Benjamin; Gennaris, Alexandra; Barras, Frédéric; Collet, Jean-François

    2017-07-01

    Oxidative damage can have a devastating effect on the structure and activity of proteins, and may even lead to cell death. The sulfur-containing amino acids cysteine and methionine are particularly susceptible to reactive oxygen species (ROS) and reactive chlorine species (RCS), which can damage proteins. In this Review, we discuss our current understanding of the reducing systems that enable bacteria to repair oxidatively damaged cysteine and methionine residues in the cytoplasm and in the bacterial cell envelope. We highlight the importance of these repair systems in bacterial physiology and virulence, and we discuss several examples of proteins that become activated by oxidation and help bacteria to respond to oxidative stress.

  17. Monomerization and ER Relocalization of GRASP Is a Requisite for Unconventional Secretion of CFTR.

    Science.gov (United States)

    Kim, Jiyoon; Noh, Shin Hye; Piao, He; Kim, Dong Hee; Kim, Kuglae; Cha, Jeong Seok; Chung, Woo Young; Cho, Hyun-Soo; Kim, Joo Young; Lee, Min Goo

    2016-07-01

    Induction of endoplasmic reticulum (ER)-to-Golgi blockade or ER stress induces Golgi reassembly stacking protein (GRASP)-mediated, Golgi-independent unconventional cell-surface trafficking of the folding-deficient ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR). However, molecular mechanisms underlying this process remain elusive. Here, we show that phosphorylation-dependent dissociation of GRASP homotypic complexes and subsequent relocalization of GRASP to the ER play a critical role in the unconventional secretion of CFTR. Immunolocalization analyses of mammalian cells revealed that the Golgi protein GRASP55 was redistributed to the ER by stimuli that induce unconventional secretion of ΔF508-CFTR, such as induction of ER-to-Golgi blockade by the Arf1 mutant. Notably, the same stimuli also induced phosphorylation of regions near the C-terminus of GRASP55 and dissociation of GRASP homomultimer complexes. Furthermore, phosphorylation-mimicking mutations of GRASP55 induced the monomerization and ER relocalization of GRASP55, and these changes were nullified by phosphorylation-inhibiting mutations. These results provide mechanistic insights into how GRASP accesses the ER-retained ΔF508-CFTR and mediates the ER stress-induced unconventional secretion pathway. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Folding propensity of intrinsically disordered proteins by osmotic stress

    International Nuclear Information System (INIS)

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.

    2016-01-01

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scattering (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.

  19. Nitrosative stress and nitrated proteins in trichloroethene-mediated autoimmunity.

    Directory of Open Access Journals (Sweden)

    Gangduo Wang

    Full Text Available Exposure to trichloroethene (TCE, a ubiquitous environmental contaminant, has been linked to a variety of autoimmune diseases (ADs including SLE, scleroderma and hepatitis. Mechanisms involved in the pathogenesis of ADs are largely unknown. Earlier studies from our laboratory in MRL+/+ mice suggested the contribution of oxidative/nitrosative stress in TCE-induced autoimmunity, and N-acetylcysteine (NAC supplementation provided protection by attenuating oxidative stress. This study was undertaken to further evaluate the contribution of nitrosative stress in TCE-mediated autoimmunity and to identify proteins susceptible to nitrosative stress. Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, ∼ 250 mg/kg/day via drinking water. TCE exposure led to significant increases in serum anti-nuclear and anti-histone antibodies together with significant induction of iNOS and increased formation of nitrotyrosine (NT in sera and livers. Proteomic analysis identified 14 additional nitrated proteins in the livers of TCE-treated mice. Furthermore, TCE exposure led to decreased GSH levels and increased activation of NF-κB. Remarkably, NAC supplementation not only ameliorated TCE-induced nitrosative stress as evident from decreased iNOS, NT, nitrated proteins, NF-κB p65 activation and increased GSH levels, but also the markers of autoimmunity, as evident from decreased levels of autoantibodies in the sera. These findings provide support to the role of nitrosative stress in TCE-mediated autoimmune response and identify specific nitrated proteins which could have autoimmune potential. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for designing therapeutic strategies.

  20. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    Science.gov (United States)

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-01-01

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role. PMID:24287918

  1. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    Directory of Open Access Journals (Sweden)

    Rodolfo Villarreal-Calderon

    2013-11-01

    Full Text Available Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4 vs. high (n:26 air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005. Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  2. Endoplasmic reticulum stress causes EBV lytic replication

    OpenAIRE

    Taylor, Gwen Marie; Raghuwanshi, Sandeep K.; Rowe, David T.; Wadowsky, Robert M.; Rosendorff, Adam

    2011-01-01

    Endoplasmic reticulum (ER) stress triggers a homeostatic cellular response in mammalian cells to ensure efficient folding, sorting, and processing of client proteins. In lytic-permissive lymphoblastoid cell lines (LCLs), pulse exposure to the chemical ER-stress inducer thapsigargin (TG) followed by recovery resulted in the activation of the EBV immediate-early (BRLF1, BZLF1), early (BMRF1), and late (gp350) genes, gp350 surface expression, and virus release. The protein phosphatase 1 a (PP1a)...

  3. Tributyltin-induced endoplasmic reticulum stress and its Ca2+-mediated mechanism

    International Nuclear Information System (INIS)

    Isomura, Midori; Kotake, Yaichiro; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-01-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca 2+ signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca 2+ homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca 2+ depletion, and to test this idea, we examined the effect of TBT on intracellular Ca 2+ concentration using fura-2 AM, a Ca 2+ fluorescent probe. TBT increased intracellular Ca 2+ concentration in a TBT-concentration-dependent manner, and Ca 2+ increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca 2+ concentration by releasing Ca 2+ from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca 2+ release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca 2+

  4. Tributyltin-induced endoplasmic reticulum stress and its Ca{sup 2+}-mediated mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Midori; Kotake, Yaichiro, E-mail: yaichiro@hiroshima-u.ac.jp; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-10-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca{sup 2+} signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca{sup 2+} homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca{sup 2+} depletion, and to test this idea, we examined the effect of TBT on intracellular Ca{sup 2+} concentration using fura-2 AM, a Ca{sup 2+} fluorescent probe. TBT increased intracellular Ca{sup 2+} concentration in a TBT-concentration-dependent manner, and Ca{sup 2+} increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca{sup 2+} concentration by releasing Ca{sup 2+} from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca{sup 2+} release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca{sup 2+}.

  5. Activation of endoplasmic reticulum stress response during the development of ischemic heart disease

    OpenAIRE

    Azfer, Asim; Niu, Jianli; Rogers, Linda M.; Adamski, Frances M.; Kolattukudy, Pappachan E.

    2006-01-01

    Endoplasmic reticulum (ER) stress has been found to be associated with neurodegenerative diseases and diabetes mellitus. Whether ER stress is involved in the development of heart disease is not known. Cardiac-specific expression of monocyte chemoattractant protein-1 (MCP-1) in mice causes the development of ischemic heart disease. Here we report that microarray analysis of gene expression changes in the heart of these transgenic mice revealed that a cluster of ER stress-related genes was tran...

  6. IRE1α-TRAF2-ASK1 pathway is involved in CSTMP-induced apoptosis and ER stress in human non-small cell lung cancer A549 cells.

    Science.gov (United States)

    Zhang, Jiexia; Liang, Ying; Lin, Yongbin; Liu, Yuanbin; YouYou; Yin, Weiqiang

    2016-08-01

    CSTMP, a Tetramethylpyrazine (TMP) analogue, is designed and synthesized based on the pharmacophores of TMP and resveratrol. Recent studies showed that CSTMP had strong protective effects in endothelial cells apoptosis by its anti-oxidant activity. However, the pharmacological function of CSTMP in cancer have not been elucidated to date. The objective of this study was to investigate the anti-cancer effect of CSTMP against human non-small cell lung cancer (NSCLC) A549 cells and the underlying mechanisms. The cell proliferation and apoptosis were detected by MTT assay and flow cytometry. Caspases activity was determined spectrophotometricaly at 405nm using a microtiter plate reader. Western blot and real-time PCR was used to assess the protein and mRNA expression. Immunoprecipitation was used to examine the protein-protein interactions. CSTMP inhibited the proliferation and induced cell cycle arrest and apoptosis of A549 cells. Caspase3, 8, 9 and PARP-1 activation, and Bax/Bcl-2 ratio analyses demonstrated that the anti-cancer effect of CSTMP in A549 cells was mediated by promoting caspase- and mitochondria-dependent apoptosis. Furthermore, CSTMP induced ER stress in A549 cells as evidenced by elevated levels of GRP78, GRP94, CHOP, IRE1α, TRAF2, p-ASK1 and p-JNK, activation of caspase12 and 4, and enhanced formation of an IRE1α-TRAF2-ASK1 complex. Knockdown of IRE1α by siRNA suppressed activation of IRE1α, TRAF2, p-ASK1 and p-JNK in CSTMP treated A549 cells. In addition, the effects of CSTMP on the formation of an IRE1α-TRAF2-ASK1 complex, caspase- and mitochondria-dependent apoptosis were also reversed by IRE1α siRNA in A549 cells. Collectively, we showed that CSTMP induced apoptosis of A549 cells were through IRE1α-TRAF2-ASK1 complex-mediated ER stress, JNK activation, and mitochondrial dysfunction. These insights on this novel compound CSTMP may provide a novel anti-cancer candidate for the treatment of NSCLC. Copyright © 2016 Elsevier Masson SAS. All

  7. The antitumor natural compound falcarindiol promotes cancer cell death by inducing endoplasmic reticulum stress.

    Science.gov (United States)

    Jin, H R; Zhao, J; Zhang, Z; Liao, Y; Wang, C-Z; Huang, W-H; Li, S-P; He, T-C; Yuan, C-S; Du, W

    2012-08-23

    Falcarindiol (FAD) is a natural polyyne with various beneficial biological activities. We show here that FAD preferentially kills colon cancer cells but not normal colon epithelial cells. Furthermore, FAD inhibits tumor growth in a xenograft tumor model and exhibits strong synergistic killing of cancer cells with 5-fluorouracil, an approved cancer chemotherapeutic drug. We demonstrate that FAD-induced cell death is mediated by induction of endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). Decreasing the level of ER stress, either by overexpressing the ER chaperone protein glucose-regulated protein 78 (GRP78) or by knockout of components of the UPR pathway, reduces FAD-induced apoptosis. In contrast, increasing the level of ER stress by knocking down GRP78 potentiates FAD-induced apoptosis. Finally, FAD-induced ER stress and apoptosis is correlated with the accumulation of ubiquitinated proteins, suggesting that FAD functions at least in part by interfering with proteasome function, leading to the accumulation of unfolded protein and induction of ER stress. Consistent with this, inhibition of protein synthesis by cycloheximide significantly decreases the accumulation of ubiquitinated proteins and blocks FAD-induced ER stress and cell death. Taken together, our study shows that FAD is a potential new anticancer agent that exerts its activity through inducing ER stress and apoptosis.

  8. The endoplasmic reticulum stress response in disease ...

    African Journals Online (AJOL)

    These proteins are essential for cell survival, and intuitively the ER must activate stress responses to evade immediate cell dysfunction as the cell processes lag behind. This review will discuss mainly the ER and its role in the pathogenesis and pathophysiology of epidemiologically-relevant diseases, as well as updates on ...

  9. Neuroprotective effects of adenosine isolated from Cordyceps cicadae against oxidative and ER stress damages induced by glutamate in PC12 cells.

    Science.gov (United States)

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Ouyang, Zhen; Su, Zhaoliang; Wang, Dujun; Yu, Xiaofeng

    2016-06-01

    Glutamate has been proven to induce oxidative stress through the formation of reactive oxygen species (ROS) and increased calcium overload which results in neuronal injury, development of neurodegenerative diseases and death. Adenosine is one of the bioactive nucleosides found in Cordyceps cicadae and it has displayed several pharmacological activities including neuroprotection. In this study, the protective effects of adenosine from C. cicadae against glutamate-induce oxidative stress in PC12 cells were evaluated. The exposure of PC12 cells to glutamate (5mM) induced the formation of ROS, increased Ca(2+) influx, endoplasmic reticulum (ER) stress and up regulated the expression of pro-apoptotic factor Bax. However, pretreatment with adenosine markedly increased cell viability, decreased the elevated levels of ROS and Ca(2+) induced by glutamate. Furthermore adenosine increased the activities of GSH-Px and SOD, as well as retained mitochondria membrane potential (MMP), increased Bcl-2/Bax ratio, and reduced the expression of ERK, p38, and JNK. Overall, our results suggest that adenosine may be a promising potential therapeutic agent for the prevention and treatment of neurodegenerative disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells

    International Nuclear Information System (INIS)

    Hsin, I-Lun; Hsiao, Yueh-Chieh; Wu, Ming-Fang; Jan, Ming-Shiou; Tang, Sheau-Chung; Lin, Yu-Wen; Hsu, Chung-Ping; Ko, Jiunn-Liang

    2012-01-01

    Endoplasmic reticulum (ER) stress is activated under severe cellular conditions. GADD153, a member of the C/EBP family, is an unfolded protein response (UPR) responsive transcription factor. Increased levels of lipocalin 2, an acute phase protein, have been found in several epithelial cancers. The aim of this study is to investigate the function of lipocalin 2 in lung cancer cells under ER stress. Treatment with thapsigargin, an ER stress activator, led to increases in cytotoxicity, ER stress, apoptosis, and lipocalin 2 expression in A549 cells. GADD153 silencing decreased lipocalin 2 expression in A549 cells. On chromatin immunoprecipitation assay, ER stress increased GADD153 DNA binding to lipocalin 2 promoter. Furthermore, silencing of lipocalin 2 mitigated ER stress-mediated apoptosis in A549 cells. Our findings demonstrated that lipocalin 2 is a new GADD153 target gene that mediates ER stress-induced apoptosis. Highlights: ► We demonstrate that Lipocalin 2 is a new GADD153 target gene. ► Lipocalin 2 mediates ER stress-induced apoptosis. ► ER stress-induced lipocalin 2 expression is calcium-independent in A549 cells. ► Lipocalin 2 dose not play a major role in ER stress-induced autophagy.

  11. Cytoprotective role of the fatty acid binding protein 4 against oxidative and endoplasmic reticulum stress in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Kazuaki Kajimoto

    2014-01-01

    Full Text Available The fatty acid binding protein 4 (FABP4, one of the most abundant proteins in adipocytes, has been reported to have a proinflammatory function in macrophages. However, the physiological role of FABP4, which is constitutively expressed in adipocytes, has not been fully elucidated. Previously, we demonstrated that FABP4 was involved in the regulation of interleukin-6 (IL-6 and vascular endothelial growth factor (VEGF production in 3T3-L1 adipocytes. In this study, we examined the effects of FABP4 silencing on the oxidative and endoplasmic reticulum (ER stress in 3T3-L1 adipocytes. We found that the cellular reactive oxygen species (ROS and 8-nitro-cyclic GMP levels were significantly elevated in the differentiated 3T3-L1 adipocytes transfected with a small interfering RNA (siRNA against Fabp4, although the intracellular levels or enzyme activities of antioxidants including reduced glutathione (GSH, superoxide dismutase (SOD and glutathione S-transferase A4 (GSTA4 were not altered. An in vitro evaluation using the recombinant protein revealed that FABP4 itself functions as a scavenger protein against hydrogen peroxide (H2O2. FABP4-knockdown resulted in a significant lowering of cell viability of 3T3-L1 adipocytes against H2O2 treatment. Moreover, four kinds of markers related to the ER stress response including the endoplasmic reticulum to nucleus signaling 1 (Ern1, the signal sequence receptor α (Ssr1, the ORM1-like 3 (Ormdl3, and the spliced X-box binding protein 1 (Xbp1s, were all elevated as the result of the knockdown of FABP4. Consequently, FABP4 might have a new role as an antioxidant protein against H2O2 and contribute to cytoprotection against oxidative and ER stress in adipocytes.

  12. Glycolaldehyde induces endoplasmic reticulum stress and apoptosis in Schwann cells

    Directory of Open Access Journals (Sweden)

    Keisuke Sato

    2015-01-01

    Full Text Available Schwann cell injury is caused by diabetic neuropathy. The apoptosis of Schwann cells plays a pivotal role in diabetic nerve dysfunction. Glycolaldehyde is a precursor of advanced glycation end products that contribute to the pathogenesis of diabetic neuropathy. In this study, we examined whether glycolaldehyde induces endoplasmic reticulum (ER stress and apoptosis in rat Schwann cells. Schwann cells treated with 500 μM glycolaldehyde showed morphological changes characteristic of apoptosis. Glycolaldehyde activated apoptotic signals, such as caspase-3 and caspase-8. Furthermore, it induced ER stress response involving RNA-dependent protein kinase-like ER kinase (PERK, inositol-requiring ER-to-nucleus signal kinase 1α (IRE1α, and eukaryotic initiation factor 2α (eIF2α. In addition, glycolaldehyde activated CCAAT/enhancer-binding homologous protein (CHOP, an ER stress response factor crucial to executing apoptosis. Knockdown of nuclear factor E2-related factor 2 (Nrf2, which is involved in the promotion of cell survival following ER stress, enhanced glycolaldehyde-induced cytotoxicity, indicating that Nrf2 plays a protective role in the cytotoxicity caused by glycolaldehyde. Taken together, these findings indicate that glycolaldehyde is capable of inducing apoptosis and ER stress in Schwann cells. The ER stress induced by glycolaldehyde may trigger the glycolaldehyde-induced apoptosis in Schwann cells. This study demonstrated for the first time that glycolaldehyde induced ER stress.

  13. Critical Role of Endoplasmic Reticulum Stress in Chronic Intermittent Hypoxia-Induced Deficits in Synaptic Plasticity and Long-Term Memory.

    Science.gov (United States)

    Xu, Lin-Hao; Xie, Hui; Shi, Zhi-Hui; Du, Li-Da; Wing, Yun-Kwok; Li, Albert M; Ke, Ya; Yung, Wing-Ho

    2015-09-20

    This study examined the role of endoplasmic reticulum (ER) stress in mediating chronic intermittent hypoxia (IH)-induced neurocognitive deficits. We designed experiments to demonstrate that ER stress is initiated in the hippocampus under chronic IH and determined its role in apoptotic cell death, impaired synaptic structure and plasticity, and memory deficits. Two weeks of IH disrupted ER fine structure and upregulated ER stress markers, glucose-regulated protein 78, caspase-12, and C/EBP homologous protein, in the hippocampus, which could be suppressed by ER stress inhibitors, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid. Meanwhile, ER stress induced apoptosis via decreased Bcl-2, promoted reactive oxygen species production, and increased malondialdehyde formation and protein carbonyl, as well as suppressed mitochondrial function. These effects were largely prevented by ER stress inhibitors. On the other hand, suppression of oxidative stress could reduce ER stress. In addition, the length of the synaptic active zone and number of mature spines were reduced by IH. Long-term recognition memory and spatial memory were also impaired, which was accompanied by reduced long-term potentiation in the Schaffer collateral pathway. These effects were prevented by coadministration of the TUDCA. These results show that ER stress plays a critical role in underlying memory deficits in obstructive sleep apnea (OSA)-associated IH. Attenuators of ER stress may serve as novel adjunct therapeutic agents for ameliorating OSA-induced neurocognitive impairment.

  14. Identification and molecular analysis of a 63-kilodalton stress protein from Neisseria gonorrhoeae

    NARCIS (Netherlands)

    Pannekoek, Y.; van Putten, J. P.; Dankert, J.

    1992-01-01

    Iron limitation, glucose deprivation, and growth under low oxygen supply (environmental stress) increased the expression of several proteins of Neisseria gonorrhoeae, including a 63-kilodalton protein identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This gonococcal stress

  15. Effects of moisture stress on germination and protein synthesis in ...

    African Journals Online (AJOL)

    ... 3, 5 triphenyl tetrazolium chloride (TTC), and their abilities to synthesize protein after stress by incorporating L- 4,5-3H leucine into their root tips. Les graines de dolique non pigmentées, TVX 3236 (crème et brune) et IT81S-818 (blanche), étaient exposées aux conditions d'humidité constantes plus stressantes (-0.1 et ...

  16. Protein Thiols as an Indication of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yousef Rezaei Chianeh

    2014-06-01

    Full Text Available Thiol is an organic compound that contain sulphhydryl group that have a critical role in preventing any involvement of oxidative stress in the cell. These defensive functions are generally considered to be carried out by the low molecular weight thiol glutathione and by cysteine residues in the active sites of proteins such as thioredoxin and peroxiredoxin. In addition, there are thiols exposed on protein surfaces that are not directly involved with protein function, although they can interact with the intracellular environment.The process of protection of the cell against an oxidative damage occur by thiol and cystein residue that has a low molecular weight. These residue are present in the active sites of a protein like, peroxiredoxin and thioredoxin. Apart from intracellular antioxidant defense mechanism by protein thiol, there are presence of thiol in outer surface of protein that are not involved with the function of protein, even though they can interact with intracellular part of the cell. [Archives Medical Review Journal 2014; 23(3.000: 443-456

  17. Bifunctional role of ephrin A1-Eph system in stimulating cell proliferation and protecting cells from cell death through the attenuation of ER stress and inflammatory responses in bovine mammary epithelial cells.

    Science.gov (United States)

    Kang, Minkyung; Jeong, Wooyoung; Bae, Hyocheol; Lim, Whasun; Bazer, Fuller W; Song, Gwonhwa

    2018-03-01

    Structural and functional development of the mammary gland is constant in the mammary gland life cycle. Eph receptors and their ligands, ephrins, control events through cell-to-cell interactions during embryonic development, and adult tissue homeostasis; however, little information on participation of ephrin A1, a representative ligand of the Eph receptor, in the development and function of normal mammary glands is known. In this study, we demonstrated functional effects of the ephrin A1-Eph system and mechanisms of its action on bovine mammary epithelial (MAC-T) cells. The in vitro cultured MAC-T cells expressed the ephrin A1 ligand and EphA1, A2, A4, A7, and A8 among the eight members of the Eph A family. Our results revealed that ephrin A1 induced MAC-T cell cycle progression and stimulated cell proliferation with abundant expression of nucleic PCNA and cyclin D1 proteins. Additionally, ephrin A1 induced activation of intracellular signaling molecules involved in PI3 K/AKT and MAPK signaling, and the proliferation-stimulating effect of ephrin A1 was mediated by activation of these pathways. Furthermore, ephrin A1 influenced expression and activation of various ER stress-related proteins and protected MAC-T cells from stress-induced cell death. Finally, ephrin A1 alleviated LPS-induced cell death through down-regulation of inflammatory cytokines. In conclusion, the results of this study suggest that the Eph A-ephrin A1 system is a positive factor in the increase and maintenance of epithelial cells in mammary glands of cows; the signaling system contributes to development, remodeling, and functionality of normal mammary glands and could overcome mastitis in cows and other mammals. © 2017 Wiley Periodicals, Inc.

  18. Auranofin induces apoptosis by ROS-mediated ER stress and mitochondrial dysfunction and displayed synergistic lethality with piperlongumine in gastric cancer.

    Science.gov (United States)

    Zou, Peng; Chen, Minxiao; Ji, Jiansong; Chen, Weiqian; Chen, Xi; Ying, Shilong; Zhang, Junru; Zhang, Ziheng; Liu, Zhiguo; Yang, Shulin; Liang, Guang

    2015-11-03

    Gastric cancer (GC) is one of the leading causes of cancer mortality in the world. In addressing the need of treatments for relapsed disease, we report the identification of an existing U.S. Food and Drug Administration-approved small-molecule drug to repurpose for GC treatment. Auranofin (AF), clinically used to treat rheumatic arthritis, but it exhibited preclinical efficacy in GC cells. By increasing intracellular reactive oxygen species (ROS) levels, AF induces a lethal endoplasmic reticulum stress response and mitochondrial dysfunction in cultured GC cells. Blockage of ROS production reversed AF-induced ER stress and mitochondrial pathways activation as well as apoptosis. In addition, AF displays synergistic lethality with an ROS-generating agent piperlongumine, which is a natural product isolated from the long pepper Piper longum L. Taken together, this work provides a novel anticancer candidate for the treatment of gastric cancer. More importantly, it reveals that increased ROS generation might be an effective strategy in treating human gastric cancer.

  19. 9-Norbornyl-6-chloropurine (NCP) induces cell death through GSH depletion-associated ER stress and mitochondrial dysfunction

    Czech Academy of Sciences Publication Activity Database

    Plačková, Pavla; Šála, Michal; Šmídková, Markéta; Dejmek, Milan; Hřebabecký, Hubert; Nencka, Radim; Thibaut, H. J.; Neyts, J.; Mertlíková-Kaiserová, Helena

    2016-01-01

    Roč. 97, Aug (2016), s. 223-235 ISSN 0891-5849 R&D Projects: GA MŠk LO1302; GA ČR GAP303/11/1297 Institutional support: RVO:61388963 Keywords : glutathione-S-transferase * oxidative stress * leukemia Subject RIV: CE - Biochemistry Impact factor: 5.606, year: 2016 http://www.sciencedirect.com/science/article/pii/S0891584916302921

  20. The novel resveratrol derivative 3,5-diethoxy-3',4'-dihydroxy-trans-stilbene induces mitochondrial ROS-mediated ER stress and cell death in human hepatoma cells in vitro.

    Science.gov (United States)

    Park, Jae-Woo; Choi, Woo-Gyun; Lee, Phil-Jun; Chung, Su-Wol; Kim, Byung-Sam; Chung, Hun-Taeg; Cho, Sungchan; Kim, Jong-Heon; Kang, Byoung-Heon; Kim, Hyoungsu; Kim, Hong-Pyo; Back, Sung-Hoon

    2017-11-01

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a well-known polyphenol that is present in grapes, peanuts, pine seeds, and several other plants. Resveratrol exerts deleterious effects on various types of human cancer cells. Here, we analyzed the cell death-inducing mechanisms of resveratrol-006 (Res-006), a novel resveratrol derivative in human liver cancer cells in vitro. Res-006 was more effectively suppressed the viability of HepG2 human hepatoma cells than resveratrol (the IC 50 values were 67.2 and 354.8 μmol/L, respectively). Co-treatment with the ER stress regulator 4-phenylbutyrate (0.5 mmol/L) or the ROS inhibitor N-acetyl-L-cysteine (NAC, 1 mmol/L) significantly attenuated Res-006-induced HepG2 cell death, suggesting that pro-apoptotic ER stress and/or ROS may govern the Res-006-induced HepG2 cell death. We further revealed that treatment of HepG2 cells with Res-006 (65 μmol/L) immediately elicited the dysregulation of mitochondrial dynamics and the accumulation of mitochondrial ROS. It also collapsed the mitochondrial membrane potential and further induced ER stress and cell death. These events, except for the change in mitochondrial morphology, were prevented by the exposure of the HepG2 cells to the mitochondrial ROS scavenger, Mito-TEMPO (300-1000 μmol/L). The results suggest that Res-006 may kill HepG2 cells through cell death pathways, including the ER stress initiated by mitochondrial ROS accumulation. The cell death induced by this novel resveratrol derivative involves crosstalk between the mitochondria and ER stress mechanisms.

  1. Endoplasmic Reticulum Stress and Associated ROS

    Directory of Open Access Journals (Sweden)

    Hafiz Maher Ali Zeeshan

    2016-03-01

    Full Text Available The endoplasmic reticulum (ER is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS. Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI-endoplasmic reticulum oxidoreductin (ERO-1, glutathione (GSH/glutathione disuphide (GSSG, NADPH oxidase 4 (Nox4, NADPH-P450 reductase (NPR, and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases.

  2. The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants.

    Directory of Open Access Journals (Sweden)

    Immaculada Llop-Tous

    Full Text Available BACKGROUND: Xylanases deserve particular attention due to their potential application in the feed, pulp bleaching and paper industries. We have developed here an efficient system for the production of an active xylanase in tobacco plants fused to a proline-rich domain (Zera of the maize storage protein γ-zein. Zera is a self-assembling domain able to form protein aggregates in vivo packed in newly formed endoplasmic reticulum-derived organelles known as protein bodies (PBs. METHODOLOGY/PRINCIPAL FINDINGS: Tobacco leaves were transiently transformed with a binary vector containing the Zera-xylanase coding region, which was optimized for plant expression, under the control of the 35S CaMV promoter. The fusion protein was efficiently expressed and stored in dense PBs, resulting in yields of up to 9% of total protein. Zera-xylanase was post-translationally modified with high-mannose-type glycans. Xylanase fused to Zera was biologically active not only when solubilized from PBs but also in its insoluble form. The resistance of insoluble Zera-xylanase to trypsin digestion demonstrated that the correct folding of xylanase in PBs was not impaired by Zera oligomerization. The activity of insoluble Zera-xylanase was enhanced when substrate accessibility was facilitated by physical treatments such as ultrasound. Moreover, we found that the thermostability of the enzyme was improved when Zera was fused to the C-terminus of xylanase. CONCLUSION/SIGNIFICANCE: In the present work we have successfully produced an active insoluble aggregate of xylanase fused to Zera in plants. Zera-xylanase chimeric protein accumulates within ER-derived protein bodies as active aggregates that can easily be recovered by a simple density-based downstream process. The production of insoluble active Zera-xylanase protein in tobacco outlines the potential of Zera as a fusion partner for producing enzymes of biotechnological relevance. Zera-PBs could thus become efficient and low

  3. GPER promotes tamoxifen-resistance in ER+ breast cancer cells by reduced Bim proteins through MAPK/Erk-TRIM2 signaling axis.

    Science.gov (United States)

    Yin, Heng; Zhu, Qing; Liu, Manran; Tu, Gang; Li, Qing; Yuan, Jie; Wen, Siyang; Yang, Guanglun

    2017-10-01

    Tamoxifen resistance is a major clinical challenge in breast cancer treatment. Our previous studies find that GPER and its down-stream signaling play a pivotal role in the development of tamoxifen (TAM) resistance. cDNA array analysis indicated a set of genes associated with cell apoptosis are aberrant in GPER activated and TAM-resistant MCF-7R cells compared with TAM-sensitive MCF-7 cells. Among these genes, Bim (also named BCL2-L11), a member of the BH3-only pro-apoptotic protein family is significantly decreased, and TRIM RING finger protein TRIM2 (a ubiquitin ligase) is highly expressed in MCF-7R. To understand the mechanism of TAM-resistance in GPER activated ER+ breast cancer, the function of TRIM2 and Bim inducing cell apoptosis was studied. By using immunohistochemical and western blot analysis, there is an adverse correlation between TRIM2 and Bim in TAM-resistant breast tumor tissues and MCF-7R cells. Knockdown Bim in TAM-sensitive MCF-7 cells or overexpression of Bim in TAM-resistant MCF-7 cells significantly changed its sensibility to TAM through altering the levels of cleaved PARP and caspase-3. Activation of GPER and its downstream signaling MAPK/ERK, not PI3K/AKT, led to enhanced TRIM2 protein levels and affected the binding between TRIM2 and Bim which resulted in a reduced Bim in TAM-resistant breast cancer cells. Thus, the present study provides a novel insight to TAM-resistance in ER-positive breast cancer cells.

  4. [Stress proteins in the cells of Porphyra purpurea (Rhodophyta) thallus].

    Science.gov (United States)

    Podlipaeva, Iu I; Ful'da, S; Gudkov, A V

    2014-01-01

    Heat shock proteins have been revealed for the first time by the methods of Western blotting using alkaline phosphatase and ECL in the cells of Porphyra purpurea from Kattegat area of the Baltic Sea in normal and experimental stress conditions. It was demonstrated with application of monoclonal anti-Hsp70 antibodies that a slight band about 70 kDa is present constitutively at the film; additionally the polypeptide of about 40 kDa ("Hsp40") has been detected. After heat shock at 28 degrees C during 1 hr significant "expenditure" of Hsp70 was observed, as well as the pronounced induction of "Hsp40"; the induction was expressed especially strongly in 24 hr after the stress application.

  5. Fibroblast growth factor 2 induces proliferation and distribution of G2 /M phase of bovine endometrial cells involving activation of PI3K/AKT and MAPK cell signaling and prevention of effects of ER stress.

    Science.gov (United States)

    Lim, Whasun; Bae, Hyocheol; Bazer, Fuller W; Song, Gwonhwa

    2018-04-01

    Fibroblast growth factor 2 (FGF2) is abundantly expressed in conceptuses and endometria during pregnancy in diverse animal models including domestic animals. However, its intracellular mechanism of action has not been reported for bovine endometrial cells. Therefore, the aim of this study was to identify functional roles of FGF2 in bovine endometrial (BEND) cell line which has served as a good model system for investigating regulation of signal transduction following treatment with interferon-tau (IFNT) in vitro. Results of present study demonstrated that administration of FGF2 to BEND cells increased their proliferation and regulated the cell cycle through DNA replication by an increase of PCNA and Cyclin D1. FGF2 also increased phosphorylation of AKT, P70S6K, S6, ERK1/2, JNK, and P38 in BEND cells in a dose-dependent manner, and expression of each of those transcription factors was inhibited by their respective pharmacological inhibitor including Wormannin, U0126, and SP600125. In addition, the increase in proliferation of BEND cells and activation of the protein kinases in response to FGF2 was suppressed by BGJ398, a FGFR inhibitor. Furthermore, proliferation of BEND cells was inhibited by tunicamycin, but treatment of BEND cells with FGF2 restored proliferation of BEND cells. Consistent with this result, the stimulated unfolded protein response (UPR) regulatory proteins induced by tunicamycin were down-regulated by FGF2. Results of this study suggest that FGF2 promotes proliferation of BEND cells and likely enhances uterine capacity and maintenance of pregnancy by activating cell signaling via the PI3K and MAPK pathways and by restoring ER stress through the FGFR. © 2017 Wiley Periodicals, Inc.

  6. Glucose-regulated protein 75 determines ER–mitochondrial coupling and sensitivity to oxidative stress in neuronal cells

    NARCIS (Netherlands)

    Honrath, Birgit; Metz, Isabell; Bendridi, Nadia; Rieusset, Jennifer; Culmsee, Carsten; Dolga, Amalia Mihalea

    2017-01-01

    The crosstalk between different organelles allows for the exchange of proteins, lipids and ions. Endoplasmic reticulum (ER) and mitochondria are physically linked and signal through the mitochondria-associated membrane (MAM) to regulate the transfer of Ca2+ from ER stores into the mitochondrial

  7. Acute phase proteins in cattle after exposure to complex stress

    DEFF Research Database (Denmark)

    Lomborg, S. R.; Nielsen, L. R.; Heegaard, Peter M. H.

    2008-01-01

    Abstract Stressors such as weaning, mixing and transportation have been shown to lead to increased blood concentrations of acute phase proteins (APP), including serum amyloid A (SAA) and haptoglobin, in calves. This study was therefore undertaken to assess whether SAA and haptoglobin levels...... concentrations of SAA and haptoglobin increased significantly in response to the stressors (P...... in blood mirror stress in adult cattle. Six clinically healthy Holstein cows and two Holstein heifers were transported for four to six hours to a research facility, where each animal was housed in solitary tie stalls. Blood samples for evaluation of leukocyte counts and serum SAA and haptoglobin...

  8. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses.

    Directory of Open Access Journals (Sweden)

    Adrian A Moreno

    Full Text Available Endoplasmic reticulum (ER-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR, is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA. However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR, whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent

  9. Control of PERK eIF2α kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK

    Science.gov (United States)

    Yan, Wei; Frank, Christopher L.; Korth, Marcus J.; Sopher, Bryce L.; Novoa, Isabel; Ron, David; Katze, Michael G.

    2002-01-01

    P58IPK is an Hsp40 family member known to inhibit the interferon (IFN)-induced, double-stranded RNA-activated, eukaryotic initiation factor 2α (eIF2α) protein kinase R (PKR) by binding to its kinase domain. We find that the stress of unfolded proteins in the endoplasmic reticulum (ER) activates P58IPK gene transcription through an ER stress-response element in its promoter region. P58IPK interacts with and inhibits the PKR-like ER-localized eIF2α kinase PERK, which is normally activated during the ER-stress response to protect cells from ER stress by attenuating protein synthesis and reducing ER client protein load. Levels of phosphorylated eIF2α were lower in ER-stressed P58IPK-overexpressing cells and were enhanced in P58IPK mutant cells. In the ER-stress response, PKR-like ER kinase (PERK)-mediated translational repression is transient and is followed by translational recovery and enhanced expression of genes that increase the capacity of the ER to process client proteins. The absence of P58IPK resulted in increased expression levels of two ER stress-inducible genes, BiP and Chop, consistent with the enhanced eIF2α phosphorylation in the P58IPK deletion cells. Our studies suggest that P58IPK induction during the ER-stress response represses PERK activity and plays a functional role in the expression of downstream markers of PERK activity in the later phase of the ER-stress response. PMID:12446838

  10. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease

    Energy Technology Data Exchange (ETDEWEB)

    Oe, Shinji, E-mail: ooes@med.uoeh-u.ac.jp; Miyagawa, Koichiro, E-mail: koichiro@med.uoeh-u.ac.jp; Honma, Yuichi, E-mail: y-homma@med.uoeh-u.ac.jp; Harada, Masaru, E-mail: msrharada@med.uoeh-u.ac.jp

    2016-09-10

    Copper is an essential trace element, however, excess copper is harmful to human health. Excess copper-derived oxidants contribute to the progression of Wilson disease, and oxidative stress induces accumulation of abnormal proteins. It is known that the endoplasmic reticulum (ER) plays an important role in proper protein folding, and that accumulation of misfolded proteins disturbs ER homeostasis resulting in ER stress. However, copper-induced ER homeostasis disturbance has not been fully clarified. We treated human hepatoma cell line (Huh7) and immortalized-human hepatocyte cell line (OUMS29) with copper and chemical chaperones, including 4-phenylbutyrate and ursodeoxycholic acid. We examined copper-induced oxidative stress, ER stress and apoptosis by immunofluorescence microscopy and immunoblot analyses. Furthermore, we examined the effects of copper on carcinogenesis. Excess copper induced not only oxidative stress but also ER stress. Furthermore, excess copper induced DNA damage and reduced cell proliferation. Chemical chaperones reduced this copper-induced hepatotoxicity. Excess copper induced hepatotoxicity via ER stress. We also confirmed the abnormality of ultra-structure of the ER of hepatocytes in patients with Wilson disease. These findings show that ER stress plays a pivotal role in Wilson disease, and suggests that chemical chaperones may have beneficial effects in the treatment of Wilson disease.

  11. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease

    International Nuclear Information System (INIS)

    Oe, Shinji; Miyagawa, Koichiro; Honma, Yuichi; Harada, Masaru

    2016-01-01

    Copper is an essential trace element, however, excess copper is harmful to human health. Excess copper-derived oxidants contribute to the progression of Wilson disease, and oxidative stress induces accumulation of abnormal proteins. It is known that the endoplasmic reticulum (ER) plays an important role in proper protein folding, and that accumulation of misfolded proteins disturbs ER homeostasis resulting in ER stress. However, copper-induced ER homeostasis disturbance has not been fully clarified. We treated human hepatoma cell line (Huh7) and immortalized-human hepatocyte cell line (OUMS29) with copper and chemical chaperones, including 4-phenylbutyrate and ursodeoxycholic acid. We examined copper-induced oxidative stress, ER stress and apoptosis by immunofluorescence microscopy and immunoblot analyses. Furthermore, we examined the effects of copper on carcinogenesis. Excess copper induced not only oxidative stress but also ER stress. Furthermore, excess copper induced DNA damage and reduced cell proliferation. Chemical chaperones reduced this copper-induced hepatotoxicity. Excess copper induced hepatotoxicity via ER stress. We also confirmed the abnormality of ultra-structure of the ER of hepatocytes in patients with Wilson disease. These findings show that ER stress plays a pivotal role in Wilson disease, and suggests that chemical chaperones may have beneficial effects in the treatment of Wilson disease.

  12. Endoplasmic reticulum stress leads to the selective transcriptional downregulation of the glucoamylase gene in Aspergillus niger

    NARCIS (Netherlands)

    Al-Sheikh, H.; Watson, A.J.; Lacey, G.A.; Punt, P.J.; MacKenzie, D.A.; Jeenes, D.J.; Pakula, T.; Penttilä, M.; Alcocer, M.J.C.; Archer, D.B.

    2004-01-01

    We describe a new endoplasmic reticulum (ER)-associated stress response in the filamentous fungus Aspergillus niger. The inhibition of protein folding within the ER leads to cellular responses known collectively as the unfolded protein response (UPR) and we show that the selective transcriptional

  13. Dissection of Molecular Mechanisms Regulating Protein Body Formation in Maize Endosperm - DE-FG03-95-ER20183 B139

    Energy Technology Data Exchange (ETDEWEB)

    Brian A. Larkins

    2003-03-21

    Dissection of Molecular Mechanisms Regulating Protein Body Formation in Maize Endosperm - DE-FG03-95-ER20183 Final Technical Report and Patent Summary Dr. Brian A. Larkins, Department of Plant Sciences, University of Arizona, Tucson, AZ 85721 Endosperm texture is an important quality trait in maize, as it influences the shipping characteristics of the grain, its susceptibility to insects, the yield of grits from dry milling, energy costs during wet milling, and the baking and digestibility properties of the flour. There appears to be a causal relationship between kernel hardness and the formation of zein-containing protein bodies, as mutations affecting protein body number and structure are associated with a soft, starchy kernel. In this project we used a variety of approaches to better understand this relationship and investigate the molecular and biochemical changes associated with starchy endosperm mutants. We characterized the distribution of zein mRNAs on endosperm rough endoplasmic reticulum (RER) membranes and the interactions between zein proteins, as each of these could influence the structure of protein bodies. Based on in situ hybridization, mRNAs encoding the 22-kD alpha- and 27-kD gamma-zeins are randomly distributed on RER; hence, mRNA targeting does not appear to influence the formation of protein bodies. Investigation of the interactions between zein proteins (alpha, beta, gamma, delta) with the yeast two-hybrid system showed that interactions between the 19- and 22-alpha-zeins are relatively weak, although each of them interacted strongly with the 10-kD delta-zein. Strong interactions were detected between the alpha- and delta-zeins and the 16-kD gamma- and 15-kD beta-zeins; however, the 50-kD and 27-kD gamma-zeins did not interact detectably with the alpha- and delta-zein proteins. The NH2- and COOH-terminal domains of the 22-kD alpha-zein were found to interact most strongly with the 15-kD beta- and 16-kD gamma-zeins, suggesting the 16-kD and 15

  14. Investigating ER-Associated Degradation with RNAi Screening - and Searching for Model Proteins to Do It with

    DEFF Research Database (Denmark)

    Jensen, Njal Winther

    for cellular homeostasis. The aim of this thesis has been to gain insight into ERAD. The experimental approach was RNAi screening, which is a fast and efficient method for initial evaluation of a large pool of genes. Since relatively few proteins routinely are used as ERAD substrates, the first goal...... to possess the required properties. RNAi screening was then performed to identify proteins of the ERAD machinery that was needed for the successful degradation of a HA-tagged version of the ATP13A2 mutant (HA-ATP13A2). After a validation phase, one of the identified proteins, Sec61α was verified as being...

  15. Fission Yeast SCYL1/2 Homologue Ppk32: A Novel Regulator of TOR Signalling That Governs Survival during Brefeldin A Induced Stress to Protein Trafficking.

    Science.gov (United States)

    Kowalczyk, Katarzyna M; Petersen, Janni

    2016-05-01

    Target of Rapamycin (TOR) signalling allows eukaryotic cells to adjust cell growth in response to changes in their nutritional and environmental context. The two distinct TOR complexes (TORC1/2) localise to the cell's internal membrane compartments; the endoplasmic reticulum (ER), Golgi apparatus and lysosomes/vacuoles. Here, we show that Ppk32, a SCYL family pseudo-kinase, is a novel regulator of TOR signalling. The absence of ppk32 expression confers resistance to TOR inhibition. Ppk32 inhibition of TORC1 is critical for cell survival following Brefeldin A (BFA) induced stress. Treatment of wild type cells with either the TORC1 specific inhibitor rapamycin or the general TOR inhibitor Torin1 confirmed that a reduction in TORC1 activity promoted recovery from BFA induced stress. Phosphorylation of Ppk32 on two residues that are conserved within the SCYL pseudo-kinase family are required for this TOR inhibition. Phosphorylation on these sites controls Ppk32 protein levels and sensitivity to BFA. BFA induced ER stress does not account for the response to BFA that we report here, however BFA is also known to induce Golgi stress and impair traffic to lysosomes. In summary, Ppk32 reduce TOR signalling in response to BFA induced stress to support cell survival.

  16. Apoptosis of HeLa cells induced by a new targeting photosensitizer-based PDT via a mitochondrial pathway and ER stress

    Directory of Open Access Journals (Sweden)

    Li D

    2015-04-01

    Full Text Available Donghong Li,1 Lei Li,2 Pengxi Li,1 Yi Li,3 Xiangyun Chen1 1State Key Laboratory of Trauma, Burn and Combined Injury, The Second Department of Research Institute of Surgery, 2The First Department of Research Institute of Surgery, 3Cancer Center, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China Abstract: Photodynamic therapy (PDT is emerging as a viable treatment for many cancers. To decrease the cutaneous photosensitivity induced by PDT, many attempts have been made to search for a targeting photosensitizer; however, few reports describe the molecular mechanism of PDT mediated by this type of targeting photosensitizer. The present study aimed to investigate the molecular mechanism of PDT induced by a new targeting photosensitizer (PS I, reported previously by us, on HeLa cells. Apoptosis is the primary mode of HeLa cell death in our system, and apoptosis occurs in a manner dependent on concentration, irradiation dose, and drug–light intervals. After endocytosis mediated by the folate receptor, PS I was primarily localized to the mitochondria and the endoplasmic reticulum (ER of HeLa cells. PS I PDT resulted in rapid increases in intracellular reactive oxygen species (ROS production and Ca2+ concentration, both of which reached a peak nearly simultaneously at 15 minutes, followed by the loss of mitochondrial membrane potential at 30 minutes, release of cytochrome c from mitochondria into the cytoplasm, downregulation of Bcl-2 expression, and upregulation of Bax expression. Meanwhile, activation of caspase-3, -9, and -12, as well as induction of C/EBP homologous protein (CHOP and glucose-regulated protein (GRP78, in HeLa cells after PS I PDT was also detected. These results suggest that apoptosis of HeLa cells induced by PS I PDT is not only triggered by ROS but is also regulated by Ca2+ overload. Mitochondria and the ER serve as the subcellular targets of PS I PDT, the effective activation of which

  17. Heme-dependent Metabolite Switching Regulates H2S Synthesis in Response to Endoplasmic Reticulum (ER) Stress.

    Science.gov (United States)

    Kabil, Omer; Yadav, Vinita; Banerjee, Ruma

    2016-08-05

    Substrate ambiguity and relaxed reaction specificity underlie the diversity of reactions catalyzed by the transsulfuration pathway enzymes, cystathionine β-synthase (CBS) and γ-cystathionase (CSE). These enzymes either commit sulfur metabolism to cysteine synthesis from homocysteine or utilize cysteine and/or homocysteine for synthesis of H2S, a signaling molecule. We demonstrate that a kinetically controlled heme-dependent metabolite switch in CBS regulates these competing reactions where by cystathionine, the product of CBS, inhibits H2S synthesis by the second enzyme, CSE. Under endoplasmic reticulum stress conditions, induction of CSE and up-regulation of the CBS inhibitor, CO, a product of heme oxygenase-1, flip the operating preference of CSE from cystathionine to cysteine, transiently stimulating H2S production. In contrast, genetic deficiency of CBS leads to chronic stimulation of H2S production. This metabolite switch from cystathionine to cysteine and/or homocysteine renders H2S synthesis by CSE responsive to the known modulators of CBS: S-adenosylmethionine, NO, and CO. Used acutely, it regulates H2S synthesis; used chronically, it might contribute to disease pathology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Organometallic Gold(III) Complexes Similar to Tetrahydroisoquinoline Induce ER-Stress-Mediated Apoptosis and Pro-Death Autophagy in A549 Cancer Cells.

    Science.gov (United States)

    Huang, Ke-Bin; Wang, Feng-Yang; Tang, Xiao-Ming; Feng, Hai-Wen; Chen, Zhen-Feng; Liu, Yan-Cheng; Liu, You-Nian; Liang, Hong

    2018-04-26

    Agents inducing both apoptosis and autophagic death can be effective chemotherapeutic drugs. In our present work, we synthesized two organometallic gold(III) complexes harboring C^N ligands that structurally resemble tetrahydroisoquinoline (THIQ): Cyc-Au-1 (AuL 1 Cl 2 , L 1 = 3,4-dimethoxyphenethylamine) and Cyc-Au-2 (AuL 2 Cl 2 , L 2 = methylenedioxyphenethylamine). In screening their in vitro activity, we found both gold complexes exhibited lower toxicity, lower resistance factors, and better anticancer activity than those of cisplatin. The organometallic gold(III) complexes accumulate in mitochondria and induce elevated ROS and an ER stress response through mitochondrial dysfunction. These effects ultimately result in simultaneous apoptosis and autophagy. Importantly, compared to cisplatin, Cyc-Au-2 exhibits lower toxicity and better anticancer activity in a murine tumor model. To the best of our knowledge, Cyc-Au-2 is the first organometallic Au(III) compound that induces apoptosis and autophagic death. On the basis of our results, we believe Cyc-Au-2 to be a promising anticancer agent or lead compound for further anticancer drug development.

  19. Induction of Endoplasmic Reticulum Stress and Unfolded Protein Response Constitutes a Pathogenic Strategy of group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Emanuel eHanski

    2014-08-01

    Full Text Available The connection between bacterial pathogens and unfolded protein response (UPR is poorly explored. In this review we highlight the evidence showing that group A streptococcus (GAS induces endoplasmic reticulum (ER stress and UPR through which it captures the amino acid asparagine (ASN from the host. GAS acts extracellularly and during adherence to host cells it delivers the hemolysin toxins; streptolysin O (SLO and streptolysin S (SLS. By poorly understood pathways, these toxins trigger UPR leading to the induction of the transcriptional regulator ATF4 and consequently to the upregulation of asparagine synthetase (ASNS transcription leading to production and release of ASN. GAS senses ASN and alters gene expression profile accordingly, and increases the rate of multiplication. We suggest that induction of UPR by GAS and by other bacterial pathogens represent means through which bacterial pathogens gain nutrients from the host, obviating the need to become internalized or inflict irreversible cell damage.

  20. Lipolysis Response to Endoplasmic Reticulum Stress in Adipose Cells*

    Science.gov (United States)

    Deng, Jingna; Liu, Shangxin; Zou, Liangqiang; Xu, Chong; Geng, Bin; Xu, Guoheng

    2012-01-01

    In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues. PMID:22223650

  1. Causes and consequences of protein folding stress in aneuploid cells.

    Science.gov (United States)

    Donnelly, Neysan; Storchová, Zuzana

    2015-01-01

    Imbalanced chromosomal content, or aneuploidy, strongly affects the physiology of eukaryotic cells. The consequences of these effects are frequently detrimental, in particular in Metazoans. In humans, aneuploidy has been causatively linked to pathological conditions such as spontaneous abortions, trisomy syndromes and cancer. However, only in recent years have we witnessed an unraveling of the complex phenotypes that are caused by aneuploidy. Importantly, it has become apparent that aneuploidy evokes global and uniform changes that cannot be explained by the altered expression of the specific genes located on aneuploid chromosomes. Recent discoveries show that aneuploidy negatively affects protein folding; in particular, the functions of the molecular chaperone Heat Shock Protein 90 (HSP90) and the upstream regulator of heat shock-induced transcription, Heat Shock Factor 1 (HSF1), are impaired. Here we discuss the possible causes and consequences of this impairment and propose that the protein folding stress instigated by aneuploidy may be a common feature of conditions as variable as cancer and trisomy syndromes.

  2. Multiscale Structural Analysis of Plant ER-PM Contact Sites.

    Science.gov (United States)

    McFarlane, Heather E; Lee, Eun Kyoung; van Bezouwen, Laura S; Ross, Bradford; Rosado, Abel; Samuels, A Lacey

    2017-03-01

    Membrane contact sites are recognized across eukaryotic systems as important nanostructures. Endoplasmic reticulum (ER)-plasma membrane (PM) contact sites (EPCS) are involved in excitation-contraction coupling, signaling, and plant responses to stress. In this report, we perform a multiscale structural analysis of Arabidopsis EPCS that combines live cell imaging, quantitative transmission electron microscopy (TEM) and electron tomography over a developmental gradient. To place EPCS in the context of the entire cortical ER, we examined green fluorescent protein (GFP)-HDEL in living cells over a developmental gradient, then Synaptotagmin1 (SYT1)-GFP was used as a specific marker of EPCS. In all tissues examined, young, rapidly elongating cells showed lamellar cortical ER and higher density of SYT1-GFP puncta, while in mature cells the cortical ER network was tubular, highly dynamic and had fewer SYT1-labeled puncta. The higher density of EPCS in young cells was verified by quantitative TEM of cryo-fixed tissues. For all cell types, the size of each EPCS had a consistent range in length along the PM from 50 to 300 nm, with microtubules and ribosomes excluded from the EPCS. The structural characterization of EPCS in different plant tissues, and the correlation of EPCS densities over developmental gradients illustrate how ER-PM communication evolves in response to cellular expansion. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Activation of endoplasmic reticulum stress response during the development of ischemic heart disease.

    Science.gov (United States)

    Azfer, Asim; Niu, Jianli; Rogers, Linda M; Adamski, Frances M; Kolattukudy, Pappachan E

    2006-09-01

    Endoplasmic reticulum (ER) stress has been found to be associated with neurodegenerative diseases and diabetes mellitus. Whether ER stress is involved in the development of heart disease is not known. Cardiac-specific expression of monocyte chemoattractant protein-1 (MCP-1) in mice causes the development of ischemic heart disease. Here we report that microarray analysis of gene expression changes in the heart of these transgenic mice revealed that a cluster of ER stress-related genes was transcriptionally activated in the heart during the development of ischemic heart disease. The gene array results were verified by quantitative real-time PCR that showed highly elevated transcript levels of genes involved in unfolded protein response such as ER and cytoplasmic chaperones, oxidoreductases, protein disulfide isomerase (PDI) family, and ER-associated degradation system such as ubiquitin. Immunoblot analysis confirmed the expression of chaperones, PDI, and ubiquitin. Immunohistochemical analyses showed that ER stress proteins were associated mainly with the degenerating cardiomyocytes. A novel ubiquitin fold modifier (Ufm1) that has not been previously associated with ER stress and not found to be induced under any condition was also found to be upregulated in the hearts of MCP mice (transgenic mice that express MCP-1 specifically in the heart). The present results strongly suggest that activation of ER stress response is involved in the development of ischemic heart disease in this murine model.

  4. The ER-associated protein ZDHHC1 is a positive regulator of DNA virus-triggered, MITA/STING-dependent innate immune signaling.

    Science.gov (United States)

    Zhou, Qian; Lin, Heng; Wang, Suyun; Wang, Shuai; Ran, Yong; Liu, Ying; Ye, Wen; Xiong, Xiaozhe; Zhong, Bo; Shu, Hong-Bing; Wang, Yan-Yi

    2014-10-08

    Viral DNA sensing within the cytosol of infected cells activates type I interferon (IFN) expression. MITA/STING plays an essential role in this pathway by acting as both a sensor for the second messenger cGAMP and as an adaptor for downstream signaling components. In an expression screen for proteins that can activate the IFNB1 promoter, we identified the ER-associated protein ZDHHC1 as a positive regulator of virus-triggered, MITA/STING-dependent immune signaling. Zdhhc1(-/-) cells failed to effectively produce IFNs and other cytokines in response to infection with DNA but not RNA viruses. Zdhhc1(-/-) mice infected with the neurotropic DNA virus HSV-1 exhibited lower cytokine levels and higher virus titers in the brain, resulting in higher lethality. ZDHHC1 constitutively associated with MITA/STING and mediates dimerization/aggregation of MITA/STING and recruitment of the downstream signaling components TBK1 and IRF3. These findings support a role for ZDHHC1 in mediating MITA/STING-dependent innate immune response against DNA viruses. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network

    OpenAIRE

    Wang, Songyu; Tukachinsky, Hanna; Romano, Fabian B; Rapoport, Tom A

    2016-01-01

    eLife digest The endoplasmic reticulum is a compartment within the cells of plants, animals and other eukaryotes. This compartment plays a number of roles within cells, for example, serving as the site where many proteins and fat molecules are built. Most often the endoplasmic reticulum exists as a network of thin tubules. However, this shape changes during the lifetime of a single cell, and the endoplasmic reticulum converts into flattened structures known as sheets when the cell divides. Th...

  6. The p53/HSP70 inhibitor, 2-phenylethynesulfonamide, causes oxidative stress, unfolded protein response and apoptosis in rainbow trout cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Fanxing; Tee, Catherine; Liu, Michelle [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Sherry, James P. [Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario L7R 4A6 (Canada); Dixon, Brian; Duncker, Bernard P. [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Bols, Niels C., E-mail: ncbols@uwaterloo.ca [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2014-01-15

    Highlights: •2-Phenylethynesulfonamide (PES) is an inhibitor of p53 and HSP 70 in mammals. •In the fish epithelial cell line, RTgill-W1, PES enhanced ROS generation and was cytotoxic. •RTgill-W1 death was by apoptosis and blocked by the anti-oxidant N-acetylcysteine. •This is the first report linking PES-induced cell death to ROS. •With this background PES should be useful for studying fish cell survival pathways. -- Abstract: The effect of 2-phenylethynesulfonamide (PES), which is a p53 and HSP70 inhibitor in mammalian cells, was studied on the rainbow trout (Oncorhynchus mykiss) gill epithelial cell line, RTgill-W1, in order to evaluate PES as a tool for understanding the cellular survival pathways operating in fish. As judged by three viability assays, fish cells were killed by 24 h exposures to PES, but cell death was blocked by the anti-oxidant N-acetylcysteine (NAC). Cell death had several hallmarks of apoptosis: DNA laddering, nuclear fragmentation, Annexin V staining, mitochondrial membrane potential decline, and caspases activation. Reactive oxygen species (ROS) production peaked in several hours after the addition of PES and before cell death. HSP70 and BiP levels were higher in cultures treated with PES for 24 h, but this was blocked by NAC. As well, PES treatment caused HSP70, BiP and p53 to accumulate in the detergent-insoluble fraction, and this too was prevented by NAC. Of several possible scenarios to explain the results, the following one is the simplest. PES enhances the generation of ROS, possibly by inhibiting the anti-oxidant actions of p53 and HSP70. ER stress arises from the ROS and from PES inhibiting the chaperone activities of HSP70. The ER stress in turn initiates the unfolded protein response (UPR), but this fails to restore ER homeostasis so proteins aggregate and cells die. Despite these multiple actions, PES should be useful for studying fish cellular survival pathways.

  7. The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance

    DEFF Research Database (Denmark)

    Hyun, Tae Kyung; van der Graaff, Eric; Albacete, Alfonso

    2014-01-01

    Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain...... and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination...... of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions...

  8. Final technical brief / DOE grant DE-FG03-96 ER 62219. Computational study of electron tunneling in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey J. Regan

    1999-03-03

    Electron transfer (ET) processes in proteins are characterized by the motion of a single electron between centers of localization (such as the chlorophyll dimer in photosynthetic reaction centers). An electronic donor state D is created by the injection of an electron or by photo-excitation, after which the system makes a radiationless transition to an acceptor state A., resulting in the effective transfer of an electron over several angstroms. The experimental and theoretical understanding of the rate of this process has been the focus of much attention in physics, chemistry and biology.

  9. Inhibition of the Functional Interplay between Endoplasmic Reticulum (ER) Oxidoreduclin-1α (Ero1α) and Protein-disulfide Isomerase (PDI) by the Endocrine Disruptor Bisphenol A*

    Science.gov (United States)

    Okumura, Masaki; Kadokura, Hiroshi; Hashimoto, Shoko; Yutani, Katsuhide; Kanemura, Shingo; Hikima, Takaaki; Hidaka, Yuji; Ito, Len; Shiba, Kohei; Masui, Shoji; Imai, Daiki; Imaoka, Susumu; Yamaguchi, Hiroshi; Inaba, Kenji

    2014-01-01

    Bisphenol A (BPA) is an endocrine disruptor that may have adverse effects on human health. We recently isolated protein-disulfide isomerase (PDI) as a BPA-binding protein from rat brain homogenates and found that BPA markedly inhibited PDI activity. To elucidate mechanisms of this inhibition, detailed structural, biophysical, and functional analyses of PDI were performed in the presence of BPA. BPA binding to PDI induced significant rearrangement of the N-terminal thioredoxin domain of PDI, resulting in more compact overall structure. This conformational change led to closure of the substrate-binding pocket in b′ domain, preventing PDI from binding to unfolded proteins. The b′ domain also plays an essential role in the interplay between PDI and ER oxidoreduclin 1α (Ero1α), a flavoenzyme responsible for reoxidation of PDI. We show that BPA inhibited Ero1α-catalyzed PDI oxidation presumably by inhibiting the interaction between the b′ domain of PDI and Ero1α; the phenol groups of BPA probably compete with a highly conserved tryptophan residue, located in the protruding β-hairpin of Ero1α, for binding to PDI. Consistently, BPA slowed down the reoxidation of PDI and caused the reduction of PDI in HeLa cells, indicating that BPA has a great impact on the redox homeostasis of PDI within cells. However, BPA had no effect on the interaction between PDI and peroxiredoxin-4 (Prx4), another PDI family oxidase, suggesting that the interaction between Prx4 and PDI is different from that of Ero1α and PDI. These results indicate that BPA, a widely distributed and potentially harmful chemical, inhibits Ero1-PDI-mediated disulfide bond formation. PMID:25122773

  10. Effect of pulsed electromagnetic fields on endoplasmic reticulum stress.

    Science.gov (United States)

    Keczan, E; Keri, G; Banhegyi, G; Stiller, I

    2016-10-01

    The maintenance of protein homeostasis in the endoplasmic reticulum (ER) is crucial in cell life. Disruption of proteostasis results in ER stress that activates the unfolded protein response (UPR); a signalling network assigned to manage the accumulated misfolded or unfolded proteins. Prolonged or unresolved ER stress leads to apoptotic cell death that can be the basis of many serious diseases. Our aim was to study the effect of pulsed electromagnetic fields (PEMF), an alternative, non-invasive therapeutic method on ER stressed cell lines. First, the effect of PEMF treatment on the expression of ER stress markers was tested in three different cell lines. PEMF had no remarkable effect on ER stress protein levels in human embryonic kidney (HEK293T) and human liver carcinoma (HepG2) cell lines. However, the expression of BiP, Grp94 and CHOP were increased in HeLa cells upon PEMF exposure. Therefore, HepG2 cell line was selected for further experiments. Cells were stressed by tunicamycin and exposed to PEMF. Grp94, PDI, CHOP and PARP expression as markers of stress were monitored by Western blot and cell viability was also investigated. Tunicamycin treatment, as expected, increased the expression of Grp94, PDI, CHOP and inactivated PARP. Analysis of protein expression showed that PEMF was able to decrease the elevated level of ER chaperons Grp94, PDI and the apoptosis marker CHOP. The truncated, inactive form of PARP was also decreased. Accordingly, cell viability was also improved by PEMF exposure. These results indicate that PEMF is able to moderate ER stress induced by tunicamycin in HepG2 cells. However, our results clearly draw attention to that different cell lines may vary in the response to PEMF treatment.

  11. Hypothesis: NDL Proteins Function in Stress Responses by Regulating Microtubule Organization

    Directory of Open Access Journals (Sweden)

    Nisha eKhatri

    2015-10-01

    Full Text Available N-MYC DOWNREGULATED-LIKE proteins (NDL, members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart NDRG suggests similar functions in animals and plants. It is well established that stress responses leads to the microtubule depolymerization and reorganization which is crucial for stress tolerance. NDRG is a microtubule-associated protein (MAP which mediates the microtubule organization in animals by causing acetylation and increases the stability of α-tubulin. As NDL1 is highly homologous to NDRG, involvement of NDL1 in the microtubule organization during plant stress can also be expected. Discovery of interaction of NDL with protein kinesin light chain- related 1, enodomembrane family protein 70, syntaxin-23, tubulin alpha-2 chain, as a part of G protein interactome initiative encourages us to postulate microtubule stabilizing functions for NDL family in plants. Our search for NDL interactors in G protein interactome also predicts the role of NDL proteins in abiotic stress tolerance management. Based on published report in animals and predicted interacting partners for NDL in G protein interactome lead us to hypothesize involvement of NDL in the microtubule organization during abiotic stress management in plants.

  12. Identification of proteins involved in excess boron stress in roots of ...

    African Journals Online (AJOL)

    Plants are constantly challenged by various biotic and abiotic stresses in nature. Boron toxicity have become one of the important abiotic stress factor for plants. Boron toxicity responses of plants is reflected by alterations in protein expression level, activity, location and concentration. In this study, we identified the proteins ...

  13. A novel marker for terminal Schwann cells, homocysteine-responsive ER-resident protein, as isolated by a single cell PCR-differential display.

    Science.gov (United States)

    Oda, Ryo; Yaoi, Takeshi; Okajima, Seiichiro; Kobashi, Hiroaki; Kubo, Toshikazu; Fushiki, Shinji

    2003-09-05

    Terminal Schwann cells (TSCs) that cover motor neuron terminals are known to play important roles in maintaining neuromuscular junctions, as well as in the repair process after nerve injury. However, molecular characteristics of TSCs remain unknown, because of the difficulties in analyzing them due to their paucity. We have established a method of selectively and efficiently collecting TSCs so that cDNA analysis can be done properly. The expression of 1-2% of whole mRNAs was compared between myelinating Schwann cells (MSCs) and TSCs, and it turned out that approximately one-third of the bands could be categorized as cell-type-specific bands. TSCs thus constitute a distinct entity from the viewpoint of gene expression. As one of the cDNA clones belonging to TSC-specific bands was identified homocysteine-responsive ER-resident protein (Herp), and in situ hybridization confirmed that Herp mRNA is expressed in TSCs on motor nerve terminals but not in MSCs, both in developing and adult rats. In conclusion, we have been able to identify Herp as a novel molecular marker for TSCs.

  14. ER reorganization is remarkably induced in COS-7 cells accumulating transmembrane protein receptors not competent for export from the endoplasmic reticulum.

    Science.gov (United States)

    D'Agostino, Massimo; Crespi, Arianna; Polishchuk, Elena; Generoso, Serena; Martire, Gianluca; Colombo, Sara Francesca; Bonatti, Stefano

    2014-11-01

    The newly synthesized mutant L501fsX533 Frizzled-4 form and the alpha3beta4 nicotinic acetylcholine receptor expressed in the absence of nicotine accumulate in the endoplasmic reticulum of COS-7 cells and induce the formation of large areas of smooth and highly convoluted cisternae. This results in a generalized block of the transport to the Golgi complex of newly synthesized proteins. Intriguingly, both effects happen peculiarly in COS-7 cells; HeLa, Huh-7, and HEK293 cells expressing the two receptors at similar level than COS-7 cells show normal ER and normal transport toward the plasma membrane. These results question the conclusion that a dominant-negative mechanism would explain the dominance of the mutant L501fsX533 Fz4 allele in the transmission of a form of Familial exudative vitreoretinopathy. Moreover, they indicate that the coordination of endoplasmic reticulum homeostasis in COS-7 cells is particularly error prone. This finding suggests that COS-7 cells may be extremely useful to study the molecular mechanisms regulating endoplasmic reticulum size and architecture.

  15. Effects of drought stress on seed sink strength and leaf protein ...

    African Journals Online (AJOL)

    Quantitative and qualitative changes in leaf protein patterns was assessed using 2D-gel electrophoresis. A drought-resistant inbred line (SEA 15) and a droughtsusceptible cultivar (BrSp) were grown under non-stress and drought stress conditions in a vegetation hall during the summer of 2004. Drought stress commenced ...

  16. Induction of Apoptosis by Hypertension Via Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Yingying Sun

    2015-02-01

    Full Text Available Background/Aims: Endoplasmic reticulum (ER stress is one of the intrinsic apoptosis pathways, and cardiac apoptosis can occur in cardiovascular diseases, such as hypertension. However, the mechanisms by which ER stress leads to apoptosis remain enigmatic, particularly in the progression from cardiac hypertrophy to diastolic heart failure due to hypertension. Methods: We used spontaneously hypertensive rats (SHRs to investigate possible signalling pathways for ER stress. Results: We found that cardiac protein and mRNA levels of glucose-regulated protein 78 were up-regulated. In addition, the CHOP- and caspase-12-dependent pathways, but not that of JNK, were activated in the SHR rats. Conclusions: These results suggest that ER stress can contribute to myocardial apoptosis during hypertensive disease.

  17. Identification of 30 protein species involved in replicative senescence and stress-induced premature senescence

    DEFF Research Database (Denmark)

    Dierick, Jean François; Kalume, Dário E; Wenders, Frédéric

    2002-01-01

    Exposure of human proliferative cells to subcytotoxic stress triggers stress-induced premature senescence (SIPS) which is characterized by many biomarkers of replicative senescence. Proteomic comparison of replicative senescence and stress-induced premature senescence indicates that, at the level...... of protein expression, stress-induced premature senescence and replicative senescence are different phenotypes sharing however similarities. In this study, we identified 30 proteins showing changes of expression level specific or common to replicative senescence and/or stress-induced premature senescence....... These changes affect different cell functions, including energy metabolism, defense systems, maintenance of the redox potential, cell morphology and transduction pathways....

  18. Spatially organized aggregation of misfolded proteins as cellular stress defense strategy.

    Science.gov (United States)

    Miller, Stephanie B M; Mogk, Axel; Bukau, Bernd

    2015-04-10

    An evolutionary conserved response of cells to proteotoxic stress is the organized sequestration of misfolded proteins into subcellular deposition sites. In Saccharomyces cerevisiae, three major sequestration sites for misfolded proteins exist, IPOD (insoluble protein deposit), INQ (intranuclear quality control compartment) [former JUNQ (juxtanuclear quality control compartment)] and CytoQ. IPOD is perivacuolar and predominantly sequesters amyloidogenic proteins. INQ and CytoQs are stress-induced deposits for misfolded proteins residing in the nucleus and the cytosol, respectively, and requiring cell-compartment-specific aggregases, nuclear Btn2 and cytosolic Hsp42 for formation. The organized aggregation of misfolded proteins is proposed to serve several purposes collectively increasing cellular fitness and survival under proteotoxic stress. These include (i) shielding of cellular processes from interference by toxic protein conformers, (ii) reducing the substrate burden for protein quality control systems upon immediate stress, (iii) orchestrating chaperone and protease functions for efficient repair or degradation of damaged proteins [this involves initial extraction of aggregated molecules via the Hsp70/Hsp104 bi-chaperone system followed by either refolding or proteasomal degradation or removal of entire aggregates by selective autophagy (aggrephagy) involving the adaptor protein Cue5] and (iv) enabling asymmetric retention of protein aggregates during cell division, thereby allowing for damage clearance in daughter cells. Regulated protein aggregation thus serves cytoprotective functions vital for the maintenance of cell integrity and survival even under adverse stress conditions and during aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Interaction between repressor Opi1p and ER membrane protein Scs2p facilitates transit of phosphatidic acid from the ER to mitochondria and is essential for INO1 gene expression in the presence of choline.

    Science.gov (United States)

    Gaspar, Maria L; Chang, Yu-Fang; Jesch, Stephen A; Aregullin, Manuel; Henry, Susan A

    2017-11-10

    In the yeast Saccharomyces cerevisiae , the Opi1p repressor controls the expression of INO1 via the Opi1p/Ino2p-Ino4p regulatory circuit. Inositol depletion favors Opi1p interaction with both Scs2p and phosphatidic acid at the endoplasmic reticulum (ER) membrane. Inositol supplementation, however, favors the translocation of Opi1p from the ER into the nucleus, where it interacts with the Ino2p-Ino4p complex, attenuating transcription of INO1 A strain devoid of Scs2p ( scs2 Δ) and a mutant, OPI1FFAT , lacking the ability to interact with Scs2p were utilized to examine the specific role(s) of the Opi1p-Scs2p interaction in the regulation of INO1 expression and overall lipid metabolism. Loss of the Opi1p-Scs2p interaction reduced INO1 expression and conferred inositol auxotrophy. Moreover, inositol depletion in strains lacking this interaction resulted in Opi1p being localized to sites of lipid droplet formation, coincident with increased synthesis of triacylglycerol. Supplementation of choline to inositol-depleted growth medium led to decreased TAG synthesis in all three strains. However, in strains lacking the Opi1p-Scs2p interaction, Opi1p remained in the nucleus, preventing expression of INO1 These data support the conclusion that a specific pool of phosphatidic acid, associated with lipid droplet formation in the perinuclear ER, is responsible for the initial rapid exit of Opi1p from the nucleus to the ER and is required for INO1 expression in the presence of choline. Moreover, the mitochondria-specific phospholipid, cardiolipin, was significantly reduced in both strains compromised for Opi1p-Scs2p interaction, indicating that this interaction is required for the transfer of phosphatidic acid from the ER to the mitochondria for cardiolipin synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. FKBP8 protects the heart from hemodynamic stress by preventing the accumulation of misfolded proteins and endoplasmic reticulum-associated apoptosis in mice.

    Science.gov (United States)

    Misaka, Tomofumi; Murakawa, Tomokazu; Nishida, Kazuhiko; Omori, Yosuke; Taneike, Manabu; Omiya, Shigemiki; Molenaar, Chris; Uno, Yoshihiro; Yamaguchi, Osamu; Takeda, Junji; Shah, Ajay M; Otsu, Kinya

    2018-01-01

    Protein quality control in cardiomyocytes is crucial to maintain cellular homeostasis. The accumulation of damaged organelles, such as mitochondria and misfolded proteins in the heart is associated with heart failure. During the process to identify novel mitochondria-specific autophagy (mitophagy) receptors, we found FK506-binding protein 8 (FKBP8), also known as FKBP38, shares similar structural characteristics with a yeast mitophagy receptor, autophagy-related 32 protein. However, knockdown of FKBP8 had no effect on mitophagy in HEK293 cells or H9c2 myocytes. Since the role of FKBP8 in the heart has not been fully elucidated, the aim of this study is to determine the functional role of FKBP8 in the heart. Cardiac-specific FKBP8-deficient (Fkbp8 -/- ) mice were generated. Fkbp8 -/- mice showed no cardiac phenotypes under baseline conditions. The Fkbp8 -/- and control wild type littermates (Fkbp8 +/+ ) mice were subjected to pressure overload by means of transverse aortic constriction (TAC). Fkbp8 -/- mice showed left ventricular dysfunction and chamber dilatation with lung congestion 1week after TAC. The number of apoptotic cardiomyocytes was dramatically elevated in TAC-operated Fkbp8 -/- hearts, accompanied with an increase in protein levels of cleaved caspase-12 and endoplasmic reticulum (ER) stress markers. Caspase-12 inhibition resulted in the attenuation of hydrogen peroxide-induced apoptotic cell death in FKBP8 knockdown H9c2 myocytes. Immunocytological and immunoprecipitation analyses indicate that FKBP8 is localized to the ER and mitochondria in the isolated cardiomyocytes, interacting with heat shock protein 90. Furthermore, there was accumulation of misfolded protein aggregates in FKBP8 knockdown H9c2 myocytes and electron dense deposits in perinuclear region in TAC-operated Fkbp8 -/- hearts. The data suggest that FKBP8 plays a protective role against hemodynamic stress in the heart mediated via inhibition of the accumulation of misfolded proteins and

  1. Protein interactions of heat stress transcription factors from Lycopersicon peruvianum

    OpenAIRE

    Calligaris, Raffaella

    2006-01-01

    The heat stress response is characterized by the presence of heat stress transcription factors (Hsfs) which mediate transcription of heat stress genes. In tomato (Lycopersicon peruvianum) cell cultures the simultaneous expression of four Hsfs, which are either constitutively (HsfA1 and HsfA3) or heat-stress inducible (HsfA2 and HsfB1) expressed, results in a complex network with dynamically changing cellular levels, intracellular localization and functional interactions. In order to examine t...

  2. Elucidating stress proteins in rice (Oryza sativa L.) genotype under elevated temperature: a proteomic approach to understand heat stress response.

    Science.gov (United States)

    Kumar, Narendra; Suyal, Deep Chandra; Sharma, Ishwar Prakash; Verma, Amit; Singh, Hukum

    2017-07-01

    Rice is one of the widely consumed staple foods among the world's human population. Its production is adversely affected by high temperature and is more pronounced at flowering stage. Elucidating elevated temperature stress-related proteins as well as associated mechanisms is inevitable for improving heat tolerance in rice. In the present study, a proteomic analysis of heat-sensitive rice genotype, IET 21405 was conducted. Two-dimensional electrophoresis (2-DE) and MALDI-TOF/MS-based proteomics approaches revealed a total of 73 protein spots in rice leaf. The protein profiles clearly indicated variations in protein expression between the control and heat treated rice genotypes. Functional assessment of 73 expressed proteins revealed several mechanisms thought to be involved in high temperature including their putative role in metabolism, energy, protein synthesis, protein transport/storage, etc. Besides these, some proteins are expected to involve in photosynthesis, tricarboxylic acid (TCA) cycle, glycolysis and other proteins for energy production. The proteins identified in the present study provide a strong basis to elucidate gene function of these proteins and to explain further the molecular mechanisms underlying the adaptation of rice to high temperature stress.

  3. Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress

    Science.gov (United States)

    Oh, MyeongWon; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Soybean is sensitive to flooding stress and exhibits reduced growth under flooding conditions. To better understand the flooding-responsive mechanisms of soybean, the effect of exogenous calcium on flooding-stressed soybeans was analyzed using proteomic technique. An increase in exogenous calcium levels enhanced soybean root elongation and suppressed the cell death of root tip under flooding stress. Proteins were extracted from the roots of 4-day-old soybean seedlings exposed to flooding stress without or with calcium for 2 days and analyzed using gel-free proteomic technique. Proteins involved in protein degradation/synthesis/posttranslational modification, hormone/cell wall metabolisms, and DNA synthesis were decreased by flooding stress; however, their reductions were recovered by calcium treatment. Development, lipid metabolism, and signaling-related proteins were increased in soybean roots when calcium was supplied under flooding stress. Fermentation and glycolysis-related proteins were increased in response to flooding; however, these proteins were not affected by calcium supplementation. Furthermore, urease and copper chaperone proteins exhibited similar profiles in 4-day-old untreated soybeans and 4-day-old soybeans exposed to flooding for 2 days in the presence of calcium. These results suggest that calcium might affect the cell wall/hormone metabolisms, protein degradation/synthesis, and DNA synthesis in soybean roots under flooding stress. PMID:25368623

  4. Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress

    Directory of Open Access Journals (Sweden)

    MyeongWon eOh

    2014-10-01

    Full Text Available Soybean is sensitive to flooding stress and exhibits reduced growth under flooding conditions. To better understand the flooding-responsive mechanisms of soybean, the effect of exogenous calcium on flooding-stressed soybeans was analyzed using proteomic technique. An increase in exogenous calcium levels enhanced soybean root elongation and suppressed the cell death of root tip under flooding stress. Proteins were extracted from the roots of 4-day-old soybean seedlings exposed to flooding stress without or with calcium for 2 days and analyzed using gel-free proteomic technique. Proteins involved in protein degradation/synthesis/posttranslational modification, hormone/cell wall metabolisms, and DNA synthesis were decreased by flooding stress; however, their reductions were recovered by calcium treatment. Development, lipid metabolism, and signaling-related proteins were increased in soybean roots when calcium was supplied under flooding stress. Fermentation and glycolysis-related proteins were increased in response to flooding; however, these proteins were not affected by calcium supplementation. Furthermore, urease and copper chaperone proteins exhibited similar profiles in 4-day-old untreated soybeans and 4-day-old soybeans exposed to flooding for 2 days in the presence of calcium. These results suggest that calcium might affect the cell wall/hormone metabolisms, protein degradation/synthesis, and DNA synthesis in soybean roots under flooding stress.

  5. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP).

    Science.gov (United States)

    Timperio, Anna Maria; Egidi, Maria Giulia; Zolla, Lello

    2008-10-07

    The most crucial function of plant cell is to respond against stress induced for self-defence. This defence is brought about by alteration in the pattern of gene expression: qualitative and quantitative changes in proteins are the result, leading to modulation of certain metabolic and defensive pathways. Abiotic stresses usually cause protein dysfunction. They have an ability to alter the levels of a number of proteins which may be soluble or structural in nature. Nowadays, in higher plants high-throughput protein identification has been made possible along with improved protein extraction, purification protocols and the development of genomic sequence databases for peptide mass matches. Thus, recent proteome analysis performed in the vegetal Kingdom has provided new dimensions to assess the changes in protein types and their expression levels under abiotic stress. As reported in this review, specific and novel proteins, protein-protein interactions and post-translational modifications have been identified, which play a role in signal transduction, anti-oxidative defence, anti-freezing, heat shock, metal binding etc. However, beside specific proteins production, plants respond to various stresses in a similar manner by producing heat shock proteins (HSPs), indicating a similarity in the plant's adaptive mechanisms; in plants, more than in animals, HSPs protect cells against many stresses. A relationship between ROS and HSP also seems to exist, corroborating the hypothesis that during the course of evolution, plants were able to achieve a high degree of control over ROS toxicity and are now using ROS as signalling molecules to induce HSPs.

  6. Differential Analysis of Protein Expression in RNA-Binding-Protein Transgenic and Parental Rice Seeds Cultivated under Salt Stress

    Science.gov (United States)

    2015-01-01

    Transgenic plants tolerant to various environmental stresses are being developed to ensure a consistent food supply. We used a transgenic rice cultivar with high saline tolerance by introducing an RNA-binding protein (RBP) from the ice plant (Mesembryanthemum crystallinum); differences in salt-soluble protein expression between nontransgenic (NT) and RBP rice seeds were analyzed by 2D difference gel electrophoresis (2D-DIGE), a gel-based proteomic method. To identify RBP-related changes in protein expression under salt stress, NT and RBP rice were cultured with or without 200 mM sodium chloride. Only two protein spots differed between NT and RBP rice seeds cultured under normal conditions, one of which was identified as a putative abscisic acid-induced protein. In NT rice seeds, 91 spots significantly differed between normal and salt-stress conditions. Two allergenic proteins of NT rice seeds, RAG1 and RAG2, were induced by high salt. In contrast, RBP rice seeds yielded seven spots and no allergen spots with significant differences in protein expression between normal and salt-stress conditions. Therefore, expression of fewer proteins was altered in RBP rice seeds by high salt than those in NT rice seeds. PMID:24410502

  7. Differential analysis of protein expression in RNA-binding-protein transgenic and parental rice seeds cultivated under salt stress.

    Science.gov (United States)

    Nakamura, Rika; Nakamura, Ryosuke; Adachi, Reiko; Hachisuka, Akiko; Yamada, Akiyo; Ozeki, Yoshihiro; Teshima, Reiko

    2014-02-07

    Transgenic plants tolerant to various environmental stresses are being developed to ensure a consistent food supply. We used a transgenic rice cultivar with high saline tolerance by introducing an RNA-binding protein (RBP) from the ice plant (Mesembryanthemum crystallinum); differences in salt-soluble protein expression between nontransgenic (NT) and RBP rice seeds were analyzed by 2D difference gel electrophoresis (2D-DIGE), a gel-based proteomic method. To identify RBP-related changes in protein expression under salt stress, NT and RBP rice were cultured with or without 200 mM sodium chloride. Only two protein spots differed between NT and RBP rice seeds cultured under normal conditions, one of which was identified as a putative abscisic acid-induced protein. In NT rice seeds, 91 spots significantly differed between normal and salt-stress conditions. Two allergenic proteins of NT rice seeds, RAG1 and RAG2, were induced by high salt. In contrast, RBP rice seeds yielded seven spots and no allergen spots with significant differences in protein expression between normal and salt-stress conditions. Therefore, expression of fewer proteins was altered in RBP rice seeds by high salt than those in NT rice seeds.

  8. Hvem er vi? Hvem er de?

    DEFF Research Database (Denmark)

    Kryger, Niels

    2016-01-01

    Kommentaren tager afsæt i initiativer i de pædagogiske faglige foreninger i Europa EERA) og i Norden (NERA) og argumenterer for at det er forpligtelse for os som nordiske og europæiske pædagogiske forskere at gå op imod de stadigt mere ekskluderende vi-konstruktioner, som er blevet formuleret i f...

  9. Overexpression of an abiotic-stress inducible plant protein in the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... The aim of our work was the overexpression of the abiotic stress-inducible dehydrin protein, namely. RAB16A, from rice ... reaction with the above band, but not with GST protein alone, showing functional expression of the heterologous .... tagged to fluorescent markers like green fluorescent protein (GFP) or ...

  10. The Endoplasmic Reticulum Unfolded Protein Response in Neurodegenerative Disorders and Its Potential Therapeutic Significance

    Directory of Open Access Journals (Sweden)

    Paolo Remondelli

    2017-06-01

    Full Text Available In eukaryotic cells, the endoplasmic reticulum (ER is the cell compartment involved in secretory protein translocation and quality control of secretory protein folding. Different conditions can alter ER function, resulting in the accumulation of unfolded or misfolded proteins within the ER lumen. Such a condition, known as ER stress, elicits an integrated adaptive response known as the unfolded protein response (UPR that aims to restore proteostasis within the secretory pathway. Conversely, in prolonged cell stress or insufficient adaptive response, UPR signaling causes cell death. ER dysfunctions are involved and contribute to neuronal degeneration in several human diseases, including Alzheimer, Parkinson and Huntington disease and amyotrophic lateral sclerosis. The correlations between ER stress and its signal transduction pathway known as the UPR with neuropathological changes are well established. In addition, much evidence suggests that genetic or pharmacological modulation of UPR could represent an effective strategy for minimizing the progressive neuronal loss in neurodegenerative diseases. Here, we review recent results describing the main cellular mechanisms linking ER stress and UPR to neurodegeneration. Furthermore, we provide an up-to-date panoramic view of the currently pursued strategies for ameliorating the toxic effects of protein unfolding in disease by targeting the ER UPR pathway.

  11. Alcohol Dehydrogenase Protects against Endoplasmic Reticulum Stress-Induced Myocardial Contractile Dysfunction via Attenuation of Oxidative Stress and Autophagy: Role of PTEN-Akt-mTOR Signaling.

    Directory of Open Access Journals (Sweden)

    Jiaojiao Pang

    Full Text Available The endoplasmic reticulum (ER plays an essential role in ensuring proper folding of the newly synthesized proteins. Aberrant ER homeostasis triggers ER stress and development of cardiovascular diseases. ADH is involved in catalyzing ethanol to acetaldehyde although its role in cardiovascular diseases other than ethanol metabolism still remains elusive. This study was designed to examine the impact of ADH on ER stress-induced cardiac anomalies and underlying mechanisms involved using cardiac-specific overexpression of alcohol dehydrogenase (ADH.ADH and wild-type FVB mice were subjected to the ER stress inducer tunicamycin (1 mg/kg, i.p., for 48 hrs. Myocardial mechanical and intracellular Ca(2+ properties, ER stress, autophagy and associated cell signaling molecules were evaluated.ER stress compromised cardiac contractile function (evidenced as reduced fractional shortening, peak shortening, maximal velocity of shortening/relengthening, prolonged relengthening duration and impaired intracellular Ca(2+ homeostasis, oxidative stress and upregulated autophagy (increased LC3B, Atg5, Atg7 and p62, along with dephosphorylation of PTEN, Akt and mTOR, all of which were attenuated by ADH. In vitro study revealed that ER stress-induced cardiomyocyte anomaly was abrogated by ADH overexpression or autophagy inhibition using 3-MA. Interestingly, the beneficial effect of ADH was obliterated by autophagy induction, inhibition of Akt and mTOR. ER stress also promoted phosphorylation of the stress signaling ERK and JNK, the effect of which was unaffected by ADH transgene.Taken together, these findings suggested that ADH protects against ER stress-induced cardiac anomalies possibly via attenuation of oxidative stress and PTEN/Akt/mTOR pathway-regulated autophagy.

  12. Nucleic acid aptamers stabilize proteins against different types of stress conditions.

    Science.gov (United States)

    Jetani, Hardik C; Bhadra, Ankan Kumar; Jain, Nishant Kumar; Roy, Ipsita

    2014-01-01

    It has been observed that the same osmolyte cannot provide protection to a protein exposed to more than one stress condition. We wanted to study the effect of nucleic acid aptamers on the stabilization of proteins against a variety of stress conditions. Adjuvanted tetanus toxoid was exposed to thermal, freeze-thawing, and agitation stress. The stability and antigenicity of the toxoid were measured. Using nucleic acid aptamers selected against tetanus toxoid, we show that these specific RNA sequences were able to stabilize alumina-adsorbed tetanus toxoid against thermal-, agitation-, and freeze-thawing-induced stress. Binding affinity of the aptamer-protein complex did not show any significant change at elevated temperature as compared with that at room temperature, indicating that the aptamer protected the protein by remaining bound to it under stress conditions and did not allow either the protein to unfold or to promote protein-protein interaction. Thus, we show that by changing the stabilization strategy from a solvent-centric to a protein-centric approach, the same molecule can be employed as a stabilizer against more than one stress condition and thus probably reduce the cost of the product during its formulation. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Ideologi er noget bras

    DEFF Research Database (Denmark)

    Hansen, Brian Benjamin; Jøker Bjerre, Henrik

    medieområdet kan dette skifte betragtes som den endelige sejr for den post-ideologiske konsensus, der går ud fra, at der ikke mere er behov for politisk diskussion, og at vi aldrig mere skal indlade os på farlige politiske eksperimenter. Ideologi er noget bras, sagde jo allerede Poul Schlüter. Med inspiration......, ideologiske ramme for vore liv. Ideologi er noget bras, men bras er også ideologi....

  14. Puf er plat

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg; Zeller, Clara

    2015-01-01

    Der er stort set ingen, der har fattet, hvad nudging egentlig er. Et nudge er nemlig hverken ”et lille blidt skub”, eller ”en helt ny videnskabelig metode [der] kan ændre vores adfærd, uden vi opdager det - og uden det koster os noget”, ligesom det heller ikke er ”en måde at friste kunder til at ...

  15. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre

    2016-11-15

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  16. Oxidative protein folding in the endoplasmic reticulum: tight links to the mitochondria-associated membrane (MAM).

    Science.gov (United States)

    Simmen, Thomas; Lynes, Emily M; Gesson, Kevin; Thomas, Gary

    2010-08-01

    The production of secretory proteins at the ER (endoplasmic reticulum) depends on a ready supply of energy and metabolites as well as the close monitoring of the chemical conditions that favor oxidative protein folding. ER oxidoreductases and chaperones fold nascent proteins into their export-competent three-dimensional structure. Interference with these protein folding enzymes leads to the accumulation of unfolded proteins within the ER lumen, causing an acute organellar stress that triggers the UPR (unfolded protein response). The UPR increases the transcription of ER chaperones commensurate with the load of newly synthesized proteins and can protect the cell from ER stress. Persistant stress, however, can force the UPR to commit cells to undergo apoptotic cell death, which requires the emptying of ER calcium stores. Conversely, a continuous ebb and flow of calcium occurs between the ER and mitochondria during resting conditions on a domain of the ER that forms close contacts with mitochondria, the MAM (mitochondria-associated membrane). On the MAM, ER folding chaperones such as calnexin and calreticulin and oxidoreductases such as ERp44, ERp57 and Ero1alpha regulate calcium flux from the ER through reversible, calcium and redox-dependent interactions with IP3Rs (inositol 1,4,5-trisphophate receptors) and with SERCAs (sarcoplasmic/endoplasmic reticulum calcium ATPases). During apoptosis progression and depending on the identity of the ER chaperone and oxidoreductase, these interactions increase or decrease, suggesting that the extent of MAM targeting of ER chaperones and oxidoreductases could shift the readout of ER-mitochondria calcium exchange from housekeeping to apoptotic. However, little is known about the cytosolic factors that mediate the on/off interactions between ER chaperones and oxidoreductases with ER calcium channels and pumps. One candidate regulator is the multi-functional molecule PACS-2 (phosphofurin acidic cluster sorting protein-2). Recent

  17. Cybermagt er spoilermagt

    DEFF Research Database (Denmark)

    Nyemann, Dorthe Bach

    Cybermagt er spoilermagt. Det er overskriften på denne rapport, hvis hovedformål er at indkredse, hvilken rolle magt i cyberspace spiller for forholdet mellem stater. Rapporten undersøger cybermagtens centrale betydning for den øgede destabilisering af internationale relationer, mens den samtidig...... cyberspace via fælles initiativer....

  18. Man er aldrig alene

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2013-01-01

    Nu ved vi, at der er mange slags DNA i vores krop, og at samarbejdet mellem de organismer, som bærer alt dette DNA, er essentielt for vores overlevelse" … "Kroppen er en slags økosystem, hvor alle slags samarbejde hen ad vejen bliver afprøvet"...

  19. Er alt design?

    DEFF Research Database (Denmark)

    Michelsen, Anders Ib; Engholm, Ida

    2016-01-01

    Design er et ord med mange betydninger. Hvad enten design er det, der kommer ud af en shoppingtur, om det indgår i et dannelsesbegreb, hvor den kultiverede og ”gode stol” har sin plads, er en uddannelse med forskning underneden eller en strategisk indsats for velfærdssamfundets forvandling til et...

  20. Chronic treatment with paeonol improves endothelial function in mice through inhibition of endoplasmic reticulum stress-mediated oxidative stress.

    Directory of Open Access Journals (Sweden)

    Ker Woon Choy

    Full Text Available Endoplasmic reticulum (ER stress leads to endothelial dysfunction which is commonly associated in the pathogenesis of several cardiovascular diseases. We explored the vascular protective effects of chronic treatment with paeonol (2'-hydroxy-4'-methoxyacetophenone, the major compound from the root bark of Paeonia suffruticosa on ER stress-induced endothelial dysfunction in mice. Male C57BL/6J mice were injected intraperitoneally with ER stress inducer, tunicamycin (1 mg/kg/week for 2 weeks to induce ER stress. The animals were co-administered with or without paeonol (20 mg/kg/oral gavage, reactive oxygen species (ROS scavenger, tempol (20 mg/kg/day or ER stress inhibitor, tauroursodeoxycholic acid (TUDCA, 150 mg/kg/day respectively. Blood pressure and body weight were monitored weekly and at the end of treatment, the aorta was isolated for isometric force measurement. Protein associated with ER stress (GRP78, ATF6 and p-eIF2α and oxidative stress (NOX2 and nitrotyrosine were evaluated using Western blotting. Nitric oxide (NO bioavailability were determined using total nitrate/nitrite assay and western blotting (phosphorylation of eNOS protein. ROS production was assessed by en face dihydroethidium staining and lucigenin-enhanced chemiluminescence assay, respectively. Our results revealed that mice treated with tunicamycin showed an increased blood pressure, reduction in body weight and impairment of endothelium-dependent relaxations (EDRs of aorta, which were ameliorated by co-treatment with either paeonol, TUDCA and tempol. Furthermore, paeonol reduced the ROS level in the mouse aorta and improved NO bioavailability in tunicamycin treated mice. These beneficial effects of paeonol observed were comparable to those produced by TUDCA and tempol, suggesting that the actions of paeonol may involve inhibition of ER stress-mediated oxidative stress pathway. Taken together, the present results suggest that chronic treatment with paeonol preserved

  1. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review

    Directory of Open Access Journals (Sweden)

    Erdi Sozen

    2017-08-01

    Full Text Available Endoplasmic reticulum (ER is the major site of protein folding and calcium storage. Beside the role of ER in protein homeostasis, it controls the cholesterol production and lipid-membrane biosynthesis as well as surviving and cell death signaling mechanisms in the cell. It is well-documented that elevated plasma cholesterol induces adverse effects in cardiovascular diseases (CVDs, liver disorders, such as non-alcoholic fatty liver disease (NAFLD, non-alcoholic steatosis hepatitis (NASH, and metabolic diseases which are associated with oxidative and ER stress. Recent animal model and human studies have showed high cholesterol and ER stress as an emerging factors involved in the development of many metabolic diseases. In this review, we will summarize the crucial effects of hypercholesterolemia and ER stress response in the pathogenesis of CVDs, NAFLD/NASH, diabetes and obesity which are major health problems in western countries.

  2. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review.

    Science.gov (United States)

    Sozen, Erdi; Ozer, Nesrin Kartal

    2017-08-01

    Endoplasmic reticulum (ER) is the major site of protein folding and calcium storage. Beside the role of ER in protein homeostasis, it controls the cholesterol production and lipid-membrane biosynthesis as well as surviving and cell death signaling mechanisms in the cell. It is well-documented that elevated plasma cholesterol induces adverse effects in cardiovascular diseases (CVDs), liver disorders, such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatosis hepatitis (NASH), and metabolic diseases which are associated with oxidative and ER stress. Recent animal model and human studies have showed high cholesterol and ER stress as an emerging factors involved in the development of many metabolic diseases. In this review, we will summarize the crucial effects of hypercholesterolemia and ER stress response in the pathogenesis of CVDs, NAFLD/NASH, diabetes and obesity which are major health problems in western countries. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Amelioration of Glucolipotoxicity-Induced Endoplasmic Reticulum Stress by a “Chemical Chaperone” in Human THP-1 Monocytes

    Directory of Open Access Journals (Sweden)

    Raji Lenin

    2012-01-01

    Full Text Available Chronic ER stress is emerging as a trigger that imbalances a number of systemic and arterial-wall factors and promote atherosclerosis. Macrophage apoptosis within advanced atherosclerotic lesions is also known to increase the risk of atherothrombotic disease. We hypothesize that glucolipotoxicity might mediate monocyte activation and apoptosis through ER stress. Therefore, the aims of this study are (a to investigate whether glucolipotoxicity could impose ER stress and apoptosis in THP-1 human monocytes and (b to investigate whether 4-Phenyl butyric acid (PBA, a chemical chaperone could resist the glucolipotoxicity-induced ER stress and apoptosis. Cells subjected to either glucolipotoxicity or tunicamycin exhibited increased ROS generation, gene and protein (PERK, GRP-78, IRE1α, and CHOP expression of ER stress markers. In addition, these cells showed increased TRPC-6 channel expression and apoptosis as revealed by DNA damage and increased caspase-3 activity. While glucolipotoxicity/tunicamycin increased oxidative stress, ER stress, mRNA expression of TRPC-6, and programmed the THP-1 monocytes towards apoptosis, all these molecular perturbations were resisted by PBA. Since ER stress is one of the underlying causes of monocyte dysfunction in diabetes and atherosclerosis, our study emphasize that chemical chaperones such as PBA could alleviate ER stress and have potential to become novel therapeutics.

  4. Oxidative stress and mitochondrial protein quality control in aging.

    Science.gov (United States)

    Lionaki, Eirini; Tavernarakis, Nektarios

    2013-10-30

    Mitochondrial protein quality control incorporates an elaborate network of chaperones and proteases that survey the organelle for misfolded or unfolded proteins and toxic aggregates. Repair of misfolded or aggregated protein and proteolytic removal of irreversibly damaged proteins are carried out by the mitochondrial protein quality control system. Initial maturation and folding of the nuclear or mitochondrial-encoded mitochondrial proteins are mediated by processing peptidases and chaperones that interact with the protein translocation machinery. Mitochondrial proteins are subjected to cumulative oxidative damage. Thus, impairment of quality control processes may cause mitochondrial dysfunction. Aging has been associated with a marked decline in the effectiveness of mitochondrial protein quality control. Here, we present an overview of the chaperones and proteases involved in the initial folding and maturation of new, incoming precursor molecules, and the subsequent repair and removal of oxidized aggregated proteins. In addition, we highlight the link between mitochondrial protein quality control mechanisms and the aging process. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. GPG-NH2 acts via the metabolite αHGA to target HIV-1 Env to the ER-associated protein degradation pathway

    Directory of Open Access Journals (Sweden)

    Vahlne Anders

    2010-03-01

    Full Text Available Abstract Background The synthetic peptide glycyl-prolyl-glycine amide (GPG-NH2 was previously shown to abolish the ability of HIV-1 particles to fuse with the target cells, by reducing the content of the viral envelope glycoprotein (Env in progeny HIV-1 particles. The loss of Env was found to result from GPG-NH2 targeting the Env precursor protein gp160 to the ER-associated protein degradation (ERAD pathway during its maturation. However, the anti-viral effect of GPG-NH2 has been shown to be mediated by its metabolite α-hydroxy-glycineamide (αHGA, which is produced in the presence of fetal bovine serum, but not human serum. In accordance, we wanted to investigate whether the targeting of gp160 to the ERAD pathway by GPG-NH2 was attributed to its metabolite αHGA. Results In the presence of fetal bovine serum, GPG-NH2, its intermediary metabolite glycine amide (G-NH2, and final metabolite αHGA all induced the degradation of gp160 through the ERAD pathway. However, when fetal bovine serum was replaced with human serum only αHGA showed an effect on gp160, and this activity was further shown to be completely independent of serum. This indicated that GPG-NH2 acts as a pro-drug, which was supported by the observation that it had to be added earlier to the cell cultures than αHGA to induce the degradation of gp160. Furthermore, the substantial reduction of Env incorporation into HIV-1 particles that occurs during GPG-NH2 treatment was also achieved by treating HIV-1 infected cells with αHGA. Conclusions The previously observed specificity of GPG-NH2 towards gp160 in HIV-1 infected cells, resulting in the production of Env (gp120/gp41 deficient fusion incompetent HIV-1 particles, was most probably due to the action of the GPG-NH2 metabolite αHGA.

  6. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    Science.gov (United States)

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ)induce oxidative stress by redox cycling, which generates hydrogen peroxide (H202). Cysteinylthio...

  7. Chronic ethanol consumption induces mitochondrial protein acetylation and oxidative stress in the kidney

    OpenAIRE

    Harris, Peter S.; Roy, Samantha R.; Coughlan, Christina; Orlicky, David J.; Liang, Yongliang; Shearn, Colin T.; Roede, James R.; Fritz, Kristofer S.

    2015-01-01

    In this study, we present the novel findings that chronic ethanol consumption induces mitochondrial protein hyperacetylation in the kidney and correlates with significantly increased renal oxidative stress. A major proteomic footprint of alcoholic liver disease (ALD) is an increase in hepatic mitochondrial protein acetylation. Protein hyperacetylation has been shown to alter enzymatic function of numerous proteins and plays a role in regulating metabolic processes. Renal mitochondrial targets...

  8. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants

    Science.gov (United States)

    Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  9. Taurine ameliorated homocysteine-induced H9C2 cardiomyocyte apoptosis by modulating endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Zhimin; Zhao, Lianyou; Zhou, Yanfen; Lu, Xuanhao; Wang, Zhengqiang; Wang, Jipeng; Li, Wei

    2017-05-01

    Homocysteine (Hcy)-triggered endoplasmic reticulum (ER) stress-mediated endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury. However, whether ER stress is the molecular mechanism linking Hcy and cardiomyocytes death is unclear. Taurine has been reported to exert cardioprotective effects via various mechanisms. However, whether taurine protects against Hcy-induced cardiomyocyte death by attenuating ER stress is unknown. This study aimed to evaluate the opposite effects of taurine on Hcy-induced cardiomyocyte apoptosis and their underlying mechanisms. Our results demonstrated that low-dose or short-term Hcy treatment increased the expression of glucose-regulated protein 78 (GRP78) and activated protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6), which in turn prevented apoptotic cell death. High-dose Hcy or prolonged Hcy treatment duration significantly up-regulated levels of C/EBP homologous protein (CHOP), cleaved caspase-12, p-c-Jun N-terminal kinase (JNK), and then triggered apoptotic events. High-dose Hcy also resulted in a decrease in mitochondrial membrane potential (Δψm) and an increase in cytoplasmic cytochrome C and the expression of cleaved caspase-9. Pretreatment of cardiomyocytes with sodium 4-phenylbutyric acid (an ER stress inhibitor) significantly inhibited Hcy-induced apoptosis. Furthermore, blocking the PERK pathway partly alleviated Hcy-induced ER stress-modulated cardiomyocyte apoptosis, and down-regulated the levels of Bax and cleaved caspase-3. Experimental taurine pretreatment inhibited the expression of ER stress-related proteins, and protected against apoptotic events triggered by Hcy-induced ER stress. Taken together, our results suggest that Hcy triggered ER stress in cardiomyocytes, which was the crucial molecular mechanism mediating Hcy-induced cardiomyocyte apoptosis, and the adverse effect of Hcy could be prevented by taurine.

  10. Real Time FRET Based Detection of Mechanical Stress in Cytoskeletal and Extracellular Matrix Proteins.

    Science.gov (United States)

    Meng, Fanjie; Suchyna, Thomas M; Lazakovitch, Elena; Gronostajski, Richard M; Sachs, Frederick

    2011-06-01

    A molecular force sensing cassette (stFRET) was incorporated into actinin, filamin, and spectrin in vascular endothelial cells (BAECs) and into collagen-19 in Caenorhabditis elegans. To estimate the stress sensitivity of stFRET in solution, we used DNA springs. A 60-mer loop of single stranded DNA was covalently linked to the external cysteines of the donor and acceptor. When the complementary DNA was added it formed double stranded DNA with higher persistence length, stretching the linker and substantially reducing FRET efficiency. The probe stFRET detected constitutive stress in all cytoskeletal proteins tested, and in migrating cells the stress was greater at the leading edge than the trailing edge. The stress in actinin, filamin and spectrin could be reduced by releasing focal attachments from the substrate with trypsin. Inhibitors of actin polymerization produced a modest increase in stress on the three proteins suggesting they are mechanically in parallel. Local shear stress applied to the cell with a perfusion pipette showed gradients of stress leading from the site of perfusion. Transgenic C. elegans labeled in collagen-19 produced a behaviorally and anatomically normal animal with constitutive stress in the cuticle. Stretching the worm visibly stretched the probe in collagen showing that we can trace the distribution of mean tissue stress in specific molecules. stFRET is a general purpose dynamic sensor of mechanical stress that can be expressed intracellularly and extracellularly in isolated proteins, cells, tissues, organs and animals.

  11. Endoplasmic Reticulum Stress-Induced Autophagy Provides Cytoprotection from Chemical Hypoxia and Oxidant Injury and Ameliorates Renal Ischemia-Reperfusion Injury.

    Directory of Open Access Journals (Sweden)

    Bhavya B Chandrika

    Full Text Available We examined whether endoplasmic reticulum (ER stress-induced autophagy provides cytoprotection from renal tubular epithelial cell injury due to oxidants and chemical hypoxia in vitro, as well as from ischemia-reperfusion (IR injury in vivo. We demonstrate that the ER stress inducer tunicamycin triggers an unfolded protein response, upregulates ER chaperone Grp78, and activates the autophagy pathway in renal tubular epithelial cells in culture. Inhibition of ER stress-induced autophagy accelerated caspase-3 activation and cell death suggesting a pro-survival role of ER stress-induced autophagy. Compared to wild-type cells, autophagy-deficient MEFs subjected to ER stress had enhanced caspase-3 activation and cell death, a finding that further supports the cytoprotective role of ER stress-induced autophagy. Induction of autophagy by ER stress markedly afforded cytoprotection from oxidants H2O2 and tert-Butyl hydroperoxide and from chemical hypoxia induced by antimycin A. In contrast, inhibition of ER stress-induced autophagy or autophagy-deficient cells markedly enhanced cell death in response to oxidant injury and chemical hypoxia. In mouse kidney, similarly to renal epithelial cells in culture, tunicamycin triggered ER stress, markedly upregulated Grp78, and activated autophagy without impairing the autophagic flux. In addition, ER stress-induced autophagy markedly ameliorated renal IR injury as evident from significant improvement in renal function and histology. Inhibition of autophagy by chloroquine markedly increased renal IR injury. These studies highlight beneficial impact of ER stress-induced autophagy in renal ischemia-reperfusion injury both in vitro and in vivo.

  12. KLF15 is a molecular link between endoplasmic reticulum stress and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Dae Young Jung

    Full Text Available Obesity places major demands on the protein folding capacity of the endoplasmic reticulum (ER, resulting in ER stress, a condition that promotes hepatic insulin resistance and steatosis. Here we identify the transcription factor, Kruppel-like factor 15 (KLF15, as an essential mediator of ER stress-induced insulin resistance in the liver. Mice with a targeted deletion of KLF15 exhibit increased hepatic ER stress, inflammation, and JNK activation compared to WT mice; however, KLF15 (-/- mice are protected against hepatic insulin resistance and fatty liver under high-fat feeding conditions and in response to pharmacological induction of ER stress. The mammalian target of rapamycin complex 1 (mTORC1, a key regulator of cellular energy homeostasis, has been shown to cooperate with ER stress signaling pathways to promote hepatic insulin resistance and lipid accumulation. We find that the uncoupling of ER stress and insulin resistance in KLF15 (-/- liver is associated with the maintenance of a low energy state characterized by decreased mTORC1 activity, increased AMPK phosphorylation and PGC-1α expression and activation of autophagy, an intracellular degradation process that enhances hepatic insulin sensitivity. Furthermore, in primary hepatocytes, KLF15 deficiency markedly inhibits activation of mTORC1 by amino acids and insulin, suggesting a mechanism by which KLF15 controls mTORC1-mediated insulin resistance. This study establishes KLF15 as an important molecular link between ER stress and insulin action.

  13. KLF15 is a molecular link between endoplasmic reticulum stress and insulin resistance.

    Science.gov (United States)

    Jung, Dae Young; Chalasani, Umadevi; Pan, Ning; Friedline, Randall H; Prosdocimo, Domenick A; Nam, Minwoo; Azuma, Yoshihiro; Maganti, Rajanikanth; Yu, Kristine; Velagapudi, Ashish; O'Sullivan-Murphy, Bryan; Sartoretto, Juliano L; Jain, Mukesh K; Cooper, Marcus P; Urano, Fumihiko; Kim, Jason K; Gray, Susan

    2013-01-01

    Obesity places major demands on the protein folding capacity of the endoplasmic reticulum (ER), resulting in ER stress, a condition that promotes hepatic insulin resistance and steatosis. Here we identify the transcription factor, Kruppel-like factor 15 (KLF15), as an essential mediator of ER stress-induced insulin resistance in the liver. Mice with a targeted deletion of KLF15 exhibit increased hepatic ER stress, inflammation, and JNK activation compared to WT mice; however, KLF15 (-/-) mice are protected against hepatic insulin resistance and fatty liver under high-fat feeding conditions and in response to pharmacological induction of ER stress. The mammalian target of rapamycin complex 1 (mTORC1), a key regulator of cellular energy homeostasis, has been shown to cooperate with ER stress signaling pathways to promote hepatic insulin resistance and lipid accumulation. We find that the uncoupling of ER stress and insulin resistance in KLF15 (-/-) liver is associated with the maintenance of a low energy state characterized by decreased mTORC1 activity, increased AMPK phosphorylation and PGC-1α expression and activation of autophagy, an intracellular degradation process that enhances hepatic insulin sensitivity. Furthermore, in primary hepatocytes, KLF15 deficiency markedly inhibits activation of mTORC1 by amino acids and insulin, suggesting a mechanism by which KLF15 controls mTORC1-mediated insulin resistance. This study establishes KLF15 as an important molecular link between ER stress and insulin action.

  14. Stress induced nuclear granules form in response to accumulation of misfolded proteins in Caenorhabditis elegans.

    Science.gov (United States)

    Sampuda, Katherine M; Riley, Mason; Boyd, Lynn

    2017-04-19

    Environmental stress can affect the viability or fecundity of an organism. Environmental stressors may affect the genome or the proteome and can cause cellular distress by contributing to protein damage or misfolding. This study examines the cellular response to environmental stress in the germline of the nematode, C. elegans. Salt stress, oxidative stress, and starvation, but not heat shock, induce the relocalization of ubiquitin, proteasome, and the TIAR-2 protein into distinct subnuclear regions referred to as stress induced nuclear granules (SINGs). The SINGs form within 1 h of stress initiation and do not require intertissue signaling. K48-linked polyubiquitin chains but not K63 chains are enriched in SINGs. Worms with a mutation in the conjugating enzyme, ubc-18, do not form SINGs. Additionally, knockdown of ubc-20 and ubc-22 reduces the level of SING formation as does knockdown of the ubiquitin ligase chn-1, a CHIP homolog. The nuclear import machinery is required for SING formation. Stressed embryos containing SINGs fail to hatch and cell division in these embryos is halted. The formation of SINGs can be prevented by pre-exposure to a brief period of heat shock before stress exposure. Heat shock inhibition of SINGs is dependent upon the HSF-1 transcription factor. The heat shock results suggest that chaperone expression can prevent SING formation and that the accumulation of damaged or misfolded proteins is a necessary precursor to SING formation. Thus, SINGs may be part of a novel protein quality control system. The data suggest an interesting model where SINGs represent sites of localized protein degradation for nuclear or cytosolic proteins. Thus, the physiological impacts of environmental stress may begin at the cellular level with the formation of stress induced nuclear granules.

  15. Hypercholesterolemia aggravates myocardial ischemia reperfusion injury via activating endoplasmic reticulum stress-mediated apoptosis.

    Science.gov (United States)

    Wu, Nan; Zhang, Xiaowen; Jia, Pengyu; Jia, Dalin

    2015-12-01

    The effect of hypercholesterolemia on myocardial ischemia reperfusion injury (MIRI) is in controversy and the underlying mechanism is still not well understood. In the present study, we firstly detected the effects of hypercholesterolemia on MIRI and the role of endoplasmic reticulum (ER) stress-mediated apoptosis pathway in this process. The infarct size was determined by TTC staining, and apoptosis was measured by the TUNEL method. The marker proteins of ER stress response and ER stress-mediated apoptosis pathway were detected by Western blot. The results showed that high cholesterol diet-induced hypercholesterolemia significantly increased the myocardial infarct size, the release of myocardium enzyme and the ratio of apoptosis, but did not affect the recovery of cardiac function. Moreover, hypercholesterolemia also remarkably up-regulated the expressions of ER stress markers (glucose-regulated protein 78 and calreticulin) and critical molecules in ER stress-mediated apoptosis pathway (CHOP, caspase 12, phospho-JNK). In conclusion, our study demonstrated that hypercholesterolemia enhanced myocardial vulnerability/sensitivity to ischemia reperfusion injury involved in aggravation the ER stress and activation of ER stress-mediated apoptosis pathway and it gave us a new insight into the underlying mechanisms associated with hypercholesterolemia-induced exaggerated MIRI and also provided a novel target for preventing MIRI in the presence of hypercholesterolemia. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway

    Science.gov (United States)

    Jung, T.W.; Lee, M.W.; Lee, Y.-J.; Kim, S.M.

    2012-01-01

    Type 2 diabetes mellitus is thought to be partially associated with endoplasmic reticulum (ER) stress toxicity on pancreatic beta cells and the result of decreased insulin synthesis and secretion. In this study, we showed that a well-known insulin sensitizer, metformin, directly protects against dysfunction and death of ER stress-induced NIT-1 cells (a mouse pancreatic beta cell line) via AMP-activated protein kinase (AMPK) and phosphatidylinositol-3 (PI3) kinase activation. We also showed that exposure of NIT-1 cells to metformin (5mM) increases cellular resistance against ER stress-induced NIT-1 cell dysfunction and death. AMPK and PI3 kinase inhibitors abolished the effect of metformin on cell function and death. Metformin-mediated protective effects on ER stress-induced apoptosis were not a result of an unfolded protein response or the induced inhibitors of apoptotic proteins. In addition, we showed that exposure of ER stressed-induced NIT-1 cells to metformin decreases the phosphorylation of c-Jun NH(2) terminal kinase (JNK). These data suggest that metformin is an important determinant of ER stress-induced apoptosis in NIT-1 cells and may have implications for ER stress-mediated pancreatic beta cell destruction via regulation of the AMPK-PI3 kinase-JNK pathway.

  17. Materials for ER Fluids

    Science.gov (United States)

    Bloodworth, Robert; Wendt, Eckhard

    Recent improvements in the physical understanding of ER fluids have led to the rational design of new ER materials with improved properties. This paper gives an overview of several recent developments in the formulation of ER fluids, concentrating on new particulate phases for ER dispersions. Examples of homogeneous ER fluids are also discussed. The trend leading to designed ER dispersions is demonstrated by a new class of electrorheological fluids based on non-aqueous polyurethane dispersions. The fluids exhibit an attractive combination of properties: low viscosity, high ER effect, and low conductivity. The dispersed phase consists of a specially developed polyurethane elastomer which solvates and stabilizes metal salts. The polymer network density influences the mobility of the dissolved ions, allowing a surprising degree of control over the ER effect. Properties such as the field strength dependence of the ER-effect, switching response, and conductivity of these fluids correlate directly with changes in the polymer structure. Electrorheological measurements in a couette viscometer (shear-mode) and in a model shock absorber (flow-mode) using a commercial polyurethane-based fluid show that the ER effect is also dependent upon the shearing geometry.

  18. Dynamic compartmentalization of DNA repair proteins within spiral ganglion neurons in response to noise stress.

    Science.gov (United States)

    Guthrie, O'neil W

    2012-12-01

    ABSTRACT In response to stress, spiral ganglion neurons may remodel intracellular pools of DNA repair proteins. This hypothesis was addressed by determining the intracellular location of three classic DNA excision repair proteins (XPA, CSA, and XPC) within the neurons under normal conditions, one day after noise stress (105 dB/4 hr) and following DNA repair adjuvant therapy with carboxy alkyl esters (CAEs; 160 mg/kg/28 days). Under normal conditions, three intracellular compartments were enriched with at least one repair protein. These intracellular compartments were designated nuclear, cytoplasmic, and perinuclear. After the noise stress each repair protein aggregated in the cytoplasm. After CAE therapy each intracellular compartment was enriched with the three DNA repair proteins. Combining noise stress with CAE therapy resulted in the enrichment of at least two repair proteins in each intracellular compartment. The combined results suggest that in response to noise stress and/or otoprotective therapy, spiral ganglion neurons may selectively remodel compartmentalized DNA repair proteins.

  19. Differential Analysis of Protein Expression in RNA-Binding-Protein Transgenic and Parental Rice Seeds Cultivated under Salt Stress

    OpenAIRE

    Nakamura, Rika; Nakamura, Ryosuke; Adachi, Reiko; Hachisuka, Akiko; Yamada, Akiyo; Ozeki, Yoshihiro; Teshima, Reiko

    2014-01-01

    Transgenic plants tolerant to various environmental stresses are being developed to ensure a consistent food supply. We used a transgenic rice cultivar with high saline tolerance by introducing an RNA-binding protein (RBP) from the ice plant (Mesembryanthemum crystallinum); differences in salt-soluble protein expression between nontransgenic (NT) and RBP rice seeds were analyzed by 2D difference gel electrophoresis (2D-DIGE), a gel-based proteomic method. To identify RBP-related changes in pr...

  20. Protein oxidation in plant mitochondria as a stress indicator

    DEFF Research Database (Denmark)

    Møller, I.M.; Kristensen, B.K.

    2004-01-01

    two strategies fail, the ROS produced can act as a signal to the rest of the cell and/or cause damage to DNA, lipids and proteins. Proteins are modified in a variety of ways by ROS, some direct, others indirect e. g. by conjugation with breakdown products of fatty acid peroxidation. Reversible...

  1. Proteins induced by salt stress in tomato germinating seeds

    International Nuclear Information System (INIS)

    Torres-Shumann, S.; Godoy, J.A.; del Pozo, O.; Pintor-Toro, J.A.

    1989-01-01

    Salt effects on protein synthesis in tomato germinating seeds were investigated by two-dimensional polyacrilamide gel electrophoresis of proteins labeled in vivo with ( 35 S)-Methionine. Seeds germinating in NaCl were analyzed at three germination stages (4mm long radicals, 15mm long radicles and expanding cotyledons) and compared to those germinating in water. At the first germination stage several basic proteins of M.W. 13Kd, 16Kd, 17Kd and 18Kd were detected in only salt germinating seeds. Other basic proteins of M.W. 12Kd, 50Kd and 54Kd were salt-induced at the second and third stage of germination. One 14Kd acid protein is observed in every assayed stage and shows several phosphorylated forms. The levels of expression of these proteins are directly correlated to assayed NaCl concentrations. All of these proteins, except 17Kd, are also induced by abscisic acid (ABA) in the same germination stages. A cooperative effect on the synthesis of these proteins is observed when both ABA and NaCl are present

  2. Impact of osmotic stress on protein diffusion in Lactococcus lactis

    NARCIS (Netherlands)

    Mika, Jacek; Schavemaker, Paul; Krasnikov, Viktor; Poolman, Bert

    2014-01-01

    We measured translational diffusion of proteins in the cytoplasm and plasma membrane of the Gram-positive bacterium Lactococcus lactis and probed the effect of osmotic upshift. For cells in standard growth medium the diffusion coefficients for cytosolic proteins (27 and 582 kDa) and 12-transmembrane

  3. Endoplasmic Reticulum Stress Regulates Hepatic Bile Acid Metabolism in MiceSummary

    Directory of Open Access Journals (Sweden)

    Anne S. Henkel

    2017-03-01

    Full Text Available Background & Aims: Cholestasis promotes endoplasmic reticulum (ER stress in the liver, however, the effect of ER stress on hepatic bile acid metabolism is unknown. We aim to determine the effect of ER stress on hepatic bile acid synthesis and transport in mice. Methods: ER stress was induced pharmacologically in C57BL/6J mice and human hepatoma (HepG2 cells. The hepatic expression of genes controlling bile acid synthesis and transport was determined. To measure the activity of the primary bile acid synthetic pathway, the concentration of 7α-hydroxy-4-cholesten-3-1 was measured in plasma. Results: Induction of ER stress in mice and HepG2 cells rapidly suppressed the hepatic expression of the primary bile acid synthetic enzyme, cholesterol 7α-hydroxylase. Plasma levels of 7α-hydroxy-4-cholesten-3-1 were reduced in mice subjected to ER stress, indicating impaired bile acid synthesis. Induction of ER stress in mice and HepG2 cells increased expression of the bile salt export pump (adenosine triphosphate binding cassette [Abc]b11 and a bile salt efflux pump (Abcc3. The observed regulation of Cyp7a1, Abcb11, and Abcc3 occurred in the absence of hepatic inflammatory cytokine activation and was not dependent on activation of hepatic small heterodimer partner or intestinal fibroblast growth factor 15. Consistent with suppressed bile acid synthesis and enhanced bile acid export from hepatocytes, prolonged ER stress decreased the hepatic bile acid content in mice. Conclusions: Induction of ER stress in mice suppresses bile acid synthesis and enhances bile acid removal from hepatocytes independently of established bile acid regulatory pathways. These data show a novel function of the ER stress response in regulating bile acid metabolism. Keywords: Unfolded Protein Response, Cyp7a1, 7α-Hydroxy-4-Cholesten-3-1, Bile Acid Synthesis

  4. Stress responses from the endoplasmic reticulum in cancer

    Directory of Open Access Journals (Sweden)

    Hironori eKato

    2015-04-01

    Full Text Available The endoplasmic reticulum (ER is a dynamic organelle that is essential for multiple cellular functions. During cellular stress conditions, including nutrient deprivation and dysregulation of protein synthesis, unfolded/misfolded proteins accumulate in the ER lumen, resulting in activation of the unfolded protein response (UPR. The UPR also contributes to the regulation of various intracellular signalling pathways such as calcium signalling and lipid signalling. More recently, the mitochondria-associated ER membrane (MAM, which is a site of close contact between the ER and mitochondria, has been shown to function as a platform for various intracellular stress responses including apoptotic signalling, inflammatory signalling, the autophagic response, and the UPR. Interestingly, in cancer, these signalling pathways from the ER are often dysregulated, contributing to cancer cell metabolism. Thus, the signalling pathway from the ER may be a novel therapeutic target for various cancers. In this review, we discuss recent research on the roles of stress responses from the ER, including the MAM.

  5. SYP73 Anchors the ER to the Actin Cytoskeleton for Maintenance of ER Integrity and Streaming in Arabidopsis.

    Science.gov (United States)

    Cao, Pengfei; Renna, Luciana; Stefano, Giovanni; Brandizzi, Federica

    2016-12-05

    The endoplasmic reticulum (ER) is an essential organelle that spreads throughout the cytoplasm as one interconnected network of narrow tubules and dilated cisternae that enclose a single lumen. The ER network undergoes extensive remodeling, which critically depends on membrane-cytoskeleton interactions [1]. In plants, the ER is also highly mobile, and its streaming contributes significantly to the movement of other organelles [2, 3]. The remodeling and motility of the plant ER rely mainly on actin [4] and to a minor extent on microtubules [5]. Although a three-way interaction between the ER, cytosolic myosin-XI, and F-actin mediates the plant ER streaming [6], the mechanisms underlying stable interaction of the ER membrane with actin are unknown. Early electron microscopy studies suggested a direct attachment of the plant ER with actin filaments [7, 8], but it is plausible that yet-unknown proteins facilitate anchoring of the ER membrane with the cytoskeleton. We demonstrate here that SYP73, a member of the plant Syp7 subgroup of SNARE proteins [9] containing actin-binding domains, is a novel ER membrane-associated actin-binding protein. We show that overexpression of SYP73 causes a striking rearrangement of the ER over actin and that, similar to mutations of myosin-XI [4, 10, 11], loss of SYP73 reduces ER streaming and affects overall ER network morphology and plant growth. We propose a model for plant ER remodeling whereby the dynamic rearrangement and streaming of the ER network depend on the propelling action of myosin-XI over actin coupled with a SYP73-mediated bridging, which dynamically anchors the ER membrane with actin filaments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Baseline ICIQ-UI score, body mass index, age, average birth weight, and perineometry duration as promising predictors of the short-term efficacy of Er:YAG laser treatment in stress urinary incontinent women: A prospective cohort study.

    Science.gov (United States)

    Fistonić, Ivan; Fistonić, Nikola

    2018-01-23

    A growing body of evidence indicates that a non-invasive erbium yttrium-aluminum-garnet (Er:YAG) laser may be an effective and highly tolerable treatment for stress urinary incontinence (SUI) in women. The primary objective was to identify pre-intervention predictors of short-term Er:YAG outcomes. The secondary objective was to identify patient segments with the best Er:YAG laser treatment short-term outcomes. A prospective cohort study performed in 2016 at Ob/Gyn Clinic, Zagreb, Croatia, recruited 85 female patients who suffered from SUI. The intervention was performed with a 2940 nm wave length Er:YAG laser (XS Dynamis, Fotona, Slovenia). Outcomes were absolute change in the International Consultation on Incontinence Questionnaire-Short Form (ICIQ-UI SF) and a relative decrease in ICIQ-UI score of ≥30% 2-6 months after the intervention. Age and pre-intervention ICIQ-UI values were independent significant predictors of laser treatment efficacy for SUI. A decrease in ICIQ-UI score (minimum important difference, MID) of ≥30% was independently significantly associated with body mass index and ICIQ-UI values before the intervention. All patients with four or five positive predictors saw a clinically relevant decrease in ICIQ-UI of ≥30%. The total accuracy of the predictive model defined by the area under the curve was 0.83 (95%CI 0.74-0.91). At the cut-off ≥3 positive predictors, C-index was 0.80 (95%CI 0.71-0.90), positive predictive value was 0.97 (95%CI 0.87-0.99), and negative predictive value was 0.53 (95%CI 0.45-0.55). A relevant decrease in ICIQ-UI (MID) of ≥30% can be predicted based on age, body mass index, average birth weight, perineometer squeeze duration, and ICIQ-UI scores before the intervention. The association between Q-tip test and treatment outcome was moderated by age. Q-tip was a significant predictor for patients between 44 and 53 years of age. The best results should be expected in younger women with a body mass index of ≤23

  7. COMPARISON OF STRESS PROTEINS PARTICIPATION IN ADAPTATION MECHANISMS OF BAIKALIAN AND PALEARCTIC AMPHIPOD (AMPHIPODA; CRUSTACEA SPECIES

    Directory of Open Access Journals (Sweden)

    Timofeyev M.A

    2006-03-01

    Full Text Available The aim of the present study was a study of the influence different stressful factor on syntheses and activity of the stress proteins (HSP70, sHSP and peroxidase of freshwater organism. Six freshwater amphipod species were investigated: Eulimnogammarus cyaneus (Dyb., E verrucosus (Gerstf., E vittatus (Dyb. - endemic species from Lake Baikal which were compared with Palearctic species - Gammarus lacustris Sars., G tigrinus (Sexton, Chaetogammarus ischnus (Stebbins. It was shown expression of sHSP by heat and toxic stresses for all amphipods species. Oxidative stress induced HSP70 for Palearctic species G tigrinus and C ischnus but not for baikalian species. Heat stress did not caused the increase of HSP70 level for Baikalian species of amphipods. The activity of the peroxidase was decrease by heat and toxic stresses. Oxidative stress caused the increase of peroxidase activity for Palearctic species, and the decrease for Baikalian once.

  8. Endogenous stress proteins as targets for anti-inflammatory T cells

    NARCIS (Netherlands)

    Wieten, L.

    2009-01-01

    Stress proteins such as heat shock proteins (Hsp) are important controllers of both cellular and immune homeostasis. Enhanced Hsp expression can be observed in virtually every inflammatory condition and has been proposed by us and others to lead to local activation of Hsp-specific anti-inflammatory

  9. Mechanisms of autoprotection and the role of stress-proteins in natural defenses, autoprotection, and salutogenesis

    NARCIS (Netherlands)

    Schaefer, J; Nierhaus, KH; Lohff, B; Peters, T; Schaefer, T; Vos, R

    We hypothesize that in all physiotherapeutically oriented procedures of naturotherapy - such as helio-, climate-, thalasso- or hydrotherapy or certain forms of physical exercise - the transient expression of stress-proteins (heat-shock proteins, HSPs) is an important element of salutogenesis. These

  10. Coordination of translational control and protein homeostasis during severe heat stress.

    Science.gov (United States)

    Cherkasov, Valeria; Hofmann, Sarah; Druffel-Augustin, Silke; Mogk, Axel; Tyedmers, Jens; Stoecklin, Georg; Bukau, Bernd

    2013-12-16

    Exposure of cells to severe heat stress causes not only misfolding and aggregation of proteins but also inhibition of translation and storage of mRNA in cytosolic heat stress granules (heat-SGs), limiting newly synthesized protein influx into overloaded proteome repair systems. How these two heat stress responses connect is unclear. Here, we show that both S. cerevisiae and D. melanogaster heat-SGs contain mRNA, translation machinery components (excluding ribosomes), and molecular chaperones and that heat-SGs coassemble with aggregates of misfolded, heat-labile proteins. Components in these mixed assemblies exhibit distinct molecular motilities reflecting differential trapping. We demonstrate that heat-SG disassembly and restoration of translation activity during heat stress recovery is intimately linked to disaggregation of damaged proteins present in the mixed assemblies and requires Hsp104 and Hsp70 activity. Chaperone-driven protein disaggregation directly coordinates timing of translation reinitiation with protein folding capacity during cellular protein quality surveillance, enabling efficient protein homeostasis. Copyright © 2013 Elsevier Ltd. All rig